

Lecture Notes in Computer Science 4025
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Frank Eliassen Alberto Montresor (Eds.)

Distributed
Applications and
Interoperable Systems

6th IFIP WG 6.1 International Conference, DAIS 2006
Bologna, Italy, June 14-16, 2006
Proceedings

13

Volume Editors

Frank Eliassen
University of Oslo
Department of Informatics
P.O. Box, 1080 Blindern, Oslo, Norway
E-mail: frank@ifi.uio.no

Alberto Montresor
University of Trento
Department of Information and Communication Technology
via Sommarive 14, 38050 Povo (TN), Italy
E-mail: alberto.montresor@dit.unitn.it

Library of Congress Control Number: 2006926954

CR Subject Classification (1998): D.2, C.2.4, I.2.11, D.4, H.4

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

ISSN 0302-9743
ISBN-10 3-540-35126-4 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-35126-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11773887 06/3142 5 4 3 2 1 0

Preface

This volume contains the proceedings of the IFIP WG 6.1 International Working
Conference on Distributed Applications and Interoperable Systems VI held in
Bologna, Italy, on June 14-16, 2006.

The conference program presents the state of the art in research on dis-
tributed and interoperable systems. In recent years, distributed applications have
indeed gained a practical and widely-known footing in everyday computing. Use
of new communication technologies have brought up divergent application areas,
including mobile computing, inter-enterprise collaborations, and ubiquitous ser-
vices, just to name a few. New challenges include the need for service-oriented ar-
chitectures, autonomous and self-managing systems, peer-to-peer systems, grid
computing, sensor networks, semantic enhancements, and adaptivity and dy-
namism of distribution constellations.

Following the evolution of the field, DAIS 2006 focuses on architectures, mod-
els, technologies and platforms for interoperable, scalable and adaptable systems
that are related to the latest trends towards service orientation and self-* prop-
erties. The papers presented at DAIS 2006 cover methodological aspects, tools
and language of building adaptable distributed and interoperable services, fault
tolerance and dependability, peer-to-peer systems, mobility issues, web services
applications and performance issues and composition, semantic web and seman-
tic integration, and context- and location-aware applications. Also included in
these proceedings is an invited paper by Jan Bosch and colleagues (Nokia Re-
search Center, Finland) addressing the apparent conflict between usability and
the architectural drivers that drive success or failure of mobile services.

This year, the technical program of DAIS drew from 99 submitted papers,
among which 10 were explicitly submitted as work-in-progress papers. From
these 21 regular and 5 work-in-progress papers were selected for inclusion in the
proceedings. As a rule, each paper was reviewed by three reviewers. The DAIS
2006 conference was sponsored by IFIP (International Federation for Informa-
tion Processing), and it was the sixth conference in the DAIS series of events
organized by the IFIP Working Group 6.1. The previous conferences in this se-
ries took place in Cottbus, Germany (1997), Helsinki, Finland (1999), Krakow,
Poland (2001), Paris, France (2003), and Athens, Greece (2005). Since Paris,
DAIS has been organized in conjunction with the FMOODS conference (Formal
Methods and Open Object-Based Distributed Systems). This time the COOR-
DINATION conference (Conference on Coordination Models and Languages)
joined the federated event of DAIS and FMOODS.

Finally, we would like to take this opportunity to thank the numerous people
whose work made this conference possible. We wish to express our deepest grati-
tude to the authors of submitted papers, to all program committee members for
their active participation in the paper review process, to all external reviewers

VI Preface

for their help in evaluating submissions, to the University of Bologna for hosting
the event, and to Gianluigi Zavattaro for acting as a general chair of the joint
event, who also provided the Conference Management System and support. Ketil
Lund took care of the publicity for the event. The Steering Committee with Lea
Kutvonen, Hartmut König, Kurt Geihs, and Elie Najm extended their helping
hand for making DAIS 2006 a successful conference.

June 2006 Frank Eliassen and Alberto Montresor

Conference Committees and Organization

Chairs

Steering Committee: Lea Kutvonen, University of Helsinki, Finland
Elie Njm, ENST, Paris, France
Hartmut König, BTU Cottbus, Germany
Kurt Geihs, University of Kassel, Germany

General Chair Gianluigi Zavattaro, University of Bologna, Italy
Program Co-chairs Frank Eliassen, University of Oslo, Norway

Alberto Montresor, University of Trento, Italy
Publicity Chair Ketil Lund, Simula Research Laboratory, Norway

Sponsoring Institutions

University of Bologna, Italy
IFIP WG 6.1

Program Committee

N. Alonistioti University of Athens, Greece
D. Bakken Washington State University, USA
A. Bartoli University of Trieste, Italy
Y. Berbers Katholieke Universiteit Leuven, Belgium
A. Beugnard ENST-Bretagne, France
G. Blair Lancaster University, UK
A. Corsaro Alenia Marconi System, Italy
I. Demeure ENST, France
P. Felber Université de Neuchâtel, Switzerland
K. Geihs University of Kassel, Germany
K.M. Goschka Technical University of Vienna, Austria
S. Graupner HP Labs, USA
R. Grønmo SINTEF ICT, Norway
D. Hagimont INP Toulouse, France
S. Hallsteinsen SINTEF ICT, Norway
J. Indulska University of Queensland, Australia
A. Keller IBM Thomas J. Watson Research Center, USA
H. König BTU Cottbus, Germany
R. Kröger University of Applied Sciences Wiesbaden, Germany
H. Krumm University of Dortmund, Germany
L. Kutvonen University of Helsinki, Finland

VIII Organization

W. Lamersdorf University of Hamburg, Germany
C. Linnhof-Popien University of Munich, Germany
K. Lund Simula Research Laboratory, Norway
R. Meier Trinity College Dublin, Ireland
E. Najm ENST, France
R. Oliveira Universidade do Minho, Portugal
K. Raymond University of Queensland, Australia
R. Schantz BBN Technologies, USA
A. Romanovsky University of Newcastle upon Tyne, UK
W. Schreiner Johannes Kepler University Linz, Austria
T. Senivongse Chulalongkorn University, Thailand
K. Sere Abo Akademi University, Finland
J.B. Stefani INRIA, France
N. Wang Tech-X Corporation, USA

Table of Contents

Mobile Service Oriented Architectures (MOSOA)
Jilles van Gurp, Anssi Karhinen, Jan Bosch . 1

A Spatial Programming Model for Real Global Smart Space Applications
René Meier, Anthony Harrington, Thomas Termin, Vinny Cahill . . . 16

Mobile Process Description and Execution
Christian P. Kunze, Sonja Zaplata, Winfried Lamersdorf 32

An Application Framework for Nomadic, Collaborative Applications
James O’Brien, Marc Shapiro . 48

Interfering Effects of Adaptation: Implications on Self-adapting
Systems Architecture

Jacqueline Floch, Erlend Stav, Svein Hallsteinsen 64

Discovery of Stable Peers in a Self-organising Peer-to-Peer Gradient
Topology

Jan Sacha, Jim Dowling, Raymond Cunningham, René Meier 70

On the Value of Random Opinions in Decentralized Recommendation
Elth Ogston, Arno Bakker, Maarten van Steen . 84

Information Agents That Learn to Understand Each Other Via
Semantic Negotiation

Salvatore Garruzzo, Domenico Rosaci . 99

Discovering Semantic Web Services with Process Specifications
Piya Suwannopas, Twittie Senivongse . 113

Towards Building a Semantic Grid for E-Learning
Wenya Tian, Huajun Chen . 128

A Code Migration Framework for AJAX Applications
Arno Puder . 138

High Performance SOAP Processing Driven by Data Mapping Template
Jun Wei, Lei Hua, Chunlei Niu, Haoran Zheng 152

X Table of Contents

An Approach for Fine-Grained Web Service Performance Monitoring
Jan Schaefer . 169

WSInterConnect: Dynamic Composition of Web Services Through Web
Services

Josef Spillner, Iris Braun, Alexander Schill . 181

Bounding Recovery Time in Rollback-Recovery Protocol for Mobile
Systems Preserving Session Guarantees

Jerzy Brzeziński, Anna Kobusińska, Jacek Kobusiński 187

Intelligent Dependability Services for Overlay Networks
Barry Porter, Geoff Coulson, Daniel Hughes . 199

Model-Driven Development of Context-Aware Services
João Paulo A. Almeida, Maria-Eugenia Iacob, Henk Jonkers,
Dick Quartel . 213

Utilising Alternative Application Configurations in Context- and
QoS-Aware Mobile Middleware

Sten A. Lundesgaard, Ketil Lund, Frank Eliassen 228

Timing Driven Architectural Adaptation
Andrew Wils, Yolande Berbers, Tom Holvoet, Karel De Vlaminck . . . 242

Fault-Tolerant Replication Based on Fragmented Objects
Hans P. Reiser, Rüdiger Kapitza, Jörg Domaschka,
Franz J. Hauck . 256

Towards Context-Aware Transaction Services
Romain Rouvoy, Patricia Serrano-Alvarado, Philippe Merle 272

A Local Self-stabilizing Enumeration Algorithm
Brahim Hamid, Mohamed Mosbah . 289

Adding Fault-Tolerance to a Hierarchical DRE System
Paul Rubel, Joseph Loyall, Richard Schantz, Matthew Gillen 303

Using Speculative Push for Unnecessary Checkpoint Creation Avoidance
Arkadiusz Danilecki, Micha�l Szychowiak . 309

A Versatile Kernel for Distributed AOP
Éric Tanter, Rodolfo Toledo . 316

Table of Contents XI

Transformation of Centralized Software Components into Distributed
Ones by Code Refactoring

Abdelhak Seriai, Gautier Bastide, Mourad Oussalah 332

PAGE : A Distributed Infrastructure for Fostering RDF-Based
Interoperability

Emanuele Della Valle, Andrea Turati, Alessandro Ghioni 347

Author Index . 355

F. Eliassen and A. Montresor (Eds.): DAIS 2006, LNCS 4025, pp. 1 – 15, 2006.
© IFIP International Federation for Information Processing 2006

Mobile Service Oriented Architectures (MOSOA)

Jilles van Gurp, Anssi Karhinen, and Jan Bosch

Software and Application Technologies Laboratory
Nokia Research Center

P.O. Box 407, FI-00045 NOKIA GROUP, Finland
{jilles.vangurp, anssi.karhinen, jan.bosch}@nokia.com

Abstract. Mobile services hold a promise of utilizing the phone also for other
purposes than purely communication. However, repeated attempts at realizing
mobile services in the market place have been met with limited success. This
article (1) defines the architectural drivers that drive success or failure of
mobile services, (2) analyzes three different architectural styles of realizing
such a mobile service using the example of a movie ticket selling service and
(3) presents the results of this analysis. The main result of the analysis is that a
serious conflict exists between usability and essentially all the other
architectural drivers included in our analysis, i.e. portability, deployability and
scalability. This is due to the fact that, because of the restricted state of the art
technology, only native client applications offer satisfactory usability, but these
do not satisfy the other drivers.

1 Introduction

Mobile services hold a promise of utilizing the phone also for other purposes than
voice and SMS communication. Turning the promise into reality has proven to be
more complex than what was anticipated in the dawn of digital mobile commu-
nication. Offering highly usable, value adding services to consumers and enterprise
users has challenged the technology developers, business developers and the mobile
service concept developers. The mobile services field became divided into content
services and added value functional services early on. The main function of content
services is to deliver media content such as ringing tones, greeting cards and
background pictures into the mobile phone. Such services were originally built on top
of mobile messaging technology such as SMS and have achieved continuously
growing success in consumer segment. A more challenging area has turned out to be
the services that aim to provide end users with added value functionality such as, for
example, route planning, e-commerce and mobile payment. Some of these services
were originally built on top of mobile messaging technology and then later on a
browser based approach using WAP technology. However, consumer acceptance and
business model continued to be a challenge.

An example of technology that aims to deliver ready-to use services for consumers
out-of-the-box is SIM-ATK (Application ToolKit). SIM-ATK works in GSM
networks. It allows the operators to include pre-installed service menus in the SIM

2 J. van Gurp, A. Karhinen, and J. Bosch

card delivered with the subscription. The service menus are automatically integrated
with the native menus of the phone for seamless access by the end-user. These
services use the short message protocol (SMS) to implement access to server
functions. This sets some limitations for the implementation of the user experience as
the interaction between the user and the server is not synchronous. Success of mobile
service technology seems to have depended much on the level of integration into the
native phone user interface and the ease with which end users can access
the additional functionality offered by the services. An important landmark has been
the iMode technology originally launched by NTT-DoCoMo in Japan around the turn
of the millennium. iMode offers end-users seamless integration of basic services such
as email, weather forecasts, sports results, various content services, online banking,
stock trading, online gaming and ticketing services. An important factor for the
success of iMode has been the “always on” aspect of the services, which is based on
mobile packet data technology.

As the processing capability of the terminal devices has kept growing and faster
data protocols have been deployed in the mobile networks it has become feasible to
closely emulate the user experience of a PC with fast Internet access. Some of the
recent devices include HTML browsers that are capable of displaying dynamic
HTML pages with interactive scripts thus bringing the idea of “Internet in a pocket”
closer to reality.

Browser based services are evolving rapidly as the capability of the terminals is
growing. Traditional problems that plagued the early WAP/WML based solutions
where the appearance of a service had to be tightly optimized for mobile device
through custom design are slowly vanishing. To publish an existing WWW/HTML
service for WAP access typically requires either a separate implementation of the user
interface of the service or heavy automatic adaptation by a gateway which in many
cases leads results in usability problems for mobile users of the service.

Another approach to offer highly usable mobile services and applications is to
open the phone software platform for user installable native applications. This
approach is available for example on phones using Symbian platform. A user
installable application has access to all phone resources and can integrate with the
native phone UI with no restrictions. This enables the creation of mobile services
through a client-server pattern that are similar to the native functions available on
a phone. A challenge in this approach is to ensure the compatibility of the phone
software platform and installed applications. Additionally, the application
installation process itself can be more complex than in a pre-installed services or
browser based paradigms described earlier. The contribution of this paper is that it
provides a comprehensive overview of the architectural alternatives that are
available for the implementation of mobile services and analyses the different
trade-offs of them.

The remainder of the paper is organized as follows. The next section presents the
problem statement, followed by a section outlining the design drivers. Subsequently,
three mobile service-oriented architectural styles are presented and analyzed. Related
work and a summary section conclude the paper.

 Mobile Service Oriented Architectures (MOSOA) 3

2 Problem Statement

Different brands, run-time platforms, screen sizes, networks and many other factors
all contribute to the fact that there is a large variety of mobile devices on the market.
To provide the best user experience, software developers of mobile applications must
specialize their software for specific devices in order to take advantage of device
specific features or device specific implementations of common features. A number
of problems with device specific software exist:

− The number of devices that can be supported by specialized software is much
smaller than the total number of devices. Specializing software for device specific
features in any way causes the potential target market to shrink.

− Devices are sold on the market only for brief periods of time and are generally
replaced by new devices months or at most a year after their introduction on the
market.

− Developing software for a group of similar devices with a common set of specific
features requires testing the software on all those devices.

− Device specific software may be hard to port to other devices that do not support
the device specifics.

The goal of mobile services is to allow users to access these services through a mobile
device. That means that a mobile service consists of a client-side component and a
server-side component. The server-side component offers the feature, the client-side
component makes it available to the user.

Necessarily, features, and usability of those features, in the client-side component
depend strongly on the capabilities of the client device. Unfortunately, as outlined
above making the client component usable by introducing device specific feature
dependencies limits the potential market for the server.

As discussed in the introduction, the conflict between usability on one hand and
market share on the other hand underlies the limited success in the market of mobile
services so far. Solutions in the market so far have either suffered from poor usability
(e.g. WAP [16]) or had the problem that the potential group of users able to adopt the
solution was only a (small) subset of the entire group of mobile device owners.

Mobile service oriented architectures need to address the following goals:

− Number of devices. The service must be provided on a wide variety of mobile
devices. The more devices it supports, the larger the market is.

− Native features. The service must make full use of native features. Native features
add value to the phone and therefore to the services provided on that phone. Native
features include both software (e.g. text input methods) and hardware features
(softkeys, camera's, display resolution). Native features relevant to the service
should preferably be used.

− Time to market. The service must have a quick time to market. It is important to
reach the market before the competition.

− Window of opportunity. The service must not miss its window of opportunity. It
is important to be able to target the devices the service is developed for as soon as
these devices become available on the market. The devices are on the market for a
relatively short period of time and the potential revenue of a service is constrained
by this period of time.

4 J. van Gurp, A. Karhinen, and J. Bosch

− Forward compatibility. The service must be forward compatible with the
successors of the devices it is targeting. Users of the service will want to continue
using the service when they purchase a new phone (assuming the service is useful
to them).

Any successful architecture solution for mobile services will need to address these
goals explicitly to the extent that is technically feasible. We have the following
reasons to believe that it is now possible to define such an architecture:

− Device performance. Moore's law [13] has gradually improved device speed,
bandwidth and capabilities. These abilities may be exploited to provide an
acceptable end user experience while meeting most of the goals outlined above.

− Consolidation. There is a growing set of common features supported across a wide
variety of devices that may be of use when implementing mobile services. This
common feature set is good enough for a wide range of applications so an
increasing number of mobile services can be implemented for a (relatively) broad
set of devices.

− Market size. Adoption of mobile devices in the market has grown exponentially.
A large part of the world population now has access to mobile technology.

The problem in mobile service oriented architectures so far has been that existing
architectures fail to reach all aforementioned goals due to the fact that they are
conflicting given the current state of the art. In this article we evaluate three
architectural alternatives against the goals outlined in this section. In the next section
we translate these goals into architectural drivers.

3 Architectural Drivers

In this section we look at the architectural drivers that influence the design,
development, deployment and ultimately the success of mobile services. In the next
section we will compare three architectures and analyse how they are affected by the
architectural drivers.

3.1 Usability

In order to be adopted by users, mobile services need to be usable. By usable we
mean that:

− It must be easy for the user to find and access the service.
− It must be easy for the user to make use of the service (learnability, ease of use).
− It must be convenient for the user to make use of the service (performance,

usefulness).
In practical terms this means that the service needs to be integrated with the mobile
user interface because this provides users with the fastest route to the service and the
best performance possible on the device. Access points to the service may be
embedded in menus, associated with soft keys, etc.

Experience with mobile user interfaces has shown that it is important to minimize
the number of navigation steps to particular features [12]. For example, access to the

 Mobile Service Oriented Architectures (MOSOA) 5

contact list or message overview is rarely more than two button presses away on most
mobile phones. Less important features may be located deeper in the menu structure.

The second requirement benefits from integration with the mobile user interface for
several reasons:

− User input is typically best facilitated using the 'native' capabilities of the device.
For example, many phones include smart text input features that aim to minimize
the amount of button presses.

− The user presumably already understands the native user interface so using the
service through that interface is easier than through a different interface.

3.2 Portability

The potential market for mobile services is huge. World wide there are now billions
of mobile devices in use. A large and growing percentage of these devices is internet
enabled (i.e. equipped with a TCP/IP network stack, connected to a TCP network and
equipped with software components such as browsers that make use of this
capability). To capture enough market share, mobile services need to be available to
as large a subset of these users as possible.

This is technically hard because differences between devices tend to be difficult to
bridge. For example, screen size, number of supported colours as well as the number
of keys tend to vary across devices. Furthermore, there are differences in device
capabilities such as supported networks (GPRS, EDGE, UMTS, CDMA), add-ons
(e.g. GPS), camera and connectivity (infra red, Bluetooth, USB, WLAN). Depend-
encies on such features need to be carefully considered because of portability.

3.3 Deployability

A potential obstacle for users of the service is the issue of client side deployment of
software components. Installing software of any kind is something few users know
how to do. Therefore, (additional) client side components of a mobile service, if
needed, should be provisioned over the network. Any kind of installation impacts the
size of the potential user population negatively. Similarly, software updates should be
totally transparent to the user.

3.4 Scalability

If successful, the mobile service may be used often by a large number of users. The
maximum for this is the amount of users that own a device that can run the client side
component of the mobile service. The architecture needs to be able to scale to this
amount of users. There are at least these factors to consider:

− Business scalability. The business model should not include human intervention
(e.g. a person answering the phone) or any other activities that are resource
intensive unless this cost can be accounted for in the total price of the mobile
service for the user.

− System scalability. The system architecture needs to be able to scale to the number
of transactions successful adoption of the mobile service in the market will cause.

6 J. van Gurp, A. Karhinen, and J. Bosch

If millions of users use a service several times per day, that means that the server
side component of the service will be processing tens of millions of transactions.

− Client scalability. The client side architecture needs to scale well from low-end
devices to high-end devices. Any scalability issues with the client side architecture
will affect the potential amount of users for the service negatively.

4 Three Mobile Services Oriented Architectures

To highlight the properties of different architectural approaches we use an example
mobile service realized using three alternative architectural styles. The example
service is a movie ticket purchase that enables the user to purchase tickets for him- or
her-self and a group of friends. The service also automatically generates notifications
of the time of the show and the title of the movie for each. The usage scenario with
totally seamless experience would be as follows: 1) User activates “ticket purchase”
service through the phone. 2) User selects “movie tickets”. 3) User selects the title. 4)
User selects the time of the show. 5) User selects the friends he wants to include in
the purchase from the phonebook of his/her phone. 6) User performs the purchasing
transaction and is automatically authenticated and payment information is directed to
the user’s already existing billing connection (e.g. credit card, phone bill, etc.). 7)
Friends receive a notification and an entry in their phone calendars.

4.1 MOSOA 1: Client-Server with Native Client

Using a native client application provides the greatest flexibility for implementing the
user interface and integration with the phone features. Figure 1 presents a high level
design of the sample service using the client server pattern and a native client based
on, for example, Symbian.

Fig. 1. A mobile service with a native client application

 Mobile Service Oriented Architectures (MOSOA) 7

The user is presented with a native ticket purchasing application that must have been
installed into the phone in advance. The ticket purchase application in the phone knows
the server part and the payment service. Steps one to four of our use case are performed
by the ticket purchase application in the phone and the corresponding server part denoted
by interaction “1” in the diagram. Ticket purchase service manages the catalogue of
available movie titles. Next step of the use case involves interaction between different
applications inside the phone. User can select the group of friends using the native
phonebook application. This is denoted by “2” in the diagram. Authentication and
payment information is managed by a service in the network as shown by interaction “3”.
Information of the completed payment transaction is communicated to the ticket
purchase service to complete the transaction, transaction “4”. The client ticket purchase
application then uses the messaging application in the phone to convey the notification
and a calendar entry to the friends who were included in the purchase (“5” and “6”).
Friends will receive a notification message with a calendar entry that the phone can
automatically insert into the calendar (“7” and “8” respectively).

− Usability. Usability of a native client can be high since it provides the user with a
native look and feel thus lowering the learning curve of the service. Typically, the
native applications can be also tuned to effectively utilize the computing resources
of the phone thus giving shorter start-up times and faster response times in the user
interface. Integration with other native applications on the phone can also boost
usability and the value of the service as we can see in our example. For example, it
is simple for the end-user to keep one register of contacts and friends in the
phonebook and use that asset for all communication and group transactions. Other
good characteristics of native client applications include the possibility to support
off-line functionality and special attached devices and special communication
hardware like Bluetooth, IRDA and USB. Also the native client application can
integrate directly to the power management system of the phone.

− Portability. Portability is a serious problem for native client applications. Only a
small percentage of mobile phones support the installation of native applications.
For the ones that support it, there exist different software platforms such as
Symbian, PocketPC and Brew that are not compatible with each other. Also the
native client application can depend on other native components that have to be
present in the phone. This can create compatibility problems even inside one
platform as the user must ensure that his or her phone includes all required
components for the application to work.

− Deployability. Native client applications need to be installed using the native
application management functions of the phone. Most platforms support different
mechanisms to do this over the air (OTA), through USB connection or using a
memory card. Application installation typically requires some technical ability
from the end user and can thus be a major hurdle in the deployment of a new
mobile service.

− Scalability. The native client server model scales well in performance as the
resources of each client device are used partly in performing the service
transactions. Requirements for the server side components are easy to isolate as the
server transactions remain simple. Business scalability can be challenging as
the deployability of native clients is rather complex. Communication costs from the

8 J. van Gurp, A. Karhinen, and J. Bosch

native clients to the network services and other users, like the notification function
in our example, can prove to be a difficult issue also.

4.2 MOSOA 2: Client-Server with Mobile Java Client

The mobile Java client technology tries to avoid the portability and maintainability
issues by providing a standard execution environment and deployment model for the
client applications in a phone. The following diagram presents a high level design of
our sample service using the client server pattern and a Java client application.

Fig. 2. A mobile service with a Java client application

The MIDP environment for mobile devices is not actually one standard
configuration. MIDP standard has two variants: the earlier MIDP 1.0 that is supported
by most Java-capable phones and the recent MIDP 2.0 that is supported by latest
models. Inside these main variants are different capabilities like messaging, full
screen UI and encrypted communication which are only supported by certain phone
models. These issues diminish some of the benefits that MIDP and Java were
supposed to bring to the developers of mobile services.

In our example we assume that MIDP messaging functions are available to the
Java client application. Steps one to four in the example service take place between
the Java client and the ticket purchase server (“1”). Next step in the use case involves
selecting the friends from a buddy list service that is hosted in the network in our case
(“2”). The actual purchase transaction with authentication and payment happens in
similar fashion as with the native client. Ticket purchase client communicates with the
authentication and payment service which verifies the payment to the ticket purchase
service (“3” and “4”).

The Java client uses MIDP messaging to send SMS notifications to the friends
involved in the transaction (“5”, “6” and “7”). For setting a calendar reservation we
assume a network hosted calendar service which is used by all users involved in our
example case (“8”).

 Mobile Service Oriented Architectures (MOSOA) 9

− Usability. A Java client application can try to support native look and feel through
the use of standard MIDP widgets but in most cases developers want to have more
control over the UI and define their own UI elements. This can make the individual
application quite usable but will make for steeper learning curve as the user has to
adapt to application specific UI paradigms. Hosting a complete virtual execution
environment in a phone will inevitably cause some overhead in application start
delays and response times of the user interface. There are many recommended
practices to optimize Java for mobile platforms, which can yield good results.
Mobile Java makes it possible to integrate with some phone resources and native
applications but not all. This can degrade usability as the user has to maintain
contact information of his or her friends and calendar in many places like in our
example.

− Portability. Portability for mobile Java clients is better than for native applications
but is still a complex issue to tackle. Typically the developer has to balance
usability and portability tradeoffs to come up with a solution that is supported with
large enough device base and offers still well enough usability. The availability of
several different standards for mobile Java including MIDP 1.0, MIDP 2.0 and
CLDC 1.1 is a problem for portability. Many individual API standards for phone
specific resources like messaging, call functions, phone lights and vibration are
another problem area. Mobile Java offers ways to detect if a given feature is
supported by the device thus making it possible to write client applications that can
dynamically adapt to phones with different capabilities.

− Deployability. Mobile Java offers rather simple model for over the air provisioning of
client applications. The installation process can be made easy enough for average end
user to perform. Online updates can be initiated by the client applications themselves
if needed.

− Scalability. Much of the functionality in Java client model is typically in the server
side. The overall scalability of a service design thus heavily depends on the
scalability of the server side. Business scalability can be good as it is possible to
distribute and sell the client applications through WWW, mobile browsers and
SMS rapidly covering wide user base for example through TV commercials with
URLs or SMS instructions to install the service. Communication cost from the Java
clients to the network services can be an issue depending on the underlying data
communication business model.

4.3 MOSOA 3: Client-Server with Mobile Thin Client

The browser based approach has been very successful in the Internet and PC world.
Initially the usability of services offered with browser UIs was poor and different
browsers had serious compatibility problems but the emergence of “de facto” browser
functionality and technologies like browser side scripting have improved the user
acceptance of these services greatly.

Developing browser based services for mobile clients today is in many ways facing
similar problems as developing browser based services for the PC in the nineties:
Technology just hasn’t converged yet. However, we can observe rapid advances in

10 J. van Gurp, A. Karhinen, and J. Bosch

Fig. 3. A mobile service with a browser based client

mobile browsers and it appears that we might actually leap a few generations
compared to corresponding PC technology. Despite this, it is not possible to simply
apply the user interface patterns from the pc world to the mobile world. The screen
size requires different approaches to efficiently present information and allow the user
to work with the on screen information effectively [12].

The following diagram illustrates a browser based design of our example
service. Majority of the functionality of the service now resides in the network.
Some native phone applications, like the messaging in our example, can still be
utilized for services but they are integrated to the service through the network
instead of locally.

A browser based implementation of the example service must rely on the network
side to provide the required service components. Integration to local phone resources
from the mobile browser is currently very limited. The overhead to start using a
browser based service is very low; it just requires the user to point the browser to the
correct link to connect to the service. This can be facilitated through e.g. operator
portal pages, SMS messages, TV commercials, etc.

For the first four steps of our use case the user interacts with the ticketing service
through the browser (“1”). Selecting the friends to be included can be done from a
buddy list service (“2”) and possibly with some elementary data management within
the browser, such as copy-paste through a clipboard (if that is supported in the
device).

The actual purchasing transaction would follow the same general pattern as the
earlier architectures (“3” and “4”). However, the next step has to be radically different
from the client-server architectures. The ticket purchase service must be able to
generate notifications and calendar entries to the list of friends (“5”, “6” and “7”). All
of the service components and data resources must reside in the network in contrast to
the client-server models of previous examples. The user can still receive notifications
using the native messaging application of the phone but it is not integrated to the user
interface of ticket purchasing application thus degrading the user experience.

 Mobile Service Oriented Architectures (MOSOA) 11

− Usability. Usability of an individual browser based service can be reasonably good
for suitable applications. Typically, applications where the interaction between the
user and the application is based on a forms paradigm fit well to the browser client
architecture. Highly graphical user interfaces using direct manipulation paradigms
are difficult to implement within a browser but emerging technologies like the
AJAX will offer some level of support for it in the future. The main problem with
browser based mobile service architecture is that it cannot use or integrate with the
native applications and resources on the phone device. In practice the service
components and resources used by an application must reside in the network. They
can sometimes be integrated in the browser but the majority of the integration task
must take place in the network. Another drawback of reliance on server-side
components is that off-line operation is impossible: in order for the user to use the
service the server resources must be accessible by the browser.

− Portability. Good portability is one of the strong points of a browser based
architecture. Even so, the architect of a browser based mobile service is forced to
select between many alternative technology stacks that are largely incompatible
with each other. WAP/WML is the pioneer technology of mobile browser based
services. In practice, it is currently being phased out due to the emerging of
HTTP/HTML capable device generations. The actual capabilities of mobile
browsers still vary considerably, however, and there is not yet a consensus on the
basic capabilities similar to that in the PC world. New technologies like browser
side scripting; AJAX (Asynchronous JavaScript And XML); XForms and HTML
5.0 are promising more interactive browser applications in the future but are rarely
supported (even on PC based browsers) so far.

− Deployability. In principle the deployability of a browser based mobile service is
as simple as it gets. It includes the normal deployment and configuration of the
server side components and communicating the link (URL) of the service to the
user population. Any user with a phone equipped with a browser that is compatible
with the service can start using the service immediately. Any registration and
authentication functions can be taken care of inside the browser session.
Deployment can get more complex if a particular browser technology, like
XForms, that is not pre-installed in the user’s phone, is used. In this case the
deployment phase is similar to client-server architectures.

− Scalability. The scalability in capacity of browser based architectures can be
controlled by the traditional design solutions of the server side. This involves two
main areas: the scalability of access to the service and the scalability of the
communication between the service components in the network. The phone
generally does not have much impact on the scalability of a browser based
architecture except in special cases like when the amount of data sent to the
browser exceeds its capacity (it does however restrict the amount of information
that can be presented in a usable way [12]). The business scalability of a browser
based architecture is very good. One can start with a low capacity server solution
and increase the capacity gradually as the service becomes more popular.

12 J. van Gurp, A. Karhinen, and J. Bosch

5 Related Work

The notion of software architecture was popularized during the nineties. Perry & Wolf
[15] in their article first identified the relevant concepts. Standardization efforts by the
IEEE resulted in a recommended practice which has been widely adopted in the
software industry [6]. Since the mid nineties, the notion of web service architectures
has been popularized. The architectural style that underlies most web services, i.e.
representational state transfer (REST), is a crucial ingredient of the hypertext transfer
protocol which is also the transport of choice (though not the only one) for service
oriented protocols such as SOAP or XMLRPC. In his doctoral thesis on REST [3],
Fielding outlines the architectural principles that underlie the HTTP specification (of
which he is a co-author) [7] and how these principles are crucial to providing
scalability.

The World Wide Web consortium maintains a somewhat more narrow definition of
what comprises a web definition. Their WS-Arch document [1], defines a web service
as "a software system designed to support interoperable machine-to-machine
interaction over a network". The definition is further constrained by specifying that
the interfaces should be specified in a machine readable format (i.e. WSDL) and that
other systems interact with the web service using SOAP messages.

For mobile services, this definition may very well be too narrow since handling
SOAP on mobile devices is impractical due to the limited memory and processing
capacity. However, REST principles as outlined by Fielding still apply to mobile
service architectures. Scalability in the mobile world is of even more importance than
scalability in the internet world because, especially in third world countries, there are
vastly more people owning a mobile phone than there are people with access to PCs.
The notion of local state is arguably of even more importance due to the inherently
more unreliable network conditions (roaming between networks, areas not covered by
any network).

A key difference between web service architectures and mobile service architectures is
the client side. For web services, client side capabilities have a much higher degree of
commonalities than is the case in mobile devices. The issues we outline in our problem
statement mostly relate to the client side.

Some earlier work on mobile service architectures includes Hodes et al. [5], who
propose an architecture for discovering and working, with local services. However,
their work predates most of the internet services that have since emerged and
consequently does not take these into account. Another article from this era by Jones
et al. [10] analyzes WAP services from a usability angle. These articles are illustrative
of the thinking on mobile web services in the late nineties. As described in our
introduction, the approaches from this time (especially WAP) mostly failed in the
market.

More recent work tends to focus on agents or semantic networks (e.g. [2]).
However, such techniques are as experimental in the mobile internet as they are in
the regular internet. While promising, we don't believe these approaches make
explicit the requirements and challenges of mobile service architectures as we do
in this article since they do not address all of the goals we outline in our problem
statement section.

 Mobile Service Oriented Architectures (MOSOA) 13

Some work has been done on evaluating conventional web service technology in
mobile devices. For example, in [11], the authors evaluate the performance of SOAP
over various protocols. This work suggests that the overhead of XML parsing is a
major obstacle as is network speed. Additionally, some research has been done into
using asynchronous messaging in mobile service architectures (e.g. [14]).
Interestingly, recent developments in conventional web services also push towards an
asynchronous style of working.

Additionally there has been a lot of effort evaluating usability of mobile user
interfaces. For example in [16] the usability failure of WAP technology is analyzed.
Our Nokia colleagues have written a comprehensive overview of usability issues in
mobile user interfaces [12].

6 Summary and Conclusions

Table 1 summarizes the discussion from the previous section. The only quality
attribute the native client scores best on is usability. This is probably the main reason
why services with a native client (e.g. the ones discussed in the introduction) have
more or less failed in the market. These services provided good usability on the
devices where the client actually worked but at the cost of the other quality attributes
in this table. Consequently lack of market share and the associated high cost of fixing
that problem prevented the widespread adoption of such services.

As the table suggests, non-native clients are the solution to the problem.
Unfortunately, this comes at the expense of usability. However, we also observe that
this is increasingly less a problem as for example more Java MIDP APIs are
standardized and deployed. Both the Java virtual machine and the browser are
implemented as native application. In theory this means that they can provide the
same level of usability as a native client. Features such as power management, user
interface, input methods can all be put to use in the implementation of a browser.

Unfortunately, the above requires standardization of the way such features are
exposed to the service application developers. Currently, there exist many
standardized MIDP APIs for a wide range of mobile phone specific features. A
continuing problem is that most of these APIs are optional so depending on such APIs
is almost as bad as depending on native features directly.

Based on our experience with mobile device technology, we are convinced that a
consensus on mobile device features is emerging and that consequently it will become
easier to abstract from such features using e.g. MIDP APIs. The same has happened
on the PC desktop where applications tend to be much more portable across different
desktop platforms than is common on mobile platforms.

We have identified a clear trend that what we call a browser in this article will in the
future evolve towards a standards based application container. In principle, given that
proper standards emerge, this means that applications inside such a container can rely on
features similar to those exposed in high end MIDP containers today. There are multiple
ways of realizing such integration. An obvious way to this is through plug-ins.
Additionally, features may be exposed through custom URL schemes like for example
the tel://<phonenumber> [8] or the sms:// <phonenumber> [9] type schemes.

14 J. van Gurp, A. Karhinen, and J. Bosch

Table 1. Summary of architectural alternatives

 Native client Java client Browser
Usability + +/- -

Portability - +/- +
Deployability - +/- +

Business Scalability - +/- +
TCO - +/- +

A second trend we have identified is that in future service application containers
like outlined above, the notion of local device access will be of less importance than it
is today. Resources will become themselves services. For example, there is no
technical reason to have features such as contacts and SMS messages client side other
than optimizing access to these resources and ensuring that these resources are
available when the phone is offline.

Ultimately, there will be this convergence of applications and services where the
particular client used to access the service depends on the user context. For example
the same list of contacts may be manipulated from an office environment on a laptop
and from a contact list service application on a phone.

Technically, the service components would be hosted on a heterogeneous grid-like
environment where resource allocation and provisioning of client components is
automatically managed without user intervention.

References

[1] David Booth, Hugo Haas, Francis McCabe, Eric Newcomer, Michael Champion, Chris
Ferris, David Orchard. "Web Services Architecture", Web Services Architecture Working
Group, http://www.w3.org/TR/ws-arch/, February 2004.

[2] P. Buhler and J. M. Vidal, "Semantic Web Services as Agent Behaviors," in Agentcities:
Challenges in Open Agent Environments, LNCS/LNAI, B. Burg, J. Dale, et al., Eds.
Berlin: Springer-Verlag, 2003.

[3] R. T. Fielding, " Architectural Styles and the Design of Network-based Software
Architectures", Ph. D. thesis, University of California, Irvine, 2000.

[4] M. Baker. "Ian Foster on Recent Changes in the Grid Community", IEEE Distributed
Systems Online, 5(2), February 2004.

[5] T. D. Hodes, R. H. Katz, E. Servan-Schreiber, L. Rowe, "Composable Ad-hoc Mobile
Services for Universal Interaction", Proceedings of the 3rd ACM International
Conference on Mobile Computing and Networking, pp. 1-12, 1997.

[6] IEEE Std 1471-2000 IEEE Recommended Practice for Architectural Description of
Software-Intensive Systems, http://standards.ieee.org/reading/ieee/std_public/description/
se/1471-2000_desc.html

[7] IETF RFC 2616, "Hypertext Transfer Protocol -- HTTP/1.1", http://www.ietf.org/rfc/
rfc2616.txt

[8] IETF RFC 2806, "URLs for Telephone Calls", http://www.ietf.org/rfc/rfc2806.txt.
[9] IETF draft RFC, "SMS URI Scheme", http://www.ietf.org/internet-drafts/draft-wilde-

sms-uri-11.txt.

 Mobile Service Oriented Architectures (MOSOA) 15

[10] M. Jones, G. Buchanan, G. Marsden, M. Pazzani, Improving Mobile Internet Usability.
Proceedings WWW'10, Hong Kong. 2001.

[11] J. Kangasharju, Sasu Tarkoma, Kimmo Raatikainen, " Comparing SOAP Performance for
Various Encodings, Protocols, and Connections", LNCS Lecture Notes in Computer
Science, Volume 2775 / 2003, pp. 397 - 406, 2003.

[12] Christian Lindholm, Turkka Keinonen, "Mobile Usability: How Nokia Changed the Face
of the Mobile Phone", McGraw-Hill Professional, 2003.

[13] G. E. Moore, Cramming more components onto integrated circuits, Electronics Magazine,
38(8), pp. 114-117, April 1965.

[14] M. Musolesi, C. Mascolo, S. Hailes. Adapting asynchronous messaging middleware to ad
hoc networking. In Proceedings of the 2nd Workshop on Middleware For Pervasive and
Ad-Hoc Computing, pp. 121-126, ACM Press, New York, NY, 2004.

[15] D. E. Perry, A. L. Wolf, Foundations for the study of software architecture, ACM
SIGSOFT Software Engineering Notes 17(4), pp. 40-52, October 1992.

[16] M. Ramsey and J. Nielsen. The WAP Usability Report. Neilsen Norman Group, 2000.

F. Eliassen and A. Montresor (Eds.): DAIS 2006, LNCS 4025, pp. 16 – 31, 2006.
© IFIP International Federation for Information Processing 2006

A Spatial Programming Model for Real Global Smart
Space Applications

René Meier, Anthony Harrington, Thomas Termin, and Vinny Cahill

Distributed Systems Group, Department of Computer Science
Trinity College Dublin, Ireland

{rene.meier, anthony.harrington, thomas.termin,
vinny.cahill}@cs.tcd.ie

Abstract. Global smart spaces are intended to provide their inhabitants with
context-aware access to pervasive services and information relevant to large
geographical areas. Transportation is one obvious domain for such global smart
spaces since applications can be built to exploit the variety of sensor-rich
systems that have been deployed to support urban traffic control and highway
management as well as within individual vehicles. This paper presents a spatial
programming model designed to provide a standardised way to build context-
aware global smart space applications using information that is distributed
across independent (legacy, sensor-enabled, and embedded) systems by
exploiting the overlapping spatial and temporal attributes of the information
maintained by these systems. The spatial programming model is based on a
topographical approach to modelling space that enables systems to indepe-
ndently define and use potentially overlapping spatial context in a consistent
manner and in contrast to topological approaches, in which geogra-phical
relation-nships between objects are described explicitly. Moreover, this
approach facilitates the incremental construction of global smart spaces since
the underlying systems to be incorporated are largely decoupled. The
programming model has been evaluated by building a context-aware service for
multi-modal urban journey planning, as part of the development of an overall
architecture for intelligent transportation systems in Dublin.

1 Introduction

Global smart spaces extend the vision of pervasive computing, in which everyday
objects communicate and collaborate to provide information and services to users, to
large geographical areas [1]. They extend the notion of objects cooperating in a home
or an office to the level of towns, cities, and even countries by integrating a variety of
sensor-based and other systems to provide truly pervasive context-aware services.
Such global smart environments will be heterogeneous as they likely will comprise a
multitude of sensors, networks, and ultimately systems. They will provide access to
information and services ranging from pervasive access to personal and professional
information, to city-wide information systems [2, 3], to context-aware traveller
assistance [4, 5], to optimised urban traffic control [6]. Users moving in such sensor-
augmented spaces may use handheld devices, such as mobile phones and Personal
Digital Assistants (PDAs), or integrated devices, such as (vehicular) on-board

 A Spatial Programming Model for Real Global Smart Space Applications 17

computers, to interact with these spaces and to use the services that they provide.
Embedded control systems may likewise exploit these spaces to offer context-aware
urban traffic control, such as public service vehicle priority.

Global smart spaces are on the verge of becoming a reality in the transportation
domain where very many heterogeneous sensor-rich systems have already been
deployed in towns and cities and along national road networks. Such a global smart
space might enable users to access information ranging from information on places of
interest, to prevailing road and weather conditions, to expected journey times, to up-
to-date public transport information. It might also enable suitably privileged users to
interact with the infrastructure, for example, to request a change to a traffic light or to
reserve a parking space.

Programming Global Smart Space Applications. The basis for the provision of
context-aware services and information to users will be the integration of the
individual systems associated with global smart spaces into comprehensive platforms.
This paper presents a programming model designed to provide a standardised way for
global smart space applications to access context information that is provided by
independent systems and related services. The spatial programming model supports a
topographical location model and provides access to distributed context information
based on (overlapping) temporal and spatial aspects. This enables applications to
exploit and act upon information from a variety of deployed (and novel) systems and
services as well as to share information between them. The spatial programming
model hides the complexity and diversity of the underlying systems and their data
sources and provides applications with a common view on the available information
and its context. For example, a service might use the spatial programming model to
retrieve public transport information, which might be provided by some underlying
system, and then access relevant weather information provided by another system
using the temporal and spatial context of this information.

The spatial programming model is part of the iTransIT framework for integrating
individual transportation systems and related services. The iTransIT framework has
been motivated by the needs of Dublin City and its multi-layered distributed
architecture has been designed to enable information integration and sharing across
independent Intelligent Transportation Systems (ITS) and pervasive context-aware
user services. It enables incremental integration of independent systems and services
over time while minimising the impact of such expansion as changes are local to the
new system. This software architecture for global smart spaces proposes a layered
data model to facilitate data exchange between systems and services with diverse data
sets, quality of service requirements, and functional organizations. Data layers are
defined within a common context model along the dimensions of space and time and
may be distributed across multiple systems. Individual systems maintain one or more
layers of the overall data model. This distribution of layers across a series of systems
effectively allows applications to access elements of a certain part of the model with a
specific quality of service. For example, a data layer might provide video streams
from traffic cameras while another layer might maintain city-wide parking
information provided by a car parking system. Applications may use the spatial
programming model to access either or both of these layers with the quality of service
of the respective information. This scenario also illustrates that systems may be
integrated gradually and with minimal impact on other systems. Each of these layers

18 R. Meier et al.

might be integrated at a different time and the integration of one layer does not affect
the data captured in the other layer. An application using the spatial programming
model to access information from the video layer might eventually be updated to
access the car parking layer as well. The iTransIT framework has been developed in
cooperation with the Traffic Office of Dublin City Council (DCC) in the Republic of
Ireland. Detailed framework (and spatial programming model) requirements were
informed by a comprehensive audit of existing and planned future intelligent
transportation systems in the Dublin City area.

Realising Global Smart Space Applications. The proposed spatial programming
model has been implemented as part of a proof-of-concept architecture and data
model that captures a variety of real transportation information derived from systems
currently deployed in Dublin City. This programming model implementation has been
evaluated by building a pervasive service for multi-modal urban journey planning.
Such a smart traveller information service can be considered a canonical global smart
spaces application since it exploits information generated by a variety of underlying
heterogeneous systems in a context-aware manner. The evaluation is based on
transportation information relevant to and derived from a real urban environment and
demonstrates how our programming model enables application and eventually user
access to such pervasive context information. In general, it is expected that the
increased availability of re-usable information from a variety of independent systems
will enable higher-level policies to be translated more easily into real world actions
and will facilitate the emergence of novel transportation applications and truly
pervasive context-aware user services.

Organisation of This Paper. The remainder of this paper is structured as follows:
Section 2 surveys related work. Section 3 presents the spatial programming model and
section 4 describes how this programming model has been realised as part of a
framework for integrating independent transportation systems. Section 5 presents our
evaluation of this work outlining how the spatial programming model provides global
access to the context information required by a multi-modal traveller information
system. Finally, section 6 concludes this paper by summarising our work.

2 Related Work

Temporal, spatial and quality of service attributes represent types of meta-data that
may be integrated into a context model to provide more intelligent and focused use of
data [7]. This approach has been applied in the Nexus framework [8] which provides
a common context model infused with spatial information to build world models that
are distributed across spaces possessing rich context data sources, known as
Augmented Areas. The context model is presented as a global object-based ontology
for developing interoperable world models. This interoperability is ensured through
the use of a common but large data schema, the Standard Class Schema, to define
various world models. The authors have defined a simple spatial query language that
can be used to interact with objects representing an Augmented Area. An interface
known as an Augmented World model provides a federated global view on all
compliant local models. The focus of our work has been to develop a more

 A Spatial Programming Model for Real Global Smart Space Applications 19

constrained yet expressive set of abstractions which are used to both facilitate data
modelling and to provide the basis for our spatial application programming interface.
Using such a constrained set of abstractions simplifies management and maintenance
in light of continuously evolving global smart spaces as novel systems are expected to
use combinations of existing abstractions.

Gaia [9] is a canonical example of a middleware infrastructure to enable active or
smart spaces in ubiquitous computing habitats that emphasises the notion of space
programmability. Gaia extends the notion of traditional operating systems to ubiquitous
computing environments by providing components such as the Context File System and
an event manager to track active space state information. Gaia focuses on managing
resources contained in physical spaces. User data and applications are abstracted into a
user virtual space and can be mapped dynamically to the resources located in the current
environment. Applications developed for a Gaia active space use a comprehensive set of
services at runtime. The iTransIT framework adopts a different approach in that it uses a
set of context abstractions exposed through the spatial programming model to provide an
interface to a global smart space populated by heterogeneous systems. Aside from calls
to the spatial application programming interface, systems may operate independently of
the iTransIT framework.

Smart Messages [10] is a lightweight architecture similar to mobile agents that
aims to make Space a first-order programming construct and describes a space-aware
programming model for outdoor distributed embedded systems called Spatial
Programming. In this model, content or services provided by nodes are accessed using
spatial references. These are defined as {space:tag} pairs that are mapped to systems
embedded in the physical space. These spatial references are used by various
applications to transparently access network resources in a similar fashion to physical
memory access using variable names in conventional systems. Our approach to
accessing information in a global smart space is more generic compared to this
{space:tag}-based naming scheme in that information can be located using multiple
context dimensions including space and time as well as any functional aspect of the
information. Information can be shared and integrated by exploiting combinations of
these aspects and by exploiting overlapping context.

3 The Spatial Application Programming Model

The spatial programming model provides a standardised way for global smart space
applications to access and use information and context that is distributed across
independent systems and related services. The spatial programming model provides
common access to such distributed information based on overlapping context thereby
enabling applications to exploit and act upon information from a variety of systems
and services as well as to share information between them.

3.1 Abstracting Information and Context

The spatial programming model uses a small set of predefined types for composing
information and context, in which context is any information that can be used to

20 R. Meier et al.

characterise the situation of an information element [11], to ensure interoperability
between data sets captured across distributed systems. These types are used to model
data sets and their context according to the different roles data sets can assume in a
global smart space as spatial objects. Spatial objects represent information as a series
of parameters and context as attributes. Such types are central to providing
applications with a common view on the wide range of information and the associated
context that might be available in a global smart space. They hide the complexity and
diversity of the independent systems and data sources comprising global spaces and
represent the hooks for information integration through overlapping context such as
space and time.

Developing such types is non trivial for any programming model for significant
systems and is especially complex for global smart spaces due to the scale and
multitude of inter-relationships that exist between sensors, systems, services, users,
and their data sets. Lehman et al. [8] suggest an exhaustive ontology for defining how
context information can be shared between applications in augmented areas.
However, based on our experience with a real global smart space in the transportation
domain, we have found that a relatively small number of types suffices to decompose
a global smart space domain model. Using a small set of (coarse-grain) types rather
than attempting to model the entire world in detail simplifies management and
maintenance in light of continuously evolving spaces. Novel systems or services are
expected to be modelled using combinations of existing types whereas an exhaustive
model might have to be expanded to capture the specific characteristics of novel
systems.

The types for modelling information and context as spatial objects currently
supported by the spatial programming model are summarized in Fig. 1. They have
been designed as a series of abstract object types and include three main types for
modelling global information, which are real world, system and data object, as well
as types for modelling context.

Spatial Object

Identification Object Location Object System Object Real World Object Data Object

Actuator Object Sensor Object

Fig. 1. Information and context abstractions

The three information types model the different roles that objects can assume
within the spatial programming model. System objects represent general information
describing software components, including systems and services, while real world
objects represent physical entities. In a transportation smart space for example, system
objects might capture operational status from a car parking system or from a journey
time estimation service whereas real world objects might model roads and junctions.

 A Spatial Programming Model for Real Global Smart Space Applications 21

Sensor and actuator objects are specialisations of real world objects and are used for
modelling explicit infrastructural entities for example, detector loops and variable
message signs of a car parking system. Data objects model any static or dynamic
information from systems or services and might be used to model car parking opening
times and rates charged. Based on an audit of deployed (and planned) transportation
systems and services in the Dublin City area [12], we found that these categories of
information types are sufficient to cover possible data sets in such a global smart
space. Novel information can be integrated using spatial objects composing sets of
parameters that model such data sets.

The main context type of the spatial programming model is the location object.
Location objects are based on a topographical location model that uses geometry to
model the space occupied or covered by an infrastructural element, a system or a
service. The spatial programming model also supports temporal context. Temporal
context is modelled implicitly, i.e., incorporated in other information types, rather
than explicitly as a specific object. This enables information objects to include date
and time attributes for representing their temporal context such as creation time and
temporal validity. And finally, identification objects provide a type for logical
identity, for example, to identify the name of a system or a service.

3.2 Modelling Space

The spatial programming model supports a topographical approach to modelling
space. The relevant spatial context of sensors, systems, services and even users is
modelled as a geometric shape. Individual shapes are defined by a sequence of
coordinates based on a chosen, well-known coordinate system. These shapes
explicitly represent spatial context derived form the real world. They may reflect the
physical appearances of spatial objects modelling occupied space or may describe
areas of interest that specify the regions covered by services. For example, a city-wide
car parking system might use the spatial model to define the physical locations
occupied by its car parks whereas a road weather service might use the spatial model
to outline the locations occupied by weather stations as well as the areas to which
reports from individual stations apply.

Using a topographical approach to modelling space enables systems, services, and
applications to independently define and use potentially overlapping spatial context in
a consistent manner. Unlike topological approaches [13], in which geographical
relationships between spatial objects are described explicitly, topographical models
define relationships between spatial objects implicitly and without explicit
interactions between objects. The relations between spatial objects (and ultimately
systems and users) are defined by the position of their respective shape within the
common coordinate system. This is particularly significant in global smart spaces
where multitudes of independent systems are distributed over large geographical areas
and direct communication across systems may be limited or expensive. Applications
using the spatial model can exploit these implicit relations to link diverse information
together for a user specific purpose. They may access spatially related information for
example, by means of exploiting the distance between shapes or by exploiting
containment and intersection relations. This might for example enable a vehicle-based

22 R. Meier et al.

information system to retrieve the exact locations of car parking facilities within a
certain distance from its current location.

The spatial programming model supports the model for defining geometric shapes
defined by the OpenGIS standard [14]. Spatial objects can be represented by
geometry types ranging from a point, to a line, to a polygon, to combinations of
polygons. Points might be used to define the location of a specific traffic signal or an
individual user. Individual polygons might represent the spatial context of a car park
or an area of interest whereas a series of (overlapping) polygons might be used to
compose a spatial model of a transportation network comprising roads, lanes, and
intersections.

As mentioned above, these geometric shapes are specified using a common coordinate
system. The selection of such a system depends on the domain of the global smart space
for which the spatial programming model is being realised. Coordinates derived from
third party location sensors, such as Global Positioning System (GPS) receivers, are
mapped onto the chosen reference system if they are based on another system. For
example, GPS coordinates may need be converted into a regional reference system
chosen for a specific space. The Irish national grid reference system, a system of
geographic grid references commonly used in Ireland, has been chosen as the coordinate
system in our prototype.

3.3 Modelling Data

The spatial programming model defines a set of types for modelling the different roles
spatial objects (and the context information they represent) can assume within a global
smart space. Systems and services model their data using these types and a particular
system may use and combine several types to accurately capture the roles of individual
data sets. The example shown in Fig. 2, illustrates how a road weather system might use
a system object to model general system data and a set of sensor objects to model
individual weather stations. Each weather station comprises a location and an
identification object and includes a data object that captures the actual measurements.

Spatial objects must specialise at least one of our types for modelling information
and context. However, depending on
their role, they may derive from
several types. Table 1 summarises
how these types can be combined
outlining the semantics for composing
information and context into spatial
objects. As outlined in the real world
object row, Table 1 shows that a real
world object must comprise a location
and an identification object and that it
may include a set of data objects and a
set of other real world objects. The
compulsory containment of a location
object is a reflection of the fact that
real world objects are expected to
model the physical space they occupy.

SensorObject
(from contextabstractions)

SystemObject
(from contextabstractions)

LocationObject
(from contextabstractions)

IdentificationObject
(from contextabstractions)

RealWorldObject
(from contextabstractions)

1

1

1

1

1

1

1

1

WeatherData

WeatherStation

1

1

1

1
DataObject

(from contextabstractions)

SensorObject
(from contextabstractions)

SystemObject
(from contextabstractions)

DataObject
(from contextabstractions)

LocationObject
(from contextabstractions)

IdentificationObject
(from contextabstractions)

RealWorldObject
(from contextabstractions)

1

1

1

1

1

1

1

1

WeatherData

WeatherStation

11

SensorObject
(from contextabstractions)

SystemObject
(from contextabstractions)

DataObject
(from contextabstractions)

SensorObject
(from contextabstractions)

SystemObject
(from contextabstractions)

DataObject
(from contextabstractions)

LocationObject
(from contextabstractions)

IdentificationObject
(from contextabstractions)

RealWorldObject
(from contextabstractions)

1

1

1

1

1

1

1

1

WeatherData

WeatherStation

1

1

1

1

LocationObject
(from contextabstractions)

IdentificationObject
(from contextabstractions)

RealWorldObject
(from contextabstractions)

1

1

1

1

1

1

1

1

WeatherData

WeatherStation

11

RoadWeatherSystem

1..n

1

1..n

1

Fig. 2. Modeling a road weather system

 A Spatial Programming Model for Real Global Smart Space Applications 23

In contrast, system and data objects may or may not comprise a location object and
such a location object is probably modelling the space to which a system’s or data
object’s information applies. Note that sensor and actuator objects are specialisations
of real world objects that share the same composition semantics.

Table 1. The semantics for composing information and context types

System
Object

Real World
(Sensor,

Actuator)
Object

Data
Object

Location
Object

Identification
Object

System Object 0..n 0..n 0..n 0..1 0..1
Real World
(Sensor, Actuator)
Object

0 0..n 0..n 1 1

Data Object 0 0 0..n 0..1 0..1

3.4 Modelling Temporal Context

In addition to supporting spatial context, the spatial programming model also supports
context along the dimension of time. The temporal relations between spatial objects are
defined by a set of attributes. This set of attributes has been derived from our study of the
transportation infrastructure in Dublin City [12] and are summarised in Table 2. The data
object type includes these attributes and spatial objects model their temporal context by
deriving from this type. Data objects also include a ConfidenceLevel attribute for
modelling the accuracy of the captured data.

Table 2. Temporal context attributes of data object types

Attribute Name Description
CreationDate Time of data object creation
LastModificationDate Time the data object was last updated
RetrievalLatency Expected latency for retrieving the captured data
ExpectedLifetime Expected duration to the next data object update
ConfidenceLevel Level of confidence in the accuracy of the captured data

Applications may exploit temporal relations between spatial objects in the same
way as they exploit spatial relations to link diverse information together for a user-
specific purpose. They may access temporally related information, for example, by
means of correlating modification time. Significantly, applications may exploit
context along a combination of the spatial and temporal dimension. This might
enable a road-user information system to use the location and time of an accident to
retrieve the prevailing weather conditions at the accident site and subsequently to
advice drivers of similarly dangerous road conditions.

3.5 Using the Spatial Model

Systems use spatial objects to model their contextual information and implement the
spatial application programming interface to provide pervasive access to these

24 R. Meier et al.

objects. Each system models the subset of the spatial objects that is relevant to its
respective purpose and context-aware applications exploit the spatial application
programming interface to integrate and share information in a common way regar-
dless of the specifics of the system implementing a particular part of the spatial
model.

As shown below, the operations of the spatial application programming interface
provide a means for applications to manage, locate and access spatial objects. A set of
operations is available for locating spatial objects using geometric queries or queries
based on parameters of objects. Geometric queries are based on a geometry class that
defines OpenGIS shapes including points and polygons. Parameter-based queries use
the container class outlined below to describe the parameter and attribute values of
spatial objects. The parameter class includes native data values and may include the
relevant temporal attributes of data objects. This class can be used in connections with
queries but may also be used to access the typed parameter and attribute values of
spatial objects. The spatial application programming interface enables applications to
locate spatial objects using a variety of queries ranging from selection based on a
parameter value, to selection based on temporal context, to selection based on spatial
context, to combinations of these. For example, a weather station may be selected
using the value of a measurement, the temporal occurrence of a measurement or the
location of the station. Such queries may identify zero, one or more objects. For
example, selecting the bus stops of a certain bus route in a particular area might
identify multiple suitable stops. Spatial objects are uniquely identified within a given
system by a type and identifier pair. These pairs are typically the result of some
selection operation and may be used to either retrieve or update the parameters of
spatial objects. An application might use bus stop and identifier pairs to retrieve the
addresses and timetables of previously located stops.

Significantly, the spatial programming model enables a federation of independent
systems to model their respective information and context locally as spatial objects.
Each of these systems implements the spatial application programming interface to
provide access to its respective set of spatial objects. This enables applications to use,
share, locate and correlate these distributed objects using a common set of context
operations irrespective of the complexities of the systems accommodating the objects
and without the need for an overall close integration of the systems. This mapping of
the spatial model and its programming interface onto individual systems therefore
provides for truly pervasive context-aware applications and services in global and
heterogeneous environments.

interface S_API {
 void insert(String elementType, OrderedParameterValues parValues);
 void remove(String elementType, int id);
 int[] select(String elementType, Geometry loc);
 int[] select(String elementType, String parName, Parameter parValue);
 int[] select(String elementType, Geometry loc, String parName,
 Parameter parValue);
 int[] select(String elementType);
 ElementTypeAndId[] select(Geometry loc);
 Geometry select(String elementType, int id);
 void update(String elementType, int id, String parName[],
 Parameter parValues[]);
 Parameter[] retrieve(String elementType, int id, String parName[]);
}

 A Spatial Programming Model for Real Global Smart Space Applications 25

class Parameter{
 Calendar creationDate;
 Calendar modificationDate;
 Long retrievalLatency;
 Long expectedLifetime;
 Double confidenceLevel;
 String parameterValue;

 Integer getIntegerParameterValue();
 Double getDoubleParameterValue();
 String getStringParameterValue();
 Calendar getDateParameterValue();
…
}

4 The iTransIT Framework

The spatial programming model has been realised as part of a framework and a data
model for integrating independent intelligent transportation systems. As illustrated in
Fig. 3, the iTransIT architecture structures legacy systems, iTransIT systems, and
context-aware end-user applications into three tiers. These tiers define the relation-
ships between systems and applications and provide a scalable approach for
integrating systems and their context information as individual components can be
added to a specific tier without direct consequences to the components in the remain-
ing tiers. The relationships between systems and applications can be characterized
according to the interaction paradigms that describe the possible information flows
between legacy and iTransIT systems.

4.1 Architecture Tiers

The legacy tier provides for the integration of legacy systems and describes existing
as well as future transportation systems that have not been developed to conform to
the iTransIT system architecture and layered data model. Such legacy systems often
feature a form of persistent data
storage and might include systems
for traffic and motorway
management that have commonly
been deployed in many urban
environments.

The purpose of the iTransIT tier
is to integrate transportation syst-
ems that model spatial objects and
implement the spatial applica-tion
programming interface. This tier
therefore comprises a federation of
transportation systems that imple-
ment the spatial data model. The
data model is distributed across
these iTransIT systems, with each
system implementing the subset of
the overall model that is relevant

Data Flow

Application
Tier

(User
Services)

iTransIT
Tier

(iTransIT
Systems)

Legacy
Tier

(Legacy
Systems)

Geo-Data

Traffic Data

Mgmt.
System

Fig. 3. iTransIT ITS architecture framework overview

26 R. Meier et al.

to its operation. iTransIT systems maintain their individual information, which is often
gathered by sensors or provided to actuators, by populating the relevant part of the
spatial data model. However, some of the information maintained in an iTransIT system
specific part of the data model may actually be provided by underlying legacy systems.
Most significantly, traffic information captured in this tier is maintained with its
temporal and spatial context; persistently stored data is geo-coded typically by systems
exploiting a database with spatial extension.

The systems that may exist in the iTransIT tier can be classified according to the
paradigms they exploit when interacting with other legacy or iTransIT systems. Such
iTransIT systems may be purpose built and therefore optimized to accommodate
application or user-specific requirements or may be general purpose. As shown in
Fig. 3, the framework may incorporate a general-purpose iTransIT Management
system. The iTransIT Management system is the canonical application of this domain
and is expected to implement a major part of the spatial data model. It typically serves
as a main repository for geo-coded data generated and used by connected legacy and
iTransIT systems.

The application tier includes value added services that provide context-aware user
access to and interaction with traffic information. These services use the distributed
data model and the associated context to access information potentially provided by
multiple systems and might include a wide range of interactive (Internet-based) and
embedded control services ranging from monitoring of live and historical traffic
information to the display of road network maps.

4.2 Common Spatial Data Model

The spatial data model, common to all iTransIT systems, is comprised of a set of
potentially distributed layers and represents the central component of these systems.
As shown in Fig. 4, individual iTransIT systems implement one or more of these
layers (or parts of layers) and maintain the static, dynamic, live, or historical traffic
data available in a particular layer. For example, a system might implement a data
layer describing the current weather
conditions while another layer captur-
ing intersection-based traffic volumes
might be maintained by a different
system.

The spatial application programming
interface exposes this layered data
model to other iTransIT systems or
indeed user services. Remote access to
this interface may be enabled through
widely used communication technolo-
gies and query languages based on
CORBA and Web Services.

Some of the information captured
in data model layers may be generated
or used by legacy systems. Such
information is mapped to a legacy

iTransIT System

Legacy System Legacy System

User Service

Mapping

User Service

Spatial-API

Common Data Model

Data Model Part

iTransIT System

Legacy System

Mapping

Data Model Part

Data Flow

Fig. 4. iTransIT system architecture and common
data model

 A Spatial Programming Model for Real Global Smart Space Applications 27

system through data flows. These flows can be described using a set of flow classes,
including event, stream, request/response, configuration and alarm flows, based on
the characteristics and requirements of communication links provided by the KAREN
framework architecture [15]. Using these descriptions, individual iTransIT systems
implement interfaces that map specific legacy data to their data layers. This approach
enables the use of communication technologies that can address the requirements of
particular systems and their respective data flows. The objective of an iTransIT
system might be to handle a certain data subset efficiently and to provide specific
guarantees for the delivery of the data. For example, an iTransIT system may employ
real-time communication technology to connect to a legacy system that is capable of
supporting strong delivery guarantees.

5 Assessment

This section evaluates the spatial programming model for global smart space
applications proposed in this paper. The main objective of the experiments has been
to assess the feasibility of our programming model providing access to information
generated by a variety of heterogeneous systems in a context-aware manner. The
assessed transportation application scenario demonstrates that our programming
model enables application and eventually user access to pervasive context information
derived from a real urban environment through correlation of overlapping spatial
context. This evaluation therefore demonstrates that using a spatial programming
model enables the integration of individual systems associated with a global smart
space into a comprehensive platform for the provision of context-aware services and
information to users.

The application scenario has been derived from the requirements of a smart
traveller information service enabling travellers to plan journeys involving multiple
forms of transportation including walking, public transport, cycling, and private
vehicles thereby bridging the coordination gap between these modes of transportation
by suggesting journey routes according to traveller preference and availability of
transportation means. Such a
service can be considered a
canonical global smart spaces
application since it exploits
context information generated
by a variety of independent
systems. The scenario has been
assessed using a prototypical
implementation of an iTransIT
Management system as a plat-
form for pervasive services.
This Management system
implements the spatial applica-
tion programming inte-rface
and uses spatial objects to
model information concerning

Fig. 5. Spatial objects modeling public transport
information

DataObject

CreationDate : Date
LastModificationDate : Date
RetrievalLatency : Long
ExpectedLifetime : Long
ConfidenceLevel : Double

(from contextabstractions)

Route:
Junction id[]

BusTimeTable

Day : String
Time : Double[]

BusStop

Address : String

Bus

Capacity : Integer
Utilisation : String
TimeToNextStop : Double

Route

Name : String
Route : String[]

1..n

1

1..n

1

1
1

1
1

0..n

1

0..n

1

LocationObject

Easting : Double[]
Northing : Double[]
Description : String

(from contextabstractions)

IdentificationObject

Name : String
Description : String
idTag : Integer
id : String

(from contextabstractions)
RealWorldObject

(from contextabstractions)

1

1

1

1

1

1

1

1

28 R. Meier et al.

a range of transportation systems currently deployed in Dublin City. The system
includes global context layers modelling the road network comprising intersections,
roads, lanes, traffic counts, traffic volumes, and congestions levels as well as the
public transport network consisting of bus routes, stops, lanes, timetables and bus
locations. It also includes system context layers modelling parking information and
road weather data. These layers integrate data provided by a range of real legacy
systems including the main traffic management system, a public transport information
service, a congestion level application, a road weather service and a car parking
information system. Fig. 5 shows a small set of the spatial objects modelling these
layers that have been implemented as relational tables in a MySQL database with
spatial extension. The information from these spatial objects has been provided by the
traffic management system, the public transport information service and by a journey
time monitoring system.

5.1 The Evaluation Scenario

The evaluation scenario includes a tourist using the context-aware traveller
information service to locate public transport stations within walking distance of her
current location. The tourist has just visited The Book of Kells museum at Trinity
College Dublin and is about to leave campus through the Nassau Street gate. She
remembers that she used the number 15 bus to travel from her hotel to the city centre
and would therefore like to locate nearby bus stops of this route.

She uses a handheld device with wireless service access to enter her query into the
traveller information service, providing bus route number 15 and 5 minutes walking
distance from her current location as parameters. The service uses coordinates derived
from its GPS receiver (converted into Irish national grid coordinates) and an average
pedestrian pace of 1.36m/s [16] to define the geometric shape of the search area. The
service then uses the spatial application programming interface as outlined below to
access the relevant context information.

1 int[] busStopId = sapi.select("BusStop", searchArea);
 for (int i = 0; i < busStopId.length; i++) {
2 Parameter busStopName=sapi.retrieve("BusStop", busStopId[i],"Name");
3 Geometry busStopLocation = sapi.select(“BusStop”, busStopId[i]);
4 Parameter linkToRoute = sapi.retrieve("BusStop", busStopId[i],
 "route_autoId");
 int routeId = linkToRoute.getIntegerValue();
5 Parameter routeName = sapi.retrieve("Route", routeId, "Name");
6 if (routeName.getStringValue().equals(“15-outbound”)) ||
 (routeName.getStringValue().equals(“15-inbound”)) {
7 //use results
 }
 }

The service might use a geometric query to locate all spatial objects representing
bus stops in the given search area (1) and retrieve the parameters and attributes of
these objects that describe the names and locations of specific bus stops (2, 3). The
service then proceeds to identify the spatial objects that describe the routes associated
with these bus stops. These “links” to route objects are modelled as parameters that
can be retrieved from bus stop objects (4). They are subsequently used to retrieve the
names of the bus stop routes (5) and information related to the previously indicated
bus route (6) can then be used to advise the user (7). The results of such a scenario for

 A Spatial Programming Model for Real Global Smart Space Applications 29

locating bus stops within walking distance can be found in Table 3. Bus stops for both
city centre-bound and suburb-bound stops have been retrieved since the user did not
specify her preferences. Naturally, a traveller information service would display this
information as an overlay to a map of Dublin City rather than in table form. Such an
overlay might include the bus stop names and the headings of buses. This might
further assist the user in locating and eventually walking to a convenient bus stop.

Table 3. Locating public transport stations within walking distance

Bus Stop Name Route Name Bus Stop Location
(Irish national grid coordinates)

Kildare Street 15-outbound (316230.8575, 233593.6385)
Dawson Street Upper 15-inbound (316063.4310, 233792.1260)
Dawson Street Lower 15-inbound (316036.3947, 233612.0083)
Suffolk Street 15-inbound (315924.9190, 233981.6965)
Nassau Street 15-outbound (316202.2930, 233883.7390)
College Green 15-outbound (316038.3422, 234186.3123)

This application scenario demonstrates how a context-aware user service might use
the spatial programming model to locate real-world entities in a given area of interest
and how it might exploit explicit associations between spatial objects. Similar queries
can be used by a range of related scenarios. For example, after selecting a bus stop,
the user might wish to see the relevant timetable for the next hour or might wish to
use the address of her hotel to locate a convenient stop near her destination and to
display the route the bus will take. Other related scenarios might include retrieving
the congestion levels along the route in order to get an indication of whether the bus is
likely to be on time. Such a scenario might also be of interest to someone travelling
by car to the airport or to work. These related scenarios have been implemented but
due to space limitations are not describe in further detail.

This assessment is based on scenarios that access information integrated in the
spatial model through a single spatial application programming interface. However, a
context-aware user service may concurrently use multiple spatial application
programming interfaces to access spatial objects in a similar way. The overlapping
context of such distributed spatial objects may be used similarly to correlate objects.
For example, the location of a bus stop available from one spatial application
programming interface might be used to locate nearby train stations through another
interface.

6 Summary and Conclusions

This paper presented a programming model for global smart space applications to
access context information provided by independent systems and related services. The
spatial programming model uses a small set of predefined types to model distributed
context information as spatial objects. This provides a common view on such
information and enables applications to exploit, act upon and share information based
on overlapping temporal and spatial aspects. The spatial programming model supports
a topographical location model in which spatial context derived form the real world is

30 R. Meier et al.

explicitly represented by shapes that reflect occupied space or describe areas of
interest. This enables systems distributed over large geographical areas to indepen-
dently define and use spatial context in a consistent manner.

The spatial programming model is part of the iTransIT framework for global smart
spaces in the transportation domain that has been motivated by the needs of Dublin
City. The multi-layered distributed iTransIT architecture enables incremental
integration of independent systems and services over time while minimising the
impact of such expansion as changes are local to the new system. The distributed data
model, in which individual systems maintain one or more layers of the overall data
model, facilitates data exchange between systems and services with diverse contextual
data sets and functional organizations.

The evaluation of the spatial programming model is based on a prototypical
implementation of an iTransIT management system that uses spatial objects to model
real information relevant to and derived from a range of transportation systems
currently deployed in Dublin City. The assessed scenario demonstrated that our
programming model enables application and eventually user access to pervasive
context information concerning a real urban environment through correlation of
overlapping spatial context. This evaluation therefore demonstrates that using a
spatial programming model enables the integration of individual systems associated
with a global smart space into a comprehensive platform for the provision of truly
pervasive context-aware services and information to users.

Acknowledgements. The work described in this paper was supported by the Dublin
City Council in Ireland.

References

[1] A. Dearle, G. Kirby, R. Morrison, A. McCarthy, K. Mullen, Y. Yang, R. Connor, P.
Welen, and A. Wilson, "Architectural Support for Global Smart Spaces," in Proceedings
of the 4th International Conference on Mobile Data Management (MDM 2003), LNCS
2574. Melbourne, Australia: Springer-Verlag, 2003, pp. 153-164.

[2] K. Cheverst, N. Davies, K. Mitchell, A. Friday, and C. Efstratiou, "Experiences of
Developing and Deploying a Context-aware Tourist Guide: The GUIDE Project," in
Proceedings of the Sixth Annual International Conference on Mobile Computing and
Networking (MobiCom 2000). Boston, Massachusetts, USA: ACM Press, 2000, pp. 20-31.

[3] G. D. Abowd, C. G. Atkeson, J. Hong, S. Long, R. Kooper, and M. Pinkerton,
"Cyberguide: A Mobile Context-Aware Tour Guide," ACM Wireless Networks, vol. 3, pp.
421-433, 1997.

[4] T. Sivaharan, G. Blair, A. Friday, M. Wu, H. Duran-Limon, P. Okanda, and C.-F.
Sørensen, "Cooperating Sentient Vehicles for Next Generation Automobiles," presented at
The First ACM International Workshop on Applications of Mobile Embedded Systems
(WAMES'04), Boston, Massachusetts, USA, 2004.

[5] J. Kjeldskov, S. Howard, J. Murphy, J. Carroll, F. Vetere, and C. Graham, "Designing
TramMateña Context-Aware Mobile System Supporting Use of Public Transportation," in
Proceedings of the 2003 Conference on Designing for User Experiences. San Francisco,
California, USA: ACM Press, 2003, pp. 1-4.

 A Spatial Programming Model for Real Global Smart Space Applications 31

[6] J. Dowling, R. Cunningham, A. Harrington, E. Curran, and V. Cahill, "Emergent
Consensus in Decentralised Systems using Collaborative Reinforcement Learning," in
Post-Proceedings of SELF-STAR: International Workshop on Self-* Properties in
Complex Information Systems, LNCS 3460: Springer-Verlag, 2005, pp. 63-80.

[7] N. Honle, U. Kappeler, D. Nicklaus, T. Schwarz, and M. Grossmann, "Benefits of
Integrating Meta Data into a Context Model," in Proceedings of the Third IEEE
International Conference on Pervasive Computing and Communications Workshops. Pisa,
Italy, 2004, pp. 25-29.

[8] O. Lehmann, M. Bauer, C. Becker, and D. Nicklas, "From Home to World - Supporting
Context-aware Applications through World Models," in Proceedings of Second IEEE
International Conference on Pervasive Computing and Communications (Percom'04).
Orlando, Florida: IEEE Computer Society, 2004, pp. 297-308.

[9] M. Roman, C. Hess, R. Cerqueira, A. Ranganathan, R. Campbell, and K. Nahrstedt,
"Gaia: A Middleware Infrastructure to Enable Active Spaces," IEEE Pervasive
Computing, vol. 1, pp. 74-83, 2002.

[10] C. Borcea, C. Intanagonwiwat, P. Kang, U. Kramer, and L. Iftode, " Spatial Programming
using Smart Messages: Design and Implementation," in Proceedings of the Twenty-
Fourth IEEE International Conference on Distributed Computing Systems (ICDCS'04).
Tokyo, Japan, 2004, pp. 690-699.

[11] A. Dey and G. Abowd, "Towards a Better Understanding of Context and Context-
Awareness," in Workshop on The What, Who, Where, When, and How of Context-
Awareness, as part of the 2000 Conference on Human Factors in Computing Systems
(CHI 2000). The Hague, The Netherlands, 2000.

[12] R. Meier, A. Harrington, and V. Cahill, "Audit of ITS Applications and Services in
Dublin City," Trinity College, Dublin, Ireland, Dublin City Council iTransIT Deliverable,
August 2004.

[13] M. Bauer, C. Becker, and K. Rothermel, "Location Models from the Perspective of
Context-Aware Applications and Mobile Ad Hoc Networks," Personal and Ubiquitous
Computing, vol. 6, pp. 322-328, 2002.

[14] Open GIS Consortium Inc, "OpenGIS Simple Features Specification for SQL, Revision
1.1," OpenGIS Project Document 99-049, 1999.

[15] R. A. P. Bossom, "European ITS Framework Architecture - Communication Architecture,
Annex 1: Supporting Information for Communications Analysis," vol. D3.3: European
Communities, 2000.

[16] T. F. Fugger, B. C. Randles, A. C. Stein, W. C. Whiting, and B. Gallagher, "Analysis of
Pedestrian Gait and Perception–Reaction at Signal-Controlled Crosswalk Intersections,"
National Research Council, Washington, D.C, USA, Transportation Research Record
1705 TRB 00-1439, 2000.

Mobile Process Description and Execution

Christian P. Kunze, Sonja Zaplata, and Winfried Lamersdorf

Distributed Systems and Information Systems
Computer Science Department, University of Hamburg

Vogt-Kölln-Str. 30, 22527 Hamburg, Germany
{kunze, zaplata, lamersdorf}@informatik.uni-hamburg.de

Abstract. Mobile devices are increasingly aware of their respective lo-
cations and vicinity and tend to communicate rather loosely with each
other; therefore asynchronous communication paradigms are used pre-
dominately so far for corresponding mobile applications. However, while
such communication mechanisms are suitable for simple activities, they
may become insufficient for more complex tasks which consist of longer
sequences of related activities tied together in application-oriented pro-
cesses. This is of particular importance if the resulting operating se-
quence spans several mobile devices in frequently changing vicinities.

Therefore, the work presented here provides a concept for integrating
explicit support for such mobile processes into mobile system infrastruc-
tures and for distributing their execution over different nodes in the
network. For this purpose, a corresponding middleware platform (ex-
tension) for context-aware mobile applications is proposed. It supports
such migrating processes and helps to execute them under the restric-
tions typically imposed by realistic mobile applications. In particular,
this paper proposes a corresponding process description language and an
execution model for mobile and distributed (business) processes in the
context of the project DEMAC (Distributed Environment for Mobility-
Aware Computing).

1 Introduction

Due to the constraints of mobile computing environments, mobile systems, in
general, cannot provide the same degree of distribution transparency as systems
in statically wired environments [4]. Just in contrast to those, the restrictions of
resources in comparison to static devices, the increased variability in performance
and reliability of wireless connections, the finite energy sources to rely on, and
the hazard of mobility itself [13] lead to the perception that mobile environments
should be aware of the changing vicinity and also should react and adapt to it
accordingly.

However, in current systems this so-called context awareness and adaptability
is, in most cases, still restricted to support more or less monolithic and ad-hoc
static applications in fulfilling their momentary tasks. In general, that means
that most existing middleware systems are rather application centric and thus
restricted to offer assistance for basic but rather simple tasks. But, in order to

F. Eliassen and A. Montresor (Eds.): DAIS 2006, LNCS 4025, pp. 32–47, 2006.
c© IFIP International Federation for Information Processing 2006

Mobile Process Description and Execution 33

approach the vision of pervasive computing [16, 17] more closely, also much more
complex and eventually even unknown tasks and thus more generality must be
supported by new mobile middleware systems.

Such complex application tasks can be regarded as sequences of related simple
tasks tied together in a (business) process which is managed by a mobile client on
behalf of a user. This means that a mobile client is required to reach and invoke all
the services needed to execute such a process. It must also be capable of handling
all intermediate results – regardless of their size and relevance to the expected
final output. As a consequence, it may become a single point of failure and also a
bottleneck during execution time. Altogether, this means that the capabilities of
a mobile client limit the quantity of possible processes to be executed.

But since the user is, in most cases, just interested in some specific effects
of a process (and not in its execution or intermediate results), this effect could
be eased by transferring the control flow – and with it the whole process – to
other devices, if possible. In combination with the possibilities of mobile com-
puting middleware systems to utilise context information and to cooperate, such
long-time mobile processes and their distributed execution provide additional
efficiency to application process execution in mobile computing. Accordingly,
this paper presents an outline of the system platform Distributed Environment
for Mobility-Aware Computing (DEMAC) – which realises such an extension –
with a special focus on a new description language and execution model for such
mobile processes.

The following subsections of the paper introduce the definition of mobile pro-
cesses, section 2 addresses related work, and section 3 provides a closer look
at the coarse system architecture, the process definition language, and the ex-
ecution engine. Finally, section 4 concludes the paper with a summary and an
outline of future work.

1.1 Integrating Processes into Mobile Computing Systems

The work presented aims to extend the capabilities of mobile devices through co-
operation with other devices in their vicinity and thus increase of their potential.
This is achieved by integrating distributed (business) processes into an adequate
mobile system infrastructure. Such an approach is different to most existing ones
of integrating processes with mobile computing devices which just extend their
traditional process infrastructure by including mobile device as process partic-
ipants (cp. e.g. [12]). Accordingly, in our context, the term mobile process is
defined and used as followed:

A mobile process is a sequence of (remote) services which may last over
a longer period of time and span several devices during its execution.
The results of the process are the effects the initiator expects from it.

In traditional mobile middleware, a process executes the application logic by
explicitly assigning local or remote services to the processs activities and by
invoking them directly. In contrast to that, in our view, such application pro-
cesses may (partly) diffuse into the mobile middleware: They just form a stub

34 C.P. Kunze, S. Zaplata, and W. Lamersdorf

which collects information from the user to assemble the process and its general
conditions and to pass the mobile process to the middleware.

In addition, as activities of mobile processes can last very long (like hours,
days, or weeks) the changes of the device environment can be dramatic between
the executions of adjacent activities. Therefore, a late binding strategy to assign
services is – certainly – essential but not always sufficient. Consequently, the mo-
bile processes as proposed here are executed based on an opportunistic strategy:
As long as the process engine of a device is able to bind local or remote ser-
vices to it’s currently activity, it is responsible for the mobile process. However,
in cases of failures or lack of respective service instances the engine is able to
try to find other devices which are able to execute the mobile process and then
transfers the remaining process and its execution to one of them.

Such a process distribution is especially advantageous in (realistic) hetero-
geneous and frequently changing mobile environments where device capabilities
may highly differ. Thus, such process transfer opens up additional services which
were not accessible according to the traditional execution approach. This also
means that likelihood of a mobile process to be executed successfully increases
substantially.

1.2 Requirements for Descriptions of Mobile Processes

In order to describe processes in ways which allow for execution strategies as
described above, an abstract process description language has to be designed: In
such a view, mobile processes have rather similar requirements for their descrip-
tion as traditional (business) processes, these are among others: the need for the
ability to express the business logic with its data and control flow, the partici-
pating parties (as roles or individuals), and routines to recover from failures [9].

But they also have some specific requirements based on the nature of mobile
environments and the opportunistic and distributed execution strategy (cp. sec-
tion 1.1): E.g. mobile process descriptions must be lean and simple to process in
order to save memory, CPU power, and energy resources, it must also include
mechanisms to handle communication failures and the distribution of the pro-
cess itself. This means especially that the state of the process and the user’s
non-functional conditions for the execution of the process must be expressible.
The (late) binding mechanism to assign service instances to process activities
as late as possible must be integrated into the description language by using a
preferably very abstract notation of the desired services [13, 7].

Based on these ”related work” is briefly reviewed in section 2 and for mobile
process description languages in section 3.2.

2 Related Work

Since this paper concentrates specifically on the description and execution of
mobile processes, some specific aspects of our approach are pointed out first
- before, after that, related work in the area of mobile process descriptions is
reviewed more extensively.

Mobile Process Description and Execution 35

System Infrastructure. Since mobile process execution always relies on con-
textual information, the context modelling and context data acquisition are cru-
cial for the respective developed concept and system infrastructure. The abstract
and generic definition of context and its data as used in the Context Toolkit [5]
by Dey is mainly suited for the mostly a priori unknown demands of mobile
processes. Whereas the understanding provided by Schilit [14] or Schmidt [15]
turned out to be too narrow to support the wide range of possible processes as
required in our approach. The idea of the NEXUS project [6] to ensemble the
context of an entity by federating local context clippings of entities within par-
ticular vicinity is used in the system infrastructure to construct a global context
representation efficiently.

The mobile process infrastructure as addressed here also relates to recent
research in the area of mobile agents [3]. However, in relation to that it differs
in some important aspects: In contrast to an agent a mobile process does not
contain executable code. In fact, mobile processes only provide meta-data about
the structure of the described application and, thus, the estimated effects but
not the way how this behaviour is achieved. In addition, they do not have a social
behaviour either, nor could they act autonomously or proactively. Nevertheless,
some parts, e.g. security and privacy concerns or the need to determine the
execution state, have, in principal, similar requirements and, thus, solutions.

Process Description. A process description language for mobile processes has
to consider aspects of distribution as well as support for high level flexibility
and fault tolerance. An analysis of most prominent existing process description
languages, such as XPDL, BPEL4WS, WSCI, JPDL, and ebBPSS, shows that
the concepts and constructs provided by these languages are not in total ad-
equate to describe highly dynamic processes on mobile distributed computing
systems [18].

Closest to the required concepts as mentioned above is the meta-model lan-
guage XPDL [10], which was developed as an abstract interchange format for
different workflow engines. It provides a very general view on processes, is open
for extensions and ready for all kind of automated and manual services. On the
other hand, due to its high level of abstraction, it does not provide sufficient
concepts to perform distributed process execution and handle errors as well as
transactions.

In contrast, BPEL4WS [1] as a language for the orchestration of activities de-
fined as web services, offers very specific and powerful elements to link tasks and
to deal with unexpected circumstances as well. Processes defined with BPEL4WS
are ready to be executed but limit cooperations between business partners us-
ing the Web Service protocol stack. Furthermore, process descriptions tend to
become rather complex due to possible combinations of sequential blocks with
graph-structured elements in order to express parallel behaviour. Again, the def-
inition language is developed for running on a central workflow engine and does
not provide concepts for distributed process execution.

The Web Service Choreography Interface (WSCI) [2] is an add-on of WSDL
and concentrates on the choreography of web services by describing a task from

36 C.P. Kunze, S. Zaplata, and W. Lamersdorf

the individual perspective of its participating services. Therefore, the description
itself is lean because each one is intended for only one single participant. The
disadvantage of WSCI, however, is that all possible participants have to be
determined in advance so the processes’ information can be distributed and a
fixed compatible interface can be implemented within the WSDL description of
each participant. Also dynamic processes or ad-hoc workflows as well as often
changing vicinities of mobile devices cannot be handled with WSCI.

A very lean description language is provided by JPDL [8], which is an integral
part of the Java Business Process Management (JBPM). JPDL supports manual
tasks, but the description of automated function logic is matched to the Java
programming language and the composition of web services is not provided at
all. For error handling, JPDL also relies on the JAVA platform and, therefore,
cannot be considered to be totally platform-independent.

EbBPSS is the Business Process Specification Scheme of the EbXML frame-
work [11]. In particular, it is designed to describe business transactions and there-
fore it focuses on the aspect of binary collaboration between several companies.
Although EbBPSS has the ability to describe quality and security issues as fixed
requirements for the scheduled cooperation, it depends highly on the ebXML
framework which is in itself too complex for most of today’s mobile computing
systems. Standing alone, it does not support the description of required control
flow constructs, such as error handling mechanisms or the possibility to integrate
users and different kind of services.

So, in summary, none of the considered approaches supports transfers of pro-
cess descriptions and allows a completely distributed administration of mobile
processes. Late binding of participants is often possible, but there are no ad-
equate concepts to choose participants by their respective quality or by other
non-functional criteria. In most cases, the description of activities and their de-
pendencies within the process is very extensive or requires a lot of computing
power to work on it. This, however, is not suitable for relatively weak mobile
devices. Finally, concepts for handling faults are insufficient for the error-prone
mobile computing systems and the handling of connection resets and security
issues has not been considered at all since these process description languages
have been developed basically for reliable central workflow engines.

3 A Mobile Process Integration Service

These deficiencies of already established approaches for describing mobile
processes (cp. section 2) adequately motivate the development of an enhanced
description language which fulfils all of the specified requirements. Accordingly,
this section presents relevant features such an approach based on (a) a process
description language for distributed processes and (b) a corresponding mobile
process execution engine. But as such an engine cannot be realised without
an underlying system infrastructure, subsection 3.1 first provides an outline
of the middleware architecture as developed for that purpose in the DEMAC
project.

Mobile Process Description and Execution 37

3.1 A Middleware Architecture for Supporting Distributed and
Mobile Processes

The decision to design a tailored system infrastructure for supporting a seamless
integration of mobile processes into a mobile computing middleware evolved from
an analysis of the processes’ requirements and the respective features as offered
by existing middleware approaches. Especially the close cooperation between the
mobile processes and the context model to distribute and execute the processes
lead to the need of a specifically adjusted model and service architecture.

The resulting system architecture is based on four basic service components
(see figure 1) which are briefly described overview before section 3 introduces
the integration of mobile processes in more detail.

Fig. 1. The DEMAC Abstract Architecture

The Communication Basis. The asynchronous transport service and the
event service form the communication platform of the architecture and pro-
vide communication with both push and pull semantics. This service abstracts
from concrete transport protocols – like TCP/IP, Bluetooth or IrDA. To be in-
dependent from the underpinning protocols, the transport service uses its own
addressing schema. These addresses are bound to a device and translated into
concrete protocol specific addresses by the transport service. If the device is
reachable by different protocols, non-functional aspects, like e.g. quality of ser-
vice attributes, can be used to make an optimal choice.

The Context Service. The context service collects and maintains all informa-
tion about the context of the device. It acquires its knowledge either by events
from the event service or by direct message exchange using the transport service.

38 C.P. Kunze, S. Zaplata, and W. Lamersdorf

Towards the entities which use the service, it filters and partitions the informa-
tion and provides only the amount of data they need. These are next to quality of
service parameters also information about reachable devices and their services,
location parameters and data about other users and their identity. To acquire
the context information, a federated approach is chosen. Every device provides
only local context information. To get the overall context, the information of
the devices in the environment is merged. To find and resolve devices and ser-
vices in the vicinity, the context service contains a distributed registry which uses
peer-to-peer mechanisms to obtain its knowledge.

The Process Service. The process service realises the integration of process
management into the DEMAC architecture. It is comprised of two parts: The
first one is a definition language in order to describe the mobile process as
well as the users’ and applications’ non-functional demands (cp. section 3.2).
Using this language, an application is able to define a sequence of activities,
intermediary results which must be achieved, and constraints for the execution.
The second part of the service is an execution engine for process definitions.
This unit resolves and executes processes (cp. section 3.3). It can either invoke
the activities locally or delegate the process to a remote process service. When
delegating a process, the description and all necessary data is transferred to the
remote unit by use of the transport service. Thereby the process service relies on
the information provided by the context service to find a device providing the
needed service and to enforce the non-functional demands and constraints. The
execution engine’s architecture provides the ability to extend a compact core by
plugging in functional modules to adapt to the capabilities of the underlying
device.

3.2 DEMAC Process Description Language

The DEMAC Process Description Language1 (DPDL) is an XML-based descrip-
tion language to integrate distributed long-time processes into mobile computing
systems. DPDL follows the meta-description language XPDL [10] and inherits
the structure and those constructs of XPDL which turned out to be suitable for
describing mobile processes.

The basic idea of DPDL is to allow a distributed handling of the process over
heterogeneous systems. An entire process may be passed on to another device
to continue work on the process’s tasks. So devices which are not capable of
executing a particular task of the process can mark its latest execution state
and search for other devices able to carry on at the position established so far.
So, by sharing the potential of several mobile devices, this approach increases the
likelihood of successful process execution - even under the (generally unstable)
conditionals which are typical for mobile devices and applications.

Meta-model and Structure. As shown in figure 2, the basic container for the
DPDL process description and all its data is a Package. A Package contains at
1 http://vsis-www.informatik.uni-hamburg.de/projects/demac/dpdl1.0.xsd

Mobile Process Description and Execution 39

least a single WorkflowProcess, which holds all tasks to be worked on (Activities)
and the control flow as a fixed sequence to execute these tasks. Activities can be
atomic or can be grouped to simple reusable blocks (Activity Sets), to a sequence
of activities to be executed as a Transaction or to a set of repeatable actions
within a Loop. Furthermore, an activity can represent an entire Subprocess.

Workflow
Process

Activity Set

Activity

Transition

Block
Activity

Sub-Process

Atomic
Activity

1

1

from to

*

*

*

*
*

Transaction

Transaction
Activity

Loop

Loop
Activity

**

Exception
Handler

Connection
Reset Handler

1

1
1

1

1

*

*

*

**

1
1

*

*

1
1

1
1

1

11

Native XPDL Elements

Additional Constructs in DPDL

in case of exception

Activity Reference

1

1

*

1

1

Package
1

StrategyApplicationWorkflow
Relevant DataParticipant

** *

1 1 1

*

1

1

1

in case of
connection reset

Fig. 2. DPDL Meta-model

To integrate non-functional criteria, the Package can also contain definitions
of requirements for service qualities or for quality aspects of devices or networks.
These requirements are modelled as Strategies and can be bound to activities or
to the entire process.

To deal with likely occurrences of errors and connection resets DPDL intro-
duces Exception Handlers and Connection Reset Handlers. These elements refer
to another set of activities which should be executed in cases where the normal
execution fails.

40 C.P. Kunze, S. Zaplata, and W. Lamersdorf

The introduction of ActivityReferences allows reusing the description of activ-
ities within the process, for example as a part of several error handling descrip-
tions. ActivityReferences are linked by Transitions to describe the processes’
control flow. ActivityReferences are unique within the process. They contain all
information which is relevant for the execution of the activity in dependence of
its position in the control flow, such as references to participants, error handling
and non-functional criteria.

State Concept. The state of each single activity within the process is modelled
as a property of its respective unique ActivityReference, so the execution state of
an activity is well-defined and the progress in processing the activities is visible
for every participating device at any time during execution.

Figure 3 shows the potential lifecycle of an ActivityReference. An ActivityRef-
erence is inactive if preliminary activities are not executed or conditions for the
execution of the referenced activity are not checked yet. In case one or more
of these conditions can not be fulfilled, the ActivityReference is set to the er-
ror state skipped. If these conditions evaluate to true or there are no conditions
defined, the ActivityReference is set to the state ready. It may happen that a
mobile device is capable of checking the conditions of an activity, but is not able
to perform the execution itself. In this case, it will possibly take some time to
transfer the process description to another device and it has to be checked close
to the execution if the activity is still valid or if a defined expiration date is
exceeded (error state expired). The states skipped and expired are also relevant
for the appliance of a Dead Path Elimination. If all prerequisites are fulfilled
and the actual execution starts, the ActivityReference is set to the state exe-
cuting. The appearance of errors during the execution will result in a general
error state in error. An activity is executed when its execution is successfully
completed. It might now be set back to the ready state to be restarted later
(for example if the activity is part of a loop) or it is set to the state finished
which indicates the execution of the ActivityReference is terminated and finally
closed.

inactive ready executing executed finished

skipped expired in error
execution states

error states

Fig. 3. Possible States of Activities in DPDL

Furthermore, a particular ActivityReference can be referenced as a start ac-
tivity to mark the next task to be executed. This relieves other participating
devices of dealing with tasks which have already been finished.

Mobile Process Description and Execution 41

Description of Activities and External Data. Transfer and execution of
processes on mobile computing systems also require rather efficient use of the
available amount of system memory. This means, one of the most important
requirements of mobile processes is to make process descriptions as lean as pos-
sible. DPDL allows describing activities as a short but significant identifier and
supports to store data external to the actual process. For example, huge docu-
ments may be kept completely out of the description until their processing time
has arrived. This is particularly suitable if the data is needed only once or is
used in very few activities within the process. On the other hand the provision
of flexibility is essential in this case because the availability of devices and their
connectivity may appear as a bottleneck to the dynamic integration of exter-
nal features. So, it depends on the kind of application to decide whether or not
obtaining data from a remote location.

Listing 1. Description of Data and Activities

<DataFields>
<DataField Id="PaintingName">

<DataType>
<BasicType Type="String"/>

</DataType>
<InitialValue>Mona Lisa</InitialValue>

</DataField>
<DataField Id="NewPainting">

<DataType>
<DeclaredType Type="Image"/>

</DataType>
<ExternalReference Location="http://www.xyz.com/Very Large Image.bmp"/>

</DataField>
</DataFields>

<Applications>
<Application Id="Printer">

<UUID>12345678901234567890123456789012</UUID>
<FormalParameters>

<FormalParameter Id="SomeName" Index="1" Mode="IN">
<DataType>

<BasicType Type="String"/>
</DataType>

</FormalParameter>
<FormalParameter Id="SomePicture" Index="2" Mode="IN">

<DataType>
<DeclaredType Id="Image"/>

</DataType>
</FormalParameter>

</FormalParameters>
</Application>

</Applications>

...

<Activity Id="Print">
<Implementation>

<Tool ApplicationId="Printer">
<ActualParameters>

<ActualParameter>PaintingName</ActualParameter>
<ActualParameter>NewPainting</ActualParameter>

</ActualParameters>
</Tool>

</Implementation>
</Activity>

42 C.P. Kunze, S. Zaplata, and W. Lamersdorf

Listing 1 shows the declaration of two variables by the use of the DataField
construct and the definition of the corresponding data. While the content for
the variable ”PaintingName” can easily be hold within the process description
for immediate access, the data item of the type ”Image” is represented by an
ExternalReference in order to save memory and network costs. Furthermore, the
generic Application ”Printer” is abstracted in the example listing by a universal
unique identifier (UUID) which represents the category of adequate services to
execute the respective activity, e.g. printing an image. The data involved in the
task, in this case the painting’s name and the image data itself, is finally called
and mapped to the Formal Parameters of the generic Application.

Users and Devices. Mobile processes are highly related to tasks which require
interaction with mobile participants such as users or devices or a combination
of both. Therefore, special constructs are needed to describe which individuals
are involved in which task and by what kind of communication channels these
persons might be addressed or accessed. In DPDL, a participant is either totally
specified or described in a generic way, e.g. by the declaration of a certain role.
Descriptive properties of users (for example a digital identity) and devices (for
example unique identifiers) can be combined to characterize a participant and
help finding the required instance to execute the upcoming task (see listing 2).

Listing 2. Participants

<Participant Id="Smith" Name="John Smith">
<Devices>

<Device Id="111" Name="Personal Computer">
<UUID>12345678901234567890123456789012</UUID>

</Device>
<Device Id="222" Name="Mobile Phone">

<Devicetype Type="Cellphone"/>
</Device>

</Devices>
</Participant>
...
<ActivityRef Id="1" ActivityId="Activity1" ParticipantId="Smith" ... />

Handling Errors and Connection Resets. Due to the high incidence of
faults appearing in mobile computing systems, DPDL provides constructs to
handle errors and unexpected connection resets. The description of Exception
Handlers provides a definition of alternative control flow constructs to be exe-
cuted when an error occurs. In case of a connection reset, the communication
may be either restarted, the service partner may be changed, or the activity may

Listing 3. Connection Reset Handler

<ConnectionResetHandler Id="1">
<ExceptionId>someException</ExceptionId>
<Retries>2</Retries>
<NewSearch>true</NewSearch>

</ConnectionResetHandler>
...

<ActivityRef Id="1" ActivityId="Activity1" ConnectionResetHandlerId="1" ... />

Mobile Process Description and Execution 43

be skipped. The actual behaviour depends on the involved applications and the
specific use-case and can also be modelled as a combination of activities (see
listing 3).

Parallel Execution. In case there is no relevant data dependency within the
control flow, parallel paths of the process can be executed by different mobile
computing systems. To share a process description, the responsible mobile device
decides to execute an arbitrary parallel path and thereby sets its first ActivityRef-
erence to the state executing. While in this state, it produces a snapshot of the
process description as a copy of its own process and forwards this copy to exactly
one other device. Because the path chosen by the first device is already in the
state executing, the second device can only select one of the remaining parallel
paths.

In order to synchronize parallel paths, there has to be a defined meeting point,
for example a stationary device. The participating devices can pass their copies
of the process description to the given address. The service at the meeting point
collects all incoming parallel paths belonging to the shared identifier and merges
the copies to a single process description. If required, this one can be forwarded
again to continue execution.

Modification of Activities. In order to provide a maximum of flexibility, the
description considers the possibility that activities may be modified throughout
the execution of the process. For example, the single activity ”Send a new text
by e-mail” may be substituted by a more detailed Activity Set containing the two
activities ”Write text” and ”Send e-mail”. If no suitable service for executing the
entire task can be found, other services may cooperate to compensate this lack
of capability by executing intermediate steps. However, to control the amount of
modification the initiator of the process can protect activities against uninten-
tional changes by using suitable values for the Activity’s Editable attribute. For
example, the activity may be declared not editable at all, or the modifications
might be further restricted by the definition of non-functional criteria, such that
no semantically dependent activity can be substituted without compromising
the overall correctness of the process.

The responsibility for exchanging or modifying activities resides with the
context service which decides whether or not the upcoming task can be exe-
cuted locally. The necessary knowledge about semantic equivalence of services
and their exchangeability or possible reconfiguration is kept by the distributed
registry as part of the federated context services of all vicinal devices (cp.
section 3.1).

Integration of Non-functional Criteria. To narrow the selection of poten-
tially participating devices and services according to the user’s interests and
intentions, the process description may contain a set of non-functional criteria.
The user who initiated a process can define a Strategy to assert a certain level
of quality throughout the execution of the process. This way, Strategies help to
ensure the user’s goals as they were intended originally. Each Strategy contains

44 C.P. Kunze, S. Zaplata, and W. Lamersdorf

a set of requirements which each hold a key-value-pair consisting of an identifi-
cation argument and a target value. Listing 4 shows, exemplarily, how to define
a limitation of the factor ”cost” for the execution of a certain activity.

Listing 4. Description of non functional Criteria

<Strategy Id="123" Name="ActivityStrategy">
<StrategyProperty Id="1" Name="Cost">

<Requirements>
<Requirement Name="MaxNetworkCost" Value="10"/>
<Requirement Name="MaxServiceCost" Value="0"/>

</Requirements>
</StrategyProperty>

</Strategy>
...
<ActivityRef Id="1" ActivityId="TestActivity1" StrategyId="123"/>

Before executing an activity with specific requirements, the context service
has to collect the relevant quality information, so the process service can ensure
that only those services and devices are involved in the activity’s execution which
meets the specified requirements.

3.3 Mobile Process Execution

Depending on their intended purpose, mobile devices can have many different
properties and a wide range of capabilities. To integrate most mobile devices and
to benefit from the collaboration of heterogeneous systems, the mobile process
execution engine must support different levels of performance.

Therefore, the execution engine is characterized by a modular design (cp. fig-
ure 4). A Core Module provides basic functionality such as receiving, storing,
and forwarding process descriptions. It can be run independently on less pow-
erful devices, like PDAs or cellphones, which do not provide enough memory
or computing power to execute complex tasks but are useful to transport the
process descriptions to other (different) environments. The core module also pro-
vides the interface for applications to initiate processes by passing the DPDL
process description to the execution engine.

A more powerful Base Module is responsible for executing the described tasks
of the process. It uses the core component to communicate with other devices and
can be enhanced by further task-specific Extension Modules. Extension Modules
are strongly dependent on the characteristics of the device, for example, an
additional component supporting user interaction can only be realised if the
respective device has a proper user interface.

The complete set of all installed components together with the DPDL de-
scription of mobile processes realises the DEMAC process service, which can
have different combinations of execution modules, as shown in figure 4.

Finally, the mobile process execution engine cooperates closely with the
DEMAC context service in order to get information about the device’s vicin-
ity, such as available services, environmental data or its own identity. If a new
process description is received by the core module, the process data is made

Mobile Process Description and Execution 45

Core
Module

Base Module
Extension

Module

Extension
Module

Extension
Module

<Security>

<User
Interaction>

<Transactions>

Receive and forward process
descriptions considering non-
functional criteria

Interprete process descriptions and
execute processes

Enhance the functionality
of devices being more powerful

Fig. 4. Modular Execution Engine for Mobile Processes

persistent and the process’s Strategies are extracted from the Package. In case
there is no base module attached or the proper component to execute the process
locally is missing, the context service is requested to find a device suitable to the
specified constraints to continue the execution. Otherwise, the execution engine
within the responsible mobile device starts working on the process itself. It picks
the upcoming Start Activity, examines it and requests the context service to
find suitable services to process the task, depending on the defined Participants,
Strategies and/or Conditions of this activity. If an adequate service for execut-
ing the upcoming activity cannot be found, the local execution engines marks
the latest execution state, stops working on the process and again requests to
find an alternative device to continue. This way, sharing the different properties
and potentials of context aware mobile computing systems even complex and
long-time processes can be executed in a step-by-step-manner.

4 Conclusion

This paper describes an approach to make mobile computing middleware plat-
forms capable of supporting abstract descriptions as well as new execution mod-
els of mobile distributed long-term business processes. Due to (a) distributed
and cooperative nature of such processes and (b) restrictions and specific char-
acteristic of mobile computing environments, already existing description lan-
guages and execution models for centrally coordinated processes do not suffice.
Therefore, an extended, technology independent description language is pro-
posed and a corresponding execution platform and its realisation are described in
this paper.

46 C.P. Kunze, S. Zaplata, and W. Lamersdorf

Thus, the paper presents the DEMAC Process Description Language which
extends the XPDL meta-model by concepts for distributing and executing
processes in mobile and frequently changing vicinities. It also describes the pro-
totype realisation of an execution engine for such mobile processes. Thereby the
paper argues that the presented modular design is able to support most of the
heterogeneous capabilities of typical mobile devices.

As a prototypical implementation of the presented architecture has been re-
alised already, future work includes implementation – on top of this platform –
some of the project’s use cases and sample scenarios. These include, e.g., a pro-
totype of a claim manager application for an insurance company which creates
customised mobile processes out of a template base and executes them using
the DEMAC middleware. Furthermore, the overall performance of the system is
continuously evaluated and improved. More fundamental questions arise in the
fields of integrating privacy and security mechanisms as well as developing an
adequate transaction concept for distributed and mobile processes.

References

1. Andrews, Tony and Curbera, Francisco and Dholakia, Hitesh and Goland, Yaron
and Klein, Johannes and Leymann, Frank and Liu, Kevin and Roller, Dieter and
Smith, Doug and Thatte, Satish and Trickovic, Ivana and Weerawarana, Sanjiva.
Business Process Execution Language for Web Services Version 1.1. Specification,
IBM, BEA Systems, Microsoft, SAP AG, Siebel Systems, 2003.

2. Arkin, Assaf and Askary, Sid and Fordin, Scott and Jekeli, Scott and Kawaguchi,
Scott and Orchard, David and Pogliani, Stefano and Riemer, Karsten and Struble,
Susan and Takacsi-Nagy, Pal and Trickovic, Ivana and Zimek, Sinisa. Web Service
Choreography Interface (WSCI) 1.0. Specification NOTE-wsci-20020808, World
Wide Web Consortium, 2002.

3. Braun, Peter and Rossak, Wilhelm. Mobile Agents - Basic Concepts, Mobility
Models, and the Tracy Toolkit. Elsevier and Morgan Kaufmann and dpunkt.verlag,
2005.

4. Capra, Licia and Emmerich, Wolfgang and Mascolo, Cecilia. Middleware for Mobile
Computing: Awareness vs. Transparency. In In Proceedings of the 8th Workshop
on Hot Topics in Operating Systems, 2001. extended version.

5. Dey, Anind K. Understanding and Using Context. Personal and Ubiquitous Com-
puting Journal, 5(1):4–7, 2001.

6. Dürr, Frank and Hönle, Nicola and Nicklas, Daniela and Becker, Christian and
Rothermel, Kurt. Nexus–A Platform for Context-Aware Applications. In Roth,
Jörg, editor, 1. Fachgespräch Ortsbezogene Anwendungen und Dienste der GI-
Fachgruppe KuVS, 2004.

7. Forman, Georg H. and Zahorjan, John. The Challenges of Mobile Computing.
Technical Report TR-93-11-03, University of Woshington, 3 1994.

8. JBoss Company. JBoss jBPM 3.0 - Workflow and BPM made practical. Documen-
tation, JBoss Company, 2005.

9. Leymann, Frank and Roller, Dieter. Production Workflow - Concepts and Tech-
niques. PTR Prentice Hall, 2000.

10. Norin, Roberta and Marin, Mike. Workflow Process Definition Interface – XML
Process Definition Language. Specification WFMC-TC-1025, Workflow Manage-
ment Coalition, 2002.

Mobile Process Description and Execution 47

11. Riemer, K. EbBPSS Business Process Specification Schema, Version 1.01. Speci-
fication, Oasis ebXML Business Process Project Team, 2001.

12. SAP AG. SAP Mobile Infrastructure: An Open Platform for Enterprise Mobility.
Technical report, SAP AG, 2003.

13. Satyanarayanan, Mahadev. Fundamental Challenges in Mobile Computing. In Pro-
ceedings of the Fifteenth ACM Symposium on Principles of Distributed Computing,
1996.

14. Schilit, Bill N. and Adams, Norman and Want, Roy . Context-Aware Computing
Applications. In Proceedings of the 1st International Workshop on Mobile Com-
puting Systems and Applications, pages 85–90, 1994.

15. Schmidt, Albrecht and Beigl, Michael and Gellersen, Hans-W. There is more to
Context than Location. In Proceedings of the International Workshop on Interac-
tive Applications of Mobile Computing, 1998.

16. Weiser, Mark. The Computer for the Twenty-First Century. Scientific American,
256(3):94–104, 1991.

17. Weiser, Mark. Ubiquitous Computing. IEEE Computer Hot Topics, 1993.
18. Zaplata, Sonja. Prozessintegration in Middleware für mobile Systeme. Master’s

thesis, University of Hamburg, 2005.

F. Eliassen and A. Montresor (Eds.): DAIS 2006, LNCS 4025, pp. 48 – 63, 2006.
© IFIP International Federation for Information Processing 2006

An Application Framework for Nomadic, Collaborative
Applications

James O’Brien and Marc Shapiro

INRIA Rocquencourt, France and LIP6, Paris, France
james@jaimz.org, marc.shapiro@acm.org

www.jaimz.org

Abstract. To maintain availability and responsiveness, mobile applications sharing
data often work on their own copy and transmit local changes to other participants.
Existing systems for recording, transmitting and reconciling concurrent changes are
usually ad-hoc and specific to particular applications. In contrast, we present Joyce;
a general application programming framework for creating highly dynamic mobile,
collaborative applications. The framework abstracts application semantics using an
action-constraint formal model and provides communication and consistency ser-
vices based on this model. The framework exposes an interface that allows applica-
tion programmers to concentrate on core functionality without worrying about
these issues. Applications made with the framework can run seamlessly across
changing combination of devices, users and synchrony. We discuss the principles
behind the framework, its implementation and evaluate its utility by creating a
complex, shared application.

1 Introduction

Today’s computing environment is increasingly nomadic; applications run on laptops
and devices that are not geographically fixed, and it is increasingly collaborative;
applications are often used concurrently by more than one person or device. Such an
environment is characterized by a high degree of change in the number of partici-
pants, change in connectivity between those participants, and change in the synchrony
of collaboration. Programmers need tools to create good collaborative, nomadic ap-
plications: applications that adapt to mobility, adopt a collaborative posture and retain
the richness and control of desktop applications.

The major difficulty with such applications is maintaining the consistency of
shared data. Commonly used application architectures, for example Model-View-
Controller [Krasner 88], implicitly assume that data is modified by one user using one
device. Many applications fail to benefit from collaboration and mobility due to the
prohibitive cost of re-architecting to take account of concurrency control issues.

Certain classes of application, for example personal information managers, are
designed specifically to be shared between mobile devices. The techniques used
however, are specific to the domain of the application and intrusive to the applica-
tion logic. Moreover, most of these applications use some form of lock-step
synchronisation which requires the user’s intervention. Finally, the concurrency
control wheel tends to be reinvented with each application, extending development

 An Application Framework for Nomadic, Collaborative Applications 49

time and resulting in segregated, incompatible systems. This is not an approach that
scales well to general application construction and the increasing popularity of per-
vasive, mobile computing is likely to underscore its shortcomings.

Functionality time-consuming to implement and common between different appli-
cations is usually encapsulated in an application framework. An application frame-
work is designed to handle the logic common to all applications sharing a particular
aspect: for example Apple's Cocoa framework [Cocoa] handles interaction with the
windowing system for graphical desktop applications. Frameworks differ from librar-
ies in that applications using them exhibit an inversion of control [Schmidt 00]; it is
the framework logic, rather than the application logic that controls the execution of
the application process.

In this paper we describe an application framework called Joyce that introduces a
new programming pattern for highly dynamic, collaborative applications and provides
an implementation of that pattern. Joyce enables applications to run across changing
combinations of devices, changing combinations of users, and changing combinations
of synchrony. We describe what we believe are the current and future requirements of
collaborative, nomadic applications and why current techniques do not meet these re-
quirements, we then go on to explain the principles behind our system and describe a
realistic application, "Babble", created to evaluate the system.

2 Requirements

Applications created with our framework must meet the following expectations:

• We expect to be mobile and only occasionally connected: the applications will be
used concurrently by a mixture of users on a mixture of devices. Devices may tran-
sition between on-line and off-line at any time so we cannot assume constant con-
nectivity or a complete knowledge of the collaborative group membership. We also
cannot assume any particular physical device configuration (e.g. local storage).

• We expect nomadic, collaborative applications to be as rich as current single-user,
single-device applications: the applications must be at least as responsive and
featureful as current desktop applications and will preferably exhibit improvements
in usability.

• We expect to be fully aware of group activity but we do not expect to be bound to a
distracting WYSIWIS environment: these environments (What You See Is What I
See) attempt to keep the application display of each participant precisely in sync.
Where such a scheme is necessary (conferencing applications for example) we ex-
pect the framework to allow us to build it. However, in applications where
real-time collaboration is not the objective, WYSIWYS produces a display that con-
stantly distracts the user from his local task. This leads to a feeling of loss of control
which in turn leads to application usability lower than the single-user equivalent; as
we have already stated, this is unacceptable. We expect to be continuously aware of
group activity but also in control of how and when the activity is applied.

• We expect to be aware of the group history of the application state and we expect a
manipulatable history that works well in collaborative environments: projects such
as FlatLand [Edwards et al. 00] and GINA [Berlage et al. 93] have demonstrated
the benefits of manipulatable history but current implementations of undo/redo in a
collaborative environment are complex and application specific. [Sun 02].

50 J. O’Brien and M. Shapiro

To meet these expectations and remain generic the framework needs to be adaptable
across two major criteria. Firstly, the framework must be able to cope with different
degrees of coupling between the participants [Berlage et. al. 93]. Coupling is the de-
gree of co-ordination between participants. For example, when syncing mobile devices
all the devices involved are connected and they all receive each other's updates at the
same time. In contrast, collaborative systems can fall anywhere between same
place/same time systems where collaborators work “shoulder-to-shoulder”, to differ-
ent place/different time systems where collaborators may be dispersed across time
zones. We should be able to use the framework to build applications anywhere within
this spectrum.

Secondly, any concurrency control system is closely linked to the semantics of the
object being shared [Munson et al. 96]. In traditional database systems this semantic
is one of read/write operations to some storage. This was found to be too restrictive
and techniques were developed to expose a richer set of semantics based on the pro-
grammatic interface of the shared data structures [Munson et. al. 96][Schwarz et. al.
84]. This allows more concurrent activity by more narrowly defining what constitutes
a conflict. From a user's perspective however, a modification has more semantics than
can be expressed solely in data structure interfaces; our framework must be able to
express higher-level application semantics and user intentions.

From these general requirements we developed a more concrete list of problems to
be moved from the domain of the application to the domain of our framework:

1. Modeling activity: Joyce should provide an application-agnostic way of represent-
ing concurrency semantics that is rich enough to articulate object, application and
user-level semantics.

2. Communicating activity: The framework should ensure that, even with partial
connectivity, modifications from one participant will propagate to all the others.

3. Consistency: Joyce must provide an application-agnostic mechanism for bringing
diverging, replicated states to consistency, concurrent with the user modifying that
state.

In satisfying these problems it is vital that Joyce not degrade the performance and re-
sponsiveness of the application.

2.1 Previous Work

An early approach to concurrency control was simply to acquire a lock on a piece of
data before modifying it, the data being stored at some central location. If the lock
could not be acquired then the application either blocked until the lock was available
or failed. Many early research systems were based around a locking mechanism called
floor-control [Sarin et al. 85] in which one participant modified the shared object
while the others observed, waiting their turn. This approach has the advantage of sim-
plicity and is still used in web-based collaborative systems such as Wiki [Wiki] and
JotSpot [JotSpot]. However, locking has proven problematic for mobile applications
since it requires a constant connection to the central data store, and even if a connec-
tion is present an application may spend a great deal of time blocked until a lock
becomes available.

 An Application Framework for Nomadic, Collaborative Applications 51

The DistView [Prakash et al. 94] framework used replicated lock tables to prevent
blocking becoming too great a hindrance and the GroupKit [Roseman et al. 96] sys-
tem allowed operations on shared data whilst a lock was pending; if the lock request
was refused the operations were undone. The concept of tickle locks [Greif et al. 86]
was developed to minimise the amount of time waiting on a lock - essentially the re-
quester would ‘tickle’ the participant holding the lock and, if there was no response,
the lock would be transferred.

Even with these improvements, locking proved restrictive and lead to awkward inter-
action as applications either blocked or backed-out failed changes. Instead, mobile appli-
cations often adopt an optimistic replication scheme [Saito et al. 05] in which each
participant takes a local replica of the shared state and modifies that replica without re-
gard to concurrent changes from other applications. At some later point all the replicas
are synchronised to produce a common state. The technique is termed optimistic since
the applications ‘optimistically’ assume that their local changes will not conflict with
concurrent changes at other replicas. This is the approach used in our framework since
local states require no locking and the applications can remain responsive.

The dOPT algorithm of Ellis and Gibbs [Ellis et al. 89] introduced operational
transform (OT) in which remote operations are ‘re-written’ so that their effect locally
is the same as their effect where they were issued, regardless of any local operations
that have happened in the mean time. OT has proven particularly popular in real-time
collaborative text editing systems such as ShrEdit [McGuffin et al 92], Grove [Ellis et
al 88] and SubEtherEdit [SubEtherEdit].

The use of OT leads to very responsive applications but the technique is more
a mechanism to maintain consistency despite out-of-order messaging than a synchro-
nisation mechanism. Moreover, although the technique itself is generic, OT imple-
mentations are usually application specific and very complex. The semantics of an
operation is obfuscated by the transform and often lost entirely if an incoming opera-
tion has to be transformed against many prior operations. If a history mechanism
(such as undo/redo) is required this leads to further application-specific complexity
[Sun 02]. There are also known scenarios where current OT techniques may lead to
an inconsistent state [Li 04]. Finally, OT is intended primarily for real-time, synchro-
nous editing systems rather than multi-synchronous, occasionally-connected systems.

Bayou [Edwards 97] introduced several mechanisms that support multi-synchr-
onous distributed applications. Bayou is a log-based optimistic replication system that
models operations using a read/write semantic augmented with application-defined
conflict detection and resolution mechanisms. Operations are communicated using an
epidemic propagation scheme that guarantees updates from one participant will reach
all the others given sufficient connectivity [Demers 87]. Bayou has good solutions for
maintaining communication in the face of occasional connectivity but forces applica-
tions to adhere to the limited read/write semantic.

Although concurrency control has been studied extensively and many techniques
have been developed we find none of the principles and algorithms suitable to be
integrated into the general application development cycle. Either the techniques are
too application specific (as with OT), do not work in a multi-synchronous environ-
ment (as with floor-control) or do not wholly express application and user semantics
(as with Bayou).

52 J. O’Brien and M. Shapiro

3 The Multi-log

Joyce is a programming framework built around an operation-based replication and
collaboration system designed specifically for applications operating in the kind of
dynamic environment described in section 1. Joyce connects participants working on
replicated copies of shared data and distributes the modifications made by one par-
ticipant to all the others. It allows participants to disconnect and reconnect without
loss of information or responsiveness; an application can continue to run while dis-
connected and modifications will be propagated to it on reconnection.

The core data-structure used by Joyce is a distributively maintained, shared, se-
mantic data-store: the multi-log. The multi-log is designed to provide a fine-grained
model of activity within a collaborative group, based on a reified model of application
semantics. It is a graph structure in which vertices represent data modifications made
by applications and edges represent the semantics of those modifications in terms of
invariant relations that must hold between them. The framework is responsible for
synchronising both the multi-log and the replicated states.

3.1 Basic Definitions

We define a data object as the distinguishable unit of data that is being shared, this
may be anything from a calendar to a document to a database. Each data object has an
associated group which is the set of all nodes working on replicated copies of that
data object; a node being some application process that is modifying the data. It is
possible that the members of the group may change from one moment to the next as
may the connectivity between members. We cannot require that any member have a
complete knowledge of all the others but we do provide a mechanism that any one
node can use to discover a peer group – the subset of the group that can be contacted.
The framework ascertains the peer group either by broadcasting an announcement and
listening for replies or by joining an application-level multicast tree [Castro et al. 02]
corresponding to the shared object.

3.2 Modeling Application Activity

Joyce defines an action/constraint formalism that allows applications to define a fine
grained model of their concurrency semantics, at both the object and user level.

Following the command pattern [Gamma et. al. 95], Joyce applications are archi-
tected primarily as a set of commands that modify a particular kind of data object.
Command invocations are recorded in an application log as a series of actions. Joyce
also records a set of constraints that describe the semantics of the modification that
the command invocation was part of. These constraints are guaranteed to be preserved
by the framework.

Search/Replace

Insert Delete Insert Delete
Log

Fig. 1. Joyce logs modifications with their semantics. A text editor may model search and re-
place as insert and delete actions that are ordered and atomic.

 An Application Framework for Nomadic, Collaborative Applications 53

A requirement outlined in 2.1 is that the framework be able to represent both object
and application-level semantics; this is achieved by defining object and log con-
straints. Object constraints represent semantic invariants between classes of com-
mands, and by extension the data object that those commands are designed to modify,
whereas log constraints express invariants between actions that share a log. Log con-
straints are used to express user intent and application semantics and stand in contrast
with previous systems where only the chronological order of operations is recorded
[Petersen et al. 1997]. The set of object and log constraints have been derived from
those constraints that have proven expressive in our previous work on reconciliation.
Readers interested in the motivation behind these constraints are advised to consult
[Kermarrec 01] and [Preguiça et al. 03].

3.3 Modeling Group Activity

The multi-log is a semantic graph formed by processing individual application logs.
Vertices in the multi-log are actions and edges represent the constraints between them.
Edges are placed between actions from differing source logs to indicate that a modifi-
cation from one peer is dependant on or mutually exclusive with a modification from
another. In this way we create a picture of the activity within a group that is independ-
ent of the chronology of the actions. Instead of trying to use timestamps to derive de-
pendency information we use the invariants expressed in the multi-log semantic graph.

Fig. 2. This multi-log describes a semantic graph containing an ordering constraint, two con-
flicts and a parcel

It is a vital task of the framework to keep the multi-log on each node as representa-
tive of group activity as possible. To achieve this, the multi-log is distributively main-
tained using an epidemic propagation scheme [Demers 87]. Epidemic propagation is
well known to exhibit good behaviour in the face of varying connectivity since a
node’s updates may still propagate through intermediaries even if that node is no
longer connected [Demers 87].

3.4 State Consistency

Problem 3 in section 2.1 requires Joyce to have a method of bringing divergent states
to consistency. To achieve this, we provide a reconciliation engine, based on our pre-
vious IceCube engine, that can calculate a consistent subset of actions from the multi-
log. A consistent subset of actions is one in which no actions conflict and all the
constraints in the subset are satisfied. IceCube treats this as an optimisation problem:
each action has an associated weight indicating how important the action is; the

54 J. O’Brien and M. Shapiro

IceCube algorithm heuristically determines the subset of actions from the multi-log
such that the total value of the actions not in the set is minimised.

The consistent subset produced by the reconciliation engine forms a schedule a se-
quenced ordering of actions that may be selected for commitment. Commitment is the
act of irrevocably selecting a reconciliation schedule for execution at every member
in order to make their replicated states consistent. The schedules that have been com-
mitted are recorded in a special multi-log entry called the commit log which consists
of commit and abort meta-actions that reference actions in the multi-log.

A node that generates commit-log updates is called a primary and there is usually
only one per Joyce group. By default, Joyce assigns the creator of a data object to be
the primary for that object, but other mechanisms, for example consensus mechanisms
[Lamport 98] may be used. Epidemic propagation ensures commit log updates arrive
at all nodes in the right order and eventual consistency is reached.

3.5 Multi-log Persistence

The traditional file system storage model is cumbersome when applied to nomadic,
collaborative applications. Nomadic devices may not have local storage and continu-
ous connection to a file server is not feasible. Joyce provides an automatic persistence
service wherein one or more storage nodes join a collaborative group and persist the
multi-log to backing store.

Joyce applications take snapshots of their data at specific times. A snapshot is most
often taken when a state has reached some milestone in the editing process or when
the framework detects that the state has been brought to consistency. Taking a snap-
shot of the consistent state allows the framework to truncate the multi-log by remov-
ing the committed and aborted actions - all future actions can be issued against the
consistent snapshot.

Fig. 3. A Joyce group containing two storage nodes: a 'server' node and a laptop running its
own node

If a group member disconnects or crashes the act of re-joining the group, and re-
contacting the storage node, restores the application state with a minimum of data loss.

4 Application Model

Joyce provides a skeleton architecture designed to foster applications that meet the
expectations outlined in section 2. The key principle of the architecture is that the user

 An Application Framework for Nomadic, Collaborative Applications 55

interacts with a local view of the global activity which is as responsive as a corre-
sponding single-user application would be. The user should feel in full control of this
local view and not overwhelmed by group activity.

The multi-log is the history of the global activity within a collaborative group. The
local view is a projection of a subset of this global history. The framework maintains
a consistent subset of actions from the multi-log, the active subset, that is run against
some base application state to generate the local view.

Fig. 4. The local application is a projection of the global history

The active subset contains two kinds of action: actions that have been committed
by the primary and a consistent subset of tentative actions - actions generated locally
or remotely that have not yet been committed or aborted. It is by manipulating which
actions are included in this tentative set that the user and application controls what
appears in the local view.

The framework is designed to keep the local view responsive by adding locally gener-
ated actions to the active subset immediately, implementing undo/redo as local operations
and filtering incoming updates to determine which should appear in the active subset.

4.1 The Tentative Interaction Cycle

To reflect local modifications quickly, the architecture populates the active subset us-
ing an interaction cycle derived from the Model-View-Controller pattern [Krasner
88]. An interaction cycle is the programmatic path between a user triggering a local
modification and the result of that modification being reflected in the application out-
put. MVC introduced a cycle in which input from the user is evaluated by a controller
into a set of modification messages for the model; the model applies the modifications
and sends a set of update messages to the view which reflects the modification back to
the user.

This pattern simplifies the construction of GUI applications but assumes that modi-
fications always come from a local (i.e. in-process) controller; and inversely that
modifications from the controller are always for the local model. The pattern also has
the more subtle assumption that the local controller is the authoritative source of the
modifications - it has no notion of a global state that might be defined elsewhere.

We expand MVC by introducing a coordinator component, whose job is to main-
tain the active subset and apply it to the model. During our interaction cycle (figure 5)

56 J. O’Brien and M. Shapiro

user input is evaluated into a set of actions and constraints; these are sent to the coor-
dinator, which logs them in the multi-log and immediately includes them in the active
subset - causing them to be applied to the model and reflected in the view. We call
this the tentative interaction cycle since the actions applied to the state are local, ten-
tative actions.

Fig. 5. The tentative interaction cycle in Joyce. The controller generates modifications and
sends them to the coordinator for execution and logging.

When an update to the multi-log arrives, the coordinator interrupts this cycle to re-
calculate the active set. It uses the reconciler to create a consistent schedule from the
updated pool of tentative actions in the multi-log, which becomes the new active sub-
set. Note that this reconciliation has no effect on the globally consistent state as
defined by the commit log - it is local to the receiving node.

If the multi-log update includes a commit log update, the aborted actions and their
dependants are removed from the tentative action pool and the active subset is pre-
populated with the committed actions before the local reconciliation occurs.

The actions in the active subset are recorded relative to a base state, usually a snap-
shot of a previous stable state. To apply a new active subset, Joyce restores the base
state, then runs the new active subset against it. The schedule produced by the recon-
ciler is guaranteed to respect ordering constraints and so can be executed sequentially.

4.2 Filtering, Undo and Redo

A user can define which applications are included in his active subset by defining fil-
ters over the set of tentative actions in the multi-log. A filter is simply a predicate that
pre-excludes matching tentative actions from a reconciled schedule. This prevents the
coordinator including the filtered action and its dependants in the active subset.

The simplest example of filtering is masking out specific collaborators. Here, the
filter matches every action from a particular source. Actions from the source will not
be accepted into the active subset and thus will not contribute to the local state. It is
important to note that filtering does not remove actions from the multi-log, just from
the tentative action set. All information about group activity is retained, an important

 An Application Framework for Nomadic, Collaborative Applications 57

expectation (section 2). Later, the filter may be removed, allowing the previously
masked work to be reintegrated into the view.

Undo is implemented as a filter that masks out a specific action. To undo a modifi-
cation the user selects the action and creates the filter; when the active subset is re-
calculated it will be equal to the previous active subset less the undone action and its
dependants (those actions that are parceled with or strong ordered after it). If subse-
quent remote actions arrive that are dependant on the undone action the process en-
sures those actions will not appear in the active subset.

Since constraint information is used to calculate the dependants, undo in Joyce is
selective. The undo operation is confined only to those operations directly effected
[O’Brien 04] and the corresponding redo can be done at any time if no intermediate
arrivals conflict with the undone action. This contrasts with the stack-like, linear
model used in most applications.

5 An Example Application: Babble

To refine Joyce for real-world development we created a free-flow collaborative edi-
tor called Babble. A text editor is complex enough to exercise the whole framework
but familiar enough that the contributions of Joyce are well highlighted; particularly
fluid collaboration, selective undo/redo and passive storage.

When ‘opening’ a file in Babble, Joyce discovers and joins the collaborative group
for the document, restores the most recent snapshot it can find and brings the local
multi-log up to date. Babble is then notified of the reconstructed state and the local in-
teraction cycle can begin.

Edits from collaborators can be “tagged”: on mouse-over we can display context
information about the edit taken directly from the multi-log.

Fig. 6. Babble will synchronise to the current group state on start-up

Fig. 7. A tagged edit

58 J. O’Brien and M. Shapiro

If concurrent edits conflict, Joyce will choose an edit for Babble to apply and in-
struct Babble to highlight the effected content with a red shading. In keeping with the
local view principle, Joyce will chose local edits over remote ones unless specifically
instructed otherwise.

Fig. 8. Viewing a conflict

Active subset manipulation (that is, selective undo, redo and filtering) is triggered
through a history editor. Actions are arranged in the editor according to character posi-
tion and dependencies. In the figure below, the action in the second column has a de-
pendency on the action in the first. Selecting the first column action also highlights the
second-column action and the modifications that both actions made are highlighted in
the content display. In this way the user can visualize the extent of a prospective undo.

Fig. 9. The history editor

Since this representation can be confusing in a large document the history editor
may be set to display only the local history – the history at the current carat position.

The history editor may also display higher-level operations such as a search-and-
replace, which is implemented as a parcel of inserts and deletes. Selection of the
constraint representation also selects its constituent actions. When an undo is triggered a
filter is placed on the selected actions, the active set is recalculated, and the results dis-
played. The effect on the content is that the highlighted content modifications have been
undone but the modifications of non-dependant actions remain in place.

5.1 Representing Text Editing in Joyce

Applications built with Joyce are architected as a collection of actions that implement
the application commands and constraints that represent the concurrency semantics of

 An Application Framework for Nomadic, Collaborative Applications 59

those commands. To implement Babble we needed a set of actions and constraints
that encapsulated text editing.

Text editors are usually built around a linear character buffer addressed using char-
acter coordinates from 0 (before the first character) to N (after the last character). Two
operations modify this buffer: insert(p, c), that inserts character c at position p, and
delete(p, n) that removes a range of n characters starting at position p. Most shared
text editors are built around the same structure but use operational transforms to re-
write remote inserts and deletes such that their local effect is the same as their effect
at their source. Essentially, the edit points of inserts and the edit points and spans of
deletes are shifted in order to compensate for operations that have been applied to the
local state. This gives good performance in distributed, real-time editing but is com-
plex to implement, especially if multi-synchrony and undo-redo are required, intrinsic
qualities of Joyce applications.

Babble borrows the idea of translating edit points from OT but uses a more sys-
tematic approach that meets the requirements of the Joyce framework. Our represen-
tation of a text buffer is more complex than a simple character array but captures the
dependencies between edits and allows us to show, hide, re-combine and re-order ed-
iting operations as directed by Joyce.

The representation is in three parts:

1. The content: a linear text buffer similar to that used by non-concurrent and OT
editors. However, with the exception of snap-shots and undo/redo, characters are
only ever inserted into the buffer, not removed.

2. The mask: a collection of character position intervals that indicates deleted text.
Masked text is not displayed and therefore cannot be edited.

3. The history: a hierarchical collection of character position intervals that record the
operations that have been applied to the content.

A B C D E F G H I J K

Delete

Insert InsertHistory

Content

Mask

Fig. 10. Babble represents a text buffer in three layers. This buffer is displayed as ABGHIJK.

The actions defined by Babble are:

1. Insert (p, s): insert the string s into the content at position p.
2. Delete (p, a): insert a mask of length a into the mask structure at position p.

To define constraints, we say that one Insert must follow another if the edit point of
the second intersects the span of the first. A Delete must follow another Delete or In-
sert if the spans of the two actions intersect. This is recorded in the history and com-
municated to Joyce using ordering log constraints. In the buffer depicted below there
have been two inserts and two deletes and the appropriate constraints have been set.

60 J. O’Brien and M. Shapiro

Fig. 11. Ordering constraints are set in the history and multi-log according to the intersections
of operation spans

Note that ordering constraints are transitive in Joyce so there is no need to set a
constraint from D2 to I(pqr).

5.2 Replaying Out-of-Order Changes

Babble is required to be able to replay local and remote operations in any order, since
they may be recombined in any consistent order by the Joyce reconciler when the ac-
tive subset is calculated.

When replaying an action, Babble uses the history to detect whether the action be-
ing replayed needs to be transformed. The replay mechanism uses the history struc-
ture to keep track of the mutations to the content: i.e. where content has been inserted.
When an action is replayed out of order, its edit point is shifted according to the muta-
tions that have happened to the content since that action was first issued. For example,
if an action at site A inserts text of length 3 at position 2 then receives an action b
from a remote site that inserts text at position 4, then the edit point of b is shifted to
take account of the local action. The mask data structure allows us to apply the same
mechanism to deletes since no content is actually removed.

 I(2, ‘pqr’) I(4+3, ‘wxy’)

 |--------| |-------|

A B p q r C D w x y E F G

 ====>

Fig. 12. Remote action I(4, ‘wxy’) is shifted due to a prior mutation in the content

When comparing local and remote edits, Babble will raise a conflict if the edit
points of two insertions are identical or the span of a delete intersects with another de-
lete or the edit point of another insert. The conflict is expressed to Joyce with a mu-
tual exclusivity constraint and highlighted in the user interface as above.

6 Summary and Future Work

Joyce is a programming framework that provides three main contributions: a clearly
defined idea of what collaborative, nomadic applications should be, a systematic

 An Application Framework for Nomadic, Collaborative Applications 61

model for creating such applications and an implementation of the principles and
mechanisms described in the model.

Babble demonstrates that the creation of a complex, shared application is possible
with the framework. One developer was able to take the application from design to
functionality in little over two months since the framework abstracted away both
maintenance of occasionally-connected groups and concurrency control mechanics.
The result is a full-featured, shared text editor with demonstrable advantages over
similar applications: improvements in the undo/redo and storage user experience
compared to contemporary single-user editors, and greater control over the local state
than contemporary collaborative editors.

The creation of Babble was greatly simplified by Joyce but was still not as simple
as we would have liked. Re-casting an application into Joyce's action/constraint
model is difficult and requires an approach unfamiliar to most application developers.
How to extensively unit test such applications remains unclear. Future work should
investigate whether constraints can be automatically derived from a data type.

With regard to the programming model, strict adherence to the MVC cycle is pref-
erable but can lead to unacceptable performance. Pure MVC implies an asynchronous
model in which programs depend only on events to be notified of model changes. In
reality, most MVC applications shortcut from the controller to the view to provide
more immediate feedback.

In Babble there is a similar, probably typical, compromise in that local actions are
constructed synchronously in the history structure and appended to the multi-log on
completion. If a multi-log update arrives, special code exists to detect whether the ac-
tion being constructed is going to conflict. If MVC is any guide, this will be a typical
compromise in Joyce applications; we should anticipate it and provide a lower-level
API to the reconciler so that applications can detect possible conflicts themselves.

The toolkit and application described in this paper was implemented at Microsoft
Research Cambridge using .NET. Our immediate focus is producing and releasing a
streamlined Java version of the toolkit along with a more advanced, styled-text ver-
sion of Babble and a presentation tool.

We expect further developments of the kind of application described in this paper
to raise interesting and difficult questions in the areas of user-interface, application
construction and security. Using Joyce, we can cope with dynamic reconfigurations of
devices, users and synchrony but we can't reconfigure an application instance to adapt
to the device it is running on or the scenario it is being used in. An interesting ap-
proach may be to completely de-couple actions from applications. Joyce applications
lessen the requirement on the user to switch mental ‘modes’ since his focus is always
on the artefact being created. Decreasing modality increases usability. Future imple-
mentations may go further and disintegrate actions from applications completely to
further lessen modality across the whole system. Actions may be associated with par-
ticular data types and always triggered in the same way. If we create a set of actions
and constraints for editing XML we may be able to declaratively generate applica-
tions by using an XML file to weave together actions that have registered against
XML schema types in a central system pool.

62 J. O’Brien and M. Shapiro

References

[Berlage et. al. 93] T. Berlage and A. Genau. “A Framework for Shared Applications with a
Replicated Architecture”. Proc. ACM Symposium on User Interface Soft-
ware and Technology. 1993

[Cocoa] http://developer.apple.com/cocoa
[Cooper 03] A. Cooper, R. Reimann, R.M. Reimann, H. Dubberly. “About Face 2.0:

The Essentials of Interaction Design”. John Wiley & Sons, Inc. 2003
[Castro et al. 02] M. Castro, P. Druschel, A. M. Kermarrec, A. Rowstron. “SCRIBE: A

large-scale and decentralized application-level multicast infrastructure”.
IEEE Journal on Selected Areas in communications (JSAC), 2002

[Demers 87] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker. HH.
Sturgis, D. Swinehart, and D. Terry. “Epidemic Algorithms for Repli-
cated Database Management”. Proc. Sixth Symposium on Principles of
Distributed Computing, Vancouver, B. C., Canada, 1987

[Edwards 97] W.K. Edwards, E. D. Mynatt, K. Petersen, M. J. Spreitzer, D. B. Terry,
and M. M. Theimer. “Designing and Implementing Asynchronous Col-
laborative Applications with Bayou”. Proc. User Interface Systems and
Technology, Banff, Canada, 1997

[Edwards et. al. 00] W.K. Edwards, T. Igarashi, A. LaMarca, E.D. Mynatt. “A Temporal
Model for Multi-Level Undo and Redo”. Proc. User Interface Systems
and Technology, San Diego, CA, 2000

[Ellis et al 88] Ellis, C., Gibbs, S.J. and Rein, G., "Design and Use of a Group Editor",
MCC Technical Report Number STP-263-88, Sept. 1988

[Ellis et al 89] C.A. Elllis and S.J. Gibbs. “Concurrency Control in Groupware Sys-
tems”. Proc. SIGCHI Conference on Human Factors in Computing Sys-
tems, Portland, OR, 93

[Gamma et. al. 95] E. Gamma, R. Helm, R. Johnson, J. Vlissides. “Design Patterns, Ele-
ments of Reusable Object-Oriented Software”. Addison-Wesley, 1995

[Greif et al. 86] I. Greif, R. Seliger, and W. Weihl (1986). “Atomic Data Abstractions in a
Distributed Collaborative Editing System”. Proc. of the Thirteenth An-
nual Symposium on Principles of Programming Languages St. Peters-
burg, Florida. 1986

[JotSpot] http://www.jotspot.com
[Kermarrec 01] A.M. Kermarrec, A. Rowstron, M. Shapiro, and P. Druschel. The

IceCube approach to the reconciliation of divergent replicas. In Proc. of
Twentieth ACM Symposium on Principles of Distributed Computing
PODC, Newport, RI USA, August 2001

[Krasner 88] G.E. Krasner and S.T. Pope, “A Description of the Model-View-
Controller User Interface Paradigm in the Smalltalk-80 system.” Journal
of Object Oriented Programming, 1988

[Li et al. 04] D. Li and R. Li. "Ensuring Content and Intention Consistency in Real-
Time Group Editors", 24th IEEE International Conference on Distrib-
uted Computing Systems (ICDCS'04), 2004

[McGuffin et al 92] L. McGuffin, and G. Olson, "ShrEdit: A Shared Electronic Workspace",
CSMIL Technical Report, Cognitive Science and Machine Intelligence
Laboratory, University of Michigan, 1992

 An Application Framework for Nomadic, Collaborative Applications 63

[Munson et al. 96] J. Munson and P. Dewan. “A Concurrency Control Framework for Col-
laborative Systems”. Proc. ACM Conference on Computer Supported
Cooperative Work. 1996

[Lamport 98] L. Lamport. “The Part-time Parliament”. ACM Transactions on Com-
puter Systems. May 1998

[O’Brien 04] J. O’Brien and M. Shapiro, “Undo for Anyone, Anywhere, Anytime”.
Proc. SIGOPS European Workshop, 2004

[Peterson et. Al 97] K. Petersen, M.J. Spreitzer, D.B. Terry, M.M. Theimer, A.J. Demers.
“Flexible Update Propagation for Weakly Consistent Replication”. Proc.
Sixteenth ACM Symposium on Operating System Principles (SOSP),
Saint-Malo, Franco, 1997

[Prakash et al. 94] Prakash, A. and Shim, H. S. 1994. “DistView: support for building effi-
cient collaborative applications using replicated objects”. Proc. ACM
Conference on Computer Supported Cooperative Work (CSCW '94),
Chapel Hill, North Carolina, 1994).

[Preguiça et al. 03] N. Preguiça, M. Shapiro, C. Matheson: Semantics-based reconciliation
for collaborative and mobile environments. In Proc. Tenth Int. Conf. on
Coop. Info. Sys. (CoopIS), 2003

[Roseman et al. 96] M. Roseman, S. Greenberg. “Building real-time groupware with Group-
Kit, a groupware toolkit”. ACM Trans. Comput.-Hum. Interact. Mar.
1996

[Saito et al. 05] Y. Saito and M. Shapiro. “Optimistic replication”. ACM Comput. Surv.
37, 1, 2005

[Sarin et. al. 85] S. Sarin and I. Greif. “Computer based real-time conferencing systems”.
Computer 18, 10 October 1985

[Schmidt et. al. 00] D. Schmidt, M. Stal, H. Rohnert, F. Buschmann. “Pattern-Oriented Soft-
ware Architecture Volume 2, Patterns for Concurrent and Networked Ob-
jects”, Wiley, 2000

[Schwarz et. al. 84] P.M. Schwarz and A.Z. Spector. Synchronizing shared abstract types.
ACM Transactions on Computer Systems 2, 3, 1984

[SubEtherEdit] http://www.codingmonkeys.de/subethaedit/
[Sun 02] C. Sun, “Undo as concurrent inverse in group editors”, ACM Transac-

tions on Computer-Human Interaction (TOCHI), 2002
[Wiki] http://c2.com/cgi/wiki?WikiWikiWeb

Interfering Effects of Adaptation: Implications on
Self-adapting Systems Architecture

Jacqueline Floch, Erlend Stav, and Svein Hallsteinsen

SINTEF ICT NO-7465 Trondheim, Norway
{jacqueline.floch, erlend.stav, svein.hallsteinsen}@sintef.no

Abstract. When people are moving around using handheld networked devices,
the environment for the provided services vary influencing service quality prop-
erties and user needs. In order to maintain usability and usefulness for mobile
users, dynamic service adaptation is needed. Several forms of adaptation may
be applied. For example, the application structure may adapt from thin client to
self-reliant client, or network handover may be performed. The selection of an
adaptation type is however far from obvious. Adaptation usually has impact on
system resources or service quality. Also, one adaptation may require other adap-
tations that again have impact on resources and quality. This paper illustrates the
complexity of selecting an adequate adaptation form. We argue that adaptation
selection requires advanced reasoning and identify implications on the architec-
ture of self-adapting systems.

1 Introduction

When people are moving around using handheld networked devices, the operating en-
vironment for the provided services vary influencing service quality properties and user
needs. To retain usability, usefulness, and reliability under such circumstances, sys-
tems should adapt to the changing environments. Service adaptation is about finding
the application configuration that best fits the context, where context includes both sys-
tem context such as battery level and network resources, and user context such as po-
sition, noise and user needs. Adaptation may be performed at several levels and in
different ways. Adaptation may be applied on the applications, or on the resources
and devices required by the applications. It may require modifications to the appli-
cation structure, to the selection of application components, or to their deployment.
A close analysis of the problem of adaptation shows that the selection of the “best
configuration” is complex and requires reasoning on dependent context elements and
adaptation forms. This paper presents a mobile service scenario that illustrates this
complexity and draws out a set of requirements on the architecture of self-adapting
systems. The MADAM project is currently developing solutions based on the require-
ments derived from the scenario analysis [1]. Current approaches to self-adaptation
usually describe abstract motivations. The research literature lacks presentations of
scenarios that would provide a common base for understanding business problems,
extracting valuable business requirements, and justifying the research problem
relevance.

F. Eliassen and A. Montresor (Eds.): DAIS 2006, LNCS 4025, pp. 64–69, 2006.
c© IFIP International Federation for Information Processing 2006

Interfering Effects of Adaptation: Implications on Self-adapting Systems Architecture 65

2 Scenario Example

The application domain for our scenario is inspection and maintenance support for jan-
itors. Janitors use handheld networked devices during their work. They are involved in
various working situations, ranging from administrative work in a quiet and connected
office environment, through travelling between technical installations in rugged indus-
trial environments with varying network coverage. We assume that the companies where
inspection is performed make an intensive use of ICT systems for registering informa-
tion, tagging and controlling equipment. In the following, our scenario is structured in
a set of scenes that relate to various working situations and contexts.

Scene 1 – Morning at home: The janitor checks his assignments for the day before
he leaves home, using his company planning application on his handheld device. He
is also running a video player on the device showing morning news on a screen in the
kitchen. The first assignment is about fixing a ventilation system in a large building.
He starts looking at information about the first assignment. There is little memory be-
cause the video player uses a lot. The home WLAN provides high capacity network
connection. The device has been charging during the night and is still connected to
outlet power, so power is abundant and the load on the server is low. In this situation,
a thin client configuration is chosen as the initial configuration of the work planning
application.
Scene 2 – Leaving home:The janitor shuts down the video player and prepares to leave
home. This new situation raises a relevant context change: the memory available on the
handheld becomes high. In order to increase application response time and reliability,
the work planning application is reconfigured with a richer client caching data to save
power on the handheld and to become less vulnerable to network instability.
Scene 3 – Driving: The janitor enters his car to go to the company building where the
faulty installation is located. While he is driving the janitor wants to check more details,
but since his eyes and hands are busy with the driving, he prefers hands-free user in-
terface. The janitor selects tools and information for guiding the inspection assignment
and initiates their downloading. The device is now connected through GPRS to the jan-
itor company server. As the cost of using GPRS is high and the capacity of the network
low, the downloading of the tools is postponed.
Scene 4 – Arriving at the customer: When the janitor arrives to the company site, he
gets access to the company WLAN. He can now download tools. However the network
cannot be regarded as trusted, and a VPN tunnel has to be established.
Scene 5 – Measurement: The janitor starts the inspection of the ventilation system.
He starts the inspection application and is guided around in the building to measure
temperature. During the work, he has to deal with different kinds of temperature sen-
sors. Measurement is performed manually or automatically using Bluetooth. In the later
case, various sensor drivers are needed depending on the sensor types. Drivers can be
downloaded from the company equipment server. The building under inspection is large
and the measurement collection has already lasted a long time. In order to reduce bat-
tery consumption, the measurement application switches to a stand-alone mode and

66 J. Floch, E. Stav, and S. Hallsteinsen

Table 1. Scenario: adaptation summary in a situation-action style

Scene Relevant context and context changes Adaptation

1

Handheld: available memory: low; high
battery level
Network: WLAN: high bandwidth, low
cost

The initial configuration is selected. A
thin client configuration is chosen.

2 Handheld: available memory: high
The application is reconfigured from thin
to caching client.
Assignment information is downloaded.

3a User needs: hands-free mode A hands-free UI is added.

3b
User: location: driving to customer
Network: GPRS: medium bandwidth,
high cost

The downloading of inspection tools is
postponed

4
User needs: security policy
Network: WLAN: high bandwidth, low
cost

A VPN tunnel is established.
The downloading that was postponed is
started.

5a Infrastructure: new sensor The sensor drivers are downloaded and
installed.

5b

Handheld: rapidly decreasing battery
level
Network: WLAN: high bandwidth, low
cost

The application is reconfigured from a
network connected mode to stand-alone
mode.
The data measurements are saved
periodically

6

User: application priority
Handheld: available memory: low
Network: WLAN: high bandwidth, low
cost

The data measurements are saved and
the inspection application is suspended.
The planning application is started.

7 Infrastructure: new computer The inspection application is redeployed.

measurements are stored locally. However, the network coverage is good and measure-
ments data are saved centrally periodically.
Scene 6 – Notification: During the measurement activity, the janitor is interrupted by a
notification about a new task. The planning support application requires more resources
than currently available on the handheld. In order to enable planning, measurements
data are saved to the company equipment server, and the measurement application is
partially suspended.
Scene 7 – Measurement analysis: When all measurements are collected, the janitor
moves to the technical office where he can use a more powerful stationary computer to
perform measurement analysis. When he enters the office, the janitor work session is
automatically moved from the handheld to the stationary computer.

Table 1 summarizes the scenario in a situation-action style where each situation leads
to an adaptation action. In that simple scenario, we observe that each situation requires
taking into account various kinds of context. We also observe that various adaptation
forms such as adaptation of functional richness, adaptation of behaviour and data de-
ployment, and adaptation of the user interface modality, may take place.

Interfering Effects of Adaptation: Implications on Self-adapting Systems Architecture 67

3 Adaptation Effects

While Table 1 describes simple relations between situations and adaptation mecha-
nisms, this section provides a deeper analysis demonstrating the complex dependencies
between adaptation and context, and the effects of adaptation on system resources and
offered service quality. We do not restrict to the single scenario, but generalize adding
new context conditions that may occur under the janitor work.

Table 2 presents the analysis in a goal-oriented style. A goal describes a high-level
behaviour objective that the self-adapting system should attempt to fulfil in order to
maintain service usefulness and quality when context changes occur. Usually several
adaptation mechanisms may be applied to achieve a goal. A classification according
to goals allows us to present the relations between context and adaptation mecha-
nisms in a concise way. Table 2 distinguishes between “primary context elements” i.e.
the main triggers for adaptation, and “secondary context elements” that complement
the primary elements when making a decision about adaptation. The “adaptation ef-
fects” describe the impact of adaptation: “(C)” indicates an impact on context, “(S)” on
service quality, “(G)” on other goals, and “(A)” indicates an inferred new adaptation
need.

Table 2. Adaptation analysis in a goal-oriented style

Goal Context Adaptation mechanism Adaptation effect (s)

Primary: low power
level
Secondary:
availability of external,
handheld device or PC

Redeploy application
session

(A) Adapt application
configuration to new
platform

Maintain
service
availability

Primary: network
coverage/no coverage

Redeploy application
and data

(S) data integrity

Primary: user activity,
hands occupation
Secondary: audio
capabilities

Select UI modality (e.g.
voice or text based UI)

(C) handheld resources
consumption

Enrich application
functionality

(C) handheld resources
consumption

Enhance
operability

Primary: equipment,
device and service
extensions
Secondary: network
coverage (e.g.
Bluetooth)

Launch new application
automatically depending
on extension type

(C) handheld and
network resources
consumption

Adjust power demanding
operations: network
access

(A) Redeploy
application;
tune data synch.
(C) network resources
consumption

Control
power
consumption Primary | Secondary

user activity duration
Secondary | Primary
limited power
resources Adjust power demanding

operations:
CPU frequency

(S) service response
time

68 J. Floch, E. Stav, and S. Hallsteinsen

Table 2. (continued)

Goal Context Adaptation mechanism Adaptation effect (s)

Redeploy application
(client / server split)

(S) service response
time; data integrity
(C) network resources
consumption

Primary
memory/CPU
resources Select media type and

richness adapted to
resource

(S) service accuracy

Optimize
memory
usage

or

Optimize
CPU usage Primary

memory/CPU
resources
Secondary
priority of user tasks

Suspend low-priority
applications

(G) service availability

Hand over (switch)
between networks

(C) resource
consumption
(S) cost and provided
QoS

Select a
satisfactory
network

Primary
available networks (e.g.
GSM, WiFi)
Secondary
user/application needs
(e.g. cost, response
time, security)

Select a network adaptor
adapted to network

(C) resource
consumption

Redeploy application
(client / server split)

(S) service response
time, data integrity
(C) power consumption

Select appropriate time
to perform operations
(e.g. postpone task)

(G) service availability
Primary
network capacity

Adjust data richness;
select media type;
tune data synch.

(S) service accuracy

Optimize
network
usage

Primary
network security

Select the appropriate
security model (e.g.
VPN, encryption level)

(C) resource
consumption
(S) response time

4 Implications on System Architecture

By illustrating the interfering effects of service adaptation, the analysis presented in
table 2 demonstrates the complexity of developing adaptive applications. In this sec-
tion, we extract a set of implications on the architecture of self-adapting systems. These
implications relate to the main functionality necessary for adapting applications: con-
text monitoring, adaptation reasoning and reconfiguration.

Firstly, we observe the complexity related to context monitoring. Multiple context
elements need to be taken into account. Further, these span from elementary elements,
such as network cost, to more complex aggregated or derived elements, such as pre-
dicted location. Most of these elements are domain independent. We expect the set of
relevant elements and the sources producing them to evolve in the same way as ap-
plications. This gives the following architectural implications: i1) Context monitoring
should be kept separate from the application and realized through reusable components

Interfering Effects of Adaptation: Implications on Self-adapting Systems Architecture 69

or context middleware. i2) The context middleware should be extensible and support the
addition of new elements and new forms of reasoning.

Secondly, concerning adaptation reasoning, we observe multiple relations between
context and adaptation mechanisms, and interfering effects of adaptation. During the
generalization done in section 3, we found it difficult to capture all relations. We also
expect that new relations will be introduced as applications and context monitoring
evolve. Two main approaches [2] have been proposed for self-adaptation: internal ap-
proaches where adaptation is realized as part of the application using programming lan-
guage features, and external approaches where adaptation mechanisms are realized by
an application-independent middleware. The main drawback of internal approaches is
the complexity introduced by intertwining adaptation and application behaviours. Also,
they poorly support application and adaptation evolution. Given our observations, these
drawbacks make internal approaches inappropriate in the context of mobile services,
and thus: i3) Adaptation mechanisms should be realized externally to the application.
External approaches require adaptations policies to be described separately from the
applications. These policies are used by the middleware to reason and decide about
adaptation. Three main approaches have been proposed for the description of policies.
Two of them are respectively illustrated by table 1 and table 2: situation-action ap-
proaches [3] and goal-oriented approaches [4]. The third approach uses utility function
that assign a utility value to each application variant as a function of application prop-
erties, context and goals [4]. The interfering effects of adaptation make the two first
approaches inappropriate, and thus: i4) Adaptation policies should be expressed using
utility functions.

Finally, concerning reconfiguration, we need to build adaptable applications. Two
general approaches have been proposed [5]: parameterization supports fine tuning of
applications through the modification of program variables, while compositional vari-
ability is specified at the component level allowing the modification of application struc-
ture and algorithms. Parameterization is an effective way to implement variability, but
may also lead to a large set of variants and raise scalability issues, implying: i5) Adapt-
able applications should be built on compositional variability combined with cautious
use of parameterization.

A main challenge given these implications is to develop effective and scalable solu-
tions for handheld devices with restricted processing and memory capabilities.

References

1. MADAM “http://www.ist-madam.org/”
2. Oreizy, P. et al. “Architecture-based approach to self-adaptive software”, IEEE Intelligent Sys-

tems and Their Applications, 1999, vol. 14 (3).
3. Garlan, D. et al.“Rainbow: Architecture-based self-adaptation with reusable infrastructure”,

IEEE Computer, 2004, vol. 37 (10).
4. Kephart, J.O. and Chess, D.M. “The vision of autonomic computing”, IEEE Computer, 2003,

vol. 36 (1).
5. McKinley, P.K. et al.“Composing adaptive software”, IEEE Computer, 2004, vol. 37 (7).

Discovery of Stable Peers in a Self-organising
Peer-to-Peer Gradient Topology

Jan Sacha, Jim Dowling, Raymond Cunningham, and René Meier

Distributed Systems Group, Trinity College, Dublin
{jsacha, jdowling, rcnnnghm, rmeier}@cs.tcd.ie

Abstract. Peer-to-peer (P2P) systems are characterised by a wide dis-
parity in peer resources and capabilities. In particular, a number of
measurements on deployed P2P systems show that peer stability (e.g.
uptime) varies by several orders of magnitude between peers. In this pa-
per, we introduce a peer utility metric and construct a self-organising
P2P topology based on this metric that allows the efficient discovery of
stable peers in the system. We propose and evaluate a search algorithm
and we show that it achieves significantly better performance than ran-
dom walking. Our approach can be used by certain classes of applications
to improve the availability and performance of system services by plac-
ing them on the most stable peers, as well as to reduce the amount of
network traffic required to discover and use these services. As a proof-of-
concept, we demonstrate the design of a naming service on the gradient
topology.1

1 Introduction

Recent measurements on peer-to-peer (P2P) systems show that the distribution
of peer characteristics, such as their availability, bandwidth, or storage space,
are highly skewed and often heavy-tailed or scale-free [1, 2, 3]. In particular, it
has been shown that the uptime characteristics of peers are extremely diverse,
and a large number of peers stay in the system for a relatively short time, which
is commonly referred to as high “infant mortality” [4, 5].

At the same time, existing state-of-the-art P2P systems are often based on
the assumption that all peers in the system have equal capabilities and that
the distribution of resources between peers is uniform. Initial approaches using
Distributed Hash Tables (DHTs), such as Chord [6], CAN [7] and Pastry [8], are
examples of this assumption. These systems treat all peers as equals, and hence,
low performance peers receive approximately the same amount of traffic as the
highest performance peers.

A number of P2P systems address the heterogeneity of P2P environments
by electing super-peers and assigning them extra responsibilities [9, 10, 11, 12].
However, these systems introduce the problem of super-peer election. Solutions
based on flooding, random walking or other traditional election algorithms, po-
tentially require communication with all peers in the network and thus do not
1 This work was supported by the European Union funded ”Digital Business Ecosys-

tem” Project IST-507953.

F. Eliassen and A. Montresor (Eds.): DAIS 2006, LNCS 4025, pp. 70–83, 2006.
c© IFIP International Federation for Information Processing 2006

Discovery of Stable Peers 71

scale to large networks. Other solutions such as manual or static configuration
of super-peers are inappropriate due to a lack of global knowledge of application
characteristics.

This paper presents an approach where peers periodically measure their per-
formance and stability properties, using a utility metric, exchange their measure-
ments with neighbours, and construct a self-organising gradient topology that
enables efficient searching for stable (high utility) peers in the network. We de-
sign and evaluate a search algorithm, called gradient search, that exploits the
implicit information contained in the gradient topology and allows the efficient
discovery of stable peers. We compare gradient search with random walking and
with a probabilistic search strategy based on Boltzmann exploration, and we
show that our approach provides superior performance. We also demonstrate
that gradient search significantly reduces the message loss rate by preferentially
forwarding messages through more stable peers.

The topology is designed to support certain classes of applications, such as
P2P storage systems, or P2P registries, where system services are deployed on the
most stable peers (super-peers), thus improving the stability and performance
of these services. Our approach manages high rates of churn by exploiting stable
peers to both provide system services and to route to these services using gradient
search. As a proof-of-concept, we demonstrate the design of a sample naming
service.

The remainder of the paper is organised as follows. Section 2 reviews related
work. In section 3, we present an overview of the gradient topology and describe
our neighbour selection algorithm that generates the topology. In section 4, we
discuss search strategies for stable peer discovery in a gradient topology and we
apply our approach to a sample naming service. In section 5, we describe our
experimental setup and we analyse the results of the different search strategies.
Section 6 concludes the paper.

2 Related Work

Recent research on P2P systems has been primarily focused on Distributed Hash
Tables [6, 7, 8, 13], where the main goal is to provide efficient routing between
any pair of peers. In our approach, we are focusing on searching for peers with
particular properties in the system, and assuming that system services are placed
on these peers, we provide a mechanism that allows the efficient discovery and
consumption of these services.

A number of techniques have been developed for searching in unstructured
P2P networks (e.g., Yang and Molina [14]). However, these techniques do not
exploit any information contained in the underlying P2P topology, in contrast
to our gradient search heuristic that takes advantage of the gradient topology
structure to improve the searching performance. Morselli at al [15] proposed
a routing algorithm for unstructured P2P networks that is similar to gradient
searching, however, they address the problem of routing between any pair of
peers rather than searching for reliable peers or services.

72 J. Sacha et al.

Many existing P2P systems adopt a super-peer structure to exploit stable
and/or high performance peers. Yang and Molina [9] investigate general princi-
ples of designing super-peer-based networks, however, they do not provide any
specific super-peer election algorithm. OceanStore [16] proposed to elect a pri-
mary tier ”consisting of a small number of replicas located in high-bandwidth,
high connectivity regions of the network” for the purpose of handling updates,
however, no specific algorithm for the election of such a tier is presented. Brocade
[10] improves routing efficiency in a DHT by exploiting resource heterogeneity,
but unlike our approach, it doesn’t address the super-peer election problem.

In Chord [6, 17], it has been shown that the load between peers can be bal-
anced by assigning multiple virtual servers to high performance physical hosts.
Similarly, Mizrak et al [12] proposed the use of high capacity super-peers to
improve routing performance. However, these systems focus on load balancing,
and do not allow the selection of potential super-peers from the set of all peers
in the system.

Montresor [11] proposes a protocol for super-peer overlay generation, how-
ever, unlike our gradient topology, his topology maintains a discrete (binary)
distinction between super-peers and client peers. In contrast, our novel approach
introduces a continuous peer utility spectrum and thus allows the identification
of high utility (super)peers. Our neighbour selection algorithm can be seen as
a special case of the T-Man protocol [18] that generates a gradient topology,
where the ranking function is based on peer utility. The advantage of such a
utility ranking function is that applications built on top of the gradient topol-
ogy can exploit more stable peers in the system.

3 Self-organising Gradient Topology

In this section, we introduce the concept of a gradient P2P topology and we
outline its main properties. We present a neighbour selection algorithm that gen-
erates the gradient topology and we show that it is self-organising. The topology
is used in the later sections by a searching algorithm that enables the discovery
of stable peers in the system.

The gradient topology is a P2P topology where the highest utility peers are
connected with each other and form the so called core of the system, while
lower utility peers are located gradually farther from the core. Peer utility is
application specific and measures the ability of a peer to maintain services or
provide resources to the system. The core, which clusters the highest utility
peers in the system, is therefore most suitable for maintaining system services
and system data. Figure 1 shows a visualisation of a gradient topology with the
core visible at the centre. The position of each peer in the topology is determined
by the peer’s utility.

The definition of the utility function depends on the application built on top
of the gradient topology and it captures domain specific knowledge about peers. It
measures the properties of peers that are desired or requiredby the application. For
example, in a P2P storage systems, the utility of a peer may be defined as a peer’s

Discovery of Stable Peers 73

Fig. 1. Visualisation of a gradient topology

available bandwidth and local storage space. In a multi-media streaming applica-
tion, the utility may be defined as a peer’s latency and bandwidth, while in a grid
computing system we may define the utility as a function of a peer’s CPU load.

A very important property of the gradient topology is that the utility function
is orthogonal to the neighbour selection algorithm, which generates the topology,
and to the searching algorithm. The only assumption these algorithms make
about the utility function is that every peer calculates some utility value.

In the experiments described later in this paper, we define peer utility as
the peer’s current uptime, and we use the uptime as a metric to measure peer
stability. Our metric is based on the observation that high stability peers, on
average, have a higher uptime value than low stability peers. More elaborate
peer stability models will be studied in the future, in particular, metrics based
on peer uptime history.

We also assume that the system runs in a cooperative environment, and that
every peer is able to calculate its own utility. Future work will investigate the use
of the gradient topology in an untrusted environment where malicious peers may
provide incorrect utility information. We expect that this issue can be addressed
by adopting one of the existing decentralised approaches to reputation or trust
management.

3.1 Building a Gradient Topology

We have designed and evaluated a neighbour selection algorithm that generates
the gradient topology in a completely decentralised P2P environment. Each peer

74 J. Sacha et al.

maintains two sets of neighbours, a similarity-based set and a random set. Peers
periodically gossip with each other and exchange their sets. On receiving both
sets from a neighbour, a gossipping peer selects one entry whose utility level is
closest to its own utility and replaces an entry in its similarity-based set. This
behaviour clusters peers with similar utility characteristics and generates the
core of the network surrounded by peers with gradually decreasing utility. In
addition, a gossipping peer randomly selects an entry from the received random
set and replaces a random entry in its random set. Connections to random peers
allow peers to explore the network in order to discover other potentially similar
neighbours. This greatly reduces the probability of more than one cluster of high
utility peers forming in the network. Random connections also massively reduce
the probability of the gradient topology partitioning due to excessive clustering.
Figure 2 shows a neighbour selection algorithm being used by two peers, A and
B, to exchange neighbour information during one round of gossipping.

Fig. 2. Neighbourhood set exchange from Peer A to Peer B

In addition to the neighbour sets, each peer maintains a cache that stores
estimated utility values of current neighbours. This cache is updated whenever
a peer gossips with a neighbour.

Our initial evaluation of the neighbour selection algorithm, described in a
separate paper [19], shows that the algorithm generates a P2P topology that has
a gradient structure and a very small diameter (an order of 5-6 hops for 100,000
peers). The algorithm works well for a relatively small number of neighbours per
peer (an order of 20). Figure 1 above shows a visualisation of a sample gradient
topology created using the described neighbour selection algorithm.

The emergence of the gradient topology is an example of self-organisation.
Peers are independent, have limited knowledge about the system and interact
with a limited number of neighbours. There are no centralised components. The
peers estimate their microscopic properties, i.e., their utility, and through the
exchange of information with neighbours the peers build a P2P topology that
has global, macroscopic properties, i.e., the gradient structure. The resultant
topology is based on peer utility characteristics, which contrasts with many
other P2P systems where the topology is based on random peer identifiers.

Discovery of Stable Peers 75

4 Discovery of Stable Peers

In this section, we present a heuristic search algorithm, which we call gradient
search, based on the gradient topology, that enables the discovery of high util-
ity peers in the system. The algorithm exploits the information contained in
the gradient topology to limit the search space to a relatively small subset of
peers and to achieve a significantly better search performance than traditional
search techniques, such as random walking, which require the communication
with potentially all peers in the system.

The goal of the search algorithm is to deliver a message from any peer in
the system to a high utility peer in the core, i.e., to a peer with utility above
a threshold. The value of the threshold is assigned by a peer that initiates the
search and is included in the search message. The threshold values are application
specific and can vary between services. Peers below the specified utility threshold
forward messages to their neighbours. Each message is associated with a time-
to-live (TTL) value that determines the maximum number of hops the message
can be propagated. The messages are never duplicated.

In gradient search, a peer greedily forwards messages to its highest utility
neighbour. Thus, messages are forwarded along the utility gradient, as in hill
climbing and other similar techniques. It is important to note that the gradient
search strategy is generally applicable only to a gradient topology. It relies on
a certain structure of the P2P overlay, in particular, it assumes that a higher
utility peer is closer to the core in terms of the number of hops than a lower util-
ity peer. The maintenance of the gradient structure introduces extra overhead,
however, the cost of topology maintenance is generally constant per peer, since
the neighbour selection algorithm is performed periodically, and potentially can
be lower than the cost of frequent and expensive searches.

In a greedy search strategy, where messages are always forwarded to the high-
est utility peer, messages may oscillate around peers with a locally maximal
utility. To prevent message looping, we append a list of visited peers to each
message, and we add a constraint that messages are never forwarded to already
visited peers. Local maxima should never occur in an idealised gradient topol-
ogy, however, every P2P system is under constant churn and the topology can
always contain local deviations.

We compare gradient search with a probabilistic search strategy where a peer,
x, selects the next-hop destination for a message with probability, Px, given by
the Boltzmann exploration formula [20]:

Px(a) =
e(U(a)/T)∑

i∈Nx
e(U(i)/T)

where Px(a) is the probability that x selects neighbour a, U(a) is the estimated
utility of peer a, Nx is the set of x’s available neighbours, and T is a parameter
of the algorithm called the temperature. Setting T close to zero causes the algo-
rithm to be more greedy and deterministic, as in gradient search, while if T grows
to infinity, all neighbours are selected with equal probabilities similar to random

76 J. Sacha et al.

walking. Thus, the temperature enables a trade-off between exploitative (and
deterministic) routing of messages towards the core, and random exploration
that enables searches to escape local maxima.

Routing messages steeply towards the core, as in the gradient search, or Boltz-
mann search with a low temperature value, has the advantage over random walk-
ing that subsequent peers on a message’s path are more and more stable, and
therefore, the probability of message loss decreases.

4.1 Applying the Gradient Search

We demonstrate the use of the gradient topology by sketching out the design of a
sample naming service. The naming service supports registration, unregistration,
and querying of names. We show that all of these operations can be implemented
easily using gradient searching.

One of the first decisions when designing a naming service is where to store
the name entries, i.e., the mapping between the names and the objects associ-
ated with them. We assume that a centralised solution, where all information is
stored by one peer is unacceptable due to reliability and performance reasons.
Another extreme, a fully decentralised solution, where all peers participate in
the replication of the naming service, has a drawback that the use of low perfor-
mance peers may degrade the performance of the entire system. For this reason,
it is preferable to choose a group of super-peers and use them to host the naming
service. However, this introduces the problem of super-peer selection from the
set of all peers in the system.

This problem can be solved using the gradient topology and gradient search.
We define the utility function so that it describes the requirements for our super-
peers, for example as some peer stability metric (e.g. uptime). If we expect that
the size of the naming service is significantly large, we may extend the utility
metric to include the peer storage space, and potentially, network bandwidth.
Given the utility function, the gradient topology can then be generated by the
peers in the system.

In order to create the first replica of the service, the owner of the service
decides on the utility threshold required for the naming service replica, searches
for a peer above the threshold, and requests a replica placement. Subsequent
replicas are created in a similar way. Whenever a peer updates the naming
service, either by inserting, removing, or modifying an entry, the update request
is routed to the core using the gradient search and the update is performed on
one of the replicas of the naming service. The replicas need to be synchronised
after they are modified. The synchronisation method depends on the replication
scheme used, and exact details of the synchronisation algorithm are beyond the
scope of this paper. However, we assume that some probabilistic gossip-based
approach can be efficiently adopted, since in the gradient topology replicas are
located close to each other in the core, and hence, the update messages do not
need to be propagated to low-utility peers outside of the core.

The query operation is perhaps the most important for the performance of
the system since we expect that most naming services are much more frequently

Discovery of Stable Peers 77

queried than updated, similarly as the update can be implemented using gradient
searching. A query is routed to the core where it can be resolved by any naming
service replica (see Figure 3). No synchronisation is needed. For subsequent
requests, peers may cache known replica addresses and contact them directly.

Fig. 3. Sample Naming Service built on top of the Gradient Topology. Gradient search-
ing is used by Peers A, B, and C to discover and access instances of the naming service.

We believe that our approach based on the gradient topology and gradient
searching can be used to build other classes of applications, such as a P2P storage
system, a P2P distributed database, or a P2P multicast application.

5 Experimental Evaluation

In this section, we describe our experimental setup and present the results of
search experiments on the gradient topology. In the experiments we compare
the performance of gradient search, random walking, and Boltzmann search by
measuring the three properties for each of the three search algorithms. Firstly, we
calculate the average number of hops in which the algorithm delivers a message
from a random peer in the network to the core, i.e., to a peer above a certain
utility threshold. Next, we measure the average message loss rate of the sent
messages. Finally, we calculate the average utility of peers that are used as hops
when forwarding messages.

We perform three experiments to simulate the gradient topology. In the first
experiment, we increase the number of peers in the system while keeping a
constant peer churn rate. In the second experiment, we keep the network size

78 J. Sacha et al.

constant, however, we increase the peer churn rate over time. In the last exper-
iment, the number of peers and the churn rate are fixed, but we increase the
message TTL.

We ran our experiments on a Pentium 4 machine with a 3GHz processor
and 3GB RAM under Debian Linux. We evaluate the search algorithms in a
Java-based discrete event simulator. An individual experiment consists of a set
of peers, connections between peers, and messages passed between peers. We
assume all peers are mutually reachable, i.e., any pair of peers can establish
a connection. We also assume that it takes exactly one time step to pass a
message between a pair of connected peers. We do not model network congestion,
however, we limit the maximum number of concurrent connections per peer. In
order to reflect network heterogeneity, we limit the number of peer connections
according to the Pareto distribution with an exponent of 1.5 and a mean of 20
connections per peer.

The simulated P2P network is under constant churn. Every new peer is as-
signed a session duration, measured in simulation steps, according to the Pareto
distribution with an exponent of 1.5. The session duration determines the time
step when a peer leaves the system. We calculate the churn rate as the fraction
of peers that leave (and join) the system at one step of the simulation. Over the
lifetime of a running system, the average churn rate is equal to the inverse of
the expected peer session time.

We use a central bootstrap server that stores 1000 addresses of peers that have
recently joined the network. The list includes “dangling references” to peers that
may have already left the system. Every joining peer receives an initial random
set of neighbours from the bootstrap server. A peer discovers other peers in the
system by gossipping with neighbours at every step of the simulation. If a peer
becomes isolated from the network (i.e., has no neighbours), it is bootstrapped
again. Our experience shows that if a peer maintains 10 random connections,
the possibility of isolation is extremely low.

We start each individual experiment from a network consisting of a single
peer. The number of peers is increased by one percent at each time step, until the
network grows to the size required by the experiment. Afterwards, the network
is still under continuous churn, however, the rate of arrivals is equal to the rate
of departures and the number of peers in the system remains constant.

At each turn, a number of randomly selected peers emit messages, and all
peers attempt to either deliver or forward messages that they hold in their
buffers. If a peer’s utility is higher than a defined utility threshold, all messages
in its buffer are delivered. Otherwise, each message is forwarded to one of the
peer’s neighbours selected by the current search policy. When the TTL value of
a message drops to zero, the message is discarded. Additionally, if a peer leaves
the system, all messages that it currently stores in its buffer are lost.

We examine peer churn rates between 0 and 0.1, where the value of 0.1 cor-
responds to a configuration where 10% of all peers leave the system at every
step of the simulation. In physical time, if a discrete time step was 10 seconds,
such churn rate would correspond to roughly 1000 peer departures per second

Discovery of Stable Peers 79

for a 100,000 peer network. We have observed that for extreme churn rates, such
as 0.1 and higher, the network topology depends heavily on the bootstrapping
method.

For the purpose of the simulation, in all experiments, we set the utility thresh-
old to a value that corresponds to 1% of highest utility peers. In Boltzmann
searching we compare two temperatures: 1000 and 100. The TTL value is set to
100 hops if not stated otherwise.

5.1 Evaluation Results

The experimental results reveal that gradient search exhibits better performance
than Boltzmann searching and random walking, in terms of number of hops and
message loss rate, when routing messages from a random peer to the core.

Figure 4(a) shows the average hop count for delivered messages as a function
of the network size. The churn rate was fixed at 0.01. We can see that gradient
search performs better than other search strategies, and that the message hop
count increases together with the Boltzmann temperature. For the random walk,
the hop count grows more slowly than for gradient search with increasing network
size. This can be explained by the fact that the average number of high utility
peers is a fixed percentage of the network size, and hence, the probability of
high utility peer discovery by random walking is a function of this percentage.
For gradient search, the hop count increases with the network size, since the
average distance from a peer to the core increases. We can also see that the two
Boltzmann approaches, with different temperatures, converge as the network
size grows. This is due to the growing average utility (uptime) of peers in the
system, which results in a decreasing relative difference between the Boltzmann
temperatures.

Figure 4(b) shows the average message loss rate as a function of the network
size with a churn rate of 0.01, and Figure 5(a) shows the average message loss
rate as a function of the churn rate for a network of 10,000 peers. Both figures
demonstrate that the message loss rate is lowest for the gradient search, and
that it grows as the Boltzmann temperature is increased.

Better performance of the gradient search results from two facts. First, as
shown in Figure 4(a), the message path is shorter in gradient searching than in
other search strategies, and therefore, the probability that a message is lost by
forwarding peers, or that the message exceeds its TTL value, is lower. Second,
as confirmed by measurements reported below, the stability of peers used for
forwarding messages in the gradient search is higher, which additionally reduces
the message loss probability. For random walking the message loss rate is nearly
equal for all network sizes, which is due to the fixed percentage of high utility
peers in the system.

Figure 5(b) presents the message loss rate as a function of the churn rate
with a distinction between message loss caused by exceeded message TTL and
message loss caused by peers leaving the system. The total message loss rate
is calculated as a sum of the two mentioned loss rates. The figure shows that
for random walking the message loss rate attributed to peers leaving the system

80 J. Sacha et al.

 0

 10

 20

 30

 40

 50

 60

 20000 40000 60000 80000 100000

M
es

sa
ge

 H
op

 C
ou

nt

Number of Peers

Random Walk
Boltzmann 1000
Boltzmann 100

Gradient Search

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 20000 40000 60000 80000 100000

M
es

sa
ge

 L
os

s
R

at
e

Number of Peers

Random Walk
Boltzmann 1000
Boltzmann 100

Gradient Search

(b)

Fig. 4. Average hop count of delivered messages (a) and average message loss rate (b)
as function of network size with a churn rate of 0.01 and TTL set to 100

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.02 0.04 0.06 0.08 0.1

M
es

sa
ge

 L
os

s
R

at
e

Churn Rate

Random Walk
Boltzmann 1000
Boltzmann 100

Gradient Search

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.02 0.04 0.06 0.08 0.1

M
es

sa
ge

 L
os

s
R

at
e

Churn Rate

Random Walk - Total
Random Walk - TTL

Random Walk - Churn
Gradient Search - Total

(b)

Fig. 5. Message loss rate as a function of peer churn rate. (a) Comparison between
random walk, Boltzmann search, and gradient search. (b) Comparison between message
loss rates attributed to exceeded message TTL and message loss attributed to peer
churn. For gradient search, nearly 100% of the observed message loss is caused by peer
churn (network size is 10,000 and TTL=100).

grows together with the churn rate. At the same time, the message loss rate
attributed to exceeded TTL decreases with growing churn, which means that
for higher churn rates messages are more likely to be lost by leaving peers than
by exceeding their TTL values. For gradient search, nearly 100% of the total
message loss is caused by churn.

Figure 6(a) shows the message loss rate as a function of message TTL. We
can see that the overall message loss decreases when TTL grows. For random
walking, as the TTL is increased, messages are lost more often due to churn, i.e.,
because of peers leaving the system. As a consequence, the message loss rate
does not converge to zero. On the contrary, for the gradient search, the message
loss rate becomes negligible for TTL values above approximately 50 hops.

Discovery of Stable Peers 81

 0

 0.2

 0.4

 0.6

 0.8

 1

 40 80 120 160 200

M
es

sa
ge

 L
os

s
R

at
e

Message Time-to-Live (TTL)

Random Walk - Total
Random Walk - TTL

Random Walk - Churn
Gradient Search - Total
Gradient Search - TTL

Gradient Search - Churn

(a)

 0

 400

 800

 1200

 0 0.02 0.04 0.06 0.08 0.1

H
op

 U
til

ity

Churn Rate

Random Walk
Boltzmann 1000
Boltzmann 100

Gradient Search

(b)

Fig. 6. (a) Message loss rate as a function of message TTL for 10,000 peers and 0.01
churn rate. The graph shows a distinction between message loss caused by exceeded
message TTL and message loss caused by peers leaving the system. (b) Average utility
of peers forwarding messages (hop utility). The average utility of all peers in the system,
measured as uptime, decreases with the churn rate. Gradient search achieves better
hop utility by forwarding messages to the highest utility peers (network size is 10,000,
TTL=100).

 0

 2

 4

 6

 8

 10

 0 0.02 0.04 0.06 0.08 0.1

R
el

at
iv

e
H

op
 U

til
ity

Churn Rate

Random Walk
Boltzmann 1000
Boltzmann 100

Gradient Search

(a)

 0

 2

 4

 6

 8

 10

 20000 40000 60000 80000 100000

R
el

at
iv

e
H

op
 U

til
ity

Number of Peers

Random Walk
Boltzmann 1000
Boltzmann 100

Gradient Search

(b)

Fig. 7. Average relative utility of peers forwarding messages (relative hop utility) as a
function of churn rate (a) and network size (b). The utility is scaled so that the value
of 1 corresponds to the average utility among all peers in the system.

Figures 6(b), 7(a), and 7(b) demonstrate the average utility of peers used
for forwarding messages in different searching strategies. In all cases we can see
that the average hop utility is highest for gradient search and lowest for random
walks. This result is consistent with the observation that for gradient search the
message loss rate is lower than for the other strategies. In Figures 7(a) and 7(b)
the utility is scaled in such a way that the average utility over all peers in the
system is 1. As expected, for random walking the average path utility is 1. Figure
6(b) shows also that the average peer utility (measured as uptime) grows steeply
when the churn rate approaches zero.

82 J. Sacha et al.

6 Conclusions

In this paper, we have described the gradient topology and the gradient search
algorithm that allow peers to efficiently discover peers with particular attributes
in the system, i.e., high utility peers. The topology can be used to improve the
availability and performance of system services by placing them on the high-
est utility peers, as well as to reduce the amount of network traffic required to
discover and use these services. The topology enables a trade-off between cen-
tralisation and decentralisation, in the sense that it allows the selection of a
subset of high utility peers for supporting application services rather than dis-
tributing the services equally between all peers. We demonstrate the usability
of our approach by designing a sample naming service on top of the gradient
topology.

The evaluation of our work shows that gradient search achieves significantly
better performance than random walking. Our results agree with the no-free
lunch theorem for search [21], that states that no generalised search algorithm,
such as random walking, can out-perform a specific search algorithm that makes
use of suitable domain knowledge. The gradient topology contains implicit knowl-
edge of peers’ utilities and this knowledge is exploited by our gradient search
algorithm, enabling its significant performance gains over random walking.

References

1. Sen, S., Wong, J.: Analyzing peer-to-peer traffic across large networks. Transac-
tions on Networking 12 (2004) 219–232

2. Gummadi, K.P., Dunn, R.J., Saroiu, S., Gribble, S.D., Levy, H.M., Zahorjan, J.:
Measurement, modeling, and analysis of a peer-to-peer file-sharing workload. In:
Proceedings of Symposium on Operating Systems Principles. (2003) 314–329

3. Pouwelse, J., Garbacki, P., Epema, D., Sips, H.: The bittorrent p2p file-sharing
system: Measurements and analysis. In: the 4th International Workshop on Peer-
To-Peer Systems. (2005)

4. Bhagwan, R., Savage, S., Voelker, G.M.: Understanding availability. In: the 2nd
International Workshop on Peer-to-Peer Systems. (2003)

5. Rhea, S., Geels, D., Roscoe, T., Kubiatowicz, J.: Handling churn in a dht. In:
Proceedings of the USENIX 2004 Annual Technical Conference. (2004) 127–140

6. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A scal-
able peer-to-peer lookup service for internet applications. SIGCOMM Computer
Communication Review 31(4) (2001) 149–160

7. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Schenker, S.: A scalable content-
addressable network. In: Proceedings of the Conference on Applications, Technolo-
gies, Trchitectures, and Protocols for Computer Communications. (2001) 161–172

8. Rowstron, A.I.T., Druschel, P.: Pastry: Scalable, decentralized object location, and
routing for large-scale peer-to-peer systems. In: Proceedings of the 18th Interna-
tional Conference on Distributed Systems Platforms. (2001) 329–350

9. Yang, B., Garcia-Molina, H.: Designing a super-peer network. In: Proceedings of
the 19th International Conference on Data Engineering. (2003) 49–60

Discovery of Stable Peers 83

10. Zhao, B.Y., Duan, Y., Huang, L., Joseph, A.D., Kubiatowicz, J.D.: Brocade: Land-
mark routing on overlay networks. In: Proceedings of the 1st International Work-
shop on Peer-to-Peer Systems. (2002) 34–44

11. Montresor, A.: A robust protocol for building superpeer overlay topologies. In: Pro-
ceedings of the 4th International Conference on Peer-to-Peer Computing. (2004)
202–209

12. Mizrak, A.T., Cheng, Y., Kumar, V., Savage, S.: Structured superpeers: Leveraging
heterogeneity to provide constant-time lookup. In: Proceedings of the 3rd IEEE
Workshop on Internet Applications. (2003) 104–111

13. Manku, G.S., Bawa, M., Raghavan, P.: Symphony: Distributed hashing in a small
world. In: Proceedings of the 4th USENIX Symposium on Internet Technologies
and Systems. (2003) 127–140

14. Yang, B., Garcia-Molina, H.: Improving search in peer-to-peer networks. In: Pro-
ceedings of the 22nd International Conference on Distributed Computing Systems.
(2002) 5–14

15. Morselli, R., Bhattacharjee, B., Srinivasan, A., Marsh, M.A.: Efficient lookup on
unstructured topologies. In: Proceedings of 24th ACM Symposium on Principles
of Distributed Computing. (2005) 77–86

16. Kubiatowicz, J., Bindel, D., Chen, Y., Czerwinski, S., Eaton, P., Geels, D.,
Gummadi, R., Rhea, S., Weatherspoon, H., Weimer, W., Wells, C., Zhao, B.:
Oceanstore: An architecture for global-scale persistent storage. In: Proceedings
of the 9th international Conference on Architectural Support for Programming
Languages and Operating Systems. (2000) 190–201

17. Rao, A., Lakshminarayanan, K., Surana, S., Karp, R., Stoica, I.: Load balancing
in structured p2p systems. In: the 2nd International Workshop on Peer-to-Peer
Systems. (2003)

18. Jelasity, M., Babaoglu, O.: T-man: Gossip-based overlay topology management.
In: the 3rd International Workshop on Engineering Self-Organising Applications.
(2005)

19. Sacha, J., Dowling, J.: A self-organising topology for master-slave replication in p2p
environments. In: Proceedings of the 3rd International Workshop on Databases,
Information Systems and Peer-to-Peer Computing. (2005) 52–64

20. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge, MA (1998)

21. Wolpert, D.H., Macready, W.G.: No free lunch theorems for search. IEEE Trans-
actions on Evolutionary Computation 1(1) (1997) 67–82

On the Value of Random Opinions in Decentralized
Recommendation

Elth Ogston, Arno Bakker, and Maarten van Steen

Department of Computer Science
Vrije Universiteit

De Boelelaan 1081a
1081 HV Amsterdam

The Netherlands
{elth, arno, steen}@cs.vu.nl

Abstract. As the amount of information available to users continues to grow, fil-
tering wanted items from unwanted ones becomes a dominant task. To this end,
various collaborative-filtering techniques have been developed in which the rat-
ings of items by other users form the basis for recommending items that could be
of interest for a specific person. These techniques are based on the assumption
that having ratings from similar users improves the quality of recommendation.
For decentralized systems, such as peer-to-peer networks, it is generally impossi-
ble to get ratings from all users. For this reason, research has focused on finding
the best set of peers for recommending items for a specific person. In this pa-
per, we analyze to what extent the selection of such a set influences the quality
of recommendation. Our findings are based on an extensive experimental evalua-
tion of the MovieLens data set applied to recommending movies. We find that, in
general, a random selection of peers gives surprisingly good recommendations in
comparison to very similar peers that must be discovered using expensive search
techniques. Our study suggests that simple decentralized recommendation tech-
niques can do sufficiently well in comparison to these expensive solutions.

1 Introduction

Many successful recommendation systems are based on the idea of collaborative filter-
ing (CF) [6]. In collaborative filtering, two users who have liked the same things in the
past are assumed to like similar things in the future. A user’s preference for a new item,
such as a movie or a book, can therefore be predicted by examining ratings of that item
made by users that previously had similar opinions. Traditionally, CF algorithms oper-
ate on complete knowledge, that is, the ratings of all users are known in one location.
This makes it easy to discover the similar users needed to make the predictions. This,
however, also makes these algorithms hard to employ in a decentralized context, where
not all users’ ratings can be available at all locations. In this paper we investigate how
well CF algorithms operate on partial knowledge; that is, how many similar users does
an algorithm actually need to produce good recommendations for a given user, and how
similar must those users be.

We consider the example of a network of millions of interconnected personal video
recorders. In the near future, these devices will not just be able to receive and record

F. Eliassen and A. Montresor (Eds.): DAIS 2006, LNCS 4025, pp. 84–98, 2006.
c© IFIP International Federation for Information Processing 2006

On the Value of Random Opinions in Decentralized Recommendation 85

programs from satellite or the ether but also over the Internet. As a result, they will
make more content available to the user than ever before, creating the need for a rec-
ommendation system that helps the user to decide what to watch. To build a decentral-
ized recommendation system for these recorders we need to answer the question: what
knowledge they need to achieve good quality recommendations for their users and how
to obtain it?

In the context of personal video recorders, there are a number of related tasks for
which recommendation systems can be used. Recommendation information can be used
to augment an electronic program guide by adding a predicted rating to each item. Al-
ternatively, it can be used to rank the items currently available for a user to watch (i.e.,
present the user with a Top-N of programs to watch). Both of these tasks require cal-
culating accurate recommendations for an entire set of items. We conjecture that in a
network that offers large amounts of content a simpler recommendation task might be
sufficient. In this situation users are more likely to be interested in a list of some pro-
grams which they are certain to enjoy, rather than knowing ratings for all programs, or
identifying the absolute best of the currently accessible programs. Simply discovering
some good programs creates an easier recommendation task. Firstly, it requires an algo-
rithm that need only accurately rate programs the user will find good, rather than having
to accurately predict ratings in the entire rating range. Secondly, an absolute ordering
of programs is not required. Finally, only a sufficiently large number of good programs
must be identified, it does not matter if some are missed. This task is more suitable for a
decentralized setting in which a Top-N recommendation can never be fully correct due
to the fact that not all programs or ratings data are available to each user.

The main contribution of this paper is that we show for the well-known MovieLens
data set [10] that sufficiently good recommendations can be made based on the ratings
of a relatively small number of random users. We believe this to be an important result
in light of the various attempts to port CF solutions to decentralized systems. Based on
our experiments we conjecture that simple solutions are good enough.

The remainder of the paper is organized as follows. In Section 2 we present back-
ground on collaborative filtering algorithms and our system model. Section 3 describes
our experiments studying the effects of the number and type of users on recommenda-
tion quality for the MovieLens data set. We present conclusions in Section 4.

2 Background and System Model

The amount of information made available through computer networks often means
that people need to be selective about what content they spend their time on. This is
especially true in future video-on-demand systems where so many videos are available
that it is infeasible to even browse through them all. Given such an overabundance of
options, recommendation systems can help people make choices by aggregating opin-
ions on what others have found, in their experience, to be valuable. In the simplest case
such recommendations can take the form of a single joint rating which is given to all
users. A group of people can, however, have very different opinions about the value of
an item. More advanced algorithms thus provide personalized predictions by filtering
the opinions upon which a recommendation is made. This is done on the principle that

86 E. Ogston, A. Bakker, and M. van Steen

users that have exhibited similar opinions on items in the past are likely to continue to
have similar opinions on new items [7, 1].

At an abstract level the problem of collaborative-filtering considers a set of N users,
U = {u1, . . . ,uN} and a set of M items X = {x1, . . . ,xM}. Each user provides ratings,
taken from a set of possible values, V , the rating scale, for a subset of the items in X .
These ratings form an N × M user-item matrix, R, where the entry ri, j is the rating of
user ui for item x j, or empty if that rating is unknown. The basic recommendation task
is to predict a rating value for a given empty element ri, j based on the known values in
R. This is done by means of a prediction function, f , where f (R, i, j) �→ V .

The prediction function usually performs two tasks. First, it selects rows from the
matrix which correspond to data which is most likely to accurately predict ri, j . Second,
it aggregates the information in these rows to calculate an actual value for ri, j. When
the user-item matrix is used as the input to f , the rows selected correspond to users that
are similar to user ui. This is called user-based collaborative filtering. The item-user
matrix, R�, can also be used as the input to the prediction function, thus calculating
f (R�, j, i). In this case the rows selected correspond to data items that have received
similar ratings to the item x j. This is called item-based collaborative filtering [8]. Ex-
actly how f performs the selection and aggregation tasks is the subject of many studies
on which heuristics lead to the best recommendations [2, 1, 8].

In our study, we assume an architecture in which each user has a personal networked
video recorder by which he or she rates content. These personal devices can exchange
gathered ratings with the devices of other users via the network, and use them to make
personal predictions to their respective users using a given prediction function f . As
the network grows, it becomes infeasible to distribute all ratings, i.e. the full matrix
R, to all recorders. The video recorder for user ui must therefore base its predictions
on a submatrix of R denoted Ri. In this paper, this submatrix Ri will consist of ui’s
own ratings and the ratings of a specific set of other users, called ui’s peer group, as
described in Section 3.1.

Following the above, there are five factors that can influence the quality of the pre-
dictions in decentralized algorithms. In addition to (1) the size and (2) composition of
the peer group of each user, the quality of prediction will be affected by the properties
of function f itself. In particular, it depends on f ’s (3) selectiveness in choosing rows
of the ratings matrix to consider, (4) the sophistication of the method by which aggre-
gation is performed, and (5) whether the function considers user-based or item-based
correlations. We study the effects of these five factors. As we shall see, the differences
between simple and sophisticated approaches are small enough to raise the question of
whether we need sophisticated algorithms at all.

3 Experiments

We present an analysis study in which we examine the effects of the five factors identi-
fied in the previous section on the quality of decentralized peer-to-peer recommendation
algorithms. We first introduce our methodology and the data set we consider in Sec-
tion 3.1. Next, we study the effect of peer-group size and composition in isolation from
other factors, by using rudimentary prediction functions in Section 3.2. The analysis is

On the Value of Random Opinions in Decentralized Recommendation 87

repeated with sophisticated prediction functions from the well-known CF algorithms in
Section 3.3. Section 3.4 analyzes the suitability of the well-known algorithms for the
task of identifying just some good items to recommend to a user (as opposed to the ab-
solute best available). Section 3.5 repeats the analysis of Section 3.4 for the PocketLens
peer-to-peer recommendation algorithm proposed in [4].

3.1 Experiment Methodology

For our experiments we organize the users’ personal video recorders into a peer-to-peer
overlay. The personal recorder for user ui will make its predictions on the submatrix Ri,
consisting of the ratings of the peers it is connected to in the peer-to-peer overlay and
its own ratings. To test the influence of the five factors, we vary the number and type of
peers ui is connected to and the prediction functions used.

The users’ personal devices are organized into overlays as follows. Each of the nodes
in the overlay stores the ratings data for a single user, that is, the node for user ui stores
the ith row of R. Nodes are connected by directed links to other nodes, called their
neighbors, thus forming a peer-to-peer overlay network. The set of links of each node
is called its neighbor cache which has a size c. Only the ratings data stored at a node’s
neighbors is available as input to the prediction function f . Note that because links are
directed, more than c nodes can use the ratings of any particular user.

In addition to varying c, we consider two contrasting peer-to-peer overlay topolo-
gies. In the first, neighbor caches contain links to random nodes, creating a random
overlay. In the second, neighbor caches contain links to the nodes to which a node is
most similar, given a similarity function d for rating data, creating a best-neighbors
overlay. Given the base assumption of collaborative filtering that ratings from similar
users provide the best quality recommendations, these two cases represent a worst-case
and a best-case scenario, respectively.

A best-neighbors overlay can be constructed in a decentralized fashion, for instance
by using a gossiping protocol such as Cyclon/Vicinity [11]. Nodes exchange their rating
data and compute the similarity to the other peers using the given similarity function d.
By remembering the best candidates so far, while continuing to exchange preferences
with other peers, each node will eventually fill its neighbor cache with the nodes most
similar to it. As running such a protocol is more expensive in terms of network usage
than discovering random peers, the random and best-neighbor overlays also represent
the cheap and expensive solution respectively. We use Pearson’s correlation using sig-
nificance weighting [2] as the similarity function to define best-neighbors overlays in
all our experiments. Following Herlocker et al.’s conclusions for the MovieLens data
set we set the significance weighting parameters to minCommonItems=2 and maxCom-
monItems=100 for all experiments. Negative correlations are not considered.

We evaluate the performance of each algorithm for differing values of c and the two
topologies using the MovieLens data set [10]. This data set consists of 100,000 rat-
ings, on a scale of 1 to 5 stars, of 1,682 movies made by 943 users. Each user rates at
least 20 items, but the data set is still sparse: 94% of the user-item space has no rating.
For evaluating the performance we partition this data into a training set and a test set.
The training set forms the matrix R, constituting the users’ ratings used to populate the

88 E. Ogston, A. Bakker, and M. van Steen

Table 1. Summary of the ratings in the training and test set

Ratings Count in Training Set Count in Test Set
1∗ 5568 542
2∗ 10375 995
3∗ 24721 2424
4∗ 30858 3316
5∗ 19048 2153

Total 90570 9430

nodes in the overlay. The test set consists of 10 randomly chosen movies per user as
summarized in Table 1.

Each experiment consists of constructing the peer-to-peer overlay using the train-
ing set and then attempting to make predictions for the 9430 withheld (user,movie)
pairs. Our experiments thus measure algorithm performance in making 9,430 predic-
tions based on 90,570 ratings. In particular, each node will attempt to predict the rating
its user ui would give to the 10 withheld items based on its Ri matrix, consisting of
the ratings of the user and those of its neighbors. The resulting predictions are com-
pared to the 9430 actual ratings in the test set using several metrics. The experiments
are conducted using the CoFE collaborative filtering engine [5] that implements cen-
tralized user-based collaborative filtering. We extended CoFE to support item-based
recommendation and the rudimentary recommendation algorithms.

We use the following metrics to evaluate predictions. Initially, we consider the mean
absolute error (MAE) metric [9]. Given a list L of H user-item pairs (ui1 ,x j1), . . . ,
(uiH ,x jH), a corresponding list A of actual user ratings for these user-item pairs ri1 j1 ,
. . . , riH jH with rik jk ∈ V , and a corresponding list P of unrounded1 predictions of the
ratings for the user-item pairs r∗

i1 j1
, . . . , r∗

iH jH
with r∗

ik jk
∈ V , the mean absolute error is

given by:

MAE =
∑H

k=1 |r∗
ik jk

− rik jk |
H

Associated with MAE is the coverage metric which measures what fraction of the
predictions attempted actually returned a result. Predictions for user ui and movie x j

may fail because, for example, none of the user’s neighbors actually rated x j.
Mean absolute error is a rough estimation of the overall accuracy of an algorithm. It

considers errors in any part of the ratings scale to be equal. For our stated purpose of
identifying a set of some good items, however, errors at the top end of the scale become
more important than errors elsewhere in the scale. In order to measure recommendation
accuracy more precisely we will use the standard information-retrieval metrics recall
and precision in Section 3.4. Recall and precision compare, for a particular query q, the
set of selected items Sq, which were returned in reply to q, and the set of relevant items
Tq, which contains all items that are correct replies to q. Recall measures the fraction

1 Users rate and see predictions as integer values, but for the calculation of prediction-
performance metrics the unrounded predictions returned by the recommendation algorithms
are used.

On the Value of Random Opinions in Decentralized Recommendation 89

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 100 200 300 400 500 600 700 800 900 1000

M
A

E

Number of peers

f0-user-random
f0-user-best
f0-item-random
f0-item-best

Fig. 1. Recommendation quality for the four rudimentary algorithms. For the random overlays,
values are averaged over three runs. The vertical errorbars show the minimum and maximum
value obtained in these three runs. Note that the y-axis starts at 0.72.

of correct replies to q that actually appeared in the selected set: |Sq ∩Tq|/|Tq|. Precision
measures, for the selected set, the fraction of correct replies it contains: |Sq ∩Tq|/|Sq|.

3.2 Rudimentary Recommendation Algorithms

In this section we establish a baseline for the effect of varying peer-group size and com-
position. We also look at the underlying differences between user-based and item-based
algorithms. We consider a rudimentary prediction function, f0. This function performs
no selection on its input matrix. To predict a rating for user ui of an item x j it simply
computes the mean value of the relevant column in the input matrix. More specifically,
when given a user-item matrix R, f0 calculates a user-based prediction by computing the
average of the rating for item x j as given by the nonempty entries in column j (that is,
from users who have rated x j). When given an item-user matrix, f0 calculates an item-
based prediction by computing the average over the values for items rated by user ui.

Figure 1 shows recommendation quality in terms of MAE versus the size c of a user’s
peer group (i.e., its neighbors). We consider four different inputs to f0. In the user-based
cases, the input consists of the submatrix Ri as constructed from the peer group. In the
item-based cases, the input is R�

i , the transposition of Ri. The x-axis shows the effect of
having more or less ratings data available to f0; the random and best-neighbors variants
show the effect of the quality of the information available.

The first thing to note when analyzing Figure 1 is the scale of the y-axis. MAE values
range from 0.82 to 0.99. An MAE of 1 means that predictions are, on average, one star
off from the actual ratings given by users. From this perspective, a difference in MAE
0.17 is fairly insignificant, and we could say that all four algorithms perform fairly well.
It is interesting to note that the best reported MAE for an algorithm on this data set is
0.72 [8].

90 E. Ogston, A. Bakker, and M. van Steen

Because item-based predictions are based on a user’s own ratings, and f0 does not
select among these ratings, the item-based algorithms simply recommend the average of
a user’s ratings for all predictions. Therefore, the results are independent of the network
type and peer-group sizes. For group sizes of over 200 these item-based algorithms
actually produce the lowest MAE of all algorithms, 0.83. Such a small MAE indicates
that users tend to give similar ratings to all the movies they rate. Table 1 shows that,
in general, this is fairly true for this data set: the average rating over the whole data
set (training+test) is 3.53 and using this value for all predictions gives an MAE of
0.94.

For the user-based best-neighbors algorithm, in which the peer-to-peer network per-
forms user selection, we see that smaller group sizes, in which less information is avail-
able, produce better results. This indicates that some users are better predictors of each
other than others, and therefore selection can have a positive effect. It also shows the
disadvantage of using averaging, by which mediocre opinions can drown out good ones,
in the aggregation function. The fact that this algorithm performs better than the others
only for groups sizes under 200 indicates that the number of very similar neighbors
per peer is fairly small. The small difference between good performance and bad again
indicates that all peers are similar enough to provide acceptable predictions.

We also calculated the coverage values for the four algorithms. The item-based al-
gorithms are always able to make predictions for all items. For the user-based best-
neighbors algorithm coverage was about 1.0 for all group sizes showing that nodes’
best neighbors practically always had at least one rating for their movies in the test set.
This could indicate that nodes with a large numbers of ratings tend to be chosen more
often as best neighbors. For random groups coverage was as low as 0.69 for a group
size of 10 but rose quickly to 0.98 or higher for group sizes over 100.

Given the overall small differences in MAE it could be said that even small groups
of randomly chosen neighbors produce sufficiently good recommendations. This leads
to the interesting conclusion that we need only consider small groups of users, and their
exact composition may not be that critical. Note, however, that the difference in terms
of MAE between the best performing algorithm to date and the trivial algorithm that
always predicts the average rating is only two tenths of a star. This makes MAE an un-
intuitive metric for measuring recommendation performance. The trivial algorithm does
not provide user-specific recommendations nor does it accurately predict which movies
are very good or very bad. Therefore, a metric judging this algorithm’s performance
should clearly indicate that it performs poorly. For now, we continue to use MAE as it
is a standard metric that, although subtly, gives a decent indication of the general per-
formance difference between algorithms. We return to the issue of performance metrics
in Section 3.4.

3.3 Sophisticated Recommendation Algorithms

The experiments with a simple prediction function, f0 provided some initial insight into
the effect of decentralization on recommendation quality. By removing the selection
task from the prediction function we were able to examine the situation where all peer
selection (if any) is done by the peer-to-peer protocol. In this section we reintroduce
(additional) selection by the prediction function. Letting the prediction function make

On the Value of Random Opinions in Decentralized Recommendation 91

the selection is to be preferred provided quality does not suffer much, as it is a local
operation on the matrix Ri rather than a search operation on the network.

Advanced prediction functions use two types of selection: (1) choosing from the
matrix those ratings of a user that are of interest, and (2) judging the relative importance
of the ratings chosen. This second selection is accomplished by assigning weights to the
input ratings. For this experiment we use a prediction function f1 that was designed by
Herlocker et al. [2] to optimize user-based prediction accuracy. This prediction function
performs both types of additional selection. First, when asked to make a prediction for
item x j for user ui, it selects from the matrix Ri supplied by the peer-to-peer overlay
the ratings of x j as made by the z users most similar to ui, thus creating a rating vector
�r. To calculate the similarity it uses the same function as the best-neighbors overlay
(Pearson’s correlation with significance weighting).

Second, when making the actual prediction for item x j it weights the rating of the z
users most similar to ui with their similarity value. In short, in addition to any selection
by the peer-to-peer network, f1 limits the set of opinions to consider to z and weights
those opinions based on just how similar they are in absolute terms. In this experiment
we use a parameter set shown by Herlocker to be optimal for user-based predictions
on this data set [2], in particular, z is set to 60 and the Pearson significance weighting
parameters are set to minCommonItems=2 and maxCommonItems=100, as before.

Figure 2 shows data for the experiment from the previous section repeated with
prediction function f1. The first two plots in Figure 2 (using the dark symbols) show
results for user-based prediction using f1 on random and best-neighbors overlays. For
comparison, the f0 results for user-based prediction on the best-neighbors overlay are
also shown. For both overlays, f1 improves predictions over f0. For the random overlay,
f1 bases predictions only on the more similar users in the random input set. For small

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 100 200 300 400 500 600 700 800 900 1000

M
A

E

Number of peers

f1-user-random
f1-user-best
f1-item-random
f1-item-best
f0-user-best

Fig. 2. Recommendation quality for the sophisticated algorithms. For the random overlays, values
are averaged over three runs. The vertical errorbars show the minimum and maximum value
obtained in these three runs. Note that the y-axis starts at 0.72.

92 E. Ogston, A. Bakker, and M. van Steen

group sizes this results in very little data with which to make predictions, but it is very
effective for larger group sizes. The additional ability to weight these inputs relative to
each other allows f1 on a random overlay to outperform f0 on a best-neighbors overlay
for group sizes over 100. Using a best-neighbors overlay to provide f1 with higher
quality input improves recommendation, especially for smaller groups. The difference
between the f1 user-based best-neighbors and the f0 user-based best-neighbors curves
shows how valuable weighting input results can be.

The second two plots in Figure 2 (using the open symbols) show results for item-
based prediction using f1 on random and best-neighbors overlays. Interestingly, even
though f1 was not designed as an item-based prediction function, the results improve
slightly on those for user-based predictions. This indicates that there may be more sim-
ilarity between items than between users in the data sets, though the imprecision of the
MAE metric precludes hard conclusions. It should be noted that the item-based best-
neighbors algorithm is in fact a hybrid item-based/user-based approach, with user-based
selection taking place within the peer-to-peer network and item-based selection taking
place within the prediction function.

We also examined the coverage of the algorithms using f1. This was slightly lower
than the coverage using f0, especially for predictions based on random groups of users,
but still above 0.93 for all algorithms for a group size of 100 or more.

Overall, this experiment shows that for a more sophisticated prediction function
making item-based predictions in a best-neighbors network produces the best MAE
values. The differences between the algorithms are, however, fairly small. In general,
it appears that performing selection within the prediction function, even out of a small
amount of random input, is more effective than performing selection within the peer-
to-peer network. This again indicates that peer-to-peer networks that provide users with
small amounts of random ratings information from other users might be a sufficient
basis for decentralized-recommendation algorithms.

3.4 Identifying Good Programs

Our measurements of mean absolute error in Section 3.3 give an indication of the rel-
ative quality of our recommendation methods. MAE, however, provides only a general
measure of overall quality. As described in the introduction, in the context of a personal
video recorder we are most interested in being able to produce accurate recommenda-
tions for movies at the five-star end of the ratings scale. To investigate recommendation
behavior in more detail, we employ the standard information-retrieval metrics precision
and recall (see Section 3.1), as follows.

For the user-item pairs in the test set, we separate the list of returned predictions
P, according to prediction value, into the sublists P1∗ , P2∗ , P3∗ , P4∗ and P5∗ . We also
divide the actual ratings of the test set in a similar manner into A1∗ , A2∗ , A3∗ , A4∗ and
A5∗ . Thus, P5∗ , for instance, contains all of the five-star predictions (r∗

ik jk
= 5) and A5∗

contains all the actual five-star ratings in the test set (rik jk = 5). The user-item pairs
(uik ,x jk) that correspond to the predictions and ratings in P5∗ and A5∗ can be viewed
as a selected-items set S5∗ and a relevant-items set T5∗ , respectively, for the query “find
all five-star movies for each user”. This allows us to calculate precision and recall per

On the Value of Random Opinions in Decentralized Recommendation 93

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500 600 700 800 900 1000

P
re

ci
si

on

Number of peers

f1-item-best-1star
f1-item-best-2star
f1-item-best-3star
f1-item-best-4star
f1-item-best-5star

Fig. 3. The 1–5 star precision of f1 item-based for differing numbers of similar peers

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500 600 700 800 900 1000

R
ec

al
l

Number of peers

f1-item-best-1star
f1-item-best-2star
f1-item-best-3star
f1-item-best-4star
f1-item-best-5star

Fig. 4. The 1–5 star recall of f1 item-based for differing numbers of similar peers

rating value. Note that precision and recall are computed only over the predictions that
could actually be made (see the discussion of the coverage metric in Section 3.1).

We use these new metrics to analyze the best performing according to MAE, the
f1 item-based best-neighbors algorithm, in Figures 3 and 4. The figures establish that
items with different values in the ratings scale are not, in fact, treated equally by the
algorithm. In general, precision is higher for items at the extremes for the rating scale,
while recall is higher for items in the middle of the rating scale. This tradeoff between
recall and precision is not unusual, increasing precision requires an algorithm to be
more picky about the replies it chooses, which tends to decrease recall.

94 E. Ogston, A. Bakker, and M. van Steen

Figures 3 and 4 indicate that this algorithm tends to predict extreme ratings values
only when the rating is fairly clear, and otherwise chooses a safer prediction in the
middle of the scale. This is in line with the fact that the algorithm does aggregation by
taking a weighted average of ratings. Items with mixed reviews should thus tend to be
given mediocre predicted ratings, while items which everyone liked or disliked can be
given extreme ratings.

Fortunately, for the task of recommending some good items, we are most interested
in having a high precision for five-star items, as is the case. Five-star recall is less
important, as long as it is high enough for a query for five-star items to produce some
answers. Five-star recall for the test set is 20 percent for this algorithm at a group size
of 200. An average user rates about 21% of movies with five stars, so in the collection
of 1682 movies there are about 357 movies he will like. If we use the recall for the test
set as an estimate for recall on the whole data set, the algorithm recalls 20% of these
357 enjoyable movies, yielding roughly 71 movies to watch. At 1.5 hours per movie,
this translates to 107 hours of viewing pleasure. A video-on-demand system is likely to
give access to even more content.

Comparing the performance of the four f1 algorithms from Section 3.3, we find
that using a best-neighbors overlay instead of a random one results in higher precision
values, especially for one-star and five-star items and groups smaller than 200. In par-
ticular, one-star precision is up to 24 percentage points higher and five-star precision is
11 percentage points higher for the item-based best-neighbors algorithm. For the user-
based best neighbors algorithm these values are 28 percentage points and 8 percentage
points, respectively. This higher precision does not come at the cost of a lower recall,
which remains practically the same for these extremes. Recall for the other values in-
creases up to 6 percentage points. Figure 5 and 6 show precision, respectively recall for
f1 item-based using a random overlay.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500 600 700 800 900 1000

P
re

ci
si

on

Number of peers

f1-item-random-1star
f1-item-random-2star
f1-item-random-3star
f1-item-random-4star
f1-item-random-5star

Fig. 5. The 1–5 star precision of f1 item-based for differing numbers of random peers. Values are
averaged over three runs.

On the Value of Random Opinions in Decentralized Recommendation 95

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500 600 700 800 900 1000

R
ec

al
l

Number of peers

f1-item-random-1star
f1-item-random-2star
f1-item-random-3star
f1-item-random-4star
f1-item-random-5star

Fig. 6. The 1–5 star recall of f1 item-based for differing numbers of random peers. Values are
averaged over three runs.

In general, making item-based in place of user-based predictions results in higher
precision for five-star ratings. The item-based best-neighbors algorithm improves this
precision by an average of 8 percentage points over the user-based best-neighbors al-
gorithm for all group sizes. This is, however, at the cost of recall, which we found to
be up to 10 percentage points lower for five-star predictions. Meanwhile recall on four-
star and three-star items improves slightly, indicating that item-based prediction gives
higher five-star precision because it has a greater tendency to give predictions from the
middle of the scale. One-star precision decreases around 8 percentage points, its recall
went down by 3 percentage points on average.

Precision results may be affected by the fact that there are a very small number of
one-star items in the data set, due to the way user opinions were gathered. A data set
with a more even distribution of ratings might result in slightly worse precision results.
On the other hand, in a video-on-demand network, users are also likely to watch and
rate a majority of items at the upper end of the scale.

For the task of recommending good items, predictions that are slightly off will prob-
ably not be noticed, while predictions that are very wrong could undermine a user’s
faith in the recommendation system. A list of good items to watch should ideally con-
tain only five-star items. A user will probably also be glad to watch four-star items, but
will be annoyed to find one-star or two-star items in the list. We thus introduce a fur-
ther metric, adapted top precision (ATP), which measures precision for the query “find
five-star movies for each user” but also considers a four-star prediction a valid answer.
Formally, AT P = |S5∗ ∩ (T4∗ ∪ T5∗)|/|S5∗|. Figure 7 shows ATP for each of the four f1

algorithms. All four algorithms perform well on this metric. Even the worst performing
algorithm at the smallest group size still returns 77% four- or five-star items when asked
for five-star items.

Overall, the experiments in this section confirm the conclusions we made in
Section 3.3. The item-based best-neighbors algorithm generally produces the best

96 E. Ogston, A. Bakker, and M. van Steen

 0.8

 0.85

 0.9

 0.95

 1

 0 100 200 300 400 500 600 700 800 900 1000

A
T

P

Number of peers

f1-user-random
f1-user-best
f1-item-random
f1-item-best

Fig. 7. Adapted top precision for differing numbers of peers. For the random overlays, values are
averaged over three runs. The vertical errorbars show the minimum and maximum value obtained
in these three runs. Note that the y-axis starts at 0.76.

recommendations, especially from the perspective of simply finding good items. But
again, results for item-based prediction on a random network are not that much worse.
We also still find that increasing group size improves results, but that small groups can
still produce good recommendations. As an example, when given the task of finding a
set of items which are predicted to have five-star ratings, for a group size of 200, the
item-based best-neighbors algorithm returns 425 five-star items, 179 four-star items, 26
three-star items, 9 two-star items, and 5 one-star items. The item-based random algo-
rithm returns 444 five-star items, 202 four-star items, 53 three-star items, 14 two-star
items and 10 one-star items.

3.5 Comparison to PocketLens

PocketLens is an item-based prediction algorithm designed specifically for a peer-to-
peer setting. In [4], Miller et al. evaluated the performance of PocketLens using several
different underlying overlays: a Gnutella-based random overlay, a best-neighbors over-
lay, and two Distributed-Hash Table-based overlays. The performance of each overlay
was tested using a non-standard version of the MovieLens data set with twice as many
items. They found the best MAE performance was achieved by the random overlay and
with sufficient coverage (already 90% for groups of just 65 peers). Their measurements
thus support our conclusion that random overlays can be used for decentralized CF
algorithms. We show it holds for the standard MovieLens data set and for user-based
algorithms, and when measured using more expressive metrics. In addition, we provide
a detailed examination of why random overlays can be used.

To examine how PocketLens performs on the new task of recommending some good
items we repeat the analysis from the previous section for this algorithm. Figure 8 com-
pares the adapted top precision measure for the PocketLens prediction function on a

On the Value of Random Opinions in Decentralized Recommendation 97

 0.8

 0.85

 0.9

 0.95

 1

 0 100 200 300 400 500 600 700 800 900 1000

A
T

P

Number of peers

PLR
f1-item-random
f1-item-best

Fig. 8. Adapted top precision for PocketLens compared to f1 item-based predictions. For the
random overlays, values are averaged over three runs. The vertical errorbars show the minimum
and maximum value obtained in these three runs. Note that the y-axis starts at 0.76.

random overlay with the most similar algorithm we studied, the item-based f1 pre-
diction function on a random overlay. We also plot the results for item-based f1 on a
best-neighbors overlay, the algorithm which produced the best ATP above.

The PocketLens prediction function performs better than f1 on the random overlay
for group sizes smaller than 300, but fails to improve its predictions for larger group
sizes. In a more detailed exploration of this behavior we found that PocketLens pro-
duces high five-star precision values in this range, but that this is at the cost of low
five-star recall. For a group size of 100, for instance, PocketLens has a five-star recall
value of 0.07 while the item-based f1 algorithm has a recall of 0.22. Overall, we found
that PocketLens produces lower recall for all ratings except for four-stars, indicating
that it has a much greater tendency to guess that items will be rated four-stars, which is
the rounded average ratings value for the data set (see Section 3.2).

4 Conclusions

Our experiments with the MovieLens data set bring us to the conclusion that the neigh-
bors from which a peer receives ratings data may not be critical to the quality of peer-to-
peer recommendations. That is, neither the number of neighbors nor selecting the most
similar really matters. If a peer has access to ratings from a few hundred, randomly
chosen other nodes, we see that reasonable recommendations can be obtained. This is a
notable result in light of the various attempts to port existing centralized collaborative-
filtering algorithms to peer-to-peer networks. We conjecture that there may be no need
to incur the added costs of structuring a network in order to improve recommendations.

Whether these results can be generalized remains to be seen. The quality of recom-
mendations provided by any algorithm is highly dependent on the quality of the input
ratings data, which in turn, strongly depends on the rating behavior of users [3]. To this

98 E. Ogston, A. Bakker, and M. van Steen

end, we plan to extend our experiments to other data sets. There may be circumstances
in which selecting best neighbors is worth the trouble. For example, our current experi-
ments show that quality of recommendation does improve if neighbors are not selected
randomly, albeit by a small amount. Thus, although the results presented in this paper
are promising, further research is needed in order to truly substantiate our claims.

References

1. BREESE, J., HECKERMAN, D., AND KADIE, C. Empirical Analysis of Predictive Algo-
rithms for Collaborative Filtering. Tech. Rep. MSR-TR-98-12, Microsoft Research, Red-
mond, WA, USA, May 1998.

2. HERLOCKER, J., KONSTAN, J., AND RIEDL, J. An Empirical Analysis of Design Choices
in Neighborhood-Based Collaborative Filtering Algorithms. Information Retrieval 5, 4 (Oct.
2002), 287–310.

3. HERLOCKER, J., KONSTAN, J., TERVEEN, L., AND RIEDL, J. Evaluating Collaborative
Filtering Recommender Systems. ACM Transactions on Information Systems 22, 1 (Jan.
2004), 5–53.

4. MILLER, B., KONSTAN, J., AND RIEDL, J. PocketLens: Toward a Personal Recommender
System. ACM Transcations on Information Systems 22, 3 (July 2004), 437–476.

5. OREGON STATE UNIVERSITY. COllaborative Filtering Engine version 0.4.
http://eecs.oregonstate.edu/iis/CoFE/, Sept. 2005.

6. RESNICK, P., IACOVOU, N., SUCHAK, M., BERGSTROM, P., AND RIEDL, J. GroupLens:
An Open Architecture for Collaborative Filtering of Netnews. In Proceedings 1994 ACM
Conference on Computer Supported Cooperative Work (Chapel Hill, NC, United States, Oct.
1994), pp. 175–186.

7. RESNICK, P., AND VARIAN, H. Recommender systems. Communications of the ACM 40,
3 (1997), 56–58.

8. SARWAR, B., KARYPIS, G., KONSTAN, J., AND RIEDL, J. Item-Based Collaborative Fil-
tering Recommendation Algorithms. In Proceedings 10th International Conference on the
World Wide Web (WWW10) (Hong Kong, Hong Kong, May 2001), pp. 285 –295.

9. SHARDANAND, U., AND MAES, P. Social Information Filtering: Algorithms for Automat-
ing “Word of Mouth”. In Proceedings 1995 ACM SIGCHI Conference on Human Factors in
Computing Systems (Denver, CO, USA, May 1995), pp. 210–217.

10. UNIVERSITY OF MINNESOTA. GroupLens Home Page. http://www.grouplens.org/, Sept.
2005.

11. VOULGARIS, S., AND VAN STEEN, M. Epidemic-style Management of Semantic Over-
lays for Content-Based Searching. In Proceedings 11th International Euro-Par Conference
(Lisbon, Portugal, Aug. 2005), pp. 1143–1152.

Information Agents That Learn to Understand
Each Other Via Semantic Negotiation

Salvatore Garruzzo and Domenico Rosaci

DIMET, Università Mediterranea di Reggio Calabria
Via Graziella, Località Feo di Vito

89060 Reggio Calabria, Italy
{salvatore.garruzzo, domenico.rosaci}@unirc.it

Abstract. A key issue in Distributed Applications, that widely use In-
formation Agents for implementing several typologies of services, is that
of making reciprocally understandable the meaning of terms contained
in the exchanged messages, in those cases where agents use different, het-
erogeneous ontologies. A possible way for facing this issue is offered by
the semantic negotiation, a framework in which agents try to understand
each other by negotiating the semantic of the terms. Several models and
protocols of semantic negotiation have been proposed in the last years.
However, most of these approaches are not able to support semantic ne-
gotiation without requiring agents either to share knowledge or to use a
global common ontology, and none of them provides a semantic negotia-
tion protocol that allows the whole agent community to contribute to the
semantic understanding process between each agent pair. In this work,
we propose the HIerarchical SEmantic NEgotiation (HISENE) protocol,
based on the idea that an agent a should be able to partition the set
of the other agents on the basis both of their personal expertise of the
application domain, as well as on the particular capability that each of
them shows in understanding a. We also give an implementation of the
proposed protocol in the standard Java Agent DEvelopment Framework
(JADE).

1 Introduction

In human discussions, the meaning of terms contained in the statements are not
always reciprocally clear for both the interlocutors. Often, one of them uses a
term that the other one either does not understand or considers ambiguous. Gen-
erally, human beings try to solve these situations by negotiating the semantics of
the involved terms, where the negotiation implies several operations performed
by the two interlocutors as, for instance, a query that one of them could pose
for having a description of a non-understood term, a response provided by the
other interlocutor, containing the requested description, etc. This scenario, very
usual in human context, has today a counterpart in Distributed Applications
field, where distributed software entities, generally called information agents,
operates on the behalf of human beings to perform operations that would be

F. Eliassen and A. Montresor (Eds.): DAIS 2006, LNCS 4025, pp. 99–112, 2006.
c© IFIP International Federation for Information Processing 2006

100 S. Garruzzo and D. Rosaci

too onerous to be completed manually, as information searching, e-commerce
and e-learning activities, software exchanging and so on. On the one hand, each
information agent generally stores an internal representation, called ontology, of
the domain of interest for its human owner. On the other hand, agents communi-
cate between each other in a distributed Multi-Agent System (MAS) to perform
their activities. As an example, consider the case of an e-commerce scenario in
which an agent, operating on the behalf of a human customer, negotiates for
a product with another agent operating on the behalf of a human seller. This
communication is performed effectively in the case the two agents share the same
ontology, i.e. if both of them know the same terms and give the same meanings to
the terms. Otherwise, the problem arises for an agent interpreting some terms
unknown or ambiguous contained in messages arriving from the other agent.
It is important to consider that nowadays communications among agents have
become a key issue for the development of the whole Web, and not just some par-
ticular application domain as e-commerce and e-learning. A suitable example for
understanding this fact is represented by the general case of Web Services, that
can be viewed as (server) agents that provide services to other (client) agents. It
is necessary that, as Web Services become more prevalent, client agents should
be able to compose together disparate Web Services. However, in order to en-
able such compositions, it is not enough just agreeing on common protocols (e.g.
SOAP) but also the messages’ contents need to be mutually understandable: this
means that there should be an agreement on the semantics of the terms used in
the messages.

Although we have observed over the last years an important evolution towards
the standardization of agent communication languages (ACL’s), as KQML [5]
and FIPA ACL [6], it is worth to point out that the focus of these standards is
mainly on the syntax of messages and the semantics of performatives, while the
semantics of the content of a message is specified by the ontology which is used.
This means that, in order to correctly understand the content of a message,
the receiving agent has to understand the terms contained in the ontology of
the sending agent. In a MAS, this is possible if either all the agents share the
same ontology, or every agent knows each other’s ontology. However, none of
these situations are desirable, since: (i) every agent generally deals with its own
particular task and thus requires its own specialized ontology; (ii) making every
agent of an open MAS, whose size can quickly increase in time, always acquainted
with every other agent’s ontology would lead to a untenable situation.

A possible way of facing the problem to solve the difficulties of an agent in
understanding the messages coming from other agents having different ontologies
is offered by the semantic negotiation. This is a process by which agents in an
agent community try to reach mutually acceptable definitions (i.e., mutually
acceptable agreements on terms).

Several models and protocols of semantic negotiation have been proposed in
the last years [2, 4, 7, 11, 12]. However, most of these approaches are not able to
support semantic negotiation without requiring agents either to share knowl-
edge or to use a global common ontology, and none of them provides a semantic

Information Agents That Learn to Understand Each Other 101

negotiation protocol that allows the whole agent community to contribute to
the semantic understanding process between each agent pair. In this work, we
introduce the idea that two agents involved in a communication process can re-
quire the help of other agents in order to solve possible understanding problems.
In this context, the notion of expertise of an agent introduces a measure of the
capability of the agent to explain non-understood terms to each other agent.
Moreover, we also define the notion of understanding capability of an agent a
with respect to another agent b, that measures the capability of a to explain
terms that b does not understand. Therefore, the expertise of an agent a is the
capability of a to effectively explain non-understood terms to the whole commu-
nity, while the understanding capability with respect to b is relative to the only
agent b. These two notions allow the possibility to introduce the synthetic mea-
sure of negotiation degree, defining the potential capability of a to negotiate the
semantic of terms belonging to b. Therefore, in our framework, an agent can ask
help to other agents for understanding a term on the basis of their negotiation
degree; for this purpose, he groups the agents in different partitions p1, p2, .., pn,
ordered by a decreasing level of negotiation degree. We propose a semantic ne-
gotiation protocol, called HIerarchical SEmantic NEgotiation (HISENE), that is
suitable to be applied for implementing such a semantic negotiation in the stan-
dard Java Agent DEvelopment Framework (JADE) [8]. An important advantage
that this protocol introduces is that each agent can contact the other agents in
different stages, by following the rational criteria of firstly negotiating with the
agents belonging to the partition p1, contacting agents of the partition p2 only
if none of the agents in p1 is able to positively answer, then contacting agents
of the partition p3 only if none of the agents in p2 succeeds, and so on. More-
over, each contacted agent can start, in its turn, another semantic negotiation,
in order to understand unknown term; however, in order to avoid the presence
of a loop, each term is processed only once by each agent. This leads to use in
an efficient way the network communication resources. The plan of the paper
is the following: Section 2 describes some related work; Section 3 gives some
preliminary notions on the JADE framework; Section 4 deals in detail with the
HISENE protocol, while Section 5 describes a simple example of how HISENE
works; Section 6 draws some final conclusions. The Appendix describes the JAVA
implementation of the main components composing the package HISENE, built
on top of the JADE framework.

2 Related Work

In a MAS, each agent is specialized in solving a particular task, so it requires its
own ontology. In order to allow agents having different ontologies to understand
each other, some approaches have proposed in the past the use of a common
shared ontology. As an example, the approach proposed in [11] provides the
agents with a set of shared concepts, in which they can express their private
knowledge. The communication vocabulary is formalized as an ontology, shared
by the entire MAS, and in which every private concept of each individual agent

102 S. Garruzzo and D. Rosaci

can eventually be defined. Concept names used in an agent’s private ontology,
are not understandable to other agents. However, their definitions in terms of
ground concepts are understandable. The use of definition terms, instead of the
concepts, enables optimal communications between agents.

Moreover, the approach presented in [2] introduces a computational frame-
work for the detection of ontological discrepancies between two agents in multi-
agent systems. In this method, presuppositions are extracted from the sender’s
messages, expressed in a common vocabulary, and compared with the recipient’s
ontology, which is expressed in type theory. Discrepancies are detected by the
receiving agent if it notices type conflicts, particular inconsistencies or ontologi-
cal gaps. Depending on the kind of discrepancy, the agent generates a feedback
message in order to establish alignment of its private ontology with the ontology
of the sender. The dialogue framework is based on a simple model of interaction.

Another approach using a common knowledge is that presented in [12], where
authors introduce a machine learning methodology and algorithms for multi-
agent knowledge sharing and learning in a peer-to-peer setting. Agents can use
a set of shared concepts in which they can express their private knowledge.

The work [7] proposes to consider the use of shared keys to solve the problem of
using different names for the same object; in particular, a probabilistic matching
approach is introduced. Semantic negotiation is described as a process by which
a client and a service can negotiate mutually shared references.

There are some other approaches that do not require the use of a shared
ontology. As an example, in [4], to allow agents to interoperate, authors have
developed a matchmaking system that, rather than requiring agents to share on-
tologies, exploits an agent-independent, domain-specific ontology, called a global
ontology. Besides the global ontology, the proposed system, when an agent joins
the platform, applies an information-extraction engine to the agent’s code to
extract useful information, that includes recognized names of concepts the agent
uses (e.g. class names, parameter names, etc.). Instead of having a shared on-
tology, the proposed system maintains a mapping of the local ontologies of all
agents to the independent global ontology. The main difference between this ap-
proach and a shared ontology approach is that an agent’s programmer does not
need to know anything about any other agent’s local ontology, nor he does need
to know about the global ontology, but it is the system that does the necessary
mapping.

The main difference between the approaches described above and that one we
propose in this paper is that in our approach, agents do not need to share either
a common ontology or to maintain a global ontology, in order to understand
each other, but they try to solve their understanding problems availing the help
of other agents that are considered experts in the involved domain and that have
similar ontologies. Obviously, by using this approach, the understanding can be
obtained only by waiting that the agent community evolves in time, allowing the
formation of expert agents and understanding relationships among agents, due
to the continuous interaction. The main advantage that our method presents is
that the mutual understanding among agents is not statically related to a global

Information Agents That Learn to Understand Each Other 103

ontology, but it can dynamically improve by following the agent interactions and
monitoring the agent communications.

Other approaches exist in the literature, that we consider alternative to our
one. As an example, in [3], the problems brought by the schema heterogeneity
in Digital Libraries are discussed. The proposed architecture integrates the on-
tology, agent and P2P technologies together to support the schema mapping.
The goal is to allow agents embedded in different libraries to communicate se-
mantically. As another example, in [1], authors present a technique to generate
elementary speech act sequences in a dialogue game between an electronic as-
sistant and a computer user. The work focuses on the conversational process of
the understanding of the meaning of a vocabulary shared by two dialogue par-
ticipants, where the computer interface is considered to be a cooperative agent.
Another proposal is that contained in [10]. In this work, agents in an open agent
system jointly agree on an axiomatic semantics for the agent communications
language utterances they will use to communicate. This work assumes that the
agents involved all start with a common semantic space, and then together as-
sign particular locutions to specific points in this space. Such a structure would
not appear to permit an incremental construction of the semantic space itself.

3 Preliminaries

Agents in a multi-agent system can communicate by means of messages. Infor-
mation inside a message is represented as a content expression consistent with
a proper content language and encoded in a proper format. Taking into account
that agents have their own way of internally representing the information, it is
quite clear that the representation used in a content expression is not suitable
for the inside of an agent. For this reason, agents need to convert their internal
representation into a content expression representation, and vice versa. More-
over, the problem of different ontology explained in Section 1 determines the
impossibility of message understanding.

JADE is a software framework fully implemented in Java language to realize
distributed multi-agent systems complied with the FIPA specifications. JADE
offers a number of advantages such as: (i) each agent “lives” in a runtime en-
vironment on a given host; (ii) communications are held by means of ACL
messages; (iii) information can be represented as an instance of an application-
specific class (a Java object). Moreover, the support for content languages and
ontologies provided by JADE is designed to automatically perform all the above
conversion operations, thus allowing developers manipulating information within
their agents as Java objects.

In order for JADE to perform the proper semantic checks on a given content
expression it is necessary to classify all possible elements in the domain of dis-
course (i.e. elements that can appear within the content of an ACL message)
according to their generic semantic characteristics. This classification is derived
from the ACL language defined in FIPA which requires that the content of each
ACLMessage must have a proper semantics according to the performative of the

104 S. Garruzzo and D. Rosaci

ACLMessage. The JADE content reference model considers only four types of
elements which can be used as meaningful content of an ACL message, namely:

Predicates, that are boolean expressions saying something about the status
of the world. As an example, the expression

(studies − in (Student : name Jim)(University : name MIT))
states that “the student Jim studies in the University MIT”. Generally, inside

predicates there are referenced some expressions called concepts, that indicate
entities with a complex structure e.g. (Student : name Jim : age 21).

Agent Actions, indicating actions that can be performed by some agents,
e.g. (sell (Book : title “AnnaKarenina′′) (Person : name Jim))

states that the person Jim sells the book “Anna Karenina”.
Identifying Relational Expressions (IRE), that are expressions that

identify the entities for which a given predicate is true, e.g. (all ?x (studies− in
?x (University : nameMIT) identify all the students for which the predicate
(studies − in (Student : name x)(University : name MIT)) is true.

ContentElement Lists, that are lists of elements of the above three types.
In the following, we introduce a technique for supporting semantic negotia-

tions among JADE agents that uses the ontology support libraries.

4 The HISENE Protocol

In our framework, we suppose that an integer coefficient ei, called expertise
coefficient (that we will call in the following e-coefficient, for shortly) of i, is
associated with any agent i of the MAS, representing the degree of expertise
that the whole agent community gives to i. Moreover, another integer coefficient
uij , called understanding capability coefficient (that we will call in the following
u-coefficient, for shortly) of j with regards to i, is associated with each pair of
agents (i, j), representing the degree of understanding that the agent j presents
with regards to the agent i. Each agent i stores all the u-coefficients in a local
database, called Understanding Coefficient DataBase (UCDBi), while all the e-
coefficients are stored in a global database called Expertise Coefficient DataBase
(ECDB), by means of a yellow pages service provided by a specific agent.

These two coefficients are used by each agent i of the MAS to determine a
partitioning in the set of the agents belonging to the MAS. We call ASi the
set of all the agents belonging to the MAS, except the agent i. We call ASk

i ,
k = 1, 2, .., pi, the k-th partition determined by the agent i in the agent set ASi.
The agent i decides how many partitions pi have to be considered; moreover,
the criterium for assigning each agent j, belonging to ASi, to a partition ASk

i ,
is represented by a function p(j) that receives the agent j as input and yields
as output, on the basis of the overall negotiation degree of j, the number of
the partition which j has to be assigned to. More in particular, the agent i as-
signs a weight wi

e (resp. wi
u) to the e-coefficient (resp. u-coefficient), representing

the importance the agent i gives to the expertise (resp. understanding capabil-
ity), defines a threshold parameter tk for each partition k = 1, 2, ..pi, and then

Information Agents That Learn to Understand Each Other 105

m

semanticUnderstanding

already_answered

S
N

_
Q

U
E

R
Y

yesSN_ALREADY_ANSWERED

n
o

understanding

semanticInstanceOf

understoodununderstood

S
e
m

a
n

t
i
c
N

e
g
o
t
i
a
t
i
o
n

SRequest

r

AS
2

x
AS

1

x
AS

k

x
.....

SReceive

solveSemantic
Ununderstanding

SUpdate

UCDB

ECDB

Agent x

Agent s

Create
Partitions

ununderstood
is empty?

yes
noSN_RESPONSE

SN
_R

ESPO
N

SE

S
N

_
Q

U
E

R
Y

Fig. 1. Semantic Negotiation’s Protocol

computes the negotiation degree nij of j as wi
e · ej + wi

u · uij . Then, the function
p(j) is calculated as: p(j) = z if tz+1 ≤ nij < tz .

Now, we describe the protocol (see Fig. 1) supporting the semantic negotiation
followed by an agent x that receives a message m from another agent s.

This message can be an ordinary ACL message (i.e., a message with performa-
tive INFORM, QUERY IF, PROPOSE, etc.) or a semantic negotiation message
(i.e., a message with either performative SN QUERY FOR, or SN RESPONSE,
or SN UNKNOWN or SN ALREADY ANSWERED). In the case of an ordi-
nary message, the message’s content is composed by a list of r content elements
e1, e2, .., er (see Section 3), where in the case of a semantic negotiation message
we have three possibilities: (i) the messages’s performative is SN QUERY: In
this case, the content is composed by an AID indicating the agent ia that is
interested to the query’s result (this agent could be different from the sender s
of the message, because the sender could simply be an agent that received in its

106 S. Garruzzo and D. Rosaci

turn the query from ia and, not being capable to answer the request, decided
to request the help of x); (ii) the message performative is SN RESPONSE: In
this case, the content of the message is a list of pairs (e1, sl1), (e2, sl2), .., (er, slr)
where ei is a content element in the ontology of x and sli is a list of content ele-
ments synonyms of ei in the ontology of the messages’s sender: these synonyms
could help x to understand ei; (iii) the message performative is SN UNKNOWN,
meaning that s says that it is unable to give an answer to a previous request of
x, or SN ALREADY ANSWERED, meaning that s has already answered to a
previous request of x: In this case, the content of the message is void.

In order to understand the content of the message m, the agent x executes a
semanticUnderstanding behaviour. This latter operates as follows:

1. If the message’s performative is SN QUERY, x first invokes the boolean
function already answered(m). This function returns true if all the content
elements belonging to the message’s content have already been processed in
response to previously received SN QUERY messages having as interested
agent the same one specified in m; otherwise (i.e. if there are only some
content elements already processed for that interested agent) these elements
are deleted from the message and the function returns false. If the function
already answered(m) returns true, the behaviour is completed and a mes-
sage with performative SN ALREADY ANSWERED is sent to s; otherwise,
it continues as follows: First, the function understanding(m) is executed.
This function, for each content element ei, i = 1, 2, .., r contained in m, de-
termines if ei is an instance of some schema Sk, k = 1, .., n belonging to the
x’s ontology. This check is performed by invoking, for each pair (ei, Sk),i =
1, .., r, k = 1, .., n the boolean function semanticInstanceOf(ei, Sk) that
returns true if ei is (semantically) an instance of Sk.

The function semanticInstanceOf performs a schema matching between
the schema of ei and Sk, and can be implemented by using one of the several
schema-matching methods existing in the literature as, for instance, those
proposed in [9]. The function understanding(m) for each content element ei

that matches with at least one of its schemas, inserts into a list understood
the pair (ei, sli), where slli is the l-th schemas of the x’s ontology matching
with ei, and inserts into another list ununderstood each element ei that does
not matches with any of its schemas Sk; then, if the list ununderstood is
empty, the behaviour semanticUnderstanding sends a message with per-
formative SN RESPONSE to the agent s, containing as content all the el-
ements of the list understood; otherwise, if some elements are present into
ununderstood, the behaviour semanticNegotiation is executed for trying to
understand the meanings of these elements.

2. When the semanticNegotiation behaviour is executed, another function
createPartitions is firstly invoked. This function reads the e-coefficients
(resp. u-coefficients) from ECDB (resp. UCDB) and, on the basis of the par-
tition weights set by the agent owner, determines the agent partitions. Then,
SRequest and SReceive behaviours are executed. SRequest is a OneShotBe-
haviour that, for each partition level k, sends a message r to each agent

Information Agents That Learn to Understand Each Other 107

contained in the k-th partition, until either the list ununderstood becomes
empty or a timeout t1 is reached. r contains SN QUERY as performative and
the content element list ununderstood as content. SReceive is a CyclicBe-
haviour in which the agent x waits for messages containing a performa-
tive SN RESPONSE, arriving from the contacted agents belonging to the
AS1

x, AS2
x, .., ASk

x . As said above, each received message ma arriving from
an agent a has as content a list of pairs (e1, sl1), (e2, sl2), .., (eh, slh) where
ei is a content element belonging to ununderstood and sli is a list [s1

i , s
2
i , .., s

l
i]

of content elements synonyms of ei, thus they are l possible meanings for ei.
Therefore, the function solveSemanticUnunderstanding(ei, s

g
i), g = 1, 2,

.., l is called for each pair (ei, s
g
i): this function, if at least one sg

i is an
instance of some schemas belonging to the x’s ontology, performs two oper-
ations: (i) deletes ei from the list ununderstood, (ii) adds sg

i to the list sli
contained in understood.

Finally, the function SUpdate is called, that increases of one unit both
the u-coefficient uxa and the e-coefficient ea.

5 An Application Example: Agents That Buy and Sell

In this Section, we present an application of the semantic negotiation technique
we have previously described to the simple situation of a small e-commerce agent
community, composed by four agents, denoted by a1, a2, a3, a4. Figure 2 shows
the evolution of the community during three consecutive semantic negotiation
stages represented in subfigures 2.A, 2.B and 2.C. In each subfigure, the global
database ECDB is represented by a row vector containing the four expertise co-
efficients ea1, ea2, ea3, ea4, associated to a1, a2, a3 and a4, respectively, while the
four local databases UCDB are synthetically represented by a matrix UCDB
where each element UCDBij contains the u-coefficient uij . At the beginning,
both the understanding capability and expertise coefficients are equal to 0. We
also suppose that all the agents give the same importance both to the under-
standing capability and the expertise, therefore all the weights we and wu are
equal to 0.5. Furthermore, each subfigure represents each message sent by an
agent i to an agent j by an arrow oriented from i to j. A thin line is used to
represent ordinary messages, while a double line is exploited for the semantic
negotiation messages. Each arc is labelled with the message’s content. Due to
layout reasons, we omit to represent the negotiation messages with performative
SN UNKNOWN or SN ALREADY ANSWERED.

In Fig. 2.A, we see that the agent a1 sends a PROPOSE message to a2, con-
taining a predicate that says he desires to sell by auction a book having the title
“Anna Karenina”, with initial price equal to 13 US dollars, with a reservation
price (i.e., the lowest price a1 accepts for selling the book, that is obviously se-
cret), and with the possibility (represented by the element purchase now) for a
buyer to purchase immediately the book without participating to the auction,
paying a price equal to 15 US dollars. The agent a2 receives the message, but it
is unable to understand the terms reservation and purchase now, since they are

108 S. Garruzzo and D. Rosaci

a1 a2

(Sell (Book:title "Anna Karenina"
:price 13 :reservation yes :purchase_now 15))

a3 a4

re
se

rv
ati

on,

purc
has

e_
now

(re
se

rv
ati

on,

re
se

rv
e)

(purchase_now,

buy_now)

reservation,

purchase_now

a1

a2

a3

a4

a1 a2 a3 a4 UCDB

ECDB

0

0

0

0

0

0

0

0

0

0

1

0

0

0

1

0

0

110

a1 a2

(Buy (CD:title "Amarantine"

:author Enya))

a3 a4

a1

a2

a3

a4

a1 a2 a3 a4 UCDB

ECDB

0

0

0

0

0

0

0

0

0

0

1

0

0

1

1

0

210

reservation,

purchase_now

CD

(CD, CompactDisc)

a1 a2

(Buy (Book:title "Les Fleurs du Mal"
:author Beaudelaire :edition 1914))

a4

ed
iti

on

(e
diti

on, yea
r)

edition a1

a2

a3

a4

a1 a2 a3 a4 UCDB

ECDB

0

0

1

0

1

0

0

0

0

0

2

0

0

0

1

1

0

220

a1

a2

a3

a4

a1 a2 a3 a4 UCDB

ECDB

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

000

a3

edition
(edition, year)

(A)

(B)

(C)
12

0

edition

edition

1

1

2

Fig. 2. An example of Semantic Negotiation

not present in his ontology. Then, he decides to exploit the semantic negotiation
protocol and, since both the understanding capability and expertise coefficients
are equal to 0, the only agent partition that he can build is AS0

a2 containing all
the other agents a1, a3 and a4. Suppose that when the timeout of a2 is reached
(i) only a3 and a4 have sent a SN RESPONSE message (ii) a3 proposes, as a
synonym of reservation, the term reserve (iii) a4 provides the term buy now
for explaining the term purchase now. Now, suppose the ontology of a2 contains
both reserve and buy now: in this case, it is now able to completely understand
the message of a1 and to respond to it in an adequate way. Moreover, both the
u-coefficients ua2,a3, ua2,a4, and the e-coefficients ea3, ea4 become equal to 1.

The subfigure 2.B shows the agent a1 sending a PROPOSE message to a3,
saying that he desires to buy a CD having title “Amarantine” of the author
“Enya”. However, a3 does not understand the term CD and thus he decides
to exploit the semantic negotiation protocol. First, he builds the two partitions
AS0

a3 = {a4} and AS1
a3 = {a1, a2} since p(a4) = 0.5 · 1 + 0.5 · 0 = 0.5 and

p(a1) = p(a2) = 0. Then, a3 begins the semantic negotiation only with a4 and
receives a SN RESPONSE message by this latter that explains that a synonym
for CD is CompactDisc, that we suppose to be present in the ontology of a3.

Information Agents That Learn to Understand Each Other 109

Then, a3 can end the semantic negotiation process, since he is now able to
understand the message of a1. As a consequence of this process, the e-coefficient
ea4 becomes equal to 2 and the u-coefficient ua3,a4 becomes equal to 1.

In the subfigure 2.C is depicted the next situation, in which the agent a1 sends
to a2 a PROPOSE message, saying that he desires to buy a book with title “Les
Fleurs du Mal”, with author “Beaudelaire” and edition 1914. Since a2 does
not understand the term edition, he decides to exploit the semantic negotiation
protocol, and he first constructs the partitions AS0

a2 = {a4}, AS1
a2 = {a3} and

AS2
a2 = {a1}, since p(a4) = 0.5 · 1 + 0.5 · 2 = 1.5, p(a3) = 0.5 · 1 + 0.5 · 1 = 1

and p(a1) = 0. Then, a2 first asks the help of a4, but this latter is not able
to autonomously provide an explanation for the term edition, then he sends a
semantic negotiation message to both a1 and a3. The black circle labelled with
1 on the arc involved above means that all these arcs are related to the first
attempt of negotiation of a2. Suppose that both these messages do not arrive
to their destination due to a break of the connections a4-a3 and a4-a1. When
the timeout of a2 for a4 is reached, a2 begins a new semantic negotiation with
a3 that, in its turn, is not able to provide an explanation for the term edition,
and thus he requires the help of a1 and a4. a4 is not able to be reached, due
to the connection’s break, while a1 responds with a synonym year for edition.
This leads to set to 1 both the expertise ea1 and the understanding capability
ua3,a1. Now, a3 is able to send to a2 the explanation year for the term edition
and, supposing year to be in the ontology of a2, the semantic negotiation of a2
can be terminated. All the arcs involved in this second negotiation tentative of
a2 contains a black circle labelled with 2. As a consequence of the negotiation
process, both ea3 and ua2,a3 become equal to 2.

Now, observe the final situation represented in the tables UCDB and ECDB
of the subfigure 2.C. The most “expert” agents are a3 and a4, and this is com-
pletely justified by the fact that they have solved for two ways semantic under-
standing’s problems. The UCDB rows corresponding to agents a1 and a4 have
all their elements equal to 0, reflecting the fact that no other agents have helped
them to understand any terms. The agent a2 has been helped 2 times by a3 and
1 time by a4, and this is represented by the corresponding values in the UCDB
row of a2. The agent a3 has been helped once by a1, and this is represented by
the only one no zero coefficient in the UCDB row of a3.

6 Conclusions

Semantic negotiation is a powerful framework for solving understanding prob-
lems among agents having personal ontologies that are not completely homoge-
neous. However, a key problem in semantic negotiation protocol is making the
right choice of the agents with which it is most suitable to negotiate. In this work,
we present a semantic negotiation protocol that makes effective the process of
selecting the negotiation partners, by defining two measures, called expertise and
understanding capability, that reflects two of the most important features that
should be considered in making this selection, that are (i) the capability of an

110 S. Garruzzo and D. Rosaci

agent to respond to semantic negotiation answers arriving from whatever agent,
representing the degree of expertise that the agent has in the community and (ii)
the capability of an agent to respond to semantic negotiation answers arriving
from a particular other agent, that defines the degree of comprehension that the
former agent has with respect to the latter one. We define an agent negotiation
protocol that allows to compute these measures by observing the results of the
agent negotiation. Furthermore, we have implemented this protocol in the JAVA
language as component of the middleware JADE, giving the possibility to use
it for realizing JADE agents able to negotiate the semantic of the terms. Our
ongoing research deals with the possibility of including in the protocol more so-
phisticated features as, for instance, the possibility that an agent gives a negative
feedback when he receives a unsatisfactory response by another agent.

References

1. R.-J. Beun and R.M. van Eijk. A Cooperative Dialogue Game for Resolving On-
tological Discrepancies. In Workshop on Agent Communication Languages, pages
349–363, 2003.

2. R.-J. Beun, R.M. van Eijk, and H. Prust. Ontological Feedback in Multiagent
Systems. In AAMAS ’04: Proceedings of the Third International Joint Conference
on Autonomous Agents and Multiagent Systems, pages 110–117, Washington, DC,
U, 2004. IEEE Computer Society.

3. H. Ding and I. Sølvberg. Towards the schema heterogeneity in distributed digital
libraries. In ICEIS (5), pages 307–312, 2004.

4. D.W. Embley. Toward Semantic Understanding: An Approach Based on Informa-
tion Extraction Ontologies. In CRPIT ’04: Proceedings of the fifteenth conference
on Australasian database, pages 3–12, Darlinghurst, Australia, Austra, 2004. Aus-
tralian Computer Society, Inc.

5. T. Finin, R. Fritzson, D. McKay, and R. McEntire. KQML as an agent communica-
tion language. In Proceedings of the 3rd International Conference on Information
and Knowledge Management (CIKM’94), pages 456–463, Gaithersburg, Maryland,
USA, 1994. ACM Press.

6. http://www.fipa.org, 2005.
7. R. Guha. Semantic Negotiation: Co-identifying objects across data sources. In

AAAI ’04 Spring Symposium Series: Proceedings of the Semantic Web Services,
March 2004.

8. http://www.jade.tilab.org, 2005.
9. E. Rahm and P.A. Bernstein. A survey of approaches to automatic schema match-

ing. VLDB Journal: Very Large Data Bases, 10(4):334–350, 2001.
10. C. Reed, T.J. Norman, and N.R. Jennings. Negotiating the Semantics of Agent

Communication Languages. Computational Intelligence, 18(2):229–25, 2002.
11. J. van Diggelen, R.-J. Beun, F. Dignum, R.M. van Eijk, and J.-J.Ch. Meyer. Opti-

mal communication vocabularies and heterogeneous ontologies. In R.M. van Eijk,
M.-P. Huget, and F. Dignum, editors, Developments in Agent Communication,
LNAI 3396. Springer Verlag, 2004.

12. A.B. Williams. Learning to Share Meaning in a Multi-Agent System. Autonomous
Agents and Multi-Agent Systems, 8(2):165–193, 2004.

Information Agents That Learn to Understand Each Other 111

Appendix: The Package jade.hisene

In this Appendix we present a java implementation of the semanticUnderstand-
ing behaviour (see Fig. 3) and the semanticNegotiation behaviour (see Fig. 4)
as described in Section 4. These behaviours are part of the jade.hisene package
that we are writing and which is in an advanced state of development. Due to
the length of the code we don’t present the private methods. However, they are
of a simple implementation.

package jade.hisene;
import jade.core.*;
import jade.core.behaviours.OneShotBehaviour;
import jade.lang.acl.ACLMessage;
. . .

public class semanticUnderstanding extends OneShotBehaviour {
private ACLMessage msg;
private List understood, ununderstood;

public semanticUnderstanding (Agent a, ACLMessage msg) {
super(a);
this.msg = msg;

}

public void action() {
if (msg.getPerformative() == Semantic.SN QUERY && alreadyAnswered(msg)){

ACLMessage reply = msg.createReply();
reply.setPerformative(Semantic.SN ALREADY ANSWERED);
reply.setContent(msg.getContent());
myAgent.send(reply);

} else {
understanding(msg);
if (!ununderstood.isEmpty()) {

ACLMessage sn query msg;
sn query msg = setUnderstood(msg, understood);
sn query msg = setUnunderstood(msg, ununderstood);
sn query msg.setPerformative(Semantic.SN QUERY);
((Semantic)parent).addSubBehaviour(new semanticNegotiation(myAgent, sn query msg));

} else {
ACLMessage reply = msg.createReply();
reply.setPerformative(Semantic.SN RESPONSE);
reply.setContent(msg.getContent());
reply = setUnderstood(reply, understood);
myAgent.send(reply);

}
}

}
// Private Methods Section
. . .

}

Fig. 3. The semanticUnderstanding behaviour

112 S. Garruzzo and D. Rosaci

package jade.hisene;
import jade.core.*;
import jade.core.behaviours.*;
import jade.lang.acl.ACLMessage;
. . .

public class semanticNegotiation extends ParallelBehaviour{

private ACLMessage msg;
private Stack partitions;
private Behaviour srequest = new SRequest(myAgent, msg, partitions);
private Behaviour sreceive = new SReceive(myAgent, msg);

public semanticNegotiation (Agent a, ACLMessage msg) {
super(a, WHEN ANY);
this.msg = msg;

}

public void onStart() {
createPartitions();
addSubBehaviour(srequest);
addSubBehaviour(sreceive);

}

public int onEnd() {
removeSubBehaviour(sreceive);
ACLMessage reply = msg.createReply();
reply.setPerformative(Semantic.SN RESPONSE);
reply.setContent(msg.getContent());
myAgent.send(reply);
return 0;

}
// Private Methods Section
. . .

}

Fig. 4. The semanticNegotiation behaviour

F. Eliassen and A. Montresor (Eds.): DAIS 2006, LNCS 4025, pp. 113 – 127, 2006.
© IFIP International Federation for Information Processing 2006

Discovering Semantic Web Services with Process
Specifications

Piya Suwannopas and Twittie Senivongse

Department of Computer Engineering, Chulalongkorn University
Phyathai Road, Pathumwan, Bangkok 10330 Thailand

piya.su@student.chula.ac.th, twittie.s@chula.ac.th

Abstract. Service discovery is one of the crucial issues for service-oriented ar-
chitectural model. Recently the trend is towards semantic discovery by which
semantic descriptions are the basis for service matchmaking instead of simple
search based on service attributes. OWL-S is a widely adopted semantic speci-
fication for Web Services which comprises three profiles. Among those, proc-
ess model is the profile that describes dynamic behaviour of Web Services in
terms of functional aspects and process flows, and is generally aimed for ser-
vice enactment, composition, and monitoring. This paper presents a new ap-
proach to use OWL-S process model for service discovery purpose. A Web
Service can have its internal process described as an OWL-S process model
specification, and a service consumer can query for a Web Service with a par-
ticular process detail. Matchmaking will be based on flexible ontological
matching and evaluation of constraints on the functional behaviour and process
flow of the Web Service. The architecture for process-based discovery is also
presented.

1 Introduction

Service discovery is an important part of service-oriented computing in which ser-
vices, as building blocks for building applications, are provided and distributed in
large-scale open environment [1]. Provided services will publish generalised descrip-
tions of their capability to a matchmaker whereas service consumers consult the
matchmaker to identify potential services that most closely satisfy their needs. The
effectiveness of service discovery relies on the richness of service metadata and the
matchmaking mechanism that utilises the expressiveness of the metadata. Current
Web Services Standards realise this concept and provide UDDI [2] as a standard reg-
istry that performs matchmaking based on matching of syntactic service attribute
values.

From our previous study [3], a service description model has been defined as a re-
sult of an empirical survey about service advertisements on the Internet (Fig. 1). The
model shows that service advertisements should reflect different aspects of service
capabilities; some are simple characteristics and may be in the form of simple attrib-
utes whereas some are more complex capabilities and require some specification
languages to express them. (Those highlighted in Fig. 1 have no correspondences in

114 P. Suwannopas and T. Senivongse

UDDI.) This model is generic, meaning that it is independent from any specific repre-
sentation languages and can be used simply for information or for other purposes such
as automatic service discovery or composition.

One way to enrich service metadata is by using ontology languages to represent
service descriptions. This approach is gaining a lot of attention in Web Services
community as ontology languages are expressive for describing several aspects of
service capabilities and ontological reasoning also provides a way to infer more about
the capabilities. Semantic Web Services are Web Services in which ontologies ascribe
meanings to published service descriptions so that software systems representing
prospective service consumers can interpret and invoke them [4]. With this vision, the
Web Ontology Language for Services (OWL-S) consortium contributes with an
OWL-S specification [5] which is the building block for encoding rich semantic ser-
vice descriptions in a way that builds naturally upon OWL language. OWL-S consists
of three profiles, namely service profile, process model, and service grounding. Ser-
vice profile defines basic and functional properties of the service as well as functional
behaviour. Process model details service operation in terms of functional behaviour,
control structure, and data flow structure required to execute the service. Service
grounding specifies details of how to access the service by mapping from an abstract
service specification (process model) to concrete specification (WSDL). It can be
seen that OWL-S and the model in Fig. 1 share some characteristic; they both model
services with simple attributes and more complex specifications.

Our previous work [6] proposes an integrated service profile that corresponds to
the model in Fig. 1. The integrated service profile is a collection of ontology-based
profiles for services, including the attribute, structural, behavioural, and rule profiles,

Fig. 1. Service description model from survey [3]

 Discovering Semantic Web Services with Process Specifications 115

and it overlaps with OWL-S. This paper extends the integrated service profile with
the focus on the composition specification of a service. Composition specification
shows how simple components are composed into a service and may be expressed as
a hierarchy of goal and subgoals or as a workflow of tasks for service execution [1].
This paper is interested in describing the composition specification as a workflow and
we borrow OWL-S process model to represent the workflow specification.

OWL-S process model is found in use by researches in service composition and
workflow coordination and monitoring, but it can also be used for in-depth analy-
sis for matchmaking to see whether the service meets process constraints required
by the service consumer. This is to check a dynamic aspect of the service. For
example, the service consumer may want to find a software store with a workflow
such that, after processing the purchase order of the customer, the store registers
the customer for the software training programme. The store service with such
automatic registration for training should be preferable to ones without training.
Sometimes the flow may have a constraint such that automatic training registration
is available only if the purchase is worth more than 0.5 million bahts (Thailand
currency). Such a constraint will have to be taken into account during matchmak-
ing. Here we present an example of the services using OWL-S process model to
describe their internal processes. A service consumer can issue a process-based
query. The services are queried on their functional behaviour and flow of their
process. Ontological reasoning and evaluation of the rule-based constraints on the
behaviour and process flow are considered.

The rest of the paper starts with Section 2 that discusses related work. Section 3
outlines the constructs of OWL-S process model for process specification. Section 4
gives an example of the process specifications of three services described using
OWL-S process model. Matching criteria are summarised in Section 5 and used in
Section 6 to consider matching for a query. Section 7 presents a process-based dis-
covery framework and Section 8 concludes the paper.

2 Related Work

Semantics-based service discovery is accomplished mainly by the use of ontology to
describe service capabilities. Web Services Modeling Ontology (WSMO) [7] provides
a framework for describing semantic Web Services with Web Services Modeling
Language (SWML) [8] as a formal language that realises the framework. WSML
defines semantics in terms of four elements: ontologies, goals, Web Service descrip-
tions, and mediators. Ontologies provide vocabularies, concepts, instances, and axi-
oms that will be used by other elements. Goals are similar to queries. Web Service
descriptions describe capability in terms of assumption, precondition, postcondition,
effect, and allow for interface and orchestration specifications. As WSMO shares with
OWL-S the vision that ontologies are essential to support automatic discovery, it is
possible for our work to adopt either of their process-related specifications. However,
at the moment OWL-S can be implemented without stipulating framework and
several tools exist. We adopt OWL-S process model for process specification in
this paper.

116 P. Suwannopas and T. Senivongse

Most of research work in service discovery area focuses on search based on a
particular aspect of the service and little is found to concentrate on process-based
discovery. UDDI version 4 is incorporating an ontology-based taxonomy for the stan-
dard categories of Business Entity and Business Service entries that are registered
with UDDI [9]. This will allow UDDI to be able to look for the businesses or services
of a specialised or generalised category. The work in [10] shows how ontology de-
scribing general knowledge of a particular service domain can be used for search. The
work in [11], [12] focuses on searching functional behaviour but they do not consider
search with behavioural constraints. In [13], an efficient search algorithm is devised
for services described by OWL-S but the search considers only the OWL-S service
profile. In [14], process ontology is used as a basis for service discovery. The process
ontology is described by the service process, constituent subtasks, connection ports
between subtasks and connection mechanisms, and exceptions within the process. The
query is done by a PQL language. Unlike our approach, the process ontology in this
work follows the goal-subgoal model of service composition, not the workflow
model, and it does not accommodate for process constraints.

Service discovery and service composition share a characteristic such that both aim
to identify services that can satisfy users’ requirements. Nevertheless, service discov-
ery tends to identify individual services that can answer to a particular query, whereas
service composition identifies a group of services that can work together to satisfy a
certain goal. In the area of Web Service composition, OWL-S process model is used
in several researches for describing Web Services. In [15], an AI planner called
OWLS-Xplan is proposed to compose Web Services. An OWL-S process model is
used to specify input, precondition, output, and effect of the goal (i.e. the composite
service) and of the individual Web Services to be composed. The goal in OWL-S
process model will be translated into a planning domain description in PDDL in order
for the planner to generate a plan sequence as a workflow of individual Web Services.
The work in [16] integrates an OWL reasoner with an AI planner and shows how
OWL or SWRL [17] is used to encode the preconditions and effects of the Web Ser-
vices in the composition process. The Web Services are also described by OWL-S
process model. By using OWL, the composition gains the reasoning power of OWL
in the evaluation of the preconditions and the update of the effects that have impacts
on real world knowledge. Although these researches above conduct some analysis on
OWL-S process model, they concern the functional behaviour part of the process
model in service composition. In our work, we focus on analysing not only the func-
tional behaviour part but also the workflow part of individual Web Services in order
to find any single services that can satisfy the query.

3 OWL-S Process Model

This section briefly describes the constructs of OWL-S process model that are of
interest to this paper. A particular service is described by a service model and a
process is a subclass of the service model. Fig. 2 shows OWL-S process ontology
[5] with the classes and properties that altogether describe how a service works. A

 Discovering Semantic Web Services with Process Specifications 117

process describes its functional behaviour by specifying inputs, outputs, precondi-
tions, and effects (IOPE) of its performance. As the name implies, a precondition
is a logical expression which must hold for the process to be successfully invoked.
Local refers to an auxiliary parameter that is bound to the precondition and is use-
ful for determining the logical value of the precondition. Result refers to a coupled
output and effect and can be constrained by an incondition property which speci-
fies the logical condition under which the result occurs; hence the corresponding
output and effect become conditional output and conditional effect. Result variable
is also an auxiliary parameter that is bound to a result and useful for determining
the associated incondition.

The process is further described as a composition of subprocesses. The subprocess
can be atomic, composite, or simple process. An atomic process is one which has no
further subprocesses, is directly invocable, and executes in a single step. A composite
process is decomposed into other non-composite or composite processes. The decom-
position can be specified by using control constructs, i.e. sequence, split, split-join,
any-order, choice, if-then-else, iterate, repeat-while, repeat-until. A simple process is
an abstraction that provides a view of some atomic process or a simplified representa-
tion of some composite process and is not invocable.

Fig. 2. Top level of process ontology [5]

118 P. Suwannopas and T. Senivongse

Since the constraints in OWL-S process model – either the preconditions, the con-
ditions of the results, or the guards on the control flow – are represented as logical
formula, these logical expressions are treated as literals – either XML literals or string
literals. Therefore several languages can be used to express these constraints (e.g.
SWRL, RDF, KIF, PDDL). In this paper we represent such process constraints with
SWRL rule expressions.

4 Process Specifications

Bank loan service is used as an example for process-based discovery. Fig. 3 shows the
first part of the process specification of a loan service S1 written in OWL-S process
model. This part describes the functional behaviour of S1.

1. <process:CompositeProcess rdf:ID="LoanService">
2. <process:hasInput>
3. <process:Input rdf:ID="CustomerInfo"/>
4. </process:hasInput>
5. <process:hasOutput>
6. <process:Output rdf:ID="LoanInterestRate"/>
7. <process:hasOutput/> …
8. <process:hasLocal rdf:resource="#IncomePerMonth"/>
9. <process:hasPrecondition>
10. <expr:SWRL-Condition rdf:ID="IncomeCondition">
11. <expr:expressionLanguage rdf:resource="&Expression.owl#SWRL"/>
12. <expr:expressionBody rdf:datatype="Literal">
13. swrlb:greaterThanOrEqual(#IncomePerMonth,10000)
14. hasIncomeStatus(#ValidIncome,"xsd:True")
15. </expr:expressionBody>
16. </expr:SWRL-Condition>
17. </process:hasPrecondition>
18. <process:hasResultVar rdf:resource="#LoanAmount"/>
19. <process:hasResult>
20. <process:Result rdf:ID="PremiumLoanResult">
21. <process:inCondition>
22. <expr:SWRL-Condition rdf:ID="PremiumLoanCondition">
23. <expr:expressionLanguage rdf:resource="&Expression.owl#SWRL"/>
24. <expr:expressionBody rdf:datatype="Literal">
25. swrlb:greaterThan(#LoanAmount,300000)
26. hasPremiumLoanStatus(#PremiumLoanStatus,"xsd:True")
27. </expr:expressionBody>
28. </expr:SWRL-Condition>
29. </process:inCondition>
30. <process:hasEffect>
31. <expr:SWRL-Condition rdf:ID=”PremiumCreditCardCondition”>
32. <expr:expressionBody rdf:datatype="Literal">
33. chargedPremiumCreditCard(#LoanService, #PremiumCreditCardFee)
34. swrlb:equal(#PremiumCreditCardFee, 0)
35. </expr:expressionBody>
36. </expr:SWRL-Condition>
37. </process:hasEffect>
38. </process:Result>
39. </process:hasResult>
40. <process:hasResult>
41. <process:Result rdf:ID="NormalLoanResult">
42. …

Fig. 3. Functional behaviour of S1 in OWL-S process model

 Discovering Semantic Web Services with Process Specifications 119

From the figure, the service requires customer information as an input (line 2-4),
and gives loan interest rate as an output (line 5-7). The service has a precondition
such that the consumer needs to have income at least 10,000 bahts per month in order
to use the service (line 9-17). The effects of this service are conditional, depending on
the loan amount. If the loan is more than 300,000 bahts, it is a premium loan
(line 21-29) and the consumer is entitled to apply for a premium credit card. This
effect is further constrained by the annual credit card fee which is equal to 0 (line 30-
37). On the other hand, if the loan is not more than 300,000 bahts, it is a normal loan
(line 41) and the credit card effect will be subject to the annual fee. Note that all the
constraints are expressed as SWRL rules.

The second part of the process specification of S1 involves its workflow. This is
depicted in Fig. 4. Suppose, in general, a loan service is composed of several classes
of loan approval. Department approval process is performed when the loan amount is
small or the loan is not critical and the decision can be made by the loan department
manager. Branch approval process is performed when the loan is more critical but the
decision can still be made within the branch by the branch manager. Otherwise the
loan application has to be approved at the head quarter. The bank will maintain loan
history of the customers for future reference.

Fig. 4. Process flow of service S1

Fig. 5 shows a snippet of OWL-S process specification for Fig. 4. The first guard
condition checks whether the loan amount is less than or equal to 1 million bahts (line
64-72). The second guard condition determines whether the purpose of loan is for real
estate (line 88-96).

For further comparison, we assume there are two more candidate services S2 and
S3. These two services exhibit the same functional behaviour as S1 (c.f. Fig. 3) but
they have a slightly different workflow as in Fig. 6 and Fig. 7 respectively.

120 P. Suwannopas and T. Senivongse

Fig. 5. Process flow of S1 in OWL-S process model

5 Matching Criteria

To determine whether a process specification of a service can fulfill a service con-
sumer’s needs, matchmaking will perform ontological matching on the concepts
within the specification and evaluate constraints on the functional behaviour and the
guards on the control constructs in order to determine the actual behaviour of the
service. Several matching criteria are defined:

62. <process:composedOf>
63. <process:If-Then-Else rdf:ID="LoanAmount_If-Then-Else">
64. <process:ifCondition>
65. <expr:Condition rdf:ID="LoanAmountCondition">
66. <expr:expressionLanguage rdf:resource="&Expression.owl#SWRL"/>
67. <expr:expressionBody rdf:datatype="Literal">
68. swrlb:lessThanOrEqual(#LoanAmount,1000000)
69. hasLoanAmountStatus(#SmallLoanAmount,"xsd:True")
70. </expr:expressionBody>
71. </expr:Condition>
72. </process:ifCondition>
73. <process:then>
74. <process:Sequence rdf:ID="Bank_Sequence">
75. <process:components>
76. <process:ControlConstructList rdf:ID="LoanHistory_ControlConstructList">
77. <list:first>
78. <process:Perform rdf:ID="LoanHistoryPerform">
79. <process:process>
80. <process:AtomicProcess rdf:ID="LoanHistoryProcess"/>
81. </process:process>
82. </process:Perform>
83. </list:first>
84. <list:rest>
85. <process:ControlConstructList rdf:ID="Bank_ControlConstructList">
86. <list:first>
87. <process:If-Then-Else rdf:ID="Purpose_If-Then-Else">
88. <process:ifCondition>
89. <expr:Condition rdf:ID="PurposeCondition">
90. <expr:expressionLanguage rdf:resource="&Expression.owl#SWRL"/>
91. <expr:expressionBody rdf:datatype="Literal">
92. swrlb:equal(#LoanPurpose,"RealEstate")
93. hasPurposeStatus(#RealEstatePurpose,"xsd:True")
94. </expr:expressionBody>
95. </expr:Condition>
96. </process:ifCondition>
97. <process:then>
98. <process:Sequence rdf:ID="Department_Sequence">
99. <process:components>
100. <process:ControlConstructList rdf:ID="Department_ControlConstructList">
101. <list:first>
102. <process:Perform rdf:ID="DepartmentApprovalPerform">
103. <process:process>
104. <process:AtomicProcess rdf:ID="DepartmentApprovalProcess"/>
105. </process:process>
106. </process:Perform>
107. …

 Discovering Semantic Web Services with Process Specifications 121

Fig. 6. Process flow of service S2

Fig. 7. Process flow of service S3

5.1 Matching Ontological Concepts

Matching by subsumption and equivalence is the basis for matching ontological con-
cepts in the query and the process specification. This approach is based on the IS-A
taxonomy of the concepts shared within the service domain and has been adopted in
literature including [10], [18], [6].

Let CQ be the concept specified in the query and CP be the concept in the process
specification:

122 P. Suwannopas and T. Senivongse

(i) If CQ ≡ CP then CP is an exact match for CQ, where ≡ means is equivalent
to.

(ii) If CP CQ then CP is a specialised match for CQ, where means is sub-
sumed by (i.e. CP is more specific than CQ).

(iii) If CQ CP then CP is a generalised match for CQ. This means the concept
in the query is more specific than, and is subsumed by, the one in the process
specification.

(iv) If (CQ CP) (CP CQ) (CQ CC) (CP CC) then CP is a par-

tial match for CQ, where means is not subsumed by and CC is a node in
the same IS-A taxonomy. This means it is acceptable for the concept in the
process specification to be a match for the concept in the query provided that
the two concepts have common characteristics through a common parent
concept.

(v) If none of the above relationships exist then CP is a failed match for CQ.

5.2 Matching Numerical Ranges

Matching two numerical ranges compares the ranges of the possible values that are
defined in the constraints. The degree of matching for numerical ranges can be deter-
mined as described below.

Let NQ be a nonempty set of numerical range values of the expression in the query
(EQ), and NP be a nonempty set of numerical range values of the expression in the
process specification (EP):

(i) If NP NQ then EP is an exact match for EQ

(ii) If NQ NP then EP is a plug-in match for EQ

(iii) If (NP
∩ NQ) (NP NQ) (NQ

 NP) then EP is a weak match

for EQ
(iv) If NP

∩ NQ = then EP is a failed match for EQ

5.3 Matching Logical Constraint

The service will match to the query if, by applying a set of values obtained from the
query into the rule expression, the rule evaluation hits and returns true as a result. The
expression in the head atom of the rule may be a numerical constraint or constraint on
some data values, and these may require ontological reasoning, numerical computation,
and also rule reasoning. We consider a match only when such evaluation returns true.

5.4 Matching Process Model

To check whether a process specification satisfies the query, we consider matching on
all aspects of the functional behaviour and the processes within the workflow. For
each aspect, it may need to perform ontological matching (Section 5.1) before consid-
ering other kind of constraint matching (Sections 5.2-5.3). The process specification
will match the query if it satisfies the following:

 Discovering Semantic Web Services with Process Specifications 123

(i) input, unconditional output, unconditional effect, and process without guard
satisfy ontological match in Section 5.1, and

(ii) precondition, conditional output, conditional effect, and process with guard
satisfy relevant matching criteria in Section 5.2-5.3

In other words, let Q and P be the sets of functional behaviour and workflow

processes (with and without constraints) within the query and the process specifica-
tion respectively:

ProcessModelMatch(Q , P) = true ⇔

(Q ⊆ P) ∧ (,i j∀ ∃ : ()Qi ∈ ∧ ()Pj ∈ ∧ ()i jΘ)

where Θ means having a kind of match as in Sections 5.1-5.3.

6 Process-Based Discovery

Assume a service consumer wants to apply for a 400,000-baht loan with a bank in
order to buy a house. The consumer wants the bank that allows a loaner to apply for a
credit card with no annual fee and approve the loan application at loan department
level. This is to ensure that the loan process is quick. The consumer earns 20,000
bahts a month.

We present a query () as a collection of relation expressions. A relation expres-

sion is in the form of property(subject, object) which corresponds to an RDF state-
ment <subject, property, object>. For a constraint that relates to a numerical value,
such numerical constraint is represented as property(argument, relationaloperator,
literalvalue1, [literalvalue2,] unit). For the example above, the relation expressions
are superscripted by symbols C, E, G, and P which refer to precondition, effect,
guard, and process respectively:

={hasIncomePerMonth(IncomePerMonth, 20000)C ,

hasPremiumCreditCardFee(PremiumCreditCardFee, Equal, 0, baht)E ,

hasLoanAmount(LoanAmount, 400000)G ,

 hasLoanPurpose(LoanPurpose, Housing)G ,

hasProcess(Process, DepartmentApprovalProcess)P }

To determine whether a service is a match, its process specification will also be
treated as a collection of relation expressions in order to check against the set of
relation expressions of the query. The rule expressions embedded in the process speci-
fication will be extracted and translated into a rule language in order to use a rule
reasoning engine to check whether the rule is satisfied. In our implementation, SWRL
rule will be translated into Jess script in order to use Jess engine [19].

If we look at S1 and the query, to check whether the precondition holds for the
query, we use the criterion to match numerical ranges (Section 5.2) and the con-
sumer’s income is an exact match and hence valid to use the service. To check the
effect, we have to determine what S1 will give as an effect since it is conditional. We
first check the incondition by using matching of numerical ranges on the loan amount

124 P. Suwannopas and T. Senivongse

and the premium credit card effect is satisfied with an exact match. Then we use again
the numerical range matching criterion to check whether the premium credit card
offers 0 baht annual fee. This also returns an exact match. When all aspects of the
functional behaviour of S1 match to the query, S1 is a potential service but we have to
check further on its process flow. (In this example, the functional behaviour of S2 and
S3 also matches to the query because we assume earlier that all three services exhibit
the same functional behaviour.)

To consider the workflow of the service, we associate each process with guards
that determine its performance. For example, the rules for all approval processes
within the process specification of S1 are listed below:

!hasLoanAmount(LoanAmount, LessThanOrEqual, 1000000, baht)
hasProcess(Process, HeadQuarterApprovalProcess);

hasLoanAmount(LoanAmount, LessThanOrEqual, 1000000, baht)
hasProcess(Process, LoanHistoryProcess);

hasLoanAmount(LoanAmount, LessThanOrEqual, 1000000, baht),
hasLoanPurpose(LoanPurpose, RealEstate)
hasProcess(Process, DepartmentApprovalProcess);

hasLoanAmount(LoanAmount, LessThanOrEqual, 1000000, baht),
!hasLoanPurpose(LoanPurpose, RealEstate)
hasProcess(Process, BranchApprovalProcess);

To check whether S1 performs the requested process under the context of a particu-
lar query, we check whether the associated guards fire. This is possible when the
information necessary for evaluating the guards can be obtained from the service
consumer or from the process specification itself. In this example, the consumer re-
quests for a department approval process. The first guard on loan amount fires with
exact match by considering numerical ranges matching against the loan amount of the
consumer. For the second guard on loan purpose, we first use ontological matching
(Section 5.1) to check the ontological value RealEstate. Assume that there is a domain
ontology which defines an IS-A taxonomy for RealEstate with subconcepts such as
Housing and Land. S1’s purpose will be a generalised match, and by matching logical
constraints (Section 5.3), this second guard will also fire. Therefore, S1 will perform
department approval process under the constraints placed by the query. When S1
matches with all aspects defined in the query, it will be returned as a match to the
consumer. With this approach, S2 will fail to match the query because the consumer’s
loan purpose will not cause the loan purpose guard associated with its department
approval process to fire. Similarly, S3 will also fail to match the query because the
consumer’s loan amount does not satisfy the loan amount guard associated with its
department approval process.

Process-based discovery is effective when a shared process ontology of a particular
service domain is assumed. The shared process ontology defines common pattern of
the process within a domain which includes internal tasks and relevant conditions.
This approach is possible as the concept of business process patterns exists [20], [21].
Service providers should publish process specifications that are derived from the
domain process ontology, and service consumers should have some knowledge about
the behaviour and workflow of the domain in order to compose an effective query. In
our example, it should be commonly known that a bank loan process usually involves
several classes of approval, and factors that influence the approvals include loan

 Discovering Semantic Web Services with Process Specifications 125

amount, loan purpose, and earning capability of the loaner. Although this process is
internal to the bank, it is not classified business information since bank staff would
normally give such information to the loaners. With a shared process ontology, the
service consumer can submit a query without having to know other details of the
candidate Web Services which may be considered as classified business rules; in our
case, the service consumer does not need to know that the bank with a process speci-
fication such as S1 has set a boundary of 1 million bahts for a head quarter approval.
Process specifications are maintained by service providers; our approach does not
require service consumers to have access to them.

7 Discovery Framework

The agent-based discovery framework in our previous work [6] is extended to ac-
commodate process-based discovery. We develop the components within the architec-
ture in Fig. 8 while also adopting existing ontology-based tools and rule engine.

Fig. 8. Process-based discovery framework

In the figure, a service provider will define the process specification of the service
as well as any necessary local ontology (1), using an ontology editor (e.g. Protégé).
The definition may be based on shared ontology of the domain, which is defined by
service domain experts. The service provider maintains the process specification and
the local ontology, but also registers the specification with the agent via the publish-
ing proxy (2). The publishing proxy will store the URL of the process specification
and local ontology in the ontology repository (3). The agent may preprocess to extract
knowledge and to reason from the shared ontologies prior to the matchmaking by
using an inference engine (e.g. Jena [22]); the results are stored in a knowledge base

126 P. Suwannopas and T. Senivongse

(4). At discovery time, the process specification will be processed and rule constraints
are extracted and translated into a rule script by a parser (i.e. SWRL2Jess parser) (5).
The agent can provide the service consumers with a GUI template that corresponds to
the process ontology of the domain so that the consumers can specify query onto the
process specifications more easily (6). Internally, the query will be translated into
RDF-based relation expressions and will pass through the query proxy. Rule con-
straints in the query are translated into a rule script so that it is evaluated against
constraints in the process specification (7). The constraint evaluation module is inte-
grated with a rule engine (e.g. Jess engine). Matchmaking module considers matching
criteria and reports the result in an XML document which will be returned to the
consumer (8).

8 Conclusion

We present a new approach to service discovery by using OWL-S process model to
model functional behaviour and workflow of the services and querying on such proc-
ess specifications. Constraints can be placed on the functional behaviour and guard
the flow of process execution. Matchmaking uses ontological reasoning and con-
straints evaluation to determine the actual behaviour of the services. Service consum-
ers can then look for the services with a satisfied internal process.

The example in this paper shows a query concerning if-then-else and sequence
constructs. Query based on other constructs is also meaningful and possible. We are
in the process of finishing the integration of process-based discovery with the frame-
work in [6] so that the integrated service profile is more complete and fits well with
the service description model in Fig. 1.

References

1. Huhns, M. N., Singh, M. P.: Service-Oriented Computing: Key Concepts and Principles.
IEEE Internet Computing. January-February (2005) 75-81

2. uddi.org: UDDI: Universal Description, Discovery, and Integration of Web Services
(Online). (2002). http://www.uddi.org

3. Tapabut, C., Senivongse, T., Futatsugi, K.: Defining Attribute Templates for Descriptions
of Distributed Services. In: Proceedings of 9th Asia-Pacific Software Engineering Confer-
ence (APSEC 2002), Gold Coast, Australia, December (2002) 425-434

4. Burstein, M. et al.: Semantic Web Services Architecture. IEEE Internet Computing. Sep-
tember-October (2005) 72-81

5. OWL-S Coalition. OWL-S 1.1 Release (online). http://www.daml.org/services/owl-s/1.1/
6. Sriharee, N., Senivongse, T.: Matchmaking and Ranking of Semantic Web Services Using

Integrated Service Profile. To be published in International Journal of Metadata, Semantics
and Ontologies, Vol. 1, No. 2, Inderscience Publishers

7. WSMO. Web Services Modeling Ontology (online). (2004). http://www.wsmo.org
8. Bruijn, D.J., Lausen, H., Polleres, A., Fensel, D.: The Web Service Modeling Lan-

guage WSML: An Overview. DERI Technical Report, June 16 (2005)

 Discovering Semantic Web Services with Process Specifications 127

9. Paolucci, M., Sycara, K.: UDDI Spec TC V4 Proposal Semantic Search (online). (2004).
http://www.oasis-open.org/committees/uddi-spec/doc/req/uddi-spec-tc-req029-
semanticsearch-20040308.doc

10. Trastour, D., Bartolini, C., Gonzalez-Castillo, J.: A Semantic Web Approach to Service
Description for Matchmaking of Services. In: Proceedings of the International Semantic
Web Working Symposium (SWWS’01) (2001)

11. Paolucci, M. et al.: Semantic Matching of Web Services Capabilities. In: Proceedings of
the 1st International Semantic Web Conference (ISWC 2002), Sardinia (Italy), Lecture
Notes in Computer Science, Vol. 2342. Springer Verlag (2002)

12. Sivashanmugan, K., Verma, K., Sheth, A., Miller, J.: Adding Semantics to Web Services
Standards. In: Proceedings of the International Conference on Web Services (2003)

13. Srinivasan, N., Paolucci, M., Sycara, K.: An Efficient Algorithm for OWL-S
Based Semantic Search in UDDI. In: Proceedings of 1st International Workshop on Se-
mantic Web Services and Web Process Composition (SWSWPC 2004), San Diego, CA,
USA, July 6, (2004)

14. Klein, M., Bernstein, A.: Searching for Services on the Semantic Web Using Process On-
tologies. The Emerging Semantic Web – Selected papers from 1st Semantic Web Working
Symposium. I. Cruz et al. (Eds.) IOS press, Amsterdam (2002) 159-172

15. Klusch, M., Gerber, A., Schmidt, M.: Semantic Web Service Composition Planning with
OWLS-Xplan. In: Proceedings of 1st Intl. AAAI Fall Symposium on Agents and the Se-
mantic Web, Arlington, VA, USA, AAAI Press (2005)

16. Sirin, E., Parsia, B.: Planning for Semantic Web Services. In Proceedings of Semantic
Web Services Workshop at 3rd International Semantic Web Conference (ISWC’04) (2004)

17. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.: SWRL: A
Semantic Web Rule Language combining OWL and RuleML. (Online). (2003).
http://daml.org/2003/11/swrl/

18. Li, L., Horrocks, I.: A Software Framework for Matchmaking Based on Semantic Web
Technology. In: Proceedings of 12th International World Wide Web Conference (2003)

19. Jess the Rule Engine for the JAVATM Platform. (online).
http://herzberg.ca.sandia.gov/ jess

20. Havey, M.: Essential Business Process Modeling. O’Rielly (2005)
21. Barros, O. H.: Business Information System Design Based on Process Patterns and

Frameworks. (online). (2004). http://www.bptrends.com
22. Jena Semantic Web Framework: Jena. (online). http://jena.sourceforge.net/ index.html

F. Eliassen and A. Montresor (Eds.): DAIS 2006, LNCS 4025, pp. 128 – 137, 2006.
© IFIP International Federation for Information Processing 2006

Towards Building a Semantic Grid for E-Learning

Wenya Tian1,2 and Huajun Chen2

1 Information Technology Department, Zhejiang Economic & Trade Polytechnic,
Hangzhou 310018, China

2 Grid Computing Lab, College of Computer Science, Zhejiang University,
Hangzhou 310027, China

Tianweny@163.com, huajunsir@zju.edu.cn

Abstract. In an E-learning scenario, educational resources, such as course
documents, videos, test-bases, courseware, and teacher information etc., are
shared across different schools. DartGrid is built upon several techniques from
both Semantic Web and Grid research areas, and is intended to offer a semantic
grid toolkit for data integration. In this paper, a Semantic Grid for E-leaning
based on DartGrid is introduced, and it provides a Semantic-based distributed
infrastructure for E-learning resource sharing. We explore the essential and
fundamental roles played by RDF semantics for e-learning, and implement a set
of semantically enabled tools and grid services for E-learning such as semantic
browser, ontology service, semantic query service, and semantic registration
service.

1 Introduction

Facilities to put machine-understandable data on the Web are becoming a high
priority for many communities. The Semantic Web is an effort to improve the current
Web by making Web resources machine-understandable because current Web
resources do not reflect machine-understandable semantics [5,6]. The Semantic Web
[3] provides a common framework that allows data to be shared and reused across
applications, enterprises, and community boundaries. It is based on the Resource
Description Framework (RDF), which integrates a variety of applications using XML
as syntax and URIs for naming.

The Grid [1] is aimed to connect a wide variety of geographically distributed
resources such as Personal Computers, workstations and clusters, storage systems,
data sources, databases and special purpose scientific instruments and presents them
as an integrated resource, and it is a technology that enables distributed computing
resources to be shared, managed, coordinated, and controlled.

The Semantic Grid [4] is an Internet-centered interconnection environment that can
effectively organizes, shares, clusters, fuses, and manages globally distributed
versatile resources based on the interconnection semantics. In short, the Semantic
Grid [7] vision is to achieve a high degree of easy-to-use and seamless automation to
facilitate flexible collaborations and computations on a global scale, by means of
machine-understandable knowledge both on and in the Grid.

 Towards Building a Semantic Grid for E-Learning 129

In an E-learning scenario nowadays, educational resources, such as course
documents, videos, test-bases, courseware, and teacher information etc, are shared
across different colleges. Typically, teachers from many colleges in different district
collaborate with each other for teaching. E-learning is the result of the development of
modern information technology, and it is the primary method of building life long
people education system during the knowledge economy age. E-learning gives
students the freedom to study anytime and anywhere and is widely developed and
deployed in our country recently. In E-learning, we often need to integrate E-learning
services across distributed, heterogeneous, dynamic “virtual organizations” formed by
the disparate education resources within a single enterprise and/or from external
education resource sharing via service provider relationships. This integration can be
technically challenging because of the need to achieve various qualities of E-learning
service when running on top of different scholastic platforms.

DartGrid1 is a data integration toolkit using technologies from semantic web and
grid, and is intended to offer a generic semantic infrastructure for building database
grid applications. Roughly speaking, DartGrid is a set of semantically enabled tools
and grid services such as semantic browser, semantic mapping tools, ontology
service, semantic query service, semantic registration service, that support the
development of database grid applications.

In this paper, a Semantic Grid for E-leaning based on DartGrid is introduced, and it
provides a Semantically distributed infrastructure for E-learning scenarios
aforementioned. We explore the essential and fundamental roles played by RDF
semantics for E-learning grids, and implement a set of semantically enabled tools and
grid services for E-learning resource sharing such as semantic browser, ontology
service, semantic query service, and semantic registration service.

This paper is outlined as below: Section 2 introduces the architecture and the core
components of a Semantic Grid for E-leaning from technical perspective. Section 3
introduces a working scenario for the E-learning grid application. Section 4 mentions
some related works. Section 5 gives the summary.

2 Layered Architecture and Core Grid Services

2.1 Technical Approach

2.1.1 RDF
At the present time, the most popular languages for representing data semantics are
RDF framework and OWL language, which is proposed in Semantic Web research
area and standardize-ed by W3C organization. The Resource Description Framework
(RDF) is a language for representing web information in a minimally constraining,
extensible, but meaningful way.

The RDF structure is generic in the sense that it is based on the directed acyclic
graph (DAG) model. RDF is based on the idea of identifying things using Web
identifiers (called Uniform Resource Identifiers, or URIs), and describing resources in
terms of simple statements about the properties of resources. Each statement is a

1 DartGrid Official Website: http://ccnt.zju.edu.cn/projects/dartgrid

130 W. Tian and H. Chen

triplet consisting of a subject, a property and a property value (or object). For
example, the triple ("http://example.org", ex:createdBy, "Wenya") has the meaning of
"http://www.example has a creator whose value is Wenya".

RDF also provides a means of defining classes of resources and properties. These
classes are used to build statements that assert facts about resources. While the
grammar for XML documents is defined using DTD or XSchema, RDF uses its own
syntax (RDF Schema or RDFS) for writing a schema for resources. RDFS is
expressive and it includes subclass/superclass relationships as well as constraints on
the statements that can be made in a document according to the schema. The generic
structure of RDF makes data interoperability and evolution easier to handle different
types of data can be represented using the common graph model, and it offers greater
value for data integration over disparate web sources of information. OWL is an
extension of RDF/RDFS and supports more sophisticated knowledge representation
and inference.

In our work, RDF is used to describe E-Learning data semantics.

2.1.2 OGSA/WSRF and the Globus Toolkit
OGSA/Web Service Resource Framework focuses on service- oriented architecture
for grid application. In a grid, computational resources, storage resources, networks,
programs, databases, and the like are all represented as services. A service-oriented
view allows us to address the need for standard interface definition mechanisms,
local/remote transparency, and adaptation to local OS services, and uniform service
semantics.

The open source Globus Toolkit [20] is a fundamental enabling technology for the
"Grid," letting people share computing power, databases, and other tools securely
online across corporate, institutional, and geographic boundaries without sacrificing
local autonomy. The toolkit includes software services and libraries for resource
monitoring, discovery, and management, plus security and file management.

The Globus Toolkit is built to remove obstacles that prevent seamless collaboration.
Its core services, interfaces and protocols allow users to access remote resources as if
they were within their own machine room while simultaneously preserving local control
over who can use resources and when. The toolkit components that are most relevant to
OGSA are the Grid Resource Allocation and Management (GRAM) protocol and its
“gatekeeper” service, which provides for secure, reliable, service creation and
management [22]; the Meta Directory Service (MDS-2) [21], which provides for
information discovery through soft state registration [23, 11], data modeling, and a local
registry (“GRAM reporter” [22]); and the Grid Security Infrastructure (GSI), which
supports single sign on, delegation, and credential mapping.

In our work, the E-Learning services conform to the OGSA/WSRF specification,
and are implemented upon Globus 4 toolkit. Globus 4 is also used as the service
container for the E-learning grid application.

2.2 Layered Architecture

Fig.1. illustrates the layered architecture of E-learning Semantic Grid.

 Towards Building a Semantic Grid for E-Learning 131

Fig. 1. Layered Architecture of E-learning Semantic Grid

At the basic service layer, three services are implemented.

1. E-learning Database Access Service. It supports the typical remote operations on
educational resource contents, such as course documents, videos, test-bases, courseware,
and teacher information etc. It also includes querying an education resources, insertion an
education resources, deletion an education resources, and modification an education
resources.

2. E-learning Database Information Service. It supports inquiring about meta
information of the educational data resources such as DBMS descriptions, privilege
information, statistics information that includes CPU utilization, available storage
space, active session number etc..

3. E-learning Access Control Service. This service is developed for access control
in E-learning Semantic Grid. For example, it provides the service of authorizing or
authenticating students to access courseware resource.

We mainly contribute to the semantic service level. The services at this level are
mainly designed for RDF-based relational schema mediation and semantic query
processing.

1. E-learning Ontology Service. This service is used to expose the shared onto-
logies that are defined by RDF/OWL languages. The ontologies are used to mediate
heterogeneous relational databases. For example, there are two parts in the
courseware ontology. One part is defined based on CELTS or IMS. The other part is

132 W. Tian and H. Chen

defined as an extended set (Fig. 3.).The core set of CELTS has 11 elements as
follows: Title, Subject, Keywords, Description, Identifier, Format, Date, Language,
Type, Creator and Audience. The definition and determinant of these elements see
also CELTS40 [18]. The extended set involves general architecture information class
(FRAME) and page information class (PAGECONTENT).

2. E-learning Semantic Registration Service. Semantic registration establishes the
mappings from source relational schema to sharing RDF ontologies. Semantic
Registration Service maintains the mapping information and provides the service of
registering and inquiring about this information. For example, it provides the service
that enables teacher registering courseware and student inquiring about registration
information of courseware.

3. E-learning Semantic Query Service. This service accepts RDF semantic queries,
inquires of Semantic Registration Service to determine which databases are capable of
providing the answer, then rewrites the RDF queries according to relational schema,
namely, the RDF queries will be ultimately converted into a set of SQL queries. The
results of SQL queries will be wrapped by RDF/OWL semantics and returned as RDF
triples.

3 Working Scenario

3.1 Typical Use Cases of E-Learning Semantic Grid

Generally, there are two kinds of user roles in E-learning Semantic Grid, they are:
Local Database Administrator (such as teachers), and Normal User (such as students).
Fig.2. illustrates the relationship between these user roles and the core components of
E-learning Semantic Grid.

Local Database Administrator (such as teachers). Education resources can be
dynamically added into the sharing cycle of an e-learning semantic grid.
E-learning Semantic Grid provides the education resource provider (such as a
teacher) with a Semantic Mapping Tool. After a database grid service is setup, the
teacher can use semantic mapping tool to register his database to the semantic
grid. Typically, the mapping tool retrieves the e-learning ontologies from ontology
service, and gets the relational schema from database grid service. Then the DBA
can visually map the relational schema to e-learning ontologies. For example, the
process that a teacher registers a courseware to the Semantic Registration Service
is as follows:

1. Obtain the local database resource schema;
2. Obtain the domain ontologies on the ontology service;
3. Establish the semantic relational mapping between the local database resource

schema and the sharing ontologies;
4. Submit the registering information to the semantic registration service.

Section 3.2.2 introduces the semantic mapping tool in more details.

 Towards Building a Semantic Grid for E-Learning 133

Fig. 2. Mapping of E-learning Semantic Grid

Normal User (such as a student) for normal users, E-learning Semantic Grid offers
an intelligent user interface called Semantic Browser [8]. It is a visual interface
enabling the user to graphically browse the RDF/OWL semantics and visually
construct a RDF semantic query. For example, the process that a student inquires
about a courseware is as follows:

1. User browser the e-learning ontology by using the semantic browser;
2. User visually construct a semantic query;
3. User submit the query to a semantic query service;
4. The semantic query service accesses the Semantic Registration Service to

query the workable database resource and gets the schema mapping
information;

5. The semantic query service generates the distributed SQL Query plan;
6. The semantic query service gets the data information from the idiographic

database;
7. Return the result to the student.

134 W. Tian and H. Chen

Section 3.2.1 gives an example about how to construct a semantic query using
this tool.

3.2 Semantic Tools for E-learning Semantic Grid

Fig. 3. Semantic Browser and Semantic Registration Tool For E-learning Semantic Grid

3.2.1 Semantic Browser
E-learning Semantic Grid offers a semantic browser [8] enabling user to interactively
specify a semantic query. Users can search education information in E-learning
semantic grid. Although the information come from all nodes, it is done transparently
to users as if the user operates on the same database of the same computer.

For example, a user wants to search courseware with subject as “Java” from E-
learning Semantic Grid. Fig 3 illustrates an example with our application. It
showcases how users can step-by-step specify a semantic query to find out those
needed courseware. In the first step (the left part of the Fig.3.), the user selects the
courseware class and its subject property. In the second step, the user inputs a
constraint which specifies that the name of the subject as "Java”. The Semantic
Browser constructs the semantic query automatically. Here the query language is Q3
[15], a database query language like SQL semantically defined by Grid Computing
Lab of ZheJiang University. It is a visual process to write q3 in Semantic Browser.

The Q3 language is as following:
[q3:context
 [q3:prefix(tcm:http://dart.zju.edu.cn/tcm)
 q3:variable{
 ?x1 a tcm:PRO
 }
]
 q3:pattern ()
 q3:constraint{
 ?x1.tcm:Subject="Java"
 }]

Resources
register

Semantic
browse

 Towards Building a Semantic Grid for E-Learning 135

At last, the result (the above of the right part of Fig.3.) records come from all
databases of different nodes.

3.2.2 Semantic Registration
The task of defining semantic mapping from local relational schema to RDF
ontologies is burdensome and erroneous. E-learning Semantic Grid offers a visual
tool to facilitate the task of defining semantic mappings. As Fig.3 displays, the user
can use the registration panel (the below of the right part in the fig.3) to view the table
and column definition of the relational database, and use the semantic browsing panel
(the above of the right part in the fig.3) to browse the RDF ontologies graphically.
The user can then specify which RDF class one table should be mapped onto and
which RDF property one table column should be mapped onto. After finishing the
mapping, the tool automatically generates a registration entry in RDF/XML format,
and submits it to the semantic registration service.

For example, a teacher wants to register courseware recourses. The Semantic
Registration tool directly registers courseware resources to the Semantic Registration
Center. It is a semantic mapping from the local courseware resources to the sharing
semantic ontology.

During the registration, mapping information is written into a semantic registry.
The courseware resource content itself is not uploaded to the registration center or any
other centralized node. When the user searches resources, the Semantic Registration
Center will look up the result from the resource registration table. User will download
and browse the corresponding resources from the data node by linking it directly. The
way it works is very similar to other P2P mode. The registration interface shows
as Fig.3.

4 Related Work

There are a lot of relevant works. Within the domain of Grid research, there are many
efforts about accessing and integrating e-learning database under the grid framework.
Typical example is Realcourse [2]. Realcourse is a successful application of
distributed computing [13] technology in a geographically wide area. Different from
some traditional distributed fault-tolerant services like ISIS [14], Realcourse
emphasizes giving clients access to the service with reasonable response time. For
most cases, it means as much of the time as possible.

In [12], it is clear that standards like LOM, or Dublin Core are gaining importance.
They provide more information on the learning material that is to be found in the web.
However, their simple structure prevent them being used for modeling more complex
knowledge. [10] Explains how Semantic Web technologies based on ontologies can
improve different aspects of the management of E-Learning resources. Indeed,
ontologies are a means of specifying the concepts and their relationships in a
particular domain of interest. Web Ontology languages, like OWL, are specially
designed to facilitate the sharing of knowledge between actors [17] in a distributed
environment. We wish to emphasize here that Web Ontology languages have various
advantages.

136 W. Tian and H. Chen

The significant difference, compared with others, is the RDF-based and semantic-
web-oriented approach adopted in the Semantic Grid for E-learning. The Semantic
Grid for E-learning complements those efforts with a semantic infrastructure for
building database grid application and this infrastructure can provide information and
knowledge services as other conventional portals. In addition, the use of multiple
servers can semantically assist users in formulating their problem description,
searching possible solutions on the Grid.

5 Summary and Future Work

The Semantic Grid will play a very important role for the wide acceptance of the Grid
[9]. It will provide enhanced support for end users to access heterogeneous Grid
services and resources by understanding their domain problems and providing
solutions. We present a Semantic Grid for E-leaning based on DartGrid, and also put
forward a dynamic, extensible Semantic-based distributed infrastructure for E-
learning scenarios. We explore the essential and fundamental roles played by RDF
semantics for e-learning resource sharing, and implement a set of semantically
enabled tools and grid services for E-learning such as semantic browser, ontology
service, semantic query service, and semantic registration service.

There are more works need to be done in this area. Semantic Grid for E-leaning, a
DartGrid application, has many obvious attributes as a good test bed. As a typical
DartGrid application by its nature, it stores various data classes that can be collected
easily. Plus, the test result can be verified easily. The system needs to be further tested
with more data classes and more grid nodes. More features are needed for the
education resource management. In the meantime, DartGrid itself also needs to be
continuously improved for perfection. Now we have a working prototype of an open
education resource management system. The next step is to make it more powerful by
fine-tuning its operability. As far as education is concerned, it is important to manage
all education resources via the semantic grid for E-learning.

Acknowledgements

We gratefully acknowledge helpful discussions with other members in the Grid
Computing Lab of Zhejiang University. This work is co-funded by subprogram of
China 973 project (NO. 2003CB316906), a grant from Program for New Century
Excellent Talents in University of Ministry of Education of China (NO. NCET-
04-0545), China NSF program (NO. NSFC60503018), and Zhejiang Provincial
Natural Science Foundation of China (NO. Y105463) .

References

1. I. Foster, C. Kesselman, The Grid, Blueprint for a New Computing Infrastructure, Morgan
Kaufmann, San Francisco, USA, 1998

2. Jinyu Zhang, Xiaoming Li, The Model, Architecture and Mechanism Behind Realcourse,
ISPA 2004, LNCS 3358, pp. 615–624, 2004.

 Towards Building a Semantic Grid for E-Learning 137

3. http://news.11138.com/2001/sw/
4. H Zhuge, Semantic Grid: Scientific Issues, Infrastructure, and Methodology,

Communication of the ACM Vol. 48, No. 4(2005) 197
5. T. Berners-Lee, J. Hendler, O. Lassila, Semantic Web, Sci. Am. 284 (5) (2001) 34–43.
6. J. Hendler, Agents and the semantic web, IEEE Intell. Syst. 16 (2) (2001) 30–37.
7. D. de Roure, N. R. Jennings and N. Shadbolt (2003) "The Semantic Grid: A future

eScience infrastructure" Int. J. of Concurrency and Computation: Practice and Experience
15 (11)

8. Yuxin Mao, ZhaohuiWu, Huajun Chen. Semantic Browser: an Intelligent Client for Dart-
Grid. Proceedings of International Conference on Computational Science (Lecture Notes
in Computer Science, vol. 3036) , Springer:Berlin, 2004; 470-473.

9. M. Li, P. van Santen, D.W. Walker, O.F. Rana, M.A. Baker,SGrid: a service-oriented
model for the Semantic Grid, Future Generation Computer Systems 20 (2004) 7–18

10. Ljiljana Stojanovic, Steffen Staab, and Rudi Studer. E-learning based on the semantic web.
In WebNet2001 - World Conference on the WWW and Internet, Orlando, Florida, USA,
2001.

11. Zhang, L., Braden, B., Estrin, D., Herzog, S. and Jamin, S., RSVP: A new Resource
ReSerVation Protocol. In IEEE Network, (1993), 8-18

12. Jan Brase and Wolfgang Nejdl. Ontologies and Metadata for eLearning, pages 579–598.
Springer Verlag, 2003.

13. George Coulouris, Jean Dollimore, Tim Kindberg, Distributed System Concepts and
Design (Third version), ISBN 7-111-11749-2, China Machine Press

14. Birman, K.P. (1993). The process group approach to reliable distributed computing.
Comms. ACM, Vol. 36, No. 12, pp. 36-53

15. Huajun Chen, Zhaohui Wu, Guozhou Zheng, Yuxing Mao. DartGrid: a Semantic-based
Approach for Data Integration Using Grid as the Platform

16. Christian Bizer, Andy Seaborne. D2RQ -Treating Non-RDF Databases as Virtual RDF
Graphs. Presented at the 3rd International Semantic Web Conference (ISWC2004),November
2004.

17. Rudi Studer Steffen Staab, Hans-Peter Schnurr and York Sure. Knowledge processes and
ontologies. IEEE Intelligent Systems, 16(1), 2001.

18. China ELearning Technology Standardization Committee, Education Informationize
Technology Standard�http://www.celtsc.edu.cn sub standard CELTS-40

19. Foster, I. and Kesselman, C. Globus: A Toolkit-Based Grid Architecture. In Foster, I. and
Kesselman, C. eds. The Grid: Blueprint for a New Computing Infrastructure, Morgan
Kaufmann, 1999, 259-278.

20. http://www.globus.org/toolkit/about.html
21. Czajkowski, K., Fitzgerald, S., Foster, I. and Kesselman, C., Grid Information Services for

Distributed Resource Sharing. In 10th IEEE International Symposium on High
Performance Distributed Computing, (2001), IEEE Press, 181-184

22. Czajkowski, K., Foster, I., Karonis, N., Kesselman, C., Martin, S., Smith, W. and Tuecke,
S. A Resource Management Architecture for Metacomputing Systems. In 4th Workshop
on Job Scheduling Strategies for Parallel Processing, Springer-Verlag, 1998, 62-82.

23. Raman, S. and McCanne, S. A Model, Analysis, and Protocol Framework for Soft State-
based Communication. Computer Communication Review, 29 (4). 1999.

A Code Migration Framework for
AJAX Applications

Arno Puder

San Francisco State University
Computer Science Department

1600 Holloway Avenue
San Francisco, CA 94132

arno@sfsu.edu

Abstract. AJAX (Asynchronous JavaScript and XML) defines a new
paradigm for writing highly interactive web applications. Prominent web
sites such as Google Maps have made AJAX popular. Writing AJAX
applications requires intimate knowledge of JavaScript since it is difficult
to write cross-browser portable JavaScript applications. In this paper
we first discuss the benefits of AJAX compared to other technologies
such as Java applets. Then we propose a code migration framework that
allows the programmer to write AJAX applications in Java. The Java
application is automatically translated to JavaScript and migrated to the
browser for execution. Our approach requires no knowledge of JavaScript.
As web applications are written in Java, the developer benefits from
powerful debugging tools that are not available for JavaScript. We have
implemented a prototype that demonstrates the feasibility of our ideas.
The prototype is available under an Open Source license.

1 Motivation

The initial intend of the World-Wide Wide (WWW) was to give access to re-
mote documents. This document centric view soon proved to be insufficient as
eCommerce recognized the potential of the new media. Subsequently, HTML
was extended to allow the description of user interfaces based on web forms.
The web browser thus assumed the role of a generic client that is capable to ren-
der a priori unknown user interfaces. The technologies of the WWW therefore
have changed from being document centric to operational interaction centric.
Numerous technologies came into existence to facilitate the development of web
applications. Java Server Pages (JSP), PHP Hypertext Processor (PHP), and
Struts are only few of those technologies.

Despite these new technologies, the user is very much aware of latencies be-
cause web applications are still based on web pages (i.e., user interfaces) be-
ing loaded from a remote web server. A light-weight scripting language called
JavaScript was introduced by Netscape in 1995 mainly for doing some user input
validation that does not require interaction with a remote web server. This can
already be seen as the first step towards migrating part of the application logic
to the web browser.

F. Eliassen and A. Montresor (Eds.): DAIS 2006, LNCS 4025, pp. 138–151, 2006.
c© IFIP International Federation for Information Processing 2006

A Code Migration Framework for AJAX Applications 139

Other technologies such as Java applets have attempted to become a standard
for client-side processing, but they could not establish themselves mostly because
of political issues between different vendors. The lowest common denominator
today for writing client-side applications that can run inside any web browser
without requiring any additional browser plugins is thus JavaScript. It is in this
context that AJAX (Asynchronous JavaScript and XML) has emerged as a new
paradigm for writing highly-interactive web applications.

At the core of AJAX is JavaScript and writing an AJAX application thus
requires intimate knowledge of JavaScript. Matters become more complicated
by the fact that writing portable JavaScript that runs in all major browsers such
as Internet Explorer (IE) or Firefox is a daunting task. One of those problems is
the lack of powerful development tools for JavaScript. This paper introduces a
new approach for facilitating the creation of AJAX application based on a code
migration framework. The outline of this paper is as follows: Section 2 gives
a proper definition of AJAX and also discusses the difficulties in writing an
AJAX application. Section 3 introduces our code migration framework. Section
4 discusses our prototype implementation while in Section 5 we discuss related
work. Section 6 finally provides a conclusion and an outlook.

2 AJAX

In this section we first provide an introduction to AJAX (Section 2.1), explain
the benefits of AJAX (Section 2.2), and finally why it is so difficult to write
AJAX applications (Section 2.3).

2.1 Overview of AJAX

The term AJAX was first coined in [5]. The author of this article attempted to
describe a new class of web applications that differ significantly from previous
technologies such as PHP, JSP, or Struts. Figure 1 demonstrates this difference.
The left side of this figure shows the traditional way of implementing web appli-
cations. The web browser is used for rendering the user interface, typically a web
form that the user can populate. Apart simple input validation, no processing
happens during this phase. Once the user presses the submit button, the form is
sent via an HTTP request to the server. Upon unmarshalling the data, the web
application running on the side of the web server computes a new HTML page
that is sent back to the browser. While the browser is waiting for that response,
the user cannot use the interface.

The right hand side of Figure 1 shows how AJAX changes this picture. The
main difference is that AJAX application make use of the JavaScript interpreter
that is contained in every popular web browser. Part of the application logic
is thus implemented in JavaScript and executed on the side of the client. All
browsers support the so-called XMLHttpRequest object that allows JavaScript
to issue a HTTP request to the remote web server. The user can continuously
interact with the application as shown in the figure. Event handler invoke ap-
propriate JavaScript functions that use the DOM (Document Object Model) to

140 A. Puder

Fig. 1. Traditional web application vs. AJAX

make fine-grained updates to the user interface without requiring complete page
reloads as in the traditional model.

The asynchronous nature of AJAX applications refers to the fact that the
JavaScript code may issue HTTP requests independent of user interaction. This
makes it possible to do processing in the background without the user having
to wait for a response from the web server. All parameters and responses have
to be marshalled in a way so they can be piggy-backed on HTTP requests and
responses. One obvious choice is XML as all popular browsers include XML
parsers that make the marshalling and unmarshalling of parameters relatively
simple.

2.2 AJAX vs. Other Technologies

AJAX allows the execution of application logic inside the browser. This increases
interactivity of web application dramatically compared to the submit-and-page-
reload paradigm. By doing so, AJAX applications get closer to the look-and-
feel of desktop applications and some analysts already foresee the browser as
the next-generation desktop replacement that could even threaten Microsofts
monopoly. Whether or not this vision will come true, it can certainly be expected
that more and more web applications will want to employ AJAX technologies.

AJAX makes use of the fact that JavaScript interpreters are ubiquitous in all
popular web browser. Moving application logic to the client side is not new.
One of the promises of the Java programming language was to enable web

A Code Migration Framework for AJAX Applications 141

applications in a similar way as AJAX through Java applets. A Java applet is
a Java application running inside the browser. It is therefore possible to achieve
the same effect with applets as with AJAX applications. While Java is a much
more mature language than JavaScript with a more powerful GUI library, the
major downside of applets is that they require a Java Runtime Environment
(JRE) plugin for the respective browser. This requires the end-user to download
the plugin which creates an additional burden for the end-user.

Given a choice, end-users either intentionally or unintentionally choose not
to install additional software if they have an already existing solution and the
benefits of the alternative are not immediately apparent. As a specific example
of the reluctance of end-users to explicitly install software can be seen by the
proportion of Windows users who use IE, despite security issues compared to
other browsers. IE currently owns more than 85% of the market share (see [9]),
primarily because it is bundled along with Windows. If end-users are reluctant
or simply do not bother to use easy-to-install software such as alternate web
browsers, they are usually not willing to install a Java Runtime Environment.
This accounts for the fact that AJAX has become so popular because it only
uses the lowest common denominator available in virtually all web browsers.

2.3 Writing AJAX Applications

As outlined above, writing AJAX applications therefore requires JavaScript to
achieve the interactiveness desired by the latest generation of web applications.
JavaScript was created by Netscape and was first incorporated in Netscapes
browser version 2.0. The rationale behind JavaScript was to make Navigator’s
newly added Java support more accessible to non-Java programmers. The design
goals of JavaScript therefore focused on a loosely-typed scripting language suited
the environment and audience, namely the few thousand web designers and
developers back in 1995 who needed to be able to tie into page elements without
a bytecode compiler or knowledge of object-oriented software design.

Microsoft released a port of JavaScript called JScript with IE 3.0. JScript was
one revision behind Navigator’s JavaScript that made it difficult already back
then to write cross-browser portable JavaScript. In 1997, the European Com-
puter Manufacturers Association (ECMA) standardized a universally supported
core functionality called ECMAScript (see [3]). Despite this standardization ef-
fort, support for JavaScript is not as homogeneous as one might wish. Writing
portable JavaScript for all major browsers still requires intimate knowledge of
the different object models.

There are many pitfalls that a JavaScript programmer has to deal with to-
day. First and foremost, there are no powerful development tools available for
JavaScript. Mozilla offers a debugger, but IE merely indicates by an alert icon in
the status bar when something went wrong. Other issues in creating JavaScript
applications has to do with differences in the JavaScript object model supported
by various browsers. Sometimes events such as mouse events are offered from
inner-most nested elements to top-level elements (called Event Bubbling and
supported by IE); sometimes events are offered elements in the reverse order

142 A. Puder

(called Event Capturing and supported by Netscape/Mozilla). Advanced event
models such as Event Listeners that allow the registration of multiple listeners
for one particular event are not supported sufficiently in IE. The author of [6]
gives a more comprehensive list of issues.

This is only a short list of the problems that one will likely encounter when de-
veloping AJAX applications. These issues combined with the fact that JavaScript
supports object-oriented programming only through conventions and clever pro-
gramming tricks (e.g., to achieve the effect of inheritance one has to change the
prototype of the derived class) will place a high burden on anyone interested in
creating AJAX applications. The main idea of this paper is that a programmer
can write an AJAX application without requiring any knowledge of JavaScript.
Our approach is outlined in the following.

3 Framework

This section gives a detailed description of our framework. At its core is a code
migration framework that shields the programmer from the complexities of writ-
ing JavaScript applications. A developer can write an AJAX web application in
Java benefiting from powerful and mature tools and then migrate the code to
JavaScript. In Section 3.1 we briefly state our assumptions that guide the design
of our framework. Section 3.2 then introduces XMLVM, an XML-based program-
ming language that is at the core of our code migration framework. Section 3.3
then shows how to create JavaScript out of XMLVM. In Section 3.4 we finally
describe the underlying architecture of our framework.

3.1 Assumptions

Before describing the details of our approach, we first explicitly state the as-
sumptions that will influence some design decisions of our framework:

Universal access: We assume that potentially any user in the WWW might
be using the web application.

No special browser plugins: In order to support universal access, we do not
assume any special browser plugins such as the Java Runtime Environment.

Web applications using Java: We assume that the programmer is using Java
(not JavaScript) as the programming language of choice to write his or her
web application.

Self-contained applications: For now, we only consider self-contained appli-
cations that have no dependencies to external resources such as databases.

No JavaScript knowledge necessary: The programmer does not need
to know any JavaScript in order to develop AJAX-enabled web applications.

The reason for assuming universal access to a web application is that it is
generally much simpler to develop a web application for a closed environment.

A Code Migration Framework for AJAX Applications 143

Corporate intranets for example typically enforce the use of a particular
desktop configuration. AJAX should only be considered in heterogeneous en-
vironments. The assumptions stated above basically lead to a development en-
vironment where the programmer is shielded from JavaScript. Since we do not
assume any special browser plugins, but yet allow the programmer to imple-
ment his or her program in Java, we need a code migration framework that can
translate and migrate the Java application to JavaScript.

3.2 XMLVM

As a first step towards our code migration framework for AJAX applications, we
begin by defining an XML-based programming language. In this section we focus
on describing the details of this language and defer the usage of this language
to a subsequent section. Since this XML-based programming language is based
on the Java virtual machine, we call this language XMLVM. XMLVM basically
allows us to represent the contents of a class file (i.e., the output generated by a
Java-compiler) through XML. Another way to look at XMLVM is that it defines
an assembly language for the Java virtual machine using XML for the syntax.
The object model of XMLVM is consequently based on the object model of Java.
The virtual machine model of XMLVM is shown in Figure 2.

The XMLVM program shown in Figure 2 contains the instructions of a method
to be executed. These instructions are essentially the byte code instructions sup-
ported by the Java virtual machine. The virtual machine maintains an instruc-
tion pointer to the next instruction to be executed. Upon entering a method, a
new frame consisting of a stack and local variables is created. This frame will
be deleted upon exiting the method. The virtual machine maintains a pointer to

Fig. 2. XMLVM Virtual Machine Model

144 A. Puder

the current frame (which represents the most nested method call). A method has
only access to its own stack and local variables as well as the global heap. The
actual parameters of a method are automatically stored in the local variables.
Besides the stack frames, the virtual machine maintains a garbage collected
global heap where a program can allocate new objects. The following template
shows the general structure of any XMLVM program:

1 <xmlvm>
2 <class ...>
3 <field .../>
4 <method ...>
5 <signature>...</signature>
6 <code>...</code>
7 </method>
8 </class>
9 </xmlvm>

An XMLVM program consists of one class. Every class can have one or more
fields and methods. The attributes of the XML-tags, that are not shown in the
template above, give more details such as identifiers or modifiers. A method is
defined through a signature and the actual implementation, denoted by the tags
<signature> and <code> respectively. Consider the following simple Java-
class:

1 // Java
2 class Calc {
3 int x;
4 void add(int y)
5 {
6 x += y;
7 }
8 }

Class Calc has one field called x and one method called add. The method
adds the actual parameter given to it to the field x. Although this is a very
simple example, it allows us to show all basic aspects of an XMLVM program.
The following XML shows the representation of class Calc in XMLVM:

1 <xmlvm>
2 <class name="Calc">
3 <field name="x" type="int"/>
4 <method name="add" stack="3" locals="2">
5 <signature>
6 <return type="void"/>
7 <parameter type="int"/>
8 </signature>

A Code Migration Framework for AJAX Applications 145

9 <code>
10 <load type="Calc" index="0"/>
11 <dup/>
12 <getfield class-type="Calc" type="int" field="x"/>
13 <load type="int" index="1"/>
14 <add/>
15 <putfield class-type="Calc" type="int" field="x"/>
16 <return/>
17 </code>
18 </method>
19 </class>
20 </xmlvm>

It should be emphasized again that the above XMLVM program is essentially
an XML-representation of the contents of the Calc.class class file. The top-level
tags are identical to the XML-template shown earlier. The <method>-tag has
two attributes: stack and locals. stack tells the virtual machine the maximum
stack-size needed for this method. In this example, method add will never push
more than 3 elements at the same time onto its stack. The locals attribute tells
the virtual machine how many local variables are needed for this method. The
first local variable always represents the this-pointer. The next local variables
represent the actual parameters. Since method add has only one input parameter
and no additional local variables, the locals attribute is 2. Note that the Java
compiler computes the values for stack and locals and stores them in the
class file.

The more interesting part of the XMLVM-program shown above is the ac-
tual implementation of method add. The <load> instruction pushes the this-
pointer referred to by local variable with index 0 onto the stack. Instruction
<dup> duplicates the top of the stack so that the this-pointer now is pushed
twice on the stack. <getfield> pushes the current value of field x onto the
stack. Since every instance of class Calc has its own field x, <getfield> needs
a reference to the instance whose field x should be pushed onto the stack. This
reference has to be on the top of the stack. <getfield> pops off the reference
and replaces it with the value of field x. After this instruction, the stack contains
the this-pointer and the value of field x.

The next instruction <load> pushes the actual parameter y (referenced
through local variable index 1) onto the stack. The top two elements of the
stack are now the values to be added. The following instruction <add> pops off
the last two values and pushes their sum back onto the stack. At this point, the
stack contains the this-pointer as well as the sum. The <putfield> instruction
works similarly as the <getfield> instruction, except that a value is written
back to a field. After this instruction, the stack is empty. The final instruction
<return> exits the method.

The XMLVM instruction set feature a mix of low-level and high-level vir-
tual machine instructions. Next to the low-level instructions mentioned above,
there exist high-level instructions such as new (for instantiating new objects)

146 A. Puder

Table 1. Representative XMLVM instructions

Instr. Stack
<add> . . . , value1, value2 ⇒ . . . , result

<getfield> . . . , objref ⇒ . . . , value

<putfield> . . . , objref, value ⇒ . . .

<load> . . . ⇒ . . . , value

<new> . . . ⇒ . . . , objref

<invokevirtual> . . . , objref, [arg1, [arg2, . . .]] ⇒ . . .

and invokevirtual (invoke a virtual method). These instructions go beyond
the capabilities of normal (hardware) machine languages and therefore require
substantial runtime support. Table 1 gives an overview of some of the instruc-
tions found in XMLVM. The table shows how the instructions introduced in
this section affect the stack by showing the stack before and after the respective
instruction.

3.3 Language Transformation

As stated earlier, XMLVM can be seen as an assembly language for the Java
virtual machine. The difficult part is done by a Java compiler. Once a class
file has been created as the result of the compilation process, it can be easily
translated to XMLVM simply by analyzing the contents of the class file. The next
step consists in translating XMLVM to JavaScript. This translation can be done
by an XSL-stylesheet that maps XMLVM-instructions one-to-one to the target
language. Since XMLVM is based on a simple stack-based machine, we simply
mimic a stack-machine in the target language. An example helps to illustrate
this approach. The XMLVM instruction <add> introduced earlier pops off two
values and pushes the sum back onto the stack. Here is the XSL-template that
creates JavaScript code for this instruction:

1 <xsl:template match="add">
2 <xsl:text>
3 __op2 = __stack[--__sp];
4 __op1 = __stack[--__sp];
5 __stack[__sp++] = __op1 + __op2;
6 </xsl:text>
7 </xsl:template>

We mimic the virtual machine of XMLVM via the variables locals (for
local variables), stack (for the stack), and sp (for the stack pointer). Vari-
ables op1 and op2 are used as temporary variables needed by some XMLVM-
instructions. Those variables are declared for every method. The code below
represents the JavaScript version of the class Calc introduced in Section 3.2:

A Code Migration Framework for AJAX Applications 147

1 // JavaScript generated by stylesheet
2 function Calc()
3 {
4 this.x = null;
5

6 this.add = function(__arg1)
7 {
8 var __locals = new Array(2);
9 var __stack = new Array(3);

10 var __sp = 0;
11 var __op1;
12 var __op2;
13 __locals[0] = this;
14 __locals[1] = __arg1;
15 __stack[__sp++] = __locals[0];
16 __op1 = __stack[__sp - 1];
17 __stack[__sp++] = __op1;
18 __op1 = __stack[--__sp];
19 __stack[__sp++] = __op1.x;
20 __stack[__sp++] = __locals[1];
21 __op2 = __stack[--__sp];
22 __op1 = __stack[--__sp];
23 __stack[__sp++] = __op1 + __op2;
24 __op2 = __stack[--__sp];
25 __op1 = __stack[--__sp];
26 __op1.x = __op2;
27 return;
28 }
29 }

The JavaScript code was generated automatically by applying an appropriate
XSL-stylesheet to the XMLVM version of class Calc. As can be seen, there is
a natural mapping from XMLVM to JavaScript. The intention is not to gener-
ate readable code, but correct code that uses the API of the target language.
It should also be obvious that the above JavaScript code will be less efficient
than the original Java program. Our assumption is that we do not migrate
computational heavy applications to the browser. By carefully designing the
XSL-stylesheet one can generate portable JavaScript.

3.4 Architecture

The description of the architecture that is to follow in this section, explains how
XMLVM is embedded in an infrastructure for the code migration framework. As
shown in Figure 3, the main component is a Web Container that serves as an
HTTP server towards the web browser. The URL used to contact the Web Con-
tainer encodes a bootstrap web page as well as the application that is to be exe-
cuted as an AJAX application. As shown in Figure 3, the web page index.html
will be returned to the browser. This page has the following simple structure:

148 A. Puder

1 <html>
2 <head>
3 <script type="text/javascript" src="xmlvm.js"/>
4 </head>
5 <body onLoad="bootXMLVM()">
6 <div id="AJAX_APP"/>
7 </body>
8 </html>

Fig. 3. Architecture

The header of this page includes a JavaScript file called xmlvm.js that con-
tains a JavaScript version of the runtime library required by the application.
Without this library, running the application would result in unresolved exter-
nals. The <body> tag will invoke function bootXMLVM() once index.html has
been successfully loaded. This function, which is defined in xmlvm.js, will parse
the URL and retrieve the APP parameter (Calculator.class in this example).
bootXMLVM() will then issue an HTTP request containing the application to be
loaded to the Web Container. Upon receiving this request, the Web Container
uses XMLVM to create a JavaScript version of Calculator.class that is being
returned to the browser where it will be executed. The application will render
itself in a visual placeholder denoted by the <div> element with ID AJAX APP
in the index.html page shown above.

4 Prototype Implementation

We have implemented a prototype based on the ideas outlined in the previous
section to show the feasibility of our approach. We have leveraged as many Open
Source tools as possible. The Web Container is implemented using a light-weight
HTTP engine called Simple (see [4]). We use the Byte Code Engineering Library
(BCEL) from the Apache Foundation (see [2]) to inspect the contents of a Java

A Code Migration Framework for AJAX Applications 149

class file. Using BCEL, it is relatively easy to translate a class-file to XMLVM.
We have implemented an XSLT stylesheet to translate XMLVM to JavaScript.
Furthermore we have implemented a rudimentary JavaScript library for certain
Java-API that are used in the example explained below.

To test our framework, we have implemented a calculator using Sun’s Abstract
Windowing Toolkit (AWT). The calculator, which is shown on the left side
of Figure 4, allows simple mathematical operations. The source code of the
application is 322 lines of Java. The screenshot on the left-hand side of Figure 4
shows the desktop version of the calculator. Even this simple application makes
use of several external classes such as widgets (e.g., Buttons, Labels), Layout
Managers, and utility classes (e.g., String and Float).

The class file of this Java application results in 1920 lines of XMLVM. Af-
ter applying the stylesheet, the resulting JavaScript is 1693 lines of code. The
xmlvm.js library, which implements all the API that is needed by the calcula-
tor, adds up to another 1210 lines of JavaScript code. The right side of Figure 4
shows the calculator as an AJAX application running inside Firefox. The buttons
shown on the right side are HTML-buttons created by the AJAX application.

The xmlvm.js library contains implementation for all external references of
our calculator application. These external dependencies include JavaScript im-
plementations for java.awt.Button, java.awt.Panel, java.awt.BagLayout,
java.lang.String,java.lang.Float, and several other classes. The JavaScript
version of these classes is semantically equivalent to their Java counterparts.
The JavaScript version of java.awt.Button for example has the same API as
its Java counterpart, but will draw an HTML button inside the browser at the
appropriate location using CSS.

Fig. 4. Calculator as an AWT and AJAX application

150 A. Puder

Ideally, xmlvm.js should contain JavaScript implementations for the complete
Java Runtime Library. Currently, xmlvm.js is hand-coded, specifically for the
needs of our calculator application. Since the majority of the Java Runtime
Library is itself written in Java, it is possible to automatically convert those class
files via XMLVM to JavaScript. The only portions of the Java Runtime Library
that would need to be hand-coded are JNI (Java Native Interface) calls. It is to
be noted that while we believe that the majority of the Java Runtime Library
can thus be automatically translated to JavaScript, this will not be possible for
certain features. For example, threads cannot be supported in JavaScript since
none of the JavaScript interpreters allow multithreaded applications.

5 Related Work

Several projects – commercial and Open Source – exist that aim at providing
an easy migration path for legacy Java applications to web applications. Web-
Cream is a commercial product by a company called CreamTec (see [1]). They
have specialized in providing AWT and Swing replacements that render the in-
terface of the Java application inside of a web browser. WebCream makes use
of proprietary features of Microsoft’s Internet Explorer and therefore only runs
inside this browser.

Two Open Source projects, both hosted at SourceForge, follow the same idea of
exposing Java desktop applications as web applications. The first one is called We-
bOnSwing (see [8]). Unlike WebCream, this project is not tailored for a particular
browser. One feature offered by WebOnSwing are templates that allow to change
the look-and-feel of the application that is rendered inside the browser. Another
project with similar features, but not quite as mature, is SwingWeb (see [7]).

The major difference between these approaches and the one introduced in this
paper is that none of them supports code migration. While the user interface
rendered inside the browser looks similar, every event such as pushing a button,
requires an HTTP request to the remote server. Migrating the application logic
to the browser dramatically increases the responsiveness of the application while
reducing the load on the remote server.

6 Conclusion and Outlook

AJAX applications have gained prominence as their interactiveness rivals that
of desktop applications. Writing portable JavaScript is a difficult task due to
the fact of cross-browser incompatibilities as well as lack of powerful develop-
ment tools for JavaScript. In this paper we propose a code migration framework
that would allow a programmer to write a web application in Java. Using our
framework, the Java application can be translated to JavaScript and executed
inside any browser. The prototype implementation is released under the GNU
GPL and is available at www.xml11.org. This web site also hosts the calculator
demo discussed earlier.

A Code Migration Framework for AJAX Applications 151

As for the next step, we will investigate the dynamic translation of the Java
Runtime Library in order to avoid hand-coding this complex library. We also
plan to investigate the restriction of self-contained applications. Fixed resources
such as databases can obviously not be migrated. We therefore need to inves-
tigate a way to keep part of the application on the server side and use prox-
ies to communicate between the migrated and the stationary portions of the
application.

References

1. CreamTec, LLC. WebCream. http://www.creamtec.com/webcream/.
2. Markus Dahm. Byte code engineering. Java Informations Tage, pages 267–277,

1999.
3. European Computer Manufacturers Association. ECMAScript Language Specifica-

tion. http://www.ecma-international.org/publications/standards/Ecma-262.htm.
4. Niall Gallagher. Simple - A Java HTTP engine. http://sourceforge.net/projects/

simpleweb/.
5. Jesse Garrett. Ajax: A New Approach to Web Applications.

http://www. adaptivepath.com/publications/essays/archives/000385.php.
6. Peter-Paul Koch. Writing Portable JavaScript. http://www.quirksmode.org/.
7. Tiong Hiang Lee. SwingWeb. http://swingweb.sourceforge.net/swingweb/.
8. Fernando Petrola. WebOnSwing. http://webonswing.sourceforge.net/xoops/.
9. WebSideStory. U.S. Browser Usage Share. http://www.websidestory.com/.

F. Eliassen and A. Montresor (Eds.): DAIS 2006, LNCS 4025, pp. 152 – 168, 2006.
© IFIP International Federation for Information Processing 2006

High Performance SOAP Processing Driven by Data
Mapping Template

Wei Jun, Hua Lei, Niu Chunlei, and Zheng Haoran

Technology Center of Software Engineering, Institute of Software
Chinese Academy of Sciences, Beijing 100080, China

wj@otcaix.iscas.ac.cn

Abstract. Web Services, with loosely-coupled, high-interoperable and platform-
independent characteristics, is gaining popularity in distributed computing.
However, web services suffers performance penalty because its protocol stack is
based on XML. SOAP is used to specify wire message format in web services, and
SOAP processing largely affects the performance of web services. In this paper, we
firstly analyze the performance of web services on Java platform, and identify that
data model mapping between XML data and Java data is the main impact factor on
performance. Therefore, we propose a new scheme of data model mapping -
“Dynamic Early Binding” which enables to improve SOAP processing by avoiding
Java reflection operations and proactively generating processing codes. This
dynamic early binding is realized by Data Mapping Template (DMT), which is
specified by extended context free grammar and implemented by pushdown
automaton with output. We introduce the technique into our developed SOAP
engine – SOAPExpress. The effectiveness is illustrated by yielding over 100%
speedups compared to Apache Axis 1.2 in our benchmark.

1 Introduction

Recently, with the development and standardization of web services protocols such as
XML, SOAP and WSDL, a new distributed computing paradigm based on web
services is gaining momentum. Web services supplies the XML-based service
description, service registry and service invocation mechanisms, and solves the
interoperability problems between heterogeneous platforms.

Web services are platform-independent, high interoperable compared to other
distributed computing component models such as EJB, CORBA and DCOM.
However, web services suffers performance penalty which prevents it from widely
using in high performance computing. The performance of distributed system is
strongly determined by their wire format [1]. The traditional client-server commu-
nication paradigms such as RPC offer high performance, but these systems rely on the
assumption that communicating parities strictly abide certain protocol which causes
highly coupling; the distributed communication paradigm such as Java-RMI adopts
serialized object which lessens system coupling, but brings additional marshalling
costs; web services uses XML as the message format which realizes high
interoperability between heterogeneous platforms. However XML parsing and
marshalling dramatically decrease the system performance.

 High Performance SOAP Processing Driven by Data Mapping Template 153

SOAP protocol defines the message format of web services, which serves as the
basis of loosely-coupled, high interoperable web services. The core function
component of web services is SOAP Engine, which parses the XML-based SOAP
message and carries on the data model mapping between XML data and platform
dependent application data, so on. SOAP engine determines the performance of web
services. This paper will focus on how to speedup the data mapping between XML
data and Java data to improve the performance of SOAP engine.

We first analyze the performance of web services based on widely used SOAP
engine Apache Axis 1.2[2], and identify that data model mapping between XML data
and Java data is the main impact factor on performance.

Based on experiments, we propose a new data model mapping paradigm “Dynamic
Early Binding”. Dynamic Early Binding avoids the use of Java reflection by keeping
record of the mapping information and actions in dynamically generated template.
The template will be specified based on context-free grammar (CFG), and
implemented by pushdown automaton with output actions. We apply the Dynamic
Early Binding technique into a high performance SOAP Engine - SOAPExpress we
developed. The average SOAP processing performance of SOAPExpress is heavily
improved compared with Apache Axis 1.2.

This paper is structured as follows: First, we survey related works in section 2.
Section 3 analyzes the performance impact points in SOAP message processing,
introduces the performance-related techniques, and proposes the Dynamic Early
Binding technique. In section 4, we present the realization of Dynamic Early Binding
technique – Data Mapping Template (DMT) in detail. Section 5 introduces the
application of DMT in SOAPExpress, and illustrates that the DMT improves the
performance of SOAPExpress heavily on experiments. We conclude the paper and
discuss our future works in section 6.

2 Related Works

There have been several studies on the performance of the SOAP processing
[3],[4],[5],[6],[7]. These studies all agreed that XML based SOAP protocol incurred a
substantial performance penalty compared with binary protocols.

Davis conducted an experimental evaluation on the latency performance of various
SOAP implementations, comparing with other protocols such as Java RMI and
CORBA/IIOP [3]. A conclusion was drawn that two reasons may cause the inefficiency
of SOAP. One is about the multiple system calls to realize one logical message sending.
Another is about the XML parsing and formatting. The similar conclusion was drawn in
[4] by comparison with CORBA. Chiu et al. pointed put that the most critical bottleneck
in using SOAP for scientific computing is the conversion between floating point numbers
and their ASCII representations [5]. And Kohlhoff indicated that optimizing the SOAP
encoding and decoding will improve the performance of business application in the
context of web services [6]. Studies in [3],[4],[5],[6] all considered that besides XML
parsing, the transformations between XML data and application data are key impact
factor on SOAP performance. Ng et al. confirmed this conclusion by undertaking
benchmarks on commercial SOAP implementations [7].

154 J. Wei et al.

Bidirectional data mappings between XML data and Java data are also called
deserialization and serialization. They greatly affect the overall performance of SOAP
processing. In recent research, various mechanisms are utilized to optimize the
deserialization [8] and serialization [9]. In [8], rather than re-serializing each message
from scratch, a serialized XML message copy is saved in the sender’s stub, changes
for the next same type of message will be tracked, and saved copy is reused as a
template for the next sending. The serialization usually includes two processes, first
getting structured field value of application object, and then mapping field value into
XML data. In [8], several means were introduced to optimize the latter process, but
not mention the former. The approach in [9] reuses matching regions from the
previously deserialized application objects, and only performs deserialization for a
new region that has not been processed before. However, for large SOAP message,
especially for SOAP message whose data always changed with different sending, the
performance improvement of [9] will be decreased. Also, Java reflection is adopted
by [9] as a means to set and get new values, for large object, especially deeply nested
object, this will increase performance penalty.

3 Background on Web Services Performance

This section will first analyze the SOAP message processing on the server side, and
find the performance bottlenecks. Then we will introduce some basic techniques in
SOAP processing, which are the basis of our research work.

3.1 Analysis of Web Services Performance

We use Apache Axis 1.2, one of the most popular web services middleware systems
as our testing environment. Apache Axis works as a web application that is located in
a web container, so the web container carries on the work of receiving SOAP request
message and sending response message through HTTP protocol. Though the HTTP
protocol is a possible bottleneck for web services, we will not discuss the point in this
paper.

Fig. 1. SOAP processing flow

We divide SOAP message processing into five stages which are shown in Fig. 1.

1. XML Parsing Stage. The XML request message will be parsed by XML parser. In
this stage, AXIS1.2 uses the SAX parser as XML parser; it reads the ASCII format
data and records the SAX event in the buffer.

2. Deserialization Stage. The parsed XML data will be deserialized to application
objects that will be presented to the web services as application object parameters.

Application
Invocation

XML Parsing Deserialization

Output Stream Serialization

SOAP/XML

SOAP/XML

Application
Objects

Application
Objects

 High Performance SOAP Processing Driven by Data Mapping Template 155

At this stage, Axis1.2 replays the recorded SAX event and notifies the deserializers
of SAX events to do the deserialization work.

3. Application Invocation Stage. This stage contains the business logic, which calls
the application of targeting web service and gets the result of the application. The
time spent in this stage is closely related with the complexity of application, no
matter whether the business logic is wrapped as a web service or as an EJB.

4. Serialization Stage. This stage is the reverse process of deserialization stage; the
application object result will be serialized to XML content. In AXIS1.2
implementation, the XML content is written into a memory buffer.

5. Output Stream Stage. In this stage, the buffered response XML data is written into
the output stream. After that, the output stream will be written to the HTTP
response object, and the web container will send the response XML data back to
client through HTTP connection.

This section surveys the time cost on each stage, and analyzes the bottlenecks of
SOAP message processing. As shown in Figure 1, the XML Parsing stage and
deserialization stage carry on the mapping from XML data model to Java data model,
and serialization stage and output stream stage carry on mapping from Java data
model to XML data model.

We choose the WS Test 1.0[10] to test the time spent on different stages in the
SOAP message process and to analyze the performance bottleneck. WS Test is a web
services test developed by Sun Microsystems. Because we focus on SOAP message
process, the web service methods perform no business logic but simply return the
parameters that were passed in. It is designed to measure the performance of various
types of web services calls, which are described below:

1. echoVoid: Sends and receives an empty message. This tests the performance of the
web services infrastructure.

2. echoStruct: Sends and receives an array of size 20, the element of the array is a
complex type composed of three elements, each of which is an integer, float and
string data type respectively. This method is to test the SOAP engine’s ability to
process array of complex flat objects

3. echoList: Sends and receives a linked list of size 20, each element of the list is a
Struct defined in echoStruct. This method is to test SOAP engine’s ability to
process deeply nested object.

The experimental environment is set as follows. CPU: Pentinm-4.1 2.80 GHz,
Memory: 512 MB, OS: Windows XP Professional SP2, JVM: J2SK 1.4.2, Web
services middleware: Apache AXIS 1.2, Web container: Tomcat 5.0, XML Parser:
Apache Xerces-J 2.6.2. The web service client performs 10,000 iterations for each
web service, and the client load is 5 hits per second.

Fig. 2 shows the average time spent on SOAP message process stages, the XML
payload is 4 KB, and here the XML payload refers to size of XML data which is to be
deserialized to object data. From the experiments, we can see that there are three
performance components in the SOAP message process: XML Parsing, deseria-
lization, and serialization. In the XML Parsing stage, the time required for XML
parsing of the whole process time is about 80%, 39%, 38% for echoVoid, echoStruct,
echoList respectively. In deserialization stage, the time percentages are 33% for

156 J. Wei et al.

Fig. 2. Processing time on stages Fig. 3. Processing time on XML payload

echoStruct and 32% for echoList. In serialization stage, the time percentages are 19%
for echoStruct and 18% for echoList. In the paper, we call these three stages “Data
Model Mapping” which includes the data mapping between XML data and Java data.

In summary, the time spent on these three components is above 90% of the whole
time, and deserialization and serialization occupy more than 50%. We increase the
XML payload of echoList and record the time spent on these three stages.

Fig. 3 shows the time of method echoList spent on XML parsing, deserialization
and serialization stages on different XML payload. As input XML payload increases
in size, the time spent on XML parsing and deserialization is also increased, so is the
time spent on serialization stage. However, the time spent on deserialization and
serialization stages grows dramatically faster than that of XML parsing. As shown by
the statistics, the deserialization becomes the biggest part when the size of XML
payload exceeds 8KB. So we can conclude that for small XML payload, the
XML parsing will be the biggest performance component, but for median and large
XML payload, deserialization and serialization will account for the performance
latency.

In the deserialization stage and serialization stage of Apache Axis1.2, data
mappings between XML data and java object are implemented by java reflection
technique. However, java reflection technology is generally considered to be
inefficient, according to our experiments, for complex java object, especially nested
java object such as linked list in echoList, most of the time is spent on java reflection
operations.

3.2 XML Pull Parsing

The SOAP message is based on XML format, so XML parsing is an important
component in SOAP message processing. However, XML parsing is normally
considered to be time-consuming. In section 3.1, results further point out that XML
parsing accounts for more than 35% of the whole SOAP message processing time. So
the high performance of XML parsing will lead to the improvement of SOAP
message processing. Now the most popular XML parsing paradigms is DOM[11] and

 High Performance SOAP Processing Driven by Data Mapping Template 157

SAX[12]. The DOM builds a complete object representation of the XML document in
memory, and then the application visits the built XML model. This can be memory
intensive for large documents. SAX parses the whole XML document into a series of
SAX event, and informs the application through callbacks. Apache Axis adopts SAX
to parse the XML document, compared to DOM, the SAX needn’t read the whole
document into memory. However, writing the callback methods to deal with XML
document adds complexity to application. Meanwhile, both the SAX and DOM
require two passes through XML data, firstly, they build the XML representation of
the whole XML document; secondly, the application visits the built representation.
The extra pass through XML document reduces the SOAP message processing.

Fig. 4. XML Pull Parsing

As shown in Fig.4, XML Pull Parsing is an application-driven XML parsing
paradigm. The application pulls the XML event from XML Pull Parsing, and gets the
event of XML elements sequentially. XML Pull Parsing needn’t read the whole XML
data into memory like DOM, or to write callback method like SAX. Also, it goes
through XML data at one pass to avoid extra performance penalty. Because of above
advantages, XML Pull Parsing is adopted by us as the XML parsing mechanism, and
works as the basis of dynamic template-driven data model mapping technique.

3.3 Dynamic Early Binding

The SOAP processing of web services in client and server side is actually the data
model mapping between SOAP message and platform-dependent data. The
indispensable elements of data model mapping include XML data definition in XML
schema, data definition in specific platform and the mapping rule between them.

Section 3.1 shows that the data model mappings between XML data and Java data
heavily impact the performance of SOAP engine in Java platform. We will firstly
introduce the widely used binding techniques - early binding and late binding in Data
Model Mapping, then present a new data binding paradigm “dynamic early binding”
which combines the advantages of early binding and late binding. In this subsection,
we will use data binding and Data Model Mapping alternatively.

SOAP message mainly consists of Body and Head which are wrapped in the
Envelope. The Head contains the QoS information such as security and reliability;
and the Body consists of the business logic information such as operations,
parameters or returned results all in XML format. Fig.5 shows the XML and Java data
type included in SOAP request message of a web service. It represents the data model
mapping between XML data and Java data.

parsed XML unparsed XML

XML byte stream

Application
Pull xml

 event
XML Pull Parser

execute xml parsing

158 J. Wei et al.

Fig. 5. XML schema vs. Java type

Table 1. Comparison of binding techniques

 Dynamic Late Binding Static Early Binding Dynamic
Early Binding

Key techniques Java reflection code generation dynamic code
generation

Performance Low high high
Flexibility high low high
Binding-Info Getting run time compile time Run time
Representative Apache Axis, Castor XMLBeans DMT

Here we firstly explain two pairs of concepts:

• Late binding vs. Early binding

The difference between these two binding paradigms is the time to get binding
information, and here the binding information refers to the mapping information
between XML data and Java data. Late binding gets the binding information at run
time, and the getting and using of binding information are carried out in parallel;
early binding gets the binding information at compilation time, and then uses
binding information at run time

• Dynamic binding vs. Static binding
Here the dynamic binding refers to the binding mechanism which can add new
mapping XML-Java type pair at run time. In contrast, static binding can only add
new mapping pairs at compile time.

According to the above definition, the existed data binding implementations can be
classified to two categories: Dynamic Late Binding and Static Early Binding.

• The Dynamic Late Binding gets the binding information by Java Reflection
technique at run time, and getting and using of binding information are carried
in parallel, such as Apache Axis and Castor.

• In contrast, the Static Late Binding generates the Java template files which
record the binding information before runtime, and then carries on the binding
between XML data and Java data at runtime. The static late binding such as
XMLBeans improves the performance by avoiding the frequent use of Java
reflection; however, it couldn’t add new binding XML-Java pair at runtime,
which lessens the flexibility compared to dynamic early binding.

<xsd:schema
xsd:xmlns="http://www.w3.org/2001/XMLSchema"

targetNamespace=“person“ xmlns:typens=“person">
 <xsd:complexType name=“Person">
 <xsd:sequence>
 <xsd:element name=“name" type="xsd:string"/>
 <xsd:element name=“age" type="xsd:int"/>
 <xsd:element name=“addr" type=“typens:Address"/>
 </xsd:sequence>
 </xsd:complexType>
</xsd:schema>

public class Person{

public String name;
public int age;
public String addr;

}

 High Performance SOAP Processing Driven by Data Mapping Template 159

Fig. 6. Dynamic early binding

As illustrated in Fig. 6, Dynamic Early Binding generates the Java template class
which we call Data Mapping Template-DMT at runtime by dynamic code
generation techniques, and then the DMT will drives the data mapping process. The
dynamic early binding avoids the Java reflections which improve the model mapping
performance; meanwhile, the DMT files can be generated and managed at run time
which makes dynamic early binding the similarly flexible as dynamic late binding.
The dynamic early binding combines the advantages of static early binding and
dynamic late binding, and is the key technique of high performance SOAP
processing.

4 DMT Driven Data Model Mapping

We analyze the features of dynamic early binding, and point out that it will be one of
key techniques to improve SOAP engine performance. In this section, we present our
solution for the realization of dynamic late binding – Data Mapping Template
(DMT), its description model and implementation model.

4.1 Specifying DMT by Extended Context-Free Grammar

Figure 5 describes the XML data type defined by XML Schema and Java data type
defined by Java language. Here we use extended context-free grammar to depict XML
data model and Java data model, and use mapping scheme of grammar production to
describe the mapping relationship of two data models.

Definition 1. Data Mapping Template – DMT. For a data type T, the data mapping
template DMT = GX, GJ , GX GJ are context-free grammars for XML data
model and Java data model.

Definition 2. Context-Free Grammar for DMT. G= V T P S M

• V is a set of non-terminals, ∀A∈ A is called non-terminal. For GX, V is the set
of data type T which is defined by XML schema, including simple type, composite
type and array type. For GJ, V is the set of data type T which is defined by Java
language, including primitive types, user-defined Java class, and array types.

• T is a set of terminals, ∀α∈T, α is called terminal. For GX, T is the set of XML tag
names; for GJ, T is the set of Java field names.

160 J. Wei et al.

• P is the set of grammar productions, where each production p is like A→α, A∈V,
α∈ V T, |A|≤|α|.

• S is one of non-terminals as start symbol, and the S represents the data model
defined by this grammar.

• M is set of mapping schemes, which defines actions in the reduction process.
∀m∈M, m is called mapping scheme, and consists of a group of atomic operations.
The mapping scheme m and production p correspond to each other one by one,
∀m∈M, ∃p∈P, p↔m, and vice versa.

In the definition of Grammar G, each grammar production corresponds to one or a
group of atomic operations, Table 2 shows the atomic operations for the XML data
model and Java data model. XML data is organized as tree-structured format, the
element value of which is parsed and approached by XML parser. The atomic
operations of XML model include the creating of XML element, setting and getting
operations of child element, setting and getting operations of element value.

Table 2. Atomic operation set of XML and Java data model

Operation set AX for XML data model Operation set AJ for Java data model

creatElement(eleName)
getElementValue(eleName)
setElementValue(eleValue)
addChildElement(ele)
getNextChildElement()
returnElement()

creatJavaType(typeName)
setSimpleValue()
setFieldValue(fieldName, fieldValue)
getFieldName()
getFieldValue(fieldName)
setIndexValue(index, indexValue)
getIndexValue(index)
returnTypeValue()

Java is an object-oriented language, the data types of which include primitive
types, array types and user-defined classes. The primitive types include primitive
types supported by Java platform such as int and primitive wrapper classes such as
Integer. The Java class describes user-defined date type, the field of which can be
accessed directly as a public class variable or indirectly as a variable via some
accessing methods (setters and getters). The element of array types can be accessed
and assigned at specific index. The atomic operations of Java data model include the
creating and getting value operations for different Java data types, the field value
setting and getting operations for user-defined Java classes, the index value setting
and getting operations for array types, and the setting operation for primitive types.

Table 3 shows the grammar G and mapping scheme M for XML data model and Java
data model. GX describes the XML data model defined by XML Schema. In grammar
production PX, S is the start symbol, tag represents the name of start element, tag’
represents the name of end element; TX represents the XML data type, which can be
classified into XML Schema’s built-in simple type TXS, array type TXA, and composite
type TXC

. G
X depicts the XML data model into a structured tree which is composed of tag

names. TX has two attributes TX.ele and TX.value. TX.ele represents the XML data of
XML type, and TX.value represents the corresponding Java data.

 High Performance SOAP Processing Driven by Data Mapping Template 161

Table 3. Mapping Schemes of GX, GJ

GX ’s
mappin
g
scheme
MX

− S tag {TX.ele = S.ele} TX tag’ { S.value = TX.value}
− TX {TXC

0.value = createJavaType(),TX.ele = TXC
0.ele }TXC

0{TX.value =
TXC

0.value}
− TXC

i tag {TX’.ele = TXC
i.getNextChildElement() }TX’

{TXC
i.setFieldValue(TX’.value)} tag’ {TXC

i+1.value=TXC
i.value,

TXC
i+1.ele=TXC

i.ele } TXC
i+1

− TXC
i+1 , i = 0,1,2,...

− TX {TX.value = createJavaType(), TXS.ele = TX.ele}TXS {TXS.value =
TX.value}

− TX {TXA.value = createJavaType(),TXA.ele = TX.ele }TXA
 {TX.value =

TXA.value}
− TXS {TXS.setSimpleValue(TXS.getElementValue())}
− TXA tag {TX

.ele = TXA
.getNextChildElement()} TX

{TXA.setIndexValue(TX.value)} tag’ TXA

− TXA
GJ ’s
mappin
g
scheme
MJ

− S {S.creatElement(), TJ.value = S.value, TJ.ele=S.ele} TJ
 {

S.addChildElement(TJ.ele)}
− TJ {TJC

0.ele = TJ.ele, TJC
0.value = TJ.value} TJC

0
− TJC

i field {TJ’.value = TJC
i.getFieldValue(field)}, TJ’.creatElement()} TJ’

{TJC
i.addChildElement(TJ’.ele), TJC

i+1.value=TJC
i.value,TJC

i+1.ele=TJC
i.ele}

TJC
i+1

− TJC
i+1 , , i = 0,1,2,...

− TJ {TJS.ele = TJ.ele, TJS.value = TJ.value}TJS
− TJS {TJS.setElementValue(TJS.value)}
− TJ {TJA.ele = TJ.ele , TJA.value = TJ.value}TJA
− TJA {TJ.creatElement(), TJ.value = TJA.getIndexValue()} TJ

− {TJA.addChildElement(TJ.ele) } TJA
− TJA

GJ describes the Java data model defined by Java language. In grammar production
PJ, TJ represents the XML data types, which can be classified into primitive type TJS,
array type TJA, and Java class TJC; field is the field name in user-defined Java class.
TJ has two attributes TJ.value and TJ.ele. TJ.value represents the Java data value of
Java type, and TJ.ele represents the corresponding XML data value. In GJ, the Java
data type is seen as a structured-tree, the primitive type tree has only a root node, the
array type tree has the root node with same-structured children nodes, and the
children nodes of the class type tree represent its field types. The Java data type can
be described in tree-structured manner as XML data in Table 3.

Section 3.3 mentioned that the XML data types defined by XML schema have
certain mapping rules to data types of different platforms, and JAX-RPC [13] defines
the mapping rules between Java data type and XML data type. So grammar GJ and
grammar GX can be generated by analyzing Java data type and it’s mapping rules to
XML schema. Fig.7 shows the generation algorithm of GX and GJ, the input of
algorithm is a Java data type, and the output is GX and GJ by analyzing the hierarchy
of Java data type using Java reflection in a depth first traverse. To be simple, the
algorithm in Fig 7 omits the recursive analytic logic for user-defined classes and array
type. The GX and GJ of data type in Fig 5 are shown below:

162 J. Wei et al.

Fig. 7. Algorithm for generation of GX and GJ

GX S p {Tx.ele = S.ele} Tx p’ {S.value = Tx. value}
Tx {Txc

0.value = new Person(),Txc
0.ele = Tx.ele} Txc

0 {Tx.value = Txc
0.value }

Txc
0 name {Txn.ele = Txc

0.getNextChildElement()} Txn {Txc
0.value.name =

Txn.value} name’ {Txc
1.value = Txc

0.value, Txc
1.ele = Txc

0.ele }Txc
1

Txn {N.ele = Txn.ele, N.value = new String()}N { Txn.value = N.value}
N {N.value = N.getElementValue()}
Txc

1 age {Txa.ele = Txc
1.getNextChildElement()}Txa {Txc

1.value.age = Txa.value}
age’ {Txc

2.value = Txc
1.value, Txc

2.ele = Txc
1.ele }Txc

2

Txa {A.ele = Txa.ele, A.value = (int)0} A { Txa.value = A.value}
A {A.value = Integer.parseInt(A.getElementValue())}
Txc

2 addr {Txad.ele = Txc
2.getNextChildElement()} Txad {Txc

2.value.addr =
Txad.value } addr’ {Txc

3.value = Txc
2.value, Txc

3.ele = Txc
2.ele }Txc

3

Txc
3

Txad {ADDR.ele = Txad.ele, ADDR.value = new String()} ADDR { Txad.value =
ADDR.value}

ADDR {ADDR.value = ADDR.getElementValue()}
GJ S {S.creatElement(“p”), Tj.value = S.value, Tj.ele = S.ele } Tj

{S.addChildElement(Tj.ele)}
Tj {Tjc.ele = T.ele, Tjc.value = Tj.value}Tjc
Tjc

0 name { Tjn.value = Tjc
0.value.name, Tjn.creatElement(“name”)} Tjn

{Tjc
0.addChildElement(Tjn.ele), Tjc

1.value = Tjc
0.value, Tjc

1.ele = Tjc
0.ele} Tjc

1

Tjn {N.ele = Txn.ele, N.value = Txn.value} N
N {N.setElementValue(N.value)}
Tjc

1 age { Tja.value = Tjc
1.value.name, Tja.creatElement(“age”)} Tja

 High Performance SOAP Processing Driven by Data Mapping Template 163

{Tjc
1.addChildElement(Tja.ele), Tjc

2.value = Tjc
1.value, Tjc

2.ele = Tjc
1.ele } Tjc

2

Tja {A.ele = Tja.ele, A.value = Tja.value } A
A { A.setElementValue(A.value)}
Tjc

2 address {Tjad.value = Tjc
2.value.addr, Tjad.creatElement(“address”)} Tjad

{Tjc
2.addChildElement(Tjad.ele), Tjc

3.value = Tjc
2.value, Tjc

3.ele = Tjc
2.ele } Tjc

3

Tjc
3

Tjad { ADDR.ele = Tjad.ele, ADDR.value = Tjad.value} ADDR
ADDR { ADDR.setElementValue(ADDR.value)}

4.2 Implementing DMT by Pushdown Automaton with Output

Last Section introduced the DMT’s conceptual model by extended Context-Free
Grammar, and this section will give out the implementation model by pushdown
automaton with output. For any data type T, the implementation model of DMT is a
pair of pushdown automata which is used to recognize grammar (GX, GJ), and we call
this kind of pushdown automation with output Data Mapping Automaton. The
execution of data mapping automaton is the execution of grammar’s mapping schema,
and also the mapping process from one data model to another.

Definition 3. Data Mapping Automaton DMA= Q, , , Z0, q0, F, O,

• Q is a set of states, ∀q∈Q, q is the state of DMA;
• is the set of input symbols;
• is a set of stack symbol, ∀A∈ is a stack symbol;
• Z0 is the start stack symbol;
• q0 Q is the start state of DMA ;
• F is the set of final states, ∀f∈F, f is the final state;
• O is a set of output actions;
• is the state transition function and governs the behaviors of the automaton.

q a Z = { p1 1 o1 p2 2 o2 , … pm m om }
represents that When read input symbol is a, the top stack element is Z and the
state is q, DMA can transit the state to pi and pop the top stack element Z, then
push the stack symbol i into the stack, and carry on the output action oi, for
i = 1 2 3 … m.

The Data Mapping Automaton DMA= Q , Z0 q0 F O can be
generated by an extended context-free grammar G= V T P S M . The
transformation and equivalence proof between context-free grammar and pushdown
automaton can be found in [14].

Fig 8 shows the data mapping automata DMAX and DMAJ for grammar GX and GJ,
both of which are comprised of input object, input transformer, stack, state controller
(SC) and state table (ST). The input transformer will first transfer the input object into
what can be recognized by DMA; state table is a two-dimensional array P[A, a], A is
indexed by non-terminal and a by terminal, array element P[A,a] records the state
transition and output action; state controller controls the state transition and executes
the output actions.

164 J. Wei et al.

Fig. 8(a). DMAX for grammar GX
 Fig. 8(b). DMAJ for grammar GJ

The input object of DMAX is XML byte stream, and the input transformer is XML
Pull Parser. When DMAX starts, its state controller drives XML Pull Parser to read the
XML byte stream and get the XML tag events. State controller looks up state table by
the XML tag event and the top stack symbol, and then makes the state transition and
executes the mapping actions in the state table such as creating new Java object,
setting value of Java object, etc. When DMAX stops, a Java object will be constructed
and returned.

The input object of DMAJ is Java object, and the input transformer is Java Type
reader. The Java data types can be viewed as a structural-tree. For a specified Java
data type, a virtual data type tree can be generated and kept in memory. The Java type
reader traverses the virtual data type tree in a depth-first manner, and returns Java
type event to state controller. DMAJ ’s state controllers looks up state table by Java
type event and top stack symbol, and makes the state transition and executes the
mapping actions such as initializing XML output stream, writing the Java object into
the XML output stream in a structural manner, etc. When DMAJ stops, a XML output
stream will be generated and returned.

For the mapping from XML data to Java data, DMAX is utilized to traverse input
XML stream and construct a Java object by DMAX’s output actions. In contrast,
DMAJ is used to visit the fields of Java object in a structural manner and build the
XML output stream.

The DMT driven mechanism makes the best of XML Pull Parser to complete the
mapping from XML data to Java data in one traversal of XML data. Also DMT uses
Java Type Reader to read structural data type information, and completes the
generation of XML output stream when DMAJ traverses the Java object once.

5 Application and Evaluation of DMT in SOAPExpress

SOAPExpress is the high performance SOAP engine using XML Pull Parsing and
dynamic early binding techniques. The dynamic early binding improves the
performance of data model mapping in SOAP message processing, and also keeps the

 High Performance SOAP Processing Driven by Data Mapping Template 165

flexibility by adding new mapping type at run time. The dynamic early binding is
realized by DMT-driven data model mapping introduced in Section 4.

5.1 Application of DMT in SOAPExpress

SOAPExpress is hosted as a web application by Tomcat. As shown in Fig 9, when
SOAPExpress receives a request message, Service-In Handler undertakes to get the
name of targeting web service by XML Pull Parser. For RPC-encoded and literal-
wrapped style, SOAP body contains the operation information of a service. Through
DMT Manager, Service-In Handler can get all the DMTs corresponding to an
operation’s input parameters, the DMT instances will take charge of the data model
mapping from XML data to Java data. After that, Service Invoker invokes the service
and returns the Java object result. Then, Service-Out Handler gets the DMT instances
of output parameters from DMT Manager, and the DMT instances drive the mapping
from Java object to XML output stream.

Fig. 9. SOAP processing in SOAPExpress

There are three components in SOAPExpress to support the DMT driven data
mapping. The DMT Manager supplies APIs for search, generation and record of
DMTs. DMT Generator creates the DMTs from Java data type definitions. DMT
instances are recorded and placed in DMT Registry, which to be used to quickly
locate some DMT.

Service-In/Out Handlers look up DMT instances firstly through DMT Manager.
The DMT Manager will check the existence of DMT instances. If existed, DMT
instances will be returned directly; if not, DMT Manager will call the DMT Generator
to generate the DMT instances for corresponding input and output parameters, then
return them and put them into DMT Registry.

DMT Registry is in charge of recording and holding DMT instances. DMT
Registry is indexed by service name which is bound by DMT instances with its input
and output parameters. The main function of DMT Registry is to maintain the
mapping relationship from service name to DMT instances.

The DMT Generator composes of Type Analyzer, Model Builder and Byte Code
Generator. Firstly, Type Analyzer uses Java reflection to obtain the hierarchy of some

166 J. Wei et al.

Java type, and then Model Builder builds the java object data and XML data from
obtained information by the generation algorithm depicted in figure 7. After that, Byte
Code Generator generates the bytecode of DMT using Javassist [15] at runtime. The
DMT instance for a java type is generated only once at the first time, can be reused as
long as the service has no changes.

5.2 Experiments and Results Analysis

This subsection will test the performance of SOAP message processing by
SOAPExpress, and compare the result with Apache Axis 1.2. The test suite and
environment are the same as the setting in section 3.1.

Figure 10 illustrates the performance comparison between Apache Axis 1.2 and
SOAPExpress for WS Test 1.0, the XML payload is 4KB for echoStruct and echoList.
The measure is on SOAP processing time, which begins from the point SOAPExpress
receives a HTTP request and ends at the point SOAPExpress returns the HTTP
response. The statistics shows that times about method echoVoid are very close for
these two SOAP engines, since method echoVoid has no business logic and just
returns empty SOAP message. However, about method echoStruct, the processing
time of SOAPExpress is only about 46% of Apache Axis 1.2; about method echoList,
the proportion is about 44%. The parameters of echoList and echoStruct are complex
array type and nested data type. The result shows that the performance of
SOAPExpress is higher than Apache Axis 1.2.

Peformance Comparsion for SOAPExpress and Apache Axis

M
il
li
s
e
c
o
n
d

Fig. 10. Performance Comparison of Apache Axis 1.2 and SOAPExpress

We increase the XML payload, and analyze the impact of XML payload on SOAP
message processing performance. Fig 11 shows that when the XML payload
increases, the time of SOAPExpress increases much slower than that of Apache Axis
1.2. The Section 3.2 points out the frequent use of Java reflections cause performance
penalty for large XML data. The DMT-driven data model mapping avoids the use of
Java reflection, and keeps the processing time increases slowly with XML payload.

 High Performance SOAP Processing Driven by Data Mapping Template 167

Fig. 11. Comparison of Apache Axis 1.2 and SOAPExpress on XML payload

6 Conclusion and Future Work

This paper proposes a new data model mapping paradigm “Dynamic Early Binding”, and
presents its realization - Data Mapping Template (DMT), which is specified by extended
context free grammar and implemented by pushdown automaton with output actions. The
DMT-driven data mapping technique realizes quick mappings between XML data and
Java data by dynamically generating templates at runtime. The DMT technique has been
utilized in the implementation of a high performance SOAP engine – SOAPExpress. The
testing results show that the performance of SOAPExpress is better than Apache Axis
1.2. For medium and large size of SOAP message, the performance advantage of
SOAPExpress is much more obvious.

The dynamic early binding technique –DMT proposed in the paper doesn’t support
the complete XML infoset yet. Such as namespace and attribute, they will be
considered to add into the DMT definition and implementation. Also, exception
handling will be treated in the implementation of DMT - pushdown automaton in our
future work.

References

1. Bustamante, F. E., Eisenhauer, G., Schwan, K., and Widener, P.: Efficient wire formats for
high performance computing. In Proceedings of Supercomputing 2000(SC 2000), IEEE
CS Press(2000) 64-64.

2. The Apache Software Foundation, Apache Axis 1.2. http://ws.apache.org/axis/.
3. Davis, D. and Parashar, M.: Latency performance of SOAP implementations. In

Proceedings of the 2nd IEEE/ACM International Symposium on Cluster Computing and
the Grid, IEEE CS Press(2000) 407-412.

4. Elfwing,R., Paulsson, U., Lundberg, L.: Performance of SOAP in Web Service
Environment Compared to CORBA. Proceedings of the Ninth Asia-Pacific Software
Engineering Conference (APSEC’02). IEEE CS Press(2002) 84-96.

5. Chiu, K., Govindaraju, M., Bramley, R.: Investigating the limits of SOAP performance for
scientific computing. In Proceedings of the 11th IEEE International Symposium on High
Performance Distributed Computing (HPDC-11), IEEE CS Press(2002) 246-254.

6. Kohlhoff, C. and Steele, R.: Evaluating SOAP for high performance business applications:
Real-time trading systems. In Alternate Proceedings of the Twelfth International World.
Wide Web Conference, (2003) 262-270.

168 J. Wei et al.

7. Ng, A., Chen, S. P. and Greenfield, P.: An Evaluation of Contemporary Commercial
SOAP Implementations. In Proceedings of the 5th Australasian Workshop on Software
and System Architecture, Adelaide, Australia (2003) 64-71.

8. Abu-Ghazaleh, N. Lewis, M. J., Govindaraju, M.: Differential Serialization for Optimized
SOAP Performance. In Proceedings of the 13th IEEE International Symposium on High
Performance. Distributed Computing (HPDC-13), IEEE CS Press(2004) 55-64.

9. Suzumura, T., Takase, T. and Tatsubori, M.: Optimizing Web Services Performance by
Differential Deserialization. In Proceedings of IEEE/ACM International Conference on
Web Services, IEEE CS Press(2005) 185-192.

10. WS Test 1.0, http://java.sun.com/performance/reference/whitepapers/WS_Test-1_0.pdf.
11. Document Object Model, http://www.w3.org/DOM/.
12. Simple API for XML, David Brownell, SAX2, O'Reilly & Associates, Inc.(2002.)
13. Java API for XML-Based RPC, http://java.sun.com/webservices/jaxrpc/docs.html.
14. Linz, P.: An Introduction to Formal Languages and Automata, third edition, Jones &

Bartlett Publishers (2001).
15. The JBoss Community, Javassist, http://www.jboss.com/products/javassist.

An Approach for Fine-Grained Web Service
Performance Monitoring

Jan Schaefer

Fachhochschule Wiesbaden - University of Applied Sciences
Distributed Systems Lab

Kurt-Schumacher-Ring 18, D-65197 Wiesbaden, Germany
jan.schaefer@informatik.fh-wiesbaden.de

Abstract. Especially for the creation of Service-Oriented Architectures
(SOA), Web service technologies are often the technology of choice. In
this context, solutions for the management of Web services are becoming
more and more important. This paper describes an approach to perfor-
mance monitoring of Web services, which is based on the Application
Response Measurement (ARM) standard. This approach enables generic
(application source code-independent) and customizable instrumentation
of synchronous, asynchronous and one-way Web service messages by at-
taching meta-data to messages.

1 Motivation

Integrating a company’s existing software assets into a Service-Oriented Archi-
tecture (SOA) is gaining enormous popularity. This is caused by the promise of
service unification and increased software reusability on the one hand and the
evolution of Web service technologies, which are the most common SOA building
elements, on the other hand. Companies have discovered the possibility of mod-
ernizing their legacy systems without necessarily having to modify their existing
applications. To accomplish this, Web services are often created as wrappers for
existing applications. Companies can benefit from a SOA in many ways. For
example, they can use orchestration languages like the Business Process Execu-
tion Language (BPEL) to create new services by combining their existing (Web)
services (called service composition). Although Web service technologies are a
relatively easy way of integrating existing and newly developed applications,
their interfaces also add another layer of complexity to applications. This adds
to the importance of being able to monitor distributed systems in a homogeneous
way. On one hand, developers might be interested in testing the effect of their
changes on throughput and performance (e.g. response time) of system compo-
nents. This includes, for example, the total processing times of single requests,
the processing times in client and Web service or the transport times. On the
other hand, administrators might primarily be interested in generic monitoring
or tracking of failed or delayed transactions or performance bottlenecks. They
could also use the detailed runtime information (e.g. execution times, states,

F. Eliassen and A. Montresor (Eds.): DAIS 2006, LNCS 4025, pp. 169–180, 2006.
c© IFIP International Federation for Information Processing 2006

170 J. Schaefer

values) to check Service Level Agreements (SLA). In recent years, birth has been
given to several Web services-supporting platforms (e.g. Apache Axis [1], IONA
Artix [2] and Microsoft .NET [3]). The vendors all claim full interoperability
with each other’s platforms, which is a major argument for using Web service
technologies in the first place.

Web services management is still a relatively young discipline. Some Enter-
prise Management Systems (EMS) support managing Web services-based soft-
ware and hardware (e.g. IBM TCAM [4] and CA Unicenter WSDM [5]). However,
management capabilities for single and composed Web service transactions are
still rare. Existing solutions for this are custom-tailored to specific Web services
products and thus not easily deployed in heterogeneous environments. None of
the existing Web services management specifications covers the monitoring or
analysis of single Web services transactions. Instead, they confine themselves
to monitoring deployed Web service applications and hardware devices (called
resource management). The two specifications in this area are Web Services for
Management (WS-Management [6]) and Web Services Distributed Management
(WSDM [7]) with partially overlapping aims. This situation was additional mo-
tivation for the work presented in this paper (complete report in [8]).

The approach presented in this paper offers an instrumentation solution for
Web services based on the Application Response Measurement (ARM) standard.
In order to keep the approach as generic as possible, it does not require specific
management agents or modification of the application to be instrumented. It re-
lies on standardized specifications that multiple vendors incorporated into their
products. It focuses on the timing of synchronous and asynchronous Web service
invocations to gather performance-related measurement data. In this context,
it has to be considered that multi-threaded processing and asynchronous mes-
saging introduce additional requirements (e.g. for request and response message
matching) in comparison to classical RPC-style interaction.

2 Application Response Measurement

The ARM standard, whose development is overseen by The Open Group, pro-
vides an API for instrumenting applications at the source code level [9]. The
API supports execution time measurements of work units termed ARM transac-
tions within distributed applications. ARM allows correlating nested measure-
ments, even across host boundaries. For this purpose, the standard defines ARM
correlators, which are unique tokens assigned to each ARM transaction. Corre-
lators can be supplied when creating a nested transaction for relating this to
the enclosing transaction. Passing correlators between application components,
which might prove difficult especially in distributed systems, is the task of the
application developer. ARM allows for the integration of applications directly
with enterprise management systems. This creates a comprehensive end-to-end
management capability, including the measurement of application performance,
availability, usage and end-to-end transaction response time. To effect this in-
tegration, developers have to add ARM calls to their application code, which

An Approach for Fine-Grained Web Service Performance Monitoring 171

Fig. 1. Transaction Correlation using ARM API

are processed by an ARM agent during application execution. The process of
finding relevant measurement points and inserting measurement code is called
instrumentation.

The management agent collects status, response time and – optionally – ad-
ditional measurement quantities associated with the transaction (see figure 1).
Together with the agent, the instrumented application may also provide informa-
tion to correlate parent and child transactions. For example, a transaction that
is invoked on a client may drive transactions on an application server, which in
turn drives other transactions on other application and/or database servers. This
allows the construction of a calling hierarchy that illustrates which transactions
are nested into or dependent on others in subsequent transactions. The example
in figure 1 leads to the following ARM transaction hierarchy: server C uses the
correlator received from server B, which uses the correlator received from client
A. Thus, the ARM transaction C depends on B and B depends on A.

ARM measurement results and correlations have to be evaluated by ARM
implementations (agents), which are available, for instance, from BMC, CA, HP,
IBM (Tivoli) and tang-IT. Their implementations and analysis tools are often
integrated with their respective management solutions and quite different from
each other. However, The Open Group also provides a free SDK, which contains
implementations of the standardized interfaces and can be used for testing and
validating instrumented applications.

The ARM standard is developed by members of The Open Group, namely
IBM, HP and tang-IT. With the release of ARM 4.0, the available C and Java
bindings provide equivalent functionality for the first time. The approach pre-
sented here uses the Java binding of ARM 4.0 [10], which contains new features
such as asynchronous reporting of transaction information.

3 Web Services and ARM

3.1 Message Exchange Patterns

The Web Services Description Language (WSDL [11]) defines four transmission
primitives: one-way (client to service), request-response (client to service and

172 J. Schaefer

back), solicit-response (service to client and back) and notification (service to
client). This paper concentrates on the following Message Exchange Patterns
(MEP), because they describe the set of exchanged messages for the primitives
(in-out and in-only with changing direction):

– Synchronous request-response: the client sends a request to the service and
blocks until it receives the response from the service.

– Asynchronous request-response: the client sends a request to the service and
continues processing. The client either has to check for response arrival (e.g.
by polling), or it has to enable the service to invoke it (e.g. by offering a
callback method).

– One-way: the client sends a request to the service and continues processing
without blocking or expecting a response.

3.2 SOAP Message Handlers and Contexts

SOAP [12] Message Handlers and Message Contexts are both defined in the Java
API for XML-based RPC (JAX-RPC [13]) specification, which supports building
Web services that use Remote Procedure Calls (RPC) and XML. The JAX-RPC
API hides the complexity of SOAP messages from the developer, and the runtime
system converts the API calls to and from SOAP messages. JAX-RPC supports
stateless message handlers (also known as interceptors), which allow the mod-
ification of messages before and after they have been dispatched to a service
or client implementation (e.g. to add security or management information). To
use handlers, no application level code has to be modified. Instead, handlers
are added through deployment configuration. There are two types of message
handlers: client- and server-side handlers. They are invoked depending on their
associated Web service’s or client’s role in the message exchange (see figure 2),
and their order is determined by their deployment configuration. Message han-
dlers implement the Chain of Responsibility design pattern, which means that a
message is processed by all handlers (in a handler chain), before it is dispatched
to the targeted service. JAX-RPC also supports one-way messaging in addition
to the request-response messaging style normally done with RPC. JAX-RPC is
supported by most Web service platforms.

Message contexts are used to store meta-data about messages (e.g. security or
management information) or to exchange state information between application

Fig. 2. Message Handler Chains

An Approach for Fine-Grained Web Service Performance Monitoring 173

level and message handling chain. Generally, this meta-data does not cross host
boundaries, but some platforms allow attaching it to messages. This enables a
meta-data exchange between clients and services.

3.3 Instrumentation Challenges

This paper presents a solution for generic ARM-based instrumentation of Web
service platforms. For this, the subsequently introduced problems had to be
solved.

1. Isolation of instrumentation code: Often, instrumentation is a static process.
Instrumentation calls are inserted into source code, which means that every
application has to be instrumented explicitly (hard coded). If the application
code is modified, the instrumentation code may have to be modified as well.
This process is error-prone and slows down development speed. In addition,
developers must know the ARM API. For Web services, this means that
every Web service – depending on the scope of instrumentation – would
have to be instrumented manually by experienced ARM users.

2. Support for different message exchange patterns : In an asynchronous mes-
sage exchange (messaging scenario), both the request and response messages
are defined as a one-way message in the WSDL contract. Thus, they are only
semantically related, and only the application logic ”knows” the meaning of
received response messages. If a client receives a related response directly
from a previously invoked service, the response is received directly. If a client
receives a response from a different service, the response is received indi-
rectly. As a result, a mechanism for relating request and response messages
has to be created, which allows starting and stopping ARM transactions
(measurements) correctly.

3. Transport of ARM data and correlators : Another problem arises when think-
ing about how ARM data has to be exchanged between services. Of course, it
must be meta-data rather than an invocation parameter. To correlate ARM
transactions, correlators must be propagated, because whenever a client or
service receives a message (even if it is a response message!), the correlator
might be required for starting a new (dependent) ARM transaction.

4 Architecture

4.1 Design Decisions

This paper presents a solution for generic rather than manual instrumentation
as described in section 3.3.1. Therefore, the JAX-RPC message handler and
message context mechanisms were selected as hooks for the ARM-based instru-
mentation. More specifically, message handlers encapsulating the ARM-related
code were created for intercepting and augmenting messages, and message con-
texts were defined for storing the ARM-related meta-data required during the
instrumentation process.

174 J. Schaefer

For in-out MEPs, the ARM handlers are used to measure the total process-
ing time of business transactions, from the moment a request is sent, until its
related response is received (a client-side measurement). It is also possible to
use ARM handlers for measuring the service’s response time per invocation only
(a server-side measurement). By using both client- and server-side ARM han-
dlers, it is possible to calculate message transfer times as well. The instrumen-
tation by configuration allows inexperienced ARM users to instrument services;
no knowledge of the ARM API is required and existing service implementations
do not have to be modified. In addition, experienced ARM users can manually
instrument services to gain more fine-grained performance data. Using config-
urable ARM handlers for instrumentation is defined as system-level instrumen-
tation, manually instrumenting services is defined as user-level instrumentation.
The developed instrumentation solution presented here allows using both system-
and user-level instrumentation simultaneously. In addition, nested ARM trans-
actions can use ARM correlators created by the enclosing ARM transaction for
correlation: correlators are propagated to succeeding services, even across host
boundaries (see section 3.3.3). ARM handlers and service implementations can
access propagated correlators via the ARM context.

Even in a synchronous message exchange, handlers process messages asyn-
chronously. Otherwise, a synchronous (blocking) call would prevent the Web
service from processing multiple requests in parallel. Thus, the instrumentation
model does not differentiate between synchronous, asynchronous and one-way
communication. Furthermore, request and response are not even processed by
the same message handler in asynchronous exchanges: the request is processed
by a client-side handler, the response is processed by a server-side handler (see
figure 2). Because of this, matching of request and response messages is provided
by inserting unique ARM transaction IDs into the ARM message context of re-
lated messages, which enables ARM handlers to recognize relationships between
messages (see section 3.3.2). Transaction IDs are also used for identifying ARM
transactions: if an ARM handler is configured to stop a running ARM transac-
tion, it uses the transaction ID inside the ARM context for the look-up. If the
ARM context should be removed or missing, no messages can be matched and
no ARM transactions can be stopped anymore.

Depending on its configuration, an ARM handler might have to store a re-
ceived ARM context, which has to be returned in the response message, and a
reference to a started ARM transaction. This information is stored in the ARM
registry. If required (respectively configured), the registry information is used
to restore a parent context and to stop an ARM transaction. This is required,
because the processing of related request and response messages in message han-
dlers can be interrupted due to multiple concurrent threads. However, each Web
service (respectively its ARM handlers) only has to store the first received ARM
context in each business transaction. All sub-requests that are created by this
service have to use this context. Of course, ARM transaction references have to
be stored for every started transaction.

An Approach for Fine-Grained Web Service Performance Monitoring 175

Once the Web service finishes processing the business transaction (and a ser-
vice’s ARM handler is invoked for the last time), the parent ARM context is
returned to the client inside the response message. Should the current Web ser-
vice be only an intermediary in the business transaction, the parent ARM context
is propagated to the next service. In in-only MEPs, the context of instrumented
messages contains a time stamp, which denotes the start time of the associated
ARM transaction, and an ARM correlator. One-way messages do not contain
ARM transaction IDs in their message context, because they will not return to
the invoking client. Thus, no request-response matching is required.

4.2 Overall Structure

Figure 3 shows the component interaction of the generic instrumentation model,
which solves the problems presented in section 3.3.

Fig. 3. Architectural Components

The ARM Message Handler component is responsible for intercepting and
processing messages, before and after the invocation of the handler’s associated
Web service. It represents the main component of the instrumentation solution
and provides client- and server-side message handlers that can be configured to
instrument Web service message exchanges. The purpose of the handlers is to
provide ARM operations that can be specified using the ARM configuration,
based on handler type (client- or server-side), Web service name and operation
name (see figure 4).

The ARM Message Context component represents a container for transfer-
ring ARM information that is exchanged between Web services in instrumented
transactions. The context contains one section for use by ARM message handlers
(system-level) and one for use by Web service implementations (user-level). Ser-
vice code may read the system-level section of the context (e.g. for using the
ARM correlator within as a parent correlator in user-level ARM transactions),

176 J. Schaefer

but it must write to the user-level section only. For supporting one-way message
exchanges and ARM transaction reporting, the context also contains a field that
can hold a time-stamp (the start time of a reported transaction). Finally, the
context contains a context ID. The context referenced by this ID is used by
sub-transactions for retrieving the parent ARM context. Each of the available
elements of the context is optional, so that they are only put on the wire if
required.

The ARM Provider component encapsulates access to the ARM API, which
for this approach was the official ARM 4.0 SDK (available from [9]). The provider
also executes a base ARM application, which can be used for user- and system-
level instrumentation. This avoids the overhead of creating an additional ARM
environment, if there is no specific need for it.

The ARM Configuration component is queried for the action to be executed,
whenever an ARM handler intercepts a message. A handler might have to start
a new ARM transaction, stop a previously started ARM transaction or stay idle
(context forwarding only). This allows users to keep the impact of the instru-
mentation on the performance of the rest of the system at a minimum. However,
a handler alone cannot decide how to handle a received ARM context: it cannot
be specified programmatically, which incoming and outgoing messages represent
the start and end of a business transaction; the user has to define the appropriate
action in the configuration (figure 6 shows a configuration example). When a ser-
vice receives a request, it must save the (parent) ARM context even if no ARM
action is executed immediately, because sub-transactions might require the con-
text for starting new ARM transactions; using the correlator inside the parent
context is mandatory for correct ARM transaction correlation. In the end, the
handler processing the response message that is returned to the invoking client
restores (and unregisters) the parent context.

Fig. 4. ARM Configuration Structure

The configuration contains the following handler configuration for every op-
eration a Web service provides or interacts with (see figure 4):

– The ARM Action attribute controls which instrumentation-related action
an ARM handler must take: idle (handler stays passive and only forwards
an existing ARM context), start (an ARM transaction) or stop (an ARM
transaction).

– The Context Action attribute controls how an ARM handler treats the cur-
rent ARM context: idle (use current context), use (the parent context), save

An Approach for Fine-Grained Web Service Performance Monitoring 177

(register current context in ARM registry) or restore (the parent context
and destroy the local copy in the ARM registry).

The ARM Registry component stores copies of ARM contexts and ARM trans-
actions and serves as shared memory for all associated ARM handlers. It handles
three types of records: One that contains active ARM transactions with asso-
ciated ARM contexts, one that contains ARM contexts only and a third that
contains currently inactive ARM transactions. The registry checks the stored
records cyclically for timed-out ARM transactions and ARM contexts. For time-
out checking, the stored items contain a time-stamp that is updated when a
record is created or used. If an ARM transaction exceeds the maximum pro-
cessing time (which is configurable), it is aborted and returned into the pool for
inactive ARM transactions.

The ability to store ARM contexts is required to be able to undo changes
to message contexts caused by new ARM transactions and is only required for
instrumentation in ARM handlers, not for manual instrumentation. The active
ARM transactions stored in the ARM registry are required for stopping them,
once they are finished. The registry uses unique identifiers as keys for retrieving
stored records. These keys are put into the ARM context as references to the
records.

5 Prototypical Implementation

Initially, the instrumentation prototype was intended to be used to instrument
Web services using both Apache Axis 1.2 and IONA Artix 3.0 as platform. How-
ever, it turned out that Axis lacks support for asynchronous WSDL operations.
Thus, the prototype currently supports Artix only, but it could easily be ported
to different Web service platforms implementing JAX-RPC, respectively plat-
forms incorporating the message handler concept.

Artix is IONA’s commercial Web services-based solution for Enterprise Ap-
plication Integration (EAI). Artix supports multiple transports and message for-
mats natively. It connects applications at the middleware transport level and
translates messages only once using direct on-the-wire transformation instead of
a canonical format. An open source offspring of Artix – called Celtix – is hosted
by ObjectWeb [14].

Artix supplies the generic classes (GenericHandler and GenericHandlerFac-
tory) implementing the JAX-RPC interfaces (Handler and HandlerFactory),
which can be extended by developers to implement custom handlers. The han-
dler implementation has to be wrapped in a plug-in, which can then be loaded by
Artix clients and servers. The handler mechanism allows intercepting and mod-
ifying messages at four points of a message exchange. Both request and reply
message can be handled at the client request-level, the client message-level, the
server message-level, and the server request-level. Handlers at the request-level
have access to the application’s message context and the message’s SOAP header
respectively it’s security properties. Handlers at the message-level have access to

178 J. Schaefer

the raw message stream that is being written out on the wire and the applica-
tion’s message context only. For Artix, the instrumentation model presented in
section 4 was implemented as a request-level handler, which can be configured
using an XML configuration file.

The prototype was evaluated using a lab-level travel agency scenario featur-
ing five interacting Web services: Customer, Travel Agency, Airline, Car Rental
and Hotel (see figure 5). In this scenario, a customer sends booking orders to
the travel agency, which then books flight, car and hotel room for him. Once the
agency received all required information, it returns a booking confirmation to the
customer. The services basically react on received requests by sending appropri-
ate responses (containing dummy data), which means that they do not execute
complex algorithms. The purpose of this scenario is to prove the applicability of
the approach for asynchronous communication. Thus, all communication in this
scenario takes places asynchronously, and all Web service operations are defined
as WSDL one-way operations. The performance measurements were executed
using one Artix client (providing the Customer callback service) and one Artix
server (hosting the remaining Web services). Both applications were executed on
different hosts.

Fig. 5. Travel Agency Scenario (Messaging)

Figure 6 presents an extract of the travel agency scenario shown in figure 5
and the associated configuration. In this example, the communication between
the travel agency and the airline Web services is fully instrumented: each invoked
ARM handler either starts or stops an ARM transaction.

The tests for the prototype focused on correct message handling and measure-
ments rather than on processing complex algorithms. When using passive ARM
handlers, the processing time for one booking increased by 3.3% in comparison
to a run without ARM handlers. Full instrumentation (start or stop of an ARM
transaction in every handler, which results in eight measurements per customer
request) introduced an overhead of 48.7%; using dummy ARM data in the mes-
sage’s SOAP header in combination with passive ARM handlers increased the

An Approach for Fine-Grained Web Service Performance Monitoring 179

Fig. 6. Configuration Example

response time by 24.7% already. These results show that half of the overhead
was caused by message meta-data. For otherwise short SOAP messages, this
information increased the message size in a way that response times increased
remarkably. However, idle ARM message handlers did not add remarkable over-
head to the response time. Of course, the gathered measurement data shows
correct dependencies between the executed transactions.

The performance penalty measured in this travel agency scenario is so grave,
because the services themselves do not contain complex business logic (which
would require more processing time). In addition, the messages exchanged be-
tween the Web service partners are rather short. For the presented approach,
these circumstances represent the worst-case scenario. In a real-life application
with more complex applications and messages, the percentage of the overhead
would be lower.

6 Conclusion and Future Work

This paper presented a generic approach for performance instrumentation of syn-
chronous, asynchronous and one-way Web services for end-to-end performance
measurements. The approach allows a very fine-grained view upon deployed Web
services and allows a user to configure the scope of instrumentation. The runtime
information gathered shows the dependencies between Web service invocations
and lists the durations of service invocations and instrumentation processing
results. The instrumentation approach renders manual source code instrumen-
tation and adaption to specific services unnecessary; the only remaining task is
to define (configure) the required measurement points.

The approach relies on standardized JAX-RPC message handlers and message
contexts for modifying SOAP messages and adding instrumentation information.
It is based on ARM, an instrumentation approach broadly accepted by the in-
dustry and supported by large management platforms.

The prototype proves the usability of the approach, although the implementa-
tion needs to be optimized. Further steps will be optimization of the prototypical
implementation, adaption to additional Web service platforms and instrumenta-
tion of a real world Web services-based application environment. In the future,

180 J. Schaefer

this approach may provide an easy means for integrating Web services-based
applications with management platforms.

Acknowledgements

The author would like to thank Prof. Dr. Reinhold Kroeger from Wiesbaden
University of Applied Sciences and Damian McGrath, M.Sc. from IONA Tech-
nologies for supervising the work on his diploma thesis, on which this paper is
based. He would also like to thank the people at IONA Technologies for the great
support during his internship, in which he wrote this thesis.

References

1. The Apache Software Foundation: Apache Axis (Java). (2005) http://ws.
apache.org/axis/.

2. IONA Technologies: IONA Artix. (2005) http://www.iona.com/products/artix/.
3. Microsoft Corporation: .NET Framework Developer Center. (2005)

http://www.msdn.microsoft.com/netframework/.
4. IBM Tivoli: IBM Tivoli Composite Application Manager for SOA. (2005)

http://www.ibm.com/software/tivoli/products/composite-application-mgr-soa/.
5. Computer Associates: Unicenter Web Services Distributed Management. (2005)

http://www3.ca.com/solutions/Product.aspx?ID=4714.
6. AMD, Dell, Intel, Microsoft, Sun: Web Services for Management (WS-

Management). (2004) http://msdn.microsoft.com/ws/2004/10/ws-management/.
7. Organization for the Advancement of Structured Information Standards (OA-

SIS): OASIS Web Services Distributed Management (WSDM) TC. (2005)
http://www.oasis-open.org/committees/wsdm.

8. Schaefer, J.: Methods and Tools for ARM-based Performance Instrumentation of
Web Services. Diploma Thesis, Wiesbaden University of Applied Sciences (2005)

9. The Open Group: Application Response Measurement - ARM. (2005)
http://www.opengroup.org/arm/.

10. The Open Group: ARM 4.0 Java Language Binding Technical Standard 4.0. (2003)
http://www.opengroup.org/arm/uploads/40/3945/C037.pdf.

11. World Wide Web Consortium: Web Service Definition Language (WSDL) 1.1.
(2001) http://www.w3.org/TR/2001/NOTE-wsdl-20010315.

12. World Wide Web Consortium: Simple Object Access Protocol (SOAP) 1.1. (2000)
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/.

13. Sun Microsystems: Java API for XML-Based RPC Specification 1.1. (2003)
http://java.sun.com/xml/downloads/jaxrpc.html.

14. ObjectWeb: Celtix. (2006) http://celtix.objectweb.org/.

WSInterConnect: Dynamic Composition of Web
Services Through Web Services

Josef Spillner, Iris Braun, and Alexander Schill

Dresden University of Technology, Dept. of Computer Science, Chair for Computer
Networks, 01062 Dresden, Germany

js177634@inf.tu-dresden.de, {iris.braun, alexander.schill}@tu-dresden.de

Abstract. In this paper, a model is presented which allows the compo-
sition of web services by means of a special web service, named WSInter-
Connect. Such a service might be used in a portal environment to allow
interactive services lookup and creation of permanent composed services
in the design stage, and for efficiently resolving missing parameters dur-
ing the runtime of a process. The portal integration relies on augmented
service description files based on WSGUI concepts [1], and provides a
usable infrastructure for BPEL4People [4] concepts.

1 Introduction

The design of processes relying on web services has recently gained some atten-
tion in the area of human involvement. Specifically, several papers acknowledge
escalation hooks for decisions which cannot be drawn autonomously. Likewise,
the interaction with humans happens during design time, requiring facilities to
compose and reuse web services dynamically. Somewhere in between, services
attached to a process might have to be replaced at runtime.

WSInterConnect is a web service by itself which handles such simple compo-
sition models. It produces output information which is suitable for the actual
execution of the composite service, for example, in a BPEL (Business Process
Execution Language) engine. The way the service works is that it lets users cre-
ate a sequence of operations based on WSDL files (Web Services Description
Language), taking into account structural differences of the input and output
messages of the service’s operations.

It is however known that WSDL alone is not sufficient for describing web
services for direct usage by humans and processes alike. This led to augmented
service description efforts, namely WSGUI (Web Services Graphical User In-
terface) [2] for human interaction, WSDL-S (Web Service Semantics) to enable
autonomous discovery and matching of web service operations, and others. The
former will be referenced throughout this paper.

An example, which is modelled closely to existing BPEL4People ideas, is
presented to demonstrate service composition, human intervention and inference
of GUI elements by means of WSGUI. Integration into a portal environment,
including a user database and a task management portlet, fulfils the requirements
of the lifecycle of such a process as outlined in the BPEL4People draft.

F. Eliassen and A. Montresor (Eds.): DAIS 2006, LNCS 4025, pp. 181–186, 2006.
c© IFIP International Federation for Information Processing 2006

182 J. Spillner, I. Braun, and A. Schill

2 Web Service Composition

Traditional composition of web services happens either by creating the process
descriptions by hand, or by using a graphical design tool. Often, these tools are
easy to use but have severe limitations. In many cases, the message types of
operations chained to each remain unchecked, resulting in type mismatch faults
only at runtime. Additionally, a lot of overhead is generated by including such
checks into the tool software, and compatibility is lowered by only supporting a
restricted set of output formats. These shortcomings can be overcome by using a
web service to handle the creation of process description files in various formats.
The proposed service, WSInterConnect, will be described in detail in the next
sections, beginning with a look on message comparison details.

Each web service operation takes one or more input parameters, and returns
one or more output parameters, all possibly being of complex types, such that
additional value restrictions, union types and lists can be represented. It is valid
to assume a single parameter for input and output each, if both are considered
to be complex on their own, forming a product type. In WSDL terms, a message
might contain several message parts, but might also contain just one part which
in turn consists of a sequence of elements.

Since WSDL data types are specified using XML Schema, a prerequisite for
composing services interactively is to check for the compatibility of the output
message of one operation with the input message of the other operation, with
three possible outcomes for each check:

All-or-nothing compatibility: The messages are either fully compatible, or not
at all. This can be trivially checked when only simple types are used, and
recursively for complex types by parallel message comparison. An important
note is that variable names might differ, only the type structure is important.

Subset compatibility: A sub-set relation can be specified, that is, one message is
a subset of the other message. This includes list ranges as well as omissions of
parameters on one side only. If the input of the second operation is a subset
of the output of the first one, some variables will have to be discarded,
otherwise some values will have to be injected, for instance by the user.

Arbitrary compatibility: Whenever none of the two cases above applies, the op-
erations are considered to be incompatible. In such a case, WSInterConnect
could reject to link them together in any form. An advanced implementation
would however allow to both drop variables and let the user fill in missing
values, as long as at least a certain percentage of compatibility is present.

Having identified the cases, the relevance of partial compatibility can be evalu-
ated more easily.

In a fully automated services composition, only full operation compatibility
can be allowed, while in an interactive environment such as a portal, the user can
be the input source who determines the missing values of the input parameters
of the second web service, in addition to the output of the first one. Likewise,
if parameters occur in the output but do not have any matching counterpart in
the following input, the user should allow to have them be dropped.

WSInterConnect: Dynamic Composition of Web Services 183

3 WSInterConnect

A web service which implements the concepts introduced above is called WSIn-
terConnect. Its first functionality can be described as follows: For each pair of
services, an operation is selected to serve as output of the first service and input
of the second one, respectively. WSInterConnect will then create a composed
virtual service, which requests from the user only those input variables which
cannot already be filled out by the first service.

For more complex scenarios, rather than reinventing the wheel, existing pro-
cess engines can be used to refer to WSInterConnect in order to request missing
values. This is accomplished by the second functionality, resolving issues of miss-
ing parameters at run-time.

The first set of operations includes compare() and store(). The invokation
and result of one WSInterConnect operation, compare(), which takes a number
of WSDL URLs as its input, looks like about the following message conversation
if the same WSDL is used for both input and output, effectively leading to a
cartesian product of all operations offered by said WSDL:

<ConnectRequest>
<wsout>http : // l o c a l h o s t /mai l . wsdl</wsout>
<wsin>http : // l o c a l h o s t /mai l . wsdl</wsin>

</ConnectRequest>
<ConnectResponse>

<comparisons>
<comparison>

<operat ion−output>s ignMail </operat ion−output>
<operat ion−input>sendMail</operat ion−input>
<s tatus>compatible</status>

</comparison>
. . .

</comparisons>
</ConnectResponse>

The store() operation takes one of these matches and stores it as a compo-
sition for later use with a process engine.

Augmenting the WSDL for the WSInterConnect service, and the ConnectRe-
quest operation in particular, with WSGUI information, makes it possible to
generate a GUI which lets the user select the operations which are to be used
for the composition. In addition, if partial compatibility is implemented, more
detailed type mismatch information could be sent as to allow the structural
alignment of input and output operation message format.

The basic WSGUI concepts shall be presented now briefly.
Pure WSDL files do not contain enough information to use web services as

generic processes. Rather, specialised frontends have to exist to facilitate the
navigation, data input, error handling and presentation of the results.

With WSGUI, it was shown to be possible to augment the WSDL files with
user-centric visual hints, based on the XForms standard and some additional
information like description texts and mime-type specifications.

WSGUI is an essential component in the realisation of interactively composed
web services. To date there exist tools which attempt to handle this task without

184 J. Spillner, I. Braun, and A. Schill

Fig. 1. Sequences describing usage patterns with WSInterConnect

WSGUI, but they are not up to current usability and internationalisation stan-
dards. Existing approaches like WSRP [5] are not able to adapt to fully arbitrary
underlying data formats. Using the features of WSGUI, inferring GUI informa-
tion from WSInterConnect is possible as follows.

There are two potential areas of WSGUI usage in combination with the ser-
vice. First, the WSInterConnect service itself, by way of its compare() and
store() operations, can be invoked dynamically by the user. This works like
any other generic web service call in that its messages are rendered to a web
page or client application. Second, the process as composed by WSInterConnect
and executed by a process manager might call back so that extended WSGUI
features such as marking certain fields (those which are already assigned a value
within the process) as read-only, while permitting the user to fill out the remain-
ing fields. Operations include resolve-problem() to retrieve the dynamically
generated WSDL for a certain identifier, which has been added to WSInterCon-
nect by the process, and submit() to submit the form which is based on the
WSDL data, and rendered with WSGUI as described above. All major opera-
tions are shown together in figure 1.

4 Application Scenario

Following the often cited example of a travel agency, a public web service might
exist which permits booking a flight, taking the four parameters name, destina-
tion, and suggested dates of flight and of return. A second service for booking
the hotel rooms can reuse all of the data, but since the final destination city
might not have an airport, the destination parameter is dropped and two new
ones, for final destination and hotel category, are added instead, and it reuses
the exact dates as returned by the first service.

This is a scenario where partial compatibility is involved. If for whatever reason
the hotel booking service is not available, the user might on the fly substitute
it with a compatible service. The substitute might however have a use for the
flight destination city, for instance to provide a hotel room offer combined with
airport shuttle service.

While this application scenario already suggests a possible use of WSIn-
terconnect, the full power can be experienced when considering the following
BPEL4People deployment scenario.

WSInterConnect: Dynamic Composition of Web Services 185

Fig. 2. WSInterConnect in a typical deployment of web services and a portal stack

Using web services in portals is a well-known concept for implementation
of flexible service-oriented applications, for instance in telework scenarios [3].
The portal environment provides two necessary parts of the infrastructure: A
user database, and a portlet container hosting various portlets. According to
BPEL4People, web service escalation points are best suited for inclusion into a
task tracker, which in this case runs as a service and is displayed in a dedicated
portlet.

The architecture is outlined in the figure 2, distinguishing between the on-site
portal stack and the web services.

The custom tracker portlet displays tasks with their priorities and deadlines,
and contains hyperlinks to the WSGUI engine, parametrised with calls to the
web services referenced by the BPEL4People engine so that clicking on the task
presents an option list for resolving the task, which is automatically inferenced
from the available options. This feature is using the resolve-problem() and
submit() operations already introduced earlier.

When resolving a problem requires more results from other web services, the
user could create new compositions on the fly from within the portal.

5 Related Work

There are a few tools which already handle the creation of processes based
on web service composition, like X Workflow Composer [6] for direct process
code generation, or commercial BPEL editors. They do however lack design-time

186 J. Spillner, I. Braun, and A. Schill

parameter comparison and methods to retrieve missing parameters from the user
of the service at run-time. Graphical editors like Triana PSE [7] often focus on
ease of use, an aspect not in the centre of WSInterConnect development, so that
leveraging its advantages into the graphical editors at a later date seems to be
an important proof of the concepts presented in this paper.

Until now, no effort which combines concepts similar to WSGUI and service
composition is known to the authors.

6 Conclusion

It has been shown how to let users interact with web services in an interactive
and dynamic environment, without the need to pre-define the operations or the
visual appearance thereof.

WSInterConnect has been finished in parts. It is not expected that this service
will lead to a standalone deployment. Rather, advanced web services concepts
can be combined with WSInterConnect in a useful and still explorative manner.

Current WSGUI research hints at generating the needed GUIs automatically
for even more usage scenarios, thus projects like WSInterConnect will be less of
a novelty and more common technology in the near future.

References

1. WSGUI concept project, J. Spillner, January 2006, http://wsgui.berlios.de/
2. Creating GUIs for Web Services, M. Kassoff, D. Kato and W. Mohsin,

IEEE Internet Computing, September/October 2003, Vol 7, No. 4, 66-73,
http://logic.stanford.edu/∼{}mkassoff/papers/wsgui.pdf

3. A service-oriented Architecture for Teleworking Applications, I. Braun, A. Schill,
Proceedings of IASTED International Conference on Internet and Multimedia Sys-
tems and Applications, Honolulu, August 2005, Acta Press, Calgary, p. 105-110

4. BPEL4People white paper, M. Kloppmann et. al., August 2005, ftp://www6.
software.ibm.com/software/developer/library/ws-bpel4people.pdf

5. OASIS Standard: Web Services for Remote Portlets, Specification Version 1.0, (OA-
SIS, 2003) http://www.oasis-open.org/committees/wsrp

6. X Workflow Composer, software project, S. Shirasuna, January 2006,
http://www.extreme.indiana.edu/xgws/xwf/

7. Triana as a Graphical Web Services Composition Toolkit, S. Majithia et. al., Pro-
ceedings of UK e-Science All Hands Meeting, September 2003, EPSRC, p. 494-500
http://www.trianacode.org/

Bounding Recovery Time in Rollback-Recovery
Protocol for Mobile Systems Preserving Session

Guarantees

Jerzy Brzeziński, Anna Kobusińska, and Jacek Kobusiński

Institute of Computing Science
Poznań University of Technology, Poland

{Jerzy.Brzezinski, Anna.Kobusinska, Jacek.Kobusinski}@cs.put.poznan.pl

Abstract. This paper addresses a problem of integrating the consis-
tency management of session guarantees with recovery mechanisms in
distributed mobile systems. To solve such a problem, rollback-recovery
protocol rVsSG, preserving session guarantees is proposed. The proto-
col employs known rollback-recovery techniques, however, while applying
them, the semantics of session guarantees is taken into account. Conse-
quently, rVsSG protocol is optimized with respect to session guarantees
requirements. The paper includes the proof of safety property of the
presented protocol.

Keywords: fault tolerance, rollback-recovery, mobile systems, session
guarantees

1 Introduction

Mobile computing brings about a new paradigm of distributed computing in
which communication may be achieved through wireless or intermittently con-
nected networks. In this paradigm, users can compute even if they relocate from
one distributed resource to another, using different links at different locations.
By enabling motion and location independence, mobility gives the opportunity
to provide new services and allows supplementary information access that may
occur any time and any place. Although being a relatively new area, mobile com-
puting has attracted a lot of research efforts, motivated by both a great market
potential and by many challenging research problems.

The impact of mobile computing on systems design goes beyond the net-
working level and directly effects data access and management. A key concept
in providing high performance and availability in such an access is replication.
Unfortunately, replication brings up a problem of replica consistency. Moreover,
due to switching of clients, this problem gains a new dimension of complex-
ity and thus, it should be tackled from new, client’s perspective. For that rea-
son, session guarantees [TDP+94], also called client-centric consistency models,
have been proposed to define required properties of the system observed from
client’s point of view. Four session guarantees have been defined: Read Your
Writes (RYW), Monotonic Writes (MW), Monotonic Reads (MR) and Writes

F. Eliassen and A. Montresor (Eds.): DAIS 2006, LNCS 4025, pp. 187–198, 2006.
c© IFIP International Federation for Information Processing 2006

188 J. Brzeziński, A. Kobusińska, and J. Kobusiński

Follow Reads (WFR) and protocols implementing them have been introduced
[TDP+94, BSW05, Sob05]. Unfortunately these protocols assume that clients
and servers are reliable and they do not crash. In practice, failures do happen,
therefore, the existing consistency protocols should be provided with the fault–
tolerant techniques, which allow servers to provide required session-guarantees
despite their failures.

Thus, this paper addresses a problem of integrating the consistency manage-
ment of session guarantees in systems with mobile clients, with recovery mecha-
nisms. To solve such a problem, we propose rVsSG protocol, integrating logging
and checkpointing techniques with coherence operations of VsSG consistency
protocol [TDP+94, BSW05, Sob05]. Consequently, the proposed protocol offers
the ability to overcome servers’ failures transparently to the client, and preserves
session guarantees at the same time. The rVsSG protocol is optimized in terms of
checkpointing overhead, taking into account the specific requirements of required
session guarantees. Moreover, correctness analysis of the protocol is carried out
and its safety property is formally proved.

2 Session Guarantees

2.1 Basic Assumptions and Definitions

Throughout this paper, a replicated distributed storage system is considered.
The system consists of a number of servers holding a full copy of shared objects
and clients running applications that access these objects (see Fig. 1). Although
all system components (mobile clients, servers, communication links) can be a
subject of failures, in this paper we focus only on failures of servers. We assume
crash-recovery model of failures, i.e. servers may crash and recover after crashing
a finite number of times [GR04]. Servers can fail at arbitrary moments and
we require any such failure to be eventually detected, for example by failure
detectors [SDS99].

Clients are separated from servers, i.e. a client application may run on a sep-
arate computer than the server. A client may access a shared object after select-
ing a single server and sending a direct request to the server. Clients are mobile,

S4S3

S2S1

C1

C2

Fig. 1. Replication servers and client accessing them

Bounding Recovery Time in Rollback-Recovery Protocol 189

i.e. they can switch from one server to another during application execution.
Session guarantees are expected to take care of data consistency observed by a
migrating client. The set of shared objects replicated by servers does not imply
any particular data model or organization. Operations performed on shared ob-
jects are divided into reads and writes, denoted respectively by r and w. A read
does not change states of the shared objects, while a write does. A write may
cause an update of an object, it may create a new object, or delete an existing
one. A write may also atomically update states of several objects.

Clients can concurrently submit conflicting writes at different servers, e.g.
writes that modify the overlapping parts of data storage. Operations on shared
objects issued by client Ci are ordered by a relation Ci⇁ called client issue order.

Server Sj performs operations in an order represented by relation
Sj

�. An oper-
ation performed by a server Sj will be denoted by w|Sj or r|Sj . Relevant writes
RW (r) of a read operation r is a set of writes that has influenced the current
state of objects observed by the read r.

A set of basic consistency conditions for sessions of mobile clients has been
introduced in Bayou project [TDP+94]. Informally, RYW expresses the user
expectation not to miss his own modifications performed in the past, MW ensures
that order of writes issued by a single client is preserved, MR ensures that the
client’s observations of the data storage are monotonic and WFR keeps the track
of causal dependencies resulting from operations issued by a client. The following
formal definitions, brought in [Sob05], are based on those descriptional concepts.

Definition 1. Read Your Writes (RYW) session guarantee is defined as follows:

∀Ci ∀Sj

[
w

Ci⇁ r|Sj =⇒ w
Sj

� r

]

To illustrate RYW session guarantee, let us consider a user writing a TODO list
to a file. After travelling to another location, the user wants to recall the most
urgent tasks, and reads TODO list. Without RYW session guarantee the read
may return any previous (possibly empty) version of the document.

Definition 2. Monotonic Writes (MW) session guarantee is defined as follows:

∀Ci ∀Sj

[
w1

Ci⇁ w2|Sj =⇒ w1
Sj

� w2

]

Let us consider a counter object with two methods for updating its state: incre-
ment(), and set(), which increment value of the counter, and set its new value,
respectively. A user of the counter issues the set() function, and then updates
the counter by calling increment() function. Without MW session guarantee
the final result would be unpredictable, because it depends on the order of the
execution of these two functions.

Definition 3. Monotonic Reads (MR) session guarantee is defined as follows:

∀Ci ∀Sj

[
r1

Ci⇁ r2|Sj =⇒ ∀wk ∈ RW (r1) : wk

Sj

� r2

]

190 J. Brzeziński, A. Kobusińska, and J. Kobusiński

In case of MR, let us consider a mailbox of a traveling user. The user opens
the mailbox at one location, and reads emails. Afterwards he opens the same
mailbox at different location, and expects to see at least all the messages he has
read previously. The new state may not reflect the true current state, but must
be at least as new as the previously observed version.

Definition 4. Writes Follow Reads (WFR) session guarantee is defined as fol-
lows:

∀Ci ∀Sj

[
r

Ci⇁ w|Sj =⇒ ∀wk ∈ RW (r) : wk

Sj

� w

]

To present the usage of WFR, let us consider a user that reads a file with some
information. Afterwards this user prepares some notes he wants to add to the
document. Because, he was on journey, his computer switched in the meantime
to another server. When the user finally wanted to perform the operation the
new server was properly updated and user could append his note.

Besides Bayou, there are other systems that implement consistency conditions
based on session guarantees: CASCADE — a caching service for distributed
CORBA objects [CFV00], Pastis — a highly scable, multi-user, peer-to-peer
file system [PBS05], or OceanStore — a global persistent data storage system
[KBC+00].

2.2 The VsSG Consistency Protocol

Data consistency in rVsSG is managed by VsSG consistency protocol [BSW05],
which uses a concept of server-based version vectors, having the following form:
VSj =

[
v1 v2 ... vNS

]
, where NS is a total number of servers in the system and

single position vi is the number of writes performed by server Sj . Every write
in VsSG protocol is labeled with a vector timestamp, set to the current value
of vector clock VSj of server Sj , performing the write for the first time. The
vector timestamp of write w is returned by function T : O �→ V . All writes
performed by the server in the past are kept in set OSj . On the client’s side,
vectors WCi and RCi are maintained, representing writes issued by client Ci and
writes relevant to reads issued by this client, respectively. The sequence of past
writes is called history. A formal definition of history is given below:

Definition 5. A history HSj at time moment t, is a linearly ordered set(
OSj ,

Sj

�
)

, where OSj is a set of writes performed by server Sj, till the time t

and relation
Sj

� represents an execution order of writes.

In order to satisfy the client’s requirements concerning data consistency, the sys-
tem intercepts client requests, and extends the standard communication. The
request sent from a client Ci to a server Sj carries the operation that is to be
performed and vector W , calculated according to the operation type and set SG
of session guarantees required for the operation. W is set either to WCi or RCi .

Bounding Recovery Time in Rollback-Recovery Protocol 191

On receipt of request sent by a client, server Sj checks whether for vectors VSj

and W the following condition is fulfilled, ∀i : VSj [i] ≥ W [i], which is expected
to be sufficient for providing appropriate session guarantee. If the state of the
server is not sufficiently up to date, the request is postponed and will be resumed
after synchronization with another server.

During writes performed by server Sj , its version vector VSj is incremented at
position j and a timestamped operation is recorded in history HSj . The current
value of the server vector clock is returned to the client and causes the update
of the client’s vector WCi .

VsSG protocol eventually propagates all writes to all servers. During syn-
chronization of servers, their histories are concatenated. The concatenation of
histories HSj and HSk

, denoted by HSj ⊕ HSk
, consists in adding new opera-

tions from HSk
at the end of HSj , preserving at the same time the appropriate

relations [BSW05].

2.3 Checkpoint and Log Definitions

Below, we propose formal definitions of fault-tolerance mechanisms used by
rVsSG protocol:

Definition 6. Log LogSj is a set of triples:

{ 〈i1, o1, T (o1)〉 〈i2, o2, T (o2)〉 ... 〈in, on, T (on)〉}
,

where in represents the identifier of the client issuing a write operation on ∈ OSj

and T (on) is timestamp of on.

During a rollback-recovery procedure, operations from the log are executed ac-
cording to their timestamps, from the earliest to the latest one.

Definition 7. Checkpoint CkptSj is a couple
〈
VSj , HSj

〉
, of version vector VSj

and history HSj maintained by server Sj at time t, where t is a moment of taking
a checkpoint.

In this paper we assume, that log and checkpoint are saved by the server in
the stable storage, able to survive all failures [EEL+02]. Additionally, we assume
that the newly taken checkpoint replaces the previous one, so just one checkpoint
for each server is kept in the stable storage.

3 The rVsSG Protocol

3.1 General Idea

To preserve required session guarantee, the rollback-recovery protocol must en-
sure that writes issued by client and essential to preserve this guarantee are not
lost after the server failure and its recovery. Checkpointing every single write
operation fulfills this requirement, but results in frequent saving of server state

192 J. Brzeziński, A. Kobusińska, and J. Kobusiński

in the stable storage, which is time–consuming. Logging procedure overcomes
this disadvantage and takes less time than checkpointing. On the other hand,
the log size may grow infinitely and may turn out to be too large. Thus, in
the proposed protocol we use the known technique of combining logging and
checkpointing. However, while applying these techniques, the semantics of oper-
ations, characteristic of session guarantees, is taken into account. Consequently,
in rVsSG protocol, only operations essential to provide session guarantees are
logged, so checkpoints are optimized with respect to required session guarantee
requirements. Moreover, in rVsSG protocol, servers save only some of obtained
operations, namely those received directly from clients. Operations obtained dur-
ing synchronization procedure, even if required by session guarantee, are just
performed by the server, because they have already been saved in the stable
storage (in the log or in the checkpoint) of other servers. Hence, even if writes
obtained in the result of synchronization procedure are lost, the required session
guarantee is not violated. This steams from the fact, that such writes will be
obtained again during consecutive synchronizations.

3.2 Protocol Implementation

Every request issued by client Ci indicates client’s requirements for the is-
sued operation that are calculated based on the type of operation (checked by
iswrite(o) function), and set SG of session guarantees (lines 1, 3 and 6).

The server, which obtains the write request directly from client Ci, checks
whether the request can be performed accordingly to required session guaran-
tees (line 9). If the state of server Sj is not sufficiently up to date, the obtained
request is postponed (line 10), otherwise server’s Sj data structures are updated:
the value of version vector VSj is increased and operation o is timestamped, to
give o a unique identifier (lines 13-14). Afterwards, o is logged to stable storage
(line 15). It is important that logging of write takes place before performing
this request. Such an order is crucial, as the operation that is performed but
not logged, may be lost in the case of subsequent failures. After the opera-
tion is performed (line 16), it is added to the history HSj of performed writes
(line 17). With every logged operation the size of the log is increased, and thus
a recovery takes more time. Therefore, in order to bound a recovery time after
the server failure, the server state is occasionally checkpointed (line 19). The
rVsSG protocol assumes, that a checkpoint is taken every K logged operations
(line 18). K is constant and its value depends on the system characteristics. Af-
ter the checkpoint is taken, log LogSj is cleared (line 20). Essential is the fact,
that firstly the checkpoint is taken, and only afterwards the content of log LogSj

is cleared.
The read request from client Ci received by server Sj is performed (line 24),

if the condition from line (line 9) is fulfilled for this operation.
The update message received from other servers changes the state of server

Sj , only if the history H contains writes that has not been performed by Sj

yet (line 37). Such update operations are performed (line 38) and processed by
Sj(lines 39-40).

Bounding Recovery Time in Rollback-Recovery Protocol 193

Upon sending a request 〈o〉
to server Sj at client Ci

1: W ← 0
2: if (iswrite(o) and MW ∈ SG)

or (not iswrite(o) and
RYW ∈ SG) then

3: W ← max (W,WCi)
4: end if
5: if (iswrite(o) and WFR ∈ SG)

or (not iswrite(o) and
MR ∈ SG) then

6: W ← max (W,RCi)
7: end if
8: send 〈o, W, i〉 to Sj

Upon receiving a request 〈o, W, i〉
from client Ci at server Sj

9: while
(
VSj �≥ W

)
do

10: wait()
11: end while
12: if iswrite(o) then
13: VSj [j] ← VSj [j] + 1
14: timestamp o with VSj

15: LogSj ← LogSj ∪ 〈o, T (o)〉
16: perform o and store results in res
17: HSj ← HSj ⊕ {o}
18: if K operations is logged then
19: CkptSj ← 〈VSj , HSj 〉
20: LogSj ← ∅
21: end if
22: end if
23: if (not iswrite(o)) then
24: perform o and store results in res
25: end if
26: send

〈
o, res, VSj

〉
to Ci

Upon receiving a reply 〈o, res, W 〉
from server Sj at client Ci

27: if iswrite(o) then
28: WCi ← max (WCi , W)
29: else
30: RCi ← max (RCi , W)
31: end if
32: deliver 〈res〉

Every Δt at server Sj

33: foreach Sk �= Sj do
34: send

〈
Sj , HSj

〉
to Sk

35: end for

Upon receiving an update 〈Sk, H〉
at server Sj

36: foreach wi ∈ H do
37: if VSj �≥ T (wi) then
38: perform wi

39: VSj ← max
(
VSj , T (wi)

)
40: HSj ← HSj ⊕ {wi}
41: end if
42: end for
43: signal()

On rollback-recovery
44: 〈VSj , HSj 〉 ← CkptSj

45: Log�

Sj
← LogSj

46: RSj ← 0
47: foreach o�

j ∈ Log�

Sj
do

48: choose 〈o�

i, T (o�

i)〉 with minimal
T (o�

j) from Log�

Sj
where T (o�

j) > VSj

49: VSj [j] ← VSj [j] + 1
50: perform o�

j

51: HSj ← HSj ⊕ {
o�

j

}
52: RSj ← T (o�

i)
53: end for

Fig. 2. Checkpointing and rollback-recovery rVsSG protocol

After the failure occurrence, the failed server restarts from the latest check-
point (line 44) and replays operations from the log (lines 47-53) according to
their timestamps, from the earliest to the latest one.

194 J. Brzeziński, A. Kobusińska, and J. Kobusiński

4 Safety of rVsSG Protocol

The safety property asserts that clients access object replicas maintained by
servers according to required session guarantee, regardless of servers’ failures.

Lemma 1. Every write operation w issued by client Ci and performed by server
Sj that received w directly from client Ci, is kept in checkpoint CkptSjor in log
LogSj .

Proof. Let us consider a write operation w issued by client Ci and obtained by
server Sj .

1. From the algorithm, server Sj before performing the request w, saves it in
the stable storage by adding it to log LogSj (line 15). Because logging of w
takes place before performing it (line 16), then even in the case of failure the
operation w is not lost, but remains in the log.

2. Log LogSj is cleared (line 20) after taking by Sj the checkpoint (line 19).
Therefore, the server failure that occurs after clearing the log does not affect
safety of the algorithm, because writes from the log are already stored in the
checkpoint.

3. After the checkpoint is taken, but before the log is cleared (between lines 19
and 20) writes issued by client Ci and performed by server Sj are stored in
both the checkpoint CkptSj and the log LogSj .

Lemma 2. The rollback-recovery procedure recovers all write operations issued
by clients, performed by server Sj and logged in log LogSj in the moment of
failure occurrence.

Proof. Let us assume that server Sj fails. After the failure, operations from the
log are recovered (line 47), and cause the update of vector VSj (line 49). After-
wards they are performed by Sj (line 50) and added to history HSj (line 51).
Assume now, that failures occur during recovery procedure. Due to such fail-
ures the results of operations that have already been recovered are lost again.
However, since log LogSj is cleared (line 20) only after the checkpoint is taken
(line 19) and it is not modified during the rollback-recovery procedure (line 45),
log’s content is not changed. Hence, the recovery procedure can be started from
the beginning without loss of any operation issued by clients and performed by
server Sj after the moment of taking checkpoint.

Lemma 3. After the failure and recovery of server Sj, all write operations ob-
tained during synchronization with other servers are performed by Sj again before
applying new operations issued by a client and requiring results of lost operations
to provide session guarantees.

Proof. By contradiction, let us assume that server Sj has performed new oper-
ation o obtained from client Ci, before performing again operation w, received
during a former synchronization with other servers and lost because of Sj fail-
ure. Due to underlying VsSG protocol [BSW05], the following condition must

Bounding Recovery Time in Rollback-Recovery Protocol 195

be fulfilled (line 9) to perform operation o: VSj ≥ W . More precisely, when o
is a read operation required with RYW session guarantee, or a write operation
requiring MW, above condition is equivalent to ∀l : VSj [l] ≥ WCi [l]. In case of
requiring by a client Ci MR guarantee, while issuing read operation or WFR,
while issuing a write, the considered condition is ∀l : VSj [l] ≥ RCi [l].

Suppose that write operation w issued by client Ci has been performed by
server Sk. After obtaining the reply from Sk, client Ci modifies its version vector
WCi at least in position k: WCi ← max(WCi , VSk

) (line 28). Server Sj , in the
result of synchronization with Sk, performs w and updates its version vector VSj ,
modifying VSj at least in position k (line 39). Without loosing the generality,
we assume that after performing operation w, server Sj has performed read
operation r issued by Ci, which has read results of w. In the result, after obtaining
results of r, client Ci has modified its version vector RCi at least in position k:
RCi ← max(RCi , VSj) (line 30).

If the failure of Sj happens, the state of Sj is recovered accordingly to val-
ues stored in CkptSj (line 44) and in LogSj (lines 47-53). During recovering
operations from the log, vector VSj is updated only in position j. Thus, the re-
covered value of VSj [k] does not reflect the information on w. Hence, until the
next update message is obtained, VSj [k] < WCi [k] and VSj [k] < RCi [k] , which
contradicts the assumption.

Lemma 4. The server performs new operation issued by a client Ci only after
all writes issued by this client and performed before the failure are recovered.

Proof. By contradiction, let us assume that server Sj has performed new opera-
tion o issued by client Ci, before recovering and performing again write operation
w received directly from Ci and lost in the result of Sj failure. According to the
underlying VsSG protocol, for server Sj performing new operation o the follow-
ing condition must be fulfilled (lines 9-10): VSj ≥ W , where W represents one of
vectors: WCi or RCi , depending on the type of operation o and required session
guarantee.

By assumption, after obtaining by server Sj write operation w, vector VSj is
modified: VSj [j] ← VSj [j] + 1 and results of performed operation, together with
vector VSj are sent to the client. At the client’s side, after the reply is received,
vector WCi is updated at least in position j : WCi ← max

(
WCi , VSj

)
(line 28).

Without loosing the generality, let us assume that after performing operation
w, server Sj has performed read operation r issued by Ci, which has read results
of w. In the result, after obtaining results of r, client Ci has modified its version
vector RCi at least in position j: RCi ← max(RCi , VSj) (line 30).

Thus, when operation w is not recovered after the server failure and its re-
covery, then either VSj [j] < WCi [j] or VSj [j] < RCi [j] , which contradicts the
assumption.

Theorem 1. RYW, MW, WFR and MR session guarantees are preserved by
rVsSG protocol for clients requesting them, even in the presence of server
failures.

196 J. Brzeziński, A. Kobusińska, and J. Kobusiński

Proof. According to Lemma 1, every write operation performed by server Sj

is saved in the checkpoint or in the log. After the server failure, all operations
from the checkpoint are recovered. Further, all operations performed before the
failure occurred, but after the checkpoint was taken, are also recovered (following
Lemma 2). As stated by Lemma 4, all recovered write operations are applied
before new operation obtained from a client is performed. Hence, for any client
Ci and any server Sj , required session guarantee is preserved by the rollback–
recovery and checkpointing rVsSG protocol.

Full versions of presented theorems and proofs, and the proof of liveness property
of proposed protocol can be found in [BKKS05].

5 Determining Desirable Moments of Taking Checkpoints

In general, checkpoints may be taken according to the following scenarios: pe-
riodically, every K operations issued by clients, or on the basis of semantics
analysis.

In rVsSG protocol, described in section 3, server Sj takes a checkpoint af-
ter logging K operations. The value of constant K depends on system charac-
teristics, among which are the frequency of requests issued by clients, or the
complexity of issued operations. By adequate determining K, the checkpoint
overhead, and thus total execution time of application may be minimized. The
semantics analysis of session guarantees further minimizes the number of taken
checkpoints, because it allows to avoid taking checkpoints that include opera-
tions not required by considered session guarantees.

To indicate sets of above operations, let us discuss the following four situ-
ations. When considering RYW, write operations issued by client Ci and not
followed by read request issued by the same client, are not required to preserve
this guarantee. Thus, when client Ci issues only writes and does not want to
see their results, then checkpointing such writes is unnecessary. In case of MW,
when write operation issued by client Ci is not followed by another write request,
then results of first write are not essential to preserving MW from client’s Ci

point of view. Hence, the first write does not need not to be checkpointed. For
MR session guarantee, set of writes, which results influenced read request issued
by client Ci, does not need to be taken into account while taking a checkpoint,
when such a read is not followed by a new one issued by the same client. Finally,
when read request issued by a client Ci is not followed by write issued by the
same client, then the results of writes that modified the state of server observed
by read need not to be checkpointed if WFR is required by Ci.

Following above analysis, for each session guarantee, sets of operations essen-
tial to preserve this guarantee can be distinguished, and desirable moment of
taking a checkpoint, denoted by DMTC, can be defined. DMTC indicates such a
moment, before which there is no need to take a checkpoint, because the server
has not performed any operation required by given session guarantee. For each
session guarantee, we indicate operations that determine DMTC. In the case
of RYW, it is a read request obtained from a client. For MR it is also a read

Bounding Recovery Time in Rollback-Recovery Protocol 197

request, however the one that follows in the server execution order another read
issued by the same client. With reference to MW session guarantee, DMTC is
determined by obtaining a write request following in the server execution order
all writes issued by the same client. Finally, for WFR session guarantee, it is a
write request, following in the server execution order the read request issued by
the same client.

Thus, the checkpointing and rollback-recovery protocol rVsSG, may be opti-
mized, by taking checkpoints according to consecutive DMTC.

Below, we present an example of taking a checkpoint according to DMTC
(Fig. ??). In the considered example, a system consists of two servers and two
clients. Client C1, issues operations which should be performed according to MR
session guarantee. Server S1 takes a checkpoint according to idea of DMTC, i.e.
when it obtains the second read request issued by Ci. Of course, depending on
system characteristics, in general checkpoints can be taken every n-th DMTC.
But, there is no need to take checkpoitns between two following DMTC.

6 Conclusions

This paper has dealt with a problem of integrating the consistency management
of distributed systems with mobile clients with the recovery mechanisms. To
solve such a problem, the rollback-recovery protocol rVsSG, preserving session
guarantees has been proposed and its correctness in terms of safety has been
formally proved.

The proposed protocol takes advantage of the known rollback-recovery tech-
niques like logging and checkpointing, however, while applying these techniques,
the semantics of operations is taken into account. Consequently, in rVsSG pro-
tocol, only the operations essential to provide required session guarantees are
logged. Moreover, in the paper, we determine, how to take checkpoints in the
most desirable moments for each session guarantee.

Our future work encompasses the development of rollback-recovery protocols,
which are integrated with other consistency protocols. Moreover, appropriate
simulation experiments to quantitatively evaluate overhead of rVsSG protocol
are being carried out.

References

[BKKS05] J. Brzeziński, A. Kobusińska, J. Kobusiński, and M. Szychowiak. rvswfr
recovery protocol for mobile systems. Technical Report RA-017/05, Insti-
tute of Computing Science, Poznań University of Technology, November
2005.

[BSW05] J. Brzeziński, C. Sobaniec, and D. Wawrzyniak. Safety of a server-based
version vector protocol implementing session guarantees. In Proc. of Int.
Conf. on Computational Science (ICCS2005), LNCS 3516, pages 423–430,
Atlanta, USA, May 2005.

198 J. Brzeziński, A. Kobusińska, and J. Kobusiński

[CFV00] G. Chockler, R. Friedman, and R. Vitenberg. Consistency conditions for
a CORBA caching service. In Proc. of the 14th Int. Conf. on Distributed
Computing (DISC’2000), LNCS 1914, pages 374–388, October 2000.

[EEL+02] N. Elmootazbellah, Elnozahy, A. Lorenzo, Yi-Min Wang, and D.B. John-
son. A survey of rollback-recovery protocols in message-passing systems.
ACM Computing Surveys, 34(3):375–408, September 2002.

[GR04] Rachid Guerraoui and Luis Rodrigues. Introduction to distributed algo-
rithms. Springer-Verlag, 2004.

[KBC+00] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels,
R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer, C. Wells, and
B. Zhao. Oceanstore: An architecture for global-scale persistent storage.
Proceedings of the 9th International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS 2000), 2000.

[PBS05] F. Picconi, J-M. Busca, and P. Sens. Pastis: a highly-scalable multi-user
peer-to-peer file system. EuroPar 2005, pages 1173–1182, 2005.

[SDS99] N. Sergent, X. Défago, and A. Schiper. Failure detectors: Implemen-
tation issues and impact on consensus performance. Technical Report
SSC/1999/019, École Polytechnique Fédérale de Lausanne, Switzerland,
May 1999.

[Sob05] C. Sobaniec. Consistency Protocols of Session Guarantees in Distributed
Mobile Systems. PhD thesis, Institute of Computing Science, Poznan Uni-
versity of Technology, September 2005.

[TDP+94] Douglas B. Terry, Alan J. Demers, Karin Petersen, Mike Spreitzer, Marvin
Theimer, and Brent W. Welch. Session guarantees for weakly consistent
replicated data. In Proc. of the Third Int. Conf. on Parallel and Distributed
Information Systems (PDIS 94), pages 140–149, Austin, USA, September
1994. IEEE Computer Society.

Intelligent Dependability Services for Overlay
Networks

Barry Porter, Geoff Coulson, and Daniel Hughes

Computing Department, Lancaster University, Lancaster, UK
{barry.porter, geoff, hughesdr}@comp.lancs.ac.uk

Abstract. Application-level overlays have emerged as a useful means of
offering network services that are not supported by the underlying physi-
cal network. Most overlays employ proprietary dependability mechanisms
to render them more resilient to node failure; but the use of proprietary
approaches leads to duplication of effort during development and adds
design complexity. In this paper we propose generic dependability ser-
vices which simplify the design of overlays. Our services are fully de-
centralized and are configurable to take advantage of current network
conditions, which can enable us to make better repairs following failures.

1 Introduction

Overlay networks are application-level distributed systems, architecturally situ-
ated between the network (e.g. the IP layer) and the end-user application. They
typically provide specialised virtual network topologies (e.g. trees or rings), or
application-specific services (e.g. application-level multicast or ad-hoc routing)
which are outside the scope of the underlying network. Their use is increasingly
common and the types of overlays in use is increasingly diverse [1, 2, 3, 4, 5, 6].

As overlays become more widely deployed, their dependability becomes an
ever more critical issue. In current practice, every overlay implements its own
dependability mechanisms. For example, Chord [7] employs backup links and
data replication, and Overcast [8] uses a specialised tree-repair strategy, both
of which are intended to provide resilience in a single environment consisting of
end-user hosts. In our present work, we seek to add dependability to overlay net-
works as a generic service which can operate in multiple environments including
that of ‘overlay deployment environments’, which are becoming more common
[9, 10, 11]. Our primary goal is to address fault tolerance issues in a systematic
and re-usable manner, and thus to both simplify and enhance the design and
deployment of dependable overlays. An associated, more general goal is to ex-
plore autonomic dependability in large scale overlay-based distributed systems,
where self-configuring services can make intelligent decisions at runtime.

This paper presents an approach to providing generic dependability services to
overlay networks, which can benefit from multiple configurations to intelligently
provide redundancy and enact repairs in an overlay, taking into account the
current environmental conditions in which the overlay is operating. In doing so,

F. Eliassen and A. Montresor (Eds.): DAIS 2006, LNCS 4025, pp. 199–212, 2006.
c© IFIP International Federation for Information Processing 2006

200 B. Porter, G. Coulson, and D. Hughes

we argue that our services can improve the quality of repairs made to an overlay
following failures, and present preliminary results in support of this.

The rest of this paper is organized as follows: In section 2 we examine sev-
eral overlays and their proprietary fault-tolerance mechanisms. In section 3 we
introduce our general approach to building dependability services, and in sec-
tion 4 we present our initial results from evaluating our approach in an overlay
deployment environment. Finally, section 5 discusses related work, and section
6 presents concluding remarks and aspirations for future work.

2 Analysis of Dependability in Overlay Networks

Our general observation is that while most overlays provide resilience in the face
of node failure, the mechanisms used are targeted at a single environment, where
each overlay node resides on an end-user host in an Internet-like environment. As
a result, the approach taken by many overlays to repair themselves is to remove
the failed nodes from the overlay and to attempt to continue to provide the
same service without them. This causes a cumulative degradation of the overlay’s
functioning over repeated failures, as more nodes are lost. We also observe that
the physical capabilities of an overlay’s hosting nodes are typically not taken into
account, which can further tend to degrade the functioning of the overlay. A final
observation is that as overlays become more widely deployed and used in more
demanding application areas, dependability becomes an increasingly pressing
concern. For example, overlay dependability is crucial in Grid environments due
to the large volumes of data that are typically handled [12].

To demonstrate that these limitations pervade a wide range of overlay types
we now look in more detail at DHT overlays (in section 2.1), content dissemina-
tion overlays (in section 2.2) and flooding overlays (in section 2.3).

2.1 DHT Overlays

The general purpose of this class of overlay is to provide an efficient and scalable
“key-based routing” facility in which a message can be routed in O(log N) hops
(where N is the total number of nodes in the overlay) to a target node that is
designated by a given key. In Chord [7], for example, all the nodes are organ-
ised as a logical ring. Chord nodes each maintain a so-called finger list—a list
of increasingly distant nodes around the ring. This is used for O(log N) rout-
ing towards a target node. Chord nodes also store the IDs of their immediate
“successor” and “predecessor” nodes in the ring so they can still make O(N)
progress at times when the finger list is incomplete. One use of Chord is as a dis-
tributed data repository. In such an application, a data item which is submitted
for storage in the repository is stored at the node whose ID is closest to a hash
of the data. Pastry [1] works in a similar way to Chord, as does Tapestry [3],
although the latter is organised as a mesh rather than a ring. Another popular
DHT overlay, CAN [13], is organised such that nodes have zones of responsibility
in a distributed coordinate space.

Intelligent Dependability Services for Overlay Networks 201

Despite their differences, all the above-mentioned overlays have a similar ap-
proach to dependability. In particular, when used as a data repository, they
increase availability of the data by replicating data items on the n nodes whose
ID is “closest” to the hash of a stored piece of data. The response to a node
failure is to update the links in the routing tables of the affected nodes to reflect
the change, and also to restore the number of replicants of data items stored at
the failed node by copying them to further nodes.

The general disadvantage of this approach is that the self-repair algorithm
permanently increases the load on the surviving nodes and reduces the total
amount of redundancy in the overlay, as the same volume of data is redundantly
stored at less hosts. We also observe that the physical resources of a node are
generally not taken into account in DHT overlays; a node is given an ID and is
expected to be able to store all data hashed to that ID. This expectation may
be not be workable in a highly heterogeneous system that includes a significant
number of poorly-resourced hosts.

2.2 Content Dissemination Overlays

Content dissemination overlays [14, 15, 4] deliver streaming content to multiple
users in a scalable manner. They are typically organised as a tree with the sender
at the root. Each non-root node receives data from its parent, and forwards it
to each of its children using a point-to-point link.

TBCP [14] is a good representative of this class of overlay. TBCP builds
a single rooted tree, and new nodes join the tree by first contacting the root
node on a published or well-known address. The root node decides if it wants to
accommodate the joining node as one of its direct children; if not, it forwards
the join request to its most suitable child. This process recurses until the joining
node finds a place in the tree. For performance reasons, TBCP attempts to
build a tree that reflects the structure of the underlying IP network—i.e. the
nodes contained in each sub-tree should tend to share IP-level locality. Decisions
about whether to accept a node as a direct child or to pass it on are made on
this basis. Another approach to maintaining a close correspondence between an
overlay multicast tree and the underlying IP topology is to employ a network
metric such as round trip time between nodes [4].

In terms of dependability, if a node fails, the default response in many such
overlays is for all the nodes below the failure point to re-join via the root of the
tree. The drawback of this is that the resultant bottleneck can cause traffic to
be significantly disrupted during the (possibly extensive) re-building phase. One
possible optimisation is to have each node record a “backup parent” [15]; but this
also has complications: if the child of a failed node re-locates to a backup parent,
it brings the entire sub-tree below it, which can result in a poorly balanced tree.
Another approach is to simply assign the grandparent as the backup parent [8].
This keeps the tree balanced, but can increase the out-degree of the new parent,
which may in the future place additional strain on that node potentially beyond
its capacity [15]. The key points are that in each approach there is additional

202 B. Porter, G. Coulson, and D. Hughes

stress on some parts of the rest of the tree as a result of the failure, and that
this is cumulative over multiple repairs.

In addition, when attaching a new node to an overlay, current schemes tend
not to take into account the characteristics (e.g. in terms of processing power
and link speed) of the underlying host machine: if a tree is built on top of hosts
with greatly differing capabilities, it may not perform with adequate quality of
service (QoS). In an extreme case, for example, if a low power PDA, or a PC
with a dialup connection, is given many children it would have difficulty sending
data out to all of these at a sufficient rate.

2.3 Flooding Overlays

This simple type of overlay is typically used to locate and acquire resources
in a distributed environment. Messages are flooded to a (subset of a) node’s
neighbours, and the neighbours pass these messages onto their neighbours etc.
This continues until either the target resource is located, the edge of the overlay
is reached, or a maximum hop-count that messages are permitted to travel is
reached. Unlike DHTs, queries in flooding overlays typically only reach a subset
of the overlay’s nodes (termed the “search horizon”), which means that there
are no guarantees about locating resources that exist in the overlay.

Early flooding overlays such as Gnutella v0.4 [16] made no provision at all
for dependability because it was assumed that resources would naturally be
replicated over multiple nodes, and that flooding would likely locate a suitable
copy. Version 0.6 of Gnutella, however, adds the notion of “super-peers” to the
architecture in an attempt to enhance scalability. In v0.6, end-user computers
are viewed as “leaf-peers” that do not directly engage in flooding. Instead, each
leaf-peer attaches to a super-peer which manages a number of leaf-peers and
maintains a list of resources held by these. This architecture reduces the number
of nodes that engage in flooding and therefore increases the search horizon. As a
side effect, however, it impacts dependability [17] in that the failure of a super-
peer requires the leaf-peers it was supporting to locate another active super-peer.
Furthermore, as the number of super-peers drops, the load on the remaining ones
clearly increases, which tends toward the emergence of bottlenecks in the overlay.

3 Approach

3.1 Overview

Architecturally, we use a “Dependability Service” component, which can load
and configure sub-services which address an area of dependability. An instance
of the dependability service component and its sub-services resides alongside
each overlay node, as shown in figure 1. Each service internally uses only ‘soft
state’ (i.e. state that can be re-built from instantiation simply by existing in
the environment), so that services are inherently self-repairing. Currently, our
design uses three major sub-services: i) a backup service, ii) a failure detection
service and iii) a recovery service.

Intelligent Dependability Services for Overlay Networks 203

Fig. 1. The dependability services, horizontally composed with an overlay node

Before discussing each of these services, we first introduce the concept of
accessinfo and nodestate records. In order to externally manage an overlay, we
first elected to create a specification of what constitutes an overlay. Rather than
providing fully transparent services, we are interested in taking the application-
specific needs of each overlay into account, and in order to do this we needed to
create a certain ‘model’ to which an overlay must conform.

Our overlay model has two basic ‘types’: Accessinfo records and nodestate
records. An accessinfo record represents an overlay node’s ID, or a neighbour
link to another node in the overlay. Each overlay node will therefore have one
accessinfo record giving its logical node ID, and a collection of records pro-
viding its list of neighbours. Accessinfos are expected to have ‘context’ (such
as ‘NodeID’, ‘child’ or ‘successor’) included in them, though the internal struc-
ture of accessinfo records is unknown to the services, and entirely the decision
of the overlay. They are named as such because they represent not only a way
to store the structure of the overlay on a per-node basis, but they also allow
service instances on neighbouring nodes to communicate with each other by
passing to their overlay node an accessinfo record and a message to deliver to
the service at the target node, thus exposing the structure of the overlay to the
services.

Nodestate records represent any other state that is required by the overlay
to be persistent across failures, such as resources in Chord or resource indices
at Gnutella super-peers1. Again, their constitution is the choice of the overlay;
our services simply know that they represent ‘extra state’ of a node that is
not directly related to the overlay’s core structure. We use both of these typed,
‘black-box’ objects to generalize overlays sufficiently for what we need to achieve,
while still allowing significant room for specialization by overlays of their needs
by filling in the black boxes in ways uniquely appropriate to them.

Our general approach to dependability centres on decentralization, config-
urability and intelligent self-configuration. We now discuss the three services
mentioned above, outlining available configuration options in each.

3.2 Backup Service

The backup service is used to redundantly store accessinfo and nodestate
records belonging to an overlay node in case that node fails. This data is stored
on one or more appropriate backup hosts in the overlay (other than the host of

1 Note overlays are not required to have nodestate; some overlays like simple multicast
trees have only structural data, which is captured in full by accessinfo records.

204 B. Porter, G. Coulson, and D. Hughes

the origin overlay node), and constitutes everything about a node that is needed
to make repairs should it fail.

Our current implementation uses a simple ‘push’ variant where overlay nodes
notify the backup service when neighbours or other overlay state is added or
removed at that node. The local backup service at a node then transmits the
collection of accessinfo and nodestate records to other nodes. In terms of
configurability, the backup service can store more or less complete backup copies
of each node on different hosts, providing a simple way to increase or decrease
the amount of redundancy in the overlay.

In future work, we intend to make the backup service self-configuring, so that
it can increase or reduce the amount of redundancy in the overlay according to
observed regional stability of networks and hosts. Additionally, backups should
ideally be stored at the most stable hosts in the overlay with the most free
resources. We also seek to take advantage of the way our overlay model allows
individual handling of accessinfo and nodestate records, such that we only
alter existing backups to add new ‘fragments’ of data about a node instead of
re-saving the full collection of these each time a change is made.

3.3 Failure Detection Service

The failure detection service is used to detect node failures in a decentralised
manner. The service is currently implemented in the form of an overlay that
is used to monitor the nodes of one or more “target” overlays that require de-
pendability. Having detected a failed node, an instance of the failure detection
service informs the recovery service instance(s) on the neighbour(s) of that failed
node. A number of overlay types could be used for failure detection, with various
protocols, but our current implementation makes use of gossip protocols [18].

Because distributed failure detection is already a well-researched area in its
own right, we do not pursue this aspect of the dependability service in this paper.

3.4 Recovery Service

The general behaviour of a recovery service component is, on learning of the
failure of a neighbouring node from the failure detection service, to create a
strategy to repair the overlay. We currently use two different methods to achieve
this; i) recovering failed nodes on alternative hosts, and ii) adapting the overlay
to perform the same duties without the failed nodes.

When recovering failed nodes on alternative hosts, the service first discovers
suitable hosts (i.e. with sufficient free resources), then instantiates new overlay
nodes on those hosts, and injects backed up data into each, essentially re-creating
each failed node. At nodes that neighboured these failed nodes, accessinfo
records are manipulated by the service so that they point to the newly restored
node(s). This is the most transparent method of repair, as the overlay structure
does not change, but clearly requires the availability of suitable alternative hosts
and the ability to locate them. We return to this issue in section 4.1.

Intelligent Dependability Services for Overlay Networks 205

When adapting the structure of the overlay to operate without the failed
nodes, the service needs to know how to perform the adaptation; that is, what
the structural and behavioural rules of the overlay are. We can use various levels
of interaction with the overlay in order to acquire such information when a repair
needs to be made, but we present the most generic approach here which requires
least interaction with the overlay. It uses the observation that several types of
overlay can be structurally repaired using the same procedure, by adding all
outward-pointing ‘perimeter’ connections from the failed section of overlay (i.e.
neighbour links from failed nodes to neighbouring live ones) to one selected
live neighbour of the failed section, and adjusting connections at all other live
neighbours of the failed section to point to that same selected neighbour. Any
recovered nodestate is also inserted into the selected node.

Using either of the above repair ‘styles’, or a combination of both, it is nec-
essary to select a coordinator to actually carry out the repair. To do this, the
nodes neighbouring (or ‘bordering’) a failed node or failed section of overlay
discover each other by locating the backup of a failed neighbour, extracting its
neighbours, and testing each for failure, then recursing the procedure, until each
link terminates (transitively) in a node reported to be alive. These nodes then
communicate with each other, using an agreement algorithm to select one of
them as the repair coordinator. We do not have space to present the algorithm
in detail here, but interested readers are referred to [19]. Briefly, its properties
include that only the nodes bordering a failed section (or single failed node) of
overlay are involved in its repair, limiting the effort of repair to the affected area
of overlay. This is because recovery service instances are initially only concerned
with the failure of their direct neighbours, expanding their area of concern as
they discover additional connected failed nodes. The algorithm is resilient to
further node failures while repairs are taking place, and is also able to select the
repair coordinator based on dynamically-acquired data at the time of the failure,
such as free resources on each border node and their network latencies.

4 Evaluation

4.1 Gridkit: Overlays as Part of Middleware Services

The environment on which we focus for our evaluation is an overlay deploy-
ment environment called Gridkit [10], which is a middleware service supporting
communication-based Grid systems in diverse networks. Gridkit and its over-
lay networks are constructed from software components, and overlay networks
are used as a substrate for ‘interaction types’ requested by an application (e.g.
multicast, publish-subscribe), operating in a heterogeneous Grid-like environ-
ment. The architecture of overlay nodes is specified into a control, state and
forwarder component, allowing overlays to be composed in a ‘stack’ to provide
advanced services (a typical example is using Scribe [2] atop Pastry for publish-
subscribe style communication), where messages travel up and down the stack
(e.g. between forwarder components). More details on Gridkit are available in
the literature [10].

206 B. Porter, G. Coulson, and D. Hughes

For our dependability services, we are particularly interested in two aspects
of the environment that Gridkit operates in; its heterogeneity, where hosts of
massively variable capabilities are connected together in a suitable overlay, and
its altruistic nature. This latter aspect can be harnessed by Gridkit’s resource
discovery framework, a service capable of discovering Gridkit-enabled hosts in
the network with specified types and levels of resources.

When our recovery service is used in such an environment, it can switch
between the structural adaptation and node restoration repair styles as available
Gridkit hosts and resources dictate. This is a powerful ability, meaning that the
overlay may not need to ‘degrade’ at all following a failure, as failed nodes can be
restored on alternative Gridkit hosts, maintaining (if possible) a constant node
(and host) population through failures. If suitable hosts are not available, the
recovery service can simply employ structural adaptation to repair the overlay
as normal.

We now present results from a Gridkit-like environment which show how this
kind of intelligent, configurable repair can be beneficial in practice. We employ
the following criteria in evaluating the dependability service:

– ongoing memory use refers to the average ongoing memory load on the hosts
used by the overlay;

– average request handling load refers to the average number of user requests
handled by a host per second;

– average recovery time refers to the time taken to recover failed node from
the time of detection of the failure;

– messaging overhead refers to the total amount of maintenance-related overlay
traffic per unit time.

In the following, we first, in section 4.2 present a detailed quantitative analy-
sis of the dependability service in comparison to the proprietary dependability
mechanisms supported by the Chord DHT. Then, in section 4.3, we offer a more
general qualitative analysis.

4.2 Comparison with Chord’s Dependability Mechanisms

To perform this evaluation, we developed Java software that emulates a set of
hosts as operating system processes and inter-host links as IPC calls. We then
ported the backup and recovery services (using only the node restoration repair
style) to this environment. Failures are simulated in terms of a script and notified
to overlay nodes running on the simulated hosts as if by the failure detection
service. On top of this, we developed two Chord implementations: one is standard
Chord [7], and the other is a modified Chord that replaces Chord’s proprietary
dependability mechanisms with our dependability APIs.

Our experimental Chord configurations employed a successor list size of 2,
and an identifier space size of 8. We used ring sizes of 12 nodes, but included
17 ‘Gridkit’ hosts, each of which was capable of hosting an arbitrary number
of nodes; initially 12 hosts supported a single node each, and the others were

Intelligent Dependability Services for Overlay Networks 207

idle2. The rings were used to store a set of 60 different data files. Each of these,
which were of identical size, was hashed to a key and stored on the node closest
to that key. Although the assignment of files to nodes was ‘random’, the same
assignment was used for each experimental run. Each node duplicated its state
on one additional node—in the standard Chord case, through replication; in the
modified Chord case, via the backup service. In each run of the experiment, we
observed the effects of failing 7 hosts, one every 10 seconds. This resulted in
the standard Chord version being left with 5 nodes at the end of the run, and
the modified version being left with 12 (as the 7 failed nodes were recovered
by the dependability service). The file data was injected into the ring at time
T+20, and the first failure occurred at T+42. All the results presented below
are averaged over all hosts used by the overlay in question (n.b. obviously by the
end of the standard Chord runs there were only 5 hosts in use; whereas there
were 10 by the end of the modified Chord runs).

In terms of ongoing memory use, figure 2 (a) shows the average memory load
on the overlay’s hosts. It can be seen that, in the case of standard Chord, the load
increases steadily from the time of the first host failure (at time T+42). However,
in the case of modified Chord, because the total load is spread over more available
hosts, the average load is much smaller. Note that the slight increases at times
68 and 91 are due to the fact that a host is from that point supporting 2 nodes
(as mentioned, there are 12 nodes but only 10 hosts in use at the end of the
run). Note also that between times 26 and 42 (which is a failure free period)
modified Chord consumes slightly more memory than standard Chord. This is
due to the overhead of storing backups in a generic fashion. In conclusion, this
experiment confirms that modified Chord in the face of node failure can spread
the load over a wider range of hosts than standard Chord and thus reduces host
memory overload and consequent service degradation.

We evaluated average request handling load by counting the number of re-
quests arriving in each second at each host. A single designated node generated
requests for a random selection of 15 of the 60 files stored in the ring at a rate
of 15 requests per second. Figure 2 (b) shows that the average request handling
load is similar for the two cases until T+42, when the first host failure occurs.
From this point onward, in the case of standard Chord, a constant number of
requests is being handled by a shrinking number of hosts—therefore the request
handling load steadily climbs. In the case of modified Chord, however, the num-
ber of hosts stays around the same so that the request handling load is roughly
constant (again the slight increase is due to two hosts supporting two nodes).
In conclusion, this experiment confirms that our approach can maintain the re-
quest handling patterns of the original ring topology across node failures, and
therefore reduce bottlenecks. Note, incidentally, that request handling load does
not translate directly to average request latency, because network latency must
also be taken into account in this. In fact, standard Chord will tend to a lower
average network latency as failures occur, simply because there are fewer nodes

2 The nature of our criteria is independent of the size of the Chord ring involved, so
there is no loss of generality in using such a “small” ring.

208 B. Porter, G. Coulson, and D. Hughes

Fig. 2. Average memory load (a) and requests per second (b) at hosts used by the
overlay

left in the ring. However, our approach will increasingly “win” as the ring be-
comes more loaded with data—as this happens, the per-host request handling
load will progressively overshadow the effects of network latency.

We evaluated average recovery time in modified Chord simply by measuring
the average latency between failure detection and recovery completion. This
was measured as 179ms. In standard Chord, of course, nodes are not recovered:
instead the predecessor of the failed node simply re-designates the failed node’s
successor as its successor; therefore recovery time is negligible. Thus the standard
Chord time is close to 0ms. Essentially, we are paying “up front” for later pay-
offs in terms of improved memory use and reduced request handling load. This
tradeoff is increasingly in our favour as more failures occur—recovery time in our
approach is constant (and quite small) for each failure, while the degradation
caused by compensating for the loss of a node in standard Chord is cumulative
as failures increase.

Finally, we measured overlay messaging overhead in terms of the numbers
of overlay maintenance-related messages. More specifically, we totalled the byte
count of these per second and divided by the number of hosts involved. The
results are shown in figure 3. It can be seen that there is a small start-up cost
incurred by modified Chord between time 0 and the time of the data injection
(at T+20). This is due to backups being taken as the ring is built; it tails off as the
ring stabilises. Following data injection, both cases suffer a spike; this is larger in
the case of modified Chord, again due to the overhead of creating generic back-
ups. Subsequently, however, modified Chord fares slightly better than standard
Chord—except transiently when failures occur. The reason for the higher ambi-
ent overhead of standard Chord is the need to continuously maintain the succes-
sor list; modified Chord does not have this requirement, although it does need to

Intelligent Dependability Services for Overlay Networks 209

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

Time (s)

B
y

te
s

 s
e

n
t

a
n

d
 r

e
c

e
iv

e
d

Standard
Modified

Fig. 3. Average number of overlay maintenance-related bytes per second per host

maintain the Chord finger table as this is an inherent part of the operation of
the overlay. In conclusion, the recovery “spikes” are traded off for a generally
improved level of service in terms of messaging overhead. As above, the overhead
is transient while the adverse effects of not restoring nodes is permanent and
cumulative.

To summarise, repeated failures in Chord using its proprietary dependability
approach lead to reduced overall redundancy in the overlay, and more stress
being put on other nodes in the long term to compensate for the failures. By
restoring failed nodes in Gridkit where possible, we maintain the structure and
integrity of the overlay across failures, and the benefit of this grows progressively
with the amount of data stored in the ring and number of node failures.

4.3 Qualitative Evaluation

We now extrapolate from the DHT-specific arguments above to the other overlay
classes mentioned in section 2.

First, consider content dissemination overlays such as TBCP. In such overlays,
the ongoing memory use and request handling load criteria are not applicable
as the purpose of the overlay is simply to forward “live” data. The main differ-
ence relates to the average recovery time criterion. There are basically two cases
depending on the tree repair strategy used. First, consider the “rejoin at root”
strategy (see section 2.2). Here, the node restoration approach avoids two patho
logies: i) overloading of the (bottleneck) root node; and ii) long outages in cases
where the failed node has many descendents. Second, consider the “backup par-
ent” strategy. Here, our approach can avoid the pathology of structural degrada-
tion. In particular, it avoids stressing the backup parent which might have to deal

210 B. Porter, G. Coulson, and D. Hughes

with a larger number of children than it is equipped for; and it avoids situations
in which the tree may become unbalanced if a large subtree is moved from one
branch to another. These pathologies can be avoided by recovering the failed
node on an alternative host and re-integrating it into the overlay in the same
logical position, removing the need for any re-configuration of the tree. There
is a trade-off involved in all of these situations. For simple cases (e.g. where the
failed node has few descendents), the proprietary methods may be faster; the
benefit of restoring nodes becomes particularly apparent in large trees.

Second, consider flooding overlays such as Gnutella v0.6. In terms of ongoing
memory use, request handling load, and maintenance-related messaging over-
head, the benefits are similar to those seen in the Chord case—as super-peers
fail, rather than their memory use and request handling load burdening other
surviving super-peers, the failed nodes are simply restored on alternate hosts
when possible. The corresponding drawbacks are also similar to the Chord case.
The main difference between the Chord and Gnutella cases is in terms of recovery
time (for super-peers). In standard Gnutella v0.6, leaf nodes that were attached
to a failed super-peer must locate an alternative super-peer, which may in some
cases require the intervention of the user. In a dependability service enhanced
Gnutella, however, leaf nodes would be automatically informed of the location
of the recovered super-peer.

5 Related Work

Classic work on fault-tolerance services for distributed applications has focused
on management ‘frameworks’ [20, 21]; these often have hierarchical arrangements
with various dedicated ‘managers’ (usually replicated for fault-tolerance) to re-
cover from failures. In contrast, we seek to develop entirely decentralized services
which are horizontally composed with the application, affording us scalability
and enhanced service resilience, and removing reliance on administrated infras-
tructure to host our services.

The Resilient Overlay Network project [22] highlights the usefulness of over-
lays to improve levels of service beyond those of the physical network, but RON
is aimed at providing dependable communications over the Internet using an
overlay and does not address the failure of overlay nodes themselves. While our
approach can also be used to provide dependable communications by introducing
dependability to a target overlay network, it is more general and focuses not only
on the overlay surviving, but also on any data in the overlay being persistent.

There are some overlays such as Narada [23], and some simple flooding over-
lays (e.g. Gnutella v0.4), that employ dependability mechanisms which do not
degrade over multiple recovery operations, and which do take account of host
resources. However, the number of such overlays is sufficiently small that our ap-
proach is still very widely applicable; moreover the overlay-specific dependability
techniques of these overlays are generally not suitable for overlays of different
types. We are not aware of any work except ours that is aimed specifically at
making overlays themselves dependable in a generic way.

Intelligent Dependability Services for Overlay Networks 211

Finally, our work is related to general trends in autonomic computing re-
search [24] in that it is decentralized, using relatively lightweight components
distributed throughout an overlay to monitor and manage it, and our services
are self-configuring.

6 Conclusions

The heart of our proposal is to offer dependability to overlays in the form of
generic services, which intelligently configure as appropriate to an overlay’s en-
vironment. We have presented an example using an overlay deployment environ-
ment, where intelligent selection of a repair strategy can improve the performance
of an overlay following multiple failures. The generalization and extension of ex-
isting overlay dependability mechanisms as external services allows commonly
applicable standards of fault-tolerance across a wide range of overlays, and we
have shown that the price of such genericity is not prohibitively high.

We currently have implemented both node restoration and structural adap-
tation repair styles in our recovery service, and have basic implementations of
our failure detection and backup services.

In our future work, we intend to bring similar intelligence to our backup ser-
vice, taking advantage of our overlay model to store only changes to an overlay
node’s accessinfo or nodestate records, and storing backups at the most suit-
able (i.e. highly resourced and stable) nodes, as well as varying the amount of
redundancy used depending on the relative stability of the overlay.

We are also interested in helping to deal with network heterogeneity; as we
discussed in section 2, many of today’s overlays are not good at distributing
load according to the resources of their members’ hosts, and we believe that an
additional service can address this issue by re-distributing load appropriately.

References

1. Rowstron, A., Druschel, P.: Pastry: Scalable, decentralized object location, and
routing for large-scale peer-to-peer systems. Lecture Notes in Computer Science
2218 (2001) 329

2. Castro, M., Druschel, P., Kermarrec, A.M., Rowstron, A.: SCRIBE: A large-scale
and decentralized application-level multicast infrastructure. IEEE Journal on Se-
lected Areas in communications (JSAC) (2002)

3. Zhao, B.Y., Kubiatowicz, J.D., Joseph, A.D.: Tapestry: An infrastructure for fault-
tolerant wide-area location and routing. Technical Report UCB/CSD-01-1141, UC
Berkeley (2001)

4. Pendarakis, D., Shi, S., Verma, D., Waldvogel, M.: ALMI: An application level
multicast infrastructure. In: 3rd USNIX Symposium on Internet Technologies and
Systems (USITS ’01), San Francisco, CA, USA (2001) 49–60

5. Chawathe, Y., McCanne, S., Brewer, E.A.: RMX: Reliable multicast for heteroge-
neous networks. In: INFOCOM, Tel Aviv, Israel, IEEE (2000) 795–804

6. Clarke, I., Sandberg, O., Wiley, B., Hong, T.W.: Freenet: A distributed anonymous
information storage and retrieval system. Lecture Notes in Computer Science 2009
(2001) 46

212 B. Porter, G. Coulson, and D. Hughes

7. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A
scalable peer-to-peer lookup service for internet applications. In: Proceedings of
the 2001 conference on applications, technologies, architectures, and protocols for
computer communications, ACM Press (2001) 149–160

8. Jannotti, J., Gifford, D.K., Johnson, K.L., Kaashoek, M.F., O’Toole, Jr., J.W.:
Overcast: Reliable multicasting with an overlay network. In: Proceedings of the
Fourth Symposium on Operating System Design and Implementation (OSDI).
(2000) 197–212

9. Touch, J.: Dynamic internet overlay deployment and management using the x-
bone. In: ICNP ’00: Proceedings of the 2000 International Conference on Network
Protocols, Washington, DC, USA, IEEE Computer Society (2000) 59

10. Grace, P., Coulson, G., Blair, G., Mathy, L., Yeung, W.K., Cai, W., Duce, D.,
Cooper, C.: GRIDKIT: Pluggable overlay networks for grid computing. In:
DOA ’04: Proceedings of Distributed Objects and Applications, Cyprus (2004)

11. Li, B., Guo, J., Wang, M.: iOverlay: A lightweight middleware infrastructure
for overlay application implementations. In: Proceedings of IFIP/ACM/USENIX
Middleware, Toronto, Canada (2004)

12. Pallickara, S., Fox, G.: NaradaBrokering: A distributed middleware framework and
architecture for enabling durable peer-to-peer grids. In: Middleware. (2003) 41–61

13. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content
addressable network. Technical Report TR-00-010, UC Berkeley, Berkeley, CA
(2000)

14. Mathy, L., Canonico, R., Hutchison, D.: An overlay tree building control protocol.
Lecture Notes in Computer Science 2233 (2001) 76

15. Yang, M., Fei, Z.: A proactive approach to reconstructing overlay multicast trees.
In: IEEE INFOCOM, Hong Kong (2004)

16. URL: http://rfc-gnutella.sourceforge.net/developer/stable/index.html (2000)
17. Yang, B., Garcia-Molina, H.: Designing a super-peer network. In: Proceedings of

the 19th International Conference on Data Engineering, Bangalore, India (2003)
18. Renesse, R.V., Minsky, Y., Hayden, M.: A gossip-style failure detection service.

Technical Report TR98-1687, Cornell University (1998)
19. Porter, B., Täıani, F., Coulson, G.: Generalizing repair for overlay networks. Tech-

nical Report PTC–06–01, Lancaster University (2006)
20. Marzullo, K., Cooper, R., Wood, M.D., Birman, K.P.: Tools for distributed appli-

cation management. IEEE Computer 24:8 (1991) 42–51
21. Bagchi, S., Whisnant, K., Kalbarczyk, Z., Iyer, R.K.: The chameleon infrastructure

for adaptive, software implemented fault tolerance. In: Symposium on Reliable
Distributed Systems. (1998) 261–267

22. Andersen, D.G., Balakrishnan, H., Kaashoek, M.F., Morris, R.: Resilient overlay
networks. In: Symposium on Operating Systems Principles. (2001) 131–145

23. Chu, Y.H., Rao, S.G., Zhang, H.: A case for end system multicast. In: Measurement
and Modeling of Computer Systems. (2000) 1–12

24. Ganek, A., Corbi, T.: The dawning of the autonomic computing era. IBM Systems
Journal 42:1 (2003) 5–19

F. Eliassen and A. Montresor (Eds.): DAIS 2006, LNCS 4025, pp. 213 – 227, 2006.
© IFIP International Federation for Information Processing 2006

Model-Driven Development of Context-Aware Services

João Paulo A. Almeida1,2, Maria-Eugenia Iacob1, Henk Jonkers1, and Dick Quartel2

1 Telematica Instituut, P.O. Box 589, 7500 AN Enschede, The Netherlands
{JoaoPaulo.Almeida, Maria-Eugenia.Iacob, Henk.Jonkers} @telin.nl

2 Centre for Telematics and Information Technology, University of Twente,
P.O. Box 217, 7500 AE, Enschede, The Netherlands

quartel@cs.utwente.nl

Abstract. In this paper, we define a model-driven design trajectory for context-
aware services consisting of three levels of models with different degrees of
abstraction and platform independence. The models at the highest level of
platform independence describe the behaviour of a context-aware service and
its environment from an integrated perspective. The models at the intermediate
level describe abstract components, which realize the context-aware service in
terms of a service-oriented abstract platform. At the lowest level, the realization
of a context-aware service is described in terms of specific target technologies,
such as Web Services, BPEL and Parlay technologies. Our approach allows
service designers to concentrate their efforts on the services they intend to
create and offer, by facilitating the handling of context information and auto-
mating design steps through model transformation. In addition, our approach
enables the reuse of platform-independent models for different target platforms.

1 Introduction

The last few decades have led to an explosion of different means of communication
and the availability of ubiquitous (mobile) computing devices and sensors. This
combination has enabled the creation of mobile context-aware services, which sense
the users’ environment to provide relevant functionality to their users. The design and
provisioning of such mobile context-aware services is a challenging task, which has
justified the development of novel methods, abstractions and infrastructures for the
development of such services (e.g., [7, 8, 11, 20]). In addition, the complexity,
diversity and fast-changing nature of enabling technology platforms require design
approaches that shield designers and providers from platform-specific details allowing
them to concentrate their efforts on the services they intend to create and offer. These
factors have led us to propose the model-driven design trajectory addressed in
this paper.

Our model-driven design approach has three main objectives: (1) to facilitate
service design by providing abstractions for context-aware service specification; (2)
to improve the reusability of service specifications and designs, by promoting
independence from specific technology platforms; and (3) to improve the overall
efficiency of the service design process, by promoting the automation of design steps

214 J.P.A. Almeida et al.

by model transformations. The target platforms we consider include middleware
platforms and a part of the mobile telecommunications infrastructure, which is used to
send messages to mobile terminal users, to establish calls, and to determine the
current location and availability (or presence) of mobile terminal users.

We define three levels of models with different degrees of abstraction and platform
independence. The models at the highest level of platform independence describe the
behaviour of a context-aware service and its environment from an integrated
perspective. This level abstracts from the way context information is obtained,
focusing on context-aware behaviour. The models at the intermediate level describe
abstract components, which realize the context-aware service in terms of a service-
oriented abstract platform. This abstract platform is denoted as the A-MUSE Service
Platform (in the Freeband A-MUSE project [12]). The A-MUSE Service Platform
provides an abstraction of middleware and service discovery platforms and includes
context and action services that are provided by telecom platforms such as Parlay
[29]. In addition, this abstract platform supports service discovery with dynamic
service properties, which allows one to discover services based on context
information. At the platform-specific level, the realization of a context-aware service
is described in terms of specific target technologies, such as Web Services, BPEL and
Parlay technologies.

The paper is organised as follows. Section 2 sets the theoretical background for our
method. A number of concepts such as platform independence and abstract platform
are discussed here. Section 3 presents an overview of the different levels of models,
abstract platforms and model transformations that play an essential role in the design
trajectory. Section 4 discusses the specification of services at the highest level of
platform independence in further detail. Section 5 discusses the design of services at
the intermediate level of platform independence, and defines the A-MUSE Service
Platform. Section 6 describes a model transformation that derives a platform-
independent service design from a service specification. Finally, Section 7
summarises our results and indicate future research. The approach is illustrated in this
paper with a running example: the Telemonitoring service.

2 Model-Driven Development

In most traditional development practices, the ultimate product of the design process
is “the realization”, deployed on available realization platforms. In several model-
driven approaches, however, intermediate models are reusable and are considered
final products of the design process. These models are carefully defined so as to
abstract from details in platform technologies, and are therefore called platform-
independent models (PIMs), in line with OMG’s Model-Driven Architecture (MDA)
[18, 22, 28]. PIMs can be defined with different degrees of platform independence,
with respect to the extent to which these models constrain the selection of a target
platform. For this reason, we organize the various models of an application into
different levels of platform independence [3].

The concept of abstract platform [3, 4] is an important architectural concept of our
approach to model-driven design. An abstract platform is an abstraction of infrastructure

 Model-Driven Development of Context-Aware Services 215

characteristics assumed to exist in the construction of platform-independent models of an
application at some point in the design process.

An abstract platform defines an acceptable or, to some extent, ideal platform from
an application developer’s point of view. The characteristics of an abstract platform
must have proper mappings onto the set of (concrete) target platforms that are
considered for a design. In this way, the notion of abstract platform allows a designer
to explicitly define levels of platform independence.

We follow a design process [5, 13] that covers two main phases: the preparation
phase and the service creation phase, both briefly described below.

In the preparation phase, experts identify (and, when necessary, define) the
required levels of models, their abstract platforms and the modelling language(s) to be
used. In addition, during the preparation phase an expert may identify or define
(automated) transformations between related levels of models. Since the design
trajectory is effectively defined in this phase, it requires careful consideration of
application domain requirements, target platform characteristics and design goals.

The results of the preparation phase are used in the service creation phase, as
illustrated schematically in Fig. 1.

service creation
phase

application domain
requirements

preparation
phase

target platform
characteristics models and

realization

models and
realization

transforma-
tions

abstract
platforms

modelling
languages

user (application)
requirements

experts service
designers

Fig. 1. The preparation phase and its results

The design process described in [5, 13] is neutral with respect to specific
application domains and target platforms. In this paper, however, we consider the
specific case of context-aware services, which are ultimately deployed on top of a
(telecommunications) services infrastructure and middleware platforms. In this case,
our objective in the preparation phase is to capture design knowledge that is
applicable to a large number of different context-aware services and that can be later
reused in the service creation phase in the design of a specific service, which
addresses specific service requirements. This includes knowledge on how to cope
with distribution in the middleware platforms targeted, but also includes knowledge
on how context information is handled in the target context-aware services
infrastructure.

The service creation phase entails the creation of models of a specific service
using specific modelling languages and abstract platforms and applying (manual and
automated) transformations to models. The service creation phase leads ultimately to
a realization (or alternative realizations) of the service that satisfies user requirements,
while capturing reusable platform-independent models of the service design. This
phase also entails analysis, testing and validation of models and realizations. For an

216 J.P.A. Almeida et al.

extensive presentation of the methodological support for both the preparation and
service creation phase we refer to [5].

3 Design Trajectory Overview

This section explores the main activities and deliverables of the preparation phase in
the design trajectory for context-aware services. We first consider a generic
decomposition (architecture) of a context service. Based on this decomposition, we
identify the characteristics of the A-MUSE Service Platform, and derive the necessary
levels of models to be used in the service creation phase.

3.1 Context-Aware Services and the A-MUSE Service Platform

Context-awareness refers to the capabilities of applications to provide relevant
services to their users by sensing and exploring the users’ context [7, 11, 20]. Context
is defined as a “collection of interrelated conditions in which something exists or
occurs” [11]. The users’ context often consists of a collection of conditions, such as,
e.g., the users’ location, environmental aspects (temperature, light intensity, etc.) and
activities [8]. The users’ context may change dynamically, and, therefore, a basic
requirement for a context-aware system is its ability to sense context and to react to
context changes (without intervention of the user). Changes in context can be
considered external stimuli, namely events, which require a (re)action from the
context-aware system.

A decomposition of a context-aware service reveals the architecture shown in
Fig. 2. This architecture consists of context sources, which are able to sense context
and represent it as context information in the scope of the system. The service
provided by context sources is used by a coordination component, which requests
actions to be executed by action providers depending on situations that can be
inferred from context information. For example, two users may require a service to
establish a call between them when they are located within a certain range of each
other. An example of an action provider suitable for this service is a Parlay gateway
[29], which can be requested to establish a telephone call between two users. Each
user accesses the service through a user component, which provides the user interface
and interacts with the coordination component.

condition 1

condition 3

…

context

condition 2

service users

context-aware
service

user
component

context
sources

context
sources

coordination
component

action
providers

user
components

service
trader

Fig. 2. Decomposition of a context-aware service

 Model-Driven Development of Context-Aware Services 217

The user components and the coordination component exhibit service-specific
behaviour, and are called service components. In contrast, context sources and action
providers are general-purpose and, therefore, can be reused in several different
context-aware services. For this reason, we consider context sources and action
providers as part of the A-MUSE Service Platform (see elements encircled with
dashed lines in Fig. 2). This platform also supports the interaction between the user
components and the coordination component and the interactions between the
coordination component and context sources and action providers. The service
provided by context sources and action providers to the coordination component is
registered in a service trader. This allows the coordination component to select
context sources and action providers dynamically according to service offers that are
registered in the service trader. Service offers have properties that can be used to
select a particular service offer. For example, an action provider can be selected
according to its geographical proximity to a user.

3.2 Levels of Models for Context-Aware Services Development

We define the scope of the design trajectory to include the design activities from the
specification of a service at a high-level of abstraction to the realization of this
service. Given this scope, one extreme approach to organizing the design trajectory
would be to have one level of service specification and one level of service realization
and one transformation that relates these two levels. However, the gap between these
two levels of models may be very large. This means that a lot of effort should be
invested in defining the transformation. This effort is rendered useless when changes
in the target platform invalidate the transformation. Therefore, the opportunities for
reuse can be increased if an intermediate level of models is introduced. This level of
models uses an abstract platform to achieve platform independence, and, hence,
models at this level can be reused for different target platforms. The organization of
the design trajectory is depicted in Fig. 3. The three levels of models we have
identified are:

Service specification level. This level of models describes the behaviour of a context-
aware service from an external perspective. At this level, we do not distinguish the
environment (including service users) and the service provider. The concept of action
is used to model both the occurrence of events originated from context sources and
the execution of actions. This allows modelling context-aware behaviour at a high-
level of abstraction. At this level of abstraction, the service specifier ignores how
context information is obtained from context sources. Services are described in a
domain-specific language called Events-Conditions-Actions Domain Language
(ECA-DL).

Platform-independent service design level. This level of models describes the
behaviour of a context-aware service from an internal perspective, revealing a service-
specific coordination component and the A-MUSE Service Platform. The A-MUSE
Service Platform is the result of the composition of: a Service-Oriented-Architecture
(SOA) abstract platform, which uses abstract interactions [2] to support the
communication of application parts in this design; a service discovery platform which
consists of a service trader; and general-purpose context and action services. This
level of models reveals how context and action services are registered, searched for,

218 J.P.A. Almeida et al.

and used by coordination components. The transformation denoted with T1 in Fig. 3
introduces the coordination component so that the behaviour of the composition of the
coordination component and the A-MUSE Service Platform performs the service
specified at the service specification level.

Platform-specific service design level. This level of models describes the realization
of the service for particular platforms. The flexibility of the relation between the
platform-independent service design level and the platform-specific service design
level allows different middleware platforms to be used. Model transformations can be
used to create models at this level. For example, one could use them to generate the
BPEL specification of the context-aware service that orchestrates (using a BPEL
engine and SOAP [30]) web services (e.g. Parlay-X services [29]) for which WSDL
interfaces [31] are provided. This transformation is illustrated in Fig. 3 denoted by T2.
In this figure, T3 denotes a transformation to CORBA and Parlay.

T2

platform-
independent

service design

level B – platform-specific realization

level A – service specification

level X – platform-independent service design

platform
selection

platform-
independent

design

platform-
specific design

T3

A-MUSE abstract platform =
SOA + trader + context/action services

WS + Parlay-X CORBA + Parlay

service
specification

T1

model transformations

models

ECA-DL

platform-
specific

service design

platform-
specific

service design

Fig. 3. Design trajectory consisting of three levels of models

4 Service Specification Level

At the level of service specification a context-aware service can be described in terms
of events, which represent contextual changes, queries to context sources, and actions,
which represent actions to be performed in order to provide the service to the user.
We defined this level through a domain-specific language for the domain of context-
aware services specification. We specialize elements of a general-purpose design
language, namely the Interaction System Design Language (ISDL) [15, 26, 27], thus
defining a dialect of it, which we call Events-Conditions-Actions Domain Language
(ECA-DL). This language provides a means to specify behaviours in terms of actions
and causality relations between these actions. The specialization consists of defining

 Model-Driven Development of Context-Aware Services 219

ISDL

language-level

service
specification

instantiation of language
elements

model-level

additional
constraints

and patterns

+
language elements

+

CE

specialization
of language

elements
CQ

AI

CQ’

AI’

CE
AI

…

…

ECA-DL

+ UML and
OCL

Fig. 4. Definition of the ECA-DL language for context-aware service specification

special types of actions, namely, context events (CE), context query requests (CQ),
context query responses (CQ’) and action invocation requests (AI) and action
invocation responses (AI’). Context query requests and context query responses are
always related by causality, forming a pattern. The definition of the ECA-DL is
illustrated schematically in Fig. 4 (complete meta-models for ECA-DL in OMG’s
Meta-Object Facility (MOF) are described in [6]).

In order to illustrate the usage of the proposed language and approach, we consider
the design of a “Telemonitoring service” for epilepsy patients [17]. The service
assumes the availability of sensor technology that enables a wearable 24-hour seizure
monitoring system. A couple of minutes before the onset of a seizure, the monitoring
system detects its signs. The patient is warned of an imminent seizure and based on
location information a voluntary aid person (e.g., spouse) or a health team can be
dispatched for assistance.

Fig. 5. The Telemonitoring service specification (exported from Grizzle [14] ISDL tool)

220 J.P.A. Almeida et al.

The Telemonitoring service specification is depicted in Fig. 5. Ovals represent
specialized actions (with a naming convention with suffixes). Arrows indicate
enabling relations between actions; white diamonds represent choice and white
squares denote disjunction.

A simple naming convention has been used to indicate the type of action: suffix _indC
denotes context events; suffixes _reqC and _rspC denote context query requests and
context query responses; and suffixes _reqA and _rspA denote action invocation requests
and action invocation responses. The event seizureAlert_indC represents that an
(imminent) epileptic seizure has been detected in a patient being monitored. The action
alertPatient_reqA requests the patient to be informed about the seizure. Following a
seizure alert, the patient’s current location and speed is requested (position_reqC
followed by position_rspC). An aid person within range of the patient is informed of the
seizure and the current location of the patient (alertAid_reqA). When no aid persons are
available or the speed of the patient exceeds a certain value (which could indicate a
hazardous situation) a health team capable of handling epileptic seizures is dispatched to
the location of the patient. The Grizzle ISDL tool [14] is used for model editing and
simulation of service specifications.

ISDL allows designers to use a modelling language of their choice to define the
attributes of actions and constraints on these attributes. For ECA-DL, we have chosen
to use UML class diagrams [25] for the (context) information attributes. Further, we
use a subset of the Object Constraint Language (OCL) [24] to express constraints on
information attributes. Constraints on information attributes serve to specify context-
dependent conditions and action results, and can also be used to specify required
properties of action services. This is illustrated in the constraints of action
alertAid_reqA in Fig. 5: only an aid person within range of the patient is informed of
the seizure.

5 Platform-Independent Service Design Level

At the platform-independent service design level, the service is provided by a service-
specific coordination component in cooperation with the A-MUSE Service Platform.
This abstract platform is the result of the composition of: a Service-Oriented-
Architecture (SOA) abstract platform; a service discovery platform; and general-
purpose context and action services. The structure of platform-independent service
designs is depicted schematically in Fig. 6, revealing the hierarchy of elements that
constitute the A-MUSE Abstract Platform. This figure also shows the relation
between the service specification level and the platform-independent service design
level.

A schematic overview of the approach for the definition of the hierarchy of abstract
platforms that constitutes the A-MUSE Service Platform is shown in Fig. 7. The
service-oriented abstract platform is defined using a pure language-level approach
[4], i.e., the modelling language used defines the characteristics of the abstract
platform. The language adopted is ISDL (meta-models for ISDL in MOF are
described in [6], based on [9]). The information and location attributes of actions are
described with UML. Constraints on these attributes are described with OCL. Since

 Model-Driven Development of Context-Aware Services 221

model MB1

model MA

T1

T2

model MX

service specification

platform-independent
service design

platform
selection

platform-
independent

design

platform-
specific
design

T3

model MB2

WS + Parlay-X CORBA + Parlay

context-aware
service

service decomposition

A-MUSE abstract
platform

SOA abstract platform + service trader
(service discovery) r un-t ime

repos itor y

action and
context services

SOA abstract platform
(services, service providers, service endpoints)

service-specific coordination components

Fig. 6. Abstract platforms at the platform-independent service design level

ISDL
concepts

language-level

service
components

Instantiation of language
elements

model-level

language elements
SOA platform

pre-defined
artefacts from

abstract platform

…

Incorporation of
pre-defined artefacts

Service Discovery platform

Service Trader

…

A-MUSE Abstract Platform

Context Sources and
Action Services

platform-independent
service design

+

UML class diagrams and OCL

…

Fig. 7. Defining the hierarchy of abstract platforms definition

this level defines a composition of various (potentially distributed) components,
which operates through services, it is necessary to describe the interactions between
components. This is done with abstract interactions, which can be represented in
ISDL ([2] discusses how these abstract interactions can be realized on different
middleware platforms). The service discovery abstract platform is built on top of the
underlying service-oriented abstract platform and is defined with a model-level
approach, i.e., with the definition of reusable modelling artefacts. This abstract
platform consists of a service trader component, defined in ISDL. On top of that,
context and action services are defined, completing the A-MUSE Service Platform.

222 J.P.A. Almeida et al.

We omit any detailed ISDL descriptions of the service trader and context and
action services due to space limitations. We refer the reader to [6] for the complete
ISDL specifications with OCL constraints and UML class diagrams for information
attributes.

6 Model Transformation

Given a service specification in ECA-DL, a platform-independent service design,
specified in standard ISDL, can be derived automatically using model transformation.
As a proof of concept, we have implemented this transformation using the Graph
Rewriting And Transformation (GReAT) software developed at Vanderbilt University
[1, 18]. GReAT has been implemented within the Generic Modelling Environment
(GME) [19], a configurable toolset for the creation of domain-specific modelling
environments. An editor for a domain-specific language (called a ‘paradigm’ in
GME) can be created based on a metamodel of the language specified in MetaGME, a
graphical UML-like metamodelling language (which in itself has been defined as a
GME paradigm) [18]. One of the main drawbacks of the GME is its use of proprietary
formats for metamodelling and model exchange, rather than conforming to standards
such as MOF and XMI.

In GReAT, model transformations are specified using a graphical graph
transformation language called UML Model Transformer (UMT), which has also
been defined as a GME paradigm. The transformation specification makes use of
metamodels of the source and destination languages defined in MetaGME. For our
example, we have defined metamodels for ECA-DL (source) and ISDL (target), and a
UMT specification to derive a platform-independent service design from a service
specification. Fig. 8 illustrates this.

Conforms
to

Conforms
to

Conforms
to

Uses

ECA-DL
metamodel
(MetaGME)

ECA-DL
metamodel
(MetaGME)

ISDL
metamodel
(MetaGME)

ISDL
metamodel
(MetaGME)

Service
specification

(ECA-DL)

Service
specification

(ECA-DL)

Platform-
independent

service design
(ISDL)

Platform-
independent

service design
(ISDL)

Transformation
specification

(UMT)

Transformation
specification

(UMT)

Uses

GReAT
transformationIs

applied to Creates

Fig. 8. Overview of the transformation approach

One of the central concepts of the GReAT model transformation approach is the
substitution of graph patterns, which provides an intuitive way to express the types of
transformations that we want to perform here. Fig. 9 shows an example of a UMT

 Model-Driven Development of Context-Aware Services 223

Fig. 9. Example of a UMT transformation rule

transformation rule, which for each ECA-DL action of type AI (action invocation
request), creates a sequence of three interactions in the ISDL design. These are
interactions between the coordination service component and the A-MUSE abstract
platform.

The interactions realize the abstract action, involving a request to the service
trader, a response from the service trader and the invocation of the appropriate action
service according to the response issued by the service trader. Similarly, rules have
been defined for the other ECA-DL action types, as well as rules to derive the
relations between actions and rules concerning the action attributes. Fig. 10 shows the
effect of this rule in an informal way.

Fig. 10. Informal illustration of the AI transformation rule

The platform-independent service design is the result of the application of all the
transformation rules to the service specification. Fig. 11 shows the generated
coordination component. The dashed lines represent causality relations already
present in the service specifications.

The TelemonitoringECAServiceCoordination enforces the behaviour defined at the
service specification level (shown in Fig. 5). The coordination component uses context

224 J.P.A. Almeida et al.

and action services that constitute the A-MUSE Service Platform, including the ability to
send and receive SMSs and to check the position and availability of mobile terminal
users. The service trader is consulted to find appropriate context sources and action
services depending on the constraints on information attributes that have been specified
at the service specification level. For example, the seizureAlert_indC context event is
refined in a number of interactions that lead to the notifyEvent_SeizureAlert_indC
between the TelemonitoringECAServiceCoordination and the EventBasedSeizure-
Service. The constraint on the location of aid persons in alertAid_reqA has been
transformed into a constraint on the value of a service property in the query of the
reqServiceQuery_alertAid_reqA interaction. This is a dynamic service property that is
evaluated by the service trader after the query is issued.

Fig. 11. Coordination component for Telemonitoring service (exported from Grizzle)

7 Conclusions

In this paper we have proposed a model-driven design trajectory for context-aware
and mobile services, in which a number of concepts such as platform independence,
abstract platform, context-awareness and service orientation play an important role.

 Model-Driven Development of Context-Aware Services 225

We have presented the design trajectory by discussing the necessary levels of models,
the choice of modelling languages, and the definition of platforms and transfor-
mations. Further, we have illustrated the application of our approach by means of an
example (i.e., the Telemonitoring service). The Telemonitoring design exercise
helped us to emphasize the role of model transformations, but also to understand to
what extent the whole design process can be automated.

The service specification level emphasizes ease of use for the service specifier and
platform independence for service specifications. A context-aware service is defined
from its integrated perspective abstracting from any components that may support the
execution of the service in terms of technology platforms such as Parlay or Parlay-X
(which provide context and action services in the telecommunications domain) and
Web Services or CORBA (which provide service-oriented middleware architectures,
including some service discovery functionality).

The abstract platform at the platform-independent service design level has been
chosen based on the pattern of service discovery found in a number of middleware
platforms (e.g., OMG CORBA trader [23] and the UDDI registry [21]) and in the ODP
trader [16]. The trader service in the A-MUSE Service Platform is capable of supporting
a simple constraint language and is capable of supporting dynamic service properties,
which allows contextual information to be used to trade for services, as we have shown
in the Telemonitoring example. These capabilities of the service trader do not have to be
implemented in the coordination component, therefore simplifying the design of
transformations that use the A-MUSE platform as target. For a discussion on the
realization of the service trader in UDDI and CORBA trader we refer the reader to [6].
We believe the service discovery abstract platform described in this paper is domain
neutral and can be used where a service-oriented architecture is needed, without
dependence on a particular technology platform such as Web Services.

We have used ISDL (and ECA-DL as a specialization thereof) to model the
behavioural aspects of services for three main reasons. Firstly, ISDL supports a broad
spectrum of abstraction levels which allows us to cover from service specification to
service design seamlessly. Secondly, the concept of abstract interaction enables us to
capture service designs in a middleware-platform-independent manner (as shown in
[2]). And, finally, conformance rules have been defined [26] which can be used to
verify whether service designs respect service specifications.

We have used UML class definitions and OCL constraints to model context
information. In the context of the A-MUSE project, we are investigating the use of
semantic models expressed in OWL. The latter may allow the designer to
automatically reason whether, for example, two services are semantically connectible.
We are also working on the further development of the ECA-DL and the A-MUSE
abstract platform. Tool support for the various levels of models in this design
trajectory will be incorporated in an integrated environment for model-driven service
engineering.

Acknowledgements

This work is part of the Freeband A-MUSE project (http://a-muse.freeband.nl), which
is sponsored by the Dutch government under contract BSIK 03025. Marten van

226 J.P.A. Almeida et al.

Sinderen, Luís Ferreira Pires and Remco Dijkman are acknowledged for their
suggestions and remarks on the model-driven approach reported in Sections 2 and 3.

References

1. Agrawal, A., Karsai, G., Ledeczi, A.: An end-to-end domain-driven software development
framework. In: Companion of the 18th Annual ACM SIGPLAN Conf. on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA), ACM Press (2003)
8–15

2. Almeida, J.P.A., Dijkman, R., Ferreira Pires, L., Quartel, D., van Sinderen, M.: Abstract
Interactions and Interaction Refinement in Model-Driven Design. In: Proc. 9th IEEE
EDOC Conference (EDOC 2005), IEEE Computer Society Press (2005) 273−286

3. Almeida, J.P.A., van Sinderen, M., Ferreira Pires, L., Quartel, D.: A systematic approach
to platform-independent design based on the service concept. In: Proc. 7th IEEE Int’l Conf.
on Enterprise Distributed Object Computing (EDOC 2003). IEEE Computer Society Press
(2003) 112−123

4. Almeida, J.P.A. Dijkman, R. van Sinderen, M., Ferreira Pires, L.: On the Notion of
Abstract Platform in MDA Development, In: Proc. 8th IEEE Int’l Conf. on Enterprise
Distributed Object Computing (EDOC 2004), IEEE Computer Society Press (2004)
253−263

5. Almeida, J.P.A., Iacob, M.E., Iacob, S.: Methodological Framework for Freeband Services
Development, Freeband A-MUSE/D2.3a, TI/RS/2004/092, Telematica Instituut,
Enschede, The Netherlands (2004); https://doc.telin.nl/dscgi/ds.py/Get/File-47390

6. Almeida, J.P.A., Iacob, M.E., Jonkers, H., Quartel, D.: Platform-Independent Modelling of
Service Infrastructure Components, Freeband A-MUSE/D1.6, TI/RS/2005/078,
Telematica Instituut, Enschede, The Netherlands (2005);
https://doc.telin.nl/dscgi/ds.py/Get/File-59319

7. Dey, A. K., Salber, D., and Abowd, G. D.: A Conceptual Framework and a Toolkit for
Supporting the Rapid Prototyping of Context-Aware Applications. Human-Computer
Interaction, 16(2-4) (2001) 97−166

8. Chen, H. Finin, T., Joshi, A.: An ontology for context-aware pervasive computing
environments, Knowledge Engineering Review, Special Issue on Ontologies for
Distributed Systems, Vol. 18, No. 3. Cambridge University Press (2003) 197–207

9. Dijkman, R.M.: Consistency in Multi-Viewpoint Architectural Design, Ph.D. thesis,
University of Twente, The Netherlands (2006)

10. Dirgahayu, T.: Model-Driven Engineering of Web Service Compositions: A
Transformation from ISDL to BPEL, M.Sc. thesis, University of Twente, The Netherlands
(2005)

11. Dockhorn Costa, P. Ferreira Pires, L., van Sinderen, M.: Designing a Configurable
Services Platform for Mobile Context-Aware Applications, International Journal of
Pervasive Computing and Communications (JPCC), Vol. 1, No. 1. Troubador Publishing
(2005)

12. Freeband A-MUSE Project; http://a-muse.freeband.nl
13. Gavras, A., Belaunde, M., Ferreira Pires, L., Almeida, J.P.A.: Towards an MDA-based

Development Methodology for Distributed Applications. In: Software Architecture: First
European Workshop (EWSA2004), LNCS 3047, Springer (2004) 230–240

14. Grizzle; http://isdl.ctit.utwente.nl/tools/grizzle
15. ISDL home; http://isdl.ctit.utwente.nl/

 Model-Driven Development of Context-Aware Services 227

16. ITU-T / ISO: ODP Trading Function: Specification, ITU-T Recommendation X.950 | IS
13235-1 (1997)

17. Jonkers, H., Iacob, M.E., Lankhorst, M., Strating, P.: Integration and Analysis of
Functional and Non-Functional Aspects in Model-Driven E-Service Development. In:
Proc. 9th IEEE EDOC Conference (EDOC 2005), IEEE Computer Society Press (2005)
229–238

18. Karsai, G., Agrawal, A.: Graph transformations in OMG’s Model Driven Architecture. In:
Applications of Graph Transformations with Industrial Relevance, Second International
Workshop (AGTIVE2003), Charlottesville, VA, USA (2003) 243–259

19. Ledeczi, A. et al.: The Generic Modeling Environment. In: Proc. Workshop on Intelligent
Signal Processing, Budapest, Hungary (2001)

20. McFadden, T., Henricksen, K., Indulska, J., Mascaro, P.: Applying a Disciplined
Approach to the Development of a Context-Aware Communication Application. In: 3rd
IEEE Int’l Conf. on Pervasive Computing and Communications (PerCom), IEEE
Computer Society Press (2005) 300–306

21. OASIS: OASIS - Committees - OASIS UDDI Specifications TC; http://oasis-
open.org/committees/uddi-spec/doc/tcspecs.htm

22. Object Management Group: MDA-Guide, Version 1.0.1, omg/03-06-01 (2003)
23. Object Management Group: Trading Object Service Specification, Version 1.0, formal/00-

06-27 (2000)
24. Object Management Group: Unified Modelling Language: Object Constraint Language

version 2.0, ptc/03-10-04 (2003)
25. Object Management Group: UML 2.0 Superstructure, ptc/03-08-02 (2003)
26. Quartel, D.: Action relations Basic design concepts for behaviour modelling and

refinement, Ph.D. thesis, University of Twente, Enschede, The Netherlands (1998)
27. Quartel, D. Ferreira Pires, L., van Sinderen, M.: On Architectural Support for Behaviour

Refinement. In: Journal of Integrated Design and Process Science, Vol. 6, No. 1. IOS
(2002)

28. Selic, B.: The Pragmatics of Model-Driven Development. IEEE Software, Vol. 20, No. 5,
IEEE Computer Society Press (2003) 19–25

29. The Parlay Group: “The Parlay Group – Specifications”; http://www.parlay.org
30. World Wide Web Consortium: SOAP Version 1.2 Part 1: Messaging Framework, W3C

Proposed Recommendation (2003); http://www.w3.org/TR/soap12-part1
31. World Wide Web Consortium: Web Services Description Language (WSDL) 1.1, W3C

Note (2001); http://www.w3.org/TR/wsdl

F. Eliassen and A. Montresor (Eds.): DAIS 2006, LNCS 4025, pp. 228 – 241, 2006.
© IFIP International Federation for Information Processing 2006

Utilising Alternative Application Configurations
in Context- and QoS-Aware Mobile Middleware

Sten A. Lundesgaard, Ketil Lund, and Frank Eliassen

Simula Research Laboratory, Network and Distributed Systems,
P.O. Box 134, N-1325 Lysaker, Norway

{stena, ketillu, frank}@simula.no
http://www.simula.no/departments/networks

Abstract. State-of-the-art dynamic middleware uses information about the
environment in order to evaluate alternative configurations of an application
and select one according to some criteria. In the context of applications sensi-
tive to Quality of Service, we have identified the need for a platform independ-
ent description of configurations that includes non-functional behaviour, and
that allows handling of a large number of application configurations. In this pa-
per, we present a modelling principle and a service plan concept, which to-
gether represents such a description. The modelling principle and plan concept
extend state-of-the-art with i) a model of the alternative configurations that en-
sure a minimum of reconfiguration steps; ii) a specification that contains infor-
mation elements of the configuration, dependencies to the environment, and
QoS characteristics; and iii) a platform independent specification. In the paper,
we also perform a qualitative assessment of our approach, and we describe a
proof-of-concept implementation.

1 Introduction

The mobile domain represents a dynamic heterogeneous environment that constitutes
a considerable challenge to application developers. Dynamic middleware for compo-
nent-based applications is one answer to this challenge. These middleware platforms
provide a traditional run-time environment, and, in addition, employ late-binding and
reflection principles for dynamic (re)configuration of applications (e.g., OpenORB [1]
and UIC [2]). However, today's state-of-the-art solutions within this field have some
important shortcomings that need to be solved.

First, existing approaches force the application developer to explicitly specify all
alternative application architectures. With many different combinations of hardware
and software in heterogeneous environments, this gives a large number of different
configurations and computationally intensive reconfiguration steps.

Second, dynamic middleware solutions for components mainly combine context-
awareness with reconfiguration mechanisms, ignoring the Quality of Service (QoS)
characteristics of the different application configurations. As a consequence they fail
to support applications where QoS characteristics are critical, such as applications for
streaming and conferencing.

 Utilising Alternative Application Configurations 229

Third, in current state-of-art solutions, the specifications of the application configu-
rations are defined for a particular middleware. Thus, the specification and its infor-
mation elements are specialised for a specific set of tasks and platforms, making reuse
difficult.

In this paper, we present a service modelling principle and a service plan concept that
together provide a solution for these shortcomings. To briefly illustrate the principle and
concept, we use the life-cycle of an application (see Figure 1). At design time, the service
modelling principle is utilised for de-composition of the application into service compo-
sitions, atomic services, and alternatives thereof. The service plan concept provides the
artefacts needed to deploy specifications of the alternative application configurations. We
refer to the process of identifying and choosing an application configuration as planning.
Service plans enable the middleware to perform planning, by providing information
about the alternative application configurations, any dependencies to context elements
(runtime environment, communication technology, storage facilities, etc.) and the result-
ing QoS characteristics for resources available (processing load, data rate, memory usage,
etc.). For configuration of the application service plans provide the composition and
parameter configurations of the components. When reconfiguration is needed, service
plans provide meta-data about the running application and holds references to both com-
position and single components.

Design (Re)configurationDeployment Run-time

Service modelling

Context-Resource QoS changes

Service plan

Planning

Fig. 1. Life-Cycle

The remainder of this paper is structured as follows. In Sect. 2 we present the ser-
vice modelling principle, the service plan concept, and how to apply these in the dif-
ferent life-cycle phases. Sect. 3 assesses the principle and concept using qualitative
criteria. In Sect. 4 we describe the implementation of our context- and QoS-aware
mobile middleware and the proof-of-concept work related to this paper. Sect. 5 dis-
cusses related work. Finally, Sect. 6 presents our conclusions and future research.

2 Enabling Alternative Application Configurations

We start by presenting the service modelling principle and the service plan concept,
before describing how these two make it possible to utilise alternative application
configurations in a context- and QoS-aware middleware.

2.1 Service Modelling Principle

In Service Oriented Computing (SOC) an application is viewed in terms of service
levels of abstraction [3], with resource services at the lowest level up to aggregated

230 S.A. Lundesgaard, K. Lund, and F. Eliassen

services at the highest level. This view is also the foundation of our service modelling
principle, where we order the service levels by introducing a service model. At the
highest level, denoted the service level, the service is offered to the user (or client
software). This service is divided into a composition of sub-services of a finer granu-
larity, at the sub-service level in the service model. These sub-services may again be
divided into service compositions. When a service can not be decomposed any further
it is considered an atomic service. At the atomic service level the implementation of a
service is a self-contained software component.

In SOC, semantic representations of components are used to make the software
suitable for late-binding [3], i.e., components are bound together during (re)configu-
ration. This is also one of the reasons why semantic descriptions, referred to as
service types, are included in our service modelling principle. Another reason is the
separation this establishes between the design of the application behaviour and the
alternative application configurations. Each service in the service model therefore has
a type, and all alternative implementations of a service must conform to the same
service type. This enables us to model alternatives at all service levels in one single
service model. Thus, we avoid one architecture model for each application configura-
tion. The variations between these alternatives are not constrained by the service mod-
elling principle, but by the deployable artefacts and the middleware. In our work we
have three types of variations: service compositions, parameter configurations, and
components.

Figure 2 exemplifies both the decomposition of an application and the alternative
implementations of the service types. In the figure, the service types j1 and jl2 have
two alternative implementations each.

OR

ServiceTypei

Servicej

ServiceTypej1 ServiceTypejk

SubServicej1 SubServicej2 SubServicejl

ServiceTypejl1

AtomicServicejl1 AtomicServicejl2 AtomicServicejl3 AtomicServicejln

ServiceTypejl2 ServiceTypejlmAtomic service
level

Sub-service
level(s)

Service
level

OR

Fig. 2. Service Model

2.2 Service Plan Concept

As described above, the service model allows for alternative implementations of
services at all abstraction levels. The dynamic mobile middleware use run-time in-
formation about the environment choose the most suitable among these application
configurations. Therefore, we need to be able to specify dependencies to context

 Utilising Alternative Application Configurations 231

elements in the environment and the QoS characteristics of the application configura-
tion, in addition to the software architecture and behaviour [4].

The semantics of a service is represented as a service type. We introduce the ser-
vice plan as the association between a service type and one implementation of that
type, and, if applicable, with a particular parameter configuration. Thus, the service
plan concept effectively bridges the gap between the layered service model of an
application and the corresponding running application. By specifying application
configurations and providing information about the alternatives, the service plans
enable the dynamic middleware to identify and choose between configurations. While
existing approaches use specifications defined for particular middleware and therefore
are specialised for a specific task, the service plan is defined at a conceptual level to
ensure that the result is middleware independent.

As can be seen from the conceptual model in Figure 3, a service plan contains five
information elements: i) Service is the name of the service type of which the plan
specifies the implementation, ii) Implementation specifies either a component or a
composition of service types, iii) Dependencies to context elements in the environ-
ment and their properties, iv) ParameterConfiguration lists values for configuration
of the implementation, and v) QoSCharacteristics of the specified implementation.
An important attribute of our service plan concept is the support for compositions of
service types. A service composition can in turn be part of another service composi-
tion, enabling the specification of the application as a recursive structure of service
types.

Together, these elements provide a complete specification of a service implementa-
tion, separated from the implementation itself, and independent of any middleware.
There are, however, some challenges associated with a platform independent specifi-
cation of dependencies and QoS characteristics. In particular context and resource
models that define the semantics and classifications of context elements and resources
are needed. These models are applied when modelling the properties and QoS charac-
teristics of context elements and resources in the environment and designing the con-
text and resource managers for the middleware. However, this is a separate challenge
that we discuss in [5].

ServiceType

ServicePlan

Component

+composition
1

1..n

<<specify>>

<<specify>>

0..1

1..n Dependencies

ParameterConfiguration

11

QoSCharacteristics

1
0..n

0..n

0..n

Implementation

Service

11

1

1

1

0..n

Component

Composition

1

0..1

0..1

<<implements>>

Fig. 3. Conceptual Model

232 S.A. Lundesgaard, K. Lund, and F. Eliassen

2.3 Application Life-Cycle

In the following sections we outline how to utilise the service model and service plans
in the different phases of the application life-cycle (illustrated in Figure 4), from de-
sign to (re)configuration. Where appropriate, we make recommendations regarding
design and technologies considered useful for a mobile middleware.

Design Planning (Re)configuration

Context-
Resource information

C1

C2

C3

S

S

S1 S2 S3

S

Deployment Run-time

ServiceType

ServiceType

ServicePlan

ServicePlan Context-Resource QoS changes

ServicePlan

ServiceType

ServicePlan

ServiceType ServicePlan

ServiceType

Fig. 4. Life-Cycle

2.3.1 Design
In the design phase, alternative configurations with context dependencies and QoS
characteristics are identified. There are two approaches. Decompose the application,
starting at the service level, into a hierarchy of services with alternatives (top-down
approach). Alternatively, start at the bottom with atomic services and compose these
into sub-services, which again may be combined to other services (bottom-up-
approach). Both approaches result in one service model with the abstraction levels of
the application, semantic representations of all services that form the application, and
the alternative implementations that constitute the application configurations.

For each implementation, any dependencies to context elements must be identified.
A context model is recommended to ensure that the middleware interprets the speci-
fied dependencies correctly. Furthermore, suitable descriptions of the QoS character-
istics are required, which typically involves specifying mapping functions between
different QoS levels. QoS and resource models should be applied to ensure a correct
interpretation by the middleware.

2.3.2 Deployment
After the alternative application configurations have been defined in one model, ser-
vice types and service plans are prepared for deployment. For the service type, one
may use Web-Service Description Language (WSDL), as this format has certain de-
sired properties: an open standard, readable, and supported by most software engi-
neering tools. For the same reasons, service plans should also be deployed as text
files, such as the eXtensible Mark-up Language (XML).

In the text file, information elements that constitute the service plan should be pre-
sented as an ordered tree, in order to make it easy for the middleware to read the data
and move up and down inside the file. An example of a tree structure for service plans

 Utilising Alternative Application Configurations 233

is shown in Figure 5. Below the root there are child nodes that divide the tree into five
branches, one for each of the information elements specified in the conceptual model
(see Figure 3). Out of these five branches, only ServiceType and Implementation are
mandatory, since these are required when publishing the service. The QoSCharacter-
istic node has four children, which reflect the QoS modelling method that we apply to
define the QoS characteristics of a service (exemplified in [17]). Another QoS model-
ling principles may result in other nodes. The Implementation node is somewhat
different from the others, as it is the only parent with two alternative children, compo-
sition or component. Composition is used when the implementation is a service com-
position, while component specifies a single component.

During deployment, service types and plans are loaded and interpreted. This func-
tionality can be implemented in the middleware in different ways. For instance, the
loader can be activated from an operations and management console and only upload
service types and plans in certain catalogues. Alternatively one may choose to confine
loading to a predetermined set of alternative service configurations, by using a con-
figuration file for the loader.

Fig. 5. Ordered Tree Structure for Service Plans

2.3.3 Planning
When a user requests access to an application, the context- and QoS-aware middle-
ware uses the deployed service types and plans to identify the alternative configura-
tions suitable for the current environment, and to choose the one that provides
satisfactory QoS. For synthesising the alternative configurations from the information
inside the service plans, we suggest the service configuration pattern (see Figure 6).
The service configuration is asked to resolve itself, using the type of the requested
service, together with a plan for that type, as input. This is done for each alternative

servicePlan

serviceType serviceState

component

composition
serviceName

receptacle

dependencies
contextElement

contextValue

parameterConfiguration parameter
setMethod

configValue

qosCharacteristics

offeredServices

inputQoSContract

qosModel

qosMapping

maxQoSvalue

dimension

direction
unit

minQoSvalue

funcDimension

function

serviceName

inputqoscontract_id
qosmodel_id

qosmapping_idoperation
state

inDimension
lowestQoScontract_id

model_id

mapping_id

propertyType

facet serviceNameimplementation
xxx

Legend:

AND

OR

Leaf node

allocation

234 S.A. Lundesgaard, K. Lund, and F. Eliassen

plan, resulting in one service configuration object for each alternative configuration of
the application. In case of a service composition, the service configuration analyses
the connections between the receptacle and facet ports of the service implementation.
From this the service configuration creates the next level of service types and service
plans, shown in Figure 6.

Service configurations that can not execute in the current environment are filtered,
by checking the specified dependencies against context information. Next, the service
configurations are compared by using the QoS mapping functions at each level inside
the service configurations. There are different methods available, such as comparing
predicted end-to-end QoS for similar dimensions or applying utility functions. Fur-
thermore, in case of several possible configurations with satisfactory QoS, the mid-
dleware can either maximise utility/QoS or minimise the resource load.

ServiceType

ServicePlan
+nextLevel

0..1

Dependencies Implementation ParameterConfiguration

Property OfferedService

ServiceState

QoSModel QoSMapping InputQoSContract

111
1 0..1

1

10..n 1

1

1..n

1..n 1..n 0..n
111

ServiceConfiguration

ServiceTypeImplementation

1..n

1 1
1

1 0..n

+type

+plan

1

1

Parameter
1

0..n

Fig. 6. Service Configuration

2.3.4 Configuration and Reconfiguration
After instantiation, the selected service configuration, together with the associated
service plans, change roles from specifying one possible configuration of the applica-
tion to specifying the architecture, behaviour, parameter configuration, dependencies,
and QoS characteristics of a running application. Thus, during reconfiguration the
service plan concept is a meta-level model of the application configuration. This
model is casually connected to the application, so any changes made to the meta-level
causes corresponding changes in the application. The causal connection is enforced
by the middleware. For reconfiguration this is useful, since it makes the implementa-
tion open for inspection without having to involve the components.

If context dependencies or QoS requirements are violated, the middleware will re-
plan the service, and if another service configuration meets the QoS requirements, the
middleware reconfigures the application. Within the middleware, a reconfiguration
manager, or equivalent, handles the reconfiguration. There are many ways to design
the reconfiguration manager and the causal connection between a service plan and the
corresponding base level composition/component, but this is a separate challenge not
discussed here.

 Utilising Alternative Application Configurations 235

3 Qualitative Assessment

In Sect. 1, we presented three major issues that need to be addressed when using dy-
namic component middleware as platform for QoS-sensitive applications. In this
section, we go through each of these issues, and describe how they are met by our
service modelling principle and service plan concept.

Configuration manageability. There are two facets of this issue. First, to be able to
achieve and maintain both functional properties and QoS in a dynamic heterogeneous
environment, a large number of alternative application configurations must be de-
signed and deployed. Second, the required changes should be as few as possible when
reconfiguring, i.e., avoid solutions that require that the entire application has to be
replaced. The service modelling principle and service plan concept address the man-
ageability issue by combining service layers and three (re)configuration methods
(composition, parameter configuration, and component implementation) into one
service model. Service layers make it easy for application developers to design the
alternatives at a suitable abstraction level, from which, when deployed, a range of
different alternative application configurations can be derived. For instance, a sub-
service with three alternative implementations, which again consist of sub-services
that have nine alternative implementations, a total of 27 alternative compositions can
be derived. All these alternatives are represented in one single service model, so we
avoid individual architecture models for each configuration. The three (re)configu-
ration methods address the manageability issue, by giving the application developers
full control of the composition, parameter configurations, and component implemen-
tations. Together with the service layers, these reconfiguration methods ensure that
the dynamic middleware only reconfigures the parts of the application that is required,
and without always having to perform computational intensive reconfiguration steps
associated with changing the entire component composition.

QoS-awareness. Existing dynamic middleware platforms for component based ap-
plications do not combine context- and QoS-awareness. Hence, we require a specifi-
cation with information elements that puts the middleware in a position to identify
application configurations that can execute in a particular context and to choose one
of these based upon the end-to-end QoS characteristics (assuming the middleware has
context information about the environment and information about the resource QoS
characteristics). The service plan has information elements for specifying both de-
pendencies to context elements in the environment and QoS characteristics of the
implementation. When applied to the implementations, service plans can specify
context dependencies and QoS characteristics at all levels in the service model. The
service plan concept is technology independent, but we recommend XML for deploy-
able files and a design pattern for synthesising the application configurations (ex-
plained in Sect. 2). Both are extensible, which makes it easy to combine the service
plan concept with any context model, QoS model, or mapping functions between QoS
level.

Platform Independence. To be able to deploy the application and the alternative
configuration on different context- and QoS-aware middleware solutions, the specifi-
cation must be platform (i.e., middleware, network, and operating system) independ-
ent. This requires that one adhere to the fundamental principle of separation of
concern. In particular, specifications of application configurations and their QoS

236 S.A. Lundesgaard, K. Lund, and F. Eliassen

characteristics must be independent of the functional code, and the transitions be-
tween the phases in the life-cycle, e.g., design to deployment, deployment to plan-
ning, and planning to (re)configuration, use technologies that are independent of
middleware and programming language. The service modelling principle gives the
required separation between the semantic representation of the service and the speci-
fication of the alternative implementations. Furthermore, the service plan provides the
specification of the implementation at a conceptual level, making it easy to implement
and utilise throughout the application life-cycle.

4 Implementation

In order to show that the service modelling principle can be used together with exist-
ing software modelling principles, we have applied it to a component-based video
streaming application. It was important to make the modelling realistic, and not
merely an exercise. Thus, a scenario of the complete system including the environ-
ment, user mobility, and different terminal types was prepared (refer to [17] for a
complete description). In the scenario, video is pre-encoded in different combinations
of frame rate, resolution, and colour scheme. Figure 7 shows the service model (sim-
plified) of the video streaming application, which has alternative implementations at
both sub-service and atomic service levels (i.e., it utilise the three configuration
methods).

Fig. 7. Service Model of a Video Streaming Application

Even though our implementation has only one video title, the service model speci-
fies a total of 266 alternative application configurations. After converting the service
model into deployable artefacts, 39 service plans are derived. Compared to solutions
which employ one architecture model for each configuration, our service model prin-
ciple reduces the number of specifications by a factor of six. Furthermore, the combi-
nation of service levels and service plans divides the complex task of modelling

IMobVideo

MobVideo

ISignalling IPlayback

Atomic-service
level

Sub-service
level(s)

Service level

PlaybackSignalling

IStreaming

3 Alternative Service Compositions

RTSPserver

IPlayOutCtrl

PlayOutCtrl

IRTSPserver

OR

MPEG4Sink

IMPEG4Sink

MPEG4Source

IMPEG4Source

9 Alternative Parameter
Configurations

IFEC

OR

IMovie

IMovie_andromeda

l Alternative Movie titles

14 Alternative
Components

OR

OR

 Utilising Alternative Application Configurations 237

context dependencies and QoS characteristics into small, manageable pieces. Thus,
we avoid the explicit specification of all configurations, whether it is as one large or
multiple individual specifications. A task that proved to be difficult was defining the
QoS mapping functions. We found that this requires benchmark test results of com-
ponents running on different classes of hardware, operating system, run-time envi-
ronment, and network.

Both service type and service plan are included in the architecture of our context-
and QoS-aware middleware; QuAMobile (QUality of service-Aware component Ar-
chitecture for MOBILE computing) [6][7]. The core of the architecture, depicted in
Figure 8, has hooks for domain specific plug-ins service planner, context manager,
resource manager, configuration manager, and reconfiguration manager. To test the
ability of the dynamic middleware to choose an application configuration suitable for
a particular environment, we have designed a graphical test tool where the character-
istics of the environment are defined. For entering user QoS requirements, a Web-
based interface is hooked up to QuAMobile through an Applet and a façade to the
service context. In our implementation, service types are deployed as WSDL-files and
service plans as XML-files. During loading service plan XML-files are interpreted,
and information from the tree (illustrated previously in Figure 5) is extracted using the
Java Document Object Model open-source software, rel. 10 beta. Created components
are placed in the repository, while types and plans are published in the broker.

<<interface>>
IServicePlanner

<<interface>>
IResourceManager

<<interface>>
IContextManager

<<interface>>
IReconfigurationManager

QuAMComponent

Broker

Capsule

Respository

ServiceContext

QuAMobile

<<interface>>
IConfigurationManager

ServicePlan ServiceType0..n

0..n

1..n

Fig. 8. QuAMobile Core

During planning the deployed service plans and the abstraction levels of the service
model come into practical use. The planning phase commences when a service re-
quest with the name of the service type and the user’s QoS requirements are sent from
the presentation layer (Web-pages and Java applets) to the business layer (where
QuAMobile resides), and to the service planner. The implementation uses the service
configuration pattern illustrated in Figure 6. An instance of the service configuration
class synthesises the alternatives by resolving the application from the top. At any
point where it detects alternative service plans for the same service type, it clones
itself and asks each new service configuration object to continue resolving from the
level that has been resolved till now. Synthesized service configurations that can not
execute in the current environment are filtered, by checking the specified context
dependencies against information from a shared context and resource data model [5].

Next, the QoS characteristics are calculated by using mapping functions, which
map between different QoS levels (resource-application, application-application, and

238 S.A. Lundesgaard, K. Lund, and F. Eliassen

application-user). The QoS mapping functions have variables, such as resource QoS,
context properties, and other QoS mapping functions. Together with the mapping
function, these are processed by our QoS calculation software, which is based on the
Java Expression Parser, rel. 2.3. Figure 9 shows examples of QoS mapping functions.
In the implementation, QoS prediction starts at the atomic service level (bottom-up
calculation). Predicted QoS is stored inside the service configuration object. After
predicting the end-to-end QoS characteristics, the service planner removes service
configurations that have service implementations that do not meet the specified min-
QoSValue and maxQoSValue (see Figure 5). The last task of the planning process is to
check the predicted QoS against the user QoS requirements, which in QuAMobile are
expressed in dimensional utility functions.

<mapping_id>tmpeg4
 <funcDimension>startUpTime</funcDimension>
 <function>tmpeg4source+trtpTrans+2*tfec+tprefetchStart+12*tmpeg4sinkEmptyB</function>
</mapping id>

<mapping_id>trtpTrans
 <funcDimension>delay</funcDimension>
 <function>vbitRate/(20*RrtpTrans)</function></mapping_id>

a)

b)

c)

<mapping_id>startUpTimeplay
<funcDimension>startUpTime</funcDimension>
<function>(((tmpeg4 SMALLEREQUAL 1000) = 5);
 . . .
 ((tmpeg4 SMALLEREQUAL 10000) = 2);
 ((tmpeg4 SMALLEREQUAL 31840) = 1))</function></mapping id>

Fig. 9. Example of QoS mapping functions: a) user QoS to utility, b) application to user QoS,
c) context-resource to application QoS

The chosen service configuration is forwarded to the configuration manager. If/
when the resource monitors or context sensors detect changes in the environment, the
planning phase is restarted, and if successful, a list of components to delete, create,
and new bindings, are forward to the reconfiguration manager.

5 Related Work

When developing applications for dynamic middleware, Architecture Description
Languages (ADLs) can be used for specifying the functional aspects of the applica-
tion configuration. A number of ADLs are available; see the discussion of ADLs
provided by Medvidovic et al [8]. Some of these ADLs, such as ACME [9] and Dar-
win [10], support hierarchical composition, but they need to be extended with support
for alternative configurations at different abstraction levels. Furthermore, ADLs are,
in general, a design-time artefact, and not intended for managing run-time adaptation.

There are ADLs that have been extended with reconfiguration steps, e.g., Plastik
[11] and Rainbow [19]. Both use an extension of ACME which enables the applica-
tion developer to specify (one) application configuration and a set of conditions under

 Utilising Alternative Application Configurations 239

which reconfiguration shall take place. A compiler converts the ACME specification
to platform specific, executable files. Compared to Plastik and Rainbow, the service
plan concept provides more information, e.g., parameter configurations and depend-
encies to context elements. Furthermore, the service plan concept assumes that the
middleware has logic for deciding which part to reconfigure. In Plastik and Rainbow,
this is decided prior to run-time using action policies/strategies.

To ensure that the application behaviour is maintained during reconfiguration,
specifications of the reconfiguration steps have been developed (see survey by
Bradbury et al [4]). These specifications assume that one particular application con-
figuration is running, ignoring the need to find an initial configuration that can exe-
cute in an arbitrary environment. The service modelling principle and service plan
concept address this weakness by providing specifications of alternative application
configurations that can be used for both initial configuration and reconfiguration.

The QoS of an application is strongly dependent on the characteristics of the avail-
able resources. Thus, a specification must include the QoS requirements at resource
level. However, users do not relate to resources; their perception of quality is subjec-
tive, e.g., sound quality, video contrast, or cost. Therefore, QoS requirements to an
application are often specified at the user level and mapped down to resources. Such
specifications are commonly referred to as QoS specification languages (see survey
by Jin et al [12]). The XML-based Hierarchical QoS Mark-up Language (HQML)
[13] and the Component Quality Modelling Language (CQML) [14] are two examples
of QoS specification languages. HQML was designed for distributed Web-based mul-
timedia applications, and uses XML-tags for the partitioning and for information
elements. The XML file is associated with the Web application, and accessed by a
Web-client with a plug-in that interprets the information elements inside the XML
file. CQML, in addition to specifying user and application QoS requirements, can be
utilised in UML-based analysis models of the application, enabling both model-driven
QoS-awareness and run-time QoS interpretation and mapping. A principle difference
between QoS specification languages and our service plan is that the service plan is
developed as a concept for the application life-cycle. If considering only deployment,
there are similarities between a service plan and HQML or CQML specifications,
because they both relate resources to the user level. With respect to information ele-
ments, the service plan has support for specifying context dependencies, a feature that
is generally lacking from QoS specification languages [12].

There are examples of research projects that address all phases of the application
life-cycle and QoS-awareness, e.g., 2KQ+ [15] and Quality Object (QuO) [16]. 2KQ+
provides a QoS software engineering environment for specifying alternative compo-
nent compositions and their QoS characteristics, which are then compiled for running
on the 2KQ middleware. Part of this environment is the QoSTalk [13] graphical pro-
gramming and consistency checking tool, which uses the HQML QoS specification
language. This engineering environment employs a platform dependent compiler, i.e.,
it produces executable code for (re)configuring of the application. Furthermore, it
requires that the middleware has probing facilities that can measure QoS and resource
usage for a test-run of the application configuration. Results from the QoS probing are
fed into the compiler and, thus, set the conditions for reconfiguring the application.
The QuO framework relies on a suite of description languages for specifying QoS.
Specifications are compiled to executable code, which is used for monitoring QoS and

240 S.A. Lundesgaard, K. Lund, and F. Eliassen

controlling the interaction between distributed objects across a CORBA middleware.
Our service plan concept and QuO specifications serve the same purpose, but a ser-
vice plan has more information, is platform independent, and thus represents a more
flexible solution.

Most existing approaches assume that the target environment is known at design
time. One example of a middleware that is not based on this assumption is the Con-
text-Aware Reflective mIddleware System for Mobile Applications (CARISMA)
[18]. It uses application profiles to (re)configure the middleware. If a mobile device is
used in an unforeseen environment, the application can adapt to the profile, and
thereby change the behaviour of the middleware. Thus, the application profile is a
dynamic specification, while the service plan is static in order to enable predictable
(re)configurations. The service plan concept supports unforeseen environments, by
allowing alternative service plans of the same application.

6 Conclusions

This paper focuses on how dynamic middleware for the mobile domain can utilise
alternative application configurations. We have identified three issues that are impor-
tant to address in order to achieve such platform-based configuration, and that current
state-of-the-art solutions fail to target: first, the heterogeneity of both hardware and
software within this domain means that the developer must be provided with means to
manager a large number of alternative configurations; second, QoS characteristics of
the different configurations must be specified, to enable the middleware to select
among the alternative configurations; and third, to enable separation of concerns, and
thereby reuse, the specifications must be platform independent.

Our approach for handling these three issues is based on a service modelling prin-
ciple for designing a large number of variants, and a service plan concept used to
connect service types to implementations of the types. Service plans also specify the
QoS characteristics and context dependencies of the implementations. Using the life-
cycle of an application we have presented a qualitative assessment of our approach,
and demonstrated how the service model and the service plans, together, cover all
phases of the life-cycle. Finally, we have described our implementation of the princi-
ple and the concept in our dynamic mobile middleware called QuAMobile, which
serves to demonstrate the feasibility of our approach.

Currently our work is on the design of the causal connections from the service con-
figuration object and the service plans, down to the running component instances, and
we are studying the integration of the service plan into a software engineering tool.

References

1. Coulson, G., Blair, G., Clarke, M., and Parlavanzas, N.: The design of a configurable and
reconfigurable middleware platform. Distr. Computing Journal, Vol. 15 (2002), 109-126

2. Roman, M., Kon, F., and Campbell, R.: Reflective Middleware, From Your Desk to Your
Hand. IEEE Distributed Systems Online, Vol. 2, No. 5 (2001)

3. Huhns, M.N., and Singh, M.P.: Service-Oriented Computing: Key Concepts and Princi-
ples. IEEE Internet Computing, Vol. 9, Issue 1 (2005), 75-81

 Utilising Alternative Application Configurations 241

4. Bradbury, J., Cordy, J., Dingel, J., and Wermelinger, M.: A Survey of Self-Management in
Dynamic Software Architecture Specification. Proc. of the ACM SIGSOFT International
Workshop on Self-Managed Systems (2004), 28-33

5. Amundsen, S., and Eliassen, F.: Combined Resource and Context Model for QoS-aware
Mobile Middleware. Accepted for the 19th International Conference on Architecture of
Computing Systems, (2006)

6. Amundsen, S. Lund, K., Eliassen, F., and Staehli, R.: QuA: Platform-Managed QoS for
Component Architecture. Proc. of the Norwegian Informatics Conference (2004), 55-66

7. Solberg, A., Amundsen, S., Aagedal, J., and Eliassen, F.: A Framework for QoS-aware
Service Composition. Proc. of ACM International Conference on Service Oriented Com-
puting, ACM Press (2004).

8. Medvidovic, N., and Taylor, R.N.: A Framework for Classifying and Comparing Architec-
ture Description Languages. Proc. of the 6th European Software Engineering Conference
(1997), 60-76

9. Garlan, D., Monroe, R., Wile, D.: ACME: Architectural Description of Component-based
Systems. Foundations of Component-based Systems, Cambridge University Press (2000),
47-68

10. Magee, J., and Kramer, J.: Dynamic Structure in Software Architectures. Proc. of ACM
SIGSOFT’96: 4th Symposium on the Foundations of Software Engineering (1996), 3-14

11. Batista, T., Joolia, A., and Coulson, G.: Managing Dynamic Reconfiguration in Compo-
nent-based Systems. Lecture Notes in Computer Science, Proc. of the 2nd European Work-
shop on Software Architecture, Vol. 3527 (2005), 1-17

12. Jin, J., and Nahrstedt, K.: QoS Specification Languages for Distributed Multimedia Appli-
cations: A Survey and Taxonomy, IEEE Multimedia Magazine, Vol. 11, No.3 (2004),
74-87

13. Xiaohui, G., Nahrstedet, K., Yuan, W., Wichadakul, D.: An XML-based Quality of Ser-
vice Enabling Language for the Web. Journal of Visual Language and Computing, Special
issue on Multimedia Languages for the Web, Academic Press, Vol. 13, No. 1 (2002)

14. Aagedal, J.: Quality of service support in development of distributed systems. Ph.D. thesis,
University of Oslo (2001)

15. Wichadal, D., Nahrstedt, K., Gu, X., and Xu, D.: 2KQ+: An Integrated Approach of QoS
Compilation and Reconfigurable, Component-Based Run-Time Middleware for the Uni-
fied QoS Management Framework. Lecture Notes in Computer Science, Proc. of the ACM
International Conference on Distributed Systems Platforms, Vol. 2218 (2001), 373-394

16. Loyall, J., Bakken, D., Schantz, R., Zinky, J., Karr, D., Vanegas, R., and Anderson, K.:
QoS Aspect Languages and Their Runtime Integration. Lecture Notes in Computer Sci-
ence, Proceeding of the 4th International Workshop on Languages, Compilers, and Run-
time Systems for Scalable Computers, Vol. 1511 (1998), 303-318

17. Amundsen, S., Lund, K., Griwodz, C., and Halvorsen, P.: Scenario Description –Video
Streaming in the Mobile Domain, Technical report (2005), http://www.simula.no/~stena/
techReports/ScenarioDescription/ScenDesc_MobVideo_B1.pdf

18. Capra, L., Emmerich, W., and Mascolo, C.: CARISMA: Context-Aware Reflective mId-
dleware System for Mobile Applications. IEEE Transactions on Software Engineering,
Vol. 29, No. 10 (2003), 929-945

19. Garland, D., Cheng, S-W., Huang, A-C., Schmerl, B., Steenkiste, P.: Rainbow: Architec-
ture-Based Self-Adaptation with Reusable Infrastructure. IEEE Computer, Vol. 37, No. 10
(2004), 46-54

Timing Driven Architectural Adaptation

Andrew Wils, Yolande Berbers, Tom Holvoet, and Karel De Vlaminck

K.U.Leuven DistriNet
Department of computer science

Celestijnenlaan 200 A, 3001 Leuven
{andrew.wils, yolande.berbers,

tom.holvoet, karel.devlaminck}@ cs.kuleuven.be

Abstract. Self-adaptation is currently addressed in general frameworks
and reference architectures but not in the application architecture. This
paper defines concrete concepts to specify timing driven self-adaptation
in the software architecture. This self-adaptation is aimed at high-end
embedded component based applications. We create an architectural
view of a music application describing this kind of adaptation and dis-
cuss its implementation. The novelty of our approach is the definition
of separate constructs for the monitoring, the adaptation decision logic
and the adaptation itself. This allows independent specification of pol-
icy and mechanisms and the possibility to adapt other applications in
order to satisfy important constraints. The implementation itself consists
of reusable run-time counterparts of the constructs. These counterparts
are managed by the component middleware and configured by the ar-
chitectural specification. This way one does not need to write additional
self-adaptation code.

1 Introduction

The increasing diversity and interconnection of applications leaves much of their
configuration to be dealt with at run-time. The vision of autonomic computing
acknowledges this as a problem leading to new levels of complexity [1]. The auto-
nomic computing solution is that computing systems should manage themselves
given high-level objectives. One of these objectives is to maintain a satisfactory
performance regardless of the available resources. This paper addresses self-
adaptation to uphold timing constraints. We focus on applications with CPU
intensive tasks for which the user has performance expectations. An example of
such an application is the music community application presented in Figure 1.
This application enables the user to browse, play and share music as well as chat
about it. These tasks are CPU intensive, yet we want an acceptable Quality-of-
Service (QoS) for all of them, even in situations with widely varying resources.
The self-adaptation will change the resource consumption by means of coarse-
grained adaptations to uphold a satisfactory QoS. To master the complexity of
this kind of self-adaptation, we need mechanisms and policies that specify and
control the adaptation process.

F. Eliassen and A. Montresor (Eds.): DAIS 2006, LNCS 4025, pp. 242–255, 2006.
c© IFIP International Federation for Information Processing 2006

Timing Driven Architectural Adaptation 243

Browser

Sound Processor

Repository Manager

Playlist
Manager

Chat Manager

Fig. 1. High level component diagram of a music community application

The ideal solution relies on the perfect prediction of an application’s resource
behavior based on resource profiling, but this is not an option for unknown plat-
forms and interactive behavior. A more realistic approach is the use of general
feedback based frameworks and architectures with reusable adaptation mecha-
nisms (e.g. [2], [3]). This approach usually employs a general “observe – process –
adapt” cycle. Although this cycle provides a good starting point for application
adaptation, there is still a gap to fill to enable the actual implementation of such
applications.

In particular, the frameworks advocate reusable mechanisms but do not define
a high-level approach to specify the use of the mechanisms. Timing constraints
are non-functional requirements and pertain to large portions of the application.
Likewise, coarse-grained application adaptation should also be specified at a level
that is close to the functional requirements. To illustrate this, let us reconsider
the music community application. The basic functionality of the application is
built around distributed music repositories. Using these repositories, users can
browse, play and share each other’s music. Although the diagram in Figure 1
only shows a coarse architectural view, much of the timing driven adaptation can
already be defined at this level. Obvious constraints are that the music must not
stutter (a constraint on the Sound Processor), and that the GUI control widgets
are responsive enough. Appropriate adaptation actions could be: omitting certain
components (such as the optional chat service), switching components (one could
use an alternative codec component in the Sound Processor) and “tuning” the
resource behavior of a component (e.g. by setting a codec’s compression rate).

We propose a feedback-based solution to uphold timing performance that
is twofold. First, we introduce two architectural constructs to specify indepen-
dently the monitoring of timing constraints and the execution of architectural
configuration changes. Such coarse grained adaptations have a large influence
on resource use, are easy to specify on a high level and do not require changing

244 A. Wils et al.

the application’s functional components. Second, we offer an explicit architec-
tural construct to encapsulate the decision logic that links constraint monitoring
and adaptation. This way, the application developer can specify a coarse-grained
run-time adaptation policy in the architecture at design-time.

Throughout the paper, we will illustrate the introduced concepts with the
music community application. We show that reified run-time counterparts of
our constructs reduce the addition of timing driven adaptation to providing the
right architectural specifications.

2 Architectural Approach

The software architecture of an application provides a coarse-grained decompo-
sition in components and connectors. It abstracts away the complexity of the
low level design and enables reuse of functionality. Also, a reified implementa-
tion of components allows to adapt the application while it is running [4]. Apart
from the user requirements, software architecture should also cover important
non-functional requirements and show how it can uphold these requirements.

constraint monitors

adaptation actors

adaptation
decision makers

functional application
 components

timing info

adaptation actions adaptation requests

constraint info

functional interaction

Fig. 2. Architectural constructs and the “observe - process - adapt” cycle

Figure 2 shows how we achieved this. In particular, we concretized the “ob-
serve - process - adapt” cycle [4] for timing based application adaptation using
special architectural constructs. Figure 2 introduces three new constructs to
complement application components:

constraint monitors specifying timing constraints on message flows between
application components and how these constraints must be checked at run-
time;

adaptation actors specifying how application components and component
compositions may be altered at run-time;

decision makers detailing an adaptation policy to connect monitor evaluations
with the appropriate adaptation actors.

Timing Driven Architectural Adaptation 245

We call the architectural view that describes this monitoring-based adapta-
tion the run-time adaptation view. This view is based on a component instance
diagram but defines a run-time adaptation process with reified versions of the
above constructs as follows. Decision makers encapsulate QoS levels for a compo-
nent group. Constraint evaluations determine this QoS and the decision maker
maps QoS levels to adaptation actions that are to be executed to uphold the
QoS.

The next sections further detail the syntax and semantics of constraint mon-
itors, adaptation actors and decision makers. Following this, we present and
evaluate a reusable run-time implementation to carry out the architectural mon-
itoring and adaptation specification.

3 Case Study

As an illustration of a diverse and interconnected distributed application, we
chose to implement a prototype version of the mentioned music community ap-
plication. This application, called Dale, was designed to use timing driven self-
adaptation so that it could run on a variety of platforms. Adding constraints and
adaptation in the implementation or even the object oriented design is not an
easy task: the application consists of over 50 classes, whereas the architectural
component view is much simpler and closer to the user requirements. Figure 3
shows a part of the Dale component instance diagram focusing on playlists. It
is this diagram for which we will create a run-time adaptation view.

FaderSound Output

CodecRepository

Playlist
Manager

Queuer Assistant

Player

control

in
outin

out in

out

control

fadercodecrepository

control

play eventsplaylist status

control

repository

repositoryplaylist

repository
query

Fig. 3. Playlist component instance diagram

246 A. Wils et al.

The diagrams in the paper use a component model with asynchronous message
based communication. Messages can only be sent out and received through ports.
Connectors relay messages from one port to one or more others.

The Repository component forms the heart of the Dale application: it con-
tains songs and their meta-data. The Playlist Manager defines this playlist
and dictates songs to play to the Player component. The latter is responsi-
ble for setting up the right Codec component and getting the audio through a
Fader component to a Sound Output component. Finally, the Queuer compo-
nent keeps the playlist automatically filled and the optional Assistant offers
advice on related songs to queue.

4 Architectural Constructs

4.1 Constraint Monitors

At the software architecture level, ports declare the messages that are processed
and passed around between components. We introduce constraint monitors to
encapsulate declarative timing constraints on a number of events pertaining this
processing and passing around of messages. Architecturally, we link constraints
to ports rather than to connectors in order not to limit a constraint to events
involving two directly connected components. For example, in Figure 3, one
could specify a deadline involving ports from the Playlist Manager and Sound
Output, although these are not directly connected to each other. The constraint
monitor construct is depicted as a triangle and is attached to all ports that are
involved in the timing constraints.

Constraint monitors do not only encapsulate constraint information, they also
state that the constraints should be monitored at run-time. For this reason, we
define time as it is handled at the target platforms: a series of discrete time
events (monotonously increasing) generated by a system clock. To express the
message related events, we adopt an event model defining three types of events:

send corresponds to the sending of a message through a port;
receive corresponds to the reception of a message on a port;
processed corresponds to the end of processing in the component. When this

event is reached, a component without a thread of its own will no longer
send outgoing messages (send events) until it receives a new message.

The BNF syntax is as follows:

〈message event〉 −→ 〈port〉:〈message〉send | receive | processed

For example, for an audio decoding component, mp3:packetreceive signifies the
arrival of the message packet on the port mp3. Similarly, mp3:packetprocessed

means that the component to which the port belongs has processed the given
packet and sent out the decoded audio, if any.

To model deadlines, we chose a modified language based on RTL ([5], [6]),
although our approach can be used with other formalisms. The RTL syntax uses

Timing Driven Architectural Adaptation 247

the @ function to denote the occurence time of a particular event. To give an
example involving the mp3 port, here is a constraint limiting the processing time
of the request to 20ms:

@(mp3 : packetprocessed) ≤ @(mp3 : packetreceive) + 20ms

This particular form applies to all instances of mp3:packet. Another use of the
@ function has more fine-grained control. For example, the following function
indicates that the time between two successive instances of mp3:packet should
be equal or less than 20ms:

@(mp3 : packetreceive , i + 1) ≤ @(mp3 : packetreceive , i) + 20ms

Figure 4 shows the constraint monitors that were defined in the earlier pre-
sented playlist related instance diagram. Curved connections distinguish the in-
teraction from software connector-based interaction: monitors do not influence
(functional) behavior, they merely observe. Of course, the act of observation
always influences non-functional aspects, such as performance. Section 5 shows
that the involved run-time overhead is limited.

The fill queue constraint monitor in Figure 4 places an upper-bound on the
time between the playlist reporting it needs a new song, and the queuer providing
the song. The responsiveness constraint monitor checks that song changes
are timely processed by the player (eventually resulting in a fader command).
Finally, the no stutter constraint monitor checks for audio buffer under-runs.

FaderSound Output

CodecRepository

Playlist
Manager

Queuer Assistant

Player

control

in
outin

out in

out

control

fadercodecrepository

control

play eventsstatus

control

repository

repositoryplaylist

repository
query

fill queue
@(status.songreceive,i) <

@(status.needSongsend,i) + 500ms

responsiveness
@(fader.startFadesend,i) <

@(play events.songChangesend,i) + 100ms

no stutter
@(in.bufferInputreceive,i) <

@(in.needBufferInputsend,i) + 200ms

Fig. 4. Constraint monitors for the Dale playlist diagram

248 A. Wils et al.

4.2 Adaptation Actors

As mentioned in the introduction, we want to specify and support coarse-grained
changes in resource consumption for component based applications. We define
constructs to describe the manipulation of messages and components for the
following adaptation actions:

Component configuration: a component’s resource consumption is changed
by configuring its settings. This is the equivalent of changing variability
parameters [7];

Run-time component optionality and variability: resource use is chan-
ged by omitting components or by choosing alternative components. A static
approach for this has already been investigated in [8].

We put forward two major objectives for our constructs:

Adaptations are fully determined by the specification. No extra appli-
cation code is necessary to enable the adaptations at run-time. The adapta-
tion code can be automatically generated or the middleware coordinates the
adaptations. This reduces the developer’s burden and speeds up development
time;

Adaptations are carried out efficiently. The user of the system should only
notice the effects of an adaptation, not the adaptation action itself. The
described adaptations should therefore be easily translatable to an efficient
adaptation mechanism, to keep user distraction to a minimum.

An adaptation actor is an architectural construct that encapsulates such ar-
chitectural modifications. These manipulations are formulated into adaptation
action recipes that are to be executed at run-time by reified counterparts of the
actors. These counterparts can send messages just like regular components. The
graphical representation of an adaptation actor is a circle that is associated to a
block containing the action recipes. We define two types of actors: the message
router and component tuner. Recipes have a name and body and are specified
as follows (curly brackets in fixed font represent the beginning and ending of the
recipe body):

〈adaptation recipe〉 −→ recipe 〈recipe name〉 {
{〈adaptation action〉 ;}
}

In what follows, we describe the different adaptation actors and how they can be
used to achieve the earlier mentioned adaptations. Just like regular components,
adaptation actors have ports, but they are not annotated with rectangles to avoid
overloading the diagrams. All described adaptation actions are accomplished by
sending and receiving messages through these ports.

The purpose of a message router is to specify run-time “switching” of message
flows. This is done by a reified run-time counterpart that relays messages across
its ports. To specify this, we define the link and unlink actions:

Timing Driven Architectural Adaptation 249

Ah hoc Queuer

CodecRepository

Playlist
Manager

Assistant

Player

Sound Output

Fader

control

in

out

in

out in

out

control

fadercodecrepository

control

play eventsplaylist status

control

repository

repositoryplaylist

repository query

queuer router
recipe switch to adhoc {
 unlink(a,c);
 link(a,b);
}
recipe switch to advanced {
 unlink(a,b);
 link(a,c);
}

b

a

c

Advanced Queuer

playlist

repository

fader router
recipe use cross {
 unlink(a,c);
 link(a,b);
}
recipe use normal {
 unlink(a,b);
 link(a,c);
} ca

b

Crossfader control

in

out

a

b

c

Fig. 5. Dale message routers

〈link action〉 −→ link (〈port〉 , 〈port〉)
〈unlink action〉 −→ unlink (〈port〉 , 〈port〉)

When a link action is executed, all messages that are received through the
first stated port must be relayed to the second. Using this, one can enable “mul-
ticast” or “router” like message flows. Figure 5 shows the message routers we
have defined for the music application. The queuer router switches requests for
new songs from an ad-hoc based queue algorithm to a more CPU intensive one
that takes into account user preferences. The other two routers switch between
a normal fader and one that cross-fades between songs. These two have been
paired by a dotted line, meaning that the recipe declaration applies to both.
The Crossfader component needs 2 decoded streams at a time and is more
CPU intensive. Note that we make some assumptions about component state
and message synchronization. First, switching of message flows should only be
used when the components that receive messages directly or indirectly from a
message router do not require reception of all messages. Second, a component
receiving messages via different “switched” paths must not rely on the order of
received messages, as we are using an asynchronous component model.

A component tuner configures one or more components. The actor achieves
this by sending configuration messages to regular component ports.

The action for sending a message is as follows:

〈send action〉 −→ 〈port〉...〈message〉 ([{〈key〉 :〈val〉}])

250 A. Wils et al.

recipe activate {
settings...activate();
}
recipe deactivate {
settings...deactivate();
}

FaderSound Output

CodecRepository

Playlist
Manager

Queuer Assistant

Player

control

in
outin

out in

out

control

fadercodecrepository

control

play eventsplaylist status

control

repository

repositoryplaylist

repository
query

settings

Fig. 6. Playlist component tuners

The triple-dot notation denotes the sending of the message with the supplied
key-value parameters.

The semantics of a component tuner are straightforward: when a recipe con-
tains one or more of these send actions and the former is executed, the described
messages are sent out through the denoted port, optionally containing the spec-
ified key-value parameter pairs. Figure 6 shows a component tuner in the Dale
music application that deactivates the assistant, freeing up CPU resources.

4.3 Decision Makers

Now that we have adaptation actors and timing monitors, we need to link them.
We base the logic on levels of perceived QoS that are defined in another architec-
tural construct called a adaptation decision maker. Decision makers encapsulate
how the timing constraints and adaptation actions relate to the perceived qual-
ity at run-time. A level’s quality is defined by one or more constraint monitor
conditions. When the conditions are met, the level is entered. Adaptation recipes
can be linked to be executed upon entering the level. For our purposes we de-
fined three monitor conditions that provide an abstract representation of the
constraint state, but the constraint state can be divided otherwise. The red level
indicates that the involved constraint is violated and adaptation is necessary.
The yellow level indicates that there are few or no constraint violations. Green
indicates that the constraints are easily respected and that there may be room
for inverse adaptations.

Timing Driven Architectural Adaptation 251

The syntax for this is as follows:

〈decision level〉 −→ on 〈monitor clause〉 [{, 〈monitor clause〉}] {
{〈recipe name〉 ;}
}

〈monitor clause〉 −→ 〈monitor name〉 . 〈monitor condition〉
〈monitor condition〉 −→ red | yellow | green

The exact interpretation of monitor conditions is done by the run-time in-
frastructure. The latter should also avoid so-called “yo-yo” effects. An example
mapping for switching to the green level could be that there are no deadline vi-
olations and there is a CPU margin for which the linked recipes did not already
cause violations. A complete run-time mapping algorithm is outside the scope
of this paper.

Ah hoc Queuer

Repository

Playlist
Manager

playlist status

repositoryplaylist

repository query

b

a

c

Advanced Queuer

playlist

repository

on queue.green {
 queuer.switch to advanced;
}

on queue.red {
 queuer.switch to ad hoc;
}

queue

queuer

Fig. 7. Dale queue decision maker

Figure 7 shows one of the three decision makers we have defined in the Dale
application. The decision maker links the fill queue constraint with the queue
adaptation actors. The other decision makers are created similarly. The second
one links the responsiveness of the Playlist Manager controls to the compo-
nents that access the repository frequently: the Assistant and Queuer. The
third one links the no stutter constraint to the fader actors to control the
decoding load.

5 Evaluation

The first aspect of evaluation is expressiveness. Timing monitors only monitor
events that can be made visible in the software architecture, e.g. that involve the

252 A. Wils et al.

With adaptation

0

20

40

60

80

100

10
0 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20

available CPU power (%)

d
e
a
d

li
n

e
s
 m

e
t

(
%

)

stutter
queue
responsiveness

Without adaptation

0

20

40

60

80

100

10
0 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20

available CPU power (%)

d
e
a
d

li
n

e
s
 m

e
t

(
%

)

stutter
queue
responsiveness

Fig. 8. Dale constraint violations with and without adaptation

handling of messages. This is deliberate: if an event is important enough that it
needs a constraint, it should be visible at this level. However, next to message
events, there may be extra events that could be useful, such as the initialization
of a component or redeployment. These events may be added to the event model
of the timing constraints.

Although adaptation actors do not require any additional code, components
may need to be rewritten to support the assumptions made in Section 4.2.

Second, we tested the run-time aspects. We have implemented our Dale case,
the run-time monitors and adaptation logic in Draco [9], a Java based compo-
nent run-time platform. In terms of code overhead, the monitors and actors can
be kept quite small (each less than 20KB), as Draco allows interception and
injection of messages in an application.

To test the effectiveness of the adaptations, we ran the application with and
without the adaptation activated to see in which circumstances it performed

Timing Driven Architectural Adaptation 253

adequately. Figure 8 shows the run-time behavior of the earlier discussed com-
ponent setup. We ran the tests on a 1.5GHz PowerPC computer with Sun’s Java
1.4.2 SDK. We simulated different CPU conditions (slower CPU’s and different
CPU loads) by slowly increasing the time to process the calls of the music reposi-
tory and codec. We recorded the number of deadline violations with and without
adaptation. Noticeable difference between adapted and non-adapted scenario’s
can be seen when the available CPU power decreases below 65% and the adap-
tation actors for the fading algorithm execute the adaptation recipe normal.
Also, starting from 45% and less, the advanced queue algorithm cannot keep
up with the requests of the Playlist Manager and the queuer message router
switches to the ad-hoc queue algorithm. As can be seen, the adaptations keep
the deadline violations at an acceptable level until the CPU power drops below
30%, when the audio stream cannot be decoded fast enough anymore. Also note
that the responsiveness constraint is not affected by the less powerful CPU.

As for efficiency of the mechanisms, the additional overhead is limited for CPU
intensive tasks. We measured the message throughput of a connector with mes-
sages that took 5ms to process. Adding a timing monitor decreased the through-
put with less than 2%. Similarly, the decrease in throughput of a message router
is less than 5 %. A component tuner imposes no additional overhead. The decision
makers are periodically activated and do not influence message throughput.

6 Related Work

Traditional real-time software typically resides on a dedicated system. The tim-
ing constraints involved have been extensively tested or proven and there is little
need to ensure those constraints at run-time (apart from the addition of some
exceptional counter-measures). That is why the many formalisms to specify tim-
ing constraints (e.g. UML [10] and extensions [11] [12]) lack support for added
run-time behavior and adaptation logic. However, timing constraints tend to be
re-adopted in the larger context of Quality of Service (QoS) and resource aware-
ness. QoS management frameworks try to integrate resource management and
adaptive behavior. The Quality Object’s Contract Description Language (CDL)
and CQML specify changes using callback functions. Rainbow also uses low-level
adaptation mechanisms but aims for reusability of abstract adaptation strategies
and operators [3].

The 2KQ methodology [13] offers middleware-supported adaptation by spec-
ifying component dependencies in functional graphs. From these graphs, all pos-
sible component configurations are translated. QoS adaptation is then defined
and associated with transitions between component configurations. The adapta-
tion behavior is thus somewhat hidden in the set of component configurations.
2KQ suggests the use of middleware entities to recreate a new configuration.

The Quality Objects framework is perhaps the best known example of adap-
tive middleware. QuO specifies an architecture for implementing distributed
adaptive applications; the adaptation itself however is worked out at a low level.
Also, efforts have been made to package the QuO monitoring and adaptation

254 A. Wils et al.

into reusable entities called Qoskets [14]. Qoskets offer pre-defined but reusable
adaptation code that can be added to CORBA objects, provided that the right
wrapper code is written.

In order to tackle the development of adaptive applications, some research
efforts explored the concept of QoS developer. They claim that the application
developer needs help specifying and implementing adaptive QoS and propose
that this work must be done by another person. The people behind the Quality
Objects framework call this person a qoskateer [14]. If such a person would
be necessary in a project, specifying the adaptation architecturally reduces the
responsibilities of the qoskateer to a minimum.

7 Conclusions and Future Work

The handling of non-functional constraints such as timing is an important re-
quirement for upcoming pervasive distributed applications. Defining constraints
late in the development process may lead to the discovery of structural flaws in
the architecture and entanglement of the adaptation in the functional design. We
defined simple architectural constructs that have a clear goal: monitor timing
constraints for component based applications and uphold them by carrying out
architectural adaptations. These concepts do not offer a general replacement for
domain specific adaptation solutions such as bandwidth control or grid appli-
cation management, but can be used in most distributed resource-intensive or
time-critical applications.

Throughout the paper we worked out an architectural run-time adaptation
view of a music application we implemented. Although the architecture may
need to be tailored to clearly define timing constraints and adaptation oppor-
tunities, the tailoring itself adds clarity to the architectural design. If the state
and synchronization assumptions are respected, no extra code is needed to en-
able the adaptation actors at run-time. Although the overhead of the run-time
mechanisms is limited, it is best to only define adaptations that have a significant
influence on resource consumption.

The separation of constraints, decision logic and adaptation opens up possi-
bilities to execute adaptations to uphold constraints that belong to other appli-
cations. This will be a topic for future research. Finally, it would be interesting
to define adaptation actors that handle distribution. This way, resource intensive
components could be migrated to uphold constraints.

References

1. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. IEEE Computer
(2003)

2. Cheng, S.W., Garlan, D., Schmerl, B., Sousa, J.P., Spitznagel, B., Steenkiste, P.,
Hu, N.: Software architecture-based adaptation for pervasive systems. In: Inter-
national Conference on Architecture of Computing Systems (ARCS’02): Trends in
Network and Pervasive Computing, LNCS (2002)

Timing Driven Architectural Adaptation 255

3. Garlan, D., Cheng, S.W., Huang, A.C., Schmerl, B., Steenkiste, P.: Rainbow:
Architecture-based self-adaptation with reusable infrastructure. Computer 37
(2004) 46–54

4. Oreizy, P., Gorlick, M.M., Taylor, R.N., Heimbigner, D., Johnson, G., Medvidovic,
N., Quilici, A., Rosenblum, D.S., Wolf, A.L.: An architecture-based approach to
self-adaptive software. IEEE Intelligent Systems 14 (1999) 54–62

5. Mok, A.K., Liu, G.: Efficient run-time monitoring of timing constraints. In: RTAS
’97: Proceedings of the 3rd IEEE Real-Time Technology and Applications Sympo-
sium (RTAS ’97), Washington, DC, USA, IEEE Computer Society (1997) 252

6. SEESCOA Consortium: Software engineering for embedded systems us-
ing a component-oriented approach, (SEESCOA). http://www.cs.kuleuven.
be/∼distrinet/projects/SEESCOA (2002)

7. van Ommering, R.: Building product populations with software components. In:
ICSE ’02: Proceedings of the 24th International Conference on Software Engineer-
ing, New York, NY, USA, ACM Press (2002) 255–265

8. Meijler, T.D., Schoenmaker, S., de Ruijter, E.: Modeling in an architectural vari-
ability description language. In: Proceedings of the Workshop “Planen, Scheduling
und Konfigurieren, Entwerfen” (PUK2003). (2003)

9. Vandewoude, Y., Rigole, P., Urting, D.: Draco: an adaptive runtime environment
for components. Appendix of the EMPRESS deliverable for Run-time Evolution
and Dynamic (Re)configuration of Components (2003)

10. Berkenkötter, K.: Using UML 2.0 in real-time development: a critical review. In:
Proceedings of the workshop on Specification and Validation of UML models for
Real Time and Embedded Systems (SVERTS). (2003)

11. Graf, S., Ober, I., Ober, I.: Timed annotations in UML. STTT, Int. Journal on
Software Tools for Technology Transfer (2005) under press.

12. Gu, Z., Shin, K.G.: Synthesis of real-time implementation from UML-RT models.
In: Proceedings of the 2nd RTAS Workshop on Model-Driven Embedded Systems.
(2004)

13. Nahrstedt, K., Wichadakul, D., Xu, D.: Distributed qos compilation and run-
time instantiation. In: Proceedings of IEEE/IFIP International Workshop on QoS
2000(IWQoS2000). (2000)

14. Schantz, R., Loyall, J., Atighetchi, M., Pal, P.: Packaging quality of service control
behaviors for reuse. In: ISORC ’02: Proceedings of the Fifth IEEE International
Symposium on Object-Oriented Real-Time Distributed Computing, Washington,
DC, USA, IEEE Computer Society (2002)

Fault-Tolerant Replication
Based on Fragmented Objects

Hans P. Reiser1, Rüdiger Kapitza2, Jörg Domaschka1, and Franz J. Hauck1

1 Distributed Systems Lab, University of Ulm, Germany
{hans.reiser, joerg.domaschka, franz.hauck}@uni-ulm.de

2 Department of Distributed Systems and Operating Systems,
University of Erlangen-Nürnberg, Germany

kapitza@informatik.uni-erlangen.de

Abstract. This paper describes a novel approach to fault-tolerance in distributed
object-based systems. It uses the fragmented-object model to integrate replica-
tion mechanisms into distributed applications. This approach enables the use of
customised code on a per-object basis to access replica groups and to manage
consistency. The addition of fault tolerance to the infrastructure has only little
overhead, is fully transparent for clients, and does not require internal modifi-
cations to the existing middleware. Semantic annotations at the interface level
allow the developer to customise the provision of fault tolerance. Operations can
be marked as read-only to allow an execution with weaker ordering semantics or
as parallelisable to allow true multithreaded execution. A code-generation tool is
provided to automatically produce object-specific fragment code for client access
and for replica consistency management, taking into account the annotations, the
interface specification, and the non-replicated implementation. A further con-
tribution of our code-generation approach is the support of deterministic mul-
tithreading in replicated objects.

1 Introduction

The development of fault-tolerant applications in distributed systems is a complex
task. It can be simplified for the developer by providing support for fault-tolerance
at the middleware level. Replication support has previously been added to middleware
systems like CORBA in various ways, for example using the interception approach
[13], the integration approach [3], or the service approach [4]. The approaches differ in
their properties regarding transparency, efficiency, and portability; each approach has
its specific advantages, but also disadvantages.

Recent publications (e.g., [2, 5]) indicate that the current support for replication in
general-purpose distributed object middleware is not yet sufficient in several regards.
One of the limitations is the lack of interoperability between multiple middleware in-
frastructures. For example, typical fault-tolerant CORBA systems require all replicas to
run on the same ORB implementation. Often, clients must use the same manufacturer’s
ORB to benefit from the fault-tolerance mechanisms. Consequently, heterogeneity in
terms of middleware platform or programming language—an important feature and one
of the main objectives of CORBA—lacks support.

F. Eliassen and A. Montresor (Eds.): DAIS 2006, LNCS 4025, pp. 256–271, 2006.
c© IFIP International Federation for Information Processing 2006

Fault-Tolerant Replication Based on Fragmented Objects 257

Replica nondeterminism is a source of problems, both in passive replication in
case of replica faults and in active replication [23]. If potentially nondeterministic
actions are not simply prohibited in replica implementations (a popular approach),
they have to be intercepted and coordinated by the infrastructure. One problematic
source of nondeterminism is multithreaded execution of object operations. Many fault-
tolerant infrastructures solve this problem by forcing a strictly sequential execution of
all client requests in total order. This solution has serious limitations, as it not only lacks
performance, but is also inherently deadlock-prone. Only few systems (e.g, [15, 8, 23])
offer a multithreaded solution with an adequate deterministic thread scheduling strategy.
Such approaches require that the service uses specific locking methods that can be
intercepted by the fault-tolerance infrastructure.

Furthermore, most existing fault-tolerant object middleware systems provide no
mechanism to use semantic knowledge about the replicated object. Often, this is not
the most efficient solution: If, for example, it is known that some methods are read-
only or parallelisable, weaker ordering semantics than total order can be employed to
improve efficiency. A replication infrastructure can provide such optimisations auto-
matically only if it has access to semantic information explicitly expressed by the object
developer.

The contribution of this paper are approaches to handle several of these problematic
issues in fault-tolerant middleware systems. Our implementation provides an infrastruc-
ture for fault-tolerant distributed applications in the AspectIX middleware based on
fragmented objects. The fragmented-object model [12, 7, 21] is a versatile approach
to design complex distributed services that do not strictly adhere to a simple client-
server structure. It supports dynamic loading of object-specific fragment code at the
client side and at replica locations. This flexibility of a fragmented-object middleware
enables the integration of fault-tolerance support without requiring internal middleware
modifications. The access to replica groups remains fully transparent for clients. At the
same time, the directly loaded object-specific fragment code avoids the overhead of
interception strategies or other delegation approaches.

At the core of our architecture, we provide a code-generation tool that automatically
creates client-side access fragments and server-side replica fragments based on the
non-replicated object implementation, the interface definition, and semantic annota-
tions. This way, the transition from an existing implementation to a replicated one is
automated as much as possible, with only minimal developer intervention required.
Annotations can be provided to specify if an object operation interacts with the replica
and modifies its state, if it is a read-only operation, if it is parallelisable with other
methods, or if it is a method that can be computed locally at the client side without
interacting with the replica group.

Our replication system allows multithreading inside actively replicated objects. A
deterministic thread scheduler supports an arbitrary number of reentrant mutex locks,
condition variables that allow threads to block and be woken up by other threads,
and timeouts on blocking synchronisation operations. Language-specific synchronisa-
tion statements need to be mapped to the synchronisation interface of the scheduler.
Our Java-based prototype provides a code-generation tool that automatically trans-
forms native Java synchronisation statements. This allows application developers to use

258 H.P. Reiser et al.

Java-specific constructs (e.g., synchronized statements) to express the required
coordination, as they would do in non-replicated code. The multithreading issues of
replication remain fully transparent for the application developer. Semantic annotations
can be used to further improve the thread-scheduling mechanism. For example, mul-
tiple methods that are marked as parallelisable can all be executed in parallel without
coordinating their lock acquisitions.

This paper is structured as follows: Section 2 discusses established approaches to
fault tolerance in traditional middleware and surveys in more detail the fragmented-
object model. Section 3 presents the realisation of fault-tolerant replication in the
AspectIX middleware based on fragmented objects. It describes our code-generation
process, which considers semantic annotations, and discusses the advantages of our
approach regarding multithreading. Section 4 evaluates our system. Finally, Section 5
concludes.

2 Background

2.1 Approaches to Replication Support in Distributed Object Middleware

Replication adds redundancy to a system, which makes it possible to tolerate the failure
of some of the nodes on which an object is located. Some strategy, like active or passive
replication, is required to keep the replicas in a consistent state. In passive replication,
only a single designated primary replica executes all operations; secondary replicas are
able to take over the primary’s functionality if it fails. In active replication, all replicas
execute all operations. This causes more overhead than passive replication in failure-
free executions, but allows faster reaction to failures (ideally, the failure of a single
node remains fully unnoticed by clients). In addition, keeping all replicas constantly
up-to-date allows using load-balancing for read-only requests, which are handled by
only one replica.

Several research projects have investigated ways for adding fault-tolerance mech-
anisms to distributed object middleware. For fault-tolerance in CORBA systems, the
OMG provides the FT-CORBA specifications [16, Chap. 23] as a general standard,
without specifying exact implementation details. The implementation of this standard in
existing CORBA middleware is usually based on the interception approach, the service
approach, or the integration approach.

The interception approach initially was propagated by the Eternal system [13]. Eter-
nal intercepts IIOP messages between the ORB and the operating system. This way, any
off-the-shelf ORB can be used, and replication becomes fully transparent for clients and
servers. However, such interception requires adequate support at the operating-system
level. Fault-tolerance mechanisms are fully separated from the ORB core; information
about remote invocations can only be obtained by parsing the marshalled invocation
data.

A prominent example for the service approach is OpenDREAMS [4]. This system
encapsulates fault-tolerance mechanisms inside a CORBA service. The only direct
interaction of application objects is with a local Object Group Service (OGS), which
in turn coordinates with other OGS instances and executes the requested operations
at the replicas. This approach does not offer replication transparency, as clients are

Fault-Tolerant Replication Based on Fragmented Objects 259

aware of the OGS, and adds an additional step of indirection, which increases latency.
Its outstanding benefit is that no proprietary extensions to the ORB or the operating
system are needed.

In the integration approach, the ORB is directly modified to provide the desired sup-
port for fault tolerance. In general, this provides the most efficient solution. However,
this approach usually inhibits any interoperability with clients running on standard off-
the-shelf CORBA platforms. Orbix+Isis [3] and Electra [11] are examples where the
integration approach has successfully been used.

Replication may also be added to other non-CORBA middleware infrastructures. For
example, the AROMA system [14] transparently enhances the Java RMI system with
mechanisms for consistent object replication. It modifies the Java RMI infrastructure to
intercept remote invocations and maps them to a reliable, totally ordered group com-
munication protocol. As another example, the .NET remoting infrastructure provides
the possibility to load custom stub code (“real proxy”) instead of the default stub. This
makes it possible to transparently add custom support for replication [19].

Our fault-tolerance infrastructure is based on the AspectIX middleware, which pro-
vides support for fragmented objects. This support is implemented as an extension to a
standard CORBA ORB. With fragmented objects, custom fragment code can be loaded
transparently at client side and replica side on a per-object basis. Our fault-tolerance
architecture provides code-generation tools to create fragment code for fragmented
objects. This code can be used on any middleware that supports our fragmented-object
model; to this extent our approach is portable and not restricted to a specific vendor’s
ORB. Furthermore, it provides client-side transparency and has optimal efficiency, as
the client directly invokes fragment methods without unnecessary indirection steps.

2.2 The Fragmented-Object Model

In a traditional client/server system based on remote method invocations, the function-
ality of an object completely resides on a single node. For transparently accessing the
object, the client-side middleware instantiates a stub that handles remote invocations
(Fig. 1a). Usually, the stub code is automatically generated from an interface specifica-
tion. All objects with the same interface share the same stub code. The middleware run-
time systems instantiates the stub as soon as the client binds to an object reference. The
bind operation is either requested explicitly by the client, or it is performed implicitly
when an object reference is passed to the client through the marshalling mechanisms of
the ORB.

In the fragmented-object model, the distinction between client stubs and the server
object is no longer present. From an abstract point of view, a fragmented object is
a unit with unique identity, interface, behaviour, and state, as it is in classic object-
oriented design. The implementation of these properties, however, is not bound to a
certain location, but may be distributed arbitrarily on various fragments (Fig. 1b). Any
client that wants to access the fragmented object needs a local fragment. In addition,
there can be fragments that are deployed on nodes without a client. The client interface
of a local fragment is identical to that of a traditional stub. However, the local fragment
can be specific for exactly that object. Two objects with the same interface can lead

260 H.P. Reiser et al.

public
interface

H1 H2

H3 Remote
Servant

Stub Stub

Client Client

(A) RPC Client-Stub Interaction (b) Fragmented Object

public
interface

H1 H2

H3

Fragment

Fragment Fragment

Client Client

Fig. 1. Traditional Client/Stub Structure vs. Fragmented Object

to completely different local fragments. This internal structure allows a high degree
of freedom on where the state and functionality of an object is provided, and how
the interaction between fragments is done. The internal distribution and interaction
is hidden from the outer interface. In addition, the distribution of functionality to
fragments can even be changed dynamically at runtime.

The AspectIX middleware provides support for fragmented objects. Unlike other
fragmented-object middleware infrastructures such as FOG [12] and Globe [7], it even
supports implicit binding of fragmented objects upon the receipt of a marshalled object
reference. All reference-related operations are handled by a generic reference manager
and pluggable profile managers [6]. AspectIX uses CORBA IORs as references and also
provides interoperability with standard CORBA applications. In addition to CORBA
IIOP profiles, a custom IOR profile (called APX) for fragmented objects is supported.
When binding to such a reference, fragment-specific code is transparently loaded; for
this purpose, AspectIX provides a Dynamic Loading Service (DLS [9]) that enables
the lookup, selection, and loading of platform-dependent code at run-time. From a
client point of view, the interface of a local fragment is identical to that of a standard
CORBA object.

3 The AspectIX Replication Architecture

3.1 Overview

On top of the basic infrastructure for fragmented objects, we provide support for
fault-tolerant active replication of distributed objects. This chapter first outlines our
architecture, which encapsulates replication inside a fragmented object. We discuss the
internal implementation structure of the fragments, illustrate the use of the AspectIX
profile in the IOR to reference replica groups, and describe the run-time infrastructure,
which is used to create and administrate replica groups. Subsequently, we explain how
semantic properties can be defined by developer annotations. Finally, we focus on the
code-generation process that automatically produces fragment code from the interface
definition, the semantical annotations, and the non-replicated implementation.

Fault-Tolerant Replication Based on Fragmented Objects 261

3.2 Fault-Tolerant Replication with Fragmented Objects

A fault-tolerant service in the fragmented-object model is represented by a single
distributed object which is composed of replica fragments and access fragments (Fig. 2).
The development process consists of defining the global object interface in CORBA
IDL, implementing the functional parts of the service, and creating the fragment code.
The creation of fragment code is done automatically by tools; these tools can make use
of additional semantic annotations provided by the developer, as we will describe in
Section 3.3. This enables the generation of a customised layer between the client and
the core framework and also between the framework and the replica implementation.

Host A

Host D Host E

Host B Host C

Replica
Fragment

Client Client

Replica
Fragment

Replica
Fragment

Access
Fragment

Access
Fragment

Fragmented
Object

Fig. 2. Replication with Fragmented Objects

Details of the Fragment Architecture. The layered design of access and replica
fragments in our architecture is shown in Fig. 3. Access fragments are used by client
applications; the replica fragments contain the object state. Replica fragments do not
support direct client access. Instead, an access fragment is instantiated at the same
location as the replica fragment. For simplicity, this detail is not shown in Fig. 3.

Starting at the client side, the client application accesses the fault-tolerant frag-
mented object via its interface like any other CORBA object. The generated access frag-
ment may contain optional developer code that is directly embedded (see Section 3.3).
Furthermore, it contains a Context Handler, code for marshalling and unmarshalling of
requests (equal to a standard client-side stub), and code for remote communication.

If client A invokes a method at a replicated object B, a node failure during the
invocation can make it necessary to repeat the invocation. This happens if the client A
communicates with a replica fragment that fails. The re-invocation contacts a different
replica of B. Alternatively, A can be replicated itself. In this case, the access fragment
provides client-side duplication suppression by selecting one replica of A to actually
make the remote invocation. If this selected replica fails, another replica of A repeats
the invocation. To preserve the at-most-once invocation semantics of CORBA, in both
cases the repetition of the invocation needs to be detected and filtered out at the replica

262 H.P. Reiser et al.

Client Program

Functional Implementation

CORBA Interface

Access Fragment Replica Fragment

Context Handler

Context Handler

Communication Communication

Marshalling
Marshalling

Custom Developer Code

Scheduling

R
e
p
lic

a
F

ra
g
m

e
n
t

Comm'

Client/Replica
Communication

Inter-Replica
Group Communication

...

Fig. 3. Architectural Overview

fragments of B. For this purpose, the Context Handler adds context information with a
consistent unique ID that identifies the request.

At the network level, a totally ordered group communication system provides the
basis for consistent active replication. Currently, our prototype uses the JGroups system
[1], which is based on the closed-group approach. This implies that group communi-
cation is only used between replicas; any replica can act as a gateway to communicate
between an access fragment and the replica group. However, our implementation easily
supports the exchange of the network layer, such that group communication systems
with an open-group model—like our own group communication framework [18]—can
be used. This potentially improves performance (e.g., the access fragment can directly
multicast its request to all replicas). For tolerating Byzantine failures, an appropriate
variant

With the gateway approach, the Communication element in the access replica is
responsible for transmitting calls to one available replica. If this replica fails, the
Communication transparently reconnects to another replica fragment and reissues the
call. If the call has already been processed by the replicas, this is detected and the
invocation result is returned from a cache. The Communication component in replica
fragments is responsible for passing requests to group communication. All requests
that are received from group communication are placed into a totally ordered queue for
subsequent processing in the upper layer.

The upper layer consists of three different components: First, the Marshalling com-
ponent deserialises requests and serialises replies. The replica side of the Context
Handler component is used for the suppression of duplicated requests. The Scheduling
component is responsible for the internal message management and for the deter-
ministic multithreading support, which is explained in detail in Section 3.5. On the
top end, requests are passed to the functional implementation that was provided by

Fault-Tolerant Replication Based on Fragmented Objects 263

the developer; this implementation may partially get modified by the code generation
process (see Section 3.4)

IOR References to Replica Groups. As described in Section 2.2, the AspectIX
middleware uses CORBA IORs to reference fragmented objects via an APX profile.
This profile contains a unique object ID, a specification of the initial fragment type
to load, and contact information of other fragments. The initial fragment type can be
specified in a language-independent way; equivalent fragment implementations may
exist for various programming languages or execution platforms. The Dynamic Loading
Service (DLS) of AspectIX loads the appropriate code based on the specification from
the IOR profile [9].

The initially loaded fragment evaluates the contact information from the IOR profile.
In the gateway approach, this information consists of a list of all replica gateway
addresses of the group. In the open-group approach, address information for the group
communication system (like a multicast address for group discovery or the addresses
of gossip servers) can be stored in the contact information. The removal or addition of
replicas triggers the creation of a new version of the replica group’s IOR. The standard
approach for updating the client’s IORs, which is also used in FT-CORBA, is to include
the client’s current IOR version in each invocation request to the replica group. If this
version is out-of-date, the replica will send the current version in the reply to the client.

This approach is practical in many situations; however, it does not provide any
guarantees that all client-side IORs will get updated in time before they no longer
provide valid contact information. To improve this situation, we additionally support
the concept of a lifetime specified within the IOR references [10]. During the specified
lifetime, the replica group guarantees that the IOR information can be used to contact
the group; in the gateway approach, this means that at least one of the replica gateway
addresses included in the IOR remains accessible. Optionally, the address of a location
service can be specified in the IOR, which manages an up-to-date contact information
for the replica group. This is useful if the distribution of a fragmented object changes
frequently and the risk of stale references is high.

Run-Time Infrastructure. Similar to other fault-tolerant middleware infrastructures,
AspectIX uses the factory pattern to create and set up replicas. Replication groups are
implemented as self-managing entities; this reduces the complexity of the necessary
infrastructure compared to other systems that require a dedicated replication manager.
In addition, the management automatically benefits from the same fault-tolerance mech-
anisms as the replicated object itself.

Starting a new replicated service involves several steps. First, a factory must be
acquired via a factory finder. A factory finder represents a search scope for possible
places of execution, as defined by the CORBA Life Cycle Specification [17]. Currently,
our factory finder is implemented straightforwardly in plain CORBA and well-known
on every node within a domain. This way, a node can register its local factories and it
can lookup factories from all other nodes. Multiple factory finders can be provided for
fault tolerance.

Our generic factory for object creation offers two methods: one for setting up an
initial replica of a replicated fragmented object and another one for setting up additional

264 H.P. Reiser et al.

Client FactoryFinder Factory 1 Factory 2

Replica 1

Replica 2

find_factory(...)

success(factories)

new(...)

new(...)

(a)

(b)

success(replica reference)

create_initial_replica(...)

create_replica(...)

success(...)

set_number_of_replicas(...)

find_factory(...)

success(reference to factory 2)

Fig. 4. Creation of first and additional replicas

replicas. After lookup of one or more factories via the factory finder, one of them
is requested to instantiate the first replica via create initial replica() (see
Fig. 4 (a)). The factory creates the initial replica and activates the fragment object.
Afterwards, the object is returned to the calling client and, as it is a fragmented object, a
local access fragment is dynamically instantiated. This results in a simple client/server
structure with only one replica. The management code within this replica is able to
control the creation of additional replicas.

A management interface of the fragmented object is used to adjust the desired
number of replicas (see Fig. 4 (b)). If the client increases the number of replicas, the
existing replica group is triggered to add the necessary number of additional replicas.
The replica-side fragment contacts the factory finder to request additional factories. In
the next step, a reference to the fragmented object is passed to a factory. At the factory
side, the fragmented object is transparently bound by the middleware, which loads the
initial fragment. Under control of the factory, the local fragment is reconfigured to be a
replica fragment. The state of the existing replica group is transferred to the new replica
similar to the CORBA Life Cycle Service. The addition of replicas is repeated until
the desired replication level is reached or until no additional factories are found. The
failure of a replica in the group is detected by a failure-detection mechanism at the
group-communication level. After detecting a failure, the replica group automatically
sets up a new replica in the same way, as long as another factory is available.

3.3 Semantic Information from Object Developers

A simple scheme for generating client-side and replica-side fragment code only uses
IDL interface information, like a traditional CORBA IDL compiler does for stubs
and skeletons. Additionally, our architecture allows the developer to express semantic
knowledge in order to improve and customise the replication mechanisms. Currently,
we support several annotations on a per-method basis:

Fault-Tolerant Replication Based on Fragmented Objects 265

1 i n t e r f a c e C C p r o c e s s o r {
2 t r a n s a c t i o n i d c h a r g e (i n c a r d d a t a card , i n f l o a t amount)
3 r a i s e s (CardNotVal id , T r a n s a c t i o n F a i l e d) ;
4
5 # pragma a n n o t a t e (r e a d o n l y)
6 b o o l e a n v a l i d a t e c a r d (i n c a r d d a t a c a r d) r a i s e s (CardNotVa l id) ;
7
8 # pragma a n n o t a t e (l o c a l)
9 b o o l e a n v a l i d a t e c a r d c h e c k s u m (i n c a r d d a t a c a r d)

10 r a i s e s (CardNotVa l id) ;
11 } ;

Fig. 5. IDL with semantic annotations

– readonly: A method marked as read-only does not modify the relevant replica
state. Instead of executing this method in total-order at all replicas, it is sufficient
to invoke it on one available replica.

– parallelizable(methodlist): A method marked as parallelisable with
respect to a set of other methods can be executed in parallel with the specified
list of other methods. This allows true multithreading.

– local: The implementation of a method marked as local will be placed in the
client-side fragment. This way, methods that need no access to the replica state
can be executed locally at the client, while still being conceptionally part of the
distributed object.

– intercepted: A method marked as intercepted will execute custom code at the
client-side before and after invoking the remote method at the replica group. This
mechanism can be used for local preprocessing, for caching, or for the accumula-
tion of multiple client invocations into one remote invocation to the replica group.

Our current implementation uses annotations embedded as #pragma instructions
within the IDL file, as the example in Fig. 5 illustrates. Our flexible IDL compiler
IDLflex [22] allowed us to implement this solution easily.

3.4 Code Generation for Fragments

In our replication infrastructure, the creation of fragment implementations is automated
by a code-generation tool. Two basic fragment types are required (see Section 3): A
replica fragment for consistency management and a client-side access fragment. The
current prototype of the code-generation tool is based on IDLflex [22], an IDL-compiler
that generates customisable code. IDLflex parses CORBA IDL, evaluates an XML-
based mapping specification, and uses this specification to create arbitrary output code.
It includes two standard mapping specifications for the Java programming language,
one for standard CORBA and one for AspectIX fragmented objects.

For replication support, the IDL-compiler was extended to support semantic anno-
tations in IDL files, expressed as #pragma annotate statements. Within a custom

266 H.P. Reiser et al.

CORBA IDL
+ annotations

implementation
Access Fragment

base class
Access Fragment

base class
Replica Fragment

implementation
Replica Fragment

2: developer implementation

1: code generation

Fig. 6. Development Process of Fault-Tolerant Fragmented Object

mapping specification, these annotations are evaluated and used to control the code-
generation process.

The development process of a fault-tolerant fragmented object is illustrated by Fig. 6.
The annotated IDL is used to create a base class for the access fragment and the replica
fragment. Additional developer code can be added to the access fragment if required by
local or intercepted operations, as we describe below. The implementation of the replica
fragment is similar to that of a non-replicated CORBA servant. The main differences are
that (1) it has to inherit from the generated replica base class and (2) it has to implement
methods for state transfer.

The generated code depends on the code annotations. If at least one read-only
method is present, the generated code for the Communication component will examine
all invocation requests. If the requested method is marked as read-only, it will be
passed directly to the implementation of one replica, bypassing the totally ordered group
communication.

The Scheduling component interacts with the deterministic thread-scheduling sup-
port of our replication infrastructure (see Section 3.5). The generated code of the
component knows which methods are marked read-only and parallelisable. This infor-
mation is made available to the thread scheduler in order to maximise the concurrency
of request execution.

Specifying a method as local causes the method’s implementation to be placed in
the access fragment instead of the replica fragment. Such method implementation must
not access replica state. This approach is useful for methods that, for example, validate
client data in a state-independent way or that provide static information to the client.

For each method annotated as intercepted, an abstract method is created in the ac-
cess fragment; the actual method implementation must be provided by the developer.
A protected method is provided in the access fragment for accessing the real imple-
mentation at the remote replica group; this method can be used within the developer
code in the access fragment. Applications for such interceptions are client-side caching
strategies or the accumulation of multiple client method invocations with subsequent
manipulation of the replicated object’s state with only one invocation to the replica group.
Our current prototype requires that the developer manually implements the additional
client-side code.

Fault-Tolerant Replication Based on Fragmented Objects 267

Another aspect of the creation of replica fragment code is the ability to modify
the functional object implementation. This approach is used to intercept native Java
synchronisation code. Synchronisation operations need to be intercepted by our de-
terministic thread scheduler (see Sect 3.5). By replacing all relevant statements with
custom code, such interceptions is possible without internal modification to JVM or
operating system. The same approach could be used to intercept Java API calls to
nondeterministic methods like the generation of time-stamps or random numbers.

3.5 Multithreading in Actively Replicated Services

Active replication requires a deterministic execution of all state-modifying actions.
If multiple threads are allowed to access the replicated object in parallel, the order
in which threads access shared data may vary between replicas; this can lead to an
inconsistent object state.

The popular solution of using a single-threaded execution has several drawbacks. If
a replica group issues a nested invocation, it has to idle until this invocation returns; if
a second thread used this waiting time for computations, it would result in improved
performance. The single-threaded approach is also deadlock prone: If such a nested
invocation calls back a method on the first replica group, this call is blocked by the
waiting thread, resulting in a deadlock. Similarly, with a single-threaded model, condi-
tion variables that suspend the current thread until woken up by another thread cannot
be used.

To provide support for multithreading, we integrated our deterministic thread sched-
uler for active replication [20] into our AspectIX replication architecture. Our scheduler
uses an algorithm similar to that by Zhao et al. [23], improved by support for condition
variables and for native Java synchronisation mechanism. It provides a non-preemptive,
deterministic mechanism for thread scheduling. A new thread is only created or an
existing thread is only resumed, if all other existing threads have reached a safe state,
i.e., have terminated or have blocked waiting for a mutex, for a condition variable
notification, for a timeout, or for a nested invocation reply. All decisions are fully
deterministic, and consequently remain consistent among all replicas. Lock requests,
lock releases, and condition variable access need to be passed to our thread scheduling
algorithm.

We do not want to modify the execution environment (i.e., the JVM), but still
want to allow implementing synchronisation in the replicated object with native Java
mechanisms (synchronized statements, etc). To intercept these statements, our code
generation tool automatically transforms these statements into appropriate synchronisa-
tion calls to the deterministic scheduler in the replica fragment, as described above. This
approach requires that the synchronisation of a replicated object is fully encapsulated
within the replica fragment. That is, we assume that lock object instances used by the
replica implementation are not used for synchronisation in code outside the replica
fragment, but within the same JVM (Java virtual machine). Developer code within
the access fragment has no direct access to the object state and thus does not require
synchronisation.

Based on the semantic annotations, the scheduling algorithm can be further im-
proved. A thread may be created or resumed not only if all other threads have reached

268 H.P. Reiser et al.

a safe state, but also if it is marked as parallelisable with all other threads that have
not terminated. Special care needs to be taken for read-only methods, which are only
executed in one replica. These methods are not allowed to use wait/notify operations on
condition variables, as this could lead to an inconsistent scheduling of other modifying
methods.

4 Evaluation

Our semantic annotations at the interface level offer ample opportunities to tune and
optimise the implementation of replicated objects. In many cases these are very appli-
cation specific, e.g., if a resource intensive subtask is moved from server to client side.
In this section, we present two general examples, which show the possible speed-up of
our approach. All presented measurements were made on AMD Opteron 2.2 GHz Linux
server machines connected via a switched 100Mbit/s ethernet, using our AspectIX ORB
with JGroups 2.2.9.1 for group communication and Java SDK-1.5.0. The JGroups stack
was configured to use TCP connections and TOTAL ordering.

In the first example, we measured the difference in invocation time between a read-
only method and a modifying method. The read-only method invocation is not dis-
tributed via the group-communication framework but instead sent directly to one of the
replicas. Fig. 7(a) shows the average time per invocation, obtained from at least ten runs
with 5000 client invocations. A single client accesses a replica group with the number of
replicas increasing from one to five nodes. The invocation cost for modifying methods is
dominated by the cost of the totally ordered group communication. This underlines the
benefit from using semantic knowledge about object methods for building an efficient
fault-tolerant replication system.

The second example analyses our support for condition variables in the deterministic
scheduler. We implemented a simple replicated counter that is increased by a producer
and decreased by a variable number of consumers. Without condition variables, the
consumers must use polling (for our measurements, a one ms delay between retries was
used); with condition variables, a consumer call can block within the counter object
at a condition variable until it is woken up by a producer call. We again show the

1 2 3 4 5
number of replicas

0

2

4

6

8

10

tim
e/

in
vo

ca
tio

n
(m

s)

modify
read-only

(a) Read-only versus modify calls

1 2 3 4 5 6 7 8 9 10
number of consumers

0

50

100

150

200

250

300

tim
e/

in
vo

ca
tio

n
(m

s) multi (wait/notify)
single (poll)

(b) Consumer/producer szenario

Fig. 7. Efficiency gains by read-only annotations and by multithreading

Fault-Tolerant Replication Based on Fragmented Objects 269

average time per consumer invocation, averaged over repeated experiments with 5000
calls per client. The time is expected to increase linearly with the number of consumers,
as multiple consumers compete for values produced by a single producer. As shown in
Fig. 7(b), the multithreaded approach with condition variables outperforms a single-
threaded implementation; the benefit increases with a rising number of clients.

5 Conclusions

We have presented an architecture for fault-tolerant replication of objects in distributed
systems based on the fragmented-object model. A fragmented-object middleware loads
custom code at client side and server side on a per-object basis. This enables the
implementation of generic fault-tolerance support fully transparent for clients, without
internal modifications to the middleware, and without the overhead of indirections that
take place in the interception or service approach to fault-tolerance support.

The core of our architecture is a code-generation process that automatically produces
client-side access fragments and replica-side consistency management fragments, based
on the interface specification, the functional implementation provided by the object
developer, and semantic annotations. Our current prototype uses semantic annotations
inside the IDL interface definitions, and supports the Java programming language.

We use the semantic annotations for selecting consistency mechanisms for method
invocation, strategies for thread scheduling, and for supporting client-side computa-
tions. Methods can be marked as read-only, which allows their execution without strict
total-order requirements. They can be marked as parallelisable, which enables parallel
execution by our multithreading support for actively replicated objects. Furthermore,
parts of the functional object implementation can be directly placed at the client side.

Code transformation is also used for removing nondeterministic behaviour in object
implementations. We specifically use this to allow multithreading in actively replicated
objects; native Java synchronisation mechanisms are replaced with code that allows
interception by our deterministic thread scheduler.

Our prototype assumes that a fragmented object middleware is used, but our concept
is not strictly limited to such a platform. Other platforms that provide means to load
custom object-specific code at the client side, for example based on the smart-proxy
principle, can similarly use our code-generation concept for supporting fault tolerance.
One advantage of the fragmented-object approach is its flexibility that even supports
dynamic reconfiguration at run-time.

References

1. Bela Ban. Design and implementation of a reliable group communication toolkit for Java.
Technical report, Dept. of Computer Science, Cornell University, 1998.

2. Ken Birman. Can web services scale up? Computer, 38(10):107–110, 2005.
3. Kenneth P. Birman and Robbert Van Renesse. Reliable Distributed Computing with the ISIS

Toolkit. IEEE Computer Society Press, Los Alamitos, CA, USA, 1993.
4. Pascal Felber. The CORBA Object Group Service: A Service Approach to Object Groups in

CORBA. PhD thesis, École Polytechnique Fédérale de Lausanne, Switzerland, 1998. Number
1867.

270 H.P. Reiser et al.

5. Pascal Felber and Priya Narasimhan. Experiences, strategies, and challenges in building
fault-tolerant CORBA systems. IEEE Trans. Comput., 53(5):497–511, 2004.

6. Franz J. Hauck, Rüdiger Kapitza, Hans P. Reiser, and Andreas I. Schmied. A flexible and
extensible object middleware: CORBA and beyond. In Proc. of the Fifth Int. Workshop on
Software Engineering and Middleware. ACM Digital Library, 2005.

7. Philip Homburg, Leendert van Doorn, Maarten van Steen, Andrew S. Tanenbaum, and
Wiebren de Jonge. An object model for flexible distributed systems. In Proceedings of
the 1st Annual ASCI Conference, pages 69–78, 1995.

8. Ricardo Jiménez-Peris, Marta Patiño-Martı́nez, and Sergio Arévalo. Deterministic schedul-
ing for transactional multithreaded replicas. In SRDS ’00: Proceedings of the 19th IEEE
Symposium on Reliable Distributed Systems (SRDS’00), page 164, Washington, DC, USA,
2000. IEEE Computer Society.

9. Rüdiger Kapitza and Franz J. Hauck. DLS: a CORBA service for dynamic loading of code.
In Proc. of the OTM’03 Conferences (DOA, Sicily, Italy, Nov. 3-7, 2003), number 2888 in
LNCS. Springer, 2003.

10. Rüdiger Kapitza, Hans P. Reiser, and Franz J. Hauck. Stable, time-bound references in
context of dynamically changing environments. In MDC’05: Proc. of the 25th IEEE Int.
Conf. on Distributed Computing Systems - Workshops (ICDCS 2005 Workshops), 2005.

11. Silvano Maffeis. Adding group communication and fault-tolerance to CORBA. In
Proceedings of the Conference on Object-Oriented Technologies, (Monterey, CA), USENIX,
pages 135–146, 1995.

12. Mesaac Makpangou, Yvon Gourhant, Jean-Pierre Le Narzul, and Marc Shapiro. Fragmented
objects for distributed abstractions. In T. L. Casavant and M. Singhal, editors, Readings in
distributed computing systems, pages 170–186. IEEE Computer Society Press, 1994.

13. Luise E. Moser, P. M. Melliar-Smith, and Priya Narasimhan. Consistent object replication in
the eternal system. Theor. Pract. Object Syst., 4(2):81–92, 1998.

14. Nitya Narasimhan, Louise E. Moser, and P. M. Melliar-Smith. Transparent consistent
replication of Java RMI objects. In DOA, pages 17–26, 2000.

15. Priya Narasimhan, Louise E. Moser, and P. M. Melliar-Smith. Enforcing determinism for
the consistent replication of multithreaded CORBA applications. In SRDS ’99: Proceedings
of the 18th IEEE Symposium on Reliable Distributed Systems, page 263, Washington, DC,
USA, 1999. IEEE Computer Society.

16. Object Management Group (OMG). Common object request broker architecture: Core
specification, version 3.0.2. OMG document formal/02-12-02, 2002.

17. Object Management Group (OMG). Life cycle service specification, version 1.2. OMG
document formal/02-09-01, 2002.

18. Hans P. Reiser, Udo Bartlang, and Franz J. Hauck. A reconfigurable system architecture for
consensus-based group communication. In Proc. of the 17th IASTED Int. Conf on Parallel
and Distributed Systems (Phoenix, AZ, USA, Nov 14-16, 2005), 2005.

19. Hans P. Reiser, Michael J. Danel, and Franz J. Hauck. A flexible replication framework for
scalable and reliable .NET services. In Proc. of the IADIS Int. Conf. Applied Comuting 2005,
Vol I, Algarve, P, pages 161–169, 2005.

20. Hans P. Reiser, Franz J. Hauck, and Rüdiger Kapitza. Deterministic multithreading for
replicated CORBA applications, 2006. submitted for publication.

21. Hans P. Reiser, Franz J. Hauck, Rüdiger Kapitza, and Andreas I. Schmied. Integrating
fragmented objects into a CORBA environment. In Proc. of the Net.ObjectDays (Erfurt,
Germany), 2003.

Fault-Tolerant Replication Based on Fragmented Objects 271

22. Hans P. Reiser, Martin Steckermeier, and Franz J. Hauck. IDLflex: a flexible and generic
compiler for CORBA IDL. In Proc. of the Net.ObjectDays (Erfurt, Germany, Sep. 10-13,
2001), 2001.

23. Wenbing Zhao, Louise E. Moser, and P. M. Melliar-Smith. Deterministic scheduling
for multithreaded replicas. In WORDS ’05: Proceedings of the 10th IEEE International
Workshop on Object-Oriented Real-Time Dependable Systems, pages 74–81, Washington,
DC, USA, 2005. IEEE Computer Society.

Towards Context-Aware Transaction Services

Romain Rouvoy1, Patricia Serrano-Alvarado2, and Philippe Merle1

1 INRIA Futurs - Jacquard Project,
LIFL - University of Lille 1,

59655 Villeneuve d’Ascq Cedex, France
{romain.rouvoy, philippe.merle}@inria.fr

2 ATLAS-GDD Team,
LINA - University of Nantes,

44322 Nantes Cedex 03, France
patricia.serrano-alvarado@univ-nantes.fr

Abstract. For years, transactional protocols have been defined for
particular application needs. Traditionally, when implementing a trans-
action service, a protocol is chosen and remains the same during the
system execution. Nevertheless, the dynamic nature of nowadays applica-
tion contexts (e.g., mobile, ad-hoc, peer-to-peer) and context variations
(semantics-related aspects) motivates the need for transaction service
adaptation. Next generation of transaction services should be adaptive or
even better self-adaptive. This paper proposes CATE: (1) a component-
based architecture of standard 2PC-based protocols and (2) a Context-
Aware Transaction sErvice. Self-adaptation of CATE is obtained by
context awareness and component-based reconfiguration. This allows
CATE to select the most appropriate protocol with respect to the execu-
tion context. We show that using CATE performs better than using only
one commit protocol in a variable system and that the reconfiguration
cost is negligible.

1 Introduction

The dynamic nature of nowadays application contexts (e.g., mobile, ad-hoc, peer-
to-peer) and context variations (semantics-related aspects) justifies the need for
application adaptation [1]. Next generation of applications should automatically
tune themselves and apply optimizations in order to maximize performances, to
evolve, to face different contexts or to adapt the execution process according to
context variations.

Component-based models are a good solution to make possible software adapt-
ability [2] mainly because component-based architectures facilitate static and
dynamic configuration. Implementing component-based adaptive applications is
a very active and consolidated research/industrial issue [3, 4]. Nevertheless, there
has been little work on adaptability of middleware services, such as persistence,
replication, transaction, or communication [5, 6, 7].

In distributed transaction management, commit protocols ensure atomicity,
which means that all transaction operations success (commit) or none of them

F. Eliassen and A. Montresor (Eds.): DAIS 2006, LNCS 4025, pp. 272–288, 2006.
c© IFIP International Federation for Information Processing 2006

Towards Context-Aware Transaction Services 273

(abort). The most used commit protocol is Two-Phase Commit (2PC) [8]. There
exists a number of 2PC optimizations and some of them are so widely used that,
as 2PC, are part of transaction processing standards. 2PC variations are pro-
posed to optimize transaction execution costs, to address particular transaction
semantics (e.g., read-only), to execute on different network topologies, etc. For
instance, the 2PC Presumed Commit protocol (2PC-PC) [9] is well suited for
high transaction commit rates, whereas 2PC Presumed Abort (2PC-PA) [9] is
more appropriate for high transaction abort rates.

Traditionally, transaction service implementations are tailored for a particu-
lar application context. A transactional protocol is chosen and remains the same
even if the application context changes. This may lead to unexpected poor perfor-
mances. To deal with context variations of transactional applications, the trans-
action management system should be adaptive or even better self-adaptive. We
consider self-adaptation as the ability of being aware of the application context
changes and the capacity of reacting to them. This paper proposes CATE, which
is composed of (1) a component-based architecture of standard 2PC-based pro-
tocols and (2) a Context-Aware Transaction sErvice. Self-adaptation of CATE
is obtained by a context-aware mechanism and component-based reconfigura-
tion. This allows CATE to select the most appropriate protocol with respect to
the execution context. The implementation performance results show that using
CATE performs better than using only one commit protocol in a variable system
and that the reconfiguration cost is negligible.

This paper is organized as follows. Section 2 briefly introduces the atomic
commit protocols used in this work. Section 3 introduces the component-based
implementation and the evaluation of the 2PC, 2PC-PA, and 2PC-PC protocols.
Section 4 presents our Context-Aware Transaction Service, its implementation
and some empirical measures obtained when using it. Finally, Section 5 presents
some related work, and Section 6 concludes and gives future work.

2 Overview of Commit Protocols

In database systems, correct concurrent data access is ensured using trans-
actions. Transactions are characterized by the well-known ACID (Atomicity,
Consistency, Isolation and Durability) properties, which are guaranteed by trans-
action services. While we consider that consistency, isolation and durability prop-
erties are supported by the application resource managers (e.g., Database), this
paper focuses on the atomicity property. In particular, our work focuses on the
self-adaptability of the atomicity property. For the purposes of this paper, we
concentrate on some standard 2PC-based protocols, which are the 2PC, 2PC-PA
and 2PC-PC protocols.

To describe the behavior of these 2PC protocols, we use UML sequence di-
agrams (see Figures 1 to 3). It allows us to identify four actors: Application,
Coordinator, Participants, and Log. Then, the sequences describe the behavior of
the 2PC, 2PC-PA and 2PC-PC protocols in terms of communication schema
and logging issues. Indeed, the resilience of commit protocols to system and

274 R. Rouvoy, P. Serrano-Alvarado, and P. Merle

communication failures is achieved by logging the progress of the protocol in
the logs (stable storage) of the coordinator and the participants. There exist two
types of log writes: force and non-force. The first one is immediately flushed into
the log, generating a disk access. Non-force writes are eventually flushed into the
log. Thus, there exists a window of vulnerability in using non-force writes until
they are flushed.

Figures 1 to 3 introduces three commit protocol use cases. Two cases corre-
spond to the situation where the Application orders the Coordinator to commit.
In this case, the commit protocol can issue with a Commit (e.g., Figure 1(a))
or a Failure (e.g., Figure 1(b)) depending on the Participants votes. In the third
case, the Application orders the Coordinator to abort and the commit protocol
issues automatically with an Abort decision (e.g., Figure 1(c)).

2.1 Two-Phase Commit (2PC)

2PC, the most used commit protocol, consists of two phases (see Figure 1). Dur-
ing the voting phase, the coordinator sends a prepare message to all participants.
At the decision phase, the coordinator decides to commit (if all the participants
vote yes) or abort (if at least one participant votes no) the transaction and
notifies the participants of its decision. When the participants receive the final
decision, they send an acknowledge message to the coordinator and release all
resources held by the transaction. When the coordinator has received all the ac-
knowledgements from the participants that voted yes, it ends the protocol and
forgets the transaction. In 2PC, the coordinator force writes a decision record
and non-force writes an end record at the end of the protocol. Participants force
write their votes and the coordinator’s decision. Write operations are logged
before sending the corresponding message.

Application Coordinator Participant Log Application Coordinator Participant Log Application Coordinator Participant Log

(a) Commit (b) Failure (c) Abort

C
om

m
it

de
ci

si
on

V
ot

in
g

ph
as

e

A
bo

rt
 d

ec
is

io
n

V
ot

in
g

ph
as

e

A
bo

rt
 d

ec
is

io
n

commit

vote

force-log

force-log

acknowledge

non-force-log

force-log

prepare

commit

commit

vote

force-log

force-log

acknowledge

non-force-log

force-log

prepare

abort

abort

acknowledge

non-force-log

force-log

abort

force-log

Fig. 1. The 2PC protocol

2.2 2PC Presumed Abort (2PC-PA)

2PC-PA reduces the cost associated to aborted transactions. When the coordi-
nator decides to abort a transaction, it discards all information related to the

Towards Context-Aware Transaction Services 275

Application Coordinator Participant Log Application Coordinator Participant Log Application Coordinator Participant Log

(a) Commit (b) Failure (c) Abort

commit

vote

force-log

force-log

acknowledge

non-force-log

force-log

prepare

commit

commit

vote

force-log

force-log

non-force-log

prepare

abort

abort

non-force-log

abort

force-log

Fig. 2. The 2PC-PA protocol

transaction and sends an abort message to all the participants without logging
the abort decision (see Figure 2(b) failure case). The participants non-force write
the abort record and do not have to send an acknowledge message to the coor-
dinator. In case of failures, the coordinator, not finding any information in the
log regarding the transaction will deduce an abort decision. The commit case of
2PC-PA remains the same as in 2PC.

2.3 2PC Presumed Commit (2PC-PC)

2PC-PC, as opposed to 2PC-PA, reduces the cost of committed transactions. In
2PC-PC, the coordinator interprets missing information as a commit decision.
To do so, the coordinator has to force write an initiation record for the transac-
tion before sending prepare messages to participants (see Figure 3). When the
coordinator decides to commit a transaction it force writes a commit record then
it sends the commit decision. The participants non-force write the commit deci-
sion and release all the transaction resources without acknowledging the commit
decision to the coordinator. Otherwise, when the coordinator decides to abort a

Application Coordinator Participant Log Application Coordinator Participant Log Application Coordinator Participant Log

(a) Commit (b) Failure (c) Abort

commit

vote

force-log

force-log

non-force-log

force-log

prepare

commit

commit

vote

force-log

force-log

acknowledge

non-force-log

prepare

abort

force-log

abort

acknowledge

force-log

non-force-log

abort

force-log

Fig. 3. The 2PC-PC protocol

276 R. Rouvoy, P. Serrano-Alvarado, and P. Merle

transaction, it sends abort messages to all the participants that voted yes and
waits for the acknowledges. The abort decision is not logged. When all the ac-
knowledgements have been received, the coordinator writes a non-forced end
record and discards all information related to the transaction. The participants
force write the abort decision and send an acknowledgement to the coordinator.

3 Evaluation of Commit Protocols

Evaluation of commit protocols is often based on theoretic cost evaluation of mes-
sage exchanges, and number and type of logs. This section aims at verifying the
conformance of the theoretic costs to empirical measures obtained when imple-
menting the protocols introduced in Section 2. The originality of this implemen-
tation lies in the definition of reusable components to implement various commit
protocols. These components are reused in CATE to support self-adaptability
of commit protocols as described in Section 4. The following sections analyse
the theoretic costs of studied protocols, introduces details about the implemen-
tation of those protocols, and shows some empirical measures resulted from the
execution of implemented protocols.

3.1 Theoretic Cost Measures

We show that these protocols differ in the number of messages sent and the num-
ber of forced log writes. Table 1 summarizes the three 2PC-based protocol costs.
The differences between commit protocols lead to different completion time of
the commit processing, communication and disk access costs. As in Section 2, the
Abort use case considers transactions aborting unilaterally whereas the Failure
use case depicts transaction aborting during the voting phase.

Table 1. The commit protocol theorical costs

Commit Messages Forced log writes
protocol Commit Failure Abort Commit Failure Abort
2PC 4p 2p 1 + 2p 1 + p

2PC-PA 4p 3p p 1 + 2p 1 + p 1
2PC-PC 3p 4p 2p 2 + p 1 + 2p 1 + p

Even though 2PC is widely implemented, it is considered as very expensive
as shown in Table 1. It costs 4p message exchanges (p being the number of
participants) and 1 + 2p forced log writes (the cost of non-forced log writes can
be ignored). This highlights why several 2PC optimizations have been proposed.

Besides saving one force log write at the coordinator and at the participant’s
sites, 2PC-PA saves one acknowledge message from each participant in the abort
case. Thus, when the commit process fails, 2PC-PA costs 3p messages and p
forced log writes. If the transaction aborts unilaterally, 2PC-PA costs only 1

Towards Context-Aware Transaction Services 277

message and 1 forced log write, making it cheaper than 2PC and 2PC-PC. The
cost to commit a transaction is the same as in 2PC.

Compared to 2PC, 2PC-PC saves one forced log write and one acknowledge
message from each participant for the commit case at the expense of one extra
initiation forced log write at the coordinator. Thus the cost of committing a
transaction is 2 + p forced log writes and 3p messages. For the abort case, 2PC-
PC has one extra forced log write at the coordinator, the initiation record. Thus,
aborting a transaction costs the same as in 2PC (1+2p forced log writes and 4p
messages).

Thus, it is cheaper to use 2PC-PA in a system where transactions are most
likely going to abort, whereas, it is cheaper to use 2PC-PC if transactions are
most probably going to commit. In a system where transactions have the same
probability of abort and commit, it is cheaper to use 2PC-PA.

3.2 Implementation Issues

This section introduces the implementation of commit protocols presented in Sec-
tion 2. These commit protocols are implemented using component-based software
engineering. Before getting into the architecture details, we extend the definition
of component proposed in [10] with the concepts defined in the Fractal compo-
nent model [2]. A component architecture (or configuration) is mainly composed
of components and bindings. A component is a software entity, which exports
functions through server interfaces and imports its dependencies via client in-
terfaces. A binding connects a client interface to a server interface to resolve a
component dependency.

The proposed architecture generalizes the commit protocols to reuse common
functionalities. The objective is (1) to make a component-based implementation
of the three commit protocols presented in Section 2 and (2) to express principal
differences only through bindings. Therefore, each commit protocol reuses ex-
actly the same components but assembled with different bindings (see Figure 4).

Commit

log-end-commit
log-commit

commit

commit

Vote

(a) 2PC Protocol

log-initiation

failure

prepare

Participants

prepare
commit
abort

log-vote
log-commit

log-abort

(b) 2PC-PA Protocol (c) 2PC-PC Protocol

Abort

log-end-abort
log-abort

abort
abort

Logforce
non-force

Communication
Bus

sync

async

subscribe

Logforce
non-force

Participants

prepare
commit
abort

log-vote
log-commit

log-abort

Logforce
non-force

Participants

prepare
commit
abort

log-vote
log-commit

log-abort

Logforce
non-force

commit
success

C
o

o
rd

in
at

o
r

P
ar

ti
ci

p
an

t

Commit

log-end-commit
log-commit

commit

commit

Vote

log-initiation

failure

prepare

Abort

log-end-abort
log-abort

abort
abort

Logforce
non-force

Communication
Bus

sync

async

subscribe

commit
success

Commit

log-end-commit
log-commit

commit

commit

Vote

log-initiation

failure

prepare

Abort

log-end-abort
log-abort

abort
abort

Logforce
non-force

Communication
Bus

sync

async

subscribe

commit
success

Fig. 4. Component-based architecture of 2PC-based protocols

278 R. Rouvoy, P. Serrano-Alvarado, and P. Merle

To implement the commit protocols, we do not require to reify the Application
object depicted in Figures 1 to 3. Thus, we define 3 components: Coordinator,
Participants, and Log. To enforce the reuse of components, the Coordinator com-
ponent is split into 3 components: Vote, Commit, and Abort. This separation
means that a commit protocol encloses not only the 2PC protocol but also an
abort protocol in case of failure. This abort protocol is reused to support abort-
ing transactions unilaterally. Communication is supported by a Communication
Bus component. The communication bus supports sending synchronous or asyn-
chronous (using a callback approach) messages.

In Figures 1 to 3, the coordinator sends the prepare, commit and abort mes-
sages to all participants. Thus, the prepare, commit and abort client interfaces
of the Coordinator are bound to the Communication Bus. In Figures 1 to 3, the
coordinator and the participants require to journalize the steps of the commit
protocol in a log. Thus, the Coordinator and the Participants component inter-
faces are bound to the force or non-force server interface of the Log component
depending on the method call label declared in the sequence diagrams.

The coordinator part of this architecture is embedded in the transaction ser-
vice whereas the participant part is implemented by resource managers (e.g.,
database managers) involved in the system. The implementation of the 3 com-
mit protocols reuses these 6 components by changing only the bindings to provide
the different semantics.

2PC. In 2PC (Figure 4(a)), the Coordinator sends a synchronous prepare mes-
sage to all participants. Participants should attach their vote to the callback
message returned to the coordinator. When a decision is taken, the Coor-
dinator calls the log-commit (resp. log-abort) interface, which is bound to
the force interface of the Log. The commit (resp. abort) message is sent
synchronously to allow participants to acknowledge the decision. To termi-
nate the protocol, the Coordinator non-force writes an end record calling
the log-end-commit (resp. log-end-abort) interface. The Participants compo-
nent receives (from the Communication Bus) the prepare, commit, and abort
messages. It force writes its vote and the coordinator’s decision.

2PC-PA. In 2PC-PA (Figure 4(b)), as the coordinator does not log the abort
decision, the log-abort interface is not bound to the Log. This leaves the
Coordinator code unchanged. Next, the abort message is sent asynchronously
because the abort decision does not need to be acknowledged. Finally, the
log-end-abort interface is not bound to the Log because the end of an aborted
transaction does not need to be logged. The commit case is the same as in
2PC. In the Participants component, the commit case remains the same as
in 2PC. In the abort case, log-abort is bound to the non-force interface of
the participant’s Log component.

2PC-PC. In 2PC-PC (Figure 4(c)), before sending the prepare message, the Co-
ordinator calls the log-initiation interface. Compared to the other protocols,
such an interface is bound to the force Log interface. In 2PC-PC, the commit
decision is sent asynchronously because it is not necessary to acknowledge the
commit decision. Since the end of a committed transaction does not need to

Towards Context-Aware Transaction Services 279

be logged, the log-end-commit interface is not bound to the Log. The abort
decision is not logged, nevertheless, the abort message is sent synchronously.
The end of an aborted transaction is non-force written into the log. In the
Participants component, the log-commit and log-abort interfaces are bound re-
spectively to the non-force and force interfaces of the Log.

3.3 Empirical Evaluation

The objective of this section is to compare the theoretic cost evaluation with
the empirical evaluation of the component-based implementation of 2PC, 2PC-
PC, and 2PC-PA protocols. This comparison (1) validates our implementations
of 2PC-based protocols regarding to their specification, and (2) confirms the
theoritical cost evaluations of these 2PC-based protocols with an empirical eval-
uation. The scenario of Figures 5, 6 and 7 evaluates the average completion time
of a number of transactions executed sequentially varying the number of partic-
ipants (from 0 to 5). This scenario is applied to the 2PC, 2PC-PA and 2PC-PC
protocols. Experiments have been done on a PC Pentium IV 2,4GHz with 1Gb
of memory using the Ubuntu Linux distribution, the Sun J2SE Development Kit
5.0, and the AOKell implementation of the Fractal component model [11].

In Figure 5, all executed transactions are committed. In this case, 2PC-PC
behaves better than 2PC and 2PC-PA. This is because 2PC-PC saves 1 forced log
write and 1 acknowledge message from each participant. The initial overhead of
2PC-PC is due to the initiation record that is automatically force written. 2PC
and 2PC-PA have similar performance because their commit case follows the
same process.

In Figure 6, all executed transactions fail during the commit process. This
shows that 2PC-PA, whose completion time is closed to 0, performs much better
than 2PC and 2PC-PC. This is because 2PC-PA saves 1 acknowledge message
from each participant in the abort case (see Section 2.2). 2PC and 2PC-PC have
similar performance because they have similar costs even if 2PC-PC makes an
extra force log write (see Section 2.3).

0

100

200

300

400

500

600

700

0 1 2 3 4 5

Transaction participants

T
ra

n
sa

ct
io

n
 c

o
m

p
le

ti
o

n
 t

im
e

(m
s)

2PC 2PC-PC 2PC-PA

Fig. 5. High commit rate

0

100

200

300

400

500

600

700

0 1 2 3 4 5

Transaction participants

T
ra

n
sa

ct
io

n
 c

o
m

p
le

ti
o

n
 t

im
e

(m
s)

2PC 2PC-PC 2PC-PA

Fig. 6. High failure rate

280 R. Rouvoy, P. Serrano-Alvarado, and P. Merle

In Figure 7, all executed transac-

0

50

100

150

200

250

300

350

400

0 1 2 3 4 5

Transaction participants

T
ra

n
sa

ct
io

n
 c

o
m

p
le

ti
o

n
 t

im
e

(m
s)

2PC 2PC-PC 2PC-PA

Fig. 7. High abort rate

tions are aborted unilaterally. In this
case, 2PC-PA performs much better
than 2PC and 2PC-PC. This is be-
cause 2PC-PA uses only 1 asynchro-
nous message and 1 forced log write
to abort the transaction. 2PC and
2PC-PC have similar performance
because their abort case follows the
same process. The abort protocol ap-
plies only one issue. This predictable
issue is applied by several 2PC opti-
mizations [12, 13, 14] to exploit the efficiency of transaction aborted unilaterally.

4 CATE: A Context-Aware Transaction sErvice

In this section, we introduce the second part of our proposal, a Context-Aware
Transaction sErvice (CATE), which supports application context variations. The
objective of CATE is to apply the best fitting 2PC protocol in presence of un-
predictable commit rates.

Section 4.1 shows the context aware mechanism used in our approach. Sec-
tion 4.2 introduces the reconfiguration process. Section 4.3 presents the policy
used to enable commit protocol reconfiguration. Section 4.4 presents some perfor-
mance measures. Finally, Section 4.5 discusses several issues concerning CATE.

4.1 Context Awareness

In this paper, we consider the transaction abort and commit rate as the appli-
cation context. Thus, to be able of changing at the right moment, the commit
protocol, it is necessary to monitor the abort and commit rates of transactions.
The commit rate represents the occurrence of the commit use case of a transac-
tion service whereas the abort rate represents the occurrence of the failure and
the abort use cases. This logic is named adaptation policy. An adaptation policy
is defined by a kind of ECA rules (Event, Condition, Action). The Event is the
commit/abort rate, the Condition specifies when it is necessary to change the
active protocol and the Action is the protocol change.

Figure 8 shows a transaction manager (Tx Manager) and its relationship with
some transaction components (Tx(2PC-PX)). The Context Awareness component
implements the adaptation policy. It monitors the number of committed and
aborted transactions. Besides, it decides when the active protocol should be
changed. This is possible thanks to the predefined ECA rules. For instance a
ECA rule may say: if (abort-rate < 10%) then use 2PC.

To count the number of committed and aborted transactions, the Context
Awareness component uses the subscribe interface provided by the Communication

Towards Context-Aware Transaction Services 281

Tx(2PC-Px)
Coordinator

Communication
BusParticipants

Tx Status

JT
S

 A
da

pt
er

T
x

A
P

I

Log

Tx ManagerF
ac

to
ry Tx

Factory

Tx(2PC)
Model

T
x

O
bs

er
ve

dContext
Awareness

Tx(2PC-PA)
Model

Tx(2PC-PC)
Model

*

*

*
*

*

** *
*

*
Abort *

*

Fig. 8. CATE component-based architecture

Bus component of each transaction (see Figure 4). The subscribe interface allows
subscribing to different kinds of events. Thus, the Communication Bus of active
transactions notifies the Context Awareness component when each Coordinator
sends commit or abort messages to the participants.

Figure 8 shows the general architecture of the CATE implementation, which
supports JTS transactions [15]. The Tx(2PC-Px) component represents a JTS
transaction implementing the 2PC-Px protocol. The JTS Adapter component is
bound to components grouping the core functions provided by CATE. These core
components include those presented in Figure 4 plus other general components
such as the Tx Status. The Coordinator component reifies the commit protocol
applied by the transaction. The Abort component reifies the abort protocol ap-
plied by the transaction when aborting unilaterally. This component reuses the
Abort component defined in Figure 4 and it is configured with the 2PC-PA proto-
col. Thus, CATE provides the best completion time in case of predictable abort
decisions. The Tx Manager component is in charge of managing the instance of
active transactions. Figure 8 shows the Tx Manager component and its relation
with the Tx(2PC-Px)’s Communication Bus component.

The commit protocol reconfiguration is done through a dedicated configura-
tion attribute. This attribute is read by the Tx Factory component when new
transactions are created. Depending on the value of this attribute, the Coordi-
nator component implements the 2PC, 2PC-PA, or 2PC-PC protocol. Thus, the
reconfiguration process consists of changing the value of this attribute depending
on the predefined Conditions.

4.2 Reconfiguration Rules

To dynamically switch over another protocol, the Context Awareness component
needs to stop the transaction factory, unbind the current protocol, bind the new
one, and restart the transaction factory. In that way, newly created transactions
use the appropriate commit protocol.

When the Context Awareness component decides to change a protocol (based
on defined Conditions) it calls the change-config interface bound to the config-
uration interface of the Tx Factory component. Then the Tx Factory component
connects the active-config interface to the appropriate configuration, which is

282 R. Rouvoy, P. Serrano-Alvarado, and P. Merle

listed by the available-config interface. Thus, future transactions will be created
using this new active configuration. In Figure 8, we show the transaction manager
implementation containing the three commit protocols (Tx(2PC), Tx(2PC-PC)
and Tx(2PC-PA)) and the active configuration is Tx(2PC-PC).

When the Tx Factory component creates a new transaction, it subscribes the
listener interfaces (retrieved via the probe interface) of the Context Awareness
component to make possible the commit/abort event monitoring.

4.3 Adaptation Policy

Knowing the current commit/abort rate allows predicting the future transaction
context. That is, if the abort rate is about 30%, we consider that this tendency
will remain the same in a near future. This is why the abort/commit rate moti-
vates the reconfiguration.

The Condition that specifies when to change of commit protocol in CATE
(see Section 4.1) is based on the following equation:{

x + y = 100
x × C2PC−P C + y × A2P C−PC < x × C2P C−PA + y × A2P C−P A

Where x (resp. y) represents the number of transaction committed (resp.
aborted) and C2PC−PX (resp. A2PC−PX) represents the commit (resp. abort)
cost of the 2PC-PX protocol (here 2PC-PA and 2PC-PC protocols).

The solution of this equation is:{
y = 100 − x
x > 100×(A2P C−P A−A2P C−PC)

(C2PC−P C−A2P C−PC−C2PC−P A+A2PC−P A)

Figure 9 applies this solution to the measures of Figure 5 and 6. It appears that
the limit between 2PC-PC and 2PC-PA depends on the number of transaction
participants. For example, in the case of transactions involving 20 participants,
2PC-PC becomes more interesting than 2PC-PA when the commit rate is above
54%. This limit is used by CATE to switch between the 2PC-PC and the 2PC-PA
configurations.

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Transaction Participants

C
o

m
m

it
 R

a
te

 (
%

)

2PC-PC

2PC-PA

Fig. 9. 2PC-PA/2PC-PC border rate

su
bs

cr
ib

e
ch

an
ge

-c
on

figlis
te

ne
r

Fig. 10. Adaptation policy architecture

Towards Context-Aware Transaction Services 283

Figure 10 introduces the component-based architecture of the adaptation pol-
icy. This policy is composed of two parts. The Commit Rate component computes
the appropriate commit rate depending on the average number of transaction
participants. Thus, the component reconfigures the Commit Protocol component
depending on the execution context variations. The Commit Protocol component
reconfigures the transaction factory depending on the current commit rate. The
computation of the commit rate is based on a configurable weighted moving av-
erage. It ensures that the commit protocol is adapted to important fluctuations
in the commit rate without reconfiguring too often.

4.4 Empirical Performance Measures

CATE does not switch to 2PC because taking as context only the commit/abort
rate, 2PC is more expensive than the other considered protocols. The scenario
of Figures 11 and 12 evaluates the average completion time of 50 transactions
executed sequentially with constant commit/abort rate variations (10 transac-
tions commit, then 10 transactions abort, then 10 transactions commit, etc.).
Transaction services using static configuration of 2PC, 2PC-PA and 2PC-PC
protocols are executed and compared to CATE. Figures 12 depicts the average
completion time since the transaction service has been started.

The measures of Figure 11 show the average completion time that varies de-
pending on the transaction commit/abort rates. Performance of CATE is the
best thanks to its capacity of self-adaptation. 2PC-PA and 2PC-PC suffer from
the context variations. In CATE, when the commit rate is high, the active pro-
tocol is 2PC-PC. Otherwise, CATE uses 2PC-PA. Thus, CATE benefits of the
best performance of 2PC-PC and 2PC-PA. In this experiment, 2PC is used as
the initial protocol. Performances of Figure 12 show that the CATE reconfig-
uration does not introduce important overheads compared to the static config-
uration of the use cases protocols while providing better completion time. The
cost of switching between commit protocols appears only when a new transaction
is created. CATE computes the commit rate of terminated transactions to create

0

0,2

0,4

0,6

0,8

1

1,2

1,4

10
0

10
0

10
0

10
0

10
0

10
0 75 25 0 0 0 50 10

0
10

0
10

0
10

0 50 0 0 0 0 50 10
0

10
0

10
0

Commit rate (%)

A
ve

ra
g

e
co

m
p

le
ti

o
n

 t
im

e
(s

)

2PC 2PC-PC 2PC-PA CATE

Fig. 11. Empirical performance measure

0

0,2

0,4

0,6

0,8

1

1,2

1,4

10
0

10
0

10
0

10
0

10
0

10
0 75 25 0 0 0 50 10

0
10

0
10

0
10

0 50 0 0 0 0 50 10
0

10
0

10
0

Commit rate (%)

A
ve

ra
g

e
co

m
p

le
ti

o
n

 t
im

e
(s

)

2PC 2PC-PC 2PC-PA CATE

Fig. 12. History performance measure

284 R. Rouvoy, P. Serrano-Alvarado, and P. Merle

a new transaction providing the best performing commit protocol. This mecha-
nism coupled to a caching mechanism reduces the overhead of switching between
the commit protocols.

4.5 Discussion

This section discusses various general aspects concerning CATE.

Reconfiguration of active transactions. Changing the protocol of active trans-
actions compromises the recovery process in case of failures. That is why in
CATE it is not possible to change the commit protocol once a transaction
has begun. Different active transactions can use different commit protocols
but each transaction begins and ends with the same commit protocol.

Using CATE. To be able of using CATE, for instance, in an application server,
the following hypotheses should be guaranted. 1) The participant part is
implemented by resource managers that are free to choose the way this im-
plementation is done (Figure 8 suggests one implementation solution); 2) All
considered protocols in CATE must be implemented by resource managers;
finally, 3) Resource managers must be able to change the active protocol.

CATE extension. CATE may support other commit protocols that can be dif-
ferent to those used in this paper. We choose 2PC-based protocols as an
experiment to show components reusability. Nevertheless, reusability is not
necessary to the CATE operation. Thus, with CATE it is possible to switch
to different commit protocol implementations, which makes it extensible. For
example, 1PC and 3PC protocols can be considered because CATE moni-
tors the commit rate of active transactions to find the best commit protocol.
Besides, switching between 1PC or 3PC protocols requires the application
to support 1PC or 3PC validation processes.

Predictable issues. Some commit protocols draw benefits from predicable is-
sues of transactions [12, 13, 14]. Using piggybacking or callback mechanisms,
they determine if the transaction is marked for read-only or abort before
starting the commit protocol. Thus, depending on the known issue of the
transaction, they can optimize the completion time of the transaction. This
approach is complementary to our approach because CATE aims at optimiz-
ing transactions with unpredictable issues. However, CATE can also define
transactions supporting several commit or abort protocols to improve the
completion time of transaction with predictable issues.

Preserving the global semantics of the system. In software reconfiguration, it is
necessary to preserve the semantics of the system. In our case, the transaction
properties must be preserved. If an atomic commit protocol is replaced by
another, which does not enforce the atomicity property (for instance, the
semantic atomicity [16]), the transaction correctness is compromised. This
is why in this paper, used protocols ensure the atomicity property. Thus,
programmers must be careful about the choices they made when defining
adaptive middleware systems.

Towards Context-Aware Transaction Services 285

5 Related Work

[5] proposes to dynamically adapt applications by composing at runtime (by
weaving) functional (application-related) and non-functional concerns. Authors
are interested in making the weaving process adaptive to runtime execution
conditions. Their objective is to choose at runtime the appropriate non functional
code. Thus, they propose to change the weaving of non-functional code according
to context aware adaptation policies.

[6] proposes runtime application adaptability by assembling appropriate non-
functional services thanks to service repositories. Repositories contain compo-
nent-based non-functional services and meta-information describing such
services. This approach requires the applications to be developed using the com-
ponent-based approach. Our approach does not make any assumption about the
application design and we choose to adapt the non-functional service itself rather
than the instance of the used service.

Compared to our proposal, [5] and [6] consider non-functional services as the
adaptation grain. Our approach proposes self-adaptability of non-functional ser-
vices using components as adaptation granularity. Unlike [5] and [6], we made sev-
eral experiments that underline the advantages of our proposal. Our proposal is
validated with performance measures that show the self-adaptability advantages.

This paper improves [17] by providing a description of legacy 2PC-based pro-
tocols using UML Sequence diagrams. Descriptions of commit and abort pro-
tocols are supported and can be implemented as various configurations built
with reusable components. This paper improves the adaptation policy presented
in [17] to consider the commit rate variation depending on the number of trans-
action participants. The support of commit protocols for transactions with pre-
dictable issues has been introduced. The completion time of transactions with
predictable issues, such as transaction aborting unilaterally, is improved com-
pared to traditional commit protocols.

[12] proposes a new commit protocol for self-adaptive Web services, which
supports both 2PC-PA and 2PC-PC participants. Such a protocol allows par-
ticipants with different presumptions to be dynamically combined in one trans-
action. Compared to the work presented in this paper, [12] does not address
evolution concerns. In our work, we use 2PC, 2PC-PA and 2PC-PC as use cases.
Our approach can easily support new commit protocols to extend the application
adaptive ability.

In general, works presented in [18, 19, 9] are simulation-based. Performance
results focus on the semantics of transactions (e.g. read-only transactions, up-
date transactions, transaction‘s length) and the presence of failures. Whereas,
in this paper, besides addressing performance of each protocol based on commit
and abort rates, we address the performance of changing the software configu-
ration to migrate from a protocol to another. Our performance results, based
on a prototype implementation, shows that the reconfiguration cost is negligible
compared to gains obtained from the use of appropriate protocols depending on
the application context.

286 R. Rouvoy, P. Serrano-Alvarado, and P. Merle

6 Conclusions and Future Work

Self-adaptation is a current challenge in component-based software engineer-
ing. Several works have been devoted to adaptive applications, nevertheless,
there has been little work on adaptability of non-functional services. This
paper focused on transaction services, and more specifically on the commit pro-
cess. On the one hand, it proposed a component-based architecture of stan-
dard 2PC-based protocols. Each protocol contains exactly the same components
but assembled according to different configurations. On the other hand, it pro-
posed a Context-Aware Transaction sErvice (CATE). CATE selects the most ap-
propriate commit protocol with respect to the execution context. Performance
measures show that changing the commit protocol depending on the context
performs better that using only one commit protocol on a variable transactional
system.

Our future work includes to study the component-based configuration of other
2PC-based protocols (e.g., [12]) but also 1PC and 3PC protocols. The idea is to
extend CATE to support more commit protocols. The evaluation of runtime per-
formances of these additional commit protocols will be useful to refine the CATE
adaptation policies, e.g., adding new conditions and reconfiguration actions to
switch between protocols.

Besides, we consider to investigate a model-driven approach to design commit
protocols using UML sequence diagrams (see Figures 1 to 3) and to automat-
ically generate the implementation of the Coordinator components and their
bindings to the Communication Bus and the Log components. This model-driven
approach, complementary to that we defined into [20, 21], will provide a dedi-
cated high level language to define, study, compare commit protocols, and also
an efficient way to implement them.

Availability. CATE is freely available under an LGPL licence at the following
URL: http://gotm.objectweb.org.

Acknowledgments. This work is partially funded by INRIA, and the Region
Nord - Pas-de-Calais.

References

1. Preuveneers, D., Berbers, Y.: Adaptive Context Management Using a Component-
based Approach. In: 5th Int. Conf. on Distributed Applications and Interoperable
Systems (DAIS). Volume 3543 of LNCS. Athens, Greece, Springer (2005) 14–26

2. Bruneton, E., Coupaye, T., Leclercq, M. et al.: An Open Component Model
and its Support in Java. In: Int. Symp. on Component-Based Software Engi-
neering (CBSE). Volume 3054 of LNCS. Edinburgh, UK, Springer (2004) 7–22
http://fractal.objectweb.org.

Towards Context-Aware Transaction Services 287

3. David, P., Ledoux, T.: Towards a Framework for Self-Adaptive Component-Based
Applications. In: Int. Conf. on Distributed Applications and Interoperable Systems
(DAIS). Volume 2893 of LNCS. Paris, France, Springer (2003) 1–14

4. Layaida, O., Hagimont, D.: Designing Self-Adaptive Multimedia Applications
through Hierarchical Reconfiguration. In: 5th Int. Conf. on on Distributed Appli-
cations and Interoperable Systems (DAIS). Volume 3543 of LNCS. Athens, Greece,
Springer (2005) 95–107

5. David, P., Ledoux, T.: Dynamic Adaptation of Non-Functional Concerns. In:
ECOOP Workshop on Unanticipated Software Engineering. Malaga, Spain (2002)

6. Arntsen, A.B., Karlsen, R.: ReflecTS: a flexible transaction service framework. In:
4th Middleware Workshop on Adaptive and Reflective Middleware (ARM). Volume
116 of AICPS. Grenoble, France, ACM Press (2005) 1–6

7. Coulson, G., Blair, G., Grace, P. et al.: OpenCOM v2: A Component Model for
Building Systems Software. In: IASTED Int. Conf. on Software Engineering and
Applications (SEA). Cambridge, MA, ESA (2004) 1–6

8. Gray, J.: Notes on Database Operating Systems. In: Advanced Course: Operating
Systems. Number 60 in LNCS, Springer (1978)

9. Mohan, C., Lindsay, B., Obermarck, R.: Transaction Management in the R*
Distributed Database Management System. ACM Trans. on Database Systems
(TODS) 11(4) (1986)

10. Szyperski, C.: Component Software: Beyond Object-Oriented Programming.
Addison-Wesley Longman Publishing Co., Inc. (2002)

11. Seinturier, L., Pessemier, N., Duchien, L. et al.: A Component Model Engineered
with Components and Aspects. In: 9th Int. SIGSOFT Symp. on Component-
Based Software Engineering (CBSE). LNCS Stockholm, Sweden, Springer (2006)
To appear.

12. Yu, W., Wang, Y., Pu, C.: A Dynamic Two-Phase Commit Protocol for Self-
Adapting Services. In: Int. Conf. on Services Computing (SCC). Shanghai, China,
IEEE (2004) 7–15

13. Al-Houmaily, Y.J., Chrysanthis, P.K., Levitan, S.P.: Enhancing the performance
of presumed commit protocol. In: Proc. of ACM Symp. on Applied computing
(SAC). New York, NY, USA, ACM Press (1997) 131–133

14. Attaluri, G.K., Salem, K.: The Presumed-Either Two-Phase Commit Protocol.
IEEE Transactions on Knowledge and Data Engineering 14(5) (2002) 1190–1196

15. Cheung, S.: Java Transaction Service Specification. Sun Microsystems Inc., San
Antonio Road, Palo Alto, CA. Version 1.0 edn. (1999)

16. Garcia-Molina, H.: Using Semantic Knowledge for Transaction Processing in a
Distributed Database. ACM Trans. on Database Systems (TODS) 8(2) (1983)

17. Serrano-Alvarado, P., Rouvoy, R., Merle, P.: Self-Adaptive Component-Based
Transaction Commit Management. In: 4th Middleware Workshop on Adaptive
and Reflective Middleware (ARM). Volume 116 of AICPS. Grenoble, France, ACM
Press (2005) 1–6

18. Chrysanthis, P.C., Samaras, G., Al-Houmail, Y.: Recovery and Performance of
Atomic Commit Protocols in Distributed and Database Systems. In: Recovery
Mechanisms in Database Systems. Prentice Hall (1998)

19. Liu, M.L., Agrawal, D., Abbadi, A.E.: The Performance of Two Phase Commit
Protocols in the Presence of Site Failures. Kluwer Academic Publishers Distributed
and Parallel Databases (DAPD) 6(2) (1998)

288 R. Rouvoy, P. Serrano-Alvarado, and P. Merle

20. Rouvoy, R., Merle, P.: Towards a Model Driven Approach to Build Component-
Based Adaptable Middleware. In: 3rd Middleware Workshop on Reflective and
Adaptive Middleware (RAM). Volume 80 of AICPS. Toronto, Canada, ACM Press
(2004) 195–200

21. Rouvoy, R., Merle, P.: Using Microcomponents and Design Patterns to Build Evo-
lutionary Transaction Services. In: Int. ERCIM Workshop on Software Evolution.
Lille, France (2006) To appear.

A Local Self-stabilizing Enumeration Algorithm

Brahim Hamid and Mohamed Mosbah

LaBRI- Université Bordeaux-1
351, cours de la libération

F-33405 Talence Cedex, France
{hamid, mosbah}@labri.fr

Abstract. We present a novel self-stabilizing version of Mazurkiewicz
enumeration algorithm [1]. The initial version is based on local rules
to enumerate nodes on an anonymous network. [2] presented the first
self-stabilizing version of this algorithm which tolerates transient fail-
ures with an extension of messages complexity. Our version is based
on local detection and correction of transient failures. Therefore, it en-
sures the fault-tolerance property without adding messages or reduces
the messages’ number of other version. In addition, we have developed
an interface based on the Visidia platform to simulate faults through a
graphical user interface. The implementation of the presented algorithm
in this platform shows its dynamic execution and validates its correction.

1 Introduction

Distributed computing systems are becoming larger and larger, heterogeneous
and complex. Since the applications running on these systems require the co-
operation of many components, they are prone to failures and errors of many
different types, leading to inconsistent executions. Hence, a desirable feature of
a computation in a distributed system is fault-tolerance. A particularly suitable
approach to deal with such a feature is to design self-stabilizing algorithms [3, 4].

The concept of self-stabilization [5] is introduced to design a system which tol-
erates transient failures. Informally, self-stabilizing algorithms ensure that after
any failure, the system will automatically recover to reach a correct configura-
tion in a finite time. In general, self-stabilizing algorithms are constructed in
such a way that a given process will continue to function correctly in spite of
intermittent faults.

An anonymous network is a network where all nodes execute the same algo-
rithm without a unique identity for each node. In general, the task solved by an
enumeration algorithm is the affectation of a different name to each node of an
anonymous network. So, such algorithm may be used as a preprocessing task of
many algorithms based on the identities. As well-known, many problems have no
solutions in anonymous networks. The motivations of this work are in the first
hand to design an enumeration protocol in anonymous networks using only local
computations [1]. On the other hand, we show the adaptation of our developed
framework [6] to enumeration algorithm in the presence of transient failures.

F. Eliassen and A. Montresor (Eds.): DAIS 2006, LNCS 4025, pp. 289–302, 2006.
c© IFIP International Federation for Information Processing 2006

290 B. Hamid and M. Mosbah

We are interested on the study of the Mazurkiewicz enumeration algorithm
[1] based on local computations. Mazurkiewicz’s algorithm is a distributed algo-
rithm to enumerate nodes in an anonymous minimal-covering graph when its size
is known. A distributed enumeration algorithm on a graph G is a distributed al-
gorithm such that the result of any computation is a labeling of the nodes that is
a bijection from V (G) to 1, 2, ..., |V (G)|. [2] proposed a version of self-stabilizing
enumeration algorithm with a final stage in which each node computes locally
the set of final names from the final mailbox. Before this stage the node can
choose a name which is greater than the size of the graph.

Many self-stabilizing algorithms have been already designed [7, 8]. However,
most of these works propose global solutions which require to involve the entire
system. As networks grow fast, detecting and correcting errors globally is no
longer feasible. The solutions that deal locally with detection and correction are
rather essential because they are scalable and can be deployed even for large and
evolving networks. Moreover, it is useful to have the correct (non faulty) parts of
the network operating normally while recovering locally the faulty components.
Few general approaches providing local solutions to self-stabilization have been
proposed in [9, 10, 11].

In [6], we consider the problem of designing algorithms encoded by local com-
putations in a distributed system with transient failures. The developed formal
framework allows to design and prove fault-tolerant distributed algorithms. We
introduce correction rules which can be applied by faulty nodes or by their
neighbors in order to self repair the incorrect states. Such rules have higher pri-
orities than the main rules of the algorithm which ensure that the failures are
repaired before continuing the computation. Of course, we deal only with prede-
fined faulty local configurations. A tool called Visidia [12], validating the local
computations model has been implemented. The distributed system of Visidia
is based on asynchronous message passing model. However, it has been assumed
that components of such a system do not fail. In this work, we show a simulation
of fault-tolerant enumeration algorithm using this platform.

The paper is organized as follows. Models of distributed systems and graph
relabeling systems and our framework are presented in Section 2. We give in
Section 3 our solution to encode self-stabilizing enumeration algorithm. Section
4 gives its analysis and Section 5 shows an implementation of our protocol on
Visidia platform. Finally Section 6 concludes the paper.

2 Preliminaries

2.1 The Model of Distributed System

A distributed system is modeled by a graph G = (V, E), where V (G) is the set of
nodes and E(G) is the set of edges. Nodes represent processes and edges represent
bidirectional communication links. Two nodes are connected by an edge if the
corresponding processes have a direct communication link. We denote by NG(v)
the set of neighbors of v in the graph G, that is, ∀ u ∈ NG(v), (v, u) ∈ E(G).

A Local Self-stabilizing Enumeration Algorithm 291

A ball center on u with radius 1 is the set B(u) = {u} ∪ NG(u). The cardinality
of set V (G) (which is also the size of the corresponding network) is denoted by
| V (G) |, and we assume that | V (G) |= N . For any set A, we write 2A (resp.
An) to denote the set of all finite subsets of A (resp. the set of all n-tuples,
for n ∈ N of element of A), where N is the set of all positives integers. In the
considered networks, processes communicate and synchronize by sending and
receiving messages through the links. There is no assumption about the relative
speed of processes or message transfer delay, the networks are asynchronous.
The topology is unknown and each node communicates only with its neighbors.
The links are reliable and the process can fail and recover in a finite time. The
failures that are tolerated in such a system are the transient failures of processes.

The set NG(v) (resp.Nh(w)) is composed of all the neighbors of v in the
graph G (resp. the neighbors of w in the graph H). We say that a graph G is a
covering of a graph H if there exists a surjective homomorphism ϕ from G onto
H such that for every node v of V (G) the restriction of ϕ to NG(v) is a bijection
onto NH(ϕ(v)). In particular, (ϕ(v), ϕ(u)) ∈ E(H) implies (v, u) ∈ E(G). The
covering is proper if G and H are not isomorphic. It is called connected if G
(and thus also H) is connected. A graph G is called minimal-covering if every
covering from G to some H is a bijection.

The stabilizing algorithms are optimistic, they guarantee a return to a correct
behavior within a finite time after all faulty behaviors cease. Self-stabilizing
algorithms protect against transient failures, since they can automatically repair
any fault in the system. The term fault refers to failure.

2.2 Graph Relabeling Systems (GRS) to Encode Distributed
Algorithms

Local computations, and particularly graph relabeling systems [13] are a pow-
erful model which provides general tools to encode distributed algorithms, to
prove their correctness and to understand their power. In such a model we con-
sider a network of processes with arbitrary topology represented as a connected,
undirected graph where nodes denote processes, and edges denote communica-
tion links. Every time, each node and each edge is in some particular state and
this state will be encoded by a node label or an edge label. According to its
own state and to the states of its neighbors, each node may decide to realize
an elementary computation step. After this step, the states of this node, of its
neighbors and of the corresponding edges may have changed according to some
specific computation rules. Let us recall that graph relabeling systems satisfy the
following requirements:

(C1) they do not change the underlying graph but only the labeling of its com-
ponents (edges and/or nodes), the final labeling being the result,

(C2) they are local, that is, each relabeling changes only a connected subgraph
of a fixed size in the underlying graph,

(C3) they are locally generated, that is, the applicability condition of the rela-
beling only depends on the local context of the relabeled subgraph.

292 B. Hamid and M. Mosbah

Let L be an alphabet and let G be a graph. We denote by (G, λ) a graph G
with a relabeling function λ : V (G) ∪ E(G) → L. A labeling is said to be locally
bijective if nodes with the same label have isomorphic labeled neighbors. Then,
the graph G is said to be ambiguous if there exists a non bijective labeling of G
which is locally bijective. For more examples the reader is referred to [1].

A graph relabeling system is a triple � = (L, I, P) where L is a set of labels,
I is a subset of L called the set of initial labels and P a finite set of relabeling
rules. Consider an arbitrary system � = (L, I, P) and a labeling function λ. A
relabeling step will be denoted by (G, λ) −→

R
(G, λ′). The notion of computation

then corresponds to the notion of relabeling sequence. A relabeling sequence
with any steps will be denoted by (G, λ) ∗−−−−→

R
(G, λ′). A relabeling sequence

with k steps will be denoted by (G, λ) k−−−−→
R

(G, λ′).

The program is encoded by a graph relabeling system � = (L, I, P). The
labels of each process represent the values of its variables. Each rule in set P is
of the following form:

R1 : RuleN{Precondition}{Relabeling}

R1 denotes the number of the rule and RuleN is the name of the rule. The
Precondition part of a rule in the program of v0 is a boolean expression (pred-
icate) involving the labels of v0 and the labels of its neighbors. The Relabeling
part of a rule of v0 updates one or more labels of v0 and its neighbors. A rule
can be executed only if its precondition is true. The rules are atomically exe-
cuted, meaning that, the evaluation of a precondition and the execution of its
corresponding relabeling, if the precondition is true, are done in one atomic step.

2.3 Self-stabilizing Graph Relabeling Systems

An algorithm is called self-stabilizing if it eventually starts to behave correct
according to its specifications regardless of its initial configuration [5]. A local
configuration of a process is composed by its state, the states of its neighbors
and the states of its communication links. In this work we use the notion of
local illegitimate configurations encoded by local computations [6]. For a labeled
graph (G, λ), we say that a local configuration f = (Bf , λf) is illegitimate for
(G, λ), if there is no subgraph in (G, λ) which is isomorphic to f . In other words,
there is no ball (neither sub-ball) of radius 1 in G which has the same labeling
as f . Such labels are not used when the system runs in a correct manner.

Transient failures cause processes to change their states yielding illegitimate
local configurations and therefore an illegitimate global configuration. A self-
stabilizing system will be able to destroy such a fault by eventually stabilizing
into a correct global configuration without restarting the system. A local sta-
bilizing graph relabeling system is a triple � = (L, P , F) where L is a set of
labels, P a finite set of relabeling rules and F is a set of illegitimate local con-
figurations [6]. Let GL be the set of labeled graphs (G, λ) and h : GL −→ IN be an

A Local Self-stabilizing Enumeration Algorithm 293

application associating to each labeled graph (G, λ), the number of its illegiti-
mate configurations at this stage of the computation. Therefore, we denote by
h(G, λ, F) the current number of illegitimate configurations of the labeled graph
(G, λ). A local stabilizing graph relabeling system must satisfy the two following
properties:

– Closure : ∀ (G, λ) ∈ GL such that h(G, λ, F) = 0,
∀ (G, λ′) /(G, λ) ∗−→

�
(G, λ′) : h(G, λ′, F) = 0.

– Convergence : ∀ (G, λ) ∈ GL, ∃ an integer k, such that (G, λ) k−→
�

(G, λ′) and

h(G, λ′, F) = 0.

As for self-stabilizing algorithms, the closure property stipulates the correct-
ness of the relabeling system. A computation beginning in a correct state remains
correct until the terminal state. The convergence however provides the ability
of the relabeling system to recover automatically within a finite time (finite
sequence of relabeling steps).

In [6] we state the following result: if � = (L, I, P,F) is a graph relabeling
system with illegitimate configurations F , then it can be transformed into an
equivalent local stabilizing graph relabeling system �s = (L, Ps, F). The set Ps

is composed of set P and some correction rules to detect and eliminate each
illegitimate configuration of F . The correction rules have higher priority than
the rules in P .

3 The Local Stabilizing Enumeration Algorithm

3.1 The Mazurkiewicz’s Enumeration Algorithm

An enumeration algorithm on a graph G is a distributed algorithm such that
the result of any computation is a labeling of the nodes that is a bijection from
V (G) to 1, 2, ..., |V (G)|. First, we give a description of the initial enumeration
algorithm [1]. Every node attempts to get its own name, which shall be an
integer between 1 and |V (G)|. A node chooses a name and broadcasts it with its
neighbor-hood (i.e. the list of the name of its neighbors) all over the network. If
a node u discovers the existence of another node v with the same name, then it
compares its local view, i.e. the labeled ball of center u, with the local view of
its rival v. If the local view v is “Stronger”, then u chooses another name. Each
new name is broadcast with the local view again over the network. At the end of
the computation it is not guaranteed that every node has a unique name, unless
the graph is non ambiguous. However, all nodes with the same name will have
the same local view.

The crucial property of the algorithm is based on a total order on local views
such that the “Strength” of the local view of any node cannot decrease during
the computation. To describe this local view we use the following notation: if
v has degree d and its neighbors have names n1, n2, ...nd with n1 ≥ ≥ nd,
then LV (v), the local view, is the d-uplet(n1, n2, ...nd). Let LV be the set of

294 B. Hamid and M. Mosbah

such ordered tuples. The alphabetic order defines a total order � on LV . The
nodes v are labeled by triples of the form (n, LV, GV) representing during the
computation :

– n(v) ∈ IN is the name of the node v,
– LV (v) ∈ LV is the latest view of v,
– GV (v) ⊂ IN×LV is the mailbox of v and contains all the information received

at this step of the computation. We call this set the global view of the v.

We define the list sub(LV, n, n′): the copy of LV where any occurrence of
n is replaced by n′ if n exists or adds n to LV otherwise. Let LV ∈ LV and
(n, n′) ∈ IN2, if n < n′ then LV ≺ sub(LV, n, n′). The initial labels of each
node are (0, φ, φ). Each node v has labels: (n(v), LV (v), GV (v)) and the la-
bels obtained after applying a rule are (n′(v), LV ′(v), GV ′(v)). Let v0 a node
which is center of ball B(v0) and let {v1, v1 · · · , vd} the set of its neighbors. Let
(n(vi), LV (vi), GV (vi)) the triple associated to the node vi with 0 ≤ i ≤ d. We
call the ball of the center v and we write B(v) the set composed of v and its
neighbors. Now we present Mazurkiewicz’s enumeration algorithm:

R1 : Transmitting rule
Precondition :

• ∃ vi ∈ B(v0), GV (vi) �= GV (v0)
Relabeling :

• ∀ vi ∈ B(v0), GV ′(vi) :=
⋃

vj∈B(v0)

GV (vj)

R2 : Renaming rule
Precondition :

• ∀ vi ∈ B(v0), GV (vi) = GV (v0)
• n(v0) = 0 or

n(v0) > 0 and (∃ LV1|(n(v0), LV1) ∈ GV (v0) and LV (v0) ≺ LV1)
Relabeling :

• n′(v0) := 1 + max{n | (n, LV) ∈ GV (v0)}
• ∀ vi ∈ B(v0)\{v0}, LV ′(vi) := sub(LV (vi), n(v0), n′(v0))
• ∀ vi ∈ B(v0), GV ′(vi) := GV (vi)

⋃
vj∈B(v0)

{(n′(vj), LV ′(vj))}

3.2 A Local Stabilizing Enumeration Algorithm

We present in the sequel a new enumeration algorithm encoded by local stabi-
lizing relabeling systems. This protocol is optimal compared to that of [2]. In
a correct behavior, when a name of v0 is already chosen by another node vi,
v0 (resp. vi) will receive this information and change its name if the local view
of v0 (resp. vi) contains the older modifications. In a corrupted behavior, when
a name of v0 is corrupted, v0 detects this corruption, change its name to −1
and initialize its states, then one of its neighbors vi detects this change, corrects
some of the state of v0. After that, v0 chooses another number to rename itself.

A Local Self-stabilizing Enumeration Algorithm 295

Function δL(n) gives the number of occurrences of a name n in the list LV .
We start by defining some illegitimate configurations to construct a set F , then
we improve the system by adding the correction rules to detect and to eliminate
these configurations. The node v0 is said to be corrupted or in the illegitimate
configuration, if one of its components is changed using extra relabeling. This
relabeling does not correspond to those of the previous rules. We can define the
following predicates to denote theses behaviors.

1. Corruption of the name: n(v0) �= 1+max{n | (n, LV) ∈ GV (v0)} or n(v0) >
| V (G) | .

2. Corruption of the local view:∃ n1 ∈ LV (v0) | ¬∃ vi ∈ B(v0)\{v0} : n(vi) =
n1 or n1 >| V (G) | .

3. Corruption of the global view:∃ (n1, LV1) ∈ GV (v0), δLV1(n(v0)) ≥ 2 or
n1 >| V (G) | .

The function choose unused(GV) chooses one unused name in the set of global
view GV ⊂ IN × LV . We use the list subset(GV, (n, LV), (n′, LV ′)) to denote
the copy of GV where any occurrence of (n, LV) is replaced by (n′, LV ′) if
(n, LV) ∈ GV or adds (n′, LV ′) to GV . For the present system, we deal with
the following set F = {f1, f2, f3} encoding the previous behaviors’ predicates.
Therefore, the correction rules are:

Rc1 : Corruption of the name
Precondition :

• n(v0) �= 1 + max{n | (n, LV) ∈ GV (v0)}
or n(v0) >| V (G) |

Relabeling :
• (n′(v0), LV ′(v0), GV ′(v0)) := (−1, φ, φ)
• ∀ vi ∈ B(v0)\{v0}, LV ′(vi) := LV (vi)\{n(v0)}
• ∀ vi ∈ B(v0), GV ′(vi) := GV (vi)\{(n(v0), LV (v0))}

Rc2 : Choose of the name
Precondition :

• n(v0) = −1
Relabeling :

• n′(v0) := choose unused(GV (v0))
• ∀ vi ∈ B(v0)\{v0}, LV ′(vi) := sub(LV (vi), n(v0), n′(v0))
• ∀ vi ∈ B(v0), GV ′(vi) := GV (vi)

⋃
vj∈B(v0)

{(n′(vj), LV ′(vj))}

Rc3 : Corruption of the local view
Precondition :

• ∃ n1 ∈ LV (v0) | ¬∃ vi ∈ B(v0)\{v0} : n(vi) = n1 or n1 >| V (G) |
Relabeling :

• LV ′(v0) := LV (V0)\{n1}
• GV ′(vi) := subset(GV (vi), (n(v0), LV (v0)), (n(v0), LV ′(v0)))

296 B. Hamid and M. Mosbah

Rc4 : Corruption of the global view
Precondition :

• ∃ (n1, LV1) ∈ GV (v0), δLV1(n(v0)) ≥ 2 or n1 >| V (G) |
Relabeling :

• GV ′(v0) := GV (v0)\{(n1, LV1)}

4 Analysis

4.1 Properties

We define the relabeling system �s = (L, Ps, F), where L = {{N ∪ {0}}× 2N ×
2N×2N } and Ps = {R1, R2, Rc1, Rc2, Rc3, Rc4} such that Rcj > Ri. We now
state the main results.

Lemma 1. The system �s = (L, Ps, F) satisfies the closure property.

Proof. We prove this Lemma by induction on the size of relabeling sequences.
Let (G, λ) any labeled graph where h(G, λ, F) = 0. Let (G, λk) a labeled graph
obtained from (G, λ) by applying k rules only from the set P = {R1, R2}.
From the definition of correction rules, they are applied when some illegitimate
configurations are introduced. When k = 0 the Lemma is true. We suppose that
the lemma remains true after applying k rules. Now we show that the lemma
remains true after the application of k +1 rules. From the induction hypothesis,
h(G, λk, F) = 0. At this step, the only possible application rules are R1 and
R2. By definition, such rules do not introduce illegitimate configurations, then
h(G, λk+1, F) = 0. Therefore, all the labeled graphs (G, λ′) obtained from (G, λ)
verify the property. Formally, if h(G, λ, F) = 0 then ∀ (G, λ′), (G, λ) ∗−→

�
(G, λ′) :

h(G, λ′, F) = 0. ��
The proof of termination presented in [1] is based on the fact that no state can
occur twice in the same run of the protocol. In the self-stabilization context
when a system is subject to corruption, this fact is not automatically satisfied.
Recall that [1] proposed an extension of its algorithm to deal with any graphs
(including ambiguous graphs). Therefore, this extension may be used to treat the
case of corruption [2]. Another way consists to treat locally the corruptions, then
the corrections’ actions are executed during the execution of the enumeration
algorithm. Our solution satisfies the last way, its correction is shown in the
following Lemma.

Lemma 2. The system �s = (L, Ps, F) satisfies the convergence property.

Proof. We study the case of each illegitimate configuration.

1. ∃ v0 ∈ V (G) labeled such as:n(v0) �= 1 + max{n | (n, LV) ∈ GV (v0)} or
n(v0) >| V (G) |. The corrupted node v0 applies rule RC1 to change its
name to −1, then RC2 is executed by one of its neighbors vi, after that v0
executes RC3 to choose an unused number to rename itself. Let vi one of its
neighbors. The new state of vi is such that the name (resp. the local view)
of v0 does not appear in the local view (resp. in the global view) of vi. Then,
the Transmitting rule allows to diffuse this novel state in all the graph.

A Local Self-stabilizing Enumeration Algorithm 297

2. ∃ v0 ∈ V (G) labeled such as: ∃ n1 ∈ LV (v0) | ¬∃ vi ∈ B(v0)\{v0} : n(vi) =
n1 or n1 >| V (G) |. Correction rule RC2 detects and eliminates such con-
figuration.

3. ∃ v0 ∈ V (G) labeled such as: ∃ (n1, LV1) ∈ GV (v0), δLV1(n(v0)) ≥ 2 or
n1 >| V (G) |. Also, with the same reasoning, rule RC4 is applied to detect
and eliminate this corrupted configuration.

The size of the relabeling sequence required, to eliminate all the illegitimate
configurations and also to terminate the execution of the algorithm, is given in
the section related to the complexity analysis. Formally, we have the following
properties:

– The application of a correction rule decreases h(G, λ, F) and induces the
execution of the rule R1.

– The application of a rule in P does not increase h(G, λ, F).
– ∀ (G, λ) ∈ GL, ∃ an integer k,

(G, λ) k−→
�

(G, λ′) : h(G, λ′, F) = 0 ��
Lemma 3. The system �s = (L, Ps, F) encodes an enumeration algorithm.

Proof. To show that the result is an enumeration, we use the same properties
as those used in [1, 2]. Let G be a graph, to explain how this protocol denoted
by P works, we introduce some notations. We denote by σ the state of the
network which is composed of the local configurations of all the nodes. If σ(v) =
(n, LV, GV), then, n, LV, GV refer to the name, the local view and the mailbox
of v at state σ. Thus, γ(σ(v)) is the name of the node v at state σ. Elements
of mailbox are called messages; message m is sent by na if m = (na, LV) for
some LV . Name na is known to node v at state σ, if σ(v) = (n, LV, GV) for
some n, LV, GV and GV contains a message sent by na. We denote by σk =
(nk(v), LVk(v), GVk(v)) the label of each node v ∈ V (G) after the kth step of
the computation of P . Protocol P satisfies the following properties whose proofs
can follow the scheme of the one used in [1].

(I1) ∀ k ≥ 0, v ∈ V (G): LVk(v) = LVk(B(v)\{v}) − {0},
(I2) ∀ k ≥ 0, v ∈ V (G): u, w ∈ B(v): nk(u) = nk(w) ⇒ u = w,
(I3) ∀ k ≥ 0, v ∈ V (G): nk(v) ≤ nk+1(v) and LVk(v) � LVk+1(v) and GVk(v) ⊆

GVk+1(v),
(I4) ∀ k ≥ 0, v ∈ V (G), ∀ (na, LV) ∈ GVk(v): ∃ u ∈ V (G), nk(u) = na,
(I5) ∀ k ≥ 0, v ∈ V (G), nk(v) �= 0: ∀ na, na′, na ≤ na′, v known na′ ⇒ v known

na,
(I6) Protocol P is terminating for any graph,
(I7) The result of any run of P for any graph G is locally bijective,
(I8) P is an enumeration protocol for any unambiguous graph. ��
From the proofs of the three previous lemmas, we can state:

Corollary 1. Starting from any labeled graphs, the system �s = (L, Ps, F)
terminates.

Corollary 2. The relabeling system �s is local stabilizing. It encodes a self-
stabilizing enumeration algorithm for any unambiguous graph.

298 B. Hamid and M. Mosbah

4.2 Complexity

In this section, we consider the model of distributed system described in Section
2.1 and we compute the complexity of our protocol in terms of relabeling rules
or steps. The number of steps when the system does not contain any failure com-
ponent is denoted by M, the number of steps with failures is denoted by Σ. The
complexity of the Mazurkiewicz enumeration algorithm is M = θ(| V (G) |3).
The time of stabilization of the algorithm proposed in [2] is θ(t× | V (G) |2) steps,
where t is the sum of the number of nodes and the highest name initially known.
We use the following properties to give the stabilization time of our protocol:

1. Each node applies one rule in the set of correction rules to correct itself.
2. The application of the correction rules does not add illegitimate configura-

tions. The application of the rule RC1 provokes the application of the rules
RC2, RC3 and so R1.

3. In the worst case, for f1 corruptions of names, f2 corruptions of local view,
f3 corruptions of global view, the nodes apply 3f1 + f2 + f3 correction rules.
Therefore, the stabilization time is θ(5× | V (G) |3), when rule R1 is applied
| V (G) |2 times.

The worst case corresponds to the case of f1. Let f = 3f1, then the time
of stabilization is θ(9f | V (G) |2). So, the time for the enumeration algorithm
subject to f corruptions is Σ = θ(9f | V (G) |2 +(| V (G) | −f)3). Starting from
a configuration without corruptions, we obtain θ(| V (G) |3). See that in [2], the
parameter t is unbounded, and in our version f is bounded by | V (G) |.

5 An Implementation on the Visidia Tool

Visidia [12] is a tool to implement, to simulate, to test and to visualize dis-
tributed algorithms. It is motivated by the important theoretical results on the
use of graph relabeling systems to encode distributed algorithms and to prove
their correctness. Visidia provides a library together with an easy interface to im-
plement distributed algorithms described by means of local computations. The
distributed system of Visidia is based on asynchronous message passing model.
However, it has been assumed that components of such a system do not fail. The
threads representing the processes of the computation are created on the same
machine.

A stage of computation [14] in Visidia is carried out after some synchroniza-
tion, which can be achieved by using probabilistic procedures [15]. The processes
are simulated by Java threads. The high level primitives including the synchro-
nization procedures allows the user to implement local computations.

There are three types of local computations. To implement these local com-
putations in an asynchronous message passing system, a randomized synchro-
nization procedure is associated to each type, which are given in the following:

1. Rendez-vous (RV): In a computation step, the labels attached to nodes of
K2 (the complete graph with 2 nodes) are modified according to some rules
depending on the labels appearing on K2.

A Local Self-stabilizing Enumeration Algorithm 299

Fig. 1. The beginning of the simulation with transient failures

2. Local Computation 1 (LC1): In a computation step, the label attached to
the center of a ball is modified according to some rules depending on the
labels of the ball, labels of the leaves are not modified.

3. Local Computation 2 (LC2): In a computation step, the labels attached to
the center and to the leaves of a ball may be modified according to some
rules depending on the labels of the ball.

To simulate transient failures [16], the user can simulate the faulty of a process
with the graphical user interface before the beginning of the simulation or during
the simulation. For the enumeration algorithm, we show an execution by starting
the algorithm with a randomized value of the name (labels). In the following
figures, we present an execution of a local self-stabilizing enumeration algorithm
on Visidia starting with faulty values as shown in the left part of Fig.1. For
a graph of 10 nodes, each node is represented by two labels (number, name)
where number is a number used to indicate and distinguish the nodes on the
graphical interface and name is a value used by the enumeration algorithm. The
maximum chosen value doesn’t upper to 10, there are two nodes numbered 0
and 2 with incorrect names respectively 17 and 16. In the right part of Fig.1 we
show the local view of the node 7, its number is 4 and has a neighbor 8 named
2. In the left part of Fig.2, the faulty node 2 (resp. 0) correct himself to 8 (resp.
to 7). Then, the local view of the node 7 contains the correct named neighbor 0.
Finally, Fig.3 shows the end of the execution of the enumeration algorithm. In
the left part of this figure, the graph is totally named and in the right part we
show the final local view of the node 7.

300 B. Hamid and M. Mosbah

Fig. 2. Local correction of the transient failures

Fig. 3. The end of enumeration and the local views

6 Conclusion

In this paper, we have presented a method to encode self-stabilizing enumeration
algorithm with local computations. We have adapted the method given in [6] to
create an easy self-stabilizing Mazurkiewicz’s enumeration algorithm. This kind

A Local Self-stabilizing Enumeration Algorithm 301

of algorithm can be used to implement a system which tolerates transient failures.
The method is based on defining a set of illegitimate configurations and adding
correction rules to the initial graph rewriting systems. The resulting protocol
encoded by local computations is able to detect and correct transient failures by
applying correction rules.

This protocol is easy to understand and its translation from the initial algo-
rithm requires little changes. The proof is decomposed into two steps. First the
proof of self-stabilization which is based on our developed framework. Second
the proof that this protocol does its expected task which is based on the same
as [1]. For the complexity study, we show that our protocol is better than [2].
In this work, we had also shown that self-stabilization meets global detection of
termination such as [17].

The simulation phase allows us to prove and to show the convergence of
our protocol in the presence of transient failures. We show this by starting the
execution of the algorithm with faulty labels. Therefore, the system detects and
corrects these transient failures by applying correction rules.

References

1. A.W. Mazurkiewicz. Distributed enumeration. Inf. Processing Letters, 61(5):233–
239, 1997.

2. E. Godard. A self-stabilizing enumeration algorithm. Inf. Process. Lett., 82(6):299–
305, 2002.

3. S. Dolev. Self-stabilization. MIT Press, 2000.
4. M. Schneider. Self-stabilization. ACM Computing Surveys, 25(1):45–67, 1993.
5. E.W. Dijkstra. Self stabilizing systems in spite of distributed control. Communi-

cations of the ACM, 17(11):643–644, 1974.
6. B. Hamid and M. Mosbah. An automatic approach to self-stabilization. In 6th

ACIS International Conference on Software Engineering, Artificial Intelligence,
Networking, and Parallel/Distributed Computing (SNPD2005), Baltimore, USA,
pages 129–132, May 2005.

7. A. Cournier, A.K. Datta, F. Petit, and V. Villain. Self-stabilizing pif algorithms
in arbitrary network. 21th International Conference on Distributed Computing
Systems (ICDCS 2001), pages 91–98, April 2001.

8. S. Ghosh, A. Gupta, T. Herman, and S. V. Pemmaraju. Fault-containing self-
stabilizing algorithms. In PODC ’96: Proceedings of the fifteenth annual ACM
symposium on Principles of distributed computing, pages 45–54. ACM Press, 1996.

9. B. Awerbuch, B. Patt-Shamir, and G. Varghese. Self-stabilization by local checking
and correction (extended abstract). In Proceedings of the 32nd annual symposium
on Foundations of computer science, pages 268–277. IEEE Computer Society Press,
1991.

10. Y. Afek and S. Dolev. Local stabilizer. In ISTCS ’97: Proceedings of the Fifth
Israel Symposium on the Theory of Computing Systems (ISTCS ’97), page 74.
IEEE Computer Society, 1997.

11. Y. Afek, S. Kutten, and M. Yung. The local detection paradigm and its applications
to self-stabilization. Theor. Comput. Sci., 186(1-2):199–229, 1997.

12. M. Mosbah and A. Sellami. Visidia: A tool for the VIsialization and SImulation of
DIstributed Algorithms. http://www.labri.fr/visidia/ .

302 B. Hamid and M. Mosbah

13. I. Litovsky, Y. Métivier, and E. Sopena. Graph relabeling systems and distributed
algorithms. In World Scientific Publishing, editor, Handbook of graph grammars
and computing by graph transformation, volume Vol. III, Eds. H. Ehrig, H.J. Kre-
owski, U. Montanari and G. Rozenberg, pages 1–56, 1999.

14. M. Bauderon, Y. Métivier, M. Mosbah, and A. Sellami. Graph relabeling systems :
A tool for encoding, proving, studying and visualizing distributed algorithms. Elec-
tronic Notes in Theoretical Computer Science, 51, 2001.

15. Y. Métivier, N. Saheb, and A. Zemmari. Randomized rendezvous. In Birkhauser,
editor, Colloquium on mathematics and computer science: algorithms, trees, com-
binatorics and probabilities, Trends in mathematics, pages 183–194, 2000.

16. B. Hamid and M. Mosbah. Visualization of self-stabilizing distributed algorithms.
In 9th International conference information visualization IV 2005, London, UK (to
appear), page .. IEEE Computer Society, 2005.

17. A. Arora and M. Nesterenko. Unifying stabilization and termination in message-
passing systems. In ICDCS ’01: Proceedings of the The 21st International Con-
ference on Distributed Computing Systems, page 99, Washington, DC, USA, 2001.
IEEE Computer Society.

F. Eliassen and A. Montresor (Eds.): DAIS 2006, LNCS 4025, pp. 303 – 308, 2006.
© IFIP International Federation for Information Processing 2006

Adding Fault-Tolerance to a Hierarchical DRE System*

Paul Rubel, Joseph Loyall, Richard Schantz, and Matthew Gillen

BBN Technologies
Cambridge, MA

{prubel, jloyall, schantz, mgillen}@bbn.com

Abstract. Dynamic resource management is a crucial part of the infrastructure
for emerging mission-critical distributed real-time embedded system. Because
of this, the resource manager must be fault-tolerant, with nearly continuous op-
eration. This paper describes an ongoing effort to develop a fault-tolerant multi-
layer dynamic resource management capability and the challenges we have
encountered, including multi-tiered structure, rapid recovery, the characteristics
of component middleware, and the co-existence of replicated and non-repli-
cated elements. While some of these have been investigated before, this work
exhibits all of these characteristics simultaneously, presenting a significant
fault-tolerance research challenge.

1 Introduction

Fault-tolerance (FT) is an important characteristic of many systems, especially mis-
sion critical applications that are prevalent in medical, industrial, military, and tele-
communications domains. Many of these applications are distributed real-time and
embedded (DRE), combining the challenges of networked systems (e.g., distribution,
dynamic environments, and nondeterminism) with the challenges of embedded sys-
tems (e.g., constrained resources and real-time requirements). For these systems, fail-
ure of applications or infrastructure can lead to catastrophic consequences.

As part of the DARPA ARMS program, and in conjunction with a team of
researchers from several organizations, we have been developing a Multi-Layered dy-
namic Resource Management (MLRM) capability supporting a new Total Ship Com-
puting (TSC) paradigm for the next generation of Naval surface ship [2]. This MLRM
system controls the allocation of computing and communication resources to applica-
tions (some critical and others non-critical) and reallocation of resources when fail-
ures occur and when missions change, while maximizing operational capability.

Because MLRM is a critical part of the TSC infrastructure, it is important that it
survive failures and damage. However, MLRM has some characteristics, typical of
similar DRE systems, that present challenges to making it fault-tolerant. In this paper,
we describe our current efforts to make the MLRM fault-tolerant, concentrating on
the following characteristics and challenges:

* This work was supported by the Defense Advanced Research Projects Agency (DARPA) un-

der contract NBCHC030119.

304 P. Rubel et al.

• Hierarchical structure – MLRM mirrors the hierarchical structure of the TSC in-
frastructure and must handle failures at each of the mission layer, resource pool
and application layer, and resource layer.

• Rapid recovery – Because MLRM functionality is critical to keeping applications
running and supporting ongoing missions, it is important that it be available con-
tinuously. Therefore, if MLRM fails it must recover as rapidly as possible, aiming
for near zero recovery time.

• Component middleware – MLRM and TSC are being developed using emerging
component middleware that offers many advantages, but exhibits different com-
munication patterns than the traditional client-server model that many fault-
tolerance techniques support.

• Large numbers of elements with various degrees of fault-tolerance needs – TSC
and the MLRM subsystem itself are large distributed systems, with many interop-
erating elements, not all of which need to be fault-tolerant to the same degree.
Traditional fault-tolerance solutions that require all elements to be part of a single
approach fault-tolerance infrastructure are unsuitable.

We describe our current progress and findings in terms of each of these challenges
and characteristics, and then describe our next steps toward achieving this work in
progress.

2 Fitting Fault-Tolerance into a Layered DRE Structure

The MLRM architecture, illustrated in Figure 1, is hierarchical, with the following
layers:

• The Infrastructure Layer deploys missions (consisting of application strings), as-
signs them to resource pools and security domains, and determines their relative
priorities.

• The Pool and Application String Layer coordinates groups of related computing
nodes (pools) and applications (application strings).

• The Node layer controls access to individual computing and communication re-
sources.

The pool structure uses diversity in location and clustering to protect against large-
scale damage or major system failures affecting a large portion of computing re-
sources. With pools of computing hardware spread in different locations, the failure
of one pool of resource still leaves sufficient computing capability for the critical
operations.

To fit into this layered structure, we developed a top-down approach to fault-
tolerance. We began developing fault-tolerance for MLRM to protect against the most
catastrophic failures, so that the loss of a pool will not result in the loss of MLRM
functionality. One of the functions of MLRM is to redeploy critical applications onto
surviving nodes or pools in the face of a failure, but this is only possible if the MLRM
functionality survives the failure. Therefore, we replicated the infrastructure layer
MLRM elements across all the pools. If a pool fails, the infrastructure MLRM

 Adding Fault-Tolerance to a Hierarchical DRE System
 305

elements of the surviving pools take
over to initiate the actions necessary
to deploy critical functionality across
the remaining pools. In this case,
there is no need to replicate the pool
level MLRM elements, since they
will still exist in the surviving pools.

3 Providing Rapid
 Recovery from Faults

Since MLRM has responsibility for
recovering application functionality
in the face of a node or pool failure,
the infrastructure layer MLRM func-
tionality must be constantly avail-
able. Therefore, the primary requirement for our MLRM fault-tolerance is speed of
recovery. Because of the very short recovery requirements, and since our fault-model
is concerned with node loss rather than misbehavior, we employ a tolerance strategy
that actively replicates components. In this scheme, each replica of the infrastructure
MLRM is processing incoming messages and sending out responses. As long as one
replica out of n of the MLRM has not failed, that replica will be able to carry out the
responsibilities of the MLRM immediately and failures of n-1 replicas can be
tolerated.

We implemented active fault-tolerance for MLRM using MEAD [3] and Spread
[1], both of which we customized, and in the case of MEAD, extended, and enhanced
to support the features of the MLRM system. Spread provides a total order group
communication system. We configured it for rapid recognition of the failure of group
members. MEAD provides replication by intercepting CORBA calls and routing them
through group communication, as well as code to suppress duplicate responses from
replicas and recover from replica failures.

Figure 2 illustrates the results of experiments to evaluate the speed of our MLRM
recovery. The experiments were conducted with three active replicas of MLRM infra-
structure layer functionality1 distributed over three pools. We failed one of the pools,
by removing its network route, and measured the time for the remaining replicas, on
hosts alpha and hotel, to recover from the failure.

The measured failover time includes the time needed for Spread to detect the fail-
ure of the group member. In all cases, the average detection+recovery time (hereafter
called the failover time) was less than 200 ms. The mean failover time is 139 ms, with
a standard deviation of 21 ms, to alpha and 128 ms, with a standard deviation of 6 ms,
to hotel. The minimum failover time to both replicas is practically identical (119 and
118 ms, respectively), with a maximum of 185 ms for alpha and 135 ms for hotel.

1 This first set of experiments only replicated the Infrastructure Allocator and Application

String Manager-Global elements. We are in the process of replicating the Bandwidth Broker.

Application String
Manager

Pool
Manager

Resource
Allocator

Infrastructure
Allocator

Application String
Manager - Global

Infrastructure Layer

Pool Layer

Node Layer Node
Provisioner

Application
Proxy

B
an

dw
id

th
 B

ro
ke

r

Fig. 1. Our fault-tolerance capability mirrors the
layered structure of the MLRM architecture

306 P. Rubel et al.

1 2 3 4 5 6 7 8 9 10 11 12
0.1

0.12

0.14

0.16

0.18

0.2
Failover Time vs. Experimental Run

Experimental Run

F
ai

lo
ve

r
T

im
e

(s
ec

on
ds

)

Alpha Failover Time
Hotel Failover Time

Fig. 2. Time to detect and recover from a failure of an MLRM replica

4 Integrating Fault-Tolerance with the CORBA Component
 Model

Many fault-tolerance concepts, and existing code bases (including MEAD), were
designed to work with replicated servers in client-server architectures, such as
CORBA 2. MLRM has been developed using the CORBA Component Model (CCM,
or CORBA 3), which has many advantages including lifecycle support and availabil-
ity of design tools. However, there are two main challenges associated with providing
fault-tolerance in CCM.

The first challenge is that the MLRM, and CCM in general, exhibits a peer-to-peer
structure, where components can play the role of both client and server simultane-
ously. Our initial software base only supported replicated servers with duplicate sup-
pression of responses from replicated servers back to non-replicated clients. We
extended this code base to support the replication of both clients and servers, and by
monitoring and controlling the CORBA message request identifiers we were able to
provide the suppression of duplicate requests (from replicated clients) and responses
(from replicated servers).

The second challenge is that the deployment architecture of CCM is more compli-
cated than most CORBA 2 solutions. Before a component can be deployed using
CIAO [4], an open-source C++ CCM implementation, a Node Daemon (ND) starts up
a Node Application (NA), which acts as a container for new components. The ND
makes CORBA calls on the NA, instructing it to start components, which are not pre-
sent at NA start up time. Note that the components, when instantiated in the NA, need
to be replicated, but the NDs should not be.

To illustrate this point, consider an existing FT component when a new replica is
started. Since MEAD ensures that all messages to and from one replica are seen at
every replica, the existing replicas will receive an extra set of bootstrap interactions
each time a new replica is started. This will not only confuse the existing replicas, but
the responses from the new replica will also confuse the existing NDs. We developed
a way to allow direct point-to-point interactions during the bootstrapping process and
then switch to using reliable, ordered, group communications once the replicas have
started.

The CCM envisions components interacting within a large-scale assembly. Architec-
turally, the current MLRM is made up of multiple assemblies. This decision was a prag-
matic one since the ability to dynamically redeploy applications was not supported at the

 Adding Fault-Tolerance to a Hierarchical DRE System
 307

time by CIAO. It also allows us to set the unit of FT, the process, to the unit of CCM de-
ployment, simplifying the process of making the MLRM FT.

Finally, since CORBA and the MLRM are multi-language solutions, our FT infra-
structure needs to support multiple languages and their interactions. Currently both C++
via CIAO and Java via JacORB are supported and co-exist in our MLRM solution.

5 Limiting the Effects of the Fault-Tolerance Infrastructure

In order to keep replicas consistent, MEAD ensures that messages are reliably deliv-
ered to each replica in the same consistent order. To enforce these constraints we used
Spread. Any interactions with a replica, after the initial CCM bootstrapping, pass
through Spread.

In the simple case of a client interacting with a replicated server, all interactions
are necessarily over Spread. The situation becomes more complex in the MLRM case,
because we are (currently) replicating only the Infrastructure layer. Elements in the
Pool layer will necessarily interact with the Infrastructure layer using Spread. How-
ever, since the Pool and Node layers are not replicated, they do not need the same
consistency guarantees. Furthermore, from a usability perspective, we do not want to
force the Spread infrastructure on the node layer, which can include hundreds of
components.

The necessity of containing the use of Spread becomes even more apparent as the
interactions within the system increase and more objects and components are intro-
duced and connected. One example of this, introduced in Section 4, occurs when rep-
licas are bootstrapped. To provide acceptable performance for components that
require Spread and to more efficiently use resources, we implemented functionality
that limits the use of Spread to where it is strictly necessary.

Spread is strictly necessary in replicas and each replica is required to use Spread
for all its communications. Every entity that does not interact with a replicated entity
does not need to use Spread. For those components that interact with both replicated
and non-replicated entities, we ensure that they respond to a request in the same man-
ner they received the request. If a request is received over TCP it is responded to over
TCP and similarly for Spread. When initiating a request, MEAD compares the desti-
nation port against a list of ports on which Spread should be used. If the destination
port is on this list the message will go out over Spread, otherwise it will use TCP as if
MEAD were not present.

This same mechanism is used to deploy new replicas. Until a replica has been started
the ND and NA interact to without group communication as neither is replicated. Once
the replicated component starts, no more ND/NA interactions are necessary. In the future
we envision a more dynamic method for distinguishing replicas from non-replicated ob-
jects or components that does not require up-front configuration.

6 Conclusions and Future Work

As systems become more complex and mission-critical, fault-tolerance continues to
be an important part of their design and deployment. While developing a solution for

308 P. Rubel et al.

providing a fault-tolerant MLRM, we continue to solve problems related to the struc-
ture of the MLRM, its fault-tolerance requirements, its underlying structure and
framework, and its size and scope. An immediate next step is the rigorous evaluation
of the viability, efficiency and operability of the current approach to very rapid
failover for these types of DRE components. Moving forward we are working on so-
lutions for replicating components that cannot be actively replicated, some of which
must interact with network hardware on which running Spread is not an option. As
CCM implementations mature, we hope to be able to better integrate fault-tolerance
with components, particularly during deployment and when determining if the use of
group-communication is required for particular requests. As we gain more insights
into commonalities between the different implementations of components and objects,
higher-level abstractions should become more apparent, providing further opportuni-
ties for improvements.

Acknowledgments

We would like to thank our colleagues at CMU for their help with MEAD, particu-
larly Aaron Paulos and Priya Narasimhan. Vanderbilt University’s Distributed Object
Computing (DOC) group has been invaluable in helping with CIAO and component
deployment. Telcordia and SRC have also made valuable contributions to our work.

References

1. Yair Amir, Claudiu Danilov, Michal Miskin-Amir, John Schultz, and Jonathan Stanton. The
Spread Toolkit: Architecture and Performance. Johns Hopkins University, Center for Net-
working and Distributed Systems (CNDS) Technical report CNDS-2004-1.

2. Roy Campbell, Rose Daley, B. Dasarathy, Patrick Lardieri, Brad Orner, Rick Schantz,
Randy Coleburn, Lonnie R. Welch, and Paul Work. Toward an Approach for Specification
of QoS and Resource Information for Dynamic Resource Management. Second RTAS
Workshop on Model-Driven Embedded Systems (MoDES '04), Toronto, Canada, May 25-
28, 2004.

3. P. Narasimhan, T. A. Dumitras, A. M. Paulos, S. M. Pertet, C. F. Reverte, J. G. Slember and
D. Srivastava. MEAD: Support for Real-Time Fault-Tolerant CORBA. Concurrency and
Computation: Practice and Experience, vol. 17, no. 12, 2005, pp. 1527-1545.

4. Nanbor Wang, Douglas C. Schmidt, Aniruddha Gokhale, Craig Rodrigues, Balachandran
Natarajan, Joseph P. Loyall, Richard E. Schantz, and Christopher D. Gill. QoS-enabled
Middleware, in Middleware for Communications, Qusay Mahmoud, Ed. Wiley and Sons,
New York, 2003.

Using Speculative Push for Unnecessary
Checkpoint Creation Avoidance

Arkadiusz Danilecki and Micha�l Szychowiak

Institute of Computing Science
Poznań University of Technology

Piotrowo 3a, 60-965 Poznań, Poland
{adanilecki, mszychowiak}@cs.put.poznan.pl

Abstract. This paper discusses a way of incorporating speculation tech-
niques into Distributed Shared Memory (DSM) systems with checkpoint-
ing mechanism without creating unnecessary checkpoints. Speculation is
a general technique involving prediction of the future of a computation,
namely accesses to shared objects unavailable on the accessing node (read
faults). Thanks to such predictions objects can be pushed to requesting
nodes before the actual access operation is performed, resulting, at least
potentially, in a considerable performance improvement. This mechanism
is a foundation for the proposed SpecCkpt protocol based on indepen-
dent checkpointing integrated with a coherence protocol for a given con-
sistency model introducing little overhead. It ensures the consistency of
checkpoints, at the same time allowing a fast recovery from failures.

1 Introduction

Modern Distributed Shared Memory (DSM) systems reveal increasing demands
for efficiency, reliability and robustness. System developers tend to deliver fast
systems which would allow to parallelize distributed processes efficiently. Unfor-
tunately, failures of some system nodes can cause process crashes resulting in a
loss of results of the processing and requiring to restart the computation from
the beginning. One of the techniques used to prevent such restarts is check-
pointing. Checkpointing consists in saving the processing state periodically (a
checkpoint), in order to restore the saved state in case of further failure. Only
checkpoints which represent a consistent global state of the system can be used
when restarting computation (the state of a DSM system is usually identified
with the content of the memory).

There are two major approaches to checkpointing: coordinated (synchronous)
and independent (asynchronous). Coordinated checkpointing requires expensive
synchronization between all (or a part of) the distributed processes, in order
to ensure the consistency of the saved states. The significant overhead of this
approach makes it impractical unless the checkpoint synchronization is corre-
lated with synchronization operations of a coherence protocol ([7]). On the other
hand, the independent checkpointing does not involve interprocess synchroniza-
tion but, in general, does not guarantee the consistency. After a failure occurs, a

F. Eliassen and A. Montresor (Eds.): DAIS 2006, LNCS 4025, pp. 309–315, 2006.
c© IFIP International Federation for Information Processing 2006

310 A. Danilecki and M. Szychowiak

consistent checkpoint must be found among all saved checkpoints, therefore the
recovery takes much more time and may require more recomputation. A variant
of the independent checkpoint – communication induced checkpointing (or depen-
dency induced checkpointing) – offers simple creation of consistent checkpoints,
by storing a new checkpoint each time a recovery dependency is created (e.g.
interprocess communication). However, its overhead is too prohibitive for gen-
eral distributed applications. Nevertheless, this approach has been successfully
applied in DMS systems in strict correlation with memory coherence protocols.
This correlation allows to reduce the number of the actual dependencies and to
limit the checkpointing overhead significantly ([9]).

Speculation, on the other hand, is a technique which promises to increase the
speed of DSM operations and to reduce the gap between DSM and message-
passing systems. The speculation may involve speculative pushes of shared ob-
jects to processing nodes, before they actually demand access [10], prefetching
of the shared objects with anticipation that the application process would need
those objects ([1]) or self invalidation of shared objects to reduce the frequency
of ”3-hop-misses” ([8]) among other techniques.

This paper is organized as follows. In section 2, we present a formal defini-
tion of the system model and speculation operations. The previous work in this
field, including the first variant of SpecCkpt protocol, is briefly described in Sec-
tion 3. Section 4 discusses the ways of combining speculative pushes into DSM
systems with checkpointing. Preliminary results are contained within Section 5
Concluding remarks and future work are proposed in Section 6.

2 DSM System Model

A DSM system is an asynchronous distributed system composed of a finite set
of sequential processes P1, P2, ..., Pn that can access a finite set O of shared
objects. Each Pi is executed on a DSM node ni composed of a local processor and
a volatile local memory used to store shared objects accessed by Pi. Each object
consists of several values (object members) and object methods which read and
modify object members (here, we adopt the object-oriented approach; however,
our work is also applicable to variable-based or page-based shared memory).
The concatenation of the values of all members of object x ∈ O is referred to
as object value of x. Here, we consider read-write objects, i.e. each method of x
has been classified either as read-only (if it does not change the value of x and
in the case of nested method invocation, all invoked methods are also read-only)
or read-and-modify (otherwise). Read access ri(x) to object x is issued when
process Pi invokes a read-only method of object x. Write access wi(x) to object
x is issued when process Pi invokes any other method of x. Each write access
results in a new object value of x.

To increase the efficiency of DSM, objects are replicated on distinct hosts,
allowing concurrent access to the same data. A consistent state of DSM
objects replicated on distinct nodes is maintained by a coherence protocol and
depends on the assumed consistency model. Usually, one replica of every object

Using Speculative Push for Unnecessary Checkpoint Creation Avoidance 311

is distinguished as a master replica. The set of all replicas of a given object is re-
ferred to as a copyset. The process holding master replica of object x is called x’s
owner. A common approach is to enable the owner an exclusive write access to
the object. However, when no write access to x is performed, the object can have
several replicas simultaneously accessible only for reading (shared replicas). The
speculation introduces a special part of the system, called the predictor, which
is responsible for predicting future actions of the processes (e.g. future read and
write accesses) and proper reactions.

As a result of a read access issued to an object locally unavailable, the object is
fetched from its owner and brought to the requester. Using speculation, however,
the object may be fetched from its owner also before the actual read access (i.e.
prefetched) or forwarded by the owner to potential object users (i.e. pushed),
as a result of prediction. By pi(x) we will denote a prefetch operation of object
x resulting from the prediction made at process Pi. By fi,j(x) we will denote
a push operation of object x from owner Pi to potential object user Pj . The
prediction is successful if the pushed or prefetched object is actually used, and
the read fault is avoided. If the prefetched or pushed object is never used, the
prediction was unsuccessful (and is referred to as misprediction).

Dependency of operations is a relation arising between wi(x) and any sub-
sequent rj(x), pj(x) or fi,j(x) i.e. when process Pj uses (reads) a value previ-
ously written by Pi. Local dependency reflects the order of operations performed
by a single process. To ensure system consistency in case of a failure, the sys-
tem forces the object owner to make a checkpoint each time the dependency
arises.

3 Previous Work

In the previous work on reliable speculative DSM systems ([4], [3]), it has been
shown that a naive implementation of the speculation and, more specifically,
prefetching may reduce DSM efficiency by introducing false dependencies, which
in turn increase the number of unnecessary checkpoints. Since prefetches are
seen by the object owner as read accesses, they create dependencies. However,
because they are speculative operations, the object owner has no way to deter-
mine whether a prefetched object will actually be used (prediction was success-
ful) or will be invalidated before using or never accessed by requesting node (on
misprediction).

These problems are summarized as follows:

– An access to objects (fetches) may result from the speculation made by the
predictor and therefore (in case of a false prediction), may not create a real
dependency;

– Even when the access is explicitly marked as speculative, the process has
no way of determining whether a true dependency between processes will
ever be created, since it cannot determine whether the prediction is correct
(otherwise, it wouldn’t be a speculation).

312 A. Danilecki and M. Szychowiak

To avoid the creation of unnecessary checkpoints, the changes to the under-
lying checkpointing protocol have been proposed. They consist in introducing a
new replica state (PREFETCHED) and operation decoupling. In the proposed
SpecCkpt protocol, prefetched objects are put into a special PREFETCHED
state. The access to prefetch object would then require getting confirmation
from the owner. This confirmation would be granted or not, depending on the
underlying coherence protocol.

This protocol avoids unnecessary checkpoints at the cost of reducing positive
speculation effects (even a successful prediction needs a confirmation message).
We have verified our protocol using a simulated DSM system (see sec. 5) and we
found our results somewhat dissatisfying. In some of the tested application our
protocol behaved surprisingly bad, so we decided to search for another techniques.

4 Speculative Push

Another way of avoiding the creation of unnecessary checkpoints may be using a
different speculation technique, namely speculative push. In prefetching, specu-
lation is triggered by the node which has the object in the INVALID state; in the
speculative push, it is the object’s owner who triggers the speculation, pushing
the object to potential requesters. It may be observed that in the prefetching,
the requesting node has no way of determining whether the object owner has
already checkpointed the object. So, it does not know whether the prefetch re-
quest would force the object owner to take a checkpoint, or not. In the latter
technique however, the object’s owner has obviously a full knowledge of its own
local state and therefore is able to determine when the speculation results in
making a checkpoint. Usually, the object’s owner forwards the object to antic-
ipated requesters after it finishes the object modifications. However, this may
involve creating a checkpoint, which may be unnecessary (because the push may
result from misprediction).

Our proposal is to trigger a speculative push of the object each time the object
is checkpointed. Therefore, even if the push is unnecessary and creates a false
dependency, it does not introduce additional costs (since the page is already
checkpointed).

We have tested this proposal for sequential consistency model and MSI (Mod-
ified, Shared, Invalid) coherence protocol. The implemented algorithm is de-
scribed as follows:

– Between the checkpoints, the object’s owner records remote accesses to the
objects in the SHARED state. Those will be potential candidates for data
forwarding. Essentially, it is the object copyset.

– On local write access, the owner invalidates the copyset but keeps the list of
the potential candidates (possible copyset).

– If the owner has the object in the MODIFIED state and receives a read
request, it checkpoints the page before answering. The requester is removed
from possible copyset list but added to the copyset list.

Using Speculative Push for Unnecessary Checkpoint Creation Avoidance 313

– After the owner has successfully checkpointed the object, it forwards the
object to all potential requesters and clears the possible copyset list. Such
new replicas are put into a special PUSHED state (and the respective nodes
are put into the master replica copyset).

– Request from a node is ignored if the owner has already pushed the object
to that node.

– The access to a replica in the PUSHED state is treated as the access to replica
in the SHARED state, with the exception when a confirmation is sent to the
owner. The only purpose of this confirmation is to provide feedback for the
owner, so that it could add the node again to the possible copyset list.

5 Preliminary Results

The simulation was performed with the use of a backend [5] to Augmint simu-
lator [2] and a set of applications from the SPLASH-2 suite [6]. The obtained
results should be treated rather as indications of the trends, not the final results.
Compared to the results found in literature, our simulation consequently tends
to be too optimistic about the positive effects of prediction, probably because
of the simplified simulator architecture (the impact of increased network traffic,
costs of the owner searching, the cost of a single checkpoint is modelled as a
constant).

Due to the space limits, we present only some of the results here. The following
basic set of prefetch techniques was used for comparison: simple stride-based
prefetch; prefetching pages which were recently invalidated; prefetching the same
set of pages which were used before attempting a barrier; prefetching neighboring
pages; and combination of all those techniques.

Table 1. The results of the simulation with standard application inputs and 8 pro-
cesses, using the best prefetch technique

Application name (a) (b) (c) (d) (e) (f) (g)
barnes 46 97 97 38 101 100 95

fft 11 98 97 54 103 101 100
lu 36 87 85 43 108 102 95

fmm 33 100 100 36 103 100 97

Different prefetching techniques prove to yield the best effects for different
applications. We decided to choose those which were the most and the least effi-
cient for every application and compare the reduction of execution time against
the base checkpointing protocol without speculation. Relative reduction of exe-
cution time is shown in table 1. First, we evaluated the prefetching used without
any modifications of the base MSI checkpointing protocol (column b and e).
Then, we compared it to SpecCkpt protocol using the same techniques (column
c and f). The misprediction ratio for those techniques can be found in columns

314 A. Danilecki and M. Szychowiak

a and d. Finally, the g column represents the relative execution times achieved
with SpecCkpt protocol using speculative pushes.

From the whole set of the obtained results, we concluded that the most influen-
tial factor is the misprediction ratio. If the misprediction ratio is low, then usually
our SpeckCkpt protocol, using either prefetches or pushes, is outperformed by
the base protocol. However, for different applications different techniques turned
out to have a low misprediction ratio. It would be, in general, impossible for a
DSM system to determine the best suited technique in advance. Therefore, in
real systems, higher misprediction ratio is to be expected.

6 Conclusions

This paper proposed the use of speculative pushes instead of speculative
prefetches in DSM systems with checkpointing. Since the object owner is able
to determine whether the push will result in checkpoint or not, it may decide
when the pushes do not introduce additional significant costs resulting from the
checkpoints.

We intend to implement our protocols first in another simulator (to validate
our results) and then in the real linux-based DSM system. We are in the process
of validating and preparing tests of a few other ideas of improving our protocols,
namely prefetch delaying and speculative checkpoints.

References

1. Bianchini, R., Pinto, R., Amorim, C. L.: Data Prefetching for Software DSMs.
Proc. Int. Conference on Supercomputing, Melbourne, Australia (1998)

2. Carbajal, J., Michael, M., Nguyen, A-T., Torrellas, J., Sharma, A.: Augmint: A
Multiprocessor Simulation Environment for Intel x86 Architectures. CSRD Tech-
nical Report 1463, March 1996

3. Danilecki A., Szychowiak M.: Checkpointing Speculative Distributed Shared Mem-
ory. To appear in Proc. 6th Int. Conference on Parallel Processing and Applied
Mathematics PPAM’2005, Poznan 2005

4. Danilecki A., Szychowiak M.: Checkpointing Speculative DSM Systems, Research
Report RA-021/05, Institute of Computing Science, Poznan University of Technol-
ogy, 2005.

5. Danilecki A., Szychowiak M., Kobusinski J.: Simplified DSM simulation with the
use of the Augmint backend, Research Report RA-04/06, Institute of Computing
Science, Poznan University of Technology, 2006.

6. Gupta, A., Ohara, M., Singh, J., Torrie, E., Woo, S., The SPLASH2 Programs:
Characterization and Methodological Considerations. Proc. 22nd Int. Symposium
on Computer Architecture (ISCA 1995), May 1995

7. Kongmunvattana, A., Tanchatchawal, S., Tzeng, N.-F.: Coherence-Based Coordi-
nated Checkpointing for Software Distributed Shared Memory Systems. Proc. 20th

Conference on Distributed Computing Systems (2000) 556–563
8. Lai, A-C., Babak Falsafi, B.: Selective, Accurate, and Timely Self-Invalidation Us-

ing Last-Touch Prediction. Proc. 27th Int. Symposium on Computer Architecture
(ISCA 27), Vancouver, BC, Canada (2000) 139–148

Using Speculative Push for Unnecessary Checkpoint Creation Avoidance 315

9. Park, T., Yeom, H. Y.: A Low Overhead Logging Scheme for Fast Recovery in Dis-
tributed Shared Memory Systems. Journal of Supercomputing Vo.15. No.3. (2002)
295–320

10. Rajwar, R., Kagi, A., Goodman, J. R.: Inferential Queueing and Speculative Push.
International Journal of Parallel Programming (IJPP) Vo. 32. No. 3 (2004) 273–284

A Versatile Kernel for Distributed AOP

Éric Tanter and Rodolfo Toledo

University of Chile, Computer Science Dept.
Avenida Blanco Encalada 2120, Santiago, Chile

{etanter, rtoledo}@dcc.uchile.cl

Abstract. Aspect-Oriented Programming (AOP) promotes better se-
paration of concerns in software systems by introducing aspects for the
modular implementation of crosscutting concerns. As a result, modular-
ity and adaptability of software systems are greatly enhanced. To date,
very few AOP proposals take distribution into account. This paper con-
siders the explicit introduction of distribution in AOP, by proposing
support for distributed aspects: all dimensions of aspects are studied in
the light of distribution. The result of this work is a versatile kernel for
distributed AOP in Java: a flexible infrastructure that allows aspects to
be defined and applied in a distributed manner, on top of which various
distributed aspect languages and frameworks can be defined.

1 Introduction

Aspect-Oriented Programming (AOP) provides means for proper modulariza-
tion of crosscutting concerns [8], i.e. concerns that cannot be cleanly mod-
ularized using traditional programming paradigms. Typical examples of such
concerns are non-functional concerns such as monitoring, security, concurrency,
etc., but also functional concerns such as observation relationships and, in gen-
eral, coordination between different modules. Without AOP, the implementation
of such concerns is scattered across several modules. The importance of AOP for
practical software engineering is reflected in the growing interest manifested by
industrial actors, in particular in application servers [10]. AOP also helps adap-
tation of software systems: for a given concern to be adaptable, it first has to be
modularized.

The relation between AOP and distributed computing is interesting. Even
though AOP is used in application servers, aspects are defined and applied locally
to enhance the implementation of the application server; most AOP proposals
to date do not support the remote definition and/or application of aspects.
In other words, AOP in distributed systems is NOT distributed AOP. To our
knowledge, only JAC [16], DJcutter [15], and AWED [4] address distributed AOP
as such, by enhancing the language constructs of AOP to cover distribution.
However, each proposal has its set of limitations, as will be discussed later.
Among motivating examples of distributed AOP are distributed unit testing [15],
sophisticated distributed cache policies and checking of architectural constraints
in distributed systems [3].

F. Eliassen and A. Montresor (Eds.): DAIS 2006, LNCS 4025, pp. 316–331, 2006.
c© IFIP International Federation for Information Processing 2006

A Versatile Kernel for Distributed AOP 317

In this paper, we adopt a general approach to distributed AOP, by extending
our previous work on versatile kernels for AOP: expressive and flexible infras-
tructures for AOP on top of which different AOP languages and frameworks can
be developed [23, 24]. Our methodology consists in revising all the concepts of
our AOP kernel for Java, Reflex 1, in the light of distribution. The result is a
versatile AOP kernel for distributed AOP in Java, named ReflexD, which can
be used to define and apply aspects in a distributed manner.

In Section 2, we discuss the notion of distributed AOP, analyzing the different
elements of AOP and what it means to consider them in the light of distribution.
Section 3 briefly introduces the notion of AOP kernels in general, since we follow
this line of work here. Section 4 exposes the different elements of ReflexD, our
versatile kernel for distributed AOP in Java. In Section 5 we explain how a
distributed notion of control flow can be built with ReflexD, and apply it in
Section 6. Section 8 discusses related work and Section 9 concludes.

2 Distributed AOP

We now briefly discuss the main elements of an aspect in AOP, in order to later
analyze what distributed AOP means.

2.1 Elements of AOP

The anatomy of an aspect can be roughly described as follows:

– the cut of an aspect describes the execution points of a program to which
the aspect applies, e.g. calls to state-changing methods on shape objects;

– the action of an aspect describes the effect of the aspect at its cut, e.g. trac-
ing the underlying calls, or requesting a lock before proceeding;

– the binding between a cut and an action specifies issues such as when the
action is executed (before, after or around the intercepted execution point),
the context information to be exposed to the action, etc.

An aspect language typically extends a traditional programming language with
language constructs for the above elements. For instance, the most-used Java
AOP extension to date is AspectJ [11], which extends Java with constructs to
define aspects, with pointcuts (the cut) and advices (the action). In AspectJ, the
binding between a cut and an action is split between both: it is not a separate
entity. Below is a simple tracing aspect in AspectJ:

aspect Trace {
pointcut f o oCa l l s (Object x) : c a l l (∗ A. foo (. .)) && this (x) ;
b e f o r e (Object x) : f o oCa l l s (x) { // log c a l l made by x }

}

A pointcut fooCalls is defined, matching all calls to method foo on objects of
type A, and exposing a single parameter x, bound to the instance performing
the call (using this(x)). Then an advice is associated to the pointcut: when the
pointcut matches, the body of the advice is executed before the original call is
performed. Variable x is available in the scope of the advice body.
1 http://reflex.dcc.uchile.cl

318 É. Tanter and R. Toledo

2.2 Distributed AOP

Aspect-oriented programming enhances software modularity and adaptability
by promoting better modularization of otherwise crosscutting concerns. The en-
tailed benefits of using AOP are of interest for any kind of complex software
systems, and in particular, distributed systems: for instance to express aspects
covering crosscutting interactions between remote entities. However, as argued
in [15], simply combining an existing AOP language such as AspectJ with an
existing framework for distributed systems like Java RMI (Remote Method In-
vocation) [19] is not a solution.

As a matter of fact, a framework like RMI extends OOP to the world of
distributed programming, but does not help for AOP. The fact that the very
concepts of aspect languages are not extended to distribution forces programmers
to define a distributed aspect as a collection of distributed entities realizing the
whole aspect based on remote calls. It is not possible to define a distributed
aspect as a simple, non-distributed entity [15]. Hence developing distributed
aspects is made much more complex than it should be, and deployment issues
are exacerbated. Leveraging AOP to distribution requires the very concepts of
AOP to be revisited in the light of distribution:

– distributed cut: describing execution points of interest must possibly dis-
criminate among execution hosts (a.k.a. remote pointcuts [15, 16]); a method
call may be of interest only if called in a particular host.

– distributed action: the effect of an aspect should possibly be executed on
a remote host, not necessarily where the cut is realized; e.g. the activity of
a process in a production machine monitored on a separate machine.

– distributed binding: the specification of the binding between the cut and
the action of an aspect may be done in any host, which may not be the host
where the cut is realized or the action is executed.

This defines our approach to distributed AOP. Given the variability in each
of the above elements, we target a flexible architecture covering these notions,
focusing on the core semantics first; syntax is not considered in this work.

3 The Kernel Approach to AOP

This section briefly introduces the necessary background concepts on AOP ker-
nels and our Java implementation, Reflex. More elements on Reflex will be in-
troduced as necessary in the course of the paper.

3.1 Versatile Kernels for AOP

In previous work [23, 24], we have motivated the interest of being able to define
and use different aspect languages, including domain-specific ones, to modularize
the different concerns of a software system. We have proposed the architecture
of a versatile kernel for multi-language AOP, and our current Java implementa-
tion, Reflex. An AOP kernel supports the core semantics of various AO languages

A Versatile Kernel for Distributed AOP 319

behavior structure

detection resolution

plugin architecture

transformation

composition

languages

Fig. 1. Architecture of a versatile kernel
for multi-language AOP

activation
condition

hookset

metaobject advice

pointcut

shadow

residue

Fig. 2. The link model and correspon-
dence to AOP concepts

through proper structural and behavioral models. Designers of aspect languages
can experiment comfortably with an AOP kernel as a back-end, as it provides
a higher abstraction level than low-level transformation toolkits. Furthermore,
a crucial role of an AOP kernel is that of a mediator between different coexist-
ing AO approaches: detecting interactions between aspects, possibly written in
different languages, and providing expressive means for their resolution [21].

The architecture of an AOP kernel (Fig. 1) consists of: a transformation layer
for basic weaving, supporting both structural and behavioral modifications of
programs; a composition layer, for detection and resolution of aspect interactions;
a language layer, for modular definition of aspect languages (as plugins).

3.2 Reflex in a Nutshell

Reflex is a portable library for structural and behavioral reflection in Java, op-
erating as a java.lang.instrument agent on bytecode. This paper only deals
with behavioral facilities, which follow the model of partial behavioral reflection
of [25]: explicit links binding a set of program points (a hookset) to a metaobject.
A hookset is defined as a condition over reifications of program elements: an
RPool object gives access to RClass objects, which in turn give access to their
members as RMember objects (either RField, RMethod, or RConstructor), which
in turn give access to their bodies as RExpr objects (with a specific type for
each kind of expression). These objects are causally-connected representations
of code, offering a source-level abstraction over bytecode.

A link is characterized by a number of attributes, among which the control
at which metaobjects act (before, after, around), their scope (per object, class,
or global), and a dynamically-evaluated activation condition. Fig. 2 depicts two
links, one of which is not subject to activation, along with the correspondence to
the AOP concepts of the pointcut/advice model of AspectJ. In Reflex one can
specify, on a per-link basis, the exact communication protocol (which method to
call with which arguments) with the metaobject implementing the aspect action.

Links are a mid-level abstraction, in between high-level aspects and low-level
code transformation. How aspect languages are defined and implemented over
the kernel is out of the scope of this paper (see [24]); aspect composition in Reflex
is treated in [21]; a detailed case study of supporting the dynamic crosscutting of

320 É. Tanter and R. Toledo

AspectJ in Reflex can be found in [17]. A simple AspectJ aspect, comprising of a
single advice associated to a simple pointcut, is straightforwardly implemented
in Reflex with a link (as in Fig. 2). Below is the implementation of the link
equivalent to the Trace AspectJ aspect shown in the previous section2:

Hookset f o oCa l l s = new Hookset (MsgSend . class , new NameCS(”A”) ,
new NameOS(” foo ”)) ;

Link t ra c e = Links . ge t (f ooCa l l s , new Tracer ()) ;
t r a c e . s e tCont ro l (Control .BEFORE) ;
t r a c e . s e tC a l l (”Tracer” , ” l og ” , Parameter . THIS) ;

We first create a hookset selecting occurrences of the message sending operation,
with a name-based class selector matching class A and a name-based operation
selector matching occurrences of foo messages. Then a link is created, binding
this cut to the action defined in a Tracer metaobject. The control of the link is
set to before, and we specify that the log method of the tracer must be called,
with the predefined parameter corresponding to the current instance (THIS).

Nevertheless, most practical AOP languages, like AspectJ, make it possible
to define aspects as modular units comprising more than one cut-action pair.
In Reflex this corresponds to different links, with one action bound to each cut.
Furthermore, AspectJ supports higher-order pointcut designators, like cflow. In
Reflex, the implementation of such an aspect requires an extra link to expose
the control flow information. This is further discussed in Section 5.

4 A Kernel for Distributed AOP

We now go through the different features of our versatile kernel for distributed
AOP in Java, ReflexD. ReflexD is an extension of Reflex, currently implemented
using Reflex itself (for transparently handling remote communication and con-
sistency between objects) and RMI as a base for remote invocation.

4.1 Distributed Cut

Reflective Model Extended. Cut definition in Reflex is based on a reflective
model representing code as Java objects (RClass, RMethod, RExpr, etc.). To take
distribution into account, the model is extended with the reification of a host:

public interface RHost {
public St r i ng getName () ;
public St r i ng getAddress () ;
public Prope r t i e s g e tP rope r t i e s () ;

}

A RHost object reifies a running Reflex-enabled VM, identified by its name given
at launch time; a RHost object can be obtained with RHosts.get(address,
name) where address is the physical address (server:port) of the Reflex host
named name. Apart from the name and address, the system properties of a host
are also exposed. All other entities of the reflective model are augmented with
the information of the host in which they are defined.
2 Concrete syntax for Reflex is under development [22], but we do not use it here.

A Versatile Kernel for Distributed AOP 321

Hookset Extended. An aspect cut is expressed with a hookset, i.e. a condi-
tion over program elements from the reflective model. In addition to class and
operation selectors, host selectors are used to express conditions over hosts:

public interface HostS e l e c to r {
public boolean accept (RHost aHost) ;

}

The host selector discriminates the hosts of interest. A simple NameHS can do
name-based selection, while more advanced selectors can use the host system
properties. For instance, the following selector matches the group of development
hosts, i.e. hosts that have a custom property "type" with value "devel":

public class DevelopmentHosts implements HostS e l e c to r {
public boolean accept (RHost aHost){

return ” deve l ” . equa l s (aHost . g e tP rope r t i e s () . ge t (” type ”)) ;
} }

It is therefore possible to define a link whose cut matches events in different
hosts, providing the necessary support to handle distributed crosscutting.

Activation Extended. Dynamic activation of links in Reflex is done via either
restrictions [17] or activation conditions (the main difference between both being
the time at which they are bound, either weaving or runtime). These conditions,
evaluated on the host where operations occur, can now take the current host into
account (obtained with Reflex.getThisHost()) in order to condition links to
dynamic properties of the hosts in which their cut is realized. Dynamic activation
of links in Reflex has been used to provide context-aware aspects [21], which could
also be of interest in the context of distributed AOP.

4.2 Distributed Action

Parameterization Extended. Passing parameters to metaobjects (e.g. THIS
as in Sect. 3.2) makes it possible to define parameterized actions. A number
of predefined parameters are provided beyond the THIS: method name, argu-
ments, etc. Considering distribution, we add two predefined parameters: HOST
and HOSTNAME to refer to the host (resp. its name) in which the cut is realized.

public class Tracer {
public void l o g (Object aThis , RHost aHost){

i f (” deve l ” . equa l s (aHost . g e tP rope r t i e s () . ge t (” type”)))
// do verbose l ogg ing

else // do l i g h t l og g ing
} }

Above is a tracer metaobject that accepts the current host as extra parameter,
and performs verbose logging for development hosts, light logging otherwise.

Since a metaobject can execute remotely, the programmer needs control over
how parameters are passed from the host where the operation occurrence is
intercepted to the metaobject. The default Java RMI semantics is used (passing
all objects by copy except remote ones), but in addition, Reflex makes it possible
to explicitly state that a parameter must be passed by reference (a small Reflex
library handles transparent remote invocations on any object). Below, we specify
that the THIS must be passed by reference to the tracer:

322 É. Tanter and R. Toledo

Link t ra c e = /∗ as be fore ∗/ ;
t r a c e . s e tCa l l (”Tracer ” , ” log ” , new ByRef (Parameter . THIS) , Parameter .HOST) ;

Scope Extended. The scope attribute of a link specifies the association scheme
of metaobjects w.r.t. base entities involved in the cut. If it is per object, then each
object involved in the cut has its own metaobject reference (which may point
to the same metaobject), while if it is per class, each class has one reference to
it, and if it is global, the link itself holds the reference shared among all objects
and classes involved. Considering distribution, the Scope.GLOBAL attribute is
renamed Scope.HOST in order to make clear that there is one global instance per
host. In order to obtain a globally-unique metaobject, one simply needs to use
explicit (remote) creation of the metaobject, as discussed below.

Instantiation Extended. While the scope of a link determines the metaobject
referencing scheme, instantiation addresses the bootstrapping of the metaobject
reference. Reflex provides two alternatives for instantiation:

– explicit instantiation: the metaobject is manually instantiated before defin-
ing the link; the instance is shared among all entities involved in the cut.

– implicit instantiation: at link definition, the class of the metaobject is spec-
ified3 so that, when first needed, a new metaobject instance is created and
bound; subsequent invocations are performed on that metaobject instance.

For explicit instantiation, ReflexD provides a remote object creation service to
create any object on any host, which returns a type-compatible reference to the
remote object4. Below we remotely create a tracer on the monitor host, then
interact with it (e.g. to configure it), before using it in the link definition:

RHost host = RHosts . ge t (” 1 7 8 . 1 . 2 . 3 : 4 5 6 7 ” , ”monitor ”) ;
Tracer t = (Tracer) host . c r e a t e (”Tracer”) ;
// . . . in t e rac t with t . . .
Link t rac e = Links . ge t (f ooCa l l s , t) ;
// . . . conf igurat ion continued . . .

For implicit instantiation, the link definition must specify, in addition to the
metaobject class to instantiate, the host on which the metaobject instance will
reside. It can be either (Fig. 3):

– ExecHost.THIS HOST: the current host, i.e. where the link is being defined;
– ExecHost.APP HOST: the current application host, i.e. where the interception

of operation occurrences occur;
– Any arbitrary host (with new ExecHost(addr,name)/(aRHost)).

For instance, using the following definition, if the link scope is per object, then
any object involved in the cut of the link will have a dedicated tracer instance
automatically created on the monitor host:

3 Using an MODefinition.Class object. Reflex also supports metaobject factories to
bootstrap metaobject references [25], but we do not discuss them in this paper.

4 Further remote interaction with the object via RMI is handled transparently.

A Versatile Kernel for Distributed AOP 323

(a) ExecHost.THIS_HOST

link definition host

metaobject

hook

hookset

link

(c) new ExecHost(...)(b) ExecHost.APP_HOST

Fig. 3. Execution hosts

RHost host = /∗ as above ∗/ ;
Link t ra c e = Links . ge t (f ooCa l l s ,

new MODefinition . Class (”Tracer” , new ExecHost (host)) ;

Conversely, using ExecHost.APP HOST implies that each tracer instance will re-
side on the same host than the object in which the cut is realized.

4.3 Distributed Binding

The binding between a cut and an action in Reflex is an explicit entity: a link.
So far, we have not explained how links are stored and applied.

Link Definition, Storage and Application. Link definition can be done at
runtime, or prior to executing the main program, by specifying link providers to
invoke on startup. Link providers can either be plugins of aspect languages, or
plain Java classes (a.k.a. configuration classes) defining one or more links; a (set
of) configuration class(es) can be given on the command line as arguments to
the Java agent of Reflex:

% java "--javaagent:reflex.jar= -lp class:Config1,Config2" Main

The above launches the Main program using Reflex, first performing the configu-
ration in classes Config1 and Config2. Links are stored in a local link repository.
Then, upon class loading, the Reflex agent queries the link repository to deter-
mine whether any link applies to the class being loaded. If it does, then code
transformation is performed before the class is finally loaded in the VM.

Definition, Storage and Application Extended. In order to support a flex-
ible distributed aspect infrastructure, ReflexD provides a complete decoupling of
link definition, link storage, and link application. Hence the distributed archi-
tecture of ReflexD involves three types of hosts: (1) Reflex hosts, in which Reflex
runs a program (possibly subject to links); (2) aspect hosts in which one or more
link repositories are exposed, and to which Reflex hosts can connect; (3) any
Java program running in any host can remotely populate link repositories. Such
a decoupling is convenient to group links that can apply to a program according
to some criteria, thereby raising the abstraction level of aspect configuration.

324 É. Tanter and R. Toledo

applicationlink repositoryaspect hostlinks path

2 requesting links

4 applying links

3 retrieving links

1 populating
link repositories1

2

3

4

develPC

appHost1

aspectHost appHost2

Fig. 4. Link repositories

Illustration. Consider four machines (Fig. 4): an aspect host machine aspect-
Host, on which two link repositories are started, namely debugLinks and
prodLinks, to hold debug links (e.g. logging) and production links (e.g. business
observation relations), respectively; the developer’s machine develPC, on which
link definition is executed, populating both link repositories; and two Reflex
hosts, appHost1 and appHost2 running the application.

First, on the aspectHost machine, the two repositories are started:

% java reflex.StartLinkRep debugLinks
% java reflex.StartLinkRep prodLinks

Then, on the develPC machine, two configuration classes ConfDebug and
ConfProd are defined, and used to populate the corresponding repositories:

% java reflex.ExportToRep reflex://aspectHost/debugLinks ConfDebug
% java reflex.ExportToRep reflex://aspectHost/prodLinks ConfProd

Note that it is also possible to access a link repository programmatically, e.g.:

LinkRepos itory rep = LinkRepos itory . get (” r e f l e x :// aspectHost /debugLinks ”) ;
rep . addLink (/∗ a l i n k ∗/) ;
rep . removeLink (/∗ a l i n k ∗/) ;

Finally, supposing the application in appHost1 is deployed in a development
environment, it is configured to use the links defined in both repositories:

% java "--javaagent:reflex.jar= -lp reflex://aspectHost/debugLinks,
reflex://aspectHost/prodLinks" Main

If appHost2 is deployed in a production environment, it is enough to remove the
reference to the debugLinks repository in the command line above. No other
modification is needed, and only production links will apply.

Runtime Link Manipulation. A feature of Reflex that we have not mentioned
until now is the possibility to manipulate links at runtime [25]: e.g. changing the
metaobject associated to a base entity for a given link, or changing the activation
condition of a link. Note that the latter makes it possible to dynamically de-
ploy/undeploy aspects. Maintaining consistency between changes made to links

A Versatile Kernel for Distributed AOP 325

in different hosts is done with a remote consistency framework developed with
Reflex, which ReflexD makes great use of5.

5 Distributed Control Flow

Control flow in aspect-oriented languages, as exemplified by AspectJ’s cflow
pointcut designator, is a very valuable feature that makes it possible to pick out
execution points of interest provided they are in the control flow of others.

Control Flow. In Reflex, if a link depends on a control flow condition (e.g. log
only top-level position changes on shape objects), it is subject to an activation
condition, which checks the associated control flow condition. The control flow
information has to explicitly exposed, by a dedicated link.

1 Hookset shapeMove = /∗ shape pos i t i on changes ∗/ ;
2 Link moveCflow = CFlow . get (shapeMove) ;
3 Link t ra c e = Links . get (shapeMove , new Tracer ()) ;
4 t r a c e . addActivat ion (new CFlow . IsNotBelow (moveCflow)) ; // dependency

The hookset corresponding to shape position changes is defined (1). This hookset
is used in the two link definitions that follow. First, it is used to obtain a link
that exposes control flow information (2). CFlow.get is a convenience method
that returns a link matching the given hookset, to which a before-after meta-
object called a CFlowExposer is bound. Such an exposer maintains a thread-local
counter (or stack if context information must be kept) that keeps track of control
flow. Overloaded versions of CFlow.getmake it possible to explicitly pass the ex-
poser instance to use, and to specify context information that must be collected
by the exposer if any. The trace link also relies on the shapeMove hookset (3),
and its activation depends on the control flow exposed by moveCflow (4): only
calls that are not below that control flow will match (i.e. only top-level calls).
Class CFlow offers other predefined activation conditions like IsIn, IsOut, and
IsBelow.

Distributed Control Flow. Extending control flow to distributed systems is
highly interesting, as it makes it possible to capture particular patterns of inter-
host communications; e.g. trace all calls on a machine that are performed in the
control flow of a call originating from another machine. There is an implemen-
tation challenge associated to distributed control flow: control flow information
is intrinsically bound to a given thread, and thread identity is not preserved
in a typical remote method invocation middleware like RMI. An alternative is
to make use of a distributed call stack [1], however this raises other issues of
efficiency. We rather adopt the same approach than in [15, 3]: custom socket
implementations for RMI [20], which manage the propagation of thread-local in-
formation from one host to another in order to simulate the unicity of the caller
thread. This solution works, but it is dependent on the RMI implementation.
5 Due to space limitations, we do not discuss these issues in detail, nor do we present

the remote consistency framework and other elements of the implementation. More
information on the Reflex website (http://reflex.dcc.uchile.cl).

326 É. Tanter and R. Toledo

This being said, a distributed control flow library for Reflex is provided, illus-
trated in the next section. The underlying details are transparently handled by
Reflex. Finally, note that control flow as discussed here is only a particular case
of what event collectors can expose: it is possible to provide event collectors for
matching event sequences for stateful aspects [6], or to support more advanced
control flow properties as in [7].

6 Application: An Adaptive Image Server

We now consider an image server: an ImgServer is an RMI object that delivers
images stored in a storage area. Clients can (in parallel) request images by calling
getImg(name); the ImgServer object translates the image name to a path, and
requests an ImgFinder to retrieve the actual bytes of the image.

We consider an image quality adaptation aspect, which, based on the avail-
able bandwidth of each client, returns a possibly lower quality image. The de-
sign of this aspect relies on distributed control flow with context exposure:
when ImgFinder.findImg() is called in the control flow of a client call to
ImgServer.getImg(), the actual bandwidth value at the client site is used to
determine the quality of the returned image. Link definition code is as follows:

1 RHost s e r v e r = /∗ r e t r i e v e server host ob j ec t ∗/ ;
2 CFlowExposer exposer =
3 (CFlowExposer) s e r v e r . c r e a t e (”CFlowExposer”) ;
4 Hookset c l i e n tC a l l s = /∗ c a l l to ImgServer . getImg () in any c l i e n t ∗/ ;
5 Link ca l lC f l ow = DCFlow . get (c l i e n tCa l l s , exposer , new BWParam()) ;
6

7 Hookset f i n dCa l l s = /∗ c a l l s to ImgFinder . findImg () in ImgServer ∗/ ;
8 Link adapt =
9 Links . get (f i ndCa l l s , new MODefinition . Class (”QualityAdapter ” , exposer) ;

10 adapt . s e tCont ro l (Control .AROUND) ;
11 adapt . s e tCa l l (”QualityAdapter ” , ”getImg” , new Parameter . Arg (0)) ;
12 adapt . addActivat ion (new DCFlow . I s I n s i d e (ca l lC f l ow)) ; //dependency

First, a link to expose control flow information from client calls is de-
fined (1–5). We explicitly create an exposer metaobject on the server host
(1–3), which will store the bandwidth value for a client in a thread-local when
ImgServer.getImg() is called (4). The corresponding link is obtained by passing
both the hookset and the exposer to DCFlow.get, as well as a custom parameter
object BWParam that encapsulates the know-how for extracting bandwidth value
(5). Then the link matching calls to ImgFinder.findImg() in the server is de-
fined (7–12). A QualityAdapter object will be created (on the server), passing
it the exposer as constructor parameter (9). The link is set to act around such
calls (10), by invoking the getImg method of QualityAdapter with the first
argument as parameter (i.e. the path of the image to find) (11). Finally, the
control flow dependency is set (12): the adaptation link only applies if findImg
is called in the control flow of a client call.

Class QualityAdapter is straightforward:
class Qual ityAdapter {

Qual ityAdapter(CFlowExposer exp){ this . exp = exp ; }
byte [] getImg (S t r i ng path){

A Versatile Kernel for Distributed AOP 327

int bw = exp . getValue (0) ;
i f (bw < th r e sho ld){

// check ex i s t ence of low−qua l i t y img , generate i t o therwise
// proceed with modified path

} else // proceed as normal
} }

This example demonstrates how one can concisely define a distributed aspect in
ReflexD. The example uses distributed hooksets (clientCalls matches on any
client host), remote actions (the event collector operates on the server host),
and distributed control flow. Without distributed AOP, coding such an aspect
requires to manually handle the distributed nature of the aspect.

7 Discussion

Distribution is an inherently large and complex topic. Although it seems that
distributed AOP can help in tackling some of the challenges faced in distributed
computing, it would be simplistic to claim that distributed aspects can turn the
development of distributed programs into an easy go. A number of challenging
issues for distributed AOP need to be further explored.

Scalability. Our experiments with ReflexD are, as of now, pretty small. The ex-
ercise of Section 6 is a valid proof of concept, showing the interest of distributed
AOP versus a manually-distributed implementation. Still, distributed AOP can
only get to be a convincing approach for distributed programming if its scalabil-
ity to larger and far more complex scenarios can be shown. As a first step in this
direction, Benavides et al. report on a successful larger scale study with repli-
cated caches [4]. Finally, it has to be expected that larger experiments will be
developed if distributed AOP attracts attention from the distributed computing
community, thereby helping in shaping the future of distributed AOP.

Failures. A distinctive characteristic of distributed programming is partial fail-
ures of the system. Introducing an infrastructure for distributed aspects therefore
adds a new dimension of possible partial failures: for instance, in the communica-
tion between the cut of an aspect and its associated action (back and forth, once
for the call, once for the return), or in the communication with link repositories.
There are several approaches to this issue. At the very least, it should be possi-
ble to guarantee that the behavior of the original application is preserved when
communication with an aspect action fails. We are currently exploring this solu-
tion and possible variants. It is important to note that this concern is different
from that of handling partial failures in a given application using aspects.

Performance. The use of distributed aspects ought also to be evaluated in the
light of performance. As of today, we have not performed significant benchmarks
of ReflexD. Reflex as such is among the most efficient portable AOP imple-
mentations in Java [9]. Still, the ReflexD infrastructure introduces a number

328 É. Tanter and R. Toledo

of possible overheads. A major source of potential overhead actually lies in the
use of advanced control flow features in aspects: distributed control flow as pre-
sented previously, and most importantly aspects that rely on distributed event
sequences [4], pose a challenge to efficient implementations. However, the recent
achievements in optimizing (local) trace matching for aspects brings optimism
in this regard [2].

8 Related Work

The issue of crosscutting concerns and code tangling related to distribution was
first addressed in the literature by Lopes [14]: it is shown that dedicated aspect
languages for handling concurrency and remote parameter passing strategies
greatly improve understandability and maintainability of code. However no dis-
tributed aspects are considered. More recently, Soares et al. have reported on the
use of AspectJ to encapsulate RMI code in aspects, showing that current AOP
technologies (that do not support distributed AOP as such) require in-depth
knowledge of the middleware (RMI) [18].

In the area of distributed AOP, three proposals relate to ours: JAC [16], DJ-
cutter [15], and AWED [4]6 (previously known as Dhamaca [3]). DJcutter and
JAC both introduced remote pointcuts, making it possible to specify on which
hosts join points should be detected. Although JAC allows distributed aspect
deployment to various containers with a consistency protocol between hosts, DJ-
cutter adopts a centralized architecture with an aspect host where all aspects
reside and advices are executed. This is in contrast with AWED and ReflexD,
which make it possible to execute advices in (several) arbitrary host(s): multi-
ple parallel advice execution in specific hosts is possible, and programmers can
control where aspects are deployed. In this regard, ReflexD goes a step further
than AWED by providing greater flexibility in the localization of advices (meta-
objects), and by allowing to customize the remote parameter passing strategy
for each parameter passed to a remote advice. Furthermore, compared to the
centralized architecture of DJcutter, both AWED and ReflexD adopt a decen-
tralized architecture. AWED only supports two deployment modes: local to the
aspect definition host, or global to all hosts. Conversely, ReflexD is more flexible
by supporting stand-alone link repositories to which a Reflex host can connect.
JAC, AWED and ReflexD support dynamic deploy/undeploy of aspects with
distributed effect.

Both DJcutter and AWED represent hosts as plain strings, whereas in ReflexD
they are reified as RHost objects giving access to the system properties of the
hosts. So groups of hosts, as provided in AWED, can be intensionally and dy-
namically defined in ReflexD. Since the fact that a host belongs to a group is just
one kind of metadata that can be associated to it, the explicit representation of
hosts as objects in ReflexD is more general and expressive.

6 The implementation of the AWED language is called DJasCo. In the following we
simply refer to both the language and the DJasCo implementation as AWED.

A Versatile Kernel for Distributed AOP 329

An interesting feature of AWED is the possibility to control whether advice
execution is done synchronously or asynchronously. This is something we have
not considered yet, but which is clearly possible to achieve. As of now, advice
execution is synchronous in ReflexD.

With respect to control flow, DJcutter, AWED and ReflexD adopt the same
implementation strategy. However in ReflexD the use of custom sockets is com-
pletely hidden from the programmer. Finally, AWED supports distributed se-
quences of events for stateful aspects [6]. However, the AWED implementation
does not handle the challenging issue of distributed time, so inconsistencies can
occur when matching event sequences. At present stateful aspects have not been
implemented in Reflex, but they can be supported via event collectors. Their cor-
rect semantics in a distributed setting remains a challenge for future research.

Finally, work on distributed AOP can be useful for a new generation of reflec-
tive middleware [12] based on AOP. ReflexD can be seen as an open middleware
for distributed AOP, which in turn can be used in the implementation of adapt-
able middleware.

9 Conclusion

We have presented the extension of our work on versatile kernels for AOP to dis-
tributed systems, yielding a flexible and expressive infrastructure for distributed
aspect-oriented languages and frameworks in Java. All dimensions of aspects
have been revisited in the light of distribution, including distributed cut based on
an extended reflective model, distributed action with fine-grained customizable
parameter passing and flexible instantiation, and complete decoupling of defini-
tion, storage and application of aspects. We have illustrated the expressiveness
of ReflexD with the provision of abstractions for distributed control flow and
their application in an adaptive image server. Compared to other distributed
AOP proposals, ReflexD provides more flexibility. Furthermore, although this
paper does not focus on this issue, the fact that ReflexD is based on our work on
AOP kernels implies that it is able to automatically detect interactions between
(distributed) aspects, and provide expressive means for their resolution.

As regards future work, apart from extending the concrete syntax developed
for Reflex to ReflexD, we plan to study the support for stateful aspects, and
experiment with different aspect languages useful in a distributed setting, both
general purpose (such as AWED) and domain-specific (such as SOM [5] for
scheduling of concurrent requests).

Acknowledgments. We thank Guillaume Pothier and Ángel Núñez for their
work on ReflexD, and Leonardo Rodŕıguez for his comments on a draft of this
paper, and the anonymous DAIS reviewers for their useful remarks.

É. Tanter is financed by the Milenium Nucleous Center for Web Research,
Grant P01-029-F, Mideplan, Chile. Work partially-funded by the EU Network
of Excellence CoreGRID and ITCC Chile-Korea.

330 É. Tanter and R. Toledo

References

1. Y. Aridor, M. Factor, and A. Teperman. cJVM: A single system image of a JVM
on a cluster. In International Conference on Parallel Processing, pages 4–11, 1999.

2. P. Avgustinov, J. Tibble, E. Bodden, O. Lhoták, L. Hendren, O. de Moor, N. Ongk-
ingco, and G. Sittampalam. Efficient trace monitoring. Technical Report abc-2006-
1, abc Group, Mar. 2006.

3. L. D. Benavides Navarro. Dhamaca – an aspect-oriented language for explicit
distributed programming. Master’s thesis, Vrije Universiteit Brussel, Belgium,
2005.

4. L. D. Benavides Navarro, M. Südholt, W. Vanderperren, B. De Fraine, and
D. Suvée. Explicitly distributed AOP using AWED. In Proceedings of the 5th In-
ternational Conference on Aspect-Oriented Software Development (AOSD 2006),
pages 51–62, Bonn, Germany, Mar. 2006. ACM Press.

5. D. Caromel, L. Mateu, and É. Tanter. Sequential object monitors. In M. Odersky,
editor, Proceedings of the 18th European Conference on Object-Oriented Program-
ming (ECOOP 2004), number 3086 in Lecture Notes in Computer Science, pages
316–340, Oslo, Norway, June 2004. Springer-Verlag.

6. R. Douence, P. Fradet, and M. Südholt. Composition, reuse and interaction analysis
of stateful aspects. In Lieberherr [13], pages 141–150.

7. R. Douence and L. Teboul. A pointcut language for control-flow. In G. Karsai and
E. Visser, editors, Proceedings of the 3rd ACM SIGPLAN/SIGSOFT Conference
on Generative Programming and Component Engineering (GPCE 2004), volume
3286 of Lecture Notes in Computer Science, pages 95–114, Vancouver, Canada,
Oct. 2004. Springer-Verlag.

8. T. Elrad, R. E. Filman, and A. Bader. Aspect-oriented programming. Communi-
cations of the ACM, 44(10), Oct. 2001.

9. M. Haupt. Virtual Machine Support for Aspect-Oriented Programming Languages.
PhD thesis, Technischen Universität Darmstadt, Germany, Dec. 2005.

10. JBoss AOP website, 2004. http://www.jboss.org/developers/projects/jboss/aop.
11. G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. Griswold. An

overview of AspectJ. In J. L. Knudsen, editor, Proceedings of the 15th European
Conference on Object-Oriented Programming (ECOOP 2001), number 2072 in Lec-
ture Notes in Computer Science, pages 327–353, Budapest, Hungary, June 2001.
Springer-Verlag.

12. F. Kon, F. Costa, G. Blair, and R. H. Campbell. The case for distributed middle-
ware. Communications of the ACM, 45(6):33–38, 2002.

13. K. Lieberherr, editor. Proceedings of the 3rd International Conference on Aspect-
Oriented Software Development (AOSD 2004), Lancaster, UK, Mar. 2004. ACM
Press.

14. C. V. Lopes. D: A Language Framework for Distributed Programming. PhD thesis,
College of Computer Science, Northeastern University, 1997.

15. M. Nishizawa, S. Chiba, and M. Tatsubori. Remote pointcut – a language construct
for distributed AOP. In Lieberherr [13], pages 7–15.

16. R. Pawlak, L. Seinturier, L. Duchien, G. Florin, F. Legond-Aubry, and L. Martelli.
JAC: an aspect-oriented distributed dynamic framework. Software Practice and
Experience, 34(12):1119–1148, 2004.

17. L. Rodŕıguez, É. Tanter, and J. Noyé. Supporting dynamic crosscutting with
partial behavioral reflection: a case study. In Proceedings of the XXIV International
Conference of the Chilean Computer Science Society (SCCC 2004), Arica, Chile,
Nov. 2004. IEEE Computer Society Press.

A Versatile Kernel for Distributed AOP 331

18. S. Soares, E. Laureano, and P. Borba. Implementing distribution and persis-
tence aspects with AspectJ. In Proceedings of the 17th International Conference
on Object-Oriented Programming Systems, Languages and Applications (OOPSLA
2002), pages 174–190, Seattle, Washington, USA, Nov. 2002. ACM Press. ACM
SIGPLAN Notices, 37(11).

19. SUN Microsystems. Remote Method Invocation, 1998.
20. SUN Microsystems. Using custom socket factories with Java RMI, 2005.
21. É. Tanter. Aspects of composition in the Reflex AOP kernel. In Proceedings of the

5th International Symposium on Software Composition (SC 2006), Lecture Notes
in Computer Science, Vienna, Austria, Mar. 2006. Springer-Verlag. To appear.

22. É. Tanter. An extensible kernel language for AOP. In Proceedings of AOSD
Workshop on Open and Dynamic Aspect Languages, Bonn, Germany, 2006.

23. É. Tanter and J. Noyé. Motivation and requirements for a versatile AOP kernel. In
1st European Interactive Workshop on Aspects in Software (EIWAS 2004), Berlin,
Germany, Sept. 2004.

24. É. Tanter and J. Noyé. A versatile kernel for multi-language AOP. In R. Glück
and M. Lowry, editors, Proceedings of the 4th ACM SIGPLAN/SIGSOFT Con-
ference on Generative Programming and Component Engineering (GPCE 2005),
volume 3676 of Lecture Notes in Computer Science, pages 173–188, Tallinn, Esto-
nia, Sept./Oct. 2005. Springer-Verlag.

25. É. Tanter, J. Noyé, D. Caromel, and P. Cointe. Partial behavioral reflection:
Spatial and temporal selection of reification. In R. Crocker and G. L. Steele, Jr.,
editors, Proceedings of the 18th ACM SIGPLAN Conference on Object-Oriented
Programming Systems, Languages and Applications (OOPSLA 2003), pages 27–
46, Anaheim, CA, USA, Oct. 2003. ACM Press. ACM SIGPLAN Notices, 38(11).

Transformation of Centralized Software
Components into Distributed Ones by Code

Refactoring

Abdelhak Seriai1, Gautier Bastide1, and Mourad Oussalah2

1 Ecole de Mines de Douai, 941 rue Charles Bourseul,
59508 Douai, France

{seriai, bastide}@ensm-douai.fr
2 LINA, université de Nantes, 2 rue de la Houssinière,

44322 Nantes, France
oussalah@lina.univ-nantes.fr

Abstract. Adapting software components to be used in a particular
application is a crucial issue in software component based technology.
In fact, software components can be used in contexts with character-
istics different from those envisaged when designing the component.
Centralized or distributed deployment infrastructure can be one of these
assumptions. Thus, a component can be designed as a monolithic unit
to be deployed on a centralized infrastructure, nevertheless the used
infrastructure needs the component to be distributed. In this paper,
we propose an approach allowing to transform a centralized software
component into a distributed one. Our technique is based on refactoring
and fragmentation of component source code.

Keywords: software component, adaptation, restructuration, distribu-
tion, refactoring.

1 Introduction

Component-based software engineering (CBSE) focuses on reducing application
development costs by assembling reusable components like COTS (Commercial-
Off-The-Shelf). However, in many cases, existing components can not be used in
an ad-hoc way. In fact, using a software component in a different manner than
for which it was designed is a challenge because the new use context may be
inconsistent with assumptions made by the component. Deployment infrastruc-
ture may be one of these assumptions. For example, a software component may
be designed as a monolithic unit to be deployed on a centralized infrastructure
and, due to load balancing performance, security policy or other motivations,
this component has to be distributed. The solution consists in adapting this
component to its distributed use context.

Therefore, we propose in this paper, an approach aiming at transforming an
object-oriented monolithic and centralized software component by integrating

F. Eliassen and A. Montresor (Eds.): DAIS 2006, LNCS 4025, pp. 332–346, 2006.
c© IFIP International Federation for Information Processing 2006

Transformation of Centralized Software Components 333

distribution facilities. Our approach is based on two transformations. The first
one consists in refactoring component structure in order to create a composite-
component (i.e. fragmented structure), while preserving component’s behaviour.
This transformation is achieved through a process composed of four stages. First,
following the available infrastructure, the needed distribution configuration is ex-
pressed in a declarative style. Next, the monolithic component is fragmented to
fulfil the distribution specification given during the first stage. After, compo-
nents generated as fragmentation result are assembled. Finally, the component
assembly is wrapped into a composite-component which is integrated into the
application.

The second transformation makes the generated composite-component dis-
tributed. In fact, the refactoring process applied to a monolithic centralized
component generates a composite one but still with centralized constituents. So,
in order to create a distributed composite-component, we need to transform local
composition links between its constituents into remote ones. Remote links reflect
the distributed configuration specified for the adapted component services.

We discuss the proposed approach in the rest of this paper as follows. In sec-
tion 2, we present an example of experimentation that illustrates our approach.
Section 3 and 4 detail respectively, the refactoring process allowing to fragment
a component and next the integration of the distribution mechanisms. Section 5
reviews related works. Conclusion and future works are provided in section 6.

2 Example of Illustration: A Shared-Diary Component

In order to illustrate our purpose, we use throughout this paper an example
of a monolithic software component providing services of a shared-diary sys-
tem accessible to multiple users. It allows to store and consult the personal
diaries of each member of a group and it coordinates dependent events stored or
generated by these diaries. The shared-diary component provides the following
services:
1. Managing personal diary. This includes authentication, consulting events

(e.g. meeting, activities, projects, etc.), querying the diary, etc. These ser-
vices are provided through the Diary interface.

2. Organizing a meeting. This includes services permitting to confirm the pos-
sibility to organize a meeting where the date and the list of the concerned
persons are given as parameters, services returning possible dates to organize
a meeting, etc. These services are provided through the Meeting interface.

3. Managing absence. This includes services permitting to verify the possibility
to add an absence event, to consult all the absence dates of one or some
persons, etc. These services are provided through the Absence interface.

4. Right management. This includes services concerning absence right attribu-
tion, service related to diary initialisation, etc. These services are provided
through the Right interface.

5. Updating the diary, the meeting dates, the absence dates and the absence
rights of a person. These services are provided, respectively, through Di-
aryUpdate, MeetingUpdate, AbsenceUpdate and RightUpdate interfaces.

334 A. Seriai, G. Bastide, and M. Oussalah

We consider that this component is a monolithic and centralized one. Also, we
assume that, due to the considered load balancing policy, defined for the avail-
able deployment infrastructure, this component cannot be deployed on only one
host. So, our goal is to transform this component for deploying it on a distributed
infrastructure (Fig. 1). This result may be obtained by the fragmentation of
the shared-diary component into four new components called diary-manager,
database-manager, absence-manager and meeting-manager which may be de-
ployed on distinguished hosts.

Fig. 1. Transformation of the shared-diary component into a distributed one

3 From a Monolithic Component to a Composite-
Component

The first transformation to obtain a distributed component from a monolithic
centralized one consists in refactoring component code through the fragmenta-
tion of its structure. As we have mentioned it previously, the component refac-
toring process (Fig. 2) is based on four stages which are detailed below.

Fig. 2. Software component refactoring process

Transformation of Centralized Software Components 335

3.1 Specification of the Transformation Result

This first stage aims at indicating how services provided by the component to
be transformed are to be deployed on the available distributed infrastructure.
This is done by specifying for every provided service, its deployment host. This
operation is realized using a script defining components to be generated and for
each component, its provided interfaces. The script syntax1 is given bellow.

StructuAdapt (CompToAdapt,
{CompDef = <{PortDef={[||] InterfaceDef}+ }+?>,<host?> }*)

To illustrate this, let us reconsider our example of the shared-diary application,
the goal of this component transformation is to reorganize services provided
by this one in four new generated components (e.g. Diary-Manager, DataBase-
Manager, Absence-Manager, Meeting-Manager). The Diary-Manager compo-
nent (provided interfaces: Diary and DiaryUpdate) will be deployed on the local
site whereas the DataBase-Manager component (provided interfaces: Right and
RightUpdate), Absence-Manager component (provided interfaces: Absence and
AbsenceUpdate) and Meeting-Manager component (provided interfaces: Meet-
ing and MeetingUpdate) are deployed respectively on site1, site2 and site3. The
script allowing to obtain the needed structure is the following:

StructuAdapt (Shared-Diary,
{Diary-Manager=<{P-Diary=Diary,DiaryUpdate}>}
{DataBase-Manager=<{DB=Right, RightUpdate}>,<site1>}
{Absence-Manager=<{P-Absence=Absence,AbsenceUpdate}>,<site2>}
{Meeting-Manager=<{P-Meeting=Meeting,MeetingUpdate}>,<site3>}
)

3.2 Component Fragmentation

Specification done during the previous stage is used to refactor component struc-
ture. Component refactoring consists in fragmenting this component into a set
of new generated components, while guaranteeing the component integrity and
coherence. This stage is based on component code analysis.

Fragmentation Control: Component code refactoring must be realized with-
out any change on this component’s behaviour. Thus, two criteria must be
checked: integrity of generated components and coherence of their respective
states.

– Generated component integrity. The implementation of each component to
be generated must be guaranteed to be sound. The soundness of this code2

1 Symbols ” + ”, ” ∗ ” indicate respectively one or more and zero or more elements.
”{}” symbolizes a set of elements. When an interface is defined in several gener-
ated components, symbol ”||” associated with the interface name indicates that this
interface must be that which is used by the rest of the application.

2 Proof of the satisfaction of these soundness criteria by the proposed refactoring
approach is out of this paper scope.

336 A. Seriai, G. Bastide, and M. Oussalah

implies that it must be syntactically and semantically correct (i.e. code must
be conform to the corresponding object-oriented grammatical and semantic
language rules), complete (i.e. dependent code elements must be accessible
one to the others) and coherent (i.e. the behaviour corresponding to a gen-
erated component must be conform to the matching local behaviour in the
monolithic component).

– Generated component coherence. The outside behaviour made by the gener-
ated components must be the same as the monolithic component’s behaviour.
That implies that local behaviours of generated components must be coher-
ent, the ones compared to the others. This requires that local behaviours
corresponding respectively to the generated components which are semanti-
cally related to other behaviours in other components must be identified to
ensure their correlation.

Code Analysis and Fragmentation: The fragmentation which aims at gen-
erating new software components is realized by analysing the monolithic com-
ponent source-code, determining for each new component to be generated its
corresponding code, separating these codes, one from the others, and deter-
mining existing dependencies between them. These steps are mainly based on
building, for each component to generate, its SBDG (i.e. Structural and Be-
havioural Dependency Graph). A SBDG is a graph where nodes are structural
elements and arcs are the different forms of dependencies existing between these
elements. Structural elements may be external (e.g. ports, interfaces, implemen-
tation class and methods matched with services provided by these interfaces) or
internal (e.g. internal methods and inner classes) ones. Dependencies between
structural elements are of two types: structural and behavioural dependencies.
Structural dependencies correspond to composition relationships between struc-
tural elements. Thus, a software component is structurally dependent of its ports;
a port is structurally dependent of its interfaces, etc. Behavioural dependencies
represent method calls defined in a method code. It should be noted that the
polymorphism property related to an object-oriented code does not allow to
identify, by a static analysis and in a deterministic way, all existing behavioural
links between methods. Thus, we insert in a SBDG all possible behavioural links
existing between these structural elements (i.e. methods).

Once, the SBDG corresponding to a component to be generated is built, the
code of each one of its structural elements is generated. These codes are con-
nected between them in order to reflect the existing structural links between
their corresponding structural elements. All the generated code represents the
first version of a new component source-code. The next version of the generated
component source-code transforms behavioural links existing between methods
defined respectively by two different SBDG on composition links between the
corresponding components (see Sect. 3.3).

For example, figure 3 shows a part of the SBDG corresponding to the Meeting-
Manager and Absence-Manager components. As the checking meeting method is
linked to the is absent method (i.e. the checking meeting method of the Meeting
interface calls the is absent method of the Absence interface) which is contained

Transformation of Centralized Software Components 337

Fig. 3. A part of the Shared-diary component SBDG

in another interface, it is needed to create a behavioural link between the Meeting
and Absence interfaces.

3.3 Assembly of the New Generated Components

The fragmentation stage generates unconnected components providing each one
a sub-set from the initial component services. However, these services are not
independents one from the others. In fact, they are linked through behavioural
or resource sharing dependencies which are materialized through connections
between generated components.

Connecting Components Via Behavioural-Dependency Interfaces:
Components generated by fragmentation are connected using behavioural-
dependency interfaces. These interfaces are used to materialize behavioural-
dependencies between generated components according to the SBDG graph.
Behavioural-dependency interfaces defined by a generated component are:

– Interfaces defining required behavioural-dependency services. These inter-
faces allow a component service to access all needed elements (i.e. methods)
which are contained in other generated component implementations.

– Interfaces defining provided behavioural-dependency services. These services
are those provided by this component and which are required by other com-
ponents to assuring some of their services.

Connecting Components Via Resource-Sharing Dependency Inter-
faces: Components are also connected via interfaces used to manage resource

338 A. Seriai, G. Bastide, and M. Oussalah

sharing. We consider as resource every structural entity defined in the compo-
nent code with an associate state. For example, instance and class attributes
are considered as resources. Shared resources are those defined and used in two
or more component implementations. So, we need to preserve a coherent state
of these resources in all components sharing them (i.e. the same resource with
the same state on all components). Coherence is ensured through two types of
interfaces. The first one aims at permitting to communicate, between compo-
nents, updates occurred on shared resources. The second interface type allows
to guarantee a synchronized access to shared resources. The implementation of
these communication interfaces is realized through the instrumentation of the
object-oriented source-code corresponding to these services [2].

– Communication interfaces are:
1. An interface defining required services permitting to notify shared-

resource state updates. These services are defined as synchronous (i.e.
every time when a shared resource is updated by a component, its execu-
tion can continue only after its state is updated by the other components
sharing this resource). Component implementation is instrumented by
adding notification code every time the shared resources updated.

2. An interface defining provided services allowing to update shared re-
source states after this resource been updated by another component.
Thus, component implementation is instrumented by adding code per-
mitting to read new resource values and update the local resource copy.

Fig. 4. Example of communication interfaces

Figure 4 shows an example of notification interfaces used to manage the
Absence list resource. This resource is an instance attribute whose value
represents the absence days for a given person. It is shared by the Absence-
Manage and Meeting-Manager components. When the Absence list resource
is updated by the Absence-Manager component (1), a notification is sent
to the Meeting-Manager component (2). Then, this last one memorizes the
new value (3).

Transformation of Centralized Software Components 339

– Synchronized access interfaces are:
1. An interface defining required services permitting to acquire an authori-

sation to update shared resources, from components sharing these ones.
These services are not called every time a shared resource is used in the
component implementation code.

2. An interface defining provided services allowing to release rights to up-
date shared resources. These services are called by components sharing
resources with the component providing this interface.

Figure 5 shows an example of synchronized access interfaces used to man-
age the nb day free resource. This resource is an instance attribute whose
value represents the number of free days for a given person. It is shared by
the Absence-Manager, Database-Manager and Diary-Manager components.
First, Absence-Manager component which needs to update the nb day free
resource (1) asks a right access to the other components which share this
resource (e.g. DataBase-Manager and Diary-Manager) (2). Then, after it
receives a notification from these components, Absence-Manager can update
the nb day free resource (3).

Fig. 5. Example of synchronized access interfaces

3.4 Integration of the Transformation Result

The last step of our process is the integration, in the subjacent application, of
the component restructuring result obtained during the previous stages. It con-
sists in connecting the new generated components with the other application
components and to guarantee that the component transformation is achieved in
a transparent way compared to the application components. In fact, the appli-
cation must continue to be executed without any change compared to its initial
configuration. So, integration requires to satisfy the following properties:

– Security condition: the application components should not be able to access,
after the component transformation, to other services than those provided
by the component before its transformation. In fact, all new interfaces (i.e.
created by our process) must not be accessed by application components,

340 A. Seriai, G. Bastide, and M. Oussalah

except those created by transformation. For example, all components must
not access to services allowing to modify a shared resource state (i.e. only
components which share this resource can access to related services).

– Distribution feature: New generated components can be accessed and han-
dled as separate entities. For example, it would be possible to specify a de-
ployment configuration by a direct designation of the generated components
(i.e. components generated by fragmentation).

Our solution to guarantee these properties consists in encapsulating components
generated by fragmentation into a new composite-component. This new compo-
nent allows to mask access to ”non functional” services (i.e. it wraps all the
generated components). Moreover, it provides interfaces allowing to manipulate
the generated components. For example, these interfaces aim at permitting in-
dependent deployment of each sub-component.

Fig. 6. Integration of component transformation result

4 From a Centralized Composite-Component to a
Distributed Composite-Component

The fragmentation process realized during the first phase of our approach allows
us to generate a new composite-component. However, this result cannot be dis-
tributed on several hosts because all sub-components use local binding. As many
resources or services cannot be accessed using direct references because they are
provided by remote components (i.e. sub-components are interconnected through
bindings which can be local or remote references between provided and required
interfaces), we need to ensure communications between local and remote com-
ponents. In order to create distributed components, first, we need to specify
the new component distribution (i.e. to specify sites for each component). This
specification is realized through ADL generation (see Sect. 3.1). Then, the com-
ponent structure is automatically updated (i.e. creation of new interfaces and
components dedicated to the distribution management) and component code is
instrumented in order to ensure coherence (i.e. a component may access to all
resources or services needed during its execution).

Transformation of Centralized Software Components 341

In order to introduce distribution mechanisms into the composite-component
generated during the first transformation process, we propose a distribution
model for composite-components (Fig. 7). This model is composed of two parts.
The first part is dedicated to the distribution management at the component
content scale (i.e. new created interfaces and new added sub-components) and
the other one defines all components needed at the controller scale (i.e. low-level
services, network services, etc.).

Fig. 7. Component distribution model

4.1 Distributed Composite-Component

A distributed component is a component whose sub-components may be de-
ployed on different hosts. We distinguish three solutions which can be used to
create a distributed component. The first one (see Fig. 8 Case B) consists in
deploying sub-components on different hosts and the composite on only one. In
this case, the composite-component instance contains only connectors which are
used to transfer messages from provided composite ports (or interfaces) to sub-
component ports (or interfaces) which may be provided by a local or a remote
host (i.e. export binding). Moreover, sub-components are connected together
through direct binding which may be local or remote ones. This strategy implies
that sub-components may be accessible by a direct way. Moreover, the visibility
of the internal composite structure is blurred. The second solution (see Fig. 8
Case C) consists in the use of virtual components within the composite. Virtual
components are used in order to access a remote component (see below). This
strategy allows to improve composite structure visibility. The last solution (see
Fig. 8 Case A) consists in the creation of a composite-component into every host
on which a part of the component is deployed. This solution allows to preserve
a strong encapsulation of the created components. A composite-component in-
stance is loaded on each host which contains a part of this component (i.e. at
least one sub-component). Nevertheless, the entire composite-component is not
instancied on each host. In fact, different copies of the composite-component are

342 A. Seriai, G. Bastide, and M. Oussalah

Fig. 8. Transformation from a centralized component to a distributed one

instancied. Each instance is composed of a set of local components and a set of
virtual components.

Local Components: Local component means real component (i.e. sub-
component) of the composite-component. They are generated during the
fragmentation step of the first transformation. Each component is instancied in
only one host (i.e. those which are specified by the administrator during the
specification step).

Virtual Components
Virtual component structure: A virtual component provides the same interfaces
than those of the remote component, however implementation (i.e. service code)
is different. In fact, functional code is replaced by controller code which allows
to invoke remote services. Two interfaces are added to this virtual component
(Fig. 9): one is required and allows the component to send messages to the
remote component and the other one is provided and allows the component
to receive messages from the remote component. These two interfaces ensure
remote communications. Bindings between virtual components are created using
architecture description analysis (i.e. ADL analysis). For example, when a local
component C1 deployed on site 1 is bound to a remote component C2 deployed
on site 2 (i.e. a required interface of the component C1 is linked to a provided
interface of the component C2), we create two links: one from the provided
interface of the component C’2 (i.e. virtual component of C2 on site 1) to the

Transformation of Centralized Software Components 343

required interface of the component C’1 (i.e. virtual component of C1 on site
2) and the other one from the provided interface of the component C’1 to the
required interface of the component C’2. Communications between C’1 and C’2
components are realized through these two new interfaces whose services use the
distribution components (see Sect. 4.2).

Fig. 9. Example of component distribution

Virtual component behaviour: A virtual component is a representation of a local
component which is deployed on a remote host. In fact, it is used as connectors
between local and remote components. Indeed, a local component service may
invoke a remote service as if this one is provided by a local component (i.e.
functional code of local components is not modified). Virtual components are
used in order to transfer messages between local and remote components (i.e.
delegation services). So, remote connections are realized only from a virtual
component to another one because only these components are able to send and
receive messages through network (Fig. 10). Thus, when a service of a component
C1 calls a service provided by a remote component C2, the component C1 sends
a message to the virtual component of C2. Then, this call is transformed into a
call from the virtual component of C1 to the component C2. This transformation
is realized through a remote connection between the virtual component of C2
and the virtual component of C1 (i.e. on the remote host).

4.2 Distribution Components

A new controller component called distribution component which allows to en-
sure remote communications is added to our model. It is composed of two sub-
components:

344 A. Seriai, G. Bastide, and M. Oussalah

– A transport component: it allows virtual components to realize remote com-
munications (i.e. services provided by the transport component allow to pack
and unpack messages which are exchanged between local and remote com-
ponents, and set up connections through network protocols).

– A naming component: it allows the transport component to find the host ad-
dress on which local component services are instancied (i.e. services provided
by the naming component allow to search and locate remote components).

Fig. 10. UML2 Sequence Diagram of the distribution process between two components

As we explained previously, different component instances are loaded on
deployment hosts. As a copy of the composite-component is created on each
site, non-functional services (i.e. service allowing to manage component content,
service allowing to manage bindings between components, service allowing to
manage component life cycle, etc.) are duplicated. So, we need to ensure com-
munication and coherence between component instances at the control scale in
order to preserve software component integrity. For example, when the
composite-component starts (i.e. call to the life cycle controller services), the
other instances loaded on the remote hosts have to start their own component
version. This operation can be realized using code instrumentation of controller
services.

Transformation of Centralized Software Components 345

5 Related Works

We classify related works according to two criteria: the approach goal and the
technique used to reach this goal. First, we present works related to software
component adaptation. Next, we focus on works related to program transfor-
mation and restructuring and particularly those interested to object-oriented
softwares.

Concerning the first criterion related to the adaptation goal, many adaptation
approaches have been discussed in the literature [10]. Adaptation techniques can
be categorized as either white-box or black-box. White-box techniques typically
require understanding of the internal implementation of the reused component,
whereas black-box techniques only require knowledge about the component’s in-
terface. A commonly discussed black-box technique is wrapping, also known as
containment in COM literature. Superimposition [3] is an alternative technique.
The idea behind is that the entire functionality of a component (i.e. rather than
that of a single method) should be superimposed by certain behaviour.

To our knowledge no approach from those discussed in the literature, is in-
terested in the adaptation of component structures. All are interested in service
adaptation. This adaptation can be carried out in a static [11] or dynamic [12]
way. Binary component adaptation (BCA) [11] is a mechanism to modify exist-
ing components (such as Java class files) to the specific needs of a programmer.
It allows components to be adapted and evolved in binary form and on-the-fly
(i.e. during program loading).

Concerning the second criterion related to restructuring approaches, we can
quote refactoring techniques [13] that aim at restructuring an existing body of an
object-oriented code, altering its internal structure without changing its external
behaviour. Generally, refactoring is used to make the code simpler in order to
include or understand it easier [8]. It also allows to find the potential bugs or
errors more quickly. It makes it possible to eliminate the duplicated code. This
technique aims at reorganizing classes, variables and methods in a new hierarchy
in order to facilitate its future adaptation or extension [7].

Another technique of program analysis is slicing [14]. It is generally used for
the code debugging and testing [1], for maintaining [9] or for transforming source
code. The goal of this technique is to determine program behaviour but also that
of all elements which it can contain (e.g. variables, methods, etc.). For example,
slicing allows to detect all instructions which can affect a variable.

6 Conclusion and Future Works

We presented in this article an approach allowing to create distributed compo-
nents from monolithic ones. Our proposal is based on a new adaptation technique
allowing to reorganize the software component structure using code refactoring.
In fact, as we explained, component deployment and execution are linked to its
structure. So, we propose to use this approach in order to fragment existent
components and generate new components which can be distributed on several

346 A. Seriai, G. Bastide, and M. Oussalah

hosts. This approach is implemented and a prototype has been developed using
the Julia [5] software component framework which is the Java implementation
of the Fractal component model [4]. Fractal and Julia are developed by the IN-
RIA3. Fractal is a hierarchical component model quite close to that proposed by
UML2 [6].

Our approach needs source code analysis and instrumentation. It does not con-
sider run-time adaptation problems. However, it is generic enough to be applied
to dynamic adaptation. Nevertheless, concerning this possibility, it is necessary
to define, in addition to the presented process, mechanisms for the dynamicity
management (e.g. disconnection, connection, interception of the invocations of
services, service recovery, etc). Thus, this way constitutes one direction of our
future work.

As we noted it before, the main application of our approach consist in realiz-
ing a flexible deployment of software components. A future work may consist in
the deployment process automation according to the execution context.

References

1. H. Agrawal, R. Demillo, and E. Spafford: Debugging with dynamic slicing and
backtracking. Software-Practice an Experience, 23(6): 589-616, 1993.

2. G. Bastide, A-D. Seriai, M. Oussalah: Adapting Software Components by Struc-
ture Fragmentation. The 21st Annual ACM Symposium on Applied Computing;
Software Engineering: Applications, Practices, and Tools (SE), Dijon, France, April
2006.

3. J. Bosch: Superimposition: A Component Adaptation Technique. Information and
Software Technology, 1999.

4. E. Bruneton, T. Coupaye, M. Leclercq, V. Quema, J.-B. Stefani: An Open Com-
ponent Model and Its Support in Java. CBSE, 7-22, 2004.

5. E. Bruneton: Julia Tutorial. http://fractal.objectweb.org/tutorials/julia/
6. H.-E. Eriksson: UML 2 Toolkit, Wiley edition, ISBN: 0471463612, 2003.
7. B. Foote and W. F. Opdyke: Life Cycle and Refactoring Patterns that Support

Evolution and Reuse. First Conference on Pattern Languages of Programs (PLOP
’94), Monticello, Illinois, 1994.

8. M. Fowler, K. Beck, J. Brant, W. Opdyke, D. Roberts: Refactoring: Improving the
Design of Existing Code. ISBN 0201485672, 1999.

9. K. B. Gallagher and J. R. Lyle: Using program slicing in software maintenance.
IEEE Transactions on Software Engineering, 17(8):751-761, 1991.

10. G. T. Heineman and H. Ohlenbusch: An Evaluation of Component Adaptation
Techniques. Technical Report WPI-CS-TR-98-20, Department of Computer Sci-
ence, Worcester Polytechnic Institute, 1999.

11. R. Keller, U. Holzle: Binary Component Adaptation. ECOOP, 307-329, 1998.
12. A. Ketfi, N. Belkhatir, P.Y. Cunin: Automatic Adaptation of Component-based

Software: Issues and Experiences. PDPTA’02, Las Vegas, Nevada, USA, 2002.
13. T. Mens, T. Tourwe: A Survey of Software Refactoring, IEEE Transactions on

Software Engineering, Volume 30, Number 2, pp. 126-139, February 2004.
14. M. Weiser: Program Slicing. IEEE Trans. Software Eng. 10(4): 352-357, 1984.

3 The French National Institute for Research in Computer Science and Control.
http://www.inria.fr/

PAGE : A Distributed Infrastructure for
Fostering RDF-Based Interoperability

Emanuele Della Valle, Andrea Turati, and Alessandro Ghioni

CEFRIEL - Politecnico of Milano, Via Fucini 2, 20133 Milano, Italy
dellavalle@cefriel.it, turati@cefriel.it, ghioni@cefriel.it

Abstract. This paper shows how to build a scalable, robust and efficient
distributed Internet-scale RDF repository, that we name PAGE (Put
And Get Everywhere).

1 Motivation

In the recent years, the RDF (Resource Description Framework) data model
is gaining momentum. Among other significant examples, take for istance the
adoption of key players such as Adobe (i.e., the eXtensible Metadata Platform
- XMP) and Oracle (i.e., the 10g version of the famous RDBMS promise to be
the best RDF storage engine).

RDF enables the encoding of relational data over the Internet using triples
usually denoted with (spo), where s is the subject, p is the predicate and o
the object. Complex structures can be easily encoded in a set of RDF triples.
But, what about managing them? Centralized solutions may help in the short
term, but if RDF should become the basis of the Semantic Web, some sort of
distribution must be take into account. What if we could put and get triples
without bothering of the underlying infrastructure because such infrastructure
is the whole Internet?

Such a distributed and decentralized RDF repository is not yet available, but
the peer-to-peer community has been studying the “turn on, put() and get()
out” paradigm using Distributed Hash Tables (DHTs) for almost a decade. In
this paper we describe PAGE (Put And Get Everywhere), an optimized peer-
to-peer infrastructure for distributed RDF storing and retrieval: an original ap-
proach that comes out from the convergence between the current works on DHT
in the peer-to-peer community and on optimized index structures for querying
RDF in the Semantic Web community named YARS [1].

Our work aims at advancing the state-of-the-art in decentralized RDF reposi-
tories finding a convergence between peer-to-peer (i.e., DHT) and Semantic Web
researches. In particular it belongs to the class of solutions which avoid flooding
approach, previously investigated by RDFPeers [2] and GridVine [3].

2 State-of-the-Art

Optimized RDF Storing and Retrieval. In a single RDF statement (also
called triple) (spc) the subject s can be either an URI reference or a blank node

F. Eliassen and A. Montresor (Eds.): DAIS 2006, LNCS 4025, pp. 347–353, 2006.
c© IFIP International Federation for Information Processing 2006

348 E. Della Valle, A. Turati, and A. Ghioni

(that is an abstract entity), the predicate p is an URI reference and the object
p can be an URI reference, a blank node or a literal (e.g., a string). In order
to group triples, a context is often associated to each triple. A triple and it’s
context is named quad and it is denoted with (spoc), where c is the context.

In order to store and retrieve RDF triples, several storage systems have
been developed. Many centralized RDF repositories have been implemented
to support storing, indexing and querying RDF documents, such as RDFDB,
Inkling, RDFStore, and Sesame. For this paper, we examine YARS [1], a re-
cent solution that defines an optimized index structure for fast retrieval of RDF
statements.

YARS index structure consists of two parts: the lexicon and the quad index.
The former stores mappings from literals and URIs to internal object IDs (used
for compactness), the latter stores the structure information (i.e. the quads).

Access patterns are strings that represents a set of RDF triples and are used as
basic building blocks for more complex RDF query languages such as SPARQL.
An access pattern is similar to a quad, in which at least one element is unspecified
(and, for convention, is set to ?). So, for example, (s?oc) means that we are
interested at all quads having relations between the subject s and the object o,
in the context c (it’s equivalent to say that we want to get all predicates that
have been stated together with s, o and c).

All possible access patterns are 16, but YARS’s authors suggest to combine
them in six indexes (SPOC, CP, OCS, POC, CSP, OS) because a single index
can be used to cover more than a type of query (see [1] for details). For example,
the SPOC index is used to process (s???), but also (sp??) and (spo?). An
index is a structure that stores objects in a way that allows fast retrieval: YARS
uses B+-trees, because they support range queries.

Distributed Hash Tables. In DHTs each resource is associated with a key
which can be produced by hashing a significant information (e.g. the name)
related to the resource. Nodes have identifiers in the same space of the keys.
Each node is responsible for storing a range of keys and corresponding resources.
The DHT nodes maintain a routing table in which IDs of several other nodes
are stored. When a node performs a get(key) request, the lookup message is
routed through the overlay network to the node responsible for the key.

Several DHTs (e.g., CAN, Chord, Tapestry) have been designed with dif-
ferent functioning mechanisms, but everyone with the same main concepts:
the keyspace partitioning and an overlay network. The former refers to the
technique used to assign certain sets of keys to different nodes and the latter
refers to the structure of links used by nodes to communicate via message ex-
changing.

Most DHTs assign a single key at each node, called its ID (identifier). Then,
keys are assigned to nodes according to a particular function that gives a notion
of the distance between two keys: a node with ID x is the root for all the keys
for which x is the closest ID, measured according to a distance function.

Given a key k, it is necessary to send a message to the root of k in order to
retrieve the corresponding value: at each step, the message is forwarded to the

PAGE : A Distributed Infrastructure 349

neighbour whose ID is closer to k, until there is no such neighbour, in which
case we have arrived at the root node responsible for k. This process is called
overlay routing and it can be done through the use of a routing table in every
node. Indeed, each node maintains a set of links to other nodes (also called
neighbours) such that for any key k, the node either is root for k or has a link
to a node that is closer to k in terms of the keyspace distance. The more the
number of hops in any route and the number of neighbours per node are low,
the more efficient is routing. Among the various implementation available (see
[4] for a comparison) we chose Bamboo, because it is suitable with the lookup
expansion mechanism used in the retrieval process described in section 3.

3 Modifying DHT for Distributed RDF Storing and
Retrieval

In order to design a distributed and decentralized system that allows efficient
storage and retrieval of RDF statements, we have created PAGE, a modified
Bamboo DHT that implements YARS index structure.

The rough idea is to store every quad in a YARS fashion in six indexes,
using the put operation of key-value pairs available in DHTs, where values are
quads and keys are special coding of the six IDs used in the six YARS indexes.
This allows to exploit DHT routing method in order to implement a distributed
version of B+-trees used in YARS.

Computing ID. Because we need a shared method for ID assigning, instead of
using a centralized lexicon (like YARS), we followed DHT approach in using a
hash function (indeed it can be used also in a distributed way with a statistical
assurance to generate unique IDs).

The ID of a quad is built by concatenating four different parts: each part is
the result of an hash function applied to the respective quad’s element.

For example (see step 1 of figure 1), supposing that a server wants to put
the quad “(m:Lennon m:sings m:Imagine m:70s)”, the hashes of each quad parts
could be: 1 for “m:Lennon”, F for “m:sings”, A for “m:Imagine” and 7 for “m:70s”
(for readability, here we represent the 40 bytes long IDs with 5 digits).

Furthermore, in every ID it’s necessary to encode the index that has been
used to build the ID: to refer to SPOC index we use the digit 1, 4 for CP index,
6 for OCS index, 9 for POC index, C for CSP index and E for OS index.

Storing Process. As proposed in YARS, for efficient lookups, every quad has
to be stored six times (once for each index) respecting the sort of its four com-
ponents imposed by the type of index. For simplicity, the six storage messages
are wrapped in a PAGE method named put.

Taking the previous example as a guide (see step 2 and 3 of figure 1), in order
to store the quad “(1 F A 7)” in the six indexes, we have to store the following
six IDs: “11FA7” for the SPOC index, “47F1A” for the CP index, “6A71F” for
the OCS index, “9FA71” for the POC index, “C71FA” for the CSP index, and
“EA1F7” for the OS index.

350 E. Della Valle, A. Turati, and A. Ghioni

When an owner wants to make a quad public it calls the put operation that
constructs six messages (each containing an ID of the quad) and dispatches them.
Every message is forwarded toward the node with the most similar (numerically
closer) ID to that contained in the message according to Bamboo standard be-
haviour: this node is the root of that quad. The root stores the quad and its ID
and informs nearby nodes to store a copy of that information (replicas).

n:36A13

n:11FAF
n:F001A

n:BB29A

n:A246B
n:632C3

0. Request: PAGE.put(“m:lennon m:sings m:imagine m:70s”)
1. Hashing the URI:

3. put the six pairs <key, value> in the DHT

subject predicate object context

URI m:lennon m:sings m:imagine m:70s
hash(URI) 1 F A 7

index key

SPOC 11FA7
CP 47FA1
OCS 6A71F
POCS 9FA71
CSP C71FA
OS EA1F7

SPOC

OCSPOCS

CSP
CP

OS

KEY VALUE

11FA7 m:lennon m:sings m:imagine m:70s

KEY VALUE

47FA1 m:lennon m:sings m:imagine m:70s

KEY VALUE

6A71F m:lennon m:sings m:imagine m:70s

KEY VALUE

9FA71 m:lennon m:sings m:imagine m:70s

KEY VALUE

C71FA m:lennon m:sings m:imagine m:70s

KEY VALUE

EA1F7 m:lennon m:sings m:imagine m:70s

2. Computing the six keys

Fig. 1. Storing process

Retrieval Process. The PAGE get method wraps the query process: it takes
an access pattern as input, computes the hashes, chooses the index, builds the
access pattern ID and packages everything in a query message that is forwarded
toward the corresponding root, which can answer with the asked quad.

Searching a single quad is not a very useful operation: if subject, predicate,
object and context are already known, it means simply verify that that quad
exists and it has been published. More interesting is asking quads of which some
components are unknown (access pattern based query): (sp?c) finds all quads
having specified subject, predicate and context, but having object unknown.

DHTs are designed mainly to perform efficient retrievals of individual values.
The basic implementation of Bamboo does not manage queries about a range
of values. Therefore, we have to modify a method that is able to perform single
key lookups in order to build a method that allows lookups of a range of keys.

Queries have to be routed as messages, exactly as it happens for lookups of
single quads, and thus we need to assign IDs to them.

At every possible query corresponds an access pattern. In order to assign
an ID to a query it is sufficient to encode the corresponding access pattern by
computing the hash of each its component (conventionally assigning a sequence
of 0 to unspecified parts, pointed out with a ?) and then reorder them respecting

PAGE : A Distributed Infrastructure 351

the components’ order imposed by the index that allows to answer to such query.
Furthermore, a “mask” is associated to every query, likewise to what IP does in
Internet where the netmasks are used for distinguishing some net addresses.

Since the zeros appear only at the end of every query ID, a mask is simply
a flag that separates the known parts of the quad from those that we want to
get (i.e. it points out the preceding position at that in which zeros begin). A
mask is a number that specifies the position beyond which the quad parts is
unspecified.

For instance (see figure 1), the access patter (m:Lennon m:sings ? ?), meaning
all the songs performed by Lennon in any context, requires the SPOC index and
it is converted to the ID 11F00/ 3. For this query, the mask is 3 and means
that the first 3 digits of the ID are relevant (the index and the first two quad
parts are specified), so only the last two elements of the quad are not specified
(i.e., the object and the context). The mask, along with the index code, allows
for realizing what type of query has to be processed. The first digit of the ID
says what index we have to use, but this information is not sufficient to correctly
process a query: it is necessary to know the exact point beyond which we want
all values, i.e. the query pattern.

n:11F57

n:11F5C

n:11F71

n:11F74

n:11FA4

n:11FAF

KEY VALUE

11FA7 m:lennon m:sings m:imagine m:70s

KEY VALUE

11F58 m:lennon m:sings m:woman m:pop

n:11F14

n:17A32

11F00/3,1

11F00/3,2

11F00/3,3

11F00/3,3

11F00/3,4

11F00/3,4

11F00/3,4

0. Request: PAGE.GET(“m:lennon m:sings ? ?”)
1. calculating the key corresponding

to the access pattern
index subject predicate object context

URI SPOC m:lennon m:sings ? ?
hash(URI) 1 1 F 0 0

n:11F59

m:lennon m:sings m:imagine m:70s

m:lennon m:sings m:woman m:pop

Query
Query expansion
Result

LEGENDA

Fig. 2. Retrieval process

Along with the mask, another number is associated with the queries ID: “hop”,
a sort of reverse time-to-live, equals to the number of digits of the query ID
already considered during routing process. When a query is introduced in the
network its ID is accompanied by a specific mask and a hop set to 0. While the
message goes through the network, the hop increases by 1 at each crossed node.

352 E. Della Valle, A. Turati, and A. Ghioni

The routing of query messages has to exactly begin equally to the routing of
lookups: every single node forwards the message to its neighbours that possesses
an ID that has a longer matching prefix with the query ID, until the final part of
the query ID (beginning from the digit following that pointed out by the mask)
is reached. At that point, in fact, the message has to be sent to all the nodes
that share the same prefix with the query ID (obviously excluding the sequence
of zeros), because we are interested to any value that quads state in that part.
So, every node forwards the message to several nodes that are in its routing
table, increasing the hop so that the next node will know at which nodes it has
to forward the message (it is like if the matching prefix were every time longer).

For example, suppose that a node with ID 17A32 wants to perform the query
11F00/3,0: since it has the first digit in common with the query, it forwards the
message 11F00/3,1 to a known node that has the first two digits in common with
the query, whose ID is for instance 116D4. The node 116D4 forwards message
11F00/3,2 to the node having the same first three digits (e.g. 11F74).

Now, since the next digit to be matched is beyond the mask, the node 11F74
has to forward the message to all known nodes having the same prefix as query.
Therefore, it sends the message 11F00/3,3 to all known nodes with ID in the
range 11F00x-11FFx and the message 11F00/3,4 to all known nodes whose ID
is in the range 11F70-11F7F: particularly, nodes 11F59 and 11FA4 receive the
message 11F00/3,3 and proceed in the same way, while node 11F71 receives
11F00/3,4 and stop the propagation. Finally, all nodes involved in the lookup
expansion send to the petitioner all quads that match the query prefix up to the
mask.

4 Discussion and Conclusions

In this paper we have introduced PAGE, a distributed infrastructure that en-
ables to put and get triples from everywhere, simplifies the implementation.
PAGE makes deploying distributed Semantic Web applications straight forward
because it avoids to implement from scratch all of the scalable routing, robust-
ness, and management properties. Applications get all these properties at the
cost of making available enough resources for processing the information it in-
tends to exchange. Moreover, being PAGE self-organizing, each node is essen-
tially independent from all other nodes and it only has to bother on making
available enough resources to the infrastructure to make it grow incrementally.
Therefore deploying an application just means either installing such application
on pre-existing nodes, or adding nodes (with the application on top) to the
infrastructure.

An advantage of our approach is the parallel execution of a query in the case
of a lookup expansion: at the same time, several nodes retrieve a subset of query
result. Because of results are returned when available, a clear drawback of PAGE
is the impossibility of calculating the completeness of the result set: this aspect is a
diffused problem of distributed systems that could be bypassed introducing a time
threshold within which results are expected and beyond which results are rejected.

PAGE : A Distributed Infrastructure 353

References

1. Harth, A., Decker, S.: Optimized Index Structures for Querying RDF from the Web.
In: 3rd Latin American Web Congress, Buenos Aires - Argentina. (2005)

2. Cai, M., Frank, M.: RDFPeers: a scalable distributed RDF repository based on a
structured peer-to-peer network. In: WWW ’04, New York, NY, USA, ACM Press
(2004) 650–657

3. Aberer, K., Cudré-Mauroux, P., Hauswirth, M., Pelt, T.V.: GridVine: Building
Internet-Scale Semantic Overlay Networks. In: ISWC. (2004) 107–121

4. Li, J., Stribling, J., Morris, R., Kaashoek, M.F., Gil, T.M.: A performance vs. cost
framework for evaluating DHT design tradeoffs under churn. In: Proceedings of the
24th Infocom, Miami, FL (2005)

Author Index

Almeida, João Paulo A. 213

Bakker, Arno 84
Bastide, Gautier 332
Berbers, Yolande 242
Bosch, Jan 1
Braun, Iris 181
Brzeziński, Jerzy 187

Cahill, Vinny 16
Chen, Huajun 128
Coulson, Geoff 199
Cunningham, Raymond 70

Danilecki, Arkadiusz 309
De Vlaminck, Karel 242
Della Valle, Emanuele 347
Domaschka, Jörg 256
Dowling, Jim 70

Eliassen, Frank 228

Floch, Jacqueline 64

Garruzzo, Salvatore 99
Ghioni, Alessandro 347
Gillen, Matthew 303

Hallsteinsen, Svein 64
Hamid, Brahim 289
Harrington, Anthony 16
Hauck, Franz J. 256
Holvoet, Tom 242
Hua, Lei 152
Hughes, Daniel 199

Iacob, Maria-Eugenia 213

Jonkers, Henk 213

Kapitza, Rüdiger 256
Karhinen, Anssi 1
Kobusińska, Anna 187
Kobusiński, Jacek 187
Kunze, Christian P. 32

Lamersdorf, Winfried 32
Loyall, Joseph 303
Lund, Ketil 228
Lundesgaard, Sten A. 228

Meier, René 16, 70
Merle, Philippe 272
Mosbah, Mohamed 289

Niu, Chunlei 152

O’Brien, James 48
Ogston, Elth 84
Oussalah, Mourad 332

Porter, Barry 199
Puder, Arno 138

Quartel, Dick 213

Reiser, Hans P. 256
Rosaci, Domenico 99
Rouvoy, Romain 272
Rubel, Paul 303

Sacha, Jan 70
Schaefer, Jan 169
Schantz, Richard 303
Schill, Alexander 181
Senivongse, Twittie 113
Seriai, Abdelhak 332
Serrano-Alvarado, Patricia 272
Shapiro, Marc 48
Spillner, Josef 181
Stav, Erlend 64
Suwannopas, Piya 113
Szychowiak, Micha�l 309

Tanter, Éric 316
Termin, Thomas 16
Tian, Wenya 128
Toledo, Rodolfo 316
Turati, Andrea 347

van Gurp, Jilles 1
van Steen, Maarten 84

Wei, Jun 152
Wils, Andrew 242

Zaplata, Sonja 32
Zheng, Haoran 152

	Frontmatter
	Mobile Service Oriented Architectures (MOSOA)
	A Spatial Programming Model for Real Global Smart Space Applications
	Mobile Process Description and Execution
	An Application Framework for Nomadic, Collaborative Applications
	Interfering Effects of Adaptation: Implications on Self-adapting Systems Architecture
	Discovery of Stable Peers in a Self-organising Peer-to-Peer Gradient Topology
	On the Value of Random Opinions in Decentralized Recommendation
	Information Agents That Learn to Understand Each Other Via Semantic Negotiation
	Discovering Semantic Web Services with Process Specifications
	Towards Building a Semantic Grid for E-Learning
	A Code Migration Framework for AJAX Applications
	High Performance SOAP Processing Driven by Data Mapping Template
	An Approach for Fine-Grained Web Service Performance Monitoring
	WSInterConnect: Dynamic Composition of Web Services Through Web Services
	Bounding Recovery Time in Rollback-Recovery Protocol for Mobile Systems Preserving Session Guarantees
	Intelligent Dependability Services for Overlay Networks
	Model-Driven Development of Context-Aware Services
	Utilising Alternative Application Configurations in Context- and QoS-Aware Mobile Middleware
	Timing Driven Architectural Adaptation
	Fault-Tolerant Replication Based on Fragmented Objects
	Towards Context-Aware Transaction Services
	A Local Self-stabilizing Enumeration Algorithm
	Adding Fault-Tolerance to a Hierarchical DRE System
	Using Speculative Push for Unnecessary Checkpoint Creation Avoidance
	A Versatile Kernel for Distributed AOP
	Transformation of Centralized Software Components into Distributed Ones by Code Refactoring
	{\itshape PAGE}: A Distributed Infrastructure for Fostering RDF-Based Interoperability
	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

