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Abstract. In this paper, we present the problem of noisy images recog-
nition and in particular the stage of primitives selection in a classification
process. We suppose that segmentation and statistical features extrac-
tion on documentary images are realized. We describe precisely the use
of concept lattice and compare it with a decision tree in a recognition
process. From the experimental results, it appears that concept lattice
is more adapted to the context of noisy images.

1 Introduction

The work presented in this paper tackles the problem of the automatic re-
engineering of documents, and proposes a first theoretical approach concerning
the use of concept lattices for automatic recognition of graphic objects, under
the multi-scale and multi-orientation constraints.

In the field of invariant pattern recognition, there is a consensus about the
fact that each stage of the recognition process is important [1, 2]. Furthermore,
the review of the literature highlights several difficulties that existing techniques
try to tackle more or less partially.

The first difficulty is the adaptation to the notion of context, aimed at trying
to find some adequate recognition scenarios to a particular problem, if possi-
ble by integrating the capacity of evolution of the system. Another difficulty is
related to the problem of combination of recognition schemas, by integrating
structural and statistical description of the shapes, without any previous distor-
tion of the recognition schema. At last, the problem concerning the selection of
relevant primitives, adapted to a particular context, in adequation with evolu-
tive systems stays an open problem, and is not made explicit. Literature is rich
in terms of classification strategy. A lot of references indicate these problems,
depending on different techniques : statistical [3] and/or structural approaches
[4], parametric and non parametric approaches [5], connexionnist [6], training
problems, primitives selection or fusion of classifiers problems [7], . . .

In this paper, we propose a first contribution concerning symbols recognition
based on concept lattices. Indeed, lattices seem to bring some interesting answers
to the previously discussed difficulties, thanks to their natural ability to integrate
statistical and structural description, and to their capacity to validate some
relevant primitives in regard with a particular context. Moreover, the concept
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lattice presents the advantage of a good readability and thus to be easy to
understand. Shape recognition is classically realized in two stages : learning
on symbols images which is the subject of the next part and classification of
damaged symbols images presented in section 3.

2 Learning

The learning stage consists in organizing the information extracted from a set
of objects by a concept lattice. In our case objects are images of symbols. These
symbols are described by same-size numerical signature computed thanks to im-
age processing techniques. Previously, it is necessary to have normalized data so
that their representation is equivalent. More precisely, the learning stage can be
described by:

Name: Learning
In: a set of objects O where each object p ∈ O is a symbol described by a
normalized signature p = (p1, . . . pn) and a label of class c(p).
Out: a concept lattice (β(C), ≤) described by a set of concepts β(C) and a
relation ≤ between its concepts.

The learning involves two stages as shown in Figure 1:

– the discretization of signatures: the data are assigned to disjoined intervals.
It is possible to find again the initial data by the union of these intervals.
Discretization is essential to build the concept lattice. It is parameterized by
a cutting criterion necessary to the construction of the intervals.

– the building of concept lattice from discretized data. This stage does not need
any parameter.

2.1 Discretization

The discretization stage consists in organizing the numerical data of the different
objects in discrete intervals to obtain a specifical characterization of each class
of objects.

Name: Discretization
In: a set of objects O where each object (symbol) p ∈ O is described by a signa-
ture which is a numerical vector p = (p1, . . . pn) where each value is normalized
and a label of class c(p).
Out:
- the intervals organized in sets of intervals I = I1 × I2 × . . . × Im where the
intervals of each set Ii are disjoined, and cover the values pi of the whole objects
p ∈ O.
- a membership relation R which is defined for each object p ∈ O and each
interval x ∈ I by: pRx ⇔ it exists i = 1 . . .m such as pi ∈ x ∈ Ii
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Fig. 1. Schematic description of learning

Description. The discretization is realized on the signatures organized in a table
of data (fig. 1). At the beginning, we build for each feature i an interval x ∈ Ii

by gathering the whole values pi taken by the symbols p ∈ O. Thus, we can
initialize the membership relation R which is deduced. After this initialization
stage, each set Ii contains one interval, and each symbol p ∈ O is in relation with
each interval x ∈ Ii. Then, we have to select an interval x to cut, and a cutting
point in this interval x. To do that, we introduce the following notations:

– For a symbol p ∈ O, we define the set Ip of the intervals in membership
relation with p: Ip = {x ∈ I such as pRx}.

– For an interval x ∈ I, we define the set Vx of the numerical values of the
symbols in which it is in relation and sorted by ascending order : Vx =
(pi such as pi ∈ x) sorted by ascending order so : Vx = v1 ≤ v2 ≤ . . . ≤ vn

Thus we have to select an interval x ∈ I among the whole set of intervals, and
a value vj ∈ Vx among the wholes values, and then to cut the interval x in two
intervals x′ and x′′ with V ′

x = v1 ≤ . . . ≤ vj and Vx′′ = vj+1 ≤ . . . ≤ vn. Each
symbol will have a membership relation with one of these two created intervals,
that enables to differentiate the two subsets of formed symbols. We repeat this
process of cutting the intervals until we can distinguish each class. The selection
of interval to cut depends on a cutting criterion that have to be defined.

When each class can be characterized by an own set of intervals, we obtain
a discretized table involving the whole symbols p ∈ O and the whole intervals
I = I1 × I2 × . . . × Im where Ii is the set of intervals obtained for each feature
i = 1 . . .m. Notice that if a feature k has never been selected to be discretized, it
contains only one interval (|Ik| = 1) which is in relation with the whole symbols.
This feature is not discriminative, and thus can be removed from the discretized
table. From this table, it is possible to deduce the membership relation R, and
consequently, for an symbol p = (p1, p2, . . . , pm) ∈ O where pi is the value for
the feature i = 1 . . .m, to know the set Ip of intervals associated to p.

Example 1. Table 1 (left) shows normalized data of 10 symbols distributed in 4
classes. The signature characterizing each symbol is composed of 3 features (a, b
and c). After discretization by the entropy criterion, we obtain Table 1 (right).
Each feature has been selected and cut one time, they consequently are kept.
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Table 1. Signatures of the 10 symbols (left) and discretized table with the entropy
criterion (right)

Cutting Criterion. A large number of criteria allows to select the interval in order
to divide and to determine the cutting point, and the choice of this parameter
is decisive in the learning process. It is necessary to search an interval x ∈ I,
with the values Vx = (v1 . . . vn) sorted by ascending order, that maximizes a
criterion, for a given value vj . The interval will be cut between the values vj

and vj+1. We can define a lot of cutting criteria depending or not on the data.
Among these criteria, we mention the maximal distance, the entropy and the
Hotelling’s coefficient:

Maximal distance: distance(vj) = vj−1 − vj

Entropy: gainE(vj) = E(Vx) − ( j
nE(v1 . . . vj) + n−j

n E(vj+1 . . . vn))
with E(V ) = −

∑|c(V )|
k=1

nk

n log2(nk

n ) the measure of entropy of an interval with n
values where nk is the number of symbols of the class k of the interval.

Hotelling’s coefficient :
gainH(vj) = H(Vx) − ( j

nH(v1 . . . vj) + n−j
n H(vj+1 . . . vn))

with H(V ) = V arB(V )
V arW (V ) the Hotelling’s measure of an interval V of n values,

with nk the number of symbols of the class k, gk the gravity center of the class
k, g the gravity center of V , vki the i-th element of the class k, V arB(V ) =
1
n

∑|c(V )|
k=1 nk(gk − g)2 the measure of between class variance and V arW (V ) =

1
n

∑|c(V )|
k=1 nk(

∑nk

i=1(vki − gk)2) the measure of within class variance.
Maximal distance method consists in searching the primitive which has the

maximal gap between two consecutive values when values are in ascending order.
Entropy function is a measure characterizing the degree of mixture of the classes.
Hotelling’s coefficient takes in consideration the maximization of the distance
between classes and the minimization of the dispersion of each class.

Extensions. Note the possibility to integrate symbolic data with the numeric one.
This integration consists in computing an extension of the membership relation R
which can be done after discretization, to add symbolic data to the building of the
lattice. This extension can also be done during the initialization of this relation
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R, before the discretization. Thus it is useful to refine the cutting criterion.
But it is only interesting when the cutting criterion takes into consideration the
indication of class of the symbols, as the entropy criterion.

For some criteria, as the maximal distance one, we can cut the intervals after
the stage that enables the characterization of each class. Indeed, instead of stop-
ping when the table is discretized (for a number of discretization stages equals
to t1), we pursue the discretization n times to obtain more intervals for charac-
terizing each class. The discretized table to tn has got more intervals than the
one to t1, but it enables to refine the description of each class.

2.2 Construction of the Concept Lattice

After the discretization stage comes the building of the concept lattice. This
stage is totally determined by the obtained membership relation R. There is no
criterion or parameter to be considered for the construction of this graph because
it represents the whole possible combinations of relation R between objects and
intervals.

Name: Building of the concept lattice
In: a membership relation R between a set of objects O and a set of intervals I.
Out: a concept lattice (β(C), ≤) described by a set of concepts β(C) and a
relation ≤ between its concepts.

Description. Concept lattice has first been studied from a theoretical point of
view [8] before being developed in [9] to represent data in formal concept analysis.
A concept lattice is defined from data organized by a discretized table. More
formally, a concept lattice is defined as a set of concepts ordered by inclusion.

We associate to a set of symbols A ⊆ O, the set f(A) of intervals in relation
with the symbols of A: f(A) =

⋂
p∈A Ip = {x ∈ I | pRx ∀ p ∈ A} Dually, we

associate to a set of intervals B ⊆ M , a set g(B) of symbols in relation with
the intervals of B: g(B) = {p ∈ O | pRx ∀ x ∈ B} These two functions f
and g defined between symbols and intervals establish a connection of Galois.
Moreover, g ◦ f and f ◦ g verify the properties of a closure operator. We note
ϕ = g ◦ f the closure on the set I.

A formal concept is a pair symbols-intervals in relation according to R. More
formally, a formal concept is a pair (A, B) with A ⊆ O, B ⊆ I, f(A) = B and
g(B) = A. The concept lattice associated to the relation R is a pair (β(C), ≤)
where:

– β(C) is the set of the whole concepts of C.
– ≤ is an order relation on β(C) defined for two concepts of β(C), (A1, B1)

and (A2, B2) by: (A1, B1) ≤ (A2, B2) ⇔
∥
∥
∥
∥

A2 ⊆ A1
(equivalent to B1 ⊆ B2)
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Fig. 2. Concept lattice

The relation ≤ is an order relation 1, thus it can be associated to a cover relation
noted ≺. (β(C), ≺) is then the Hasse diagram 2 of the concept lattice (β(C), ≤).

The minimal concept to the sense of the relation R contains the whole symbols
O. It is the concept (O, f(O)). The set f(O), generally empty, corresponds to the
intervals shared by the whole symbols. Dually, the maximal concept is (g(I), I).

The representation of the concept lattice of the relation R is uniquely defined
and the concepts corresponding to the relations symbols-intervals are ordered
by inclusion. There are a lot of algorithms to generate the concept lattice :
Bordat [10], Ganter [9], Godin et al. [11] and Nourine et Raynaud [12] which has
the best theoretic complexity (quadratic complexity by elements of the produced
lattice). To build the lattice, we have to set up the list of its whole concepts. The
search of the concepts consists in finding in the discretized table the maximal
rectangles, meaning the biggest sets of symbols and intervals in relation. After
the generation of the whole concepts, it only remains to order them by inclusion
(Figure 2).

Extension. The main limit of the use of concept lattice is its cost in time and
space. Indeed, the size of the concept lattice is bounded by 2|S| in the worst case,
and by |S| in the best case. Consequently the complexity is exponential in time
and space in the worst case. It is very difficult to use studies of average complexity
because the size of the lattice depends on the data. However notice that its size
stays reasonable in practice as stated by the large number of experimentations
which have been done.

To limit this exponential complexity, notice the possibility to generate only
a representation of the lattice. An effective representation is defined by the fact
that it is smaller, easily understandable, and that it determines the concept

1 An order relation is a reflexive, symmetric and transitive relation.
2 Representation of an order relation without its relations of reflexivity and

transitivity.
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lattice via efficient algorithms of generation. There are a large number of rep-
resentations of a lattice proposed in the literature which verify these criteria
(representation of a lattice by an order in lattice theory, by a table in formal
concept analysis, by a conjunctive normal form in logic, by functional dependen-
cies in databases). We mention the representation by a system of implicational
rules [13, 14, 15] that we can find in data analysis. Such a representation enables,
beyond its property of digest representation of the lattice, to avoid the complete
generation of the lattice due to its possibility to use a on line generation of the
only concepts which are necessary during the recognition stage. It also enables
a description of the links between the features on another form, and highlights
the links between features of type ”The whole symbols which have the features
x and y also have the feature z”, that is formalized by the implicational rule
{x, y} → z (or simply x y → z).

3 Classification

After the learning stage and the generation of the concept lattice, it is the clas-
sification stage. The principle is to determine the class of new representations of
the symbols, that is to say, to recognize the class of the symbols which can be
more or less noised as shown in Figure 3.

Name: Classification
In:
- the signature s = (s1 . . . sn) of the symbol s to class
- the concept lattice (β(C), ≤) comes from the learning stage
Out: a label of class c(O) for s

3.1 Navigation Principle

The concept lattice can be used as a research area in which we can move depend-
ing on the validated features. The first step is the minimal concept (O, f(O))
meaning that each classes of the symbols are candidate to be recognized and
any interval is validated. Then the progression to a next step in the concept

Fig. 3. Schematic description of the classification
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Fig. 4. Progression in the concept lattice

lattice corresponds to the validation of new intervals and consequently to the
reduction of the set of symbols. The final step is the final concept where the re-
maining symbols, which are in relation with the whole intervals validated during
the progression in the lattice, have the same label. Formally, from the minimal
concept (O, f(O)), a local decision step is iterated until reaching a final concept
(A, B) where |c(A)| = 1 (Fig. 4). In each local decision step, we progress in the
graph from a current concept to one of its successors and a new set of intervals is
validated bigger and bigger. It is necessary to define a criterion for the selection
of the intervals in a local level. In practice, the progression is done in the Hasse
diagram which is the transitive reduction of the concept lattice.

Description of an Elementary Stage of Classification. An elementary stage of
classification consists in choosing some intervals in a subset S of intervals selected
from the lattice. More precisely, S is deduced from the successors of the current
concept in the lattice. Let (A, B) be the current concept, and (A1, B1), . . . ,
(An, Bn) be the n successors of (A, B) in the lattice. Then S is a family of
intervals: S =

⋃n
i=1 Bi\B = {X1, . . . , Xn}

such that the following properties are satisfied:

– Xi

⋂
Xj = ∅, ∀i, j ≤ n, i �= j

– |Xi

⋂
Ij | ≤ 1, ∀i ≤ n, ∀j ≤ m, meaning that Xi does not contain 2 intervals

from a same feature j.

The computation of the family S of selected intervals is completely defined
from the concept lattice. When S is computed, a subset Xi has to be chosen from
S, thus the following choice problem: Choosing Xi from S = {X1, . . . , Xn}.

This choice is a main step of any elementary stage of classification, and there-
fore of the navigation principle in the lattice whose intend is to provide a class
for the symbol s. However, this choice depends on data (and not only on the
structure of the lattice as for the computation of S). More precisely, it depends
on a choice criterion using a distance measure between s and an interval x.

Choice Criterion. Any choice from S is described using a distance measure
according to data, and more precisely a distance between the ith value si of
the symbol s to be classified, and an interval x ∈ I. We abuse notation and
denote such a distance d(s, x) instead of d(si, x), thus an extension to a set
X ⊆ I of intervals: d(s, X) = 1

|X|
∑

x∈X d(s, x)
We can define many choice criteria depending on data, and sometimes equiv-

alent. Let us propose some simple choice criteria, all of them use the distance d:
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1. Choosing i such that d(s, Xi) is minimal.
2. Choosing i such that |Xi

⋂
Ik| = |{x ∈ Xi

⋂
Ik}| is maximal, where Ik is the

set of the k first intervals of S sorted according to the distance d(s, x).
3. Choosing i such that |{x ∈ Xi such that d(s, x) < dc}| is maximal, with dc

a constant.

The second choice uses the principle of the k nearest neighbors [16]. Notice
that the third choice is a particular and simplest case of the second choice.

Extensions. It is possible to evaluate the decision risk in each elementary stage
of classification (i.e. the confidence degree in a decision) during the navigation
in the lattice. For example, a confidence degree for the second choice criterion
could be the rate Xi

⋂
Ik

k . Such a confidence degree represents another indicator
useful for the decision-making. It can be used :

– to try another way of navigation in the lattice from a former explored concept
which has given the second best result with the considered choice criterion.

– to compute a more complete signature of the symbol and to make again the
whole process.

When we need to search a more accurate signature of the symbol, with new
features, and to make again the whole process (discretization and construction
of the lattice), it is possible to proceed in an incremental way, meaning without
reconstructing the whole lattice, but by a simple addition of the new data.

4 Experimentation

Context. We would like to highlight the links between the decision tree and the
concept lattice since both integrate the primitive selection and the classification
stages at a time. The decision tree, as the concept lattice, requires a discretization
stage and the use of a selection criterion for the feature. Thus it is possible to
build the decision tree with the same discretized data. However its construction
requires the use of a selection criterion of the feature to be tested at each node
of the tree. As a matter of fact, it is possible to obtain a large number of trees
with the same data by using different selection criteria. Thus the representation
with a decision tree is not only as the one obtained for the lattice.

Figure 5 presents the decision tree (in bold) and the concept lattice associated
to the data of the example. The decision tree is built according to a criterion of
selection based on a measure of entropy. Notice that the size of the tree is more
condensed than the one of the lattice. Indeed, its size is polynomial in the size
of the data whereas the size of the concept lattice is exponential in the worst
case. Moreover, it is important to notice that each node of the decision tree also
is a node in the concept lattice, whatever the selection criterion used for the
construction of the tree. Finally, the organization of the structure of the tree
forms itself in the lattice, where the tree (in bold) is included in the lattice.

Using a decision tree or a concept lattice, the elementary stage of classification
remains the same. Using a tree, the selected intervals S are also defined from
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Fig. 5. Inclusion of the decision tree (in bold) in the concept lattice

the successors of a node, where each subset Xi of S is of cardinality 1, and
the intervals of all the Xi’s correspond exactly to intervals of a same feature
j: S = {{x} : x ∈ Ij}. Therefore the navigation principle is the same with a
decision tree and with a concept lattice, depending on a choice criterion defined
according to a distance measure. We use the following cutting criteria, distance
measure and choice criterion:

Cutting: maximal distance, entropy or Hotelling’s coefficient.

Distance: d(s, x) =
√

(xm−s)2√
(xm−xmin)2

where xm is the middle of the interval x and

xmin is the inferior boundary of the interval x. Note that we could replace
xmin by xmax the superior boundary of the interval x and the formula will
be the same. This distance is inferior or equal to 1 if the value of the symbol
s is in the interval x, and superior to 1 if the value is out of the interval.

Choice: Choosing i such that |{x ∈ Xi such that d(s, x) < 1}| is maximal. Then
in case of multiple choice, choosing i such that |{x ∈ Xi such that d(s, x) <
1, 1}| is maximal. Then in case of multiple choice, choosing i such that
d(s, Xi) is minimal.

We compare the recognition rate using these two structures according to: the
signatures and the cutting criteria. This experimentation has been performed
with the intention to compare decision tree and concept lattice and not to obtain
the best results in terms of recognition. We used symbols of GREC 2003 [17]
and characterize them, by several signatures. For each model of symbol, we had
90 symbols noised by the Kanungo et al.’s method [18].

Evaluation of Signatures with the Hotelling’s Coefficient Cutting
Criterion. We first compare the 6 following signatures : 33 invariants of Fourier-
Mellin [19], 50 invariants of Radon transform [20], 24 invariants of Zernike [21]
and combination of these 3 signatures : 83 invariants of Fourier-Mellin and Radon
combined, 57 invariants of Fourier-Mellin and Zernike combined and 74 invari-
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Fig. 6. Evaluation of the recognition with the Hotelling’s coefficient

ants of Radon and Zernike combined. We compare these 6 signatures by com-
paring for each of them the size of the structure and the recognition rate. This
experimentation has been realized using the Hotelling cutting criterion.Thus we
made a comparison of the size of the structures obtained on the data according
to the 6 different signatures. First, with the Hotelling’s coefficient as cutting cri-
terion, the number of discretization stages, the number of intervals and the size
of the decision tree are almost the same with the whole signatures. However, the
size of the concept lattice fluctuates and is smaller for the signature of Radon.
Second, the size of the decision tree is really smaller to the one of the concept
lattice. Figure 6 shows the recognition rate of the decision tree and the concept
lattice according to each signature. The recognition rate is always better for the
concept lattice than for the decision tree. Moreover, the Radon signature obtains
the best rate of recognition for the concept lattice.

Evaluation of the Cutting Criteria with the Radon Signature. We
made a comparison of the size of the structures obtained on this example of
data according to the cutting criterion of the discretization stage, i.e. maximal
distance, entropy and Hotelling’s coefficient. We verify that the entropy and
Hotelling’s coefficient criteria need a lower number of discretization stages than
the maximal distance criterion, because they consider the labels of class of the
symbols. The concept lattice size is also smaller with the entropy and Hotelling’s
coefficient criteria, but it is not the case of the decision tree which has about
the same number of nodes with both criteria. The comparative results of the
lattice and the tree are shown in Figure 7. This comparative study of efficiency
enables the constatation that with the both cutting criteria, the concept lattice
improves the recognition results of the noised symbols in comparison with the
decision tree. We can add that the best results are obtained with the maximal
distance as cutting criterion but it is also the criterion which gives the biggest
concept lattice. The Hotelling’s coefficient criterion gives almost as good results
as the maximal distance one but the size of the concept lattice is really smaller.
So, this cutting criterion is the best compromise.

Comparison with Bayesian Classifier and k-NN Classifier. Figure 8
presents the recognition rates of 4 classification methods (Bayesian classifier, k-
NN classifier with k=1 and k=3, decision tree and concept lattice) obtained on
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Fig. 7. Evaluation of the recognition with the Radon signature

Fig. 8. Recognition rates of the methods obtained for 5 tests

Table 2. Mean recognition rates obtained with 5 tests of the 4 methods (left) and
theoretical complexity of the 4 methods (right) with n the size of the learning set, w
the number of classes, i the number of values of the signature selected by the cutting
criterion, i′ the size of the signature where i � i′, a the number of nodes in the tree
and c the number of concepts in the concept lattice where w ≤ a ≤ c ≤ 2w

two sets of noised symbols of 10 classes (namely classes 1-10 and classes 11-20),
with 5 different learning sets computed from each set of data (namely Test 1 to
Test 5). Each learning set is composed of 5 symbols per class : 1 model sym-
bol; and 4 noised symbols randomly extracted from the set of noised symbols
from which they are removed. Each symbol is described by its Radon signature,
restricted to the features selected by the cutting criterion of Hotelling. These se-
lected features are used in entry of each classifier. Notice that recognition rates



A Generic Description of the Concept Lattices’ Classifier 59

really depend on the learning set whatever the method. Table 2 (left) shows
the mean results of these 5 tests for classes 1-10. The k-NN classifier gives best
results, then the Bayesian classifier, the concept lattice and the decision tree.
Table 2 (right) presents a comparison of these methods in terms of complexity
of the learning and the classification steps. Notice that best results are obtained
by Bayesian and k-NN classifiers directly on numerical data (i.e. without dis-
cretization stage). The constraint of these methods are to make an hypothesis on
the type of distribution of the data (gaussian, uniform...) for the bayesian clas-
sifier and to stock the whole data for the k-NN classifier. Concept lattice and
decision tree give lower rates and need discretized data. However, their assets
are a good readability, the taking into account of the linked between features in
the construction of the graphs and the fact that they don’t need hypothesis on
the data.

5 Conclusion

The aim of this work is not to reach the best classification results for the mo-
ment, but to harmonize a quite un-explored strategy, based on concept lattices,
with the well known decision tree method. The size of the decision tree, which is
smaller than the concept lattice’s one, permits to optimize the processing, but
may produce some classification errors, due to the noise. The lattice approach
proposes a higher number of classification sequences, and appears to be more
adapted to the context of noisy images, to the detriment of a higher dimension.
Its other advantage is its good readability. As for the decision tree, a non spe-
cialist can easily understand the principle of the progression in the graph by
validating intervals. Our future experiments will refer to a comparative study
concerning order structures and concept lattices for primitives selection, in the
context of an increasing noise, to tackle robustness and scalability problems.
Also, our current works deal with the use of concept lattices for a statistical-
structural description of the data. Finally, it seems interesting to reduce the
construction of the lattice cost, especially through the use of a non exponen-
tial but a canonical representation of a lattice, by using a rules system [13, 15],
that would permit to generate the lattice on-line, that is to say, to generate the
selection stages, if required.
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