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Abstract. In this paper, we propose a robust moment invariant which has a 
higher discriminant factor based on Fisher linear discriminant analysis that can 
deal with noise degradation, deformation of vector distortion, translation, rota-
tion and scale invariant. The proposed system for the symbol recognition  
consists of 3 steps: 1) degradation model preprocessing step, 2) a different nor-
malization for the second moment invariant and a measure for roundness and 
eccentricity for feature extraction step, 3) k-Nearest Neighbor with Mahalano-
bis distance compared to Euclidean distance and k-D tree for classifier. A com-
parison using multi-layer feed forward neural network classifier is given. An 
improvement of the discriminant factor around 4 times is achieved compared to 
that of the original normalized second moments using GREC 2005 dataset. Ex-
perimentally we tested our system with 3300 training images using k-NN classi-
fier and on all 9450 images given in the dataset and achieved recognition rates 
higher than 86 % for all degradation models and 96 % for degradation models  
1 to 4.  

1   Introduction 

The computational power of computer is increasing tremendously. This allows us  
to accomplish difficult tasks for pattern matching, symbol recognition, character rec-
ognition, finger print recognition, speech processing, etc. The moment invariants 
proposed by [3] is a well-known method for pattern recognition [4][5][6], but experi-
mental results show a significant deviation value due to noise degradation, deforma-
tion, rotation and scale changes. Previous work [8] gave a revised fundamental  
theorem of moment invariants. Our work is inspired by [7] that gave the method of 
normalization to determine invariants. We proposed other normalization that yields a 
higher discriminant factor. The normalizer is derived from the property of SVD de-
composition, which is the best linear unbiased estimator [4] for least square optimiza-
tion. We define the roundness and eccentricity as a result of normalization, give  
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its correlation with the normalized second moment invariants [3] and evaluate our 
normalization using various classifiers such as k-nearest neighbor, k-D tree and neural 
network classifier to show its separability. In this paper we apply our proposed robust 
moment invariant for the symbol recognition and compare the results with [2]. Our 
solution is close to the previous work [1], which uses the statistical method with his-
togram of pixel-based descriptor and Manhattan distance. Our method to solve this 
problem does not use a histogram, but it is a statistical method based on binary image 
pixel position using three steps processing: image preprocessing, feature extraction 
and classification as discussed in Section 2. In Section 3 we discuss the experimental 
results and the conclusion is found in Section 4. 

2   The Proposed Framework 

2.1   Preprocessing Step  

Noise Filtering and Degradation Level Measurement 
The first step in our recognition system is a noise filtering and degradation level 
measurement. For an 8-bit image, a simple technique to measure the degradation level 
is by filtering the image with a low-pass filter kernel [1 4 6 4 1]/16 for both vertical 
and horizontal directions, and binarizing it with a threshold value th = 36/256. The 
threshold value range is around th (for pepper noise) to 2.5th (for hard pencil noise).  
The degradation level dl is obtained from the number of pixels in the smooth area 
after filtering and dividing by the number of pixels in the original image. 
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where f(x,y) is the image and g(x,y,σ) is the Gaussian low pass filter kernel with a 5 × 
5 mask. This measurement allows us to detect how bad the noise level is. We used 
this measurement on GREC 2003 dataset [11]. For the worst degradation levels 7, 8, 
and 9, we have different preprocessing tasks. The degradation level value is around 
one for ideal-test and it will be higher for a noisy image. The highest degradation 
level appears when pixels in the noisy and thin lines merge after filtering. 

This approach works quite well on GREC 2003 dataset. Using only one measure-
ment, the degradation level measurement, we are able to separate all noise types and 
levels quite well. Unfortunately on GREC 2005 dataset [13], we are unable to sepa-
rate noise type well enough using only degradation level measurement. So we com-
bined degradation level measurement with line width measurement, noise distribution 
measurement and noise level measurement proposed in [12] to describe the noise 
features of each individual engineering drawing. With these measurements we have 
more degree of freedom to describe noise type and level in engineering drawings. 

Based on the measurement results of primitives and noise we classify noise type 
and noise level of the drawing. From the combination of noise level measurement and 
ratio of primitives line width and image resolution we categorized the drawing into  
4 categories, which are image with thick primitives (Fig. 1a), normal primitives  
(Fig. 1b), thin primitives (Fig. 1c), and very thin primitives (Fig. 1d). 
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        (a)                             (b)                               (c)                               (d) 

 
 
 
 

Fig. 1. Example of 4 categories of primitive thickness 

Using a combination of noise distribution and degradation level measurement, we 
categorized noise type into 4 categories of noise type and distribution, which respec-
tively are almost noiseless image (Fig. 2a), Gaussian noise combined with some high 
frequency noise (Fig. 2b), hard pencil noise concentrated around primitive (Fig. 2c), 
and hard pencil noise and high frequency noise combined with some Gaussian noise 
concentrated around the primitive (Fig. 2d). 

 

 
 
 
 
 
 

Fig. 2. Example of 4 categories of noise type and distribution 

Morphological Operation 
The next step of preprocessing is applying some morphological operations such as 
erosion, opening, closing, dilation, and thinning different categories of primitives and 
noise type. In this symbol recognition case, we experimentally categorize the images 
into 12 categories according to the primitives and noise type. Their corresponding 
image preprocessing tasks are shown in Table 1. 

Table 1. The preprocessing task for different degradation levels and models 

image type                  preprocessing steps 
I open(0.25 lineW)→ close(0.4 lineW)→ idealizing line width→ thinning + clean 
II idealizing line width→ thinning + clean 

IIA close(0.25 lineW)→ open(0.3 lineW)→ idealizing line width→ thinning + clean 
IIB median filter(1.5 lineW)→ open(0.4 lineW)→ idealizing line width→ thinning + clean 
IIC erode(0.35 lineW)→ close(0.6 lineW)→ idealizing line width→ thinning + clean 
IID median filter(1.5 lineW)→ open(lineW)→ idealizing line width→ thinning + clean 
III close(0.25 lineW)→ open(0.3 lineW)→ idealizing line width→ thinning + clean 

IIIA close(2 lineW)→ dilate(0.1 lineW)→ close(lineW)→ idealizing linewidth→ thinning+clean 
IIIB median filter(1.5 lineW)→ open(0.25 lineW)→ idealizing line width→ thinning + clean 

IIIC median filter(1.5 lineW)→ close(0.25 lineW)→ open(0.3 lineW)→ idealizing line width→ 
thinning + clean 

IVA dilate(lineW)→ close(4 lineW)→ idealizing line width→ thinning + clean 

IVB 
filter→ dilate(1.5 lineW)→ close(4 lineW)→ component labelling→ remove small     com-
ponent→ idealizing line width→ thinning + clean 

 

     (a)                            (b)                              (c)                               (d) 
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In the image type column of the above table, image types (I-IV) correspond to the 
thickness of image primitives, where (I) is thick primitive, (II) is normal primitive, 
(III) is thin primitive, and (IV) is very thin primitive, and (A-D) correspond to noise 
type and distribution. LineW is the line width of primitive and the diameter of disc 
structuring element used in open, close, erode, or dilate operation is shown in the 
bracket after each operation.  

2.2   Feature Extraction 

1. Roundness measurement 

First, we propose a roundness measurement as the minimum singular value divided by 
the maximum singular value. 

roundness = σ2
min /σ2

max                                              (2) 

The roundness value is between 0 and 1. For example, a line has roundness equal 
to 0 with the smallest singular value equals to 0 and a disk has roundness equal to 1 
with its singular values equal to identity. We compare this with the measurement for 
roundness or compactness defined by A.K. Jain [4] as follows: 

roundness = perimeter2/(4π area)                                     (3) 

Our measurement is more general as the object can be any shape. Whereas the 
equation (3) above may give value greater than 1 for a square shape and it depends on 
two parameters: the perimeter and area. The problem is that the measurement of area 
is not robust due to object deformation. Our proposed measurement is statistically 
robust. It gives the best estimation of roundness between 0 and 1, a higher discrimi-
nant factor and invariant to translation, rotation and scale changes. Next, we will 
show its relationship with the current moment invariant in Hu [3] and introduce a 
correction for normalization to achieve the same result as our proposed definition. 
Before that we will give a short explanation of singular values from the covariance 
matrix. A 2-dimensional unnormalized covariance matrix X is defined as follows: 
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The singular values obtained from Singular Value Decomposition SVD are as fol-
lows: 

UDVT = SVD(XXT)   and  D = diag(σ2
max, σ2

min)                           (5) 

σ2
max = 2/4)()( 22 bcaca +−++                                          (6) 

σ2
min = 2/4)()( 22 bcaca +−−+                                          (7) 

where D, the diagonal matrix of singular values, is always positive and represents the 
variances of data distribution among its axes. The first singular value is the maximum 
singular value, which is the norm of covariance matrix. Next, we propose to use this 
norm as a normalizer of the second moments invariant [3]. The value of the square 
root will represent the eccentricity of data distribution. U and V are the orthogonal 
matrices that give the best rotation orientation along its principal axis. Now we review 
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the well-known feature in statistical-based pattern recognition, i.e., moment invari-
ants. The central moments μpq and the normalized central moments μpq′ in Hu [3] are 
defined as: 

μpq =  Σx Σy  (x − x )p (y − y )q f(x,y)                                        (8) 

μpq′ = μpq / μ00
γ    and    γ = (p+q+2) / 2                                    (9) 

We focus on two of the seven invariant moments, which are the second moments: 

φ1 = μ20 + μ02                                                           (10) 

φ2 = (μ20 − μ02)
2 + 4μ11

2                                                  (11) 

The first equation φ1 corresponds to roundness that gives 100 % correlation if and 
only if the normalized equation for the second moments is as follows: 

μpq′ = μpq /σ2
max                                                        (12) 

Next, the second equation φ2 corresponds to eccentricity. It happens because μ20 = a, 
μ02 = c and μ11 = b. So the normalized first equation φ1′ equals to:  

φ1′ = (μ20 + μ02) /σ2
max = (σ2

max + σ2
min) /σ2

max = 1+ roundness               (13) 

and the normalized second equation φ2′ equals to: 

     φ2′ = ((μ20 −μ02)
2 + 4μ11

2) / (σ2
max)

2 = ((σ2
max −σ2

min) /σ2
max)

2  
      = (1− roundness)2 = eccentricity2                                                       (14) 

Table 2 shows our experimental result with the symbol recognition database from 
GREC 2003 contest [11], which yielded clean images after using a simple preprocess-
ing and GREC 2005 contest [13], which yielded noisier images even after using a 
complex preprocessing. The proposed normalized equations φ1′ and φ2′ have 5.2 and 
2.6 times higher discriminant factor or 2.2 and 1.6 times higher recognition rate than 
the first original equations φ1 and φ2, respectively.  

Table 2. The improvement of the proposed normalized second moments 

No. Parameter φ1′ φ1 φ1′/φ1 φ2′ φ2 φ2′/φ2 
1 Discriminant factor GREC03 22.8 3.2 7.1 30.5 6.1 5.0 
2 Discriminant factor GREC05 21.2 5.2 4.1 24.5 14.9 1.6 
 Average discriminant factor 22.0 4.2 5.2 27.5 10.5 2.6 

1 Recognition rate GREC03 50.9 % 25.4 % 2.0 50.0 % 36.5 % 1.4 
2 Recognition rate GREC05 21.2 %   6.9 % 3.1 19.0 %   7.6 % 2.5 
 Average recognition rate 36.1 % 16.2 % 2.2 34.5 % 22.1 % 1.6 

2.  Radius min-max ratio 

The radius min-max ratio is defined as the ratio between minimum radius and maxi-
mum radius rmin /rmax, where r is the Euclidean distance of each pixel to the centroid: 

22 )()( yyxxr −+−=     (15) 

3.  The compactness is defined as the perimeter in Eq. 19 divided by the bounding 
box area in the principal axis. 

compactness = (Σ r) / ((y′max – y′min) (x′max – x′min))  (16) 
where x′ and y′ are the rotated image in the principal axis and obtained from: 
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U′ = diag(1, det(U)) U                                                    (18) 

where U is the rotation matrix correspond to the normalization of orientation to the 
principal axis and a correction U′ is needed to remove the ambiquity since the singu-
lar value is always positive and the determinant of U may not always equal to one.  
The perimeter is defined as the sum of all the distance of each pixel to the centroid:  

perimeter = dttytx∫ + )()( 22  ≡  Σ r                                     (19) 

where t is necessarily the boundary parameter but not necessarily its length.  
4.  Normalized pixel-perimeter is defined as the number of pixels, N, multiplied by 

the perimeter and divided by the maximum singular value. 

Normalized pixel-perimeter = N (Σ r) / σ2
max                                (20) 

5.  Bounding box ratio = (y′max – y′min) / (x′max – x′min)                                               (21) 

6.  Normalized perimeter is defined as the perimeter square divided by the number of 
pixels and the maximum singular value. 

Normalized perimeter = perimeter2 / (Nσ2
max) = (Σ r)2 / (Nσ2

max)                  (22) 

7.  Average standardized radius is defined as the mean of radii divided by its maxi-
mum radius.  

Average standardized radius = (Σ r) / (N rmax)                               (23) 

8.  Normalized perimeter square is defined as the perimeter square divided by the 
maximum singular value. 

Normalized perimeter square = perimeter2 / σ2
max = (Σ r)2 / σ2

max                  (24) 

9.  Inverse normalised perimeter is defined as the inverse of normalized perimeter 
(see Eq. 22). 

Inverse normalised perimeter = (Nσ2
max) / (Σ r)2                         (25) 

10.  Normalized second moment invariant for eccentricity is defined as:  

Eccentricity2 = ((μ20 −μ02)
2 + 4μ11

2) / (σ2
max)

2                          (26) 

11.  Average normalized angular is defined as the average of angular pixel distribu-
tion of every point around its centroid divided by its maximum value.  

Average normalized angular = Σ P(θ ) / (Na max(P(θ )))                    (27) 

where Na is the number of angular bin and P(θ ) is a probability density function 
of angular pixel distribution.  

12.  Average normalized radius is defined as the average of radial pixel distribution of 
every point around its centroid divided by its maximum value. 

Average normalized radius = Σ P(r) / (Nr max(P(r)))                    (28) 

where Nr is the number of radial bin and P(r) is a probability density function of 
radial pixel distribution. 
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13.  Average principal-axis-norm radius is defined as the mean of radii divided by the 
principal-axis length.   

Average principal-axis-norm radius = (Σ r) / (N (x′max – x′min))                 (29) 

2.3   Feature Selection 

The feature selection is based on the discriminant factor df and its correlation to other 
features using Fisher discriminant analysis. The discriminant factor is obtained from 
the ratio between standard deviation “between class” σb and standard deviation 
“within class” σw. The first feature must have a high discriminant factor, and the next 
feature should have the lowest correlation toward zero as shown in Table 3. 

Equation (30) until (33) is the corresponding equation for the discriminant factor 
and its variables. nc is the number of classes which is 150 symbols from GREC 2005 
contest which is 2.5 times the number of symbols in GREC 2003 contest. μb is the 
mean between classes which is the mean of the mean within class μwj. 

Table 3. The comparison of discriminant factor, its correlations to the roundness and the recog-
nition rate 

GREC 2005 dataset GREC 2003 dataset 
No. 

feature 
Feature name 

σb σw df 
cor. to 
no. 1 

recog. 
rate % σb σw df 

cor. to 
no. 1 

recog. 
rate %  

1 roundness .303 .0143 21.2 1.000 21.2 .299 .0131 22.8 1.000 50.9 
2 radius min/max .172 .0108 15.9 0.223 12.0  .180 .0122 14.8 0.193 34.0  
3 compactness .153 .0238 6.4 -0.147   8.8  .180 .0248 7.3 -0.287 36.0  
4 pixelperimnorm .189 .0228 8.3 0.767   9.1  .181 .0234 7.7 0.778 31.9  
5 boundbox ratio .237 .0123 19.3 0.948 16.6  .255 .0140 18.2 0.946 39.3  
6 perimnorm .159 .0077 20.5 0.976 19.6  .161 .0069 23.4 0.982 53.5  
7 avgstdradius .107 .0104 10.3 0.563 10.4  .089 .0095 9.4 0.621 26.1  
8 perimsqrnorm .133 .0348 3.8 0.823   7.3  .136 .0202 6.7 0.836 37.9  
9 invperimnorm .187 .0087 21.6 -0.946 19.9  .200 .0072 27.8 -0.941 53.6  

10 eccentricity .271 .0111 24.5 -0.966 19.1  .287 .0094 30.5 -0.968 50.0  
11 avgangularbin .172 .0241 7.1 0.471   7.4  - - - - - 
12 avgradiibin .081 .0254 3.2 -0.096   4.4  - - - - - 
13 avgpanradius .067 .0070 9.5 0.628 11.7  - - - - - 

df  = σb /σw                                                                   (30) 

σb = (Σj (μwj – μb) / (nc – 1))1/2                                     (31) 

μb  = (Σj μwj) / nc                                                           (32) 

σw = (Σj σwj) / nc                                                           (33) 

2.4   Classifier 

As a comparison, we use the simplest k-nearest neighbor (k-NN) classifier with Ma-
halanobis distance and compare its performance with Euclidean distance. To show the 
separability power of our robust moment invariant, we use k-D tree [9][10] classifier 
and multi-layer feed-forward neural network classifier [5] as discussed in Section 3. 
The average standard deviation within class σw is utilized as a weight to give a higher 
separability for a lower standard deviation among the features. A sample s is assigned 
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as class Cj if and only if the Mahalanobis distance dM between the sample feature 
vector si and the mean within class μwij for all features i among classes j is minimum, 
where i = 1… nf   and j = 1… nc, where nf is the number of features.   

s ⊂ Cj    iff   minj dM(μwj, s) = minj (Σi ((μwij − si)
2) / σwi)

1/2                   (34) 

2.5   Training 

Preprocessing results may not totally recover noisy images. To increase robustness in 
noisy images, we choose the image preprocessing with broken lines instead of con-
tinuous lines detection. Moreover, we also provide a filtering scheme in the training 
process of k-NN that removes the training images with unexpected groups of pixels. 
This selection process is based on a training error, which is the mean of distance be-
tween the feature vector of a sample image and a corresponding ideal or model image. 
In this case, we experimentally choose the threshold value of training error te to be 
around 0.0025 with the assumption that all features of element vector have values 
between 0 and 1. This will cover most of the good preprocessing results in the train-
ing set T to avoid mis-training with degrading images or over training such as the k-D 
tree result as shown in the Section 3.    

s ⊂ T   iff   (Σi ((μwi − si)
2) / σwi) / nf   <  te                                (35) 

3   Experimental Results 

Using the simplest k-NN-based classifier, the best recognition rate can be achieved is 
around 99 % with a 7-feature vector (1-2-7-4-3-5-9) for GREC 2003 dataset and 
around 86 % with 8-feature vector (1-2-7-11-5-12-13-4) for GREC 2005 dataset as 
shown in Table 4. The highest recognition rate in GREC 2005 image dataset is 
achieved with a 7-feature vector by over training with degrading images. Hence, erro-
neous recognition may occur for the recognition of better preprocessing result, for  
 

Table 4. The percentage of recognition rate vs the number of features  

GREC 2005 image dataset GREC 2003 image dataset No. of 
features 

Feature code 
Ek-NN Mk-NN kD tree Ek-NN Mk-NN kD tree 

1 1 21.17 21.17  87.54  50.93  50.93  64.56  
2 1-2 61.03  60.94  92.91  88.80  88.87  93.71  
3 1-2-7 77.48  77.96  96.28  94.76  94.94  98.58  
4a 1-2-7-4 78.41  79.53  95.51  97.78  98.25  99.71  
5a 1-2-7-4-3 75.35  77.14  94.98  98.22  98.88  99.93  
6a 1-2-7-4-3-5 78.17  79.82  95.79  98.47  98.98  99.93  
7a 1-2-7-4-3-5-9 78.65  80.40  95.78  98.48  99.07  99.94  
4b 1-2-7-11 80.84  81.97  96.20  - - - 
5b 1-2-7-11-5 83.89  84.74  96.33  - - - 
6b 1-2-7-11-5-12 84.13  85.50 96.32  - - - 
7b 1-2-7-11-5-12-13 84.90  85.99  96.44  - - - 
8 1-2-7-11-5-12-13-4 84.46  85.93  96.37  - - - 
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example from the ideal-test image dataset. This means that the subtotal testing recog-
nition rate from the degradation model 1 to 4 may decrease as shown in Table 5. 
Similar problem may occur with other method such as k-D tree, but this is a kind of 
over training that does not represent the statistical-based classifier using Fisher dis-
criminant analysis. 

The recognition rate using Mahalanobis distance (Mk-NN) is 0.5 % to 3 % higher 
compared to those using Euclidean distance (Ek-NN) for the number of features 
greater than three. The highest recognition rate of 99.9 % for GREC 2003 dataset is 
obtained using k-D tree closest point with 2534 training images to construct a binary-
tree classifier. The speed to construct a binary-tree classifier is very fast so that we 
can use more training set images. This highest recognition rate can be achieved since 
we incorporate the most extreme degradation, distortion, rotation and scale changes in 
the training set and it shows that our robust moment invariants have a higher separa-
bility power. 

Table 5. The percentage of recognition rate distribution for GREC 2005 image dataset 

Robust Moment Invariant enhanced RMI contest result as reference 
dataset group mod1 mod2 mod3 mod4 mod5 mod6 total mod1 mod2 mod3 mod4 mod5 mod6 total 

 100 100 100 93 100 85 62 90.0 98 93 98 96 67 56 84.7 
grec05 150 100 100 98 98 87 56 89.8 98 87 98 93 58 56 81.7 

 25 100 100 88 100 92 58 89.7 100 100 100 100 88 70 93.0 
 50 100 100 100 100 96 60 92.7 98 94 100 100 72 66 88.3 
 100 82 94 98 74 64 42 75.7 78 76 50 38 48 8 49.7 

grec05- 150 86 96 90 72 66 40 75.0 80 66 64 26 30 12 46.3 
rot+scl 25 82 92 98 60 64 42 73.0 78 82 40 28 44 12 47.3 

 50 84 96 96 74 68 48 77.7 74 80 56 40 44 8 50.3 
 100 99 99 95 99 87 36 85.8 97 92 98 92 64 41 80.7 

grec05- 150 99 100 96 97 84 29 84.2 94 91 96 85 59 24 74.8 
Rot 25 96 100 100 100 92 40 88.0 100 100 98 98 76 36 84.7 

 50 98 98 100 100 90 44 88.3 92 96 98 96 70 40 82.0 
 100 92 94 96 84 68 56 81.7 64 66 78 42 54 18 53.7 

grec05- 150 96 96 90 74 76 54 81.0 82 66 70 44 48 20 55.0 
Scl 25 92 100 94 78 80 60 84.0 80 82 60 38 56 20 56.0 

 50 98 98 98 82 88 58 87.0 72 74 66 50 58 14 55.7 

subtotal 
testing 

A 95.1 98.1 95.6 89.3 81.5 48.4 84.7 88.6 85.4 83.0 71.6 59.2 33.9 70.3 

 100 99 100 95 98 89 27 84.7 - - - - - - - 
sample- 150 99 100 97 95 85 25 83.5 - - - - - - - 

test- 25 100 100 100 100 72 28 83.3 - - - - - - - 
rot 50 98 98 98 100 90 18 83.7 - - - - - - - 

 100 100 100 96 100 81 66 90.5 - - - - - - - 
sample- 150 100 99 97 100 87 66 91.5 - - - - - - - 

test 25 100 100 96 92 88 68 90.7 - - - - - - - 
 50 100 100 100 96 96 62 92.3 - - - - - - - 

subtotal 
training 

B 99.5 99.6 96.9 98.0 86.4 45.1 87.6 - - - - - - - 

total 
dataset 

A+B 96.6 98.6 96.1 92.4 83.2 47.2 85.7 - - - - - - - 
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Table 6. The percentage of performance class comparison with GREC 2005 contest results 

RMI enhanced RMI contest result ZW contest result FM contest result 
dataset mod 

1-4 
mod 
5-6 

total 
mod 
1-4 

mod 
5-6 

total 
mod 
1-4 

mod 
5-6 

total 
mod 
1-4 

mod 
5-6 

total 

grec05 98.6 73.8 90.3 96.4 64.2 85.7 97.8 75.2 90.3 91.9 92.3 92.1 
grec05-rot+scl 85.9 54.3 75.3 59.8 25.8 48.4 88.5 48.5 75.2 82.1 58.3 74.2 

grec05-rot 98.3 61.5 86.1 94.5 49.8 79.6 95.8 51.2 80.9 87.6 74.5 83.2 
grec05-scl 91.4 67.5 83.4 64.6 36.0 55.1 90.3 66.0 82.2 81.0 76.8 79.6 

subtotal testing 94.5 65.0 84.7 82.2 46.6 70.3 93.8 60.8 82.8 86.5 77.1 83.3 
sampletest-rot 98.9 55.5 83.9 - - - - - - - - - 

sampletest 98.1 76.0 91.2 - - - - - - - - - 
subtotal train-

ing 
98.5 65.7 87.6 - - - - - - - - - 

total 95.9 65.2 85.7 - - - - - - - - - 

The GREC 2005 image dataset consists of 150 symbols as shown in Figure 3 and 
total 9450 images which consist of 150 ideal-test images, 3300 training images (sam-
ple test set), and 6000 testing images. Whereas, the GREC 2003 image dataset is a 
sub-set of GREC 2005 image dataset. The GREC 2005 dataset is designed to test the 
scalability of symbol recognition system to cope with the increasing number of sym-
bols with more severe degradation levels, but less degradation number of models. The 
corresponding results of the preprocessing step for the various degradation models are 
shown in Figure 4. We found that the feature vector for GREC 2003 dataset, which 
mainly based on the radii measurement, is not sensitive to the angular pixel variation 
 

 

Fig. 3. The 150 symbols in GREC 2005 image dataset 
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that exists in GREC 2005 dataset. This case was not detected in the GREC 2005 con-
test since we did not have better noise preprocessing which resulted in a 70 % recog-
nition rate. Adopting the Adaptive Noise Reduction preprocessing [12] yields 10 % 
improvement. To increase the separability power for better recognition rate, therefore, 
we have to add some additional features such as average normalized angular based on 
angular pixel distribution (feature number code 11) and radial pixel distribution to 
increase radii sensitivity (feature number 12 and 13). These three features yield 6 % 
additional gain up to 86 %. 

Fig. 4. The preprocessing results for the various degradation models degrad 4-7-9 & mod 2 to 6 

The system has false alarm detection on the similar objects as shown in Figure 5 
for symbol 11-87, 98-115, 20-120, 136-137, 149-150-49, 43-75, 48-23.  

Fig. 5. False alarm detection on the similar objects for GREC 2005 dataset 

Figure 6 shows the result of GREC 2003 dataset with the most difficult test im-
ages to be recognized are those with degradation 7 and scale-rotation. It also shows 
that our robust moment invariants are 100 % scale invariant, but it is slightly depend-
ent on rotation changes since the orientation measurement used as the normalization 
in the principal axis is not as stable as the scale from the diagonal matrix of SVD. 

The recognition rate of 6980 test images
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Fig. 6. The recognition result of 6980 images using Mk-NN classifier for GREC 2003 dataset 
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Figure 7 shows the result of GREC 2003 dataset that the symbols 1, 2, 4, 11, 47, 
48 and 51 have adjacent distance such as 11-48-33, 51-15, 47-42, 2-5, 4-3 and 1-35, 
or severe degradation and distortion level. These happen since we use the centroid of 
each class to calculate the distance from the sample. However, using k-D tree classi-
fier these cases do not happen since the constructed tree is trained using all the sup-
porting vectors. It shows that all symbols can be separated well using k-D tree and our 
proposed moment invariant features. 

The recognition rate of 59 symbols
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Fig. 7. The recognition result of 59 symbols using Mk-NN classifier for GREC 2003 dataset 

A comparison result has also been done for multi-layer feed-forward neural net-
work with a lower recognition rate of 91.48 % using 3 layers, 15:30:59 neurons, 59 
ideal-test training set images, tangent sigmoid activation function for the hidden layer, 
pure linear activation function for the output layer and Levenberg-Marquadt optimiza-
tion. This lower recognition rate happens because zero degradation, distortion, rota-
tion and scale test images are trained with a tradeoff between the convergent speed 
and memory limitation. Figure 8 shows the result of GREC 2003 dataset that the con-
vergence rate of the network training is relatively fast using a small training set and 
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Fig. 8. The convergence rate of the network training with 59 ideal-test images and 10:30:59 
neurons using Levenberg-Marquadt optimization for GREC 2003 dataset 
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achieved a Mean Square Error less than 0.001. It means that the separability power of 
all features is strong. The separability power based on the roundness is also shown in 
[14] for the first four features value: roundness, radius min/max, average standardized 
radius and normalized pixel-perimeter. The symbols that have the same values on 2 
features would not have the same values for another feature. Most of the symbol can be 
separated using these 4 features with the recognition rate of 99 % as shown in Table 4. 

4   Conclusion 

In this paper, we propose novel robust moment invariants by normalizing the second 
moments using the norm of covariance matrix and defining the roundness and eccen-
tricity measurement to yield a higher discriminant factor of around 5 times by average 
the test results on GREC 2003 and GREC 2005 datasets. We experimentally evaluate 
the proposed framework using various classifiers such as k-NN based on Fisher dis-
criminant analysis, k-D tree and neural network and show that by using Mahalanobis 
k-NN, higher separability with improved recognition rate can be achieved, which is 
around 86 % for GREC 2005 dataset and 99 % for GREC 2003 dataset. Note that our 
feature vector is still maintained to be less than 10 features, which is useful for any 
object recognition based on statistical and geometrical analysis. 

5   Discussion 

Our strategies to achieve general symbol recognition are: First, to deal with various 
noises processing model is to classify noise model automatically in some measure-
ments with smooth step changing value in various model degradations. The more 
noise measurement model we have, the better noise preprocessing model we get. For 
real implementation, other problem will happen, i.e., the localization of symbols as 
the next challenge. Second, the roundness measurement is inspired by the scale space 
problem, the properties of singular value decomposition and invariant to scale and 
rotation. Basically the proposed roundness is a dimensionless measurement for the 
second moment or covariance measurement in x-y axes, which will then be trans-
formed into principal/major axis using SVD. Singular value itself is a stable measure 
regardless of the orientation, but it still has a dimension. The maximum and minimum 
singular values are the covariance along major and minor axis respectively. The nor-
malization of minimum singular value by maximum singular value is performed so 
that the dimension can be eliminated and the measurement always stable between 0-1. 
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