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Abstract. In this paper, we present an integrated system for symbol
recognition. The whole recognition procedure consists of image compres-
sion, denoising and recognition. We present a pixel-based method to
calculate similarity between two symbols using the bipartite transforma-
tion distance after they are aligned by their angular distributions. The
proposed method can overcome some shortcomings of other pixel-level
methods. We also propose a new denoising technique in our system to
improve the recognition precision and efficiency. Evaluation results on
test sets provided by the 2nd IAPR contest on symbol recognition show
good performance of the system in recognizing symbols with degradation
and affine transformation.

1 Introduction

Symbol recognition is an important problem in many application fields, such
as recognition of engineering drawings [4], circuit diagrams [5], and handwritten
characters [8]. As there are many factors which can influence the performance of a
recognition approach, such as affine transformations, distortion and degradation,
it is necessary to provide a universal system to preprocess and recognize symbols
under all kinds of circumstance.

In this paper we present a pixel-based approach to symbol recognition, which
is a brute-force method. The bipartite transformation distance is proposed in
this paper to calculate similarity in our method. However, it is not invariant to
rotation transformation. To recognize symbols with rotation transformation, we
compute their angular distributions and align them by their orientations.

We also describe our symbol recognition system used in the GREC 2005 con-
test. Our system utilizes certain techniques to predigest the input symbol to
achieve higher recognition accuracy, including image compression and edge ex-
traction. Various kinds of noise may exist in the input symbols, which severely
affect similarity computing. Hence, we also propose a denoising technique to re-
move noise from the symbols. Experiments show that the integrated system can
recognize the symbols effectively and efficiently.

The structure of this paper is described as follows. Related work is reviewed
in Section 2. Section 3 presents the proposed methodology. In Section 4, we
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illustrate the steps in our symbol recognition system. Evaluation results are
briefly presented in Section 5. Finally, we draw conclusions and discuss future
work in Section 6.

2 Related Work

One of the most popular classes of recognition methods is pixel-based method.
The representative approaches are Fourier descriptors [9], moment invariants [3],
ring projection [8] and shape contexts [1]. These descriptors are invariant to affine
transformation but each of them has the shortcomings mentioned in [1], [7].
Fourier descripter only describes the external contour and ignores the internal
contour and is difficult to be extracted from a real image. Moment invariants are
rotation, scale and translation invariant, however, they are unable to provide a
detailed profile about a symbol’s structure. Hence, their discrimination power is
limited. Shape context is a robust descriptor, but its rotation invariance depends
on the tangent at every pixel, which is sensitive to deformation.

Intuitively shape matching can be done by matching the point sets extracted
from the images. Let A and B be point sets of sizes n and m extracted from
two shapes accordingly. A frequently used dissimilarity measure is Hausdoff dis-
tance [6]. It is defined as infimum of the distances of the points in A to B and
the points in B to A. If the two point sets have the same size, i.e., m = n,
minimum weight (distance) matching can be applied [6]. A minimum weight
matching minimizes the sum of the weights of the edges of the matching. The
difference between our approach and the approaches mentioned in [6] is that the
assumption in our method is many to many correspondence among the points
and different distance functions are implemented.

3 Symbol Similarity

3.1 Normalizing Symbol

Assume that a 2D symbol is represented as a binary image. Its grey-scale image,
S(x, y), can be discretized into binary values as follows:

S(x, y) =

{
1 if (x,y) is foreground pixel of the symbol
0 otherwise

. (1)

We can derive the centroid of the symbol, as denoted by cen(x0, y0), which is
the geometric center of the symbol:

x0 =

∫ ∞
−∞

∫ ∞
−∞ x ∗ S(x, y) dxdy∫ ∞

−∞
∫ ∞
−∞ S(x, y) dxdy

y0 =

∫ ∞
−∞

∫ ∞
−∞ y ∗ S(x, y) dxdy∫ ∞

−∞
∫ ∞
−∞ S(x, y) dxdy

,

(2)
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and subsequently, translate the origin of our reference coordinate to this centroid.
Next, we define

Ravg =

∫ ∞
−∞

∫ ∞
−∞ r(x, y) ∗ S(x, y) dxdy∫ ∞
−∞

∫ ∞
−∞ S(x, y) dxdy

, (3)

where r(x, y) is the distance between (x, y) and centroid. In other words, Ravg

is the average radius of all the points in the symbol. To normalize the symbol,
we scale it into fixed size by the following formula

S′(x, y) = S(x ∗ Ravg, y ∗ Ravg), (4)

where S′(x, y) represents the normalized symbol. After normalized, the symbols
matching is invariant to scaling.

3.2 Similarity Between Two Symbols

Generally the similarity between two symbols is inverse to the difference between
them. In this paper, the difference between two symbols is referred to as bipartite
transformation distance, which is something like the dissimilarity function in
shape matching [2].

Firstly, we define the distance from point p(x, y) to symbol S as the distance
between p(x, y) and the closest point ps(xs, ys) in S,

dis(p, S) = min
S(ps) �=0

distance(p, ps). (5)

Given two symbols S1, S2, the cost of transforming S1 into S2 is defined as
follows,

cost(S1, S2) =
∫

R

dis(p, S2)2 ∗ S1(p) dp, (6)

where R is the range of the coordinate of S1. In other words, the cost is equivalent
to the amount of work required to transform one symbol into the other. The
transformation approach is to move each point in S1 to S2 through the shortest
route, and therefore the cost is equivalent to the sum of the distances between
each point pair. We normalize the cost by the area of S1 and derive the unipartite
transformation distance as follows,

unidis(S1, S2) =
cost(S1, S2)∫

R
S1(p) dp

, (7)

where unidis(S1, S2) is the unipartite transformation distance from S1 to S2 and
the denominator is the number of foreground pixels in S1.

Unipartite transformation distance cannot be considered directly as the differ-
ence between symbols because of partial matching. For example, if S1 is similar
to part of S2, the unipartite transformation distance will be very small, but in
fact, the two symbols are probably very different and the reverse transformation
distance is quite large.
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Hence we adopt bipartite transformation distance to estimate the difference
between S1 and S2 instead, which is defined as,

bidis(S1, S2) =
cost(S1, S2) + cost(S2, S1)∫

R
S1(p) dp +

∫
R

S2(p) dp
. (8)

The similarity between S1 and S2 is defined as follows,

sim(S1, S2) =
1

1 + bidis(S1, S2)
. (9)

Sim(S1, S2) is between 0 and 1. When two symbols are the same, the bipartite
transformation distance is 0 and the similarity is 1.

3.3 Symbols with Rotation

If symbols are rotated, we cannot use the above method directly because it
is not rotation-invariant. A simple way is to try rotating one of the symbols
several times and find the maximum similarity between them. Since calculating
similarity after each rotation costs too much, it is necessary to design a low-cost
measure to normalize the orientations of the symbols. We can also apply the
gradient-descent algorithm in order to improve the recognition accuracy.

We transform the original reference Cartesian coordinate system into the polar
coordinate system based on the following relations:{

x = γ cos θ

y = γ sin θ
. (10)

Hence,
S(x, y) = S(γ cos θ, γ sin θ),

where γ ∈ [0, ∞), θ ∈ [0, 2π).
For any fixed θ ∈ [0, 2π), we then compute the following:

g(θ) =

∫ ∞
0 r ∗ S(γ cos θ, γ sin θ) dγ∫ ∞

0 S(γ cos θ, γ sin θ) dγ
. (11)

The resulting g(θ), which can be viewed as a 1-D symbol that is directly trans-
formed from the original 2-D symbol, shows the distribution of the foregound
pixels in symbol along angle θ. We assume that g(θ) is a periodic function and
its period is 2π. If the symbol is rotated by angle ϕ, its distribution function can
be easily represented as g(θ−ϕ). We do not need to recompute the function g(θ)
after each rotation and therefore this feature can be utilized to judge whether
two symbols are in the same orientation.

Given two symbols and their distribution functions, we define the difference
between the two distributions:

diff (ϕ) =
∫ 2π

0
[g1(θ − ϕ) − g2(θ)]2 dθ, (12)
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where ϕ is the angle by which the symbol S1 is rotated. Our idea is that one of
the two symbols must be rotated to make their difference minimum. The rotated
angle is denoted as ϕmin. Our algorithm to find ϕmin is shown as follows:

Step 1. Input S1 and S2, initialize run length = 2∗π/60, ϕ = 0.0, diff min =
∞, ϕmin = 0.0;

Step 2. Compute the distribution g1 and g2 using Eq(11). In practice, g1 and
g2 are represented by discrete arrays;

Step 3. Compute diff (ϕ) using Eq(12);
Step 4. If diff (ϕ) ≥ diff min, then go to step 7;
Step 5. diff min = diff (ϕ), ϕmin = ϕ;
Step 6. Utilize the gradient descent algorithm to minimize the difference;
Step 7. ϕ = ϕ + run length;
Step 8. If ϕ < 2 ∗ π, then go to step 3;
Step 9. Return ϕmin.

4 Symbol Recognition System

To demonstrate the effectiveness of our approach, we implement a symbol recog-
nition system. Given a test symbol, our system can find the best matching one
from a set of models.

The input to the system is a set of test symbols and a set of model symbols,
which are represented in binary images. We then apply some preprocessing tech-
niques to them and compute similarity between any pair of them. Finally, we
output the best matched model for each test symbol as the result. The steps in
our system are outlined as follows:

Step 1. Compress the input image. After compressed, each pixel indicates
the density of the foreground pixels in the original image.

Step 2. Utilize a newly proposed approach to remove noise from the image.
Step 3. Compute the similarity between any pair of test symbols and models.
Step 4. Output the best matched model for each test symbol.

Next, we present the steps in more details.

4.1 Image Compression

Because our method to compute similarity is based on pixels, the number of
pixels in a symbol gives a great impact on its time complexity. Therefore, the
aim of preprocessing is to decrease the number of pixels while the information
in the image loses slightly.

Assume that the input image is a 512∗512 1-bit bitmap, as shown in Fig.1. It
is represented as S(x, y), defined in Eq. 1. We compress the original image into
a grey-scale image by the following formula:

D(x′, y′) =

∑η∗x′+η−1
x=η∗x′

∑η∗y′+η−1
y=η∗y′ S(x, y)
η2 , (13)
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Fig. 1. A sample of 512 ∗ 512 input image

Fig. 2. 52 ∗ 52 compressed image

where D(x′, y′) is the compressed image shown in Fig.2, x′ ∈ [0, � 512
η �], y′ ∈

[0, � 512
η �], and η2 is the scaling factor. The value of D(x, y) indicates the density

of black pixels in the original image. We can see that the size of the image
becomes very small after compression, while little information is lost. Hence, we
can compute the similarity based on the compressed images to accelerate the
whole process. Moreover, it is also a pre-requisite of our denoising approach.

4.2 Denoising

The input images, which contain the symbols, may have various kinds of noise.
Noise may severely affect similarity computing, even making the result rather
different from the correct answer. Hence, before computing the similarity, we
must remove noise from the images.

In our denoising approach, unidis(S1, S2) defined in Eq. 7 is the core function.
Given a compressed image D(x, y), we denoise it in the following steps:

Step 1. Build another image Sb of the same size with all pixels being black.
Step 2. Compute unidis(Sb, D).
Step 3. If unidis(Sb, D) is smaller than threshold ω, the denoising process

ends. In our system, the experimental value of ω is set to 0.023.
Step 4. Remove the minimal D-valued pixel(s) in the compressed image D,

turn to Step 2.

We assume that the density of noisy pixels is always lower than that of the
foreground pixels in the symbols. Further since the D(x, y) indicates the density
of foreground pixels in the original image, removing the minimal D-valued pixels
in the compressed image is equal to denoising. When the image is full of noise, the
unidis(Sb, D) is rather high. We go on denoising the image until unidis(Sb, D)
is lower than the threshold value ω, which is the result of training with a large
set of test data. Fig.3 and Fig.4 show two denoising samples.
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Fig. 3. A symbol full of global noise and its denoised image

Fig. 4. A much degraded symbol with loss of connection and its denoised image

4.3 Computing Similarity

Finally we utilize the approach proposed in Section 3 to compute the similarity
sim(D1, D2) between each pair of preprocessed test symbol and model. After
that, the system outputs the best matched model for each test symbol.

5 Evaluation

Tab.1 shows the result which our system obtains in the GREC 2005 contest. Our
system achieves the highest overall score while the time it costs is the shortest.
The tests are grouped according to the type and degree of degradation applied
to the images involved in that test. Six degradation models are used and the test
symbols may be rotated/scaled.

Among the six degradation models, our system achieves the highest score
except for the second model. The reason is that the parameters in our denoising
process are not adapted in such kind of noise. A large amount of noise remains
after preprocessing, and therefore the result of similarity computing is rather
bad. Our accracy in the sixth degradation model is not high either, while other
systems score even worse due to severe degradation.

Regardless of noise, neither rotation transformation nor scaling transforma-
tion affects much the recognition rate of our system. However, if both exist, our
system’s accuracy is affected.
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Table 1. The recognition accuracy of our system for different test sets used for the
GREC 2005 contest

mod 1 mod 2 mod 3 mod 4 mod 5 mod 6
without rotation and scaling 0.997 0.700 0.997 0.983 0.980 0.867

only with rotation 0.950 0.637 0.950 0.967 0.977 0.513
only with scaling 0.965 0.385 0.960 0.930 0.915 0.620

with rotation and scaling 0.870 0.635 0.885 0.895 0.830 0.335

Fig. 5. Similarity between test symbol and three model symbols. (a) 0.993341 (b)
0.999193 (c) 0.995259.

Fig. 6. Similarity between test symbol and three model symbols. (a) 0.869658 (b)
0.990119 (c) 0.999074.

Fig. 7. Result with different numbers of model symbols
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Fig.5 and Fig.6 are two groups of symbols from the contest. In each group, the
leftmost symbol is the test symbol with some noise and the rest three symbols are
model symbols. All the three model symbols in the first group are very similar
to the test symbol, which may be even confusing to human beings, especially (b)
and (c). The similarities given by our system is reasonable, which reflect the real
ranking result of the similarities among them. In the second group, the result
looks also very good.

Fig.7 shows the curve of average recognition rates over the number of model
symbols of a test set. There are 150 different model symbols available in GREC
2005. Each test consists of 4 sets, with 25, 50, 100, 150 symbol models, respec-
tively. As shown above, the recognition rate decreases slightly as the number of
symbol models increases. We can conclude that each additional model symbol
reduces the discrimination ability of our system by 0.07% averagely.

6 Conclusion

We have presented a symbol recognition system, which employs computing bi-
partite transformation distance, rotating symbols according to the angular dis-
tribution, compressing images and a newly-proposed denoising approach. The
evaluation in GREC 2005 shows that the combination of these techniques is
effective and efficient.

We note that there are still some improvements to be pursued in future work.
First, we can utilize the vectorial descriptions of the model symbols. Currently,
vectorial descriptions are ignored. If we can retrieve some descriptors from them,
the recognition precision may be improved greatly. Second, the angular distri-
bution in our method has some features suitable for other symbol recognition
approaches. It is potential and will be studied in the future.
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