
W. Liu and J. Lladós (Eds.): GREC 2005, LNCS 3926, pp. 334 – 345, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Sketch Parameterization Using Curve Approximation

Zhengxing Sun, Wei Wang, Lisha Zhang, and Jing Liu

State Key Lab for Novel Software Technology, Nanjing University, P. R. China, 210093
szx@nju.edu.cn

Abstract. This paper presents a method of parameterization for online freehand
drawing objects based on a piecewise cubic Bezier curve approximation. The
target is to represent sketches in a compact format within a certain error
tolerance with lower computation to be practically adaptable for the online
graphics input. A set of user’s intended breakpoints in digital ink is firstly
produced in terms of pen speed and local curvatures. Each of strokes of a
skechy shape is then parameterized by the optimization of piecewise Bezier
curve approximation to minimize the fitting error between stroke path and the
curve. The experimental results show both effective and efficient for a wide
range of drawing graphic objects.

1 Introduction

As computers become integrated into everyday life, pen-based user interface is
considered as a primary input method. Moreover, the feature to rapidly visualize and
deliver human’s ideas using graphic objects, which cannot be efficiently represented
by speech or text, is highly desirable in graphic computing [1]. The rapid growth of
graphic data has sustained the need for more efficient ways to represent and compress
the sketchy graphic data. The data representing freehand sketching needs not only to
be compressed in order to reduce the internal handling size and to transfer in low
bandwidth, but also to preserve the original intention of user and the convenience of
easy access of the information and for further processing such as shape recognition,
cooperative design, idea permutation and so on.

For existing techniques, the pen movements are typically captured by a digitizing
tablet and stored as sampled pen points of their paths, so called as digital ink, while an
image for receptor is captured. The drawback of this technique is that sketches
transferred in image usually require considerable storage capacity and cannot be
modified by receptor. Although there have been a large amount of experiments on
sketchy graphics recognition, such as feature-based [2][3], graph-based [4][5],
machine learning [6][7][8] and Parametric methods such as polygon [9], B-spline [10]
and Bezier curve [11], most of them guess and convert the drawing sketches into
regular shapes. However, they are charged with desertion of users’ intension, and are
the burden of computation especially for mobile devices. Parametric methods fitting
techniques have been considered in shape representation and classification. A benefit
of these approaches is that they can approximate the path of pen movements during
user drawing with a few parameters and they are computationally efficient. Only a
few researches have bent themselves to this issue [11][12].

 Sketch Parameterization Using Curve Approximation 335

In this paper, a sketch approximating method is introduced, which performs the
efficient parameterization of on-line freehand drawing objects captured in digital ink
using a piecewise recursive cubic Bezier curve approximation. The target is to
represent freehand sketches in a compact format, achieving high compression rate
within a certain error tolerance and with lower computation to be practically
adaptable solution for the real applications.

The remainder of this paper is organized as follows: The main idea of our proposed
strategy is outlined in Section 2. In Section 3, the method of stroke fragmentation for
generation of user intended breakpoints is given. In Section 4, we will discuss sketch
parameterization by Recursive Bezier Curve Approximation in detail. Section 5 will
present our experiments. Conclusions are given in the final Section.

2 The Proposed Strategy of Sketch Parameterization

The Bezier curve representation has been widely used since its coefficients can be
easily obtained and its shape can be easily manipulated. A Bezier curve is defined
using two anchor points, on-curve control points and at least one shape point, off-
curve control point. The on-curve control points are the two end points of the curve
actually located on the path of the curve, while the other off-curve control points
define the gradient from the two end points, which are usually not located on the
curve path. The off-curve points control the shape of the curve. The curve is actually a
blend of the off-curve control points. The more off-curve control points a Bezier
curve has, the more complicated shape can be represented; however the order of the
mathematical curve equation becomes higher. The approximation of hand-drawing
strokes using high order Bezier curve reduces the number of on-curve points and
produces more compact data representation. However, the approximation of high
order curve equation usually requires large amount of computation.

In order to easily manipulate a sketch, Raymaekers et al [11] have proposed a
method to group the individual pixels of sketch into segments represented by a cubic
Bezier curve. Whenever the least square error of the curve fitting passes a preset
threshold, a new segment is created and two off-curve points of this segment can be
constructed by means of least square minimization. For the computational efficiency
and data compression of sketch, Park and Kwon [12] have recently presented a
method of sketch approximation by piecewise fitting of a series of quadratic Bezier
curves using least square error approximation. The common ground between the
above two methods is that the curve control points are produced dependent only upon
the local geometric curvature so that the difference between the curve and the
corresponding data points is as small as possible. However, it is not a reliable way to
deliver the users’ intentions that the curve control points are determined alone by
curvature information. It is also time consuming to fit the undetermined segmented
points using least square error approximation.

We propose a method to parameterize sketches using a cubic Bezier curve, where
the complicated shaped strokes are represented by piecewise approximated cubic
Bezier curves, because the Bezier curves can only represent simple arc shape curves.
Fig. 1 shows the processing diagram of our proposed approximation method. This
process has two independent sub-processing modules, stroke fragmentation and curve

336 Z.X. Sun et al.

approximation loop. The stroke fragmentation is performed only once per given input
set of strokes to generate a series of the user intended breakpoints at each stroke,
where the speed of pen movement reaches the minimal value and where the
curvatures change sharply. These candidate breakpoints are selected as the initial on-
curve control points in curve approximation loop. The curve approximation routine,
including curve control points (including on-curve and off-curve control points)
selection, Bezier curves approximation and fitting error evaluation, operates
recursively till the piecewise fitting error is satisfactory. The recursive curve
approximation loop has two nested sub-processes. The inner is the optimization of
off-curve control points, which optimizes the piecewise curve approximation to
minimize the fitting error. The outer is the adjustment of on-curve control points,
which generates some new on-curve control points by bisecting each of current curves
to increase the pieces of segments and reduce the fitting error. The inputting graphic
object, drawn by a set of strokes, can finally be represented as a set of parameters of
some pieces of cubic Bezier curve. The risk generating excessive breakpoints (on-
curve points) on the stroke because of using series of cubic Bezier curves (compared
to approximated by high order Bezier curves) can somewhat avoided by optimization
of off-curve control points.

Raw Strokes

On-curve Control
Points Selection

Fitting Error
Evaluation

Curve Approximation Loop

Outputs Off-curve Control
Points Selection

Bezier Curve
Approximation

Off-Curve Control Points Optimization

On-Curve Control Points Adjustment (Segment Bisection)

Breakpoints
Generation

Fig. 1. The Diagram of sketch parameterization using recursive curve approximation

3 User Intended Breakpoints Generation

Stroke fragmentation is a very basic problem, making it widely applicable to
intelligent ink manipulation as well as other higher-level digital ink analyses. The
goal of stroke fragmentation is to fragment a wide variety of sketched symbols into
simpler structures so that they could faithfully represent the original form with a less
complex form. The key challenge of stroke fragmentation is to find out which bumps
and bends (breakpoints) are intended and which are accident. Most of existing
methods do stroke fragmentation based on curvature only. Usually, curvature
information alone is not reliable enough to determine such points. Instead, the speed
based methods have proven to be a much more reliable measure to determine the
intended breakpoints for the observation that the speed of the pen tip significantly
reduces at the intended corner points [5][13]. For sketch parameterization, the purpose
of stroke fragmentation is to extract sharp turning pen movement points and bending
points at each stroke quickly by the information of pen speed and curvature, which are
located as initial on-curve control points of Bezier curves.

 Sketch Parameterization Using Curve Approximation 337

3.1 Candidate Breakpoints Selection Based on Pen Speed

It has been discovered that it is natural to slow the pen when making many kinds of
intentional discontinuities in the shape [5][13], for instance the corners formed by two
lines. Similarly, when drawing a rectangle with a single pen stroke, users would likely
slow down at the corners, which are supposed to be the segment points. Fig. 2. shows
the speed profile for a typical square in our experiments. The corners can be easily
identified by the low pen speed.

0

0.5

1

1.5

2

2.5

1 30 59 88 117 146 175 204 233 262

Average Speed

Threshold Speed

Input
sketch

Speed

Times

Fig. 2. 1 Illustration of speed profile for a square

Given a digital stroke S, which contains N numbers of time-ordered points {P1,
P2,…, PN}. There is also a corresponding speed sequence: {SP1, SP2,…, SPN}, where
SPi represents the pen speed at the point Pi. The point Pi would then be selected as a
candidate breakpoint when the following conditions are satisfied:

*|| ,

*

⎪⎩

⎪
⎨
⎧

<−<∀
<

bNijSPSPj

aSPSP

ji

i (1)

where, SP is an average pen speed of the whole stroke, a and b are two thresholds
which will affect the spacing of the candidate breakpoints dependent on the length of
a stroke and must be set by means of some statistical experiments.

3.2 Candidate Breakpoints Generation Based on Curvature

In some case, some users’ intended breakpoints cannot be located with pen speed
because users probably draw it smoothly without the variation of pen speed. The
information of curvature must be used to capture such points. We develop an
approximate method to measure the variation of curvature of a segment or a stroke
and use greedy method based on sliding window algorithm (SWA) to pick up the
candidate breakpoints. Given a window with fixed sizes that envelops a lot of
successive ink points of a stroke, the distances dink from each sample point to the line
connecting the first point and last point in the window can be calculated and signed
according to their relative positions along with the drawing direction, that is,
the distance located in left side is positive and in right side is negative, as shown in
Fig. 3(a). The sum of distances of all ink points between these two points can be seen
as a measurement of the curvature of a segment affected by two end points.

338 Z.X. Sun et al.

Accordingly, starting with the first sample point of a stroke, we set a sliding
window initially with one unit width that envelops at least two successive ink points
of the stroke, the measurement of the curvature of segment in the window are
calculated, as shown in Fig. 3(b). The width of window broadens step by step alone
with drawing direction of stroke and the measurement of the curvature of segment in
the window are incrementally calculated until the measurement exceeds the
experimental threshold or all ink points of the stroke are tested. Whenever a
measurement exceeds the experimental threshold, the last point in that window is
chosen to be a candidate breakpoint and as a new start point of next repetition. Then,
the window with original size moves to the position of that point, the same process
described above is repeated until all successive points in a window are examined, as
shown in Fig. 3(b). It can minimize the chance of over-splitting caused by jitter of pen
movements. The window size are dependent on the density of ink points for a stroke
and can be given as a function of the perimeter and bounding box of each stroke. The
step of window enlargement and the threshold of measurement of curvature must be
experimental defined by making a tradeoff between precision and efficiency. In our
experiments, two parameters set as 15 (pixels) and 150 (pixels) respectively.

(a) Measurement of the curvature of a segment

Input Stroke

start point

last point

Signed Distance dink Sample Point Original Window

(b) Greedy method using sliding window

start point 1st breakpoint

Enlarge Window

2nd breakpoint

Fig. 3. Candidate Breakpoints Generation Using Curvature

After the processing described above, two portions of candidate breakpoints can be
got besides two end points of a stroke, which are either the ink points where the pen
speed reaches the local minimum or the ones where the measurement of curvature is
local maximum. However, some of them are redundancy, and the candidates
mergence is required to remove the superfluous or adjacent points. Ultimately, any
two adjacent breakpoints separate the segment between them as a sub-stroke and will
be used as the initial on-curve control points of a cubic Bezier curve.

4 Sketch Parameterization Using Piecewise Cubic Bezier Curve

4.1 Principle of Sketch Approximating by Cubic Bezier Curve

For a fragmentized stroke (or a segment of the stroke) with some breakpoints (can be
two end points only) to be eligible for the further processing, a cubic Bezier curve
approximation method is applied to find out the curve control points. A cubic Bezier
curve with two on-curve control points and two off-curve points are estimated which
satisfy following conditions as shown in Fig. 4.

 Sketch Parameterization Using Curve Approximation 339

breakpoint

Ink Stroke
Bezier Curve

Off-Curve Control Points
On-Curve Control Points

P0

P1

P2

P3

P4

P5

P6T1
T2

T3

T4start point

last point

Fig. 4. Sketch approximating by cubic Bezier curve

(1). The two on-curve control points of the estimated curve should be breakpoints
(including first and last ink points) of the stroke; such as, P0 and P3, P3 and P6, shown
in Fig. 4.

(2). The two off-curve control points of the estimated curve should be located on
the corresponding tangents at two end (on-curve control) points of the segment
respectively; for example, P1.is located on the tangent T1 at P0, P2.is on the tangent T2

at P3, and so on, as shown in Fig. 4.
(3). For any two adjacent segments that share a common breakpoint such as P3 in

Fig. 4, their tangents at that point should be collinear in order to make the curves
connect smoothly, that is, T2 and T3 are collinear vectors in Fig. 4. In other words, the
first off-curve control point in sequential segment should be collinear with two last
curve control points in previous segment; for example, P2, P3 and P4 should be
collinear.

(4). The fitting error between actual stroke and the approximated curve must be
within an acceptable range by optimization of off-curve control points. If the fitting
error exceeds a certain threshold, the on-curve control points should be adjusted. The
recursive curve fitting operation is repeated for each of the newly generated segment
till the error falls within tolerance.

For a given segment (or a whole stroke) with two end points P0 and P3, its
approximated cubic Bezier curve with two on-curve control points P0 and P3 and two
off-curve control points P1 and P2 can be represented as follow, as shown in Fig. 4.

10 ,)()(
3

0
3, ≤≤=∑

=
uuBEZPuP

k
kk

 (2)

where, () kk
k uukCuBEZ −−= 3

3,)1(),3(is a cubic Bernstein polynomial function, and

two off-curve control points P1 and P2 are defined based on the location and tangent
of two on-curve control points (two end points of a segment or a stroke) P0 and P3, as
follow respectively:

⎩
⎨
⎧

+∗=
+∗=

3222

0111

PTcP

PTcP (3)

where, T1 and T2 are two unit tangent vectors of two end points of a segment
respectively, which can be approximated by calculating the delta difference of the end
points to its adjacent ink points denoted as 0PΔ and

3PΔ respectively; c1 and c2 are

two variable coefficients to locate the off-curve control points on the tangent of end
points of the segment, usually we can set c1=c2=c, which is proportionate to the length
of segment for uniform fitting of the segment.

340 Z.X. Sun et al.

Therefore, an approximated cubic Bezier curve can be represented as:

() ()[] 10),(2)(3,3030 ≤≤Δ+Δ++= uuBEZPPcPPuP k
 (4)

4.2 Fitting Error Evaluation

To inspect the suitability of the sketch parameterization, the fitting error between
actual ink points and corresponding points of the approximated curve must be
evaluated. We evaluate the fitting error by two steps. Firstly, several pairs of points on
the original ink segment and corresponding approximated Bezier curve are selected
using fixed size sliding window, and all Euripidean distances from them to their
opposite chord connecting two end points of a segment are calculated one by one as
shown in Fig. 5, including a set of dink for each selected ink point and a set of dcurve for
each selected curve point (for illustrating clearly, some scenes in Fig.5 such as space
between sliding windows and lines in Fig. 5 are artificial). Then, the distance
difference (dcurve-dink) for each pair is calculated, and the fitting error is defined as the
ratio of the maximal distance difference (dcurve-dink)max to the length of chord L, which
reflects approximately the maximal difference of the local curvature distribution
between the original segment and the approximated Bezier curve at a certain extent as
described in section 3.2.

Ink Stroke

Bezier Curve

P0

P1 P2

P3

dink

dcurve

Fixed Size Slide Window

Fig. 5. The distance calculation using fixed size slide window for fitting error evaluation

Accordingly, the fitting error can then be represented as:

[] ()
L

dd
eeeeee

i
ink

i
curvei

f
m
f

i
ffff

−== Where,,,,,,,max 21 (5)

where, m is the numbers of selected on-curve points. The value of m must not be less
than three, and the points with the maximal local curvature on the original ink path
should be selected as possible. Meanwhile, The selected points from the original ink
path and the approximated Bezier curve should be corresponding. By defining a local
coordinate system, the distance difference (dcurve-dink) for each pair of selected points,
as shown in Fig. 5, can be easily calculated as follows:

() ()[] i
inkik

i
ink

i
curve yuBEZyycyydd −∇+∇++=−)(2 3,3030

 (6)

 Sketch Parameterization Using Curve Approximation 341

4.3 Sketch Parameterization

As described in section 4.1, every stroke of a sketchy object can be parameterized by
piecewise cubic Bezier curve within an acceptable fitting error tolerance with a set of
parameters as follows:

() (){ } ,,,,2,1|,,,2,1,0| expeeekickiPmstrokeA ffii ≤==∝ (7)

where, {Pmi} is a series of on-curve control points, Pm0 and Pmk are two end points of
a stroke respectively, {Pmi|i=1,2,…,k-1} is a sequence of middle on-curve control
points that fragmentize a stroke into k numbers of segments (initially, there are
breakpoints generated by stroke fragmentation), {ci} is a set of proportional
coefficients for locating the off-curve control points of the approximated cubic Bezier
curve for each of segments of a stoke, ef and eexp are the actual fitting error and the
experimental threshold of the fitting error respectively.

Our key ideas of sketch parameterization are (i) to optimise off-curve control
points of the piecewise curve approximation for each segments of a stroke to
minimize the fitting error and (ii) minimize the numbers of new added breakpoints for
each segment as possible to preserve the users’ intention. That is, for each segment,
the optimization of two off-line curve control points is the priority. The new ink
breakpoint would be generated and inserted to bisect the segment into two sub-
segments only if the fitting error of optimization of off-line curve control points great
than the experimental threshold. Accordingly, for an inputting stroke, the task of
sketch parameterization using piecewise cubic Bezier curve can be seen as a process
to search out some parameters of curve approximation, including a series of stroke
breakpoints and a set of the proportional coefficients, to fit as closely as possible to
each of strokes. In fact, this process is the recursive piecewise cubic Bezier curve
approximation within an acceptable approximated error, as shown in Fig. 1.

As described in equation (5) and (6), for every segment of a stroke between each
pair of on-curve control points {Pmi-1,Pmi|i=1,2,…,k}, the fitting error is variable with
this pair of points and a proportional coefficient {ci|i=1,2,…,k} corresponding to the
selection of off-curve control points, that is:

{ }() kicPmPmfe iii
i
f ,,2,1,,,1 =∝ −

 (8)

Based on the generation of the users’ intended candidate breakpoints, the
proportional coefficients {ci} for every segment of a stroke between each pair of on-
curve control points can then be gained from solving the following optimization
problem:

() () ()

() ()⎪
⎩

⎪
⎨

⎧

≥=∇+∇++

⎥
⎦

⎤
⎢
⎣

⎡ −−−==

−− 0,02:

,,,max)(:

11

2211

cPmPmcPmPmconstrainstoSubject
L

dd

L

dd

L

dd
ecfMinimize

iiii

m
ink

m
curveinkcurveinkcurvei

fi

(9)

Equation (9) can be solved easily by traditional optimal approach such as Newton’s
method. If the value of the fitting error for an optimal solution of equation (9) is
greater than the experimental threshold, a new on-curve control points must be
generated between the current pair of on-curve control points by bisecting the current
segment into two newly sub-segments. The process of solving the optimization

342 Z.X. Sun et al.

problem for each of sub-segments described in equation (9) would then be repeated
till the desired fitting error is achieved. A stroke is parameterized after all its segments
are approximated by piecewise cubic Bezier curve suitably.

As a result, a sketchy object with n number of inputting strokes can be represented
as a set of parameters of some pieces of cubic Bezier curve as follow:

() (){ } njekickiPmSketch jjjjj

fii
,,2,1 ,,,,2,1|,,,2,1,0| ===∝ (10)

4.4 Curve to Line Approximation

For some applications such as sketch recognition and display of sketch, the curve
components should be approximated as a line component instead of curve
representation within the allowable error range. Since the line approximation from
raw digital ink data is a computationally intensive process, the Bezier curve fitting
parameters can be used directly to examine the possibility of a line approximation.

One of the simplest methods of line approximation is to replace the approximated
cubic Bezier curve with its three boundaries of the control polygon, which connects
orderly all control points. The process is the recursive dichotomy (u=1/2 in equation
of Bezier curve) of a cubic Bezier curve, and the control points of each segment can
be obtained by de Casteljau algorithm till all control points are located within the
error tolerance boundary, as shown in the Fig. 6. If two conditions are satisfied, i) the
Euclidean distances between the on and off control points of each segment are smaller
than allowable delta tolerance, and ii) the minimum Euclidean distance between the
off-line point and the straight line between the two end (on-curve) control points is
smaller than the error tolerance. Then, the off-line control point is assumed to be
within the error tolerance. If the test is successful, a piece of Bezier Curve can be
represented as three straight lines by connecting orderly each of control points.

Approximated Bezier Curve

P0

P1
P2

P3

The Error Tolerance Boundary

Fig. 6. Illustration of curve to line approximation

5 Experiments and Discussion

In the experiment, two different types of freehand drawings are designed: graphic
drawings and Chinese characters. Some of our experimental results are listed in
Table 1. The first column is the original inputting sketch, and the second is the fitted
sketch where all the segments have been modeled curves and some of the segments
between every two breakpoints are subdivided because the error is higher than the

 Sketch Parameterization Using Curve Approximation 343

threshold. The number of strokes, candidate breakpoints and fragmented segments for
each sketch are listed in third, fourth and fifth column respectively. The data listed in
sixth column is the maximal among all of the fitting errors to fit for every segment
using piecewise Bezier curve in a sketch. The compression ratio is the ratio of file
storage of the parameterized sketch to the original ink points. All experiments are
done on an Intel PC with a 2.8 GHz CPU and 512MB memory running on Microsoft
Windows XP Professional.

Table 1. Some instances of our experiments for sketch parameterization

Input
Sketch

Fitted
Sketch

Number of
Strokes

Pieces of
Segments

Max. Fitting
Error

Compression
Ratio

Computing
Cost (ms)

2 4 0.0802 0.160 0.045

1 3 0.0510 0.108 0.078

2 4 0.0756 0.165 0.153

8 10 0.0714 0.173 0.176

14 23 0.0975 0.206 0.369

5 5 0.0478 0.129 0.107

8 9 0.0783 0.179 0.201

15 22 0.0856 0.197 0.485

From Table 1, we can see that our method of sketch parameterization is both
effective and efficient. Firstly, the approximating time for all inputting sketches is less
than 0.5 milliseconds. This indicates that our algorithm can provide the efficient-
computation for a wide range of freehand drawing graphic objects, and is suitable for
online freehand sketches inputting. Secondly, all drawing objects or handwritings in
Chinese characters can be parameterized by some piecewise Bezier curves within
allowed fitting error (in our experiments, the allowed fitting error is set to 0.1). These
connote that sketch parameterization using a piecewise cubic Bezier curve
approximation is adaptable for a wide range of freehand drawing graphic objects. It is
very useful for many applications where the original of ink path must be hold and
transmitted or re-used, such as conceptual expression for product or software design,
computer supported cooperative work, message exchange in mobile computing,
pervasive computing and ambient intelligence, electric notes/white-board for digital
classroom/office, and so on. Thirdly, all freehand drawings can be approximated with
more than fifteen percent of data compression. This means that it can reduce the
redundancy of on-line freehand drawing data within expected fitting tolerance for
graphic data exchange and transmission. This would be very useful especially in low
bandwidth wireless networks.

344 Z.X. Sun et al.

Fig. 7 illustrates the visual approximated effects of our two typical cases for sketch
parameterization.

(b) Approximation of Chinese signature (a) Approximation of drawn symbols

Fig. 7. Examples of our experiments for sketch parameterization

6 Conclusions

In this paper, we present a practical solution for efficient representation of hand
drawing graphics. The goals of the proposed method are to parameterize and reduce
the redundancy of online hand drawing graphic data. A piecewise Bezier curve
approximation is implemented in recursive architecture. For the computational
efficiency, the cubic Bezier curve representation is only used in our method since it is
relatively simple and the curve coefficients can be easily obtained. But the cubic
Bezier curves can only represent simple arc shape curves. Thus, complicate shaped
strokes are represented by piecewise approximated cubic Bezier curves in our
approach. The advantages of our method can be concluded as follows. Firstly, it is
suit for the retainable freehand drawing of a wide range of graphic objects without
loss of user originals. Secondly, it can reduce the redundancy of on-line freehand
drawing data and provide the efficient-computation for graphic data exchange and
transmission. Thirdly, it is user-independent because it is dependent only on the
allowed fitting error without loss of user intention. The experimental results show
both effective and efficient.

Theoretically, sketch parameterization must be done with the minimization of
fitting error, the maximization of computing efficiency and the optimization of data
compression. However, there is a conflict in sketch parameterization between the
fitting tolerance and the computing complexity as well as the data compression ratio.
That is to say, the approximated curve can fit better to original ink path by generating
more segments for each of strokes in a sketch, however, the run time would be higher
and the ratio of data compression would be lower. Therefore, a compromise must be
made for sketch parameterization between the minimization of fitting error, the
maximization of computing efficiency and the optimization of data compression
dependent on the requirements of particular applications. For example, the accurate
fitting may be preferential for cooperative carton design over Internet, the data
compression must be priority for message exchange and transmission using carton
over wireless network, the computing complexity would be the most important in
drawing graphic objects with portable devices. Efficient high order curve
approximation and optimization idea may be highly desired as a solution in the near
future.

 Sketch Parameterization Using Curve Approximation 345

Acknowledgement

This paper is supported by the grants from the National Natural Science Foundation
of China [Project No. 69903006 and 60373065] and the Program for New Century
Excellent Talents in University of China [Project No. NCET-04-04605].

References

1. Zhengxing Sun and Jing Liu, Informal user interfaces for graphical computing, Lecture
Notes in Computer Science, Vol. 3784, 2005, pp. 675-682.

2. Rubine Dean, Specifying gestures by example, Computer Graphics, 1991, Vol. 25, pp.
329-337.

3. Fonseca M. J., Pimentel C. and Jorge J. A., CALI-an online scribble recognizer for
calligraphic interfaces, In: AAAI Spring Symposium on Sketch Understanding, AAAI
Press, 2002, pp. 51-58.

4. Xiaogang Xu, Zhengxing Sun, Binbin Peng, et al, An online composite graphics
recognition approach based on matching of spatial relation graphs, International Journal of
Document Analysis and Recognition, Vol. 7, No.1, 2004, pp. 44-55.

5. Calhoun C., Stahovich T.F., Kurtoglu, T. et al: Recognizing Multi-Stroke Symbols. In:
AAAI Spring Symposium on Sketch Understanding, AAAI Press, 2002, pp. 15-23.

6. Zhengxing Sun, Wenyin Liu, Binbin Peng, et al, User Adaptation for Online Sketchy
Shape Recognition, Lecture Notes in Computer Science, Vol. 3088, 2004, pp. 303-314.

7. Sezgin T. M. and Davis R., HMM-Based Efficient Sketch Recognition, Proceedings of the
10th international conference on IUI, Jan., 2005, San Diego, California, USA.

8. Zhengxing Sun, Wei Jiang and Jianyong Sun, Adaptive online multi-stroke sketch
recognition based on Hidden Markov model, Lecture Notes in Artificial Intelligences,
Springer-Veralg, 2006, to be published.

9. Wenyin Liu, Xiangyu Jin and Zhengxing Sun, Sketch-Based User Interface for Inputting
Graphic Objects on Small Screen Device, Lecture Notes in Computer Science, Vol. 2390,
2002, pp. 67-85.

10. Huang Z and Cohen F, Affine-invariant b-spline moments for curve matching. IEEE
Transactions on Image Processing. Vol. 5, No.10, 1996, pp. 1473-1480.

11. Raymaekers C., Vansichem, G., and Reeth F. V., Improving sketching by utilizing haptic
feedback, In AAAI Spring Symposium on Sketch Understanding, AAAI Press, 2002, pp.
113-117.

12. Park Jaehwa and Kwon Young-Bin, An Efficient Representation of Hand Sketch Graphic
Messages Using Recursive Bezier Curve Approximation, Lecture Notes in Computer
Science, Vol. 3211, 2004, pp. 392-399.

13. Sezgin T. M., Stahovich T. and Davis R., Sketch based interfaces: early processing for
sketch understanding. Proceedings of the 2001 Workshop on PUI, Orlando, Florida, 2001,
pp. 1-8.

	Introduction
	The Proposed Strategy of Sketch Parameterization
	User Intended Breakpoints Generation
	Candidate Breakpoints Selection Based on Pen Speed
	Candidate Breakpoints Generation Based on Curvature

	Sketch Parameterization Using Piecewise Cubic Bezier Curve
	Principle of Sketch Approximating by Cubic Bezier Curve
	Fitting Error Evaluation
	Sketch Parameterization
	Curve to Line Approximation

	Experiments and Discussion
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

