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Abstract. This paper presents a method of parameterization for online freehand 
drawing objects based on a piecewise cubic Bezier curve approximation. The 
target is to represent sketches in a compact format within a certain error 
tolerance with lower computation to be practically adaptable for the online 
graphics input. A set of user’s intended breakpoints in digital ink is firstly 
produced in terms of pen speed and local curvatures. Each of strokes of a 
skechy shape is then parameterized by the optimization of piecewise Bezier 
curve approximation to minimize the fitting error between stroke path and the 
curve. The experimental results show both effective and efficient for a wide 
range of drawing graphic objects. 

1   Introduction 

As computers become integrated into everyday life, pen-based user interface is 
considered as a primary input method. Moreover, the feature to rapidly visualize and 
deliver human’s ideas using graphic objects, which cannot be efficiently represented 
by speech or text, is highly desirable in graphic computing [1]. The rapid growth of 
graphic data has sustained the need for more efficient ways to represent and compress 
the sketchy graphic data. The data representing freehand sketching needs not only to 
be compressed in order to reduce the internal handling size and to transfer in low 
bandwidth, but also to preserve the original intention of user and the convenience of 
easy access of the information and for further processing such as shape recognition, 
cooperative design, idea permutation and so on. 

For existing techniques, the pen movements are typically captured by a digitizing 
tablet and stored as sampled pen points of their paths, so called as digital ink, while an 
image for receptor is captured. The drawback of this technique is that sketches 
transferred in image usually require considerable storage capacity and cannot be 
modified by receptor. Although there have been a large amount of experiments on 
sketchy graphics recognition, such as feature-based [2][3], graph-based [4][5], 
machine learning [6][7][8] and Parametric methods such as polygon [9], B-spline [10] 
and Bezier curve [11], most of them guess and convert the drawing sketches into 
regular shapes. However, they are charged with desertion of users’ intension, and are 
the burden of computation especially for mobile devices. Parametric methods fitting 
techniques have been considered in shape representation and classification. A benefit 
of these approaches is that they can approximate the path of pen movements during 
user drawing with a few parameters and they are computationally efficient. Only a 
few researches have bent themselves to this issue [11][12]. 
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In this paper, a sketch approximating method is introduced, which performs the 
efficient parameterization of on-line freehand drawing objects captured in digital ink 
using a piecewise recursive cubic Bezier curve approximation. The target is to 
represent freehand sketches in a compact format, achieving high compression rate 
within a certain error tolerance and with lower computation to be practically 
adaptable solution for the real applications.  

The remainder of this paper is organized as follows: The main idea of our proposed 
strategy is outlined in Section 2. In Section 3, the method of stroke fragmentation for 
generation of user intended breakpoints is given. In Section 4, we will discuss sketch 
parameterization by Recursive Bezier Curve Approximation in detail. Section 5 will 
present our experiments. Conclusions are given in the final Section. 

2   The Proposed Strategy of Sketch Parameterization 

The Bezier curve representation has been widely used since its coefficients can be 
easily obtained and its shape can be easily manipulated. A Bezier curve is defined 
using two anchor points, on-curve control points and at least one shape point, off-
curve control point. The on-curve control points are the two end points of the curve 
actually located on the path of the curve, while the other off-curve control points 
define the gradient from the two end points, which are usually not located on the 
curve path. The off-curve points control the shape of the curve. The curve is actually a 
blend of the off-curve control points. The more off-curve control points a Bezier 
curve has, the more complicated shape can be represented; however the order of the 
mathematical curve equation becomes higher. The approximation of hand-drawing 
strokes using high order Bezier curve reduces the number of on-curve points and 
produces more compact data representation. However, the approximation of high 
order curve equation usually requires large amount of computation. 

In order to easily manipulate a sketch, Raymaekers et al [11] have proposed a 
method to group the individual pixels of sketch into segments represented by a cubic 
Bezier curve. Whenever the least square error of the curve fitting passes a preset 
threshold, a new segment is created and two off-curve points of this segment can be 
constructed by means of least square minimization. For the computational efficiency 
and data compression of sketch, Park and Kwon [12] have recently presented a 
method of sketch approximation by piecewise fitting of a series of quadratic Bezier 
curves using least square error approximation. The common ground between the 
above two methods is that the curve control points are produced dependent only upon 
the local geometric curvature so that the difference between the curve and the 
corresponding data points is as small as possible. However, it is not a reliable way to 
deliver the users’ intentions that the curve control points are determined alone by 
curvature information. It is also time consuming to fit the undetermined segmented 
points using least square error approximation. 

We propose a method to parameterize sketches using a cubic Bezier curve, where 
the complicated shaped strokes are represented by piecewise approximated cubic 
Bezier curves, because the Bezier curves can only represent simple arc shape curves. 
Fig. 1 shows the processing diagram of our proposed approximation method. This 
process has two independent sub-processing modules, stroke fragmentation and curve 
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approximation loop. The stroke fragmentation is performed only once per given input 
set of strokes to generate a series of the user intended breakpoints at each stroke, 
where the speed of pen movement reaches the minimal value and where the 
curvatures change sharply. These candidate breakpoints are selected as the initial on-
curve control points in curve approximation loop. The curve approximation routine, 
including curve control points (including on-curve and off-curve control points) 
selection, Bezier curves approximation and fitting error evaluation, operates 
recursively till the piecewise fitting error is satisfactory. The recursive curve 
approximation loop has two nested sub-processes. The inner is the optimization of 
off-curve control points, which optimizes the piecewise curve approximation to 
minimize the fitting error. The outer is the adjustment of on-curve control points, 
which generates some new on-curve control points by bisecting each of current curves 
to increase the pieces of segments and reduce the fitting error. The inputting graphic 
object, drawn by a set of strokes, can finally be represented as a set of parameters of 
some pieces of cubic Bezier curve. The risk generating excessive breakpoints (on-
curve points) on the stroke because of using series of cubic Bezier curves (compared 
to approximated by high order Bezier curves) can somewhat avoided by optimization 
of off-curve control points.  
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Fig. 1. The Diagram of sketch parameterization using recursive curve approximation 

3   User Intended Breakpoints Generation 

Stroke fragmentation is a very basic problem, making it widely applicable to 
intelligent ink manipulation as well as other higher-level digital ink analyses. The 
goal of stroke fragmentation is to fragment a wide variety of sketched symbols into 
simpler structures so that they could faithfully represent the original form with a less 
complex form. The key challenge of stroke fragmentation is to find out which bumps 
and bends (breakpoints) are intended and which are accident. Most of existing 
methods do stroke fragmentation based on curvature only. Usually, curvature 
information alone is not reliable enough to determine such points. Instead, the speed 
based methods have proven to be a much more reliable measure to determine the 
intended breakpoints for the observation that the speed of the pen tip significantly 
reduces at the intended corner points [5][13]. For sketch parameterization, the purpose 
of stroke fragmentation is to extract sharp turning pen movement points and bending 
points at each stroke quickly by the information of pen speed and curvature, which are 
located as initial on-curve control points of Bezier curves.   
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3.1   Candidate Breakpoints Selection Based on Pen Speed 

It has been discovered that it is natural to slow the pen when making many kinds of 
intentional discontinuities in the shape [5][13], for instance the corners formed by two 
lines. Similarly, when drawing a rectangle with a single pen stroke, users would likely 
slow down at the corners, which are supposed to be the segment points. Fig. 2. shows 
the speed profile for a typical square in our experiments. The corners can be easily 
identified by the low pen speed. 
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Fig. 2. 1 Illustration of speed profile for a square 

Given a digital stroke S, which contains N numbers of time-ordered points {P1, 
P2,…, PN}. There is also a corresponding speed sequence: {SP1, SP2,…, SPN}, where 
SPi represents the pen speed at the point Pi. The point Pi would then be selected as a 
candidate breakpoint when the following conditions are satisfied: 
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where,  SP  is an average pen speed of the whole stroke, a and b are two thresholds 
which will affect the spacing of the candidate breakpoints dependent on the length of 
a stroke and must be set by means of some statistical experiments. 

3.2   Candidate Breakpoints Generation Based on Curvature 

In some case, some users’ intended breakpoints cannot be located with pen speed 
because users probably draw it smoothly without the variation of pen speed. The 
information of curvature must be used to capture such points. We develop an 
approximate method to measure the variation of curvature of a segment or a stroke 
and use greedy method based on sliding window algorithm (SWA) to pick up the 
candidate breakpoints. Given a window with fixed sizes that envelops a lot of 
successive ink points of a stroke, the distances dink from each sample point to the line 
connecting the first point and last point in the window can be calculated and signed 
according to their relative positions along with the drawing direction, that is,  
the distance located in left side is positive and in right side is negative, as shown in 
Fig. 3(a). The sum of distances of all ink points between these two points can be seen 
as a measurement of the curvature of a segment affected by two end points.  
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Accordingly, starting with the first sample point of a stroke, we set a sliding 
window initially with one unit width that envelops at least two successive ink points 
of the stroke, the measurement of the curvature of segment in the window are 
calculated, as shown in Fig. 3(b). The width of window broadens step by step alone 
with drawing direction of stroke and the measurement of the curvature of segment in 
the window are incrementally calculated until the measurement exceeds the 
experimental threshold or all ink points of the stroke are tested. Whenever a 
measurement exceeds the experimental threshold, the last point in that window is 
chosen to be a candidate breakpoint and as a new start point of next repetition. Then, 
the window with original size moves to the position of that point, the same process 
described above is repeated until all successive points in a window are examined, as 
shown in Fig. 3(b). It can minimize the chance of over-splitting caused by jitter of pen 
movements. The window size are dependent on the density of ink points for a stroke 
and can be given as a function of the perimeter and bounding box of each stroke. The 
step of window enlargement and the threshold of measurement of curvature must be 
experimental defined by making a tradeoff between precision and efficiency. In our 
experiments, two parameters set as 15 (pixels) and 150 (pixels) respectively. 
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Fig. 3. Candidate Breakpoints Generation Using Curvature 

After the processing described above, two portions of candidate breakpoints can be 
got besides two end points of a stroke, which are either the ink points where the pen 
speed reaches the local minimum or the ones where the measurement of curvature is 
local maximum. However, some of them are redundancy, and the candidates 
mergence is required to remove the superfluous or adjacent points. Ultimately, any 
two adjacent breakpoints separate the segment between them as a sub-stroke and will 
be used as the initial on-curve control points of a cubic Bezier curve. 

4   Sketch Parameterization Using Piecewise Cubic Bezier Curve 

4.1   Principle of Sketch Approximating by Cubic Bezier Curve 

For a fragmentized stroke (or a segment of the stroke) with some breakpoints (can be 
two end points only) to be eligible for the further processing, a cubic Bezier curve 
approximation method is applied to find out the curve control points. A cubic Bezier 
curve with two on-curve control points and two off-curve points are estimated which 
satisfy following conditions as shown in Fig. 4.  
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Fig. 4. Sketch approximating by cubic Bezier curve 

(1). The two on-curve control points of the estimated curve should be breakpoints 
(including first and last ink points) of the stroke; such as, P0 and P3, P3 and P6, shown 
in Fig. 4.  

(2). The two off-curve control points of the estimated curve should be located on 
the corresponding tangents at two end (on-curve control) points of the segment 
respectively; for example, P1.is located on the tangent T1 at P0, P2.is on the tangent T2 

at P3, and so on, as shown in Fig. 4. 
(3). For any two adjacent segments that share a common breakpoint such as P3 in 

Fig. 4, their tangents at that point should be collinear in order to make the curves 
connect smoothly, that is, T2 and T3 are collinear vectors in Fig. 4. In other words, the 
first off-curve control point in sequential segment should be collinear with two last 
curve control points in previous segment; for example, P2, P3 and P4 should be 
collinear. 

(4). The fitting error between actual stroke and the approximated curve must be 
within an acceptable range by optimization of off-curve control points. If the fitting 
error exceeds a certain threshold, the on-curve control points should be adjusted. The 
recursive curve fitting operation is repeated for each of the newly generated segment 
till the error falls within tolerance. 

For a given segment (or a whole stroke) with two end points P0 and P3, its 
approximated cubic Bezier curve with two on-curve control points P0 and P3 and two 
off-curve control points P1 and P2 can be represented as follow, as shown in Fig. 4. 
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two off-curve control points P1 and P2 are defined based on the location and tangent 
of two on-curve control points (two end points of a segment or a stroke) P0 and P3, as 
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⎩
⎨
⎧

+∗=
+∗=

3222

0111

PTcP

PTcP  (3) 

where, T1 and T2 are two unit tangent vectors of two end points of a segment 
respectively, which can be approximated by calculating the delta difference of the end 
points to its adjacent ink points denoted as 0PΔ  and 

3PΔ  respectively; c1 and c2 are 

two variable coefficients to locate the off-curve control points on the tangent of end 
points of the segment, usually we can set c1=c2=c, which is proportionate to the length 
of segment for uniform fitting of the segment. 
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Therefore, an approximated cubic Bezier curve can be represented as: 

( ) ( )[ ] 10  ),(2)( 3,3030 ≤≤Δ+Δ++= uuBEZPPcPPuP k
 (4) 

4.2   Fitting Error Evaluation 

To inspect the suitability of the sketch parameterization, the fitting error between 
actual ink points and corresponding points of the approximated curve must be 
evaluated. We evaluate the fitting error by two steps. Firstly, several pairs of points on 
the original ink segment and corresponding approximated Bezier curve are selected 
using fixed size sliding window, and all Euripidean distances from them to their 
opposite chord connecting two end points of a segment are calculated one by one as 
shown in Fig. 5, including a set of dink for each selected ink point and a set of dcurve for 
each selected curve point (for illustrating clearly, some scenes in Fig.5 such as space 
between sliding windows and lines in Fig. 5 are artificial). Then, the distance 
difference (dcurve-dink) for each pair is calculated, and the fitting error is defined as the 
ratio of the maximal distance difference (dcurve-dink)max to the length of chord L, which 
reflects approximately the maximal difference of the local curvature distribution 
between the original segment and the approximated Bezier curve at a certain extent as 
described in section 3.2.  
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Fig. 5. The distance calculation using fixed size slide window for fitting error evaluation 

Accordingly, the fitting error can then be represented as: 
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where, m is the numbers of selected on-curve points. The value of m must not be less 
than three, and the points with the maximal local curvature on the original ink path 
should be selected as possible. Meanwhile, The selected points from the original ink 
path and the approximated Bezier curve should be corresponding. By defining a local 
coordinate system, the distance difference (dcurve-dink) for each pair of selected points, 
as shown in Fig. 5, can be easily calculated as follows: 
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4.3   Sketch Parameterization 

As described in section 4.1, every stroke of a sketchy object can be parameterized by 
piecewise cubic Bezier curve within an acceptable fitting error tolerance with a set of 
parameters as follows: 

( ) ( ){ }  ,,,,2,1|,,,2,1,0| expeeekickiPmstrokeA ffii ≤==∝  (7) 

where, {Pmi} is a series of on-curve control points, Pm0 and Pmk are two end points of 
a stroke respectively, {Pmi|i=1,2,…,k-1} is a sequence of middle on-curve control 
points that fragmentize a stroke into k numbers of segments (initially, there are 
breakpoints generated by stroke fragmentation), {ci} is a set of proportional 
coefficients for locating the off-curve control points of the approximated cubic Bezier 
curve for each of segments of a stoke, ef and eexp are the actual fitting error and the 
experimental threshold of the fitting error respectively.  

Our key ideas of sketch parameterization are (i) to optimise off-curve control 
points of the piecewise curve approximation for each segments of a stroke to 
minimize the fitting error and (ii) minimize the numbers of new added breakpoints for 
each segment as possible to preserve the users’ intention. That is, for each segment, 
the optimization of two off-line curve control points is the priority. The new ink 
breakpoint would be generated and inserted to bisect the segment into two sub-
segments only if the fitting error of optimization of off-line curve control points great 
than the experimental threshold. Accordingly, for an inputting stroke, the task of 
sketch parameterization using piecewise cubic Bezier curve can be seen as a process 
to search out some parameters of curve approximation, including a series of stroke 
breakpoints and a set of the proportional coefficients, to fit as closely as possible to 
each of strokes. In fact, this process is the recursive piecewise cubic Bezier curve 
approximation within an acceptable approximated error, as shown in Fig. 1. 

As described in equation (5) and (6), for every segment of a stroke between each 
pair of on-curve control points {Pmi-1,Pmi|i=1,2,…,k}, the fitting error is variable with 
this pair of points and a proportional coefficient {ci|i=1,2,…,k} corresponding to the 
selection of off-curve control points, that is: 
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Based on the generation of the users’ intended candidate breakpoints, the 
proportional coefficients {ci} for every segment of a stroke between each pair of on-
curve control points can then be gained from solving the following optimization 
problem: 
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(9) 

Equation (9) can be solved easily by traditional optimal approach such as Newton’s 
method. If the value of the fitting error for an optimal solution of equation (9) is 
greater than the experimental threshold, a new on-curve control points must be 
generated between the current pair of on-curve control points by bisecting the current 
segment into two newly sub-segments. The process of solving the optimization 



342 Z.X. Sun et al. 

problem for each of sub-segments described in equation (9) would then be repeated 
till the desired fitting error is achieved. A stroke is parameterized after all its segments 
are approximated by piecewise cubic Bezier curve suitably. 

As a result, a sketchy object with n number of inputting strokes can be represented 
as a set of parameters of some pieces of cubic Bezier curve as follow: 
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4.4   Curve to Line Approximation 

For some applications such as sketch recognition and display of sketch, the curve 
components should be approximated as a line component instead of curve 
representation within the allowable error range. Since the line approximation from 
raw digital ink data is a computationally intensive process, the Bezier curve fitting 
parameters can be used directly to examine the possibility of a line approximation.  

One of the simplest methods of line approximation is to replace the approximated 
cubic Bezier curve with its three boundaries of the control polygon, which connects 
orderly all control points. The process is the recursive dichotomy (u=1/2 in equation 
of Bezier curve) of a cubic Bezier curve, and the control points of each segment can 
be obtained by de Casteljau algorithm till all control points are located within the 
error tolerance boundary, as shown in the Fig. 6. If two conditions are satisfied, i) the 
Euclidean distances between the on and off control points of each segment are smaller 
than allowable delta tolerance, and ii) the minimum Euclidean distance between the 
off-line point and the straight line between the two end (on-curve) control points is 
smaller than the error tolerance. Then, the off-line control point is assumed to be 
within the error tolerance. If the test is successful, a piece of Bezier Curve can be 
represented as three straight lines by connecting orderly each of control points. 
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Fig. 6. Illustration of curve to line approximation 

5   Experiments and Discussion 

In the experiment, two different types of freehand drawings are designed: graphic 
drawings and Chinese characters. Some of our experimental results are listed in  
Table 1. The first column is the original inputting sketch, and the second is the fitted 
sketch where all the segments have been modeled curves and some of the segments 
between every two breakpoints are subdivided because the error is higher than the 
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threshold. The number of strokes, candidate breakpoints and fragmented segments for 
each sketch are listed in third, fourth and fifth column respectively. The data listed in 
sixth column is the maximal among all of the fitting errors to fit for every segment 
using piecewise Bezier curve in a sketch. The compression ratio is the ratio of file 
storage of the parameterized sketch to the original ink points. All experiments are 
done on an Intel PC with a 2.8 GHz CPU and 512MB memory running on Microsoft 
Windows XP Professional. 

Table 1. Some instances of our experiments for sketch parameterization 

Input 
Sketch 

Fitted 
Sketch 

Number of 
Strokes 

Pieces of 
Segments 

Max. Fitting 
Error 

Compression 
Ratio 

Computing 
Cost (ms) 

  
2 4 0.0802 0.160 0.045 

  
1 3 0.0510 0.108 0.078 

  
2 4 0.0756 0.165 0.153 

  
8 10 0.0714 0.173 0.176 

  
14 23 0.0975 0.206 0.369 

  
5 5 0.0478 0.129 0.107 

  
8 9 0.0783 0.179 0.201 

  
15 22 0.0856 0.197 0.485 

From Table 1, we can see that our method of sketch parameterization is both 
effective and efficient. Firstly, the approximating time for all inputting sketches is less 
than 0.5 milliseconds. This indicates that our algorithm can provide the efficient-
computation for a wide range of freehand drawing graphic objects, and is suitable for 
online freehand sketches inputting. Secondly, all drawing objects or handwritings in 
Chinese characters can be parameterized by some piecewise Bezier curves within 
allowed fitting error (in our experiments, the allowed fitting error is set to 0.1). These 
connote that sketch parameterization using a piecewise cubic Bezier curve 
approximation is adaptable for a wide range of freehand drawing graphic objects. It is 
very useful for many applications where the original of ink path must be hold and 
transmitted or re-used, such as conceptual expression for product or software design, 
computer supported cooperative work, message exchange in mobile computing, 
pervasive computing and ambient intelligence, electric notes/white-board for digital 
classroom/office, and so on. Thirdly, all freehand drawings can be approximated with 
more than fifteen percent of data compression. This means that it can reduce the 
redundancy of on-line freehand drawing data within expected fitting tolerance for 
graphic data exchange and transmission. This would be very useful especially in low 
bandwidth wireless networks.  
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Fig. 7 illustrates the visual approximated effects of our two typical cases for sketch 
parameterization. 

 

(b) Approximation of Chinese signature (a) Approximation of drawn symbols  

Fig. 7. Examples of our experiments for sketch parameterization 

6   Conclusions 

In this paper, we present a practical solution for efficient representation of hand 
drawing graphics. The goals of the proposed method are to parameterize and reduce 
the redundancy of online hand drawing graphic data. A piecewise Bezier curve 
approximation is implemented in recursive architecture. For the computational 
efficiency, the cubic Bezier curve representation is only used in our method since it is 
relatively simple and the curve coefficients can be easily obtained. But the cubic 
Bezier curves can only represent simple arc shape curves. Thus, complicate shaped 
strokes are represented by piecewise approximated cubic Bezier curves in our 
approach. The advantages of our method can be concluded as follows. Firstly, it is 
suit for the retainable freehand drawing of a wide range of graphic objects without 
loss of user originals. Secondly, it can reduce the redundancy of on-line freehand 
drawing data and provide the efficient-computation for graphic data exchange and 
transmission. Thirdly, it is user-independent because it is dependent only on the 
allowed fitting error without loss of user intention. The experimental results show 
both effective and efficient.  

Theoretically, sketch parameterization must be done with the minimization of 
fitting error, the maximization of computing efficiency and the optimization of data 
compression. However, there is a conflict in sketch parameterization between the 
fitting tolerance and the computing complexity as well as the data compression ratio. 
That is to say, the approximated curve can fit better to original ink path by generating 
more segments for each of strokes in a sketch, however, the run time would be higher 
and the ratio of data compression would be lower. Therefore, a compromise must be 
made for sketch parameterization between the minimization of fitting error, the 
maximization of computing efficiency and the optimization of data compression 
dependent on the requirements of particular applications. For example, the accurate 
fitting may be preferential for cooperative carton design over Internet, the data 
compression must be priority for message exchange and transmission using carton 
over wireless network, the computing complexity would be the most important in 
drawing graphic objects with portable devices. Efficient high order curve 
approximation and optimization idea may be highly desired as a solution in the near 
future.  
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