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Abstract. In this paper, we review some ideas which emerged in the
early years of research on symbol recognition and we show how these
ideas evolved into a large variety of contributions. We then propose
some interesting challenges for symbol recognition research in the present
years, including symbol spotting methods, recognition procedures for
complex symbols, and a systematic approach to performance evaluation
of symbol recognition methods.

1 Introduction

Symbol recognition is a field within graphics recognition to which a lot of efforts
have already been devoted. However, a document analysis expert who is more
familiar with OCR might rightfully wonder what exactly we call a symbol and
how symbol recognition differs from basic character recognition.

Our feeling is that the problem is very different because of the much higher
number and variety of symbols to be recognized. Except in strongly context-
dependent applications, it is impossible to provide a database of all possible
symbols. It is also in many cases impossible to assume that symbol recognition
can be performed on clearly segmented instances of symbols, as symbols are very
often connected to other graphics and/or associated with text. The well-known
paradox therefore appears: in order to correctly recognize the symbols, we should
be able to segment the input data, but in order to correctly segment them, we
need the symbols to be recognized!

This in turn means that it is usually not possible to assume that a reliable
segmentation process is available, that the symbols have been clearly extracted,
normalized, etc. It is hence not reasonable to assume that a vector of general-
purpose features can be computed on the segmented areas deemed to be potential
symbols, in such a way that the vector can be classified by some appropriate
statistical pattern recognition method. The most common approach in symbol
recognition therefore relies on structural methods able to capture the spatial
and topological relationships between graphical primitives; these methods are
sometimes complemented by a classification step, once the candidate symbol
has been segmented or spotted.
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This paper does not pretend to be yet another survey on symbol recognition
methods, as several excellent surveys already exist [4, 6, 21]. We will rather try
to take a step back, look at the main efforts done in that area throughout the
years and propose some interesting directions to investigate.

2 A Quick Historical Overview

As previously said, the early specific work on symbol recognition, as opposed
to character recognition, emphasized the use of structural pattern recognition
techniques, as usual statistical classification techniques were not suitable. Early
efforts included template matching techniques [13], grammar-based matching
techniques [8] and recognition techniques based on structural features [11] and
dynamic programming [24].

When dealing with specific families of symbols, techniques similar to OCR
could be used; this is the case for symbols having all a loop [25] or for music
recognition [31]. However these techniques have their own limitations, in terms
of computational complexity and of discrimination power.

Very early, people therefore became aware that graph matching techniques are
especially suited to specificities of symbol recognition. Twenty years ago, Kuner
proposed the search for graph or subgraph isomorphisms as a way for matching
symbols with models [14]. Groen et al. [9] analyzed electrical wiring diagrams by
representing symbol models by graphs, and using probabilistic matching tech-
niques to recognize symbols. Lin et al. [17] similarly matched symbols to be
recognized with model graphs using graph distance computations.

Although simple, this basic idea of graph matching suffers from a number of
drawbacks. In its basic principle, it is sensitive to errors and noise; as we usually
cannot assume that segmentation is perfect nor reliable, this means that the
graphs to be processed can also have a number of extra or missing nodes and
vertices. Very early, authors dealt with the general problem of inexact graph
matching [34]. In later years, seminal work by Horst Bunke’s team has brought
to evidence that it is possible to design error-tolerant subgraph isomorphism
algorithms [3, 23]. Another possible approach is to make statistical assumptions
on the noise present in the image [26].

Another problem with graph matching is the computational complexity of
subgraph isomorphism methods. A lot of efforts have therefore been devoted to
optimizing the matching process through continuous optimization [15] or con-
straint propagation techniques to perform discrete [10, 44] or probabilistic [5]
relaxation.

Still, another problem remains: that of the scaling of such structural methods
to encompass a large number of candidate symbols. It remains to be proven that
a symbol recognition method based on graph matching can successfully scale to
a large number of model symbols. Also, it is seldom feasible to directly search
for subgraph isomorphisms on a whole drawing or document, without some kind
of segmentation or pre-segmentation.

Therefore, although there have been a number of successful complete symbol
recognition systems, these are mostly within areas with relatively few kinds of
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symbols to discriminate and within areas where it is easy to localize or pre-
segment potential symbols. This includes electrical wiring diagrams [8, 9, 16, 17]
and flowcharts [24], typical areas where pre-segmentation can be performed quite
easily through separation on the graphical layer between connecting lines and
complex areas which are assumed to be symbols. Some attempts have also been
made at recognition in areas where pre-segmentation is not easy; this includes
work in our own group on recognition of architectural symbols by propagating
basic graphical features through a network of nodes representing structural and
geometrical constraints on how these features are assembled into symbols [1].
This approach makes it possible to group the information represented by each
structural symbol model into a single network, but it remains prohibitively ex-
pensive and complex in terms of memory use when the number of model symbols
grows. In addition, the fact that the system has to work with noisy data leads
to using a number of local rules for inexact matching, and when this propagates
through the network there is a real danger of recognizing everything everywhere!

3 Challenges and Research Directions

On the basis of the capabilities and limitations of structural symbol recognition
methods, as surveyed above, we discuss in this section a number of interesting
challenges and research directions in which our group is currently working.

3.1 The Right Information in the Right Place

Despite their limitations, structural recognition methods provide powerful tools
for dealing with complex information. This stems from the large representational
power of a graph, as a structure to capture pieces of information and the relation-
ships between these pieces. Attributed relational graphs (ARG) are especially
suitable for supporting the structural representation of symbols [26].

But a first challenge is to put the correct information into the graph. A typical
natural, but often simplistic, and sometimes even wrong way of proceeding is
to use the result of some raster-to-vector process to build a graph where the
vertices would be the vectors and the nodes the junctions between the vectors.
This leads to representing a symbol as a set of graphical features and the spatial
relations between these features, represented by relational attributes. Of course,
we are aware that it is not enough to have good features in the right place of
the graph; the matching method also has to be robust to noise [2].

Adding higher-level topological, geometrical and relational information to the
nodes and vertices of the graph can open up new possibilities in recognition
problems. When some pre-segmentation methods can divide the image to be an-
alyzed into homogeneous regions, region adjacency graphs are a good candidate
as they capture a lot of interesting information [19]. When this is not possible,
it may make sense to start with extracting simple graphical features which can
be reliably found without prior segmentation: vectors, arcs, basic shapes, and
to use a graph where these basic features are attributes of the nodes and the
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vertices convey information about topological and geometrical relationships be-
tween these features (inside, above, at-right-of, touching, etc.) A good example
of such use of spatial relations for symbol recognition purposes is the system
built by Liu Wenyin’s team in Hong Kong [18, 46].

3.2 Symbol Spotting

A way to avoid the dilemma of needing segmentation to perform recognition,
and vice-versa, is to try to localize the symbols in a complex drawing without
necessarily going all the way through complete recognition. This gives first pieces
of information on the subareas in which to apply recognition methods which may
be more computationally expensive.

In order to overcome the segmentation vs. recognition paradox, we have
worked in the last years on symbol spotting methods, i.e. ways to efficiently
localize possible symbols and limit the computational complexity, without us-
ing full recognition methods. This is a promising approach, based on the use of
signatures computed on the input data. We have worked on signatures based
on force histograms [38] and on the Radon transform [36, 37], which enable us
to localize and recognize complex symbols in line-drawings. We are currently
working on extending the Radon signature to take into account photometric in-
formation, in order to improve the results when retrieving similar symbols in
graphical documents [39]. By using a higher-dimensional signature, we are able
to include both the shape of the object and its photometric variations into a
common formalism. More precisely, the signature is computed on the symbol, at
several grey levels. Thus, the effects of noise on the boundary of the processed
object become insignificant, relatively to the whole shape.

When it comes to spotting target symbols, structural approaches are pow-
erful in terms of their representational capabilities. Therefore, we use a simple
structural representation of symbols to introduce a hybrid approach for process-
ing symbols connected to other graphical information. For this, we compute a
skeleton and we organize its junction points into a graph where the graph edges
describe the link between junction points (see Fig. 1). From this representation,
candidate symbols are selected and validated with the signature descriptor. Fig. 2
illustrates the working of the system: when a candidate symbol is selected in the
document, a number of candidate regions are retrieved.

3.3 Measuring the Progress: Performance Evaluation

As in many other areas within pattern recognition, performance evaluation has
become a crucial part of our work on symbol recognition, in order to be able to
compare different methods on standard datasets with metrics agreed upon by
everyone. Our team co-organized the two first international contests on symbol
recognition, held at GREC’03 [40, 41] and at GREC’05. The basic principles are
as follows:

– The datasets include both real scanned symbols and synthetic data, i.e. sym-
bols stemming from Cad systems which were degraded using a combination
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Fig. 1. Example of graph organization based on the junction points(from [39])

⇒
Fig. 2. Example of symbol spotting on an engineering drawing, from [48]. The user
delineates a symbol (left) and a number of candidates are retrieved (right).

of an image degradation model [12] and of vectorial degradation [42]. Other
basic transformations, such as scaling and rotation, are also used.
There are two types of datasets: isolated symbols (pre-segmented) for which
the task is to recognize a symbol among n possible models, with various
measures for an increasing n and an increasing degradation of the data, and
symbols in their context (without segmentation) where there is a double
task of spotting/localizing the symbol, and then recognizing it. Note that
although most of the framework was in place, we finally decided not to run
the symbol localization part at the second contest.
Managing a great number of heterogeneous data may be confusing for par-
ticipant methods, sometimes designed for a specific purpose, as well as for
post-recognition analysis steps, that could be irrelevant if the results are
themselves too heterogeneous. Therefore, all datasets are classified accord-
ing to several properties, increasing the readability in both cases. Basi-
cally, these properties are defined either from a technological point of view
(bitmap/vectorial representation, graphical primitives used...) or from an
application point of view (architecture/electronic...)
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The datasets are further divided into training data made available to the
participants beforehand, and test data used during the contest itself.

– The ground-truth definition for symbols in their context is simple and read-
able. It is basically based on the manual definition of bounding-boxes around
each symbol of the test data, labelled by the model symbol.

– The performance measures for isolated symbols include the number of false
positives and missing symbols, the confidence rates (when provided by the
recognition method), computation time (which gives an implicit measure of
the complexity of the method) and scalability, i.e. a measure of the way the
performances decrease when the number of symbols increases.
The performance evaluation for symbols in their context is based on two
measures. The first is unitary and is related to each symbol. It is based on the
overlapping of a ground-truth bounding-box and a bounding-box supplied
by a participant method, in the case where both symbol labels are the same.
The second measure allows us to compose all unitary measures for a test
data, and is based on the well-known notions of precision and recall ratios.
Again, computation time is used to qualify the scalability of the participant
method.

– Finally, the results analysis is led from the data point of view (data based),
as well as from the methods point of view (methods based). Indeed, if it is
interesting to understand which methods give good results with a lot of data,
it is also interesting to understand which data are difficult to recognize with
respect to the several recognition approaches. The interest of a performance
evaluation campaign is guided by these two points of view.

– The general framework provides online access to training data and descrip-
tion of the metrics used.

In addition, our team is leading a project financed by the French govern-
ment but open to international teams, on the performance evaluation of symbol
recognition and logo recognition (see http://www.epeires.org/). The purpose
of this project is to build a complete environment providing tools and resources
for performance evaluation of symbol recognition and localization methods. This
environment is intended to be used by the largest possible community. A test
campaign, opened to all registered participants, will be organized during its final
step. In addition to providing the general framework for organizing benchmarks
and contests on a more stable basis, our goal is to make available for the com-
munity a complete environment including online collaborative ground-truthing
tools, reference datasets, results of already published methods on these datasets,
and performance metrics which can be used for research teams throughout the
world to compare their own work on symbol localization and/or recognition with
the state of the art.

3.4 Complex Symbols

In many cases, a symbol is not only a set of segments and arcs, but a complex
entity associating a graphical representation, a number of connection points and



Musings on Symbol Recognition 29

text annotations. Symbol recognition should be able to deal with such complex
symbols in order to be of practical use in a number of areas.

Figure 3 gives some examples of complex symbols from the area of aeronau-
tics (wiring diagrams of an Airbus plane). The challenge here is to be able to

Fig. 3. Examples of complex symbols

discriminate between symbols which may differ not by their graphical shape,
nor by their topology, but simply by the number of connectors or by the type of
textual annotations. As an example, Fig. 4 illustrates two complex symbols from
the area of electrical design which differ only by slight variations in the shape of
their upper constituent sub-symbols.

Fig. 4. Example of very similar symbols (courtesy Algo’tech Informatique)

We are still working on the appropriate strategy to deal with this kind of
recognition problems. One of our ideas is to compile, from the set of reference
symbols, a number of basic shapes which can be considered as the basic building
blocks for drawing such symbols: rectangles, triangles, squares, disks, horizontal
and vertical segments, other straight segments, arcs, etc. Some of these shapes
may be filled and are thus represented by their contour. Then, very simple recog-
nition agents would localize in the drawing all instances of these simple shapes,
and progressively remove them from the drawing, to simplify it, following the
basic principle applied by Song et al. to the vectorization problem [35]. Com-
plex symbols can then be represented by rules for assembling these basic shapes,
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Fig. 5. Working of first prototype for dynamic recognition on scanned handwritten
notebooks such as the example on the left side (from [30]). The idea in this example is
to retrieve the arrows written by the user.

the annotations present in the text layer, the connection information from the
vectorized connecting lines, and other spatial information.

Pasternak was one of the first to experiment with this kind of recognition
strategy, with a system combining a number of simple agents triggering assembly
rules for recognizing higher-level symbols [27, 28]. However, his system remained
complex to adapt and to use in practical applications. We have started to work
on this problem and we plan to use structural/syntactic methods such as graph
grammars [7, 20, 29, 32] to describe the combination rules leading from the simple
shapes and the annotations to complex symbols.

3.5 Dynamic Recognition

Until now, we have addressed the problem of recognizing a symbol among a set
of known models. But there are situations, especially when browsing an open
set of documentation, where nobody is able to build a library of model symbols
or even to predict which symbols the user may be interested in. In that case, we
have to rely on what we have called dynamic symbol recognition. The idea is
that the user interactively selects an area or a region of a document which (s)he
calls a symbol. The challenge is then to retrieve other instances of this symbol
in the same document or in other documents available in the digital library.

The system can of course include some relevance feedback mechanism allowing
the user to validate or invalidate the results of a first symbol spotting phase and
then restart the whole process.

To achieve this, one of our ideas is to rely on a set of simple features which
can be pre-computed on the digital library. Each document image can be di-
vided into small images, using either a simple meshing method, or some rough
document image segmentation technique. On each subimage obtained through
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this subdvision or segmentation, one or several signatures, based on the Radon
transform or on other generic descriptors [22, 45, 47], can be used to characterize
the subimage. When the user selects a part of the image, the descriptors of this
part are computed and some distance can be used to find the regions of interest
having the closest descriptors. Relevance feedback allows the user to validate or
invalidate the different symbols spotted in this way, and the mechanism can be
iterated until the user is satisfied with the result.

The scenario sketched above only represents some preliminary ideas on this
matter of dynamic recognition, which is ongoing work in our team. Figure 5
illustrates the working of our first prototype, presented in [30].

4 Conclusion

In this paper, we have reviewed some ideas which emerged in the early years of
research on symbol recognition and have tried to show how these ideas evolved
into a large variety of contributions, which for many of them are based on the
same structural recognition paradigm. We have then proposed some challenges
for symbol recognition research in the present and coming years.

We are aware that there are a number of other issues which we have not
dealt with in this paper. Let us just mention the necessity of combining various
approaches to achieve better global recognition results. This includes combining
structural and statistical methods, but also combining various descriptors in a
better way than simply putting them into a vector where each feature computed
is assumed to play the same role and have the same weight. Some first results
have been obtained in our group using the Choquet integral to aggregate various
descriptors for better symbol spotting and recognition [33, 43].

Symbol recognition has been a research topic for many years already, and
spectacular achievements have been obtained. Still, a number of issues remain
open and lead to a number of research challenges for the coming years.
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