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Abstract. We present an approach for recognising mathematical texts using an
extensive LATEX symbol database and a novel recognition algorithm. The pro-
cess consists essentially of three steps: Recognising the individual characters
in a mathematical text by relating them to glyphs in the database of symbols,
analysing the recognised glyphs to determine the closest corresponding LATEX
symbol, and reassembling the text by putting the appropriate LATEX commands
at their corresponding positions of the original text inside a LATEX picture envi-
ronment. The recogniser itself is based on a novel variation on the application of
geometric moment invariants. The working system is implemented in Java.

1 Introduction

Automatic document analysis of mathematical texts is highly desirable to further the
electronic distribution of their content. Having more mathematical texts, especially the
large back catalogues of mathematical journals, available in rich electronic form could
greatly ease the dissemination and retrieval of mathematical knowledge. However, the
development of sophisticated tools necessary for that task is currently hindered by the
weakness of optical character recognition systems in dealing with the large range of
mathematical symbols and the often fine distinctions in font usage in mathematical
texts. Research on developing better systems for mathematical document analysis and
formula recognition requires high quality mathematical optical character recognition
(OCR). As one approach to this problem, we present in this paper a database-driven
approach to mathematical OCR by integrating a recogniser with a large database of
LATEX symbols in order to analyse images of mathematical texts and to reassemble them
as LATEX documents.

The recogniser itself is based on a novel application of geometric moments that is
particularly sensitive to subtle but often crucial differences in font faces while still pro-
viding good general recognition of symbols that are similar to, but not exactly the same
as, some element in the database. The moment functions themselves are standard but
rather than being applied just to a whole glyph or to tiles in a grid decomposition of
a glyph, they are computed in every stage of a recursive binary decomposition of the
glyph. All values computed at each level of the decomposition are retained in the fea-
ture vector. The result is that the feature vector contains a spectrum of features from
global but indistinct at the high levels of the decomposition to local but precise at the
lower levels. This provides robustness to distortion because of the contribution of the
high level features, but good discrimination power from those of the low levels.
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Since the recogniser matches glyphs by computing metric distances to given tem-
plates, a database of symbols is required to provide them. We have developed a large
database of symbols, which has been extracted from a specially fabricated document
containing approximately 5300 different mathematical and textual characters. This doc-
ument is originally based on [7] and has been extended to cover all mathematical and
textual alphabets and characters currently freely available in LATEX. It enumerates all
the symbols and homogenises their relative positions and sizes with the help of hori-
zontal and vertical calibrators. The single symbols are then extracted by recognising all
the glyphs a symbol consists of as well as their relative positions to each other and to
the calibrators. Each entry in the database thus consists of a collection of one or more
glyphs together with the relative positions and the code for the actual LATEX symbol they
comprise. The basic database of symbols is augmented with the precomputed feature
vectors employed by the recogniser.

To test the effectiveness of our OCR system, we analyse the image of a page of
mathematics, and reproduce it by locating the closest matching LATEX symbols and con-
structing a LATEX file which can then be formatted to provide a visually close match to
the original image. At this stage there is no semantic analysis or syntactic parsing of the
results to provide feedback or context information to assist the recognition. As a result,
the source produced is merely a LATEX picture environment that explicitly places, for
each recognised character, the appropriate LATEX command in its correct location. How-
ever, it is our position that the information obtained in order to do this successfully is
an appropriate input to the higher level analysis required for further document analysis
— especially as we can provide, for each glyph, a sequence of alternative characters
in diminishing order of quality of visual match. Moreover, the database-driven analy-
sis offers us a way to effectively deal with symbols composed of several, disconnected
glyphs, by easily finding, analysing, and selecting all symbols from the database that
contain a component glyph that matches the glyph in question.

There has been work on collecting a ground truth set of symbols for mathematics for
training and testing purposes. Suzuki et al [13] have compiled a database of symbols,
with detailed annotations, from a selected set of mathematical articles. The just under
700,000 characters in their database include many different instances of the same char-
acters, each with true, rather than artificially generated degradation. The actual number
of different symbols is much smaller. Our database only contains non-degraded ideal
symbols. However, each symbol is generated by a different LATEX command and so
there are relatively few copies of the same glyph in the database. In practice, there is
still some duplication in our database because (a) font developers often create new fonts
by copying and modifying existing fonts, sometimes leaving some symbols unchanged,
and (b) two different multi-glyph symbols often contain copies of one or more of the
same component glyphs, e.g. “=” and “≡”. Thus Suzuki et al’s database is especially
suitable for test purposes and for OCR system training on the types of mathematics that
appears in the necessarily limited (but large) set of symbols contained in the articles it
was extracted from, whereas our database is less suitable for testing purposes but has
significantly more breadth in that it contains most supported LATEX symbols. In particu-
lar, we can deal with the rapidly growing number of symbols used in diverse scientific
disciplines such as computer science, logics, and chemistry.
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A large number of methods for symbol recognition have been studied. See [6] for
a high level overview. In our system, which is a development from previous work on
font recognition [11], we augment the basic database of symbols with precomputed
feature vectors. This database serves as the template set of our character recogniser. The
recogniser itself is based on a novel variation on geometric moment invariants. There
has been much work on various approaches to character recognition, and geometric
moment invariants have been popular [15].

The paper is structured as follows: We present our recogniser and the database of
glyphs in Section 2 and 3, respectively. We give an example for the recognition of
an involved mathematical expression by our algorithm in Section 4, and conclude in
Section 5.

2 A Novel Algorithm for Mathematical OCR

Our algorithm for symbol recognition does not depend on a segmentation of the image
into full characters. Instead we segment the image into individual connected compo-
nents, or glyphs, where each symbol may be composed of a number of glyphs. The
motivation for this is that because of the 2-dimensional layout in mathematical texts,
and in technical diagrams, we do not necessarily have the luxury of having the symbols
neatly lined up on baselines. Hence segmentation into symbols is much less reliable
in such texts. Instead, our approach is to identify individual glyphs and compose sepa-
rate glyphs together to form symbols as indicated by the presence of appropriate glyph
components in corresponding relative positions.

We assume that preprocessing operations such as deskewing, binarisation etc. have
already been applied. The algorithm proceeds by

– extracting glyphs from the image;
– calculating a feature vector for the glyph based on recursive image partitioning and

normalised geometric moments;
– for each glyph, producing a list of potentially matching glyphs from the glyph

database ordered by metric distance from the target glyph and identifying an initial
best match for the glyph.

2.1 Extracting Glyphs

Since our feature vector is based on normalised geometric moments of sub-rectangles
of the glyph image, we need an appropriate data structure to enable convenient and
efficient calculation of such values. Also we need to separate the image into a list of
glyph representations, where each glyph is a single connected collection of pixels. We
base our moment calculations on that given by Flusser [2], where boundaries of glyphs
are used. To take advantage of that, our glyph representation is a list of horizontal line
segments, with each segment being represented as the start and end horizontal positions
of the row together with the vertical position that the segment occurs at.

Using this representation, the glyphs can be extracted in a single scan down the
image. To do so, a set of open glyphs and a set of closed glyphs is maintained. A closed
glyph is one which cannot have any further horizontal line segments added to it (because
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no such segment could possibly touch any existing line segment in the glyph). An open
glyph is one which has at least one line segment on the horizontal row immediately
above the one about to be scanned and hence a line segment could be found on the
current row which may touch the glyph. In detail the algorithm proceeds as follows:

1: for each horizontal scan line of the image
2: for each line segment on the line
3: find the set of open glyphs that the line segment touches
4: if the set is empty
5: create a new open glyph containing the line segment
6: else if the set contains only one open glyph
7: add the line segment to the open glyph
8: else
9: merge all open glyphs in the set and add the line segment to the resulting open glyph

10: for each open glyph that did not have a line added to it and was not merged
11: remove it from the set of open glyphs and add it to the set of closed glyphs
12: add any remaining open glyphs to the set of closed glyphs; return the set of closed glyphs

The above algorithm copes with glyphs with holes e.g. “8”, and those which are open at
the top, such as “V” or “

⋃
”. Note that it identifies each of “Θ”, “

�
” and “�” as having

two separate glyphs. In particular, this means that, for example, symbols inside frames,
such as “ a ”, can be handled correctly.

2.2 Calculating the Feature Vector

A common approach to statistical symbol recognition is to calculate some properties of
a previously segmented symbol, e.g., moments of various orders and types, topological
or geometric properties such as numbers of holes, line intersections etc., and to produce
a feature vector by collecting the values obtained. The resulting feature vector then can
be used, for example, in a metric distance or a decision tree based process to find the
best match in a database of symbols. In order to improve classification accuracy using
detailed features of the symbol, some systems decompose the image into, typically, a
3 × 3 grid of tiles and base the feature vector on calculations on the individual tiles.

Our method also decomposes the image, but instead of into a uniform grid, it de-
composes it recursively into sub-rectangles based on the centres of gravity (first order
moments) in horizontal and vertical dimensions, such that the number of positive (i.e.,
black) pixels is equal on either side of the divide. Furthermore, gross features of the
image are represented at higher levels of the decomposition while finer details are still
captured in the lower levels.

Figure 1 shows an example how a glyph is decomposed. We name the rectangles
produced as Ri,j where i ≥ 0 indicates the level of splitting, and j is the component
of a split where 0 � j � 2i − 1. The first two steps and the final result of the splitting
are depicted explicitly. R0,0 is the entire glyph image. The splitting is binary so Ri,j

will split into two sub-rectangles Ri+1,2j and Ri+1,2j+1, where these will be the top
and bottom (left and right) parts, respectively, if the splitting was using the vertical
(horizontal) component of the centroid of the image. The initial splitting is vertical and
each level of splitting then alternates between horizontal and vertical. The component of
the centre of gravity used to split Ri,j we call yi,j if i is even (and the split is therefore
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Fig. 1. Decomposition split points of “x” at 11 pt

vertical), otherwise xi,j (and the split is horizontal). Note that the regions at any one
level are disjoint but are nested within the level above.

For each rectangular region Ri,j of a glyph, we calculate 4 feature vector elements:
either the vertical or horizontal component of the centroid, yi,j or xi,j , (which is later
used for further splitting of this rectangle), scaled to a number between 0 and 1, and the
three second order scaled central moments, η20, η11 and η02 [12] for Ri,j .

In general, the above elements are scale independent to the limits of discretisation
errors. We would like to add an extra element based on the aspect ratio. The raw aspect
ratio, however, would dominate the vector for tall and narrow or short and wide glyphs,
so we use the hyperbolic tan function on the aspect ratio to smoothly map it into a value
between 0 and 1. The element is added at the front of the feature vector.

To see this in practice, compare the final decomposition diagram in Figure 1, with
the first line of feature vector elements in Table 1 in Sect. 3. The first feature vector
element, fv0, is the adjusted aspect ratio just described. In this case, the glyph is 45
pixels wide and 39 pixels tall so tanh(39/45) = 0.70 to 2 decimal places.

The next four elements are derived from R0,0, i.e., the rectangle described by the
outer bounding box of the entire glyph. The vertical centre of gravity is indicated by
the y0,0 line. This is very slightly above the geometric centre of the image and so is
shown, in Table 1, as 0.49 for fv1 (in line with Java image processing, the origin of the
image is the top left corner and the y coordinates increase down the image). fv2, fv3
and fv4 correspond to η2,0, η1,1 and η0,2 for R0,0. The next four elements, fv5, . . . fv8,
are the corresponding elements for R1,0, the top half rectangle of the image. Here fv5
is marked in the figure as x1,0, which, because of the greater thickness of the upper left
arm of the glyph, is to the left of the middle of that rectangle with a value of 0.46. The
vector elements for the lower half, R1,1 follow next. Then comes, in order, the top left,
the top right, the bottom left and the bottom right rectangle and so on recursively.

Extraction of the glyph from the document has produced a representation based on
lists of line segments, which is suitable for efficient calculation of moments via bound-
ary analysis [8, 2]. Furthermore, calculation of the moments for the sub-rectangles does
not require complicated or costly construction of new line segment lists but instead
is carried out by simply limiting the values of the line segments to that which would
appear in the required rectangle when executing the calculation.

In our current implementation, we are using 4 levels of splitting, resulting in 15
regions, from which we extract feature vector elements and hence the vector currently
contains 61 elements. We are experimenting with feature selection techniques to choose
a suitable smaller subset of the features for actual metric function evaluation.
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2.3 Initial and Alternative Matching Glyphs

Given a database of glyphs with associated precomputed feature vectors, we use the
standard euclidean metric for computing glyph similarity. We collect a list of the best
matches which can then be filtered to remove obvious impossibilities, apply feedback
constraints from higher levels of the document analysis process and impose priorities on
choosing between a collection of database glyphs that are all of similar metric distance
from the target glyph. The best glyph resulting is returned as the best match but the list
is retained so that higher levels of the system could potentially reject the first choice
and recalculate the best match based on extra feedback information, e.g. contextual
information returned from a semantic analysis.

Obvious impossibilities occur when a possible matching glyph is one component of
a multi-glyph symbol but the other components of the same symbol are not found at
the corresponding relative location in the target document. Feedback constraints from
higher level processing could include, for example, that a particular character appears
to be a letter in a word which, by dint of dictionary lookup, is likely to be one of a very
small number of letters in a particular font. Priorities that can be applied include giving
higher priority to recognising a symbol at a particular font size, over one at a different
font size but scaled to match the target glyph.

At this level our approach is purely syntactic. This leaves us with the semantic prob-
lem of recognising symbols consisting of disconnected glyphs. While we could leave
this to a later stage, in practice we believe this unnecessarily complicates the task of
higher level processing. We instead can take advantage of the database information to
notice when we have a good match on a component of a symbol and directly search for
the remaining components.

We currently use a double track approach: (a) If the glyph matches with a symbol
that consists of that one glyph alone we can simply pick it (the result may not be the
correct symbol from a semantic point of view but the formatted output should be vi-
sually indistinguishable). (b) In the case that the best match for a recognised glyph is
a glyph in the database that belongs to a symbol that is composed of multiple glyphs
we cannot simply take that symbol since it might introduce glyphs into the result that
have no counterpart in the original document. In this case we can consider two possible
conflict resolution strategies:

1. We search all closely matching glyphs for one that is the only glyph of its associated
symbol.

2. We search all closely matching glyphs for one whose sibling glyphs in its symbol
are also matched in the appropriate relative position.

While approach 1 might not necessarily deliver the best matching glyph, it definitely
will not introduce superfluous information into the document. But in some cases it will
not be possible to find a symbol that matches acceptably well with the original glyph and
approach 2 might be preferable (and in general, approach 2 is, of course, more correct
from a semantic perspective), which forces a search over sets of glyphs of the particular
area under consideration. In our current (first) implementation we give preference to
approach 1 by allowing for a small error threshold when matching glyphs and giving
a preference to matching single glyph symbols over multi-glyph symbols within that
threshold. If this fails, however, we do resort to approach 2.
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For example, consider the symbols “
�

” and “�” from Section 2. The former can
be composed by two separate symbols, one for “

⋂
” and one for the inlaid “

�⋂
”. For

the latter, however, there is no appropriate match such that we can compose the “�”
symbol from two separate, single glyph symbols. While we can find a match for “≺”
that is the only glyph of its symbol, the only matches available for the curly upper bar
in “�” belong to multi-glyph symbols. Therefore, the algorithm searches for a symbol
whose glyphs match as many other glyphs as possible surrounding the curly upper bar
in the input image. In the case of our example the algorithm would indeed come up with
“�” as the closest matching symbol.

3 The Symbol Database

The templates for the system are held in a database of approximately 5,300 symbols,
each in 8 different point sizes, that is augmented with precomputed feature vectors for
the character recognition process. We shall briefly describe the design of the database
(for a more detailed description on how the database is constructed, see [9]) and explain
its main characteristics with an example.

In detail, the database currently consists of a set of LATEX formatted documents (one
per point size for 8, 9, 10, 11, 12, 14, 17 and 20 points), which are rendered to tiff format
(multi-page, 1 bit/sample, CCITT group 4 compression) at 600dpi. The documents are
originally based on [7] and have been extended to cover all mathematical and textual
alphabets and characters currently freely available in LATEX. However, the database can
be easily extended for more symbols by adding them to the documents. The documents
enumerate all the symbols and homogenise their relative positions and sizes with the
help of horizontal and vertical calibrators. The single symbols are then extracted by
recognising all the glyphs a symbol consists of as well as their relative position to each
other and to the calibrators. We store them in a suitable directory structure with one tiff
file per glyph, and no more than 100 symbols per directory, together with an index file
containing the requisite extra information such as bounding box to base point offsets,
identification of sibling glyphs in a symbol, precomputed feature vector, etc.

In addition to these documents we have an annotation text file that is automatically
generated from the LATEX sources during formatting and that contains one line for each
symbol described in the LATEX documents, which associates the identifier of the symbol
with the LATEX code necessary to generate the symbol together with the information
on what extra LATEX packages or fonts, if any, are required to process the code and
whether the symbol is available in math or text mode. Thus we can view each entry in
the database as a collection of one or more glyphs together with the indexing informa-
tion and the code for the actual LATEX symbol they comprise.

The character recognition extracts single glyphs from the document under analysis
and then tries to retrieve the best matches from the database. Since all this works on
the level of glyphs only, we take a closer look at the information on single glyphs
that is stored in the index files. This information consists essentially of three parts: (1)
basic information on the overall symbol, (2) basic information on the glyph, and (3) the
precomputed feature vector containing all possible moments described in Section 2.

Information of type (1) and (2) is mainly concerned with bookkeeping and contains
elements such as width, height, absolute number of pixels of a symbol or glyph, re-
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spectively as well as indexing information. The feature vector (3) is then the actual
characterising information for each glyph. It is pre-computed with a uniform length
for all glyphs in the database at database creation time. In the current version of the
database the vector contains 61 different features. But despite the length of the vector
not all features must necessarily be used by the recogniser. In fact the algorithm can
be parameterised such that it will select certain features of the vector and restrict the
matching algorithm to compute the metric only with respect to the features selected.
This facilitates experimenting with combinations of different features and fine-tuning
of the character recognition algorithm without expensive rebuilds of the database.

Table 1. Feature vectors for the symbols “x”, “x”, and “×”

fv0 fv1 fv2 fv3 fv4 fv5 fv6 fv7 fv8 fv9 fv10 fv11 fv12 fv13 fv14
x 0.7 0.49 0.18 0.02 0.3 0.46 0.34 0 0.1 0.5 0.37 -0.01 0.11 0.33 0.15
x 0.75 0.49 0.18 0 0.27 0.48 0.35 0 0.1 0.48 0.39 0 0.12 0.44 0.16
× 0.76 0.49 0.32 0 0.32 0.5 0.63 0.01 0.14 0.5 0.63 -0.01 0.14 0.47 0.29

fv15 fv16 fv17 fv18 fv19 fv20 fv21 fv22 fv23 fv24 fv25 fv26 fv27 fv28 fv29
x 0.1 0.16 0.34 0.22 -0.19 0.26 0.62 0.23 -0.2 0.27 0.6 0.15 0.12 0.18 0.49
x 0.16 0.21 0.44 0.16 -0.16 0.21 0.52 0.17 -0.19 0.24 0.52 0.19 0.2 0.24 0.36
× 0.28 0.29 0.49 0.29 -0.28 0.29 0.48 0.29 -0.28 0.29 0.46 0.29 0.28 0.29 0.25

fv30 fv31 fv32 fv33 fv34 fv35 fv36 fv37 fv38 fv39 fv40 fv41 fv42 fv43 fv44
x 0.3 0.02 0.03 0.76 0.1 0.08 0.15 0.53 0.21 -0.02 0.04 0.19 0.18 -0.17 0.22
x 0.14 0.07 0.09 0.73 0.11 0.09 0.12 0.57 0.13 -0.07 0.09 0.23 0.11 -0.09 0.12
× 0.17 0.12 0.13 0.7 0.18 0.15 0.16 0.72 0.16 -0.13 0.14 0.26 0.18 -0.14 0.15

fv45 fv46 fv47 fv48 fv49 fv50 fv51 fv52 fv53 fv54 fv55 fv56 fv57 fv58 fv59 fv60
x 0.75 0.18 -0.18 0.24 0.39 0.21 -0.03 0.05 0.19 0.1 0.08 0.13 0.5 0.22 0.03 0.05
x 0.75 0.11 -0.09 0.14 0.36 0.13 -0.09 0.11 0.22 0.12 0.1 0.13 0.6 0.14 0.09 0.11
× 0.72 0.17 -0.13 0.15 0.27 0.18 -0.14 0.14 0.24 0.17 0.13 0.14 0.7 0.18 0.14 0.16

As an example of feature vectors we compare the symbols “x”, “x”, and “×”, given
in the annotation text file as the LATEX commands \textrm{\char’170},
\textsf{\char’170}, and $\times$, respectively. Each of the symbols only
consists of one glyph, whose feature vectors are given in Table 1. Note that the single
component values are given with two digit precision only, while in the actual database
the numbers are given with full double float precision.

If we now, for instance, consider the first fifteen features, we can observe that there
is very little difference between the values for “x” and “x”. However, both differ quite
considerably from “×” in features fv2, fv6, fv10, fv14 (i.e., in the η2,0 moments for the
whole glyph, the top and bottom halves of the glyph and the top left quarter of the
glyph). This indicates that “×” has essentially the same symmetries as the other two
symbols but that the pixels in the corresponding sub-rectangles are more spread out
horizontally around the respective centres of gravity for the “×” symbol than for the
other two. We can find the first distinguishing features for the two symbols “x” and “x”
in the vector component fv13. This is a first order moment corresponding to the centre
of gravity y2,0 in Figure 1. It basically reflects the impact of the top left hand serif in
“x”, which pushes the centre of gravity upwards and therefore results in a smaller value
than for the other two symbols.
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If we now want to compare the three symbols with each other using the entire feature
vector, we can compute the following Euclidean distances for the three pairs of symbols:

|x − x| =

√
√
√
√

60∑

i=0

(fvi(x) − fv i(x))2 ≈ 0.47066 |x − ×| ≈ 0.83997 |x − ×| ≈ 0.62672

The numbers indicate that “x” is a closer match for “x” than “×”. However, the “×”
is naturally still closer to the sans serif “x” than to the “x” with serifs. However, none
of the three symbols is actually a close match for any of the others, since while the
distances between symbols can theoretically range between 0 and

√
61 ≈ 7.81, overall

a distance � .15 is generally considered a close match by the recogniser when using
this set of features.

4 An Example Recognition

In order to evaluate the effectiveness of our approach we have essentially two meth-
ods to assemble documents: Firstly, we take the closest matching glyph image from the
database, possibly apply some scaling to it, and place it at the position in the new docu-
ment that corresponds to the position of the recognised glyph in the original file. While
this has the advantage that we can directly use single glyphs recognised and retrieved
from the database and therefore do not have to deal with symbols consisting of several
disconnected glyphs, it has the disadvantage that the resulting file is in a picture file
format that cannot be used for further processing.

The second method is to assemble an actual LATEX source file that formats to the
recognised text. For this, the glyphs in the original document are identified and an ap-
propriate symbol is chosen from the database. The LATEX command for that symbol is
then put at the correct position in the output document within a LATEX picture envi-
ronment whose measurements correspond to the bounding box given by the original
document. The restrictions imposed by LATEX on the unitlength of the picture envi-
ronment can affect the exact placement of characters, since commands can only be put
at integer raster points in the environment. Scaling is applied by specifying and select-
ing a particular font size for the LATEX command, which also imposes some restrictions
with respect to the available font sizes.

We demonstrate the results of our algorithm with an example from a paper, [4], we
have experimented with that offers a large number of complex mathematical expres-
sions. The particular expression we are interested in is given in Figure 4 as it appears in
the paper. Note that it is in its original form in 10 point size font. As comparison, the re-
sults of the OCR algorithm are displayed in Figures 2 and 6, where the former contains
the assembled tiff file and the latter the formatted LATEX generated expression. Since the
results are difficult to distinguish with the naked eye, we have combined images 4 and 2
using exclusive-or rendering in Figure 3. The similar combination of images 4 and 6 is
given in Figure 5. Here, all pixels that show up in only one of the two images appear as
black pixels.

The difference in the rendering is more severe for the generated LATEX expression
than for the assembled tiff file. This is due to the fact mentioned earlier, that the char-
acters cannot be placed exactly at the right positions but only approximately at the next
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Fig. 2. Generated mathematical expression image

Fig. 3. Difference between Figure 4 and Figure 2 using XOR rendering

Fig. 4. Original mathematical expression image

Fig. 5. Difference between Figure 4 and Figure 6 using XOR rendering

Fig. 6. LATEX generated mathematical expression

possible integer raster point. Since the algorithm computes the character positions from
the centre outwards, in the LATEX expression the symbols in the middle have the most
overlap and the discrepancy increases towards the outside.

But also the generated tiff image does not match the original expression exactly.
There are essentially three types of differences which are best explained when looking
at the LATEX code of the original expressions:

\newcommand{\seman}[1]{ [\![ {#1} ]\!] }
\begin{eqnarray*}

\seman{A \rightarrow B} & = &
S \rightarrow \seman{A} \rightarrow (S \times \seman{B}) \\
& \cong &
\prod_{w’\in {\mathcal{W}}}(Sw’ \rightarrow \seman{A} \rightarrow
\sum_{w’’\in {\mathcal{W}}}(Sw’’ \times \seman{B}))

\end{eqnarray*}

Firstly, we observe that the author of [4] did not use pre-designed symbols for the
semantic brackets but rather defined them via a new, handcrafted macro as an overlap
of the regular square brackets. Nevertheless, the recogniser finds a suitable replacement
for the characters, for instance, the \textlbrackdbl command in the textcomp
package for the left semantic brackets. The distance between the original expression
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and the symbol in the database is 0.0689. This discrepancy is essentially caused by the
slightly leaner vertical bars in the \textlbrackdbl command, which can indeed be
observed in the respective feature vectors. While nearly all features differ by a minimal
fraction, only, the features fv33 and fv45, corresponding to the vertical splits x3,1 and
x3,4, respectively, have a difference of roughly 0.03.

Secondly, the difference in the “∈” is caused by the recogniser retrieving the com-
mand \ABXin from the mathabx package in 17 point size, which, however, does not
scale as well to the required font size of 9 points as the original “∈” symbol would.

Finally, the remaining differences are essentially due to scaling to a point size for
which no corresponding characters in the database exist. Our current database does not
contain a 7 point set of symbols. However, the “w” and the calligraphic “W” in the
subscript of the sum and product symbol are actually in 7 point size. The closest match
in the database yields the 9 point versions. These have to be scaled to size 7, which leads
to slight discrepancies in the rendering. In the generated LATEX expression this scaling
is achieved, for instance, by LATEX command {\fontsize{7}{0}\selectfont
$\mathnormal{w}$}.

5 Conclusion

We have presented a novel algorithm for mathematical OCR that is based on a com-
bination of recursive glyph decomposition and the calculation of geometric moment
invariants in each step of the decomposition. The current implementation of the algo-
rithm yields nearly optimal results in recognising documents that are already compiled
from actual LATEX source files. We are currently experimenting with scanned images of
documents, in particular, we have started experimenting with articles from the Transac-
tions of the American Mathematical Society [14]. Within the repository of the JSTOR
archive [3], images of all the back issues of this journal — starting 1900 — have been
made available electronically. While the results of these experiments are already encour-
aging, more experimentation with feature selection and fine tuning of the recognition
algorithm is needed to achieve a robust top quality recognition.

We compared the results from our recogniser with those from two other recognisers
we call Box and Grid. Both use the same aspect ratio feature and the same moment
functions as our recogniser, but Box includes the moment functions only on the entire
glyph and Grid includes them for each of the 9 tiles of a 3 × 3 grid subdivision of the
glyph. Preliminary results indicate that the Box recogniser performs worst, presumably
due to the lack of sensitivity to details of the glyphs. The Grid recogniser suffers from
the arbitrary nature of features of empty or near-empty cells in the grid (e.g., the upper
right cell of an ‘L’ character) — a disadvantage that our system is not subject to.

The effective limit on the recursive decomposition of the glyphs to extract feature
vectors is the increasing discretisation errors that arise as we try to decompose rectan-
gles with fewer and fewer positive pixels. In practice, for any rectangle, the calculation
of the geometric moments will gather some discretisation error, as discussed in [5].
This error can be reduced, at some computation cost, by being more precise in how one
translates from the proper continuous integral expression for the moment calculation to
the discrete version for a binary image. However, another form of discretisation error
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appears as we split into sub-rectangles based on rounding the split point to the nearest
pixel boundary. We are currently investigating the costs and benefits of applying a more
accurate approach to the discretisation problem here.

The success of our approach depends on the availability of a large high quality
database of symbols generated from a large set of freely available LATEX fonts. In its
current version, the database contains, among its approximately 5,300 symbols, 1,600
mathematical symbols and 1,500 characters from different mathematical alphabets. The
remaining symbols are mostly regular textual characters, accents, as well as additional
scientific symbols, such as chemical or meteorological symbols. Since we keep copies
of each symbol at 8 different point sizes, we are currently storing about 42,400 different
symbols in total. Since many symbols are composed of more than one glyph, and we
actually store glyphs rather than symbols in the database (but with sufficient informa-
tion to reconstruct the full symbols as needed), we are actually storing about 59,000
glyphs. Nevertheless, the database is easily extensible and is therefore also suitable for
recognising scientific texts other than mathematics.

Analysing a document involves extracting the glyphs from the document and finding
its nearest neighbours with respect to the metric in the database. The nearest neighbour
search is searching in the full database of the 59,000 glyphs for each target glyph in the
system. On a moderately powerful desktop PC running Linux, the software, in its cur-
rent unoptimised state takes about 10 minutes to process a page of three to four thousand
target glyphs. Many optimisations are possible to improve this speed but, to provide true
scalability to very large databases of symbols, we intend to use an SM-tree [10], a high
performance variant of the M-tree metric file access method [1]. However, for our cur-
rent work, we are using a naı̈ve internal memory algorithm which is slower but adequate
for non-production use and easier to experiment with.
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