
Compositional Semantics of an Actor-Based
Language Using Constraint Automata

Marjan Sirjani1,2, Mohammad Mahdi Jaghoori2,
Christel Baier3, and Farhad Arbab4,5

1 University of Tehran, Tehran, Iran
2 IPM School of Computer Science, Tehran, Iran

3 University of Bonn, Bonn, Germany
4 CWI, Amsterdam, Netherlands

5 Leiden University, Leiden, Netherlands
msirjani@ut.ac.ir, jaghoori@mehr.sharif.edu, baier@cs.uni-bonn.de

farhad@cwi.nl

Abstract. Rebeca is an actor-based language which has been success-
fully applied to model concurrent and distributed systems. The seman-
tics of Rebeca in labeled transition system is not compositional. In this
paper, we investigate the possibility of mapping Rebeca models into a
coordination language, Reo, and present a natural mapping that pro-
vides a compositional semantics of Rebeca. To this end, we consider
reactive objects in Rebeca as components in Reo, and specify their be-
havior using constraint automata as black-box components within Reo
circuits. Modeling coordination and communication among reactive ob-
jects as Reo circuits, and the behavior of reactive objects as constraint
automata, provides a compositional semantics for Rebeca. Although the
result is a compositional model, its visual representation in Reo shows
very well that it still reflects the tight coupling inherent in the commu-
nication mechanism of object-based paradigms, whereby the real control
and coordination is built into the code of the reactive objects themselves.
We describe an alternative design that overcomes this deficiency. This
illustrates the differences between objects and components, and the chal-
lenges in moving from object-based to component-based designs.

Keywords: actor model, Compositional semantics, Rebeca, Reo, Con-
straint Automata.

1 Introduction

Managing large and complex systems requires techniques that support reusabil-
ity and modifiability [1]. In general, compositionality allows one to master both
the complexity of the design and verification of software models. Having a com-
positional semantics for a modeling language allows us to construct a model from
its sub-models and reuse the already derived semantics of the sub-models. Com-
positional construction and verification can be exploited effectively only when
the model is naturally decomposable [2], and there is no general approach for

P. Ciancarini and H. Wiklicky (Eds.): COORDINATION 2006, LNCS 4038, pp. 281–297, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

282 M. Sirjani et al.

decomposing a system into components [3]. Different researchers have worked
on composing specifications and verifying their properties [4, 5, 6]. In this pa-
per, we build up a compositional semantics for an actor-based language, using
a component-based language and taking advantage of its compositional seman-
tics. In this way we can use our object-based Java-like modeling language which
is familiar for software engineers, while benefitting from the component-based
paradigm to build models from their sub-models.

Rebeca (Reactive Objects Language) is an actor-based language with a for-
mal foundation, presented in [7, 8, 9]. A model in Rebeca consists of a set of reac-
tive objects (called rebecs) which are concurrently executing and asynchronously
communicating. Rebeca can be considered as a reference model for concurrent
computation, based on an operational interpretation of the actor model [10, 11].
It is also a platform for developing object-based concurrent systems in practice.
Formal verification approaches are used to ensure correctness of concurrent and
distributed systems. The Rebeca Verifier tool, as a front-end tool, translates
Rebeca code into languages of existing model-checkers, allowing verification of
their properties [12, 13]. There is also an ongoing project on developing a direct
model checker for Rebeca using state space reduction techniques [14, 15].

The Rebeca semantics, expressed in LTS (Labeled Transition System) [7, 8]
is not compositional. We cannot construct the semantics of the total model
by composing the semantics of each rebec used to construct the model. The
compositional verification approach proposed in [7, 9] is based on decomposing
a closed Rebeca model and not composing the rebecs as the components of a
model.

Reo [16, 17] is an exogenous coordination model wherein complex coordina-
tors, called connectors are compositionally built out of simpler ones. The atomic
connectors are a set of user-defined point-to-point channels. Reo is based on the
foundation model of Abstract Behavior Types (ABT), as a higher level alter-
native to Abstract Data Types (ADT), which serve as the foundation of object
oriented languages [18]. Reo can be used as a glue language for compositional
construction of connectors that orchestrate component instances in a component
based system.

In this paper, we investigate the possibility of mapping Rebeca models into
Reo and propose a natural mapping that provides a compositional semantics
of Rebeca. As reactive objects (rebecs) are encapsulated and loosely coupled
modules in Rebeca, we consider them as components in a coordination language.
Modeling the coordination and communication mechanisms between rebecs can
be done by Reo circuits, and the behavior of each rebec is specified by constraint
automata [19] as a black-box component within the Reo circuit.

In [20] and [21] a component-based version of Rebeca is proposed where the
components act as wrappers that provide higher level of abstraction and encap-
sulation. The main problem in constructing a component in this object-based
configuration is the rebec-to-rebec communication and the need to know the
receiver names. In [20] and [21] components are sets of rebecs and the commu-
nication between components is via broadcasting anonymous and asynchronous

Compositional Semantics of an Actor-Based Language 283

messages. In this paper, we use the coordination language Reo and model each
rebec as a component. The rebec-to-rebec communication remains the main
problem in exploiting the reusability provided by our compositional semantics.
The semantics of Rebeca in Reo demonstrates this problem very well. We propose
a solution based on the behavior of synchronous channels in Reo, the interleaving
nature of concurrency in Rebeca models, and the fact that, in this case, there is
only one message sent in an atomic step. Hence, the work in this paper is our
first successful attempt to build-up components out of reactive objects without
changing the semantics of Rebeca.

Another interesting outcome of our mapping is to clearly show the problems
in moving from an object-based model to a component-based model of the kind
proposed by Reo. The components that we construct out of reactive objects
are not really amenable to external coordination control provided by the glue
code. We cannot simply change the coordination glue code and expect another
execution pattern independent from the behavior of the rebecs. The coupling
inherent in the message passing mechanism will also be reflected in the Reo
circuitry representing their communication. We show that in this case the glue
code will grow in size and complexity as the system evolves. We then propose a
solution for the special case of Rebeca.

Organization of the Paper. In Section 2, we provide a brief overview of
Rebeca and a Rebeca model as an example which we also use in Section 7. Reo
is described in Section 3, and our mapping of Rebeca to Reo is explained in
Section 4. Constraint automata are used to build the compositional semantics of
Reo. In Section 5 we describe their extended form of parameterized constraint
automata which we use in this paper. In Section 6 we describe our algorithm
for generating parameterized constraint automata out of Rebeca code. Section 7
shows a case study. Section 8 is a short conclusion and a view of our future work.

2 Rebeca: An Actor-Based Language

Rebeca models consist of concurrently executing reactive objects, called rebecs.
Rebecs are encapsulated objects, with no shared variables, which can commu-
nicate only by asynchronous message passing. Each rebec is instantiated from
a reactive class and has a single thread of execution; it also has an unbounded
buffer, called a queue, for arriving messages. Computation takes place by mes-
sage passing and execution of the corresponding methods of messages. Each
message specifies a unique method to be invoked when the message is serviced.
In this paper we abstract from dynamic object creation and dynamic topology,
both of which are present in Rebeca models.

The operational semantics of Rebeca is defined using as a labeled transition
system, a quadruple of a set of states (S), a set of labels (L), a transition relation
on states (T), and a set of initial states of the system (s0), M = (S, L, T, s0),
where we have the followings (for a more detailed formal definition refer to [7]):
The state space of the model is

∏n
i=1(Si × qi), where each Si denotes the local

state of rebec ri consisting of a valuation that maps each local field variable to a

284 M. Sirjani et al.

value of the appropriate type; and the inbox qi, an unbounded buffer that stores
all incoming messages for rebec ri in a FIFO manner.

The set of action labels L is the set of all possible message calls in the given
model; such calls cause the processing of those messages that are part of the
target rebec (if it provides the corresponding message server).

A triple (s, l, s′) ∈ S × L × S is an element of the transition relation T iff

– in state s there is some ri such that l is the first message in the inbox qi, l is
of the form 〈sender , receiver ,msg〉, where sender is the rebec identifier of the
requester (implicitly known by the receiver), receiver is the rebec identifier
of ri (receiver rebec), and msg is the name of the method m of ri which is
invoked;

– state s′ results from state s through the atomic execution of two activities:
first, rebec ri deletes the first message l from its inbox qi, second, method m
is executed in state s. The latter may add requests to rebecs’ inboxes (by
sending messages), change the local state (by assignments), and/or create
new rebecs;

– if new rebecs are created in the invocation of m, then the state space S
expands dynamically, which is out of the scope of this paper.

Clearly, the execution of the above methods relies implicitly on a standard se-
mantic for the imperative code in the body of method m. Regarding the infinite
behavior of our semantics, communication is assumed to be fair [11]: all the
sent messages eventually reach their respective inboxes and will eventually be
serviced by the corresponding rebec. The initial state s0 is the one where each
rebec has its initial message as the sole element in its inbox.

We use a simple example of trains and a controller to show a Rebeca model
and also the mapping algorithm further in Section 7. Consider a bridge with a
track where only one train can pass at a time. There are two trains, entering the
bridge in opposite directions. A bridge controller uses red lights to prevent any
possible collision of trains, and guarantees that each train will finally enter the
bridge assuming that the trains pass the bridge after entering it.

Figure 1 shows the Rebeca code for the bridge controller example. There are
two reactive classes, one for the bridge controller and one for the trains. The
numbers in front of each reactive class name show the length of the queue of
the rebecs instantiated from that class. For model checking purposes we need
a bound on the queue lengths. The bridge controller uses its state variables to
keep the value of the red lights on each side, and has flags to know whether or
not a train is waiting on each side of the bridge. In the initial state, rebecs have
their initial messages as the only message in their queues.

3 Reo: A Coordination Language

Reo is a model for building component connectors in a compositional man-
ner [16, 17]. Reo offers a compositional approach to defining component con-
nectors. Reo connectors (also called circuits) are constructed in the same spirit

Compositional Semantics of an Actor-Based Language 285

reactiveclass BridgeController(5) { reactiveclass Train(3) {
knownobjects{Train t1; Train t2;} knownobjects{BridgeController controller;}
statevars { statevars { boolean onTheBridge; }

boolean isWaiting1; boolean isWaiting2; msgsrv initial() {
boolean signal1; boolean signal2; onTheBridge = false;

} self.Passed();
msgsrv initial() { }

signal1 = false; isWaiting1 = false; msgsrv YouMayPass() {
signal2 = false; isWaiting2 = false; onTheBridge = true;

} self.Passed();
msgsrv Arrive() { }

if (sender == t1) { msgsrv Passed() {
if (signal2 == false) { onTheBridge = false;

signal1 = true; controller.Leave();
t1.YouMayPass(); self.ReachBridge();

} else { isWaiting1 = true; } }
} else { msgsrv ReachBridge() {

if (signal1 == false) { controller.Arrive();
signal2 = true; }
t2.YouMayPass(); }

} else { isWaiting2 = true; } } main {
} Train train1(theController);
msgsrv Leave() { Train train2(theController);

if (sender == t1) { BridgeController theController
signal1 = false; (train1, train2);
if (isWaiting2) { }

signal2 = true;
t2.YouMayPass();
isWaiting2 = false; }

} else {
signal2 = false;
if (isWaiting1) {

signal1 = true;
t1.YouMayPass();
isWaiting1 = false; } }

}
}

Fig. 1. Rebeca Model for a Bridge Controller

as logic and electronics circuits: take basic elements and connect them. Basic
connectors in Reo are channels. Each channel has exactly two ends, which can
be a sink end or a source end. A sink end is where data flows out of a channel,
and a source end is where data flows into a channel. It is possible for the ends
of a channel to be both sinks or both sources. Reo places no restriction on the
behavior of a channel. This allows an open-ended set of different channel types
to be used simultaneously together in Reo, each with its own policy for syn-
chronization, buffering, ordering, computation, data retention/loss, etc. For our
purpose to model Rebeca models, we need a small set of basic channels, which
we define later (in Figure 5).

Channels are connected to make a circuit. Connecting (or joining) channels is
putting channel ends together in a node. So, a node is a set of coincident channel
ends. The semantics of a node is as follows.

286 M. Sirjani et al.

A component can write data items to a source node that it is connected to.
The write operation succeeds only if all (source) channel ends coincident on
the node accept the data item, in which case the data item is transparently
written to every source end coincident on the node. A source node, thus, acts as
a replicator. A component can obtain data items, by an input operation, from a
sink node that it is connected to. A take operation succeeds only if at least one
of the (sink) channel ends coincident on the node offers a suitable data item; if
more than one coincident channel end offers suitable data items, one is selected
nondeterministically. A sink node, thus, acts as a nondeterministic merger. A
mixed node nondeterministically selects and takes a suitable data item offered
by one of its coincident sink channel ends and replicates it into all of its coincident
source channel ends.

M
Z

W U
N

E B

X

F

Fig. 2. Exclusive Router in Reo

Figure 2 shows a Reo connector, an exclusive router, which we call Xrouter.
Here, we use it to show the visual syntax for presenting Reo connector graphs and
some frequently useful channel types. This circuit is also used to model Rebeca
in Reo. The enclosing thick box in this figure represents hiding: the topologies of
the nodes (and their edges) inside the box are hidden and cannot be modified.
It yields a connector with a number of input/output ports, represented as nodes
on the border of the bounding box, which can be used by other entities outside
the box to interact with and through the connector.

The simplest channels used in these connectors are synchronous (Sync) chan-
nels, represented as simple solid arrows (like edges FX and MW in Figure 2). A
Sync channel has a source and a sink end, and no buffer. It accepts a data item
through its source end iff it can simultaneously dispense it through its sink. A
lossy synchronous (LossySync) channel is similar to a Sync channel, except that
it always accepts all data items through its source end. If it is possible for it to
simultaneously dispense the data item through its sink (e.g., there is a take oper-
ation pending on its sink) the channel transfers the data item; otherwise the data
item is lost. LossySync channels are depicted as dashed arrows, e.g., XM and
XN in Figure 2. Another channel is the synchronous drain channel (SyncDrain),
whose visual symbol appears as the edge XZ in Figure 2. A SyncDrain chan-
nel has two source ends. Because it has no sink end, no data value can ever be

Compositional Semantics of an Actor-Based Language 287

obtained from this channel. It accepts a data item through one of its ends iff a
data item is also available for it to simultaneously accept through its other end
as well. All data accepted by this channel are lost.

Two channels that are used in modeling Rebeca but are not included in the
Xrouter circuit, are FIFO and Filter channels. We define FIFO as an unbounded
asynchronous channel where data can flow in unboundedly from its source and
flow out of its sink, if its buffer is not empty; input and output cannot take place
simultaneously when the buffer is empty. Figure 5.a in Section 5 shows the Reo
notation (and the constraint automaton) for a 1-bounded FIFO channel. Filter
is a channel with a corresponding data pattern. It lets the data that match with
the pattern pass and loses all other data. A Filter channel and its constraint
automaton are shown in Figure 5.b.

4 Rebecs as Components in Reo

To model Rebeca using Reo, we can consider each rebec as a black-box compo-
nent, and model the coordination and communication among the rebecs as Reo
circuits. To model this coordination, we use an Xrouter which passes the control
to each rebec nondeterministically. Communication takes place by asynchronous
message passing which is modeled by FIFO and filter channels in Reo.

Each rebec starts its execution by receiving a start signal, and sends an end
signal at its end. The behavior of a rebec as a component is to take a message
from its message queue upon receiving the start signal through its start port,
execute the corresponding message server, and send an end signal through its
end port. The coordination, which is modeled by interleaved execution of rebecs,
is handled by an Xrouter which passes the start signal to one and only one
rebec, waits until it receives an end signal, and passes the start signal again,
guaranteeing the atomic execution of each method according to the semantics of
Rebeca in [7]. This loop is repeated by Xrouter, and sending the signals is done
by a nondeterministic choice. The Reo circuit in Figure 3 shows the Xrouter
and other channels that are used to manage the coordination and facilitate the
communication among rebecs.

For communication between rebecs, we need FIFO and filter channels. The
message queues of rebecs are modeled by FIFO channels. We need to design a
circuit to allow only the messages that are sent to a specific rebec to get into its
queue, and filter out all other messages. To have an elegant design, we consider
a consistent pattern of wiring between components. In Figure 3, there are fork
nodes named Fi, and merge nodes named Mi. All messages that are sent by a
rebec rebeci get out of its port send , then pass a Sync channel and enter the
corresponding fork node Fi. Here, a message is copied into all the source channel
ends of the outgoing Sync channels that are merged again in the node Mi. For
a model with n rebecs, there are n Sync channels that connect each rebec to all
other rebecs and carry the messages. Following each merge node Mi there is a
Filter channel whose filter pattern is the ID of the receiver rebec. So, the filter
following the node Mi filters out every message whose receiver is not rebeci,

288 M. Sirjani et al.

FIFO

take send
rebec_i

end start

XRouter
1 … i … n

FIFO

take send
rebec_n

end start

FIFO

take send
rebec_1

end start

F_1M_1 F_i F_nM_nM_i

1...i ...n1...i ...n 1...i ...n1… i … n 1… i … n 1… i … n

Fig. 3. Modeling Rebeca in Reo

allowing only the proper messages to pass through and get into the message
queue of the rebec (the FIFO in Figure 3).

Upon receiving a start signal, a rebec takes a message from its queue by
enabling the take port, and then executes the corresponding message server.
During this execution, the messages that are sent, flow out of the rebec compo-
nent through its send port, and arrive at the message queue of the destination
rebec properly, passing the fork node, the merge node, and the filter channel.

Now, we have a Reo circuit that models a Rebeca model. But, to be able to
construct the compositional semantics of a model and verify its properties we
need to have a proper semantics for this Reo circuit and also for the rebecs.
Constraint automata [19] are presented as a compositional semantics for Reo
circuits and can be used to model components and the glue code circuit in a
consistent way. They also provide verification facilities.

Looking more carefully, we see that by adding or removing rebecs the Reo
circuit in Figure 3 which acts as the glue code will be changed. Our goal in
obtaining the compositional semantics of the model is to be able to reuse the
constraint automata of the parts of the Reo model that are not changed and
not to construct the constraint automata of the whole Reo model from scratch.
Observing that the glue code will change with a single change in the set of
constituent rebecs, we can see that there is no gain in this way of constructing
the compositional semantics. Although, the constraint automata for each rebec
does not change and can be reused, all the join operations must be done again.

This is a good example to show how the modules in an object-based model are
more tightly coupled than the modules in a component-based model. We changed
our Reo circuit in Figure 3 to the circuit in Figure 4 to gain more modifiability
and reusability. Here, the coordination part which is an Xrouter in Figure 3 is
replaced with a compositional variant in Figure 4. Also, the communication part
is changed to the simple circuit shown in Figure 4. This simplification is only

Compositional Semantics of an Actor-Based Language 289

FIFO

take send
rebec_2

end start

XRouter

FIFO

take send
rebec_n

end start

XRouter

FIFO

take send
rebec_1

end start

XRouter

F_1M_1 F_2 F_nM_nM_2

Fig. 4. Compositional modeling of Rebeca in Reo

valid because of the interleaved execution of each rebec and the fact that there
is only one message carried through the Sync channels in each atomic step. In
this way we have each rebec and its coordination and communication part as a
component which can be plugged into or removed from a model without changing
the rest of the model. Hence, by adding or removing a rebec, the entire model
will not change. Note that our goal here is not to achieve exogenous coordination,
because in Rebeca (like other object oriented models) the driving control and
coordination are built in the code of rebecs and the message passing pattern.

5 Constraint Automata: Compositional Semantics of Reo

Constraint automata are presented in [19] to model Reo connectors. We use
constraint automata to model the components, yielding Rebeca models fully
as constraint automata. In this section, we explain the definition of constraint
automata and how the constraint automata of a Reo circuit is constructed com-
positionally.

Using constraint automata as an operational model for Reo connectors, the
automata-states stand for the possible configurations (e.g., the contents of the
FIFO-channels of a Reo-connector) while the automata-transitions represent the
possible data flow and its effect on these configurations. The operational seman-
tics for Reo presented in [16] can be reformulated in terms of constraint au-
tomata. Constraint automaton of a given Reo connector can also be defined in
a compositional way. For this, the composition operator for constraint automata
and the constraint automata for a set of Reo connector primitives are presented
in [19].

Definition 1. [Constraint automata] A constraint automaton (over the data
domain Data) is a tuple A = (Q, Names,−→, Q0) where

– Q is a set of states,
– Names is a finite set of names,

290 M. Sirjani et al.

– −→ is a subset of Q × 2Names × DC × Q, called the transition relation of A,
where DC is the set of data constraints,

– Q0 ⊆ Q is the set of initial states.

We write q
N,g−→ p instead of (q, N, g, p) ∈−→. We call N the name-set and g

the guard of the transition. For every transition

q
N,g−→ p

we require that (1) N �= ∅ and (2) g ∈ DC (N,Data). A is called finite iff Q, −→
and the underlying data domain Data are finite. �
Figure 5.a shows a constraint automaton for a 1-bounded FIFO channel with
input port (source end) A and output port (sink end) B. Here, we assume that
the data domain consists of two data items 0 and 1. Intuitively, the initial state
q0 stands for the configuration where the buffer is empty, while the states p0 and
p1 represent the configurations where the buffer is filled with one or the other
data item.

We now explain how constraint automata can be used to model the possible
data flow of a given Reo circuit. The nodes of a Reo-circuit play the role of
the ports in the constraint automata. To provide a compositional semantics for
Reo circuits, we need constraint automata for all basic channel connectors and
automata-operations to mimic the composition offered by the Reo-operations for
join and hiding.

q0

p0

p1

{A}
d_A=0

{B}
d_B=0

{A}
d_A=1

{B}
d_B=1

A B

A B

Sync
A B

SyncDrain

{A,B}
d_A = d_B

{A,B}

LossySync
A B

{A,B}
d_A = d_B {A}

Filter
A B

{A,B}
d_A = P
d_B = P

{A}
d_A = P

P

(a) (b)

Fig. 5. (a) Deterministic constraint automaton for a 1-bounded FIFO channel; and,
(b) Deterministic constraint automaton for some other channels

Figure 5.b shows the constraint automata for some of the standard basic
channel types: a synchronous channel, a synchronous drain, a lossy synchronous
channel, and a filter with pattern P . In every case, one single state is suffi-
cient. Moreover, the automata are deterministic. There are operators defined on
constraint automata that capture the meaning of Reo’s join and hiding opera-
tors [19].

Compositional Semantics of an Actor-Based Language 291

q(x)q_0

{A}
x := d_A

{B}

d_B=x

Fig. 6. Parameterized constraint automaton for a 1-bounded FIFO channel

Parameterized Constraint Automata. To simplify the pictures for constraint
automata for data-dependent connectors, we use a parameterized notation for
constraint automata, as proposed in [22]. For example, Figure 6 shows a para-
meterized constraint automata for a FIFO1 channel with source A and sink B.
Thus, q(x) in Figure 6 represents the states q(d) for d ∈ Data. The transition
from q0 to q(x) in the picture is a short-hand notation for the transitions from
q0 to q(d) with the name-set {A} and the data constraint d = dA where d ranges
over all data elements in Data.

Formally, a parameterized constraint automaton is defined as a tuple

P = (Loc,Var , v , Names, �,Loc0, init)

where

– Loc is a set of locations,
– Var is a set of variables,
– v : Loc → 2Var assigns to any location � a (possibly empty) set of variables,
– Names is a finite set of names (like in constraint automata),
– � is a subset of Loc×2Names×PDC×X×Loc, called the transition relation

of P , where PDC is the set of parameterized data constraints and X is the
function showing assignments to variables,

– Loc0 ⊆ Loc is a set of initial locations,
– init is a function that assigns to any initial location � ∈ Loc0 a condition for

the variables.

v(�) can be viewed as the parameter list of location �. For instance, in Figure 6
we use q(x) to denote that q is a location with parameter list v(q) = {x}, while
q0 is a location with an empty parameter list. The initial condition for q0 is
omitted which denotes that init(q0) = true.

6 Compositional Semantics of Rebeca Using Constraint
Automata

To obtain the constraint automata of the coordination and communication parts
of the Rebeca model, which are modeled in Reo, we use the join and hide oper-
ations on constraint automata. For specifying the semantics of rebecs we need

292 M. Sirjani et al.

parameterized constraint automata. To obtain the parameterized constraint au-
tomaton (PCA) of each rebec, we use an algorithm, shown in Figure 7, to extract
the PCA directly from the Rebeca code.

In the parameterized constraint automaton for each rebec i,

Pi = (Loci,Var i, vi, Namesi, �i,Loc0i, init i)

where we have Namesi = {start, end, send, take}, and Loc0i = {idle}. For each
rebec Var i includes state variables of the rebec, local variables of each method,
and sender variable which holds the ID of the sender of each message.

VARS: sender; {state variables}; {local variables};

BEGIN
Create locations: Idle, Dispatch
Create transitions:

Idle
{start}−−−−−→ Dispatch

Dispatch
{take, end}, dtake.msg=empty−−−−−−−−−−−−−−−−−−−−−−−−−→ Idle

FOR each message server M DO

Create transition: Dispatch
{take}, dtake.msg= M−−−−−−−−−−−−−−−−−−→
sender := dtake.sender

startM

Create control graph from startM to endM

Create transition: endM
{end}−−−−→ Idle

OD
END

Fig. 7. Algorithm to construct parameterized constraint automaton from a rebec code

The initial state of the PCA (Parameterized Constraint Automaton) of each
rebec is denoted as the idle state. At the beginning all rebecs are in their idle
states. By getting the start signal as input from the Xrouter, a rebec moves
to its Dispatch state, where a message is taken from top of the corresponding
queue. The data item of the port take is assumed to be a tuple consisting of the
sender of the message and the message server name. According to the d take,
the next state is chosen. If the message queue is empty the transition goes back
to the idle state. If not, the transition goes to the state which is the beginning
of the execution of a message server. In fact, the second item of d take which
is the message server name specifies the next state. Suppose the message M is
taken from the queue. This causes a transition to state startM, which denotes
the beginning of the execution of the message server of M.

The execution of each message server can be shown with a control graph
representing its different branches and assignments. In this control graph, each
send statement contributes to a transition. The name of this transition is send,
and its data constraint is a tuple containing the name of the message being
sent, the ID of the receiving rebec, and the ID of the sender which is self. In
this phase, since the automata are created for the reactive classes and not the
rebecs, the receiving rebec is chosen as one of the known rebecs. This ID is

Compositional Semantics of an Actor-Based Language 293

0 1 2 3

send

sq0 := d_send.sender

mq0 := d_send.message

send

sq1 := d_send.sender

mq1 := d_send.message

send

sq2 := d_send.sender

mq2 := d_send.message

take

 d_take.sender = sq0

d_take.message = mq0

sq0 := self , mq0 := empty

take

d_take.sender = sq0

d_take.message = mq0

sq0 := sq1 , mq0 := mq1

sq1 := self

mq1 := empty

take

d_take.sender = sq0

d_take.message = mq0

sq0 := sq1 , mq0 := mq1

sq1 := sq2 , mq1 := mq2

sq2 := self , mq2 := empty

take

d_take.message = empty

d_take.sender = self

 sq0 := sq1 := … := self

mq0 := initial

 mq1 := mq2 := … := empty

Fig. 8. Constraint automaton for a message queue channel

used by the designated filter of each rebec to identify the real receiver of the
message. Each transition due to a send should also contain all the assignments
made before that send. The assignments after the last send (if any) constitute
the final transition of the control graph. This is a transition with end signal
which connects the last state of the control graph (endM) to the idle state. This
transition can be combined with the last transition of the control graph (and
hence removing endM) to reduce the number of states. We use the bridge con-
troller example of Section 2, to explain the algorithm in more detail in the next
section.

We use a special kind of a FIFO channel to model the message queue of a
rebec. The main point is that we want to be able to realize the situation when
the queue is empty. This cannot be done with the conventional definition of a
FIFO channel in Reo [17, 16]. We assume that there is a special data denoted
by empty that the channel emits to show that the queue is empty. We define
the behavior of the message queue channel as the constraint automaton shown
in Figure 8.

7 An Example: Bridge Controller

We use a bridge controller as an example to model by constraint automata. This
example is described in Section 2, and its Rebeca code is shown in Figure 1.

Figure 9.a shows the constraint automaton for the trains and Figure 9.b shows
the constraint automaton for the bridge controller. The initial state for a train
is the idle state. We move to the Dispatch state by receiving the start signal. A
train has four message servers: initial, YouMayPass, Passed, and ReachBridge.
For each one of these message servers there is an outgoing transition from the
Dispatch state. Each transition goes to a state that designates the start of its
corresponding message server. There is also another transition that is chosen
when the message queue is empty. This one goes back to the idle state and
outputs the end signal.

294 M. Sirjani et al.

Dispatch

Idle

initial
You May

Pass
Reach
Bridge

passed
take, end

d_take.m
sg =

 ‘em
pty’

ta
ke

d_
ta

ke
.m

sg
 =

 ‘i
ni

tia
l’

se
nd

er
 :=

 d
_t

ak
e.

se
nd

er

ta
ke

d_
ta

ke
.m

sg
 =

 ‘y
ou

M
ay

P
as

s’
se

nd
er

 :=
 d

_t
ak

e.
se

nd
er

take
d_take.m

sg
=

‘reachB
ridge’

sender
:=

d_take.sender

take
d_take.m

sg =
 ‘passed’

sender := d_take.sender

passed1

se
nd

, e
nd

d_
se

nd
.r

ec
ei

ve
r

=
 s

el
f,

 d
_s

en
d.

m
sg

 =
 ‘p

as
se

d’
d_

se
nd

.s
en

de
r

=
 s

el
f ,

 o
nT

he
B

rid
ge

 :=
 fa

ls
e

se
nd

, e
nd

on
T

he
B

rid
ge

 :=
 tr

ue
 ,

d_
se

nd
.m

sg
 =

 ‘p
as

se
d’

d_
se

nd
.r

ec
ei

ve
r

=
 s

el
f ,

 d
_s

en
d.

se
nd

er
 =

 s
el

f

send, end
d_send.receiver = self , d_send.sender = self

d_send.msg = ‘reachBridge’

start

send
d_send.receiver =

 controller , d_send.m
sg =

 ‘leave’
d_send.sender =

 self, onT
heB

ridge
:=

 false

send, end
d_send.receiver =

 controller
d_send.m

sg =
 ‘arrive’ , d_send.sender = self

Dispatch

ta
ke

, e
nd

d_
ta

ke
.m

sg
 =

 ‘e
m

pt
y’

ta
ke

d_
ta

ke
.m

sg
=

‘in
iti

al
’

se
nd

er
:=

d_
ta

ke
.s

en
de

r

en
d

si
gn

al
1

:=
 fa

ls
e

, s
ig

na
l2

 :=
 fa

ls
e

is
W

ai
tin

g1
 :=

 fa
ls

e
, i

sW
ai

tin
g2

 :=
 fa

ls
e

leave

arrive

take
d_take.m

sg =
 ‘arrive’

sender :=
 d_take.sender

take

d_take.m
sg

=
‘leave’

sender :=
d_take.sender

se
nd

er
!=

t1 sender =
 t1

signal1 :=
 false

sender !=
 t1

signal2 :=
 false

se
nd

, e
nd

si
gn

al
1

=
 fa

ls
e

, d
_s

en
d.

re
ce

iv
er

 =
 t2

d_
se

nd
.s

en
de

r
=

 s
el

f ,
 s

ig
na

l2
 :=

 tr
ue

d_
se

nd
.m

sg
 =

 ‘y
ou

M
ay

pa
ss

’

en
d

si
gn

al
1

!=
 fa

ls
e

is
W

ai
tin

g2
 :=

 tr
ue

se
nd

, e
nd

si
gn

al
2

=
 fa

ls
e

, d
_s

en
d.

m
sg

 =
 ‘y

ou
M

ay
pa

ss
’

d_
se

nd
.r

ec
ei

ve
r

=
 t1

 ,
d_

se
nd

.s
en

de
r

=
 s

el
f ,

 s
ig

na
l1

:=
 tr

ue

en
d

si
gn

al
2

!=
 fa

ls
e

, i
sW

ai
tin

g1
 :=

 tr
ue

send, end
isW

aiting2 =
 true , d_send.receiver =

 t2 , d_send.sender = self
d_send.m

sg = ‘youM
aypass’ , isW

aiting2 :=
 false , signal2 :=

 true

send, end
isW

aiting1 =
 true , d_send.receiver = t1 , d_send.sender =

 self
d_send.m

sg =
 ‘youM

aypass’ , signal1 := true , isW
aiting1 :=

 false

se
nd

er
 =

 t1

Idle
end

isW
aiting2 !=

 true

end
isW

aiting1 !=
 true

st
ar

t

initial
se

nd
er

!=
t1

se
nd

er
=

t1

sender =
t1

signal1
:= false

sender !=
 t1

signal2 :=
 false

(a) (b)

Fig. 9. Constraint Automata models for (a) Train; and, (b) Controller

As described in the algorithm of Figure 7, we must consider the different
flows of control in each message server as a ‘control graph’. In the message
servers of the trains we have a single path in the flow of control. We partition
each path by the send statements. For example in the message server Passed we
have two fragments. We have two transitions corresponding to the send state-
ments in Figure 9.a. The end signal is added to the last transition, which can be

Compositional Semantics of an Actor-Based Language 295

considered as an optimization issue. Considering the controller, we have condi-
tional statements in message servers Arrive and Leave, and hence more than one
possible path in the flow of control. The transitions generated for different flows
of controls can be seen in Figure 9.b.

The mapping presented in Section 4 and Figure 4 allow us to first construct the
constraint automata of the communication and coordination parts, which can
be reused in all Rebeca models. We can subsequently compose the constraint
automata of the rebecs with these constraint automata. Thus, we obtain the
constraint automaton of the whole system which shows the behavior of the model
and can also be used for model checking purposes. We have already developed a
tool to automate the specified mapping [23], and we have used it to map a few
case studies in Rebeca into constraint automata. In this tool a set of heuristic
rules are used to sequence a compositional construction of constraint automata
that help to prevent the state space explosion problem.

Our compositional semantics allows a natural modular mapping from the
problem space into the model space. To better show the benefit of this mapping,
consider a modified version of the bridge controller problem, where more than
one train can arrive from each side of the bridge (on multiple tracks). To avoid
“hard-coding” the number of trains in this example, it is more appropriate to
use a more component-based style model, where a queue on each side of the
bridge keeps the passage requests. The Rebeca code for this version of bridge
controller can be found on the Rebeca home page [24]. In this model, trains can
be plugged in, and the derived constraint automata can be reused and composed
together with the constraint automata of the new trains.

8 Conclusion and Future Work

We use the coordination language Reo to build a compositional semantics for
the actor-based language, Rebeca. We modified the Reo circuit from its primary
and natural layout to a more compositional and hence more reusable variant.
Constraint automata are the essential devices in building this compositional
semantics. The work presented in this paper can be used for both modeling and
verification purposes. In general, for the object-based models that are written in
a component-based paradigm, the compositional semantics presented here can be
fully exploited and the unchanged parts can be completely reused. For all kinds
of models, the constraint automata of the coordination and communication parts
and the individual rebecs can be reused.

Our work can also be regarded as a good example where constraint automata
are used for modeling components and connectors in a consistent manner, allow-
ing to derive the behavior of a whole system as a composition of the behavior
of its constituents. The differences between objects and components, and the
challenges in moving from objects to components are illustrated in this work.

In our future work, we intend to use the tool in [23] for further experiments.
We will continue our investigation of mapping reactive objects to components in
order to characterize the patterns in the behavior of rebecs that make a model

296 M. Sirjani et al.

more modifiable and the rebecs more reusable. Another direction in our future
work is to consider dynamic rebec creation and dynamic changing topology in
the mapping, although dynamic features are not yet supported by constraint
automata they are present in Reo. A formal proof for our mapping algorithm
will also be provided.

References

1. de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.P., eds.: Formal Methods
for Components and Objects, International Symposium, FMCO’02, Leiden, The
Netherlands, November 2002, Revised Lectures. Volume 2852 of LNCS, Springer-
Verlag, Germany (2003)

2. de Roever, W.P., Langmaack, h., Pnueli, A., eds.: Compositionality: The Signifi-
cant Difference, International Symposium, COMPOS’97, Bad Malente, Germany,
September 1997, Revised Lectures. Volume 1536 of LNCS, Springer-Verlag, Ger-
many (1998)

3. Lamport, L.: Composition: A way to make proofs harder. In: Proceedings of
COMPOS: International Symposium on Compositionality: The Significant Differ-
ence. Volume 1536 of LNCS, (Springer-Verlag, Germany, 1997) 402–407

4. Lynch, N.A., Tuttle, M.R.: Hierarchical correctness proofs for distributed algo-
rithms. Technical Report MIT/LCS/TR-387, MIT (1987)

5. Abadi, M., Lamport, L.: Composing specifications. In Jagadish, H.V., Mumick,
I.S., eds.: Proceedings of the 1996 ACM SIGMOD International Conference on
Management of Data, Montreal, Canada, ACM Press, USA, (1996) 365–376

6. Talcott, C.: Composable semantic models for actor theories. Higher-Order and
Symbolic Computation 11 (1998) 281–343

7. Sirjani, M., Movaghar, A., Shali, A., de Boer, F.: Modeling and verification of
reactive systems using Rebeca. Fundamenta Informatica 63 (Dec. 2004) 385–410

8. Sirjani, M., Movaghar, A.: An actor-based model for formal modelling of reactive
systems: Rebeca. Technical Report CS-TR-80-01, Tehran, Iran (2001)

9. Sirjani, M., Movaghar, A., Mousavi, M.: Compositional verification of an object-
based reactive system. In: Proceedings of AVoCS’01, Oxford, UK (2001) 114–118

10. Hewitt, C.: Description and theoretical analysis (using schemata) of PLANNER: A
language for proving theorems and manipulating models in a robot. MIT Artificial
Intelligence Technical Report 258, Department of Computer Science, MIT (1972)

11. Agha, G.: Actors: A Model of Concurrent Computation in Distributed Systems.
MIT Press, Cambridge, MA, USA (1990)

12. Sirjani, M., Movaghar, A., Shali, A., de Boer, F.: Model checking, automated
abstraction, and compositional verification of Rebeca models. Journal of Universal
Computer Science 11 (2005) 1054–1082

13. Sirjani, M., Shali, A., Jaghoori, M., Iravanchi, H., Movaghar, A.: A front-end tool
for automated abstraction and modular verification of actor-based models. In:
Proceedings of ACSD’04, (IEEE Computer Society, 2004) 145–148

14. Jaghoori, M.M., Sirjani, M., Mousavi, M.R., Movaghar, A.: Efficient symmetry re-
duction for an actor-based model. In: 2nd International Conference on Distributed
Computing and Internet Technology. Volume 3816 of LNCS. (2005) 494–507

15. Jaghoori, M.M., Movaghar, A., Sirjani, M.: Modere: The model-checking engine of
Rebeca. In: ACM Symposium on Applied Computing - Software Verificatin Track.
(2006) to appear.

Compositional Semantics of an Actor-Based Language 297

16. Arbab, F.: Reo: A channel-based coordination model for component composition.
Mathematical Structures in Computer Science 14 (2004) 329–366

17. Arbab, F., Rutten, J.J.: A coinductive calculus of component connectors. Tech-
nical Report SEN-R0216, CWI (Centre for Mathematics and Computer Science),
Amsterdam, The Netherlands (2002)

18. Arbab, F.: Abstract behavior types: A foundation model for components and their
composition. In: Proceedings of FMCO’03. Volume 2852 of LNCS. (2003) 33–70

19. Arbab, F., Baier, C., Rutten, J.J., Sirjani, M.: Modeling component connectors
in Reo by constraint automata. In: Proceedings of FOCLASA’03. Volume 97 of
ENTCS., Elsevier (2004) 25–46

20. Sirjani, M., de Boer, F.S., Movaghar, A., Shali, A.: Extended Rebeca: A
component-based actor language with synchronous message passing. In: Proceed-
ings of ACSD’05, IEEE Computer Society (2005) 212–221

21. Sirjani, M., de Boer, F.S., Movaghar, A.: Modular verification of a component-
based actor language. Journal of Universal Computer Science 11 (2005) 1695–1717

22. Baier, C., Sirjani, M., Arbab, F., Rutten, J.J.: Modeling component connectors in
Reo by constraint automata. (Science of Computer Programming) accepted 2005,
to appear.

23. Farrokhian, M.: Automating the mapping of Rebeca to constraint automata. Mas-
ter Thesis, Sharif University of Technology (2006)

24. Rebeca home page: Available through http://khorshid.ut.ac.ir/∼rebeca.

	Introduction
	Rebeca: An Actor-Based Language
	Reo: A Coordination Language
	Rebecs as Components in Reo
	Constraint Automata: Compositional Semantics of Reo
	Compositional Semantics of Rebeca Using Constraint Automata
	An Example: Bridge Controller
	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

