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Abstract. Constraint automata have been used as an operational model for com-
ponent connectors that coordinate the cooperation and communication of the
components by means of a network of channels. In this paper, we introduce a
variant of constraint automata (called continuous-time constraint automata) that
allows us to specify time-dependent stochastic assumptions about the channel
connections or the component interfaces, such as the arrival rates of communica-
tion requests, the average delay of enabled I/O-operations at the channel ends or
the stochastic duration of internal computations. This yields the basis for a perfor-
mance analysis of channel-based coordination mechanisms. We focus on compo-
sitional reasoning and discuss several bisimulation relations on continuous-time
constraint automata. For this, we adapt notions of strong and weak bisimula-
tion that have been introduced for similar stochastic models and introduce a new
notion of weak bisimulation which abstracts away from invisible non-stochastic
computations as well as the internal stochastic evolution.

1 Introduction

Coordination models and languages provide a formalization of the glue-code that binds
individual components and organizes the communication and cooperation between
them. In the past 15 years, various types of coordination models have been proposed
that they yield a clear separation between the internal structure of the components and
their interactions. See e.g. [19, 24, 13, 25, 15].

The purpose of this paper is to introduce an operational model for reasoning about
stochastic properties of coordination languages similar to the approaches of Priami [27]
and Di Pierro et al. [16]. In contrast to these approaches our focus is on exogenous
channel-based coordination languages, such as Reo [2] (see also [5, 29, 1, 17, 14]) and
stochastic models with nondeterminism. The rough idea of Reo is that complex com-
ponent connectors are synthesized from channels via certain composition operators,
thus yielding a network of channels (called Reo connector circuit) that coordinates the
interactions between the components. An operational semantics of Reo connector cir-
cuits has been provided by means of constraint automata [4]. These are variants of
labelled transition systems and encode the configurations of the network by their states
and the possible data flow at the ports of the components and the nodes “inside” the
network by their transitions. Extensions of constraint automata have been presented in
[3] to study real-time constraints of component connectors and in [6] to reason about
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channels with a probabilistic effect. The latter approach is time-abstract and deals with
discrete probabilities, e.g., to model the faulty behaviours of buffered channels that
might loose or corrupt stored messages, while the former approach focusses on a purely
timed setting, e.g., to reason about hard deadlines, but does not deal with probabili-
ties. The contribution of this paper is orthogonal to the extensions proposed in [3, 6] as
it introduces a stochastic variant of constraint automata where transitions might have a
certain delay according to some probability distribution over a continuous time domain.
This model, called continuous-time constraint automata (CCA for short), combines the
features of ordinary constraint automata with the race conditions in continuous-time
Markov chains. CCA are close to interactive Markov chains (IMCs), which have been
introduced by Hermanns [20] for specifying reactive systems with internal stochastic
behaviours. CCA can be used – as ordinary constraint automata – to formalize the step-
wise behaviour of the interfaces of the components and the channels connecting them,
as well as an operational model for the composite system. In addition, CCA provide
the possibility to specify, e.g., the average rate of communication requests of a certain
component or the mean time that have to be passed between two consecutive I/O oper-
ations at a certain channel. Thus, CCA yield a simple and intuitive model that allow for
a performance analysis of channel-based coordination mechanisms.

In this paper, we concentrate on compositional reasoning by means of bisimula-
tion relations on CCA. We first consider strong and weak bisimulation, that have been
introduced for interactive Markov chains [20]. These notions adapted to CCA yield
equivalences that are congruences for the two basic operators (product and hiding) for
generating the CCA for a complex component connector out of the CCA for its chan-
nels and the component interfaces. Furthermore, we introduce a new notion of weak
bisimulation, called very weak bisimulation which abstracts away from the stochastic
branching behaviour and cumulates the effect of sequences of stochastic transitions.
Very weak bisimulation equivalence is coarser than weak bisimulation equivalence, but
preserves the probabilities for trace-based linear time properties and can be checked in
polynomial-time.

Organization. Section 2 recalls the basic concepts of ordinary constraint automata.
CCA and a product and hiding operator on CCA are introduced in Section 3. Section 4
deals with bisimulation relations on CCA. Section 5 concludes the paper. Due to length
restrictions, proofs for the theorems are omitted. They can be found in the full version
(see http://pi2.informatik.uni-mannheim.de/HomePages/vwolf/cca.ps).

2 Constraint Automata

This section summarizes the basis concepts of constraint automata [4] and their use as
operational model for channel-based component connectors. Constraint automata, CA
for short, are variants of labelled transition systems where transitions are augmented
with pairs 〈N,g〉 rather than action labels. The states of a constraint automata stand
for the network configurations, e.g., the contents of the buffers for FIFO channels. The
transition labels 〈N,g〉 can be viewed as sets of I/O-operations that will be performed
in parallel. More precisely, N is a set of nodes in the network where data-flow is ob-
served simultaneously, and g is a boolean condition on the observed data items. Thus,
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transitions going out of a state q represent the possible data-flow in the corresponding
configuration and its effect on the configuration.

Data assignments and data constraints. CA use a finite set N of nodes. The nodes
can play the role of input and output ports of components, but they can appear outside
the interfaces of components as “intermediate” stations of the network where several
channels are glued together and the transmission of data items can be observed. For the
purposes of this paper, there is no need to distinguish between write and read operations
at the nodes. Instead CA only refer to the data items that can be “observed” at a node.
Throughout the paper, we assume a fixed, non-empty and finite data domain Data con-
sisting of the data items that can be transmitted through the channels. A data assignment
for N ⊆ N means a function δ : N → Data. We write δ.A for the data item assigned to
node A ∈ N under δ and DA(N) for the set of all data assignments for node-set N. CA use
a symbolic representation of data assignments by data constraints which mean proposi-
tional formulae built from the atoms ”dA = dB”, ”dA ∈ P” or ”dA = d” where A, B are
nodes, dA is a symbol for the observed data item at node A and d ∈ Data, P ⊆ Data. The
symbol |= stands for the obvious satisfaction relation which results from interpreting
data constraints over data assignments. Satisfiability and logical equivalence ≡ of data
constraints are defined as usual. We write DC(N) to denote the set of satisfiable data
constraints using only the symbols dA for A ∈ N, but not dB for B ∈ N \ N.

Constraint automata (CA) [4]. A CA is a tuple A = (Q,N ,−→,Q0) where Q is a set
of states, also called configurations, N a finite set of nodes, Q0 ⊆ Q the set of initial
states and −→ a subset of

�
N⊆N Q×{N}× DC(N)× Q, called the transition relation.

We write q
N,g−→ p instead of (q,N,g, p) ∈ −→ and refer to N as the node-set and

g the guard. Transitions where the node-set N is non-empty are called visible, while
transitions with the empty node-set are called hidden. Each transition represents a set of
possible interactions given by the transition instances that result by replacing the guard
g with a data assignment δ where g holds. The intuitive behaviour of a CA is as follows.

The automaton starts in an initial state. If the current state is q then an instance q
N,δ−→

p of the outgoing transitions from q is chosen, the corresponding I/O-operations are
performed and the next state is p. If there are several outgoing transitions from state q
the next transition is chosen nondeterministically. A formalization of the possible (finite
or infinite) observable data flow of a constraint automaton is obtained by the notion of a
run. A run in A denotes a (finite or infinite) sequence of consecutive transition instances

q0
N0,δ0−−→ q1

N1,δ1−−→ q2
N2,δ2−−→ . . . where q0 ∈ Q0. For finite runs we require that the last state

q does not have an outgoing hidden transition. This can be understood as a maximal
progress assumption for hidden transitions, i.e., steps that do not require any interaction
with the environment.

p0

p1

empty

{A}
dA = 0

{B}
dB = 1

{B} dB = 0

{A} dA = 1

pdempty

{B} dB = d

{A} dA = d
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The picture above shows a CA for a FIFO1 channel with the node-set N = {A,B}
and Data = {0,1}. Node A serves as input port where data items can be written into the
channel, while node B can be regarded as an output port where the stored data element
is taken from the buffer and delivered to the environment.

State “empty” stands for the configuration where the buffer is empty, while state
pd encodes the configuration where d is stored in the buffer. Often, we use simplified
parametric pictures for CA with meta symbols for data items as in the right of the picture
(and formally explained in [4]).

For another example, we regard a simple system consisting of a producer and a con-
sumer which are linked via a synchronous channel for transmitting the generated prod-
ucts from the producer’s output port B to the consumer’s input port C.

producer consumer
A B C D

We model both components (producer and consumer) and the synchronous channel
BC by CA. Parametric pictures are shown below. We assume here that the producer is
activated by obtaining an input value d from the environment at its input port A. It then
generates a certain product f (d) which is synchronously delivered to the consumer.
After having received e = f (d), the consumer starts the consume-phase and finally
sends a signal via output port D to the environment. We assume here that the value send
off at D is arbitrary, that is, we deal with the valid guard true (which is omitted in the
picture).

{A}

wait

{B}

produce(d)

{C}{D}

wait

consume (e)

dA = ddB = f (d) dC = e

dB = dC

{B,C}

Product. To obtain a constraint automata for the composite producer-consumer-system,
we apply a product construction to the three CA. The product of two CA A1 = (Q1,N1,
−→1, Q0,1) and A2 = (Q2,N2,−→2,Q0,2) is defined as follows. A1 �� A2 is a CA with
the components (Q1 ×Q2,N1 ∪N2,−→,Q0,1 ×Q0,2) where −→ is given by the follow-
ing rules:

• If q1
N1,g1−→1 p1, q2

N2,g2−→2 p2, N1 ∩N2 = N2 ∩N1 �= /0 then 〈q1,q2〉
N1∪N2,g1∧g2−−−−−−→ 〈p1, p2〉,

provided that g1 ∧g2 is satisfiable.

• If q1
N,g−→1 p1 where N ∩N2 = /0 then 〈q1,q2〉

N,g−→ 〈p1,q2〉.
• If q2

N,g−→2 p2 where N ∩N1 = /0 then 〈q1,q2〉
N,g−→ 〈q1, p2〉.

The former rule expresses the synchronization case which means that both automata
have to “agree” on the I/O-operations at their common nodes, while the I/O-operations
at their individual nodes is arbitrary. The latter two rules are in the style of classical
interleaving rules for labelled transition systems. They formalize the case where no
synchronization is required since no common nodes are involved. A parametric picture
for the product of the CA of the producer, the consumer and the synchronous channel
BC has the following form:
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{B,C}, dB = dC = f (d)

{D}

wait
wait

produce(d)
wait

{A} wait
consume ( f (d))

produce(d′)
consume( f (d))

{A,D}, dA = d

{A},dA = d′

{D},d := d′

dA = d

Hiding. Another operator that is helpful for abstraction purposes and can be used in Reo
to built components from networks by declaring the internal structure of the network as
hidden (i.e., invisible for the environment) is the hiding operator. It takes as input a CA
A = (Q,N ,−→,Q0) and a non-empty node-set M ⊆ N . The result is a CA hide(A ,M)
that behaves as A , except that data flow at the nodes A ∈ M is made invisible. Formally,
hide(A ,M) =

(
Q,N \ M,−→M,Q0,M

)
where

q
N̄,ḡ−→M p iff there exists a transition q

N,g−→ p such that N̄ = N \ M and ḡ = ∃M[g].

∃M[g] stands short for
�

δ∈DA(M) g[dA/δ.A | A ∈ M], where g[dA/δ.A | A ∈ M] denotes
the syntactic replacement of all occurrences of dA in g for A ∈ M with δ.A. Thus, ∃M[g]
formalizes the set of data assignments for N̄ = N \ M that are obtained from a data
assignment δ for N where g holds by dropping the assignments for the nodes A ∈ N ∩M.
For example, hiding nodes B and C in the CA A for the producer-consumer system
yields a CA A ′ = hide(A ,{B,C}) with node-set {A,D}. A ′ has the same structure as
A , the only difference being that the {B,C}-transition in A becomes a hidden transition
in A ′.

3 Continuous-Time Constraint Automata

We now present a stochastic extension of constraint automata that yields the basis for
a performance analysis of channel-based component connectors, e.g. to reason about
expected response times, the average number of messages that are stored in a buffer of
a FIFO channel, the stochastic long-run behaviour or verifying soft deadlines such as
“there is a 95% chance to obtain a message at input port B within 10 time units after
having sent a request from output port A”. Continuous-time constraint automata (CCA
for short) rely on the assumption that hidden transitions are performed as soon as pos-
sible, while enabled I/O-operations at (non-hidden) nodes can occur at any moment or
even can be refused. The idea is that the environment might connect to the non-hidden
nodes and might either agree to perform a communication immediately, might cause a
delay of a certain communication or might even be not willing to cooperate. CCA are
most in the spirit of interactive Markov chains (IMC) that have been introduced by Her-
manns [20] and that are closely related to continuous-time Markov decision processes
[28]. As in IMCs we have two types of transitions:

• interactive transitions q
N,g−→ p as in ordinary constraint automata, and

• Markovian transitions q
λ−→ p where λ is a positive real number, called rate.

The interpretation of the rates is as in continuous-time Markov chains, see e.g. [22],
i.e., with probability 1 − e−λt the delay of a Markovian transition with rate λ is less
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or equal t. If there are two or more outgoing Markovian transitions from q and no
interactive transition is taken from q then the transition with the least delay (i.e., the
transition that is enabled first) will fire. Note that rates and average delays are dual in
the sense that average delay Λ stands for the rate λ = 1/Λ.

Definition 1 (Continuous-time constraint automata (CCA)). A CCA is a tuple C =
(Q,N ,−→,Q0) where Q is a countable set of states, Q0 ⊆ Q the set of initial states, N
is a finite set of nodes and −→ ⊆ (Q× IR>0 × Q) ∪

(�
N⊆N Q×{N}× DC(N)× Q

)

such that for all states q and p there is at most one Markovian transition from q to p. �

We write R(q, p)= λ if q
λ−→ p and R(q, p)= 0 if there is no Markovian transition from q

to p. For mathematical reasons, we require that for each state the exit rate E(q) defined
by ∑p∈Q R(q, p) is finite and that there does not exist an infinite path consisting of con-
secutive interactive transitions. (The latter assumptions are irrelevant for the purposes of
this paper, but they are necessary to ensure non-zenoness.) When state q is entered then
either immediately a hidden transition instance is taken or the system stays in state q
until one of the Markovian transitions becomes enabled and fires or a visible interactive
transition is taken. A visible transition instance q

N,δ−→ p can only be taken if all involved
nodes A ∈ N agree to perform the I/O-operations specified by (N,δ). If N is non-empty
then this agreement depends on the (unknown) environment which might refuse to pro-
vide the required I/O-operations at the nodes A ∈ N. Thus, none of the visible transitions
might be taken. If, however, the current state q has one or more outgoing hidden transi-
tions there is a nondeterministic choice which selects one of the interactive (visible or
hidden) transitions. Thus, Markovian transitions can only be taken from state q if there
is no hidden transition that starts in q, in which case q is called a Markovian state.

The possible stepwise behaviours of a CCA can be made precise by means of the runs
and the induced stochastic processes. A run in a CCA C is a sequence of consecutive

transition instances q0
α0−→ q1

α1−→ q2
α2−→ . . . where the αi’s are either triples (t,N,δ) such

that qi
N,δ−→ qi+1 is an instance of an interactive transition and t ≥ 0 (the time passage

between entering state qi and performing the I/O-operations specified by (N,δ)) or αi ∈
IR>0 and there is a Markovian transition from qi to qi+1. In the latter case, αi stands for
the amount of time the system spends in state qi until the first Markovian transition fires.
According to the maximal progress assumption we require that Markovian transitions
and that αi = (t,N,δ) for some t > 0 can only occur if no hidden transition can be
taken in qi and that finite runs end in a state where all outgoing transitions are visible.
To reason about the probabilities of runs, the concept of schedulers, also often called
policy, strategy or adversary, is needed. The details, which can be found e.g. in [28], are
not of importance here. We just mention that a scheduler takes as input the history of
the system, formalized by a finite prefix of a run, and either selects one of the enabled
interactive transition instances or, if no hidden transition can be taken, decides to take
a visible transition instance with some delay t unless a Markovian transition fires first
or decides to take no interactive transition and to wait for the first enabled Markovian
transition. For any given scheduler a probability measure on the induced runs can be
defined which, for instance, allows to speak about the probability to reach a certain
configuration within t time units or the expected time until a certain communication
takes place.
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{A},dA = d

wait

λ

{B},dB = f (d)

produce(d)deliver( f (d)

{C},dC = e

wait

µ

{D}

consume(e)done

Example 1. The picture above shows a stochastic variant for the CA of the producer
and the consumer. Here, we assume that the production time takes in average 1/λ time
units, while the mean time of the consume phase is 1/µ. The data-abstract behavior of
the composite system can then be specified by the CCA shown below. This CCA can
now be subject of a stochastic analysis. For example, it can be verified that the average
time of one production-consume cycle is 1/λ+1/µ, or that the probability for the event
“after being activated through an input at A, the time for delivering the product via
channel BC is less or equal t” is given by 1 − e−λt . �

{B,C}

{D}wait
wait produce

wait
{A}

wait
consume

produce
consume

{A,D}

{A}

deliver
wait

produce
donedeliver

done

deliver
consume

{A}

{D}
wait
done

{D}λ

µ

λ

λ
µ

µ

Beside specifying stochastic phenomena that are internal to certain components, also
channels might have stochastic behaviours and can be modelled by CCA. E.g., if a
component Comp, that is linked to the sink end of a FIFO1 channel c, is waiting for a
message along c then Comp cannot immediately read when a message is written at the
source end. Instead it has to wait for a certain (possibly very small) amount of time until
the read operation can be performed. As long as we consider any channel in isolation
these delays might be very small or even negligible. However, for complex networks
where several channels are composed, the effect of delays becomes less clear and can
play a crucial role for performability issues. Assume a FIFO channel c with 1.000 buffer
cells is composed from 1.000 copies of FIFO1 channel with average delay Λ then the
mean time passage between writing a data item d into c’s source end and the instant
where d can be taken at the sink end is 1.000 ·Λ.

Example 2. A FIFO1 channel with average delay 1/λ between the read and write oper-
ations can be modelled by one of the CCA shown below. In both CCA, after the write
operation at the source A the state wait(d) is reached where a Markovian transition with
rate λ is emanating, leading to state take(d) where the sink B can take the element. In
the CCA on the left, no proper delay between the read operation at sink B and the next
write operation at A is specified, while the automaton on the right relies on the assump-
tion that the physical properties of the buffer yield an average delay 1/µ for enabling a
write operation after a read operation. �
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{A}, dA = d

empty

wait(d)take(d)

{B}, dB = d

λ

{A}, dA = d

empty

wait(d)take(d)

{B}, dB = d

λ

wait
µ

We now explain how to construct a CCA for a given network, generated from channels
and component interfaces with CCA-semantics, in a compositional manner. We assume
here a calculus of channels, such as Reo [2], where networks are created via product
(join) and hiding. In the following definition of the product of CCA we assume that the
common nodes are those where data flow has to be synchronized.

Definition 2 (Product of CCA). The product of two CCA C1 = (Q1,N1, −→1, Q0,1)
and C2 = (Q2,N2, −→2,Q0,2) is the CCA C1 �� C2 = (Q1 × Q2,N1 ∪ N2,−→,Q0,1 ×
Q0,2) where −→ is defined by the synchronization and interleaving rule for interactive
transitions as in ordinary CA (see Section 2) and the following interleaving rules for the
Markovian transitions:

q1
λ−→1 p1

〈q1,q2〉 λ−→ 〈p1,q2〉
q2

λ−→2 p2

〈q1,q2〉 λ−→ 〈q1, p2〉

The interleaving rule for the Markovian transition is adequate due to the memory-less
property of exponential distributions. The resulting interleaving diamond for a state
〈q1,q2〉 models the “race” of the Markovian transitions in q1 and those in q2.

The product-operator �� is associative and commutative (up to isomorphism). Thus,
when starting with a network where several components are linked via channels then
the CCA for the composite system is obtained by applying the binary operator �� to the
CCA for the channels and component interfaces in any order.

Example 3 (Triple modular redundancy). Let us look for a CCA that models a fault
tolerant system relying on von Neumann’s concept of triple modular redundancy. The
task is to compute a certain boolean function value f (d) for an input value d ∈ {0,1}
provided by a user and to return f (d). Three unreliable modules are available that at-
tempt to calculate f (d), but may fail to compute the correct value. Thus, after having
obtained the computed values f1, f2, f3 ∈ {0,1} by the modules, a majority decision
will be made and the value MAJ( f1, f2, f3) will be returned to the user.

distributor voter
A B

E1

F

E2

E3

module 2

C1

C2

C3

D1

D2

D3

module 1

module 3G

H

The system consists of five components as shown above. The distributor gets the
input value d via its input port A and delivers it to the three modules via synchronous
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channels connecting the distributor’s output port B with the input ports Ci of the mod-
ules. The modules operate independently from each other and calculate a values fi that
will be delivered via a synchronous channel DiEi. The voter then makes the majority
decision and returns the obtained value via its output port H. To avoid that the distrib-
utor reads the next input value before the voter has returned a value, the voter and the
distributor are linked via a synchronous channel FG. Assuming that the average time
for the internal computation of the modules is 1/λ and all other transitions are immedi-
ate the interfaces of the distributor, modules and voter can be modelled by the following
CCA:

{A}

{B}

{Ci} {Di}

λ

{E1,E2,E3}V

i=1,2,3
dEi = fi

{F,H}
dH = MAJ( f1, f2, f3)

f1 f2 f3

dA = d

dB = d
qd

{G}

Composing these CCA with the automata for the involved synchronous channels via
the product-operator �� yields the CCA shown below. �

{F,G,H}, dF = dG, dH = MAJ( f1, f2, f3)

{A}, dA = d qd

{B,C1,C2,C3}V

i=1,2,3
dB = dCi = d

f1 f2 f3

{D1,D2,D3,E1,E2,E3}V

i=1,2,3
dEi = dDi = fi

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

0

1

2

3 6

5

4

7

Definition 3 (Hiding in CCA). Let C = (Q,N ,−→,Q0) be a CCA and /0 �= M ⊆ N .
The CCA hide(C ,M) is the tuple

(
Q,N \M,−→M,Q0,M

)
where the transition relation

−→M is given by the following two rules:

q
N,g−→ p, N̄ = N \ M, ḡ = ∃M[g]

q
N̄,ḡ−→M p

and
q

λ−→ p, λ > 0

q
λ−→M p

where ∃M[g] is defined as in the non-probabilistic case. �

4 Bisimulation on CCA

Since CCA are slight variants of interactive Markov chains (IMCs), we may adapt the
bisimulation techniques suggested in [20] for IMCs. Bisimulation equivalence for IMCs
arises through a combination of standard bisimulation [23] for the interactive transitions
and lumping equivalence [12, 21, 9, 8] for the Markovian transitions. We now adapt
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these notions of strong and weak bisimulation for CCA and introduce a new (coarser)
variant of weak bisimulation equivalence on CCA.

For P ⊆ Q, R(q,P) = ∑p∈P R(q, p) denotes the total rate to move from q to P via
Markovian transitions.

Definition 4 (Strong bisimulation for CCA). Let C be a CCA as in Def. 1. A strong
bisimulation on C is an equivalence R on Q such that for all (q1,q2) ∈ R :

(S1) If q1
N,δ−→ p1 then there is a transition instance q2

N,δ−→ p2 such that (p1, p2) ∈ R .
(S2) If there is no outgoing hidden transition from q1 then R(q1,P) = R(q2,P) for all

equivalence classes P ∈ Q/R .

Two states q1, q2 are called strongly bisimilar in C , denoted q1 ∼C q2 (or briefly q1 ∼
q2), if the pair (q1,q2) is contained in some strong bisimulation. Strong bisimulation
equivalence for two CCA C1 and C2 with the same node-set is defined by considering
the CCA C = C1 � C2 that results from the disjoint union of C1 and C2 and requiring
that for each initial state q1 in C1 there exists an initial state q2 ∈ C2 such that q1 ∼C q2,
and vice versa. We write C1 ∼ C2 to denote that C1 and C2 are strongly bisimilar. �

Condition (S2) makes no restrictions on the Markovian transitions if q1 (and hence
also q2 by (S1)) has an interactive transition with the empty node-set. In fact, any state
that has such an internal move (which represents data flow at some hidden nodes) will
immediately be left by one of the enabled interactive transitions. Thus, the Markovian
transitions are irrelevant for them, and could simply be removed.

In an analogous way, we adapt Hermans’s notion of weak bisimulation for IMCs
[20] to our setting. CCA C is said to have a weak hidden transition from q to p, denoted
q =⇒ p, if p is reachable from q in C via zero or more hidden transitions. Furthermore,

q
N,g
=⇒ p iff there exists states q′ and p′ with q =⇒ q′, q′ N,g−→ p′ and p′ =⇒ p.

We refer to q
N,δ
=⇒ p as a weak interactive transition instance in C . For P ⊆ Q, the

backward closure of P in C , denoted bc(P), is the set of all states q ∈ Q such that
q =⇒ p for some state p ∈ P. Thus, bc(P) contains exactly those states that can reach
a P-state via hidden transitions. Since hidden transitions are always enabled, the states
q ∈ bc(P) are those that can reach P without any delay. State q is called Markovian if
there is no outgoing hidden transition from q.

Definition 5 (Weak bisimulation for CCA). Let C be a CCA as in Def. 1. A weak
bisimulation on C is an equivalence R on Q such that for all (q1,q2) ∈ R :

(W1) Each weak interactive transition instance of q1 can be matched by a weak inter-
active transition instance of q2 in the following sense:

(W1.1) If q1
N,δ
=⇒ p1 where N �= /0 then q2

N,δ
=⇒ p2 for some state p2 where (p1, p2) ∈ R .

(W1.2) If q1 =⇒ p1 then q2 =⇒ p2 for some state p2 such that (p1, p2) ∈ R .
(W2) If q1 is Markovian then there exists a Markovian state r2 with q2 =⇒ r2, (q1,r2)∈

R and R(q1,bc(P)) = R(r2,bc(P)) for all R -equivalence classes P.
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Two states q1, q2 are called weakly bisimilar in C , denoted q1 ≈C q2 (or briefly q1 ≈ q2),
if the pair (q1,q2) is contained in some weak bisimulation. Weak bisimilarity for two
CCA is defined as in the case of strong bisimulation equivalence. �

Example 4 (Triple modular redundancy). Let us look for the product-CCA for TMR
in Example 3. States 1,2,3 are weakly bisimilar, as well as states 4,5,6. This simply
follows by the fact that none of these states has a weak interactive transition and that
R(i,{4,5,6}) = 2λ for i = 1,2,3 and R(i,{7}) = λ for i = 4,5,6. After hiding all nodes
except for A and H, also states states qd and 0 as well as states 7 and 〈 f1 f2 f3〉 are weakly
bisimilar. Note that e.g. for qd and 0, conditions (W1.1) and (W1.2) are obviously ful-
filled since none of these states has a weak visible transition and qd =⇒ 0.

{H}

{A}
dA = d

3λ

λ

qd,0 1,2,3
2λ

4,5,6

7, f1 f2 f3
dH = MAJ( f1, f2, f3)

To mimic the Markovian transitions of state
0, state qd may first take the hidden transition
from qd to 0 and then perform the CTMC-
like race in state 0. By collapsing weakly
bisimilar states, we obtain a CCA with four
states (see the picture on the left) that is
weakly bisimilar to the original one. �

Bravetti [11] introduced a slightly coarser notion of weak bisimulation on IMCs, which
relaxes condition (W2) by the requirement that R(q1,bc(P)) = R(r2,bc(P)) for all R -
equivalence classes P, except for the R -equivalence class of q1. Bravetti’s weak bisim-
ulation, denoted ≈B, agrees with the coarsest equivalence satisfying condition (W1) and
the following condition (W2’):

(W2’) If q1 is Markovian then q2 =⇒ r2 for some Markovian state r2 with (q1,r2) ∈ R
and Pr(q1

≤t=⇒ bc(P)) = Pr(r2
≤t=⇒ bc(P)) for all t ≥ 0 and P ∈ Q/R with q1 �∈ P.

where, for t ≥ 0, q ∈ Q and P ⊆ Q, Pr(q ≤t=⇒ P) denotes the probability to move from q
to P via Markovian transitions emanating from Markovian states within at most t time
units.1

Theorem 1 (Compositionality of strong and weak bisimulation). Let C1, C ′
1, C2, C ′

2
be CCA such that Ci and C ′

i have the same node-set, i = 1,2. Moreover, let ∼= be one
of the three equivalences ∼, ≈ or ≈B. Then, C1 ∼= C ′

1 and C2 ∼= C ′
2 implies C1 �� C2 ∼=

C ′
1 �� C ′

2 and hide(C1,M) ∼= hide(C ′
1,M).

The congruence result stated in Theorem 1 yields that strong and weak bisimulation are
adequate for the compositional design of complex component connectors. However, for
the analysis coarser equivalences that abstract away from sequences of non-observable
(hidden or Markovian) transitions, but still preserve the probabilities of the observable
data flow are desirable.

We now present a new notion of bisimulation equivalence for CCA, called very weak
bisimulation, which relies on the assumption that the given CCA models the “complete”

1 The Markovian states together with their Markovian transitions yield an ordinary continuous-
time Markov chain with state space Q. Thus, we may deal here with the standard sigma-algebra
and probability measure on CTMCs, see e.g. [22, 26].
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closed system where the enabledness of visible transitions no longer depend on the
environment and can be taken as soon as possible. This view is adequate, even for
systems that are open in nature provided that stochastic assumptions are available for
the environment which allow to model the environment by a CCA. The CCA that is
subject for the (stochastic) analysis then arises through the product of the CCA for the
channels, the component interfaces and the environment.

In the sequel, let C be a CCA as in Def. 1. State q is called purely Markovian if q
is Markovian and has no (hidden or visible) outgoing interactive transition. State q is
called vanishing if q has exactly one hidden transition and no visible transitions. Let
C M be the CTMC that results from C after the following two transformations: 1) First,
all vanishing states are replaced by their (unique) successor which is not vanishing, i.e.
either purely Markovian, has more than one hidden transitions or has at least one vis-
ible transition. Note that the successor is not necessarily a direct one since a maximal
sequence of vanishing states is replaced by the direct successor of the last state of this
sequence. After this transformation there might still be states with hidden transitions
(namely those that have at least one interactive transition in addition or two or more
hidden transitions). 2) Next, all states that have at least one outgoing interactive tran-
sition are made absorbing, i.e. we remove all outgoing Markovian transitions of states
that are not purely Markovian.

Then, for a purely Markovian state q ∈ Q, P ⊆ Q and t ≥ 0, PrM(q ≤t=⇒ P) denotes
the probability to move from q to a state p ∈ P in the CTMC C M within at most t time
units.

Definition 6 (Very weak bisimulation). A very weak bisimulation on a CCA C is an
equivalence relation R on Q such that for all (q1,q2) ∈ R :

(V1) Each weak interactive transition instance of q1 can be matched by a weak inter-
active transition instance of q2 in the sense of (W1.1) and (W1.2) of Definition 5.

(V2) If q1 is purely Markovian then there exists a purely Markovian state r2 with q2 =⇒
r2, (q1,r2) ∈ R and

PrM(q1
≤t=⇒ bc(P)) = PrM(r2

≤t=⇒ bc(P))

for all R -equivalence classes P that contain no purely Markovian states.

States q1, q2 are called very weakly bisimilar in C , denoted q1 ≈vw
C q2 (or briefly q1 ≈vw

q2), if the pair (q1,q2) is contained in R for some very weak bisimulation R . Very
weak bisimilarity for two CCA is defined as for strong bisimulation equivalence. �

The rationale behind (V2) is that ≈vw-equivalent states can reach the set bc(P) after
some time passage t (obtained by sequences of Markovian and hidden transitions lead-
ing to a state p that is in the backward closure of P) with equal probability.

Note that there are no restrictions on Markovian transitions of states that are not
purely Markovian. The relation ≈vw abstracts away from those transitions which is a
useful abstraction for closed models where visible transitions will never be delayed due
to the product operator and can be considered as immediate. Clearly, ≈ is strictly finer
than ≈B which again is finer than ≈vw since for each weak bisimulation R à la Bravetti
R is also a very weak bisimulation.
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For the CCA C1,C2 in the following picture we have C1 ≈vw C2, while C1 �≈B C2,
provided that λ,µ > 0, λ �= µ and N �= /0.

u1 q1 p1 r1 v1

CCA C1

/0 λ µ N,g
u2 q2 p2 r2 v2

CCA C2

/0 µ λ N,g

CCA C

/0 /0

1

/0 /0

2 /0

/0

5

2

2 2

/0

/0

3

aa

CCA CM

/0 /0

1

2

5

2

2 2

3

aa

CCA C ′

/0

3

2

a

Example 5. Consider CCA C in
the picture on the left that orig-
inates from linking several sim-
ple subsystems via synchronous
channels. Each subsystem intro-
duces a certain delay and some
nodes are hidden (hidden transi-
tions are denoted by /0) whereas
others are visible (visible tran-
sitions have label a = 〈N,g〉).
CCA CM is the result of the
transformation where vanishing
states are melt with their respec-
tive successor state. The CTMC
CM that gives the probabilities

for condition (V2) in Definition 6 can be obtained by considering only the Markovian
transitions of CCA CM. It holds that C ≈vw CM ≈vw C ′ because the probability to reach
a dark shaded state within t > 0 time units from a light shaded state is equal in all three
depicted CCA. This comes from the fact that the underlying CTMCs have the same
distribution when considering the time until an absorbing state (the dark shaded state) is
entered. All initial states are in the same equivalence class, all light shaded states form
an equivalence class, all dark shaded states form another class and the states reached via
the visible a-transition are in the same class. All remaining states form singletons. �
For automatic reasoning with CCA in bisimulation framework, one aims at efficient
algorithms for checking the equivalence of two finite CCA. Algorithms for checking
strong and weak bisimulation equivalence have been proposed by Hermanns [20] for
IMCs and can easily be adapted for CCA. These algorithms operate with a partition-
splitter technique for computing the bisimulation quotient.

The treatment of very weak bisimulation is more difficult since it requires reasoning
about phase-type distributions rather than (rates of) exponential distributions. The algo-
rithm for checking ≈vw also relies on a partitioning splitter technique as it is standard
for other bisimulation relations. In the sequel, we concentrate only on the rough ideas
of a polynomial time algorithm. Several optimizations are possible to obtain a more
efficient implementation.

First, vanishing states are replaced by their successor. Let n be the number of all
involved states. Then as a preprocessing step for each pair (q,r) of states where q is
purely Markovian and r not, the first n moments of the distribution of the time until
absorption in r when q is the initial state are computed. This can be done in polynomial
time. Since these distributions are uniquely determined by their first n moments during
the partition-splitter algorithm the distributions for the time until the backward closure
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of a certain equivalence class is reached can be checked for equality in an efficient
way. For details we refer to the full version which can be found at our website (see
http://pi2.informatik.uni-mannheim.de/HomePages/vwolf/cca.ps).

Theorem 2 (Equivalence checking). Given two finite CCA C1 and C2 with the same
node-set and over fixed data domain, the equivalence checking problem asking whether
“Does C1 ∼= C2 hold?” where ∼= is ∼, ≈, ≈B or ≈vw can be decided in polynomial
time with respect to the total number of transitions and the total number of states in C1

and C2.

We suggest to use Bravetti’s notion of weak bisimulation for open models, i.e. mod-
els containing ports that require interaction with the environment. For closed models
the coarser relation ≈vw gives a more abstract view on the model and still preserves
linear-time properties [30]. Unlike weak bisimulation equivalence ≈ or ≈B very weak
bisimulation is not a congruence for the product operator. This, however, is not surpris-
ing since its definition relies on the view of the given CCA as a closed model.

5 Conclusion

The goal of the paper was to provide an operational model for reasoning about compo-
nent connectors under stochastic assumptions about the channels and component inter-
faces. We introduced CCA for this purpose, together with notions of strong and weak
bisimulation that are preserved by the composition operators product and hiding. Since
the latter are the only operators needed for the compositional generation of (static) net-
works in the channel-based calculus Reo, our framework fits well in this context and
provides the basis for a performance analysis of Reo component connectors. In this
paper, we concentrated on the issue of bisimulation relations for CCA. However, since
CCA are close to standard stochastic models (such as continuous-time Markov decision
processes), also other validation techniques are applicable, such as simulation on the
basis of MoDeST [10] or reasoning about expectations [18] or verifying time-bounded
reachability properties [7]. Vice versa, our new notion of weak bisimulation equivalence
≈vw can also be helpful for reasoning about IMCs and similar stochastic models.
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