

Lecture Notes in Computer Science 4038
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Paolo Ciancarini Herbert Wiklicky (Eds.)

Coordination
Models
and Languages

8th International Conference, COORDINATION 2006
Bologna, Italy, June 14-16, 2006
Proceedings

13

Volume Editors

Paolo Ciancarini
Università di Bologna, Dipartimento di Scienze dell’Informazione
Mura Zamboni 7, 40127 Bologna, Italy
E-mail: cianca@cs.unibo.it

Herbert Wiklicky
Imperial College, Department of Computing
Huxley Building, 180 Queen’s Gate, London SW7 2AZ, UK
E-mail: herbert@doc.ic.ac.uk

Library of Congress Control Number: 2006926827

CR Subject Classification (1998): D.2.4, D.2, C.2.4, D.1.3, F.1.2, I.2.11

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-34694-5 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-34694-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11767954 06/3142 5 4 3 2 1 0

Preface

This volume contains the proceedings of the 8th International Conference on
Coordination Models and Languages, Coordination 2006. This year the confer-
ence was part of a set of federated conferences named DisCoTec 2006, held in
Bologna in June 2006. It was held in the series of successful conferences whose
proceedings were also published in LNCS, in volumes 1061, 1282, 1594, 1906,
2315, 2949, and 3454.

The conference was born in 1996, as a forum for researchers working on
programming models, formalisms, and platforms for describing or supporting
concurrent and distributed computations. Contemporary information systems
increasingly rely on combining concurrent and distributed, and now also mobile,
reconfigurable and heterogeneous components. New models, architectures, lan-
guages, and verification techniques are necessary to cope with the complexity in-
duced by the demands of today’s software industry. Coordination languages have
emerged as a successful approach, in that they provide abstractions that cleanly
separate behavior from communication, thereby supporting modular design, sim-
plifying reasoning, and ultimately enhancing software development. Research on
coordination models and languages is still playing a crucial role in addressing
the technological concerns of widely distributed applications and services.

We received 50 submission. All papers were reviewed by four reviewers. The
Program Committee used a tool for collaborative conference management to
select 18 regular papers. The Program Committee invited Chris Hankin and
Pierpaolo Degano to give talks.

The conference and this volume would not have been possible without the
intellectual contributions of all the authors, the careful reviews and advice by
members of the Program Committee, and the additional referees who helped
us to evaluate the papers. We thank Gianluigi Zavattaro, the General Chair of
DisCoTec 2006, for his helpful support with the conference management system.

April 2006 Paolo Ciancarini
Herbert Wiklicky

Organization

Coordination 2006, the 8th International Conference on Coordination Models
and Languages, is part of the set of federated conferences DisCoTec 2006, also
including DAIS 2006, the 6th IFIP International Conference on Distributed Ap-
plications and Interoperable Systems, and FMOODS 2006, the 8th IFIP Interna-
tional Conference on Formal Methods for Open Object-Based Distributed Sys-
tems, as well as three workshops organized by the department of Computer Sci-
ence,
University of Bologna.

Program Committee

Conference Chair: Gianluigi Zavattaro, University of Bologna, Italy
Program Chairs: Paolo Ciancarini, University of Bologna, Italy

Herbert Wiklicky, Imperial College London, UK
Members: Farhad Arbab, CWI Amsterdam, The Netherlands

Luis Barbosa, Universidade do Minho, Portugal
Antonio Brogi, University of Pisa, Italy
Wolfgang Emmerich, University College London, UK
Frank de Boer, CWI & Utrecht University, The Netherlands
Jean-Marie Jacquet, University of Namur, Belgium
Joost Kok, Leiden University, The Netherlands
Toby Lehman, IBM Almaden, USA
D.C. Marinescu, University of Central Florida, USA
Ronaldo Menezes, Florida Institute of Technology, USA
Andrea Omicini, University of Bologna, Italy
Paolo Petta, OeFAI, Austria
Gian Pietro Picco, Politecnico di Milano, Italy
Ernesto Pimentel, University of Malaga, Spain
Rosario Pugliese, University of Florence, Italy
Gruia Catalin Roman, Washington University, USA
Robert Tolksdorf, FU Berlin, Germany
Emilio Tuosto, University of Leicester, UK
Carlos Varela, Rensselaer Polytechnic Institute, USA
Alan Wood, University of York, UK

Table of Contents

Stochastic Reasoning About Channel-Based Component Connectors
Christel Baier, Verena Wolf . 1

Atomic Commit and Negotiation in Service Oriented Computing
Laura Bocchi, Roberto Lucchi . 16

Synthesizing Concurrency Control Components from Process Algebraic
Specifications

Edoardo Bontà, Marco Bernardo, Jeff Magee,
Jeff Kramer . 28

Automated Evaluation of Coordination Approaches
Tibor Bosse, Mark Hoogendoorn, Jan Treur . 44

Choreography and Orchestration Conformance for System Design
Nadia Busi, Roberto Gorrieri, Claudio Guidi, Roberto Lucchi,
Gianluigi Zavattaro . 63

Workflow Patterns in Orc
William R. Cook, Sourabh Patwardhan, Jayadev Misra 82

Evolution On-the-Fly with Paradigm
Luuk Groenewegen, Erik de Vink . 97

Formalising Business Process Execution with Bigraphs and Reactive
XML

Thomas Hildebrandt, Henning Niss, Martin Olsen 113

Enabling Ubiquitous Coordination Using Application Sessions
Christine Julien, Drew Stovall . 130

A WSDL-Based Type System for WS-BPEL
Alessandro Lapadula, Rosario Pugliese, Francesco Tiezzi 145

Managing Ad-Hoc Networks Through the Formal Specification of
Service Requirements

Mart́ın López-Nores, Jorge Garćıa-Duque, José J. Pazos-Arias 164

A Logical View of Choreography
Carlo Montangero, Laura Semini . 179

VIII Table of Contents

Using Lime to Support Replication for Availability in Mobile Ad Hoc
Networks

Amy L. Murphy, Gian Pietro Picco . 194

Coordinating Computation with Communication
Thomas Nitsche . 212

Distributed Workflow upon Linkable Coordination Artifacts
Andrea Omicini, Alessandro Ricci, Nicola Zaghini 228

Actors, Roles and Coordinators — A Coordination Model for Open
Distributed and Embedded Systems

Shangping Ren, Yue Yu, Nianen Chen, Kevin Marth,
Pierre-Etienne Poirot, Limin Shen . 247

Tuple Space Coordination Across Space and Time
Gruia-Catalin Roman, Radu Handorean, Rohan Sen 266

Compositional Semantics of an Actor-Based Language Using Constraint
Automata

Marjan Sirjani, Mohammad Mahdi Jaghoori, Christel Baier,
Farhad Arbab . 281

Author Index . 299

Stochastic Reasoning About
Channel-Based Component Connectors

Christel Baier1 and Verena Wolf2

1 Universität Bonn, Germany
baier@cs.uni-bonn.de

2 Universität Mannheim, Germany
wolf@informatik.uni-mannheim.de

Abstract. Constraint automata have been used as an operational model for com-
ponent connectors that coordinate the cooperation and communication of the
components by means of a network of channels. In this paper, we introduce a
variant of constraint automata (called continuous-time constraint automata) that
allows us to specify time-dependent stochastic assumptions about the channel
connections or the component interfaces, such as the arrival rates of communica-
tion requests, the average delay of enabled I/O-operations at the channel ends or
the stochastic duration of internal computations. This yields the basis for a perfor-
mance analysis of channel-based coordination mechanisms. We focus on compo-
sitional reasoning and discuss several bisimulation relations on continuous-time
constraint automata. For this, we adapt notions of strong and weak bisimula-
tion that have been introduced for similar stochastic models and introduce a new
notion of weak bisimulation which abstracts away from invisible non-stochastic
computations as well as the internal stochastic evolution.

1 Introduction

Coordination models and languages provide a formalization of the glue-code that binds
individual components and organizes the communication and cooperation between
them. In the past 15 years, various types of coordination models have been proposed
that they yield a clear separation between the internal structure of the components and
their interactions. See e.g. [19, 24, 13, 25, 15].

The purpose of this paper is to introduce an operational model for reasoning about
stochastic properties of coordination languages similar to the approaches of Priami [27]
and Di Pierro et al. [16]. In contrast to these approaches our focus is on exogenous
channel-based coordination languages, such as Reo [2] (see also [5, 29, 1, 17, 14]) and
stochastic models with nondeterminism. The rough idea of Reo is that complex com-
ponent connectors are synthesized from channels via certain composition operators,
thus yielding a network of channels (called Reo connector circuit) that coordinates the
interactions between the components. An operational semantics of Reo connector cir-
cuits has been provided by means of constraint automata [4]. These are variants of
labelled transition systems and encode the configurations of the network by their states
and the possible data flow at the ports of the components and the nodes “inside” the
network by their transitions. Extensions of constraint automata have been presented in
[3] to study real-time constraints of component connectors and in [6] to reason about

P. Ciancarini and H. Wiklicky (Eds.): COORDINATION 2006, LNCS 4038, pp. 1–15, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

2 C. Baier and V. Wolf

channels with a probabilistic effect. The latter approach is time-abstract and deals with
discrete probabilities, e.g., to model the faulty behaviours of buffered channels that
might loose or corrupt stored messages, while the former approach focusses on a purely
timed setting, e.g., to reason about hard deadlines, but does not deal with probabili-
ties. The contribution of this paper is orthogonal to the extensions proposed in [3, 6] as
it introduces a stochastic variant of constraint automata where transitions might have a
certain delay according to some probability distribution over a continuous time domain.
This model, called continuous-time constraint automata (CCA for short), combines the
features of ordinary constraint automata with the race conditions in continuous-time
Markov chains. CCA are close to interactive Markov chains (IMCs), which have been
introduced by Hermanns [20] for specifying reactive systems with internal stochastic
behaviours. CCA can be used – as ordinary constraint automata – to formalize the step-
wise behaviour of the interfaces of the components and the channels connecting them,
as well as an operational model for the composite system. In addition, CCA provide
the possibility to specify, e.g., the average rate of communication requests of a certain
component or the mean time that have to be passed between two consecutive I/O oper-
ations at a certain channel. Thus, CCA yield a simple and intuitive model that allow for
a performance analysis of channel-based coordination mechanisms.

In this paper, we concentrate on compositional reasoning by means of bisimula-
tion relations on CCA. We first consider strong and weak bisimulation, that have been
introduced for interactive Markov chains [20]. These notions adapted to CCA yield
equivalences that are congruences for the two basic operators (product and hiding) for
generating the CCA for a complex component connector out of the CCA for its chan-
nels and the component interfaces. Furthermore, we introduce a new notion of weak
bisimulation, called very weak bisimulation which abstracts away from the stochastic
branching behaviour and cumulates the effect of sequences of stochastic transitions.
Very weak bisimulation equivalence is coarser than weak bisimulation equivalence, but
preserves the probabilities for trace-based linear time properties and can be checked in
polynomial-time.

Organization. Section 2 recalls the basic concepts of ordinary constraint automata.
CCA and a product and hiding operator on CCA are introduced in Section 3. Section 4
deals with bisimulation relations on CCA. Section 5 concludes the paper. Due to length
restrictions, proofs for the theorems are omitted. They can be found in the full version
(see http://pi2.informatik.uni-mannheim.de/HomePages/vwolf/cca.ps).

2 Constraint Automata

This section summarizes the basis concepts of constraint automata [4] and their use as
operational model for channel-based component connectors. Constraint automata, CA
for short, are variants of labelled transition systems where transitions are augmented
with pairs 〈N,g〉 rather than action labels. The states of a constraint automata stand
for the network configurations, e.g., the contents of the buffers for FIFO channels. The
transition labels 〈N,g〉 can be viewed as sets of I/O-operations that will be performed
in parallel. More precisely, N is a set of nodes in the network where data-flow is ob-
served simultaneously, and g is a boolean condition on the observed data items. Thus,

Stochastic Reasoning About Channel-Based Component Connectors 3

transitions going out of a state q represent the possible data-flow in the corresponding
configuration and its effect on the configuration.

Data assignments and data constraints. CA use a finite set N of nodes. The nodes
can play the role of input and output ports of components, but they can appear outside
the interfaces of components as “intermediate” stations of the network where several
channels are glued together and the transmission of data items can be observed. For the
purposes of this paper, there is no need to distinguish between write and read operations
at the nodes. Instead CA only refer to the data items that can be “observed” at a node.
Throughout the paper, we assume a fixed, non-empty and finite data domain Data con-
sisting of the data items that can be transmitted through the channels. A data assignment
for N ⊆ N means a function δ : N → Data. We write δ.A for the data item assigned to
node A∈N under δ and DA(N) for the set of all data assignments for node-set N. CA use
a symbolic representation of data assignments by data constraints which mean proposi-
tional formulae built from the atoms ”dA = dB”, ”dA ∈ P” or ”dA = d” where A, B are
nodes, dA is a symbol for the observed data item at node A and d ∈Data, P⊆Data. The
symbol |= stands for the obvious satisfaction relation which results from interpreting
data constraints over data assignments. Satisfiability and logical equivalence≡ of data
constraints are defined as usual. We write DC(N) to denote the set of satisfiable data
constraints using only the symbols dA for A ∈ N, but not dB for B ∈N \N.

Constraint automata (CA) [4]. A CA is a tuple A = (Q,N ,−→,Q0) where Q is a set
of states, also called configurations, N a finite set of nodes, Q0 ⊆ Q the set of initial
states and −→ a subset of N⊆N Q×{N}×DC(N)×Q, called the transition relation.

We write q
N,g−→ p instead of (q,N,g, p) ∈ −→ and refer to N as the node-set and

g the guard. Transitions where the node-set N is non-empty are called visible, while
transitions with the empty node-set are called hidden. Each transition represents a set of
possible interactions given by the transition instances that result by replacing the guard
g with a data assignment δ where g holds. The intuitive behaviour of a CA is as follows.

The automaton starts in an initial state. If the current state is q then an instance q
N,δ−→

p of the outgoing transitions from q is chosen, the corresponding I/O-operations are
performed and the next state is p. If there are several outgoing transitions from state q
the next transition is chosen nondeterministically. A formalization of the possible (finite
or infinite) observable data flow of a constraint automaton is obtained by the notion of a
run. A run in A denotes a (finite or infinite) sequence of consecutive transition instances

q0
N0,δ0−−→ q1

N1,δ1−−→ q2
N2,δ2−−→ . . . where q0 ∈Q0. For finite runs we require that the last state

q does not have an outgoing hidden transition. This can be understood as a maximal
progress assumption for hidden transitions, i.e., steps that do not require any interaction
with the environment.

p0

p1

empty

{A}
dA = 0

{B}
dB = 1

{B} dB = 0

{A} dA = 1

pdempty

{B} dB = d

{A} dA = d

4 C. Baier and V. Wolf

The picture above shows a CA for a FIFO1 channel with the node-set N = {A,B}
and Data = {0,1}. Node A serves as input port where data items can be written into the
channel, while node B can be regarded as an output port where the stored data element
is taken from the buffer and delivered to the environment.

State “empty” stands for the configuration where the buffer is empty, while state
pd encodes the configuration where d is stored in the buffer. Often, we use simplified
parametric pictures for CA with meta symbols for data items as in the right of the picture
(and formally explained in [4]).

For another example, we regard a simple system consisting of a producer and a con-
sumer which are linked via a synchronous channel for transmitting the generated prod-
ucts from the producer’s output port B to the consumer’s input port C.

producer consumer
A B C D

We model both components (producer and consumer) and the synchronous channel
BC by CA. Parametric pictures are shown below. We assume here that the producer is
activated by obtaining an input value d from the environment at its input port A. It then
generates a certain product f (d) which is synchronously delivered to the consumer.
After having received e = f (d), the consumer starts the consume-phase and finally
sends a signal via output port D to the environment. We assume here that the value send
off at D is arbitrary, that is, we deal with the valid guard true (which is omitted in the
picture).

{A}

wait

{B}

produce(d)

{C}{D}

wait

consume (e)

dA = ddB = f (d) dC = e

dB = dC

{B,C}

Product. To obtain a constraint automata for the composite producer-consumer-system,
we apply a product construction to the three CA. The product of two CA A1 = (Q1,N1,
−→1, Q0,1) and A2 = (Q2,N2,−→2,Q0,2) is defined as follows. A1 �� A2 is a CA with
the components (Q1×Q2,N1∪N2,−→,Q0,1×Q0,2) where−→ is given by the follow-
ing rules:

• If q1
N1,g1−→1 p1, q2

N2,g2−→2 p2, N1∩N2 = N2∩N1 �= /0 then 〈q1,q2〉 N1∪N2,g1∧g2−−−−−−→ 〈p1, p2〉,
provided that g1∧g2 is satisfiable.

• If q1
N,g−→1 p1 where N ∩N2 = /0 then 〈q1,q2〉 N,g−→ 〈p1,q2〉.

• If q2
N,g−→2 p2 where N ∩N1 = /0 then 〈q1,q2〉 N,g−→ 〈q1, p2〉.

The former rule expresses the synchronization case which means that both automata
have to “agree” on the I/O-operations at their common nodes, while the I/O-operations
at their individual nodes is arbitrary. The latter two rules are in the style of classical
interleaving rules for labelled transition systems. They formalize the case where no
synchronization is required since no common nodes are involved. A parametric picture
for the product of the CA of the producer, the consumer and the synchronous channel
BC has the following form:

Stochastic Reasoning About Channel-Based Component Connectors 5

{B,C}, dB = dC = f (d)

{D}

wait
wait

produce(d)
wait

{A} wait
consume (f (d))

produce(d′)
consume(f (d))

{A,D}, dA = d

{A},dA = d′

{D},d := d′

dA = d

Hiding. Another operator that is helpful for abstraction purposes and can be used in Reo
to built components from networks by declaring the internal structure of the network as
hidden (i.e., invisible for the environment) is the hiding operator. It takes as input a CA
A = (Q,N ,−→,Q0) and a non-empty node-set M ⊆N . The result is a CA hide(A ,M)
that behaves as A , except that data flow at the nodes A ∈M is made invisible. Formally,
hide(A ,M) =

(
Q,N \M,−→M,Q0,M

)
where

q
N̄,ḡ−→M p iff there exists a transition q

N,g−→ p such that N̄ = N \M and ḡ = ∃M[g].

∃M[g] stands short for δ∈DA(M) g[dA/δ.A | A ∈ M], where g[dA/δ.A | A ∈ M] denotes
the syntactic replacement of all occurrences of dA in g for A∈M with δ.A. Thus, ∃M[g]
formalizes the set of data assignments for N̄ = N \M that are obtained from a data
assignment δ for N where g holds by dropping the assignments for the nodes A∈N∩M.
For example, hiding nodes B and C in the CA A for the producer-consumer system
yields a CA A ′ = hide(A ,{B,C}) with node-set {A,D}. A ′ has the same structure as
A , the only difference being that the {B,C}-transition in A becomes a hidden transition
in A ′.

3 Continuous-Time Constraint Automata

We now present a stochastic extension of constraint automata that yields the basis for
a performance analysis of channel-based component connectors, e.g. to reason about
expected response times, the average number of messages that are stored in a buffer of
a FIFO channel, the stochastic long-run behaviour or verifying soft deadlines such as
“there is a 95% chance to obtain a message at input port B within 10 time units after
having sent a request from output port A”. Continuous-time constraint automata (CCA
for short) rely on the assumption that hidden transitions are performed as soon as pos-
sible, while enabled I/O-operations at (non-hidden) nodes can occur at any moment or
even can be refused. The idea is that the environment might connect to the non-hidden
nodes and might either agree to perform a communication immediately, might cause a
delay of a certain communication or might even be not willing to cooperate. CCA are
most in the spirit of interactive Markov chains (IMC) that have been introduced by Her-
manns [20] and that are closely related to continuous-time Markov decision processes
[28]. As in IMCs we have two types of transitions:

• interactive transitions q
N,g−→ p as in ordinary constraint automata, and

• Markovian transitions q
λ−→ p where λ is a positive real number, called rate.

The interpretation of the rates is as in continuous-time Markov chains, see e.g. [22],
i.e., with probability 1− e−λt the delay of a Markovian transition with rate λ is less

6 C. Baier and V. Wolf

or equal t. If there are two or more outgoing Markovian transitions from q and no
interactive transition is taken from q then the transition with the least delay (i.e., the
transition that is enabled first) will fire. Note that rates and average delays are dual in
the sense that average delay Λ stands for the rate λ = 1/Λ.

Definition 1 (Continuous-time constraint automata (CCA)). A CCA is a tuple C =
(Q,N ,−→,Q0) where Q is a countable set of states, Q0 ⊆Q the set of initial states, N
is a finite set of nodes and −→ ⊆ (Q× IR>0×Q) ∪ (

N⊆N Q×{N}×DC(N)×Q
)

such that for all states q and p there is at most one Markovian transition from q to p. �

We write R(q, p)= λ if q
λ−→ p and R(q, p)= 0 if there is no Markovian transition from q

to p. For mathematical reasons, we require that for each state the exit rate E(q) defined
by ∑p∈Q R(q, p) is finite and that there does not exist an infinite path consisting of con-
secutive interactive transitions. (The latter assumptions are irrelevant for the purposes of
this paper, but they are necessary to ensure non-zenoness.) When state q is entered then
either immediately a hidden transition instance is taken or the system stays in state q
until one of the Markovian transitions becomes enabled and fires or a visible interactive
transition is taken. A visible transition instance q

N,δ−→ p can only be taken if all involved
nodes A ∈ N agree to perform the I/O-operations specified by (N,δ). If N is non-empty
then this agreement depends on the (unknown) environment which might refuse to pro-
vide the required I/O-operations at the nodes A∈N. Thus, none of the visible transitions
might be taken. If, however, the current state q has one or more outgoing hidden transi-
tions there is a nondeterministic choice which selects one of the interactive (visible or
hidden) transitions. Thus, Markovian transitions can only be taken from state q if there
is no hidden transition that starts in q, in which case q is called a Markovian state.

The possible stepwise behaviours of a CCA can be made precise by means of the runs
and the induced stochastic processes. A run in a CCA C is a sequence of consecutive

transition instances q0
α0−→ q1

α1−→ q2
α2−→ . . . where the αi’s are either triples (t,N,δ) such

that qi
N,δ−→ qi+1 is an instance of an interactive transition and t ≥ 0 (the time passage

between entering state qi and performing the I/O-operations specified by (N,δ)) or αi ∈
IR>0 and there is a Markovian transition from qi to qi+1. In the latter case, αi stands for
the amount of time the system spends in state qi until the first Markovian transition fires.
According to the maximal progress assumption we require that Markovian transitions
and that αi = (t,N,δ) for some t > 0 can only occur if no hidden transition can be
taken in qi and that finite runs end in a state where all outgoing transitions are visible.
To reason about the probabilities of runs, the concept of schedulers, also often called
policy, strategy or adversary, is needed. The details, which can be found e.g. in [28], are
not of importance here. We just mention that a scheduler takes as input the history of
the system, formalized by a finite prefix of a run, and either selects one of the enabled
interactive transition instances or, if no hidden transition can be taken, decides to take
a visible transition instance with some delay t unless a Markovian transition fires first
or decides to take no interactive transition and to wait for the first enabled Markovian
transition. For any given scheduler a probability measure on the induced runs can be
defined which, for instance, allows to speak about the probability to reach a certain
configuration within t time units or the expected time until a certain communication
takes place.

Stochastic Reasoning About Channel-Based Component Connectors 7

{A},dA = d

wait

λ

{B},dB = f (d)

produce(d)deliver(f (d)

{C},dC = e

wait

μ

{D}

consume(e)done

Example 1. The picture above shows a stochastic variant for the CA of the producer
and the consumer. Here, we assume that the production time takes in average 1/λ time
units, while the mean time of the consume phase is 1/μ. The data-abstract behavior of
the composite system can then be specified by the CCA shown below. This CCA can
now be subject of a stochastic analysis. For example, it can be verified that the average
time of one production-consume cycle is 1/λ+1/μ, or that the probability for the event
“after being activated through an input at A, the time for delivering the product via
channel BC is less or equal t” is given by 1− e−λt . �

{B,C}

{D}wait
wait produce

wait
{A}

wait
consume

produce
consume

{A,D}

{A}

deliver
wait

produce
donedeliver

done

deliver
consume

{A}

{D}
wait
done

{D}λ

μ

λ

λ
μ

μ

Beside specifying stochastic phenomena that are internal to certain components, also
channels might have stochastic behaviours and can be modelled by CCA. E.g., if a
component Comp, that is linked to the sink end of a FIFO1 channel c, is waiting for a
message along c then Comp cannot immediately read when a message is written at the
source end. Instead it has to wait for a certain (possibly very small) amount of time until
the read operation can be performed. As long as we consider any channel in isolation
these delays might be very small or even negligible. However, for complex networks
where several channels are composed, the effect of delays becomes less clear and can
play a crucial role for performability issues. Assume a FIFO channel c with 1.000 buffer
cells is composed from 1.000 copies of FIFO1 channel with average delay Λ then the
mean time passage between writing a data item d into c’s source end and the instant
where d can be taken at the sink end is 1.000 ·Λ.

Example 2. A FIFO1 channel with average delay 1/λ between the read and write oper-
ations can be modelled by one of the CCA shown below. In both CCA, after the write
operation at the source A the state wait(d) is reached where a Markovian transition with
rate λ is emanating, leading to state take(d) where the sink B can take the element. In
the CCA on the left, no proper delay between the read operation at sink B and the next
write operation at A is specified, while the automaton on the right relies on the assump-
tion that the physical properties of the buffer yield an average delay 1/μ for enabling a
write operation after a read operation. �

8 C. Baier and V. Wolf

{A}, dA = d

empty

wait(d)take(d)

{B}, dB = d

λ

{A}, dA = d

empty

wait(d)take(d)

{B}, dB = d

λ

wait
μ

We now explain how to construct a CCA for a given network, generated from channels
and component interfaces with CCA-semantics, in a compositional manner. We assume
here a calculus of channels, such as Reo [2], where networks are created via product
(join) and hiding. In the following definition of the product of CCA we assume that the
common nodes are those where data flow has to be synchronized.

Definition 2 (Product of CCA). The product of two CCA C1 = (Q1,N1, −→1, Q0,1)
and C2 = (Q2,N2, −→2,Q0,2) is the CCA C1 �� C2 = (Q1 ×Q2,N1 ∪N2,−→,Q0,1×
Q0,2) where −→ is defined by the synchronization and interleaving rule for interactive
transitions as in ordinary CA (see Section 2) and the following interleaving rules for the
Markovian transitions:

q1
λ−→1 p1

〈q1,q2〉 λ−→ 〈p1,q2〉
q2

λ−→2 p2

〈q1,q2〉 λ−→ 〈q1, p2〉
The interleaving rule for the Markovian transition is adequate due to the memory-less
property of exponential distributions. The resulting interleaving diamond for a state
〈q1,q2〉 models the “race” of the Markovian transitions in q1 and those in q2.

The product-operator �� is associative and commutative (up to isomorphism). Thus,
when starting with a network where several components are linked via channels then
the CCA for the composite system is obtained by applying the binary operator �� to the
CCA for the channels and component interfaces in any order.

Example 3 (Triple modular redundancy). Let us look for a CCA that models a fault
tolerant system relying on von Neumann’s concept of triple modular redundancy. The
task is to compute a certain boolean function value f (d) for an input value d ∈ {0,1}
provided by a user and to return f (d). Three unreliable modules are available that at-
tempt to calculate f (d), but may fail to compute the correct value. Thus, after having
obtained the computed values f1, f2, f3 ∈ {0,1} by the modules, a majority decision
will be made and the value MAJ(f1, f2, f3) will be returned to the user.

distributor voter
A B

E1

F

E2

E3

module 2

C1

C2

C3

D1

D2

D3

module 1

module 3G

H

The system consists of five components as shown above. The distributor gets the
input value d via its input port A and delivers it to the three modules via synchronous

Stochastic Reasoning About Channel-Based Component Connectors 9

channels connecting the distributor’s output port B with the input ports Ci of the mod-
ules. The modules operate independently from each other and calculate a values fi that
will be delivered via a synchronous channel DiEi. The voter then makes the majority
decision and returns the obtained value via its output port H. To avoid that the distrib-
utor reads the next input value before the voter has returned a value, the voter and the
distributor are linked via a synchronous channel FG. Assuming that the average time
for the internal computation of the modules is 1/λ and all other transitions are immedi-
ate the interfaces of the distributor, modules and voter can be modelled by the following
CCA:

{A}

{B}
{Ci} {Di}

λ

{E1,E2,E3}V

i=1,2,3
dEi = fi

{F,H}
dH = MAJ(f1, f2, f3)

f1 f2 f3

dA = d

dB = d
qd

{G}

Composing these CCA with the automata for the involved synchronous channels via
the product-operator �� yields the CCA shown below. �

{F,G,H}, dF = dG, dH = MAJ(f1, f2, f3)

{A}, dA = d qd

{B,C1,C2,C3}V

i=1,2,3
dB = dCi = d

f1 f2 f3

{D1,D2,D3,E1,E2,E3}V

i=1,2,3
dEi = dDi = fi

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

0

1

2

3 6

5

4

7

Definition 3 (Hiding in CCA). Let C = (Q,N ,−→,Q0) be a CCA and /0 �= M ⊆ N .
The CCA hide(C ,M) is the tuple

(
Q,N \M,−→M,Q0,M

)
where the transition relation

−→M is given by the following two rules:

q
N,g−→ p, N̄ = N \M, ḡ = ∃M[g]

q
N̄,ḡ−→M p

and
q

λ−→ p, λ > 0

q
λ−→M p

where ∃M[g] is defined as in the non-probabilistic case. �

4 Bisimulation on CCA

Since CCA are slight variants of interactive Markov chains (IMCs), we may adapt the
bisimulation techniques suggested in [20] for IMCs. Bisimulation equivalence for IMCs
arises through a combination of standard bisimulation [23] for the interactive transitions
and lumping equivalence [12, 21, 9, 8] for the Markovian transitions. We now adapt

10 C. Baier and V. Wolf

these notions of strong and weak bisimulation for CCA and introduce a new (coarser)
variant of weak bisimulation equivalence on CCA.

For P ⊆ Q, R(q,P) = ∑p∈P R(q, p) denotes the total rate to move from q to P via
Markovian transitions.

Definition 4 (Strong bisimulation for CCA). Let C be a CCA as in Def. 1. A strong
bisimulation on C is an equivalence R on Q such that for all (q1,q2) ∈ R :

(S1) If q1
N,δ−→ p1 then there is a transition instance q2

N,δ−→ p2 such that (p1, p2) ∈ R .
(S2) If there is no outgoing hidden transition from q1 then R(q1,P) = R(q2,P) for all

equivalence classes P ∈Q/R .

Two states q1, q2 are called strongly bisimilar in C , denoted q1 ∼C q2 (or briefly q1 ∼
q2), if the pair (q1,q2) is contained in some strong bisimulation. Strong bisimulation
equivalence for two CCA C1 and C2 with the same node-set is defined by considering
the CCA C = C1 �C2 that results from the disjoint union of C1 and C2 and requiring
that for each initial state q1 in C1 there exists an initial state q2 ∈ C2 such that q1 ∼C q2,
and vice versa. We write C1 ∼ C2 to denote that C1 and C2 are strongly bisimilar. �

Condition (S2) makes no restrictions on the Markovian transitions if q1 (and hence
also q2 by (S1)) has an interactive transition with the empty node-set. In fact, any state
that has such an internal move (which represents data flow at some hidden nodes) will
immediately be left by one of the enabled interactive transitions. Thus, the Markovian
transitions are irrelevant for them, and could simply be removed.

In an analogous way, we adapt Hermans’s notion of weak bisimulation for IMCs
[20] to our setting. CCA C is said to have a weak hidden transition from q to p, denoted
q =⇒ p, if p is reachable from q in C via zero or more hidden transitions. Furthermore,

q
N,g
=⇒ p iff there exists states q′ and p′ with q =⇒ q′, q′ N,g−→ p′ and p′ =⇒ p.

We refer to q
N,δ
=⇒ p as a weak interactive transition instance in C . For P ⊆ Q, the

backward closure of P in C , denoted bc(P), is the set of all states q ∈ Q such that
q =⇒ p for some state p ∈ P. Thus, bc(P) contains exactly those states that can reach
a P-state via hidden transitions. Since hidden transitions are always enabled, the states
q ∈ bc(P) are those that can reach P without any delay. State q is called Markovian if
there is no outgoing hidden transition from q.

Definition 5 (Weak bisimulation for CCA). Let C be a CCA as in Def. 1. A weak
bisimulation on C is an equivalence R on Q such that for all (q1,q2) ∈ R :

(W1) Each weak interactive transition instance of q1 can be matched by a weak inter-
active transition instance of q2 in the following sense:

(W1.1) If q1
N,δ
=⇒ p1 where N �= /0 then q2

N,δ
=⇒ p2 for some state p2 where (p1, p2)∈R .

(W1.2) If q1 =⇒ p1 then q2 =⇒ p2 for some state p2 such that (p1, p2) ∈ R .
(W2) If q1 is Markovian then there exists a Markovian state r2 with q2 =⇒ r2, (q1,r2)∈

R and R(q1,bc(P)) = R(r2,bc(P)) for all R -equivalence classes P.

Stochastic Reasoning About Channel-Based Component Connectors 11

Two states q1, q2 are called weakly bisimilar in C , denoted q1 ≈C q2 (or briefly q1 ≈ q2),
if the pair (q1,q2) is contained in some weak bisimulation. Weak bisimilarity for two
CCA is defined as in the case of strong bisimulation equivalence. �

Example 4 (Triple modular redundancy). Let us look for the product-CCA for TMR
in Example 3. States 1,2,3 are weakly bisimilar, as well as states 4,5,6. This simply
follows by the fact that none of these states has a weak interactive transition and that
R(i,{4,5,6}) = 2λ for i = 1,2,3 and R(i,{7}) = λ for i = 4,5,6. After hiding all nodes
except for A and H, also states states qd and 0 as well as states 7 and 〈 f1 f2 f3〉 are weakly
bisimilar. Note that e.g. for qd and 0, conditions (W1.1) and (W1.2) are obviously ful-
filled since none of these states has a weak visible transition and qd =⇒ 0.

{H}

{A}
dA = d

3λ

λ

qd,0 1,2,3
2λ

4,5,6

7, f1 f2 f3
dH = MAJ(f1, f2, f3)

To mimic the Markovian transitions of state
0, state qd may first take the hidden transition
from qd to 0 and then perform the CTMC-
like race in state 0. By collapsing weakly
bisimilar states, we obtain a CCA with four
states (see the picture on the left) that is
weakly bisimilar to the original one. �

Bravetti [11] introduced a slightly coarser notion of weak bisimulation on IMCs, which
relaxes condition (W2) by the requirement that R(q1,bc(P)) = R(r2,bc(P)) for all R -
equivalence classes P, except for the R -equivalence class of q1. Bravetti’s weak bisim-
ulation, denoted≈B, agrees with the coarsest equivalence satisfying condition (W1) and
the following condition (W2’):

(W2’) If q1 is Markovian then q2 =⇒ r2 for some Markovian state r2 with (q1,r2) ∈R
and Pr(q1

≤t=⇒ bc(P)) = Pr(r2
≤t=⇒ bc(P)) for all t ≥ 0 and P ∈ Q/R with q1 �∈ P.

where, for t ≥ 0, q ∈Q and P⊆Q, Pr(q ≤t=⇒ P) denotes the probability to move from q
to P via Markovian transitions emanating from Markovian states within at most t time
units.1

Theorem 1 (Compositionality of strong and weak bisimulation). Let C1, C ′
1, C2, C ′

2
be CCA such that Ci and C ′

i have the same node-set, i = 1,2. Moreover, let ∼= be one
of the three equivalences ∼, ≈ or ≈B. Then, C1 ∼= C ′

1 and C2 ∼= C ′
2 implies C1 �� C2 ∼=

C ′
1 �� C ′

2 and hide(C1,M)∼= hide(C ′
1,M).

The congruence result stated in Theorem 1 yields that strong and weak bisimulation are
adequate for the compositional design of complex component connectors. However, for
the analysis coarser equivalences that abstract away from sequences of non-observable
(hidden or Markovian) transitions, but still preserve the probabilities of the observable
data flow are desirable.

We now present a new notion of bisimulation equivalence for CCA, called very weak
bisimulation, which relies on the assumption that the given CCA models the “complete”

1 The Markovian states together with their Markovian transitions yield an ordinary continuous-
time Markov chain with state space Q. Thus, we may deal here with the standard sigma-algebra
and probability measure on CTMCs, see e.g. [22, 26].

12 C. Baier and V. Wolf

closed system where the enabledness of visible transitions no longer depend on the
environment and can be taken as soon as possible. This view is adequate, even for
systems that are open in nature provided that stochastic assumptions are available for
the environment which allow to model the environment by a CCA. The CCA that is
subject for the (stochastic) analysis then arises through the product of the CCA for the
channels, the component interfaces and the environment.

In the sequel, let C be a CCA as in Def. 1. State q is called purely Markovian if q
is Markovian and has no (hidden or visible) outgoing interactive transition. State q is
called vanishing if q has exactly one hidden transition and no visible transitions. Let
C M be the CTMC that results from C after the following two transformations: 1) First,
all vanishing states are replaced by their (unique) successor which is not vanishing, i.e.
either purely Markovian, has more than one hidden transitions or has at least one vis-
ible transition. Note that the successor is not necessarily a direct one since a maximal
sequence of vanishing states is replaced by the direct successor of the last state of this
sequence. After this transformation there might still be states with hidden transitions
(namely those that have at least one interactive transition in addition or two or more
hidden transitions). 2) Next, all states that have at least one outgoing interactive tran-
sition are made absorbing, i.e. we remove all outgoing Markovian transitions of states
that are not purely Markovian.

Then, for a purely Markovian state q ∈ Q, P ⊆ Q and t ≥ 0, PrM(q ≤t=⇒ P) denotes
the probability to move from q to a state p ∈ P in the CTMC C M within at most t time
units.

Definition 6 (Very weak bisimulation). A very weak bisimulation on a CCA C is an
equivalence relation R on Q such that for all (q1,q2) ∈ R :

(V1) Each weak interactive transition instance of q1 can be matched by a weak inter-
active transition instance of q2 in the sense of (W1.1) and (W1.2) of Definition 5.

(V2) If q1 is purely Markovian then there exists a purely Markovian state r2 with q2 =⇒
r2, (q1,r2) ∈ R and

PrM(q1
≤t=⇒ bc(P)) = PrM(r2

≤t=⇒ bc(P))

for all R -equivalence classes P that contain no purely Markovian states.

States q1, q2 are called very weakly bisimilar in C , denoted q1 ≈vw
C q2 (or briefly q1 ≈vw

q2), if the pair (q1,q2) is contained in R for some very weak bisimulation R . Very
weak bisimilarity for two CCA is defined as for strong bisimulation equivalence. �

The rationale behind (V2) is that ≈vw-equivalent states can reach the set bc(P) after
some time passage t (obtained by sequences of Markovian and hidden transitions lead-
ing to a state p that is in the backward closure of P) with equal probability.

Note that there are no restrictions on Markovian transitions of states that are not
purely Markovian. The relation ≈vw abstracts away from those transitions which is a
useful abstraction for closed models where visible transitions will never be delayed due
to the product operator and can be considered as immediate. Clearly, ≈ is strictly finer
than ≈B which again is finer than≈vw since for each weak bisimulation R à la Bravetti
R is also a very weak bisimulation.

Stochastic Reasoning About Channel-Based Component Connectors 13

For the CCA C1,C2 in the following picture we have C1 ≈vw C2, while C1 �≈B C2,
provided that λ,μ > 0, λ �= μ and N �= /0.

u1 q1 p1 r1 v1

CCA C1

/0 λ μ N,g
u2 q2 p2 r2 v2

CCA C2

/0 μ λ N,g

CCA C

/0 /0

1

/0 /0

2 /0

/0

5

2

2 2

/0

/0

3

aa

CCA CM

/0 /0

1

2

5

2

2 2

3

aa

CCA C ′

/0

3

2

a

Example 5. Consider CCA C in
the picture on the left that orig-
inates from linking several sim-
ple subsystems via synchronous
channels. Each subsystem intro-
duces a certain delay and some
nodes are hidden (hidden transi-
tions are denoted by /0) whereas
others are visible (visible tran-
sitions have label a = 〈N,g〉).
CCA CM is the result of the
transformation where vanishing
states are melt with their respec-
tive successor state. The CTMC
CM that gives the probabilities

for condition (V2) in Definition 6 can be obtained by considering only the Markovian
transitions of CCA CM. It holds that C ≈vw CM ≈vw C ′ because the probability to reach
a dark shaded state within t > 0 time units from a light shaded state is equal in all three
depicted CCA. This comes from the fact that the underlying CTMCs have the same
distribution when considering the time until an absorbing state (the dark shaded state) is
entered. All initial states are in the same equivalence class, all light shaded states form
an equivalence class, all dark shaded states form another class and the states reached via
the visible a-transition are in the same class. All remaining states form singletons. �
For automatic reasoning with CCA in bisimulation framework, one aims at efficient
algorithms for checking the equivalence of two finite CCA. Algorithms for checking
strong and weak bisimulation equivalence have been proposed by Hermanns [20] for
IMCs and can easily be adapted for CCA. These algorithms operate with a partition-
splitter technique for computing the bisimulation quotient.

The treatment of very weak bisimulation is more difficult since it requires reasoning
about phase-type distributions rather than (rates of) exponential distributions. The algo-
rithm for checking ≈vw also relies on a partitioning splitter technique as it is standard
for other bisimulation relations. In the sequel, we concentrate only on the rough ideas
of a polynomial time algorithm. Several optimizations are possible to obtain a more
efficient implementation.

First, vanishing states are replaced by their successor. Let n be the number of all
involved states. Then as a preprocessing step for each pair (q,r) of states where q is
purely Markovian and r not, the first n moments of the distribution of the time until
absorption in r when q is the initial state are computed. This can be done in polynomial
time. Since these distributions are uniquely determined by their first n moments during
the partition-splitter algorithm the distributions for the time until the backward closure

14 C. Baier and V. Wolf

of a certain equivalence class is reached can be checked for equality in an efficient
way. For details we refer to the full version which can be found at our website (see
http://pi2.informatik.uni-mannheim.de/HomePages/vwolf/cca.ps).

Theorem 2 (Equivalence checking). Given two finite CCA C1 and C2 with the same
node-set and over fixed data domain, the equivalence checking problem asking whether
“Does C1 ∼= C2 hold?” where ∼= is ∼, ≈, ≈B or ≈vw can be decided in polynomial
time with respect to the total number of transitions and the total number of states in C1

and C2.

We suggest to use Bravetti’s notion of weak bisimulation for open models, i.e. mod-
els containing ports that require interaction with the environment. For closed models
the coarser relation ≈vw gives a more abstract view on the model and still preserves
linear-time properties [30]. Unlike weak bisimulation equivalence ≈ or ≈B very weak
bisimulation is not a congruence for the product operator. This, however, is not surpris-
ing since its definition relies on the view of the given CCA as a closed model.

5 Conclusion

The goal of the paper was to provide an operational model for reasoning about compo-
nent connectors under stochastic assumptions about the channels and component inter-
faces. We introduced CCA for this purpose, together with notions of strong and weak
bisimulation that are preserved by the composition operators product and hiding. Since
the latter are the only operators needed for the compositional generation of (static) net-
works in the channel-based calculus Reo, our framework fits well in this context and
provides the basis for a performance analysis of Reo component connectors. In this
paper, we concentrated on the issue of bisimulation relations for CCA. However, since
CCA are close to standard stochastic models (such as continuous-time Markov decision
processes), also other validation techniques are applicable, such as simulation on the
basis of MoDeST [10] or reasoning about expectations [18] or verifying time-bounded
reachability properties [7]. Vice versa, our new notion of weak bisimulation equivalence
≈vw can also be helpful for reasoning about IMCs and similar stochastic models.

References

1. F. Arbab. Abstract behavior types: A foundation model for components and their composi-
tion. In [15], pages 33–70, 2003.

2. F. Arbab. Reo: A channel-based coordination model for component composition. Mathe-
matical Structures in Computer Science, 14(3):1–38, 2004.

3. F. Arbab, C. Baier, F. de Boer, and J. Rutten. Models and temporal logics for timed compo-
nent connectors. In Proc. SEFM’04. IEEE CS Press, 2004.

4. F. Arbab, C. Baier, J.J.M.M. Rutten, and M. Sirjani. Modeling component connectors in reo
by constraint automata. Science of Computer Programming, special issue on Foundations of
Coordination Languages and Software Architectures (to appear), 2005.

5. F. Arbab and J.J.M.M. Rutten. A coinductive calculus of component connectors. In
Proc. WADT 2002, volume 2755 of LNCS, pages 35–56, 2003.

6. C. Baier. Probabilistic models for reo connector circuits. Journal of Universal Computer
Science, 11(10):1718–1748, 2005.

Stochastic Reasoning About Channel-Based Component Connectors 15

7. C. Baier, B. Haverkort, H. Hermanns, and J.-P. Katoen. Efficient computation of time-
bounded reachability probabilities in uniform continuous-time markov decision processes.
In Proc. TACAS, volume 2988 of Lecture Notes in Computer Science, pages 61–76, 2004.
Full version to appear in Theoretical Computer Science.

8. C. Baier, H. Hermanns, J.-P. Katoen, and V. Wolf. Comparative branching time semantics
for Markov chains. In Proc. CONCUR 2003, number 2761 in LNCS, pages 492–507, 2003.
Full version to appear in Information and Computation.

9. M. Bernardo and R. Gorrieri. Extended Markovian process algebra. In Proc. CONCUR
1996, number 1119 in LNCS, pages 315–330. Springer, 1996.

10. H. Bohnenkamp, H. Hermanns, J.-P. Katoen, and R. Klaren. The modest modeling tool and
its implementation. Computer Performance Evaluation/TOOLS, pages 116–133, 2003.

11. M. Bravetti. Revisiting interactive Markov chains. In Proc. Models for Time-Critical Sys-
tems, volume 68(5) of Electr. Notes Theor. Comput. Sci., 2003.

12. P. Buchholz. Exact and ordinary lumpability in finite markov chains. Journal of Applied
Probability, 31:59–75, 1994.

13. P. Ciancarini. Coordination models and languages as software integrators. ACM Comput.
Surv., 28(2):300–302, 1996.

14. D. Clarke, D. Costa, and F. Arbab. Modeling coordination in biological systems. In Proc. of
the Int. Symposium on Leveraging Applications of Formal Methods (ISoLA 2004), 2004.

15. F.S. de Boer, M.M. Bonsangue, S. Graf, and W.-P. de Roever, editors. Formal Methods for
Components and Objects, volume 2852 of LNCS. Springer, 2003.

16. A. Di Pierro, C. Hankin, and H. Wiklicky. Continuous-time probabilistic klaim. Electr. Notes
Theor. Comput. Sci., 128(5):27–38, 2005.

17. N. Diakov and F. Arbab. Compositional construction of web services using Reo. In Proc.
International Workshop on Web Services: Modeling, Architecture and Infrastructure (ICEIS
2004), Porto, Portugal, April 13-14, 2004.

18. E. Feinberg. Continuous time discounted jump markov decision processes: A discrete-event
approach. Math. Oper. Res., 29(3):492–524, 2004.

19. D. Gelernter and N. Carriero. Coordination languages and their significance. Commun. ACM,
35(2):97–107, 1992.

20. H. Hermanns. Interactive Markov Chains, volume 2428 of Lecture Notes in Computer Sci-
ence. Springer Verlag, 2002.

21. J. Hillston. A compositional approach to performance modelling. Cambridge University
Press, 1996.

22. J. G. Kemeny, J. L. Snell, and A. W. Knapp. Denumerable Markov Chains. D. Van Nostrand
Co., Princeton, NJ, USA, 1966.

23. R. Milner. Communication and Concurrency. Prentice Hall International Series in Computer
Science. Prentice Hall, 1989.

24. O. Nierstrasz, S. Gibbs, and D. Tsichritzis. Component-oriented software development.
Commun. ACM, 35(9):160–165, 1992.

25. A. Omicini, F. Zambonelli, M. Klusch, and R. Tolksdorf, editors. Coordination of Internet
Agents: Models, Technologies, and Applications. Springer, 2001.

26. P. Panangaden. Measure and probability for concurrency theorists. Theoretical Computer
Science, 253(2):287–309, 2001.

27. Corrado Priami. Stochastic pi-calculus. Comput. J., 38(7):578–589, 1995.
28. M. L. Puterman. Markov Decision Processes—Discrete Stochastic Dynamic Programming.

John Wiley & Sons, Inc., New York, 1994.
29. J.J.M.M. Rutten. Component connectors. In [?], chapter 5, pages 73–87. Oxford University

Press, 2004.
30. V. Wolf, C. Baier, and M. Majster-Cederbaum. Trace semantics for stochastic systems with

nondeterminism. In Proc. QAPL, 2006. to appear.

Atomic Commit and Negotiation in Service
Oriented Computing�

Laura Bocchi1 and Roberto Lucchi2

1 Department of Computer Science, University of Leicester
University Road, Leicester LE1 7RH, UK

bocchi@mcs.le.ac.uk
2 Dipartimento di Science dell’Informazione, University of Bologna

Mura Anteo Zamboni 7, 40127 Bologna, Italy
lucchi@cs.unibo.it

Abstract. In this paper we investigate the relationship between two
problems, related to distributed systems, that are of particular interest
in the context of Service Oriented Computing: atomic commit and ne-
gotiation. We will show that there exists a rather strict interdependency
between the two problems by discussing how negotiation could be ex-
pressed as an instance of the atomic commit problem, and vice versa. To
this end we exploit the Contract Net Protocol, a well known negotiation
protocol, that will be described by means of the asynchronous pi calculus
(Pi-CNP). Besides modeling CNP we also formally describe some basic
properties of the CNP protocol.

1 Introduction

Distributed state synchronization is a general problem concerning Service Ori-
ented Computing (SOC). Specifically, in the Web Services scenario some recent
efforts addressed the states synchronization of distributed participants. Some
examples are the Tentative Hold Protocol (THP) [1], the Business Transaction
Protocol (BTP) [2], and WS-Transaction [3]. These protocols rule the enact-
ment of a multi-step interaction among a number of participants, in order to
achieve an agreement on the outcome of the distributed transaction. In order to
address the requirements of real e-business scenarios over the Web a number of
challenges come into play. A key challenge consists of supporting the dynamic
automated composition of Web services, for example through the definition of
protocols that support negotiation activities.

These issues present analogies with the notion, well known in the context of
Multi Agent Systems, of distributed problem solving. In a scenario of distrib-
uted problem solving some knowledge-sources (KS) have to find a cooperative
solution to a problem, in a decentralized way. Each knowledge source is not able
to autonomously achieve the solution; the problem is decomposed in sub-tasks
that are delegated to some other KSs. A KS can decompose the assigned task

� Research partially funded by EU Integrated Project Sensoria, contract n. 016004.

P. Ciancarini and H. Wiklicky (Eds.): COORDINATION 2006, LNCS 4038, pp. 16–27, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Atomic Commit and Negotiation in Service Oriented Computing 17

in further sub-tasks. [4, 5] discuss the relationship between negotiation and dis-
tributed problem solving and propose the Contract Net Protocol as a solution
to distributed problem solving.

Fig. 1. A usage scenario involving negotiation activities

The following scenario shows how CNP is used to negotiate a contract amongst
a travel agent and flight/cars providers: (1) the initiator sends a call for proposal
(CFP) to many potential contractors, (2) the initiator awaits for proposals for
a certain amount of time, (3) the initiator chooses a number of bids to award.
Participants can subcontract. Figure 1 illustrates the usage scenario involving
negotiation activities of a travel booking service (e.g., on the Web Service Ar-
chitecture) that encloses multiple distributed and inter-organizational transac-
tions. Travel Booking tries to book different alternative flights and to rent a car.
Travel Booking succeeds if at least one of the airlines has available flights. Car
rental is not necessary. In case both airlines have available flights, Travel Booking
commits and rejects the reservation of the most expensive flight. The example
underlines also the possibility for a service (e.g., the Car Rental) of engaging
sub-services (e.g, single car rental companies) in order to satisfy a request (i.e.,
sub-contracting).

BTP and WS-transactions also address similar issues. For instance BTP intro-
duces cohesions [6] to address use cases involving a negotiation on the particular
service provided by each participant. BTP supports two types of transaction:
atoms and cohesions. Atoms are a loosely coupled version of the classic ACID
transaction: it commits only if and only if all its sub-entities commit. Atoms are
representable as instances of atomic commit [7]. The atomic commit is a well
known problem addressing the agreement of a number of distributed participants
(distributed consensus) to achieve a global outcome, typically commit or abort.
With cohesions the consensus is no longer required. A cohesion can decide to
commit even if some of its sub-entities are unable to commit. Furthermore in
case of commit, a cohesion can decide to reject the commitment of some of its
sub-entities, causing their failure.

Contribution and Content. The main contribution of this work is the formal
investigation, based on the pi calculus [8], of the inter-dependencies between the
negotiation and atomic commit problems. In particular, we present an imple-
mentation of CNP with the asynchronous pi calculus, namely Pi-CNP, for which
we prove some basic properties. We also study how to solve the atomic commit
problem by means of Pi-CNP and how to express a negotiation of Pi-CNP by
composing a number of generic solutions to the atomic commit problem.

18 L. Bocchi and R. Lucchi

The pi calculus is a message-based formalism and is natural for the rep-
resentation and formal analysis of distributed protocols, that are also based
upon message exchange in a distributed setting. Moreover this choice implies a
straightforward implementation with Web service languages.

Section 2 presents the background. Section 3 presents Pi-CNP. Section 4
presents some Pi-CNP properties. Sections 5 and 6 discuss the encoding of
Pi-CNP into atomic commit and of atomic commit into Pi-CNP respectively.
Conclusions are presented in Section 7.

2 Background

The present section discusses the basics concepts that are used in the rest of this
paper. Section 2.1 gives an overview of CNP. Section 2.2 gives an overview on
the asynchronous pi calculus, that is used in Section 3 to model CNP. Section 2.3
presents a pi calculus based high level semantic for the atomic commit, that is
used in Section 5 and Section 6 to compare atomic commit and CNP basing of
their representations with the pi calculus.

2.1 Bidding Negotiation: The CNP

Negotiation is ‘a discussion in which the interested parties exchange information
and come to an agreement ’ [4]. In the most general significance the discussion
is a process involving parties that can be either human or software agents. In [9]
negotiation is described by means of a number of orthogonal issues:

protocol the pattern of information exchange between the parties,
strategy the evaluation rules to decide whether to sign an agreement,
objects description the description of the objects that have to be sold/bought.

The protocol has to be known and applied by all the parties in order to per-
form a correct conversation. On the contrary a strategy is embodied within each
single party; the evaluation is done according to a single party’s perspective. In
this work we put the focus on a classic protocol for bidding negotiation, namely
CNP [5]. The interaction between agents involved in a CNP has been described
by the Foundation for Intelligent Physical Agents (FIPA) [10] by means of the
following steps: (1) the Initiator sends a CFP, (2) each Participant reviews the
received CFP’s (possibly from different initiators) and bids (i.e., sends a pro-
posal) on the feasible ones accordingly, (3) the Initiator chooses the best bid and
awards the Contract to the respective Participant, (4) the Initiator rejects the
other bids.

Time is a relevant aspect to consider when implementing a CNP; [11] proposes
a meta-model for CNP (i.e., the Time-Bounded Negotiation Framework), de-
scribing three different variants: the Nothing-Guaranteed Protocol (NGP) where
the bidder does not give any grant about the future availability of its proposal
(i.e., the grant holds for an interval t = 0), the Acceptance-Guaranteed Protocol
(AGP) where the bidder is forced to keep its proposal available until it receives a

Atomic Commit and Negotiation in Service Oriented Computing 19

notification (i.e., t = ∞) and the Finite-Time Guarantee Protocol (FGP) where
the proposal is valid just for a certain period of time. In this paper we take
into account the AGP. A further discussion about the relation of atomic commit
with the other two approaches is left as a future work. We assume that, once
the initiator takes a decision, all the parties have to respect it.

2.2 An Overview of the Asynchronous Pi Calculus

The asynchronous pi calculus assumes distributed entities called processes which
exchange messages over channels, named u, v, . . . , z. The content of a message is
also a channel name. A process can send a message z along a channel u with the
non-blocking output action u z. A process can also receive a message on channel
u with the blocking input action u(v).P . The parallel execution of two processes
P and Q can be expressed as P | Q. Parallel processes can communicate by
performing an input and an output action on the same channel. Communication
along u is described by the reaction u z | u(v).P τ−→ P{z/v}. Its effects are
visible to the receiver as name substitution of the actual parameter z for the
formal parameter v. The continuation P of the input process can be executed
after the input on u has been received. In the polyadic pi calculus a message is
a string of names ṽ instead of a single name v. The process νu.P declare a local
variable u with scope P . The process P + P represents the choice, !P can create
an arbitrary number of copies of P . The pi calculus is summarized in Table 1:

Table 1. The asynchronous pi calculus

Terms P in the asynchronous pi calculus are as follows. In u(x) the names x are bound,
as is x in νx.P . We identify terms up to alpha-renaming of bound names.

P ::= 0 u x u(x).P P |P νx.P P + P !P

Labelled transitions are as follows, where labels μ range over u(x), νz̃.u x̃ and τ .
Symmetrical rules for (SUM), (PAR), and (COM) are omitted.

u x
u x−→ 0 (out) u(x).P

u(x)−→ P (in)
P

μ−→ P ′

P + Q
μ−→ P ′

(sum)
Q

μ−→ Q′

P + Q
μ−→ Q′

(sum)

P
μ−→ P ′

!P
μ−→ P ′ |!P

(rep)
P

μ−→ P ′ x �∈ μ

νx.P
μ−→ νx.P ′

(res)
P

νz̃.u y−→ P ′ x �= u, x ∈ ỹ\z̃

νx.P
νz̃x.u y−→ P ′

(open)

P
μ−→ P ′ bn(μ) ∩ fn(Q) = ∅

P | Q
μ−→ P ′ | Q

(par)
P

νz̃.u ỹ−→ P ′ Q
u(x̃)−→ Q′ z̃ ∩ fn(Q) = ∅

P | Q
τ−→ νz̃.(P ′ | Q′{ỹ/x̃})

(com)

Simulation is as follows. We write τ⇒ for τ−→∗
, and

μ⇒ for τ−→∗ μ−→ τ−→∗
when μ �= τ ,

and P
μ

=⇒ for ∃P ′ : P
μ

=⇒ P ′. A symmetric relation S is a weak ground simulation if
whenever PSQ then P

μ−→ P ′ implies there exists Q′ such that Q
μ⇒ Q′ and P ′SQ′.

Write � for the largest ground simulation. Write ≈ for the largest ground bisimulation
(S is a weak ground bisimulation, if both S and S−1 are weak ground simulations).

20 L. Bocchi and R. Lucchi

labelled transitions define the possible reactions of a process. Simulation is a
relation characterizing when two processes have the same behavior.

We write x̃C for an arbitrary sequence x1, . . . , xn of the elements in set C.
The external choice is P ⊕Q = νc.(c |c.P |c.Q). We use the shorthand x[P, Q] =
νu, v.(xu, v|u.P |v.Q) with u, v fresh, x left = x(u, v).u and x right = x(u, v).v .

2.3 The Atomic Commit

The generic problem of atomic commit can be described by the following sce-
nario. Let us consider a transaction that is distributed across n parties. Each
party executes some local computation and eventually reaches a state in which
it is either able or unable to commit. The parties have to enact some protocol to
agree on the outcome (i.e., either commit or abort). It is assumed that a party
can not pass from an unable state to an able one; if at least one party is unable,
then the transaction must abort.

In this paper we use a particular formulation of the atomic commit proposed
in [12], that presents an analogy between the problem of atomic commit and the
synchronous rendezvous of process calculi. In particular the basic rendezvous
mechanism itself is already a special case of atomic commit between two par-
ties. Since the problem of the atomic commit typically involves n parties, it is
introduced a multi-parties rendezvous: u |v |w |u()∧v()∧w().P → P . We use the
notation u(x)∧v(y)∧w(z).P to refer, at a high level, the atomic commit among
the parties u, v, z. The generic solution to the atomic commit is expressed as
an implementation of the higher level description that follows. The high level
description has been achieved in [12] by enabling only the transitions where
a certain set of properties defined in literature, that atomic commit protocols
guarantee, hold.

The protocol is defined as a set of states with transitions → among them.
The transitions might correspond to transmission and receipt of a message, or
an instance of failure. All the possible states are partitioned into the following
disjoint and exhaustive partitions. Write (x, y) for a state where x parties have
committed and y aborted. Let i, j range over 1 . . .N−1. A state (x, y)w denotes
a case in which all the parties are able to commit (willing) and (x, y)u the
case in which at least one party is unable (unwilling). The properties defined
in literature, characterizing atomic commit protocols, have been used in [12] to
define the high level semantic for correct atomic commit protocols that follows:

Theorem 1 (Correctness). A transition system (P,→, ↓) is an atomic com-
mit protocol iff it is bisimilar to the following diagram (where ⇒ refers to one
or more moves →):

(0, 0)w

(N, 0)w
��

(0, N)w
�����

��
���

��
(0, 0)u

(0, N)u
��

Theorem 1, proved in [12], is used in Section 5 to prove that the encoding of
atomic commit with Pi-CNP is correct.

Atomic Commit and Negotiation in Service Oriented Computing 21

3 Negotiation and the Pi-CNP

In this section we model CNP with the asynchronous pi calculus. Each instance
of the protocol has one initiator I that involves a number of bidders. Each bid-
der can possibly subcontract. The whole interaction can be represented by a
tree structure. Let I be the set of participants to the negotiation. The tree-like
hierarchy of these transactions is denoted by a relation par : I �→ I which indi-
cates the immediate parent of a transaction; writing parn(i) for n applications
of the pair function, we assume that if i = parm(j) then do not exists n such
that j = parn(i). Define the set of i’s children C(i) = {j : par(j) = i} and the
set of i’s descendants D(i) = {j : ∃n.i = parn(j)}.

In the initial state Ti already sent its CFP: the identity of the participants C(i)
is fixed. Let Proposals be the set of possible proposals, where a ∈ Proposals
represents a non-proposal. Proposal has empty intersection with the channels
used in the protocol (i.e., bn(Ti) and {oki, aborti, di, ai, vi}).

Fig. 2. The usage of the channels from Ti’s perspective

The intuition of the channels usage in Ti is summarized in Fig. 2. In (1) the
children make their proposals: a message along vc represents a valid proposal,
and a message along ac represents the choice from c not to participate to the
agreement (i.e., non-proposal). In (2) each valid proposal forwarded along mc.
In (3) depending on the strategy Ti decides whether it is able to succeeds or
not. Success is indicated to the parent over the channel vi, failure over ai. (4)
Eventually the parent will know whether to accept i, or to refuse it. This decision
is communicated to i via the ‘decision’ channel di, and so determines i’s final
state. The transaction i can indicate its final state via the messages oki/aborti.
(5) Finally, the decision is propagated to all the children c along the channels
d̃C(i). The accepted children, according to the internal choice strategy, will be
told the same decision as i received. The rejected children and the latecomers,
will be told to abort/undo regardless.

The problem of defining and managing a specific strategy is not addressed
in detail here but, since it induces choices that influence the execution of the
protocol, we represent it as a parameter of Ti. A strategy s has the following
influences on the protocol execution, where A is the set of bidders that sent a
valid proposal:

22 L. Bocchi and R. Lucchi

s.outcome. On the basis of the valid proposals from the children, Ti decides
whether to send a proposal or a non-proposal to its parent.

s.children. Decides which valid proposals to include in the agreement.
s.merge. It is the final proposal from Ti to its parent, considering the self-

proposal and the proposals of the sub-contractors.

Ti is composed by different processes summarized in Table 3. Ti’s children are im-
plemented by

∏
c∈C(i) Tc and the self proposal by m s(xs) with xs ∈ Proposals.

T imer∅C(i) receives the votes from all the participants in C(i), that are as-
sumed as non local entities. Its main roles are to convert external messages (i.e.,
the bids) into internal messages, to manage a deadline for bids arrivals, and to
store the valid bidders with a recursive definition of the set A.

StopB
A enforces the deadline expiration by triggering Ti.colA. Latecomers and

bidders that sent a non-proposal are not included in A.
Ti.colA receives the internal votes and decides, depending on the strategy, em-

bodied in s.outcomeA, whether to perform local success (i.e., Ti.localcA) or local
failure (i.e., Ti.localfA). s.outcomeA decides on the basis of the set of children
proposals x̃C(i) and the self-proposal. ∀c ∈ C(i), if c �∈ A then xc = a.

Table 2. The strategy

s.outcomeA : {P |C(i)|+1} → {Ti.localcA, Ti.localfA}
s.mergeA : (P |C(i)|+1) → Proposals \ {a}
s.childrenA : {P |C(i)|+1} → P(A).

Table 3. The generic Pi-CNP node

Ti(s) = νvC(i), aC(i), mC(i), msi, dC(i).(ms i(xs) | T imer∅
C(i) |

c∈C(i)

Tc)

T imerB
A =

c∈A

((vc(x).(m c(x) | T imerB
A\{c}) + (ac.T imer

B∪{c}
A\{c}))) ⊕ StopB

A

StopB
A = Ti.colC(i)\(A∪B) with Ti.colA = msi(xs).mA(xA).(s.outcomeA)

Ti.localcA = v i(s.mergeA(xC(i), xs)) | di[Ti.okA, Ti.failA]

Ti.localfA = a i | Ti.failA

Ti.okA = ok i |
c∈s.childrenA

d cleft |
c∈C(i)\s.childrenA

d cright

Ti.failA = abort i |
c∈C(i)

d cright

Atomic Commit and Negotiation in Service Oriented Computing 23

Ti.localcA is executed if bids are satisfactory. In this case Ti sends its pro-
posal vi(s.mergeA) to the parent, and awaits the parent’s final verdict along di.
s.mergeA merges the self-proposal with the sub-contractors proposals.

Ti.localfA is executed if the bids do not satisfy Ti. In this case a failure ai is
signaled to i’s parent, and Ti.fail is executed to propagate the refusal to all the
children.

Ti.okA manages the achievement of a successful agreement. An arbitrary num-
ber of bidders is selected according to the function s.childrenA and is notified of
the success. All the other participants (latecomers, non-proposal senders, parties
rejected by s.childrenA) are sent a failure message.

Ti.failA notifies the failure of the agreement to all the participants.
The overall tree of transactions is collected in a test harness that we refer to

as initiator (I). We suppose the root of the tree is transaction i:

I = νvi, ai, di.
(
Ti | (vi(x).(d ileft + d iright) + ai)

)
.

4 The Properties of Pi-CNP

In this section we illustrate some properties of Pi-CNP: the outcome of a party
is persistent (Durability), each party eventually reaches an outcome (Eventu-
ality), and the failure of a party implies the failure of all its sub-contractors
(Local Atomicity). Table 4 illustrates the most general representation of the
strategy within the protocol: the non deterministic choice of all the possibilities.
We considered Ti(nd) in order to prove that the properties hold for each possible
strategy. For each possible s we observe that s.outcomeA � nd.outcomeA and
s.childrenA � nd.childrenA. It follows that Ti(strategy) � Ti(nd). The prop-
erties are illustrated above, together with some lemmas used in the following
sections. The proofs, not reported for lack of space are available in [13].

Table 4. Non determinism as the most general strategy

nd.outcomeA = Ti.localcA ⊕ Ti.localfA

nd.childrenA =
c∈A

d cleft ⊕ d cright

Lemma 1. If C(i) = ∅, then Ti(nd) ≈ (vi | di[oki , aborti])⊕ (ai | aborti).

Lemma 2. If Ti(nd) v i=⇒ T ′
i then T ′

i
dileft
=⇒ νz̃.(Ti.ok | P) for some P and

T ′
i

diright
=⇒ νz̃.(Ti.fail | Q) for some Q.

Theorem 2 (Durability). I �
∏

i∈I(abort j ⊕ ok j).

Theorem 3 (Eventuality). ∀I : I =⇒ τI ′ then, ∀j ∈ I, then I ′
ok j=⇒ or I ′

abort j=⇒ .

Theorem 4 (Local Atomicity). If I
abort i=⇒ I ′ then �j ∈ D(i) such that I ′

ok j=⇒.

24 L. Bocchi and R. Lucchi

5 Expressing Atomic Commit with CNP

In order to express an atomic commit protocol by means of Pi-CNP we define a
strategy (see Table 5) for which Pi-CNP satisfies Theorem 1 ac.outcomeA allows
a state of local success only if all the children voted a valid proposal before the
expiration, local failure otherwise. ac.childrenA defines the children either all
confirmable or all rejectable depending on the local outcome. In case of local
success the transaction can also fail; in this case all the children are rejected.
We define ac.mergeA = xs as the empty message (messages along vi and ai

are empty signals). Let I(ac) denote an instance of Pi-CNP with the strategy
of Table 5. A preliminary lemma and correctness of the encoding are presented
below.

Table 5. The strategy for atomic commit

ac.outcomeA = Ti.localcC(i) ⊕ Ti.localfC(i) if A = C(i);
Ti.localfA otherwise.

ac.childrenA = C(i) if ac.outcomeA = Ti.localcC(i) ⊕ Ti.localfC(i);
∅ otherwise.

Lemma 3. If Ti(ac) v i=⇒ T ′
i (ac) then ∀j ∈ {i} ∪D(i), T ′

i | d ileft
ok j=⇒.

Proof. Let us reason by induction on the depth of the level of i.
Base Case. C(i) = ∅. By Lemma 1, Ti = (v i | di[ok i, abort i]) ⊕ (ai | aborti).
If a message along vi was sent, then the left hand term was previously chosen,

and T ′
i = di[ok i, abort i]. Trivially T ′

i | d ileft
ok i=⇒.

Inductive Case. If Ti(ac) v i=⇒ T ′
i (ac) then for Lemma 2, Ti(ac) | d ileft =⇒

Ti.ok | P . The execution of Ti.ok triggers the output ok i and the messages∏
c∈C(i) dc left. ∀c ∈ C(i), by inductive hypothesis, we have ∀j ∈ D(c) the

outcome ok j .

Proposition 1. I(ac) is an atomic commit protocol.

Proof sketch. It is sufficient to show that I(ac) is bisimilar to the diagram of
Theorem 1 in order to prove that it is an atomic commit protocol. We ob-
serve that I(ac) eventually reaches a state in which either all the parties al-
ready voted or the deadline expires. In this state, T imer∅C(i) →∗ ∏

c∈A m c(xc) |
msi.m̃A(xA).(ac.outcomeA) where A is the set of parties for which a valid propos-
als was received in time. It holds that either A = C(i) or A ⊂ C(i). We associate
A = C(i) to the state (0, 0)w, and A ⊂ C(i) to the state (0, 0)u of the diagram.
Starting from both (0, 0)w and (0, 0)u, a number of τ steps are performed (i.e.,
ms i(xs) |

∏
c∈A m c(xc) | msi.m̃A(xA).(ac.outcomeA) →∗ ac.outcomeA) that

are also associated to states (0, 0)w and (0, 0)u respectively.

Atomic Commit and Negotiation in Service Oriented Computing 25

In (0, 0)u, ac.outcomeA = Ti.localfA. The subprocess Ti.failA of Ti.localfA

enables a message abort i and, for Eventuality (Theorem 3) and Local Atomicity
(Theorem 4), all the participants abort: (0, 0)u ⇒ (0, N)u.

In (0, 0)w, ac.outcomeC(i) = Ti.localcC(i) ⊕ Ti.localfC(i). If ac.outcomeC(i) →
Ti.localfC(i) then failC(i) enables a message abort i and, for Eventuality (The-
orem 3) and Local Atomicity (Theorem 4), all the participants have to abort
(i.e., (0, 0)w ⇒ (0, N)w). If ac.outcomeC(i) → Ti.localcC(i) then (1) a message
along vi unblocks the process d ileft + d iright in the harness, (2) it is possi-
ble to execute either Ti.okC(i) or Ti.failC(i) depending on the parent decision.
For Lemma 3, the message d ileft assures an outcome

∏
j∈D(i) ok j , correspond-

ing to the transition (0, 0)w ⇒ (N, 0)w. If the message d iright is chosen from
the harness, Ti.failC(i) is executed assuring, for Local Atomicity, an outcome∏

j∈D(i) abort j (i.e., (0, 0)w ⇒ (0, N)w).
For Durability (Theorem 2), (0, N) and (N, 0) are final states.

6 Expressing CNP with Atomic Commit

In this section we study how to overcome the differences between atomic commit
and CNP: votes collection (i.e., atomic commit waits for the vote of all the
participants, CNP allows participants to ignore the CFP), outcome achievement
and propagation (i.e., atomic commit succeeds if and only if all the votes are
successful, CNP does not), vote type (i.e., yes/no vote type of atomic commit
versus the CNP proposals).

Votes Collection. A participant to CNP can decide whether to reply or not
to a CFP, basing on other possible CFPs received and its own convenience. The
initiator waits for proposals until the expiration of a deadline. Atomic commit
waits for all the votes. According to [7] atomic commit should consider unre-
liability (i.e., message loss among the distributed parties and temporary node
crash). A solution to the atomic commit should cope with the problem of missing
votes due to message loss. In general message loss is overcame with the usage of
timers in the wait for votes phase. The case, in CNP, in which a party does not
answer to a CFP corresponds, in the essence, to the loss of its vote.

Outcome Achievement and Propagation. We consider a simplified scenario
where a proposal can be yes or no, similarly to the vote of atomic commit. We
address generalized proposals later. According to [12], an instance of atomic
commit is representable by a generalized rendezvous (e.g., a1 ∧ . . . ∧ an.Pn).

In a negotiation there are different combination of proposals from i’s children
that may lead to an agreement. We can represent each of these combinations as
a set N(i) ⊆ C(i). N(i) encloses all the participants that are required to propose
yes in a particular combination of proposals. For instance if we need to book a
travel including transport and hotel room we can start a negotiation with a flight
company, the railway company and a hotel. There are two combinations in this
case: (Plane ∧ Hotel) and (Train ∧ Hotel). In [12] this behavior is expressed by

26 L. Bocchi and R. Lucchi

mean of a choice among instances of atomic commit. For example, writing p()
for the plane, t() for the train and h() for the hotel we can have p |h |p()∧h().S1+
t()∧h().S2 → S1 or t |h |p()∧h().S1 + t()∧h().S2 → S2.

Let Jj , with j ∈ {1, . . . , n}, be an instance of atomic commit expressed as
multiparty rendezvous. Jj represents a set Nj(i) of necessary votes for i’s success.
The overall behavior is represented by the choice J1+ . . . +Jn.

We denote with A(i) ⊆ N(i) the set of confirmed proposals in a particular
combination. According to the proposed encoding of negotiation as a choice of
atomic commit, we can express a scenario where N(i) = A(i): all the parties in
Jj are necessary and accepted.

The possibility that, in case of success, only some of the proposals are con-
firmed, is expressed by the choice operator. Recalling the example above, p()∧h()+
t()∧h().S2, either plane or train is confirmed even if they are both available.

There is a further aspect to consider. A negotiation can commit even if some
parties are not available. Let us consider, for instance, the case in which hotel h
and plane p are necessary and taxi t is not. We can represent this scenario with
two instances of atomic commit: with and without t (i.e., h∧p∧t+h∧p). The case
in which a necessary party is not eventually confirmed is not represented (e.g.,
‘book the flight just if there is a free hotel, but do not book the hotel’). This seems
a reasonable limitation according to the use cases of the negotiation problem.

The Vote Type. We considered so far a proposal that can have values within
a limited set, namely {yes, no}. Let us extend the set of proposals to a generic
set Proposals. If Proposals is finite, then it is possible to represent the scenario
with a number |Proposals| of yes/no-negotiations (i.e., J1 + . . . + Jn): one for
each possible value of Proposals. There is no a priori limitation to the cardinality
of Proposals but to express CNP it is necessary a finite number of values.

The Encoding. Let us consider a negotiation with a set C(i) of participants.
Each element of P(C(i)) represents a set of necessary elements in one instance of
atomic commit. A negotiation is associated to a subset of P(C(i)). The presence
of an unnecessary element i can be described by the repetition of the same set
with and without i. The negotiation about a set of values extending the simple
set {yes, no} is representable by the repetition of |Proposals| protocols on the
{yes, no} set.

7 Conclusion

We modeled CNP with the asynchronous pi calculus and we illustrated some
basic properties. We studied the relationship between CNP and atomic commit.
On the one hand we have shown that the atomic commit is a particular case
of CNP: a particular strategy exists that allows to satisfy the atomic commit
requirements. On the other hand we have shown how the atomic commit can
be exploited to implement negotiation protocols, with some limitations. The
limitations are: (1) considering atomic commit protocols that address message
loss, (2) excluding the case in which a necessary party is not eventually confirmed

Atomic Commit and Negotiation in Service Oriented Computing 27

(3) defining Proposals as a finite set. Furthermore, in a negotiation scenario the
choice is a done a posteriori with respect to the votes arrival. We represented
it as the non deterministic choice among an a priori planned set of possibilities.
Non determinism does not represent the preference among the possibilities. We
conclude that: i) negotiation is a wider problem w.r.t. atomic commit, ii) atomic
commit, for which a number of solutions have been proposed and implemented,
can be exploited to model a meaningful subset of the negotiation features.

We consider this work as a first step towards the definition of a taxonomy of
conversation protocols whose aim is to reach a form of multi-party agreement.
An ontology, defined on the basis of such a taxonomy, could be used to char-
acterize the different features of business protocols in a machine-readable way,
thus enabling the run time enactment of multiparty negotiation protocols in a
dynamically reconfigurable scenario.

References

1. Roberts J. and Srinivasan K. Tentative Hold Protocol Part 1: White Paper.
http://www.w3.org/TR/tenthold-1/, 2001.

2. OASIS. Business Transaction Protocol. http://www.oasis-open.org/committees/
download.php/1184/2002-06-03.BTP cttee spec 1.0.pdf, 2002.

3. Cabrera F., Copeland G., Cox B., Freund T., Klein J., Storey T., and Thatte
S. Web Services Transaction (WS-Transaction). http://www-106.ibm.com/
developerworks/webservices/library/ws-transpec/.

4. Davis R. and Smith R. G. Negotiation as a Metaphor for Distributed Problem
Solving. In Readings in Distributed Artificial Intelligence, pages 333–356. Morgan
Kaufmann Publishers Inc., 1988.

5. Smith R. G. The Contract Net Protocol: High-Level Communication and Control
in a Distributed Problem Solver. In Readings in Distributed Artificial Intelligence,
pages 357–366. Morgan Kaufmann Publishers Inc., 1988.

6. Dalal S., Temel S., Little M., Potts M., and Webber J. Storey T. Coordinating
Business Transactions on the Web. IEEE Internet Computing, 7(1):30–39, 2003.

7. Hadzilacos V. On the Relationship Between the Atomic Commitment and Consen-
sus Problems. In B. Simons and A.Z. Spector, editors, Fault Tolerant Distributed
Computing, volume 448 of Lecture Notes in Computer Science, pages 201–208.
Springer-Verlag, 1990.

8. Milner R. Communicating and Mobile Systems: the Pi-Calculus. Cambridge Uni-
versity Press, 1989.

9. Jennings N. R., Parsons, S., Sierra C., and Faratin P. Automated Negotiation.
In Proceedings of 5th Int Conf. on Practical Application of Intelligent Agents and
Multi-Agent Systems (PAAM-2000), pages 23–30, 2000.

10. FIPA. FIPA Contract Net Interaction Protocol Specification. FIPA, 2001.
11. Lee K. J. and Chang Y. S. Time-Bounded Negation Framework for Multi-Agent

Coordination. In Selected papers from the First Pacific Rim International Work-
shop on Multi-Agents, Multiagent Platforms, pages 61–75. Springer-Verlag, 1999.

12. Bocchi L. and Wischik L. A Process Calculus of Atomic Commit. Electronic Notes
in Theoretical Computer Science, 105:119–132, 2004.

13. Bocchi L., Ciancarini P., and Lucchi R. Atomic Commit and Negotiation in Service
Oriented Computing. Technical Report UBLCS-2005-16, University of Bologna,
Italy, 2005. ftp://ftp.cs.unibo.it/pub/techreports/2005/2005-16.pdf.

Synthesizing Concurrency Control Components
from Process Algebraic Specifications

Edoardo Bontà1, Marco Bernardo1, Jeff Magee2, and Jeff Kramer2

1 Istituto di Scienze e Tecnologie dell’Informazione,
Università di Urbino

2 Department of Computing, Imperial College London

Abstract. Process algebraic specifications can provide useful support
for the architectural design of software systems due to the possibility of
analyzing their properties. In addition to that, such specifications can
be exploited to guide the generation of code. What is needed at this
level is a general methodology that accompanies the translation process,
which in particular should help understanding whether and when it is
more appropriate to implement a software component as a thread or as a
monitor. The objective of this paper is to develop a systematic approach
to the synthesis of correctly coordinating monitors from arbitrary process
algebraic specifications that satisfy some suitable constraints. The whole
approach will be illustrated by means of the process algebraic specifica-
tion of a cruise control system.

1 Introduction

Although process algebras were originally conceived as a means for produc-
ing abstract views of concurrent programs and reasoning about their prop-
erties [13, 9, 3], due to their compositional nature it was soon realized their
adequacy for modeling complex systems [6]. More recently process algebras have
been integrated within the software architecture design level [14, 15], because
they provide support for the early assessment of the gross system properties. This
has resulted in a family of process algebraic ADLs, for which several techniques
based on equivalence checking have been developed for the component-oriented
verification and diagnosis of architectural mismatch freedom [2, 12, 11, 10, 7, 1].

At the software architecture design level, process algebras have turned out to
be useful also for code generation purposes. In [12] it is shown how a disciplined
process algebraic modeling is beneficial at subsequent stages for guiding the im-
plementation of Java software. In [4, 5] an automatic code generator is presented,
which translates process algebraic architectural descriptions into multithreaded
Java programs on the basis of a transparent Java package called Sync that
ensures the correct thread synchronization.

In a process algebraic description, the behavior of a software component is
specified through a sequence of action-based equations, which define possibly
alternative execution traces composed of local actions and actions interacting
with other components. In this framework two natural candidates for the target

P. Ciancarini and H. Wiklicky (Eds.): COORDINATION 2006, LNCS 4038, pp. 28–43, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Synthesizing Concurrency Control Components 29

of the translation of the process algebraic description of a component are a thread
and a monitor.

What is needed at this level is a general methodology that accompanies the
translation process, which in particular should help understanding whether and
when it is more appropriate to implement a software component as a thread or as
a monitor. This would overcome some limitations that are present in the current
process algebraic approaches. With respect to [12] generality would be gained,
as it would become possible to undertake the translation of arbitrary process
algebraic descriptions. With respect to [4, 5], where only threads are taken into
account, the performance of the generated code may be improved thanks to the
synthesis of monitors as they would reduce the thread context switch frequency.
Moreover the presence of monitors would result in a lightweight concurrency
control management with respect to package Sync, with the monitors themselves
constituting explicit coordination areas that were not available before to the
developer adopting the approach of [4, 5].

The objective of this paper is to develop a systematic approach to the syn-
thesis of correctly coordinating Java monitors from arbitrary process algebraic
component descriptions that satisfy some suitable constraints. The constraints
are related to the fact that a monitor is a passive entity, which typically en-
capsulates data in a way that guarantees a mutually exclusive access. In other
words, a monitor coordinates the access of the threads to its methods, but its
statements are executed by the entering threads. As we shall see, in order to en-
force a correct concurrency control when using a monitor, it is sufficient that a
thread taking the control of the monitor can perform neither interacting actions
nor infinitely many local actions while inside the monitor.

Once these constraints are satisfied, the process algebraic description of a
component can systematically be transformed into a canonical form that we call
monitor normal form, from which it is easy to synthesize a Java monitor. The
constraints and the approach will be illustrated by means of the process algebraic
specification of a cruise control system taken from [12], which will be used as a
running example throughout the paper.

This paper is organized as follows. In Sect. 2 we present the constraints that
guarantee the derivability of a monitor from a process algebraic component de-
scription. In Sect. 3 we show how to transform into monitor normal form a
process algebraic component description that satisfies all the constraints. In
Sect. 4 we describe how to synthesize a Java monitor from a monitor normal
form. Finally, in Sect. 5 we provide some remarks on related and future work.

2 Monitor Constraints

In this section we present a set of constraints under which it is possible to syn-
thesize a correctly coordinating monitor from the process algebraic description
of a software component. Before doing so, we introduce some terminology and
we recall the way in which threads and monitors interact with each other in an
object-oriented language like Java.

30 E. Bontà et al.

2.1 Terminology

In our process algebraic view, both thread and monitor classes should be mod-
eled as architectural element types [1]. An architectural element type represent-
ing a Java class that extends or implements a thread base class will be called
native-thread type and will be translated into a native-thread component. An ar-
chitectural element type representing a Java monitor class will instead be called
monitor type and will be translated into a monitor component.

Furthermore, we distinguish between two kinds of interacting actions, which we
simply call interactions from now on. An active-control interaction is performed
by an architectural element whenever it starts communicating with another ar-
chitectural element. A passive-control interaction is executed by an architectural
element whenever it is waiting for another architectural element to start communi-
cating with it. In particular the entry points (and hence implicitly the exit points)
of the monitor types will be described through passive-control interactions.

2.2 Thread-Monitor Interaction

Given a native-thread component T and a monitor component M , the interaction
between them takes place by means of the component control switch depicted in
the sequence diagram of Fig. 1. When T intends to interact with M , T invokes a
synchronized method of M – which corresponds to performing an active-control
interaction – so that the thread t leaves T and waits until M is ready to interact.

More precisely, in a synchronous model t waits outside M if another thread
is currently running inside M , otherwise it immediately enters M and possibly
blocks, which happens when t has to wait for a notification related to a condition
synchronization of M that does not hold upon entering M . In an asynchronous
model, instead, an exception is raised if a condition synchronization for t does
not hold and either there is no thread running inside M or the thread currently
running inside M leaves it without notifying such a condition synchronization.
We recall from [12] that a condition synchronization permits a monitor to block
threads until a particular condition holds, such as e.g. a count becoming non-
zero, a buffer becoming empty, or new input becoming available.

When M is ready, t takes its control and executes a sequence of statements of
M corresponding to local actions, at the end of which t possibly notifies one of
the threads blocked inside M about the validity of a condition synchronization
and leaves the monitor. The end of such a statement sequence coincides either
with the monitor termination or with the execution of the last local action before
a passive-control interaction.

In order to achieve a correct concurrency control, it suffices that the thread
taking the control of the monitor executes finitely many statements without
moving to another monitor or invoking a method of another thread before leaving
the monitor in which it is running1. In this way a thread will stay within the
monitor for a finite amount of time (up to possible condition synchronizations

1 Note that this does not prevent the monitor from invoking methods of the Java
library and creating new non-thread objects.

Synthesizing Concurrency Control Components 31

MT

for T
notify condition

MT

for T
notify condition

Synchronous model

call

release control
t is running

call

Asynchronous model

call

exception

release control
t is running

Fig. 1. Component control switch from native-thread T to monitor M

that will never hold), and will not cause any interference between the monitor
and other monitors.

From the considerations above, we derive that the avoidance of (i) endless
executions of local actions and (ii) active-control interactions guarantees that
a correctly coordinating monitor can be obtained from the process algebraic
specification of a component. For the sake of completeness, a third technical
constraint, related to the avoidance of (iii) non-disjoint hybrid choices between
sets of local actions and sets of interactions, must be satisfied.

2.3 Constraint 1: No Endless Executions of Local Actions

Since a monitor is a passive entity that coordinates other components, it is
desirable that a thread taking the control of the monitor runs inside the monitor
only for a finite amount of time. In the worst case, it may happen that the
thread blocks forever inside the monitor because of a condition synchronization
that will never hold. However, this does not prevent other threads from entering
the monitor and running.

In order to achieve finiteness, we need to enforce that the maximum number
of consecutive local actions that can be performed inside a candidate monitor
type is finite. This can easily be checked on the process algebraic description of
a candidate monitor type by verifying the absence of cycles of local actions.

As we shall see in Sect. 4, each local action will be translated into a method
to be manually filled in later on. If we adhere to the guidelines of [5], according
to which non-terminating statements should be avoided within these methods,
a finite sequence of local actions will be executed in a finite amount of time. In
this way the absence of cycles of local actions proved at the process algebraic
level is guaranteed to be preserved at the Java code level.

2.4 Constraint 2: No Active-Control Interactions

A monitor coordinates other components but should not invoke methods of other
monitors or threads. Therefore, a candidate monitor type should not possess any

32 E. Bontà et al.

active-control interaction. This can trivially be verified at the level of the process
algebraic description if this is suitably annotated with information about the
control flow direction (like e.g. in PADL [1]).

The reason for this constraint is to prevent a thread running inside a monitor
from moving to another monitor or invoking a method of another thread before
finishing its execution within the monitor in which it is running. This constraint
thus implies that interferences among monitors are avoided and that any monitor
component can passively interact only with thread components. In particular,
deadlock cannot occur because of a possible invocation of methods belonging
to the same thread that is currently running inside the monitor. Moreover, this
constraint ensures, together with the previous one, that a thread runs inside a
monitor only for a finite amount of time.

Note that this constraint does not prevent a monitor component from invok-
ing methods of the Java library and creating new non-thread objects. In fact,
the methods translating the local actions of the monitor component are free to
create local objects and to interact with them. However, this should not alter
the topology prescribed by the process algebraic architectural description.

2.5 Constraint 3: No Non-disjoint Hybrid Choices

A hybrid choice in the process algebraic description of a component is a choice
between a non-empty set of interactions and a non-empty set of local actions. The
problem with hybrid choices is that they may hamper the detection of the action
sequence corresponding to the statement sequence that should be executed by a
thread running inside a monitor.

In fact, recalled that the monitor entry and exit points are described through
passive control interactions, to automatically detect the beginning and the end
of the action sequence in a candidate monitor type we need that the sequence is
comprised between two passive-control interactions. A choice between a passive-
control interaction and a local action would make it impossible to decide whether
the currently running thread has completed its task or not, unless the two actions
are preceded by two disjoint conditions.

As a consequence of this constraint, a candidate monitor type can contain only
choices among all interactions or all local actions. This can easily be checked at
the process algebraic description level. In addition, hybrid choices are admitted
provided that the involved actions are preceded by disjoint boolean conditions,
i.e. the logical conjunction of the condition of any involved interaction and the
condition of any involved local action must be false.

3 Syntactic Transformation into Monitor Normal Form

Once the three constraints defined in the previous section are satisfied by the
process algebraic description of a candidate monitor type, it is possible to proceed
to the transformation of the description itself into monitor normal form. Starting
from this canonical form, it will be possible to straightforwardly synthesize the
Java implementation of the monitor type.

Synthesizing Concurrency Control Components 33

In order to facilitate the derivation of each method of the targeted Java mon-
itor class, a good idea may be to rewrite the process algebraic specification of
the monitor type in such a way that all the interacting actions are collected into
a single equation. Due to constraint 2, each such interaction is a passive-control
one, so if we place all of them at the beginning of a different branch of a choice,
we exactly characterize the point at which the monitor is waiting for a thread
to take its control.

The process algebraic specification in monitor normal form obtained at the
end of the rewriting process will be formed by:

– An interacting choice equation, which is composed of a choice in which every
branch starts with an interaction possibly followed by local actions only.

– A group of local equations, which are original equations of the monitor type
that include only local actions.

– A group of setting equations, which are the original non-local equations whose
branches that have been moved to the interacting choice equation are re-
placed by an invocation of the latter equation with suitably set parameters.

This monitor normal form can be achieved through a sequence of five steps,
which will be exemplified on the process algebraic description of a cruise control
system taken from [12].

3.1 Example: A Cruise Control System

An automobile cruise control system is governed by means of three buttons – on,
off, and resume – and takes into account two pedals – accelerator and brake.
When the engine is running and on is pressed, the cruise control system records
the current speed and maintains the car at this speed. When accelerator,
brake or off is pressed, the cruise control system disengages but retains the
speed setting. If resume is pressed, the system accelerates or de-accelerates the
car back to the previously-recorded speed.

The kernel of the cruise control system is provided by a cruise controller,
which includes a speed control that is initially disabled. While the latter clears
and records the speed setting and, when enabled, sets the throttle according
to the current speed and the recorded speed, the behavior of the former is
more complex. When the engine is switched on (engineOn), speed clearing is
triggered (clearSpeed) and the cruise controller becomes active. When active,
pressing on triggers the recording of the current speed (recordSpeed) and en-
ables the speed control (enableControl). The system is then cruising. Pressing
on again triggers the recording of the new current speed and the system re-
mains cruising. Pressing off, brake or accelerator disables the speed control
(disableControl) and sets the system to standby, from which the system can
return to the cruising state whenever resume or on is pressed. Switching the
engine off (engineOff) at any time makes the cruise controller inactive and the
speed control disabled.

34 E. Bontà et al.

We now provide the FSP specification [12] of the cruise controller:

INACTIVE = (engineOn->clearSpeed->
(engineOff->INACTIVE
|on->recordSpeed->enableControl->CRUISING
)

),
CRUISING = (engineOff->disableControl->INACTIVE

|{off,brake,accelerator}->disableControl->STANDBY
|on->recordSpeed->enableControl->CRUISING
),

STANDBY = (engineOff->INACTIVE
|resume->enableControl->CRUISING
|on->recordSpeed->enableControl->CRUISING
).

where:

– INACTIVE, CRUISING, and STANDBY are the names of the three process alge-
braic equations that formalize the behavior of the cruise controller.

– engineOn, engineOff, on, off, brake, accelerator, and resume are the
interactions.

– clearSpeed, recordSpeed, enableControl, and disableControl are the
local actions.

– The symbol “->” is the action prefix operator: {a1, . . . , an} -> P executes
an action from the set and then behaves as P .

– The symbol “|” is the choice operator: P1 | P2 behaves as either P1 or P2.

If engineOn, engineOff, on, off, brake, accelerator, and resume are con-
sidered as passive-control interactions, it is not difficult to observe that all the
three monitor constraints defined in Sect. 2 are satisfied by the FSP description
of the cruise controller.

3.2 Step 1: Rewriting Complex Choices

If the process algebraic specification of a monitor type contains some choices
among interactions that are written in an abbreviated notation, such choices
must be expanded. Likewise, if the specification contains some nested choices
among interactions, such choices must be flattened. By doing so, it will be easier
to handle the branches of the choices among interactions as we shall see in the
subsequent steps.

In the FSP specification of the cruise controller, the equations INACTIVE and
STANDBY do not contain complex choices, while the equation CRUISING contains
the abbreviated FSP notation {�action list�}, hence it is expanded into:

CRUISING = (engineOff->disableControl->INACTIVE
|off->disableControl->STANDBY
|brake->disableControl->STANDBY
|accelerator->disableControl->STANDBY
|on->recordSpeed->enableControl->CRUISING
)

Synthesizing Concurrency Control Components 35

3.3 Step 2: Splitting the Equations

Since in the interacting choice equation of the monitor normal form any branch
must start with an interaction, every interaction or choice among interactions
that does not occur at the beginning of the body of an equation must be moved
together with what follows it into a new equation. The moved block is replaced
in the original equation by an invocation of the new equation. At the end of this
splitting process, any interaction will be at the beginning of some equation.

In the FSP specification of the cruise controller, only the first equation needs
to be transformed, because in the equations CRUISING and STANDBY all the occur-
rences of interactions are already at the beginning of some branch. The equation
INACTIVE thus becomes:

INACTIVE = (engineOn->clearSpeed->SPLIT_1_INACTIVE),
SPLIT_1_INACTIVE = (engineOff->INACTIVE

|on->recordSpeed->enableControl->CRUISING
)

3.4 Step 3: Building the Interacting Choice Equation

The interacting choice equation can now be built by suitably merging into a
single equation the equation body branches that start with an interaction.

In order to preserve the semantics of the original equations of the monitor
type, the resulting interacting choice equation needs several parameters repre-
senting the current interacting state of the monitor. Such a state can be encoded
through the non-local equation (among the ones present at the end of step 2)
describing the current behavior – bounded integer parameter eq – and the set
of interactions that are currently enabled – boolean parameters g representing
guards associated with the enabledness of the interactions. Note that parame-
ter eq is strictly necessary because the same set of interactions may be enabled
in several different non-local equations. On the other hand, the guards g are
necessary to decide the branch to be undertaken in the current interacting state
and, as we shall see, useful to implement the condition synchronizations.

The body of the interacting choice equation is thus a guarded choice among
all the merged equation body branches. In particular, if one of the involved
bodies started with a single interaction, the whole body becomes a branch of
the interacting choice equation. Instead, if it started with a choice among all
interactions, each branch of such a choice becomes a branch of the interacting
choice equation. Finally, if it started with a disjoint hybrid choice, only the
branches starting with an interaction move to the interacting choice equation2.

Each branch of the interacting choice equation is preceded by a boolean ex-
pression composed of the logical conjunction of: the control that the value of eq
corresponds to the value associated with the non-local equation body that con-
tained the considered branch, the guard g associated with the first interaction

2 We shall see later on that this does not disrupt the semantics of the disjoint hybrid
choice, hence of the original process algebraic specification.

36 E. Bontà et al.

of the branch itself, and other possible conditions inherited from the original
branch.

In the FSP specification of the cruise controller, the bodies of the equations
INACTIVE, SPLIT 1 INACTIVE, CRUISING, and STANDBY are represented by the
values 0, 1, 2, and 3 of parameter eq, respectively, and their branches are merged
into the following interacting choice equation:

INTER_CH_EQ[eq:0..3] [g_engineOn:Boolean] [g_engineOff:Boolean]
[g_on:Boolean] [g_off:Boolean] [g_resume:Boolean]
[g_brake:Boolean][g_accelerator:Boolean] =

(when((eq==0) && g_engineOn) engineOn->clearSpeed->SPLIT_1_INACTIVE
|when((eq==1) && g_engineOff) engineOff->INACTIVE
|when((eq==1) && g_on) on->recordSpeed->enableControl->CRUISING
|when((eq==2) && g_engineOff) engineOff->disableControl->INACTIVE
|when((eq==2) && g_off) off->disableControl->STANDBY
|when((eq==2) && g_brake) brake->disableControl->STANDBY
|when((eq==2) && g_accelerator) accelerator->disableControl->STANDBY
|when((eq==2) && g_on) on->recordSpeed->enableControl->CRUISING
|when((eq==3) && g_engineOff) engineOff->INACTIVE
|when((eq==3) && g_resume) resume->enableControl->CRUISING
|when((eq==3) && g_on) on->recordSpeed->enableControl->CRUISING
)

3.5 Step 4: Rewriting Non-local Equations into Setting Equations

The interacting choice equation built in step 3 does not replace the original
equations. This refers not only to local equations and equations with disjoint
hybrid choices – which are not completely involved in the construction of the
interacting choice equation – but also to the other equations, as invocations to
them are still around.

The body of each non-local equation is thus rewritten in such a way that its
possible local branches are preserved. By contrast, its branches that have been
moved to the interacting choice equation are replaced by a single invocation of
the latter equation with suitably set actual values for parameters eq and g . So,
we refer to such a rewritten equation as a setting equation.

The actual value of eq passed to the interacting choice equation has to be the
value associated with the setting equation body. The actual values of the boolean
guards are set as follows. If an interaction does not occur at the beginning of
any moved branch of the original non-local equation, then the corresponding
guard g is set to false. If it occurs instead and at least one of its occurrences
was not guarded by any condition in the original branch that contained it, the
corresponding guard g is set to true. Finally, if it occurs and all of its occurrences
were guarded by some condition in the original branches that contained them,
the corresponding guard g is set to the logical disjunction of these conditions
(if at least one of them holds true, then the interaction is enabled).

If an original non-local equation started with a single interaction or a choice
among interactions only, its body is entirely replaced by an invocation of the

Synthesizing Concurrency Control Components 37

interacting choice equation having the above-mentioned actual values for eq
and g . In the case in which the original equation contained a disjoint hybrid
choice, instead, its body preserves all the local branches. The other (interact-
ing) branches, moved together with their conditions to the interacting choice
equation, are replaced by a single branch. This branch contains the invocation
of the interacting choice equation preceded by the logical disjunction of all the
conditions associated with the interacting branches. In this way the semantics
of the selection between the group of local branches and the group of interacting
branches is preserved, with the selection within the latter group being deferred
to the interacting choice equation.

In the FSP specification of the cruise controller, the non-local equations
INACTIVE, SPLIT 1 INACTIVE, CRUISING, and STANDBY are rewritten into the
following setting equations:

INACTIVE =
INTER_CH_EQ[0] [True] [False][False][False][False][False][False],

SPLIT_1_INACTIVE =
INTER_CH_EQ[1] [False][True] [True] [False][False][False][False],

CRUISING =
INTER_CH_EQ[2] [False][True] [True] [True] [False][True] [True],

STANDBY =
INTER_CH_EQ[3] [False][True] [True] [False][True] [False][False]

3.6 Step 5: Rearranging the Interacting Choice Equation

As a final step, the interacting choice equation undergoes to a sorting of its
branches as well as to a number of optimizations. On the one hand, the branches
are lexicographically sorted on the basis of their guards g associated with their
starting interactions. The reason is that all the branches starting with the same
interaction will be translated into a single synchronized method of a Java monitor
class, hence this sorting should facilitate the code generation.

On the other hand, some optimizations are useful to simplify the structure of
the interacting choice equation and thus of the monitor to be synthesized. First,
if an interaction occurs at the beginning of only one of the branches associated
with a same value of eq, in that branch the possible condition inherited from the
original branch can be removed. In fact, the same condition is already contained
in the guard g associated with the considered branch.

Second, if all the branches with the same initial interaction are associated with
a single value of eq, the check on eq can be removed from these branches. In
fact, this means that the initial interaction was present only in a single non-local
equation body of the original specification, and the guard g associated with the
action can be true only when eq has that value.

Third, if several branches are identical up to their boolean expressions – i.e.
checks on different values of eq and possibly other different conditions inherited
from the original specification – these branches can be collapsed into a single
one. This new branch is preceded by an expression which includes, besides the
checks on g and the different values that eq can take on, the logical disjunction

38 E. Bontà et al.

of the conditions of the collapsed branches. If the interaction occurs only at the
beginning of such a new branch, by virtue of the first two optimizations the
disjunction of the inherited conditions and the check on eq can be removed.

In the FSP specification of the cruise controller, the second optimization can
be applied to the branches starting with engineOn, off, brake, accelerator,
and resume. The third optimization can be applied to the branches beginning
with engineOff and corresponding to the values 1 and 3 of eq, and to the
branches beginning with on and corresponding to the values 1, 2, and 3 of eq.
In the latter case the check on the different values of eq can be removed. After
applying such optimizations, the interacting choice equation becomes:

INTER_CH_EQ[eq:0..3] [g_engineOn:Boolean] [g_engineOff:Boolean]
[g_on:Boolean] [g_off:Boolean] [g_resume:Boolean]
[g_brake:Boolean][g_accelerator:Boolean] =

(when(g_engineOn) engineOn->clearSpeed->SPLIT_1_INACTIVE
|when(g_engineOff && ((eq==1) || (eq==3))) engineOff->INACTIVE
|when(g_engineOff && (eq==2)) engineOff->disableControl->INACTIVE
|when(g_on) on->recordSpeed->enableControl->CRUISING
|when(g_off) off->disableControl->STANDBY
|when(g_brake) brake->disableControl->STANDBY
|when(g_accelerator) accelerator->disableControl->STANDBY
|when(g_resume) resume->enableControl->CRUISING
)

3.7 Correctness of the Transformation

The syntactic transformation of the process algebraic description of a monitor
type into monitor normal form is correct in the following sense.

Theorem 1. Let M be the process algebraic description of a monitor type and
let M ′ be the process algebraic description of the monitor normal form obtained
by applying to M the syntactic transformation. Then the LTS underlying M ′ is
isomorphic to the LTS underlying M .

4 Monitor Implementation

The application of the steps illustrated in the previous section allows an arbi-
trary process algebraic description of a monitor type to be rewritten into its
semantically equivalent monitor normal form. In this section we show how to
synthesize a monitor component as a Java class from a monitor normal form.

In the Java monitor class, the interacting choice equation will be translated
into a set of public synchronized methods each corresponding to a different
interaction. Instead, the setting and local equations will be translated into non-
public methods of the monitor. Finally, the constructor of the Java monitor
class will invoke the method corresponding to the first equation of the process
algebraic description.

Synthesizing Concurrency Control Components 39

The synthesis of the monitor will be exemplified below by translating into
Java code the monitor normal form of the process algebraic description of the
cruise controller. This is accomplished through a sequence of four steps, which
guide the automated generation of the Java code.

4.1 Translating Local Actions into Stub Class Methods

On the basis of the approach proposed in [5], each local action of the process
algebraic description of a monitor type will be synthesized in the Java mon-
itor class as an invocation of a non-completely specified public method of an
auxiliary class, which we call stub class. In this way the software developer can
subsequently fill in the methods associated with the local actions, without any
intervention on the main monitor class. The stub class will be instantiated by
the constructor of the Java monitor class.

Recalled that the FSP specification of the cruise controller contains the local
actions clearSpeed, recordSpeed, enableControl, and disableControl, the
related Java stub class LocalActionsController is synthesized as follows:

class LocalActionsController {
public LocalActionsController() {/* FILL IN THE CONSTRUCTOR BODY */}
public void clearSpeed() {/* FILL IN THE METHOD BODY */}
...
public void disableControl() {/* FILL IN THE METHOD BODY */}

}

4.2 Synthesizing the Monitor Class Constructor

The first-executed method of the Java monitor class, i.e. the constructor, is in
charge of the instantiation of the stub class for the local actions and of the
invocation of the method corresponding to the (local or setting) equation of the
monitor normal form associated with the first equation of the original process
algebraic description.

Besides the definition of the constructor, at the beginning of the monitor class
there is the declaration/definition of some private members. The first private
member is an object of the stub class for the local actions that will be instantiated
by the constructor. Then, an integer variable eq and a boolean array guard[]
are declared, which translate the parameters of the interacting choice equation,
together with the definition of some integer constants associated with the setting
equations, which represent the values that eq can take on.

Referring to the monitor normal form of the cruise controller, the Java monitor
class starts as follows:
private LocalActionsController laController;
private int eq;
private boolean guard[];
private final static int INACTIVE = 0,

SPLIT_1_INACTIVE = 1,
CRUISING = 2,
STANDBY = 3;

40 E. Bontà et al.

public Controller() {
laController = new LocalActionsController();
inactive();

}

4.3 Translating Setting and Local Equations

The setting and local equations of the monitor normal form are translated into
non-public methods of the Java monitor class. Since these equations do not
contain interactions, only sequences of/choices among local actions have to be
considered during their translation.

While a sequence of local actions can easily be synthesized as a sequence of
invocations of the associated stub methods, a choice among local actions has to
be treated carefully. In fact, even if the branches of the choice can be guarded by
some conditions, it is not necessarily the case that such conditions are disjoint.
One possibility is to translate such nondeterministic choices by means of the
selection statements provided by Java, with the software developer subsequently
removing nondeterminism at the code level. Another possibility is to synthesize
a probabilistic mechanism to randomly select a branch whose associated con-
dition holds true. This solution may be appropriate for the implementation of
simulation software and randomized concurrent algorithms.

An invocation of a setting or local equation is turned into an invocation of the
monitor class method translating the equation itself. Each setting equation con-
tains in turn an invocation of the interacting choice equation, which corresponds
to the fact that the thread currently running inside the monitor is on the verge of
leaving it. This invocation is translated into a sequence of assignment statements
in which eq and guard[] are set to the corresponding actual parameters speci-
fied in the invocation. Since before leaving the monitor the thread has to notify
the other threads possibly blocked inside the monitor, the assignment statement
sequence is followed by an invocation of the Java method notifyAll() to wake
up all the threads waiting inside the monitor. The unblocking conditions, which
have just been updated by setting guard[], will be handled by the synchronized
methods translating the interacting choice equation.

Referring to the monitor normal form of the cruise controller, the translation
of the setting equation INACTIVE is implemented as follows:
protected synchronized void inactive() {

eq = INACTIVE;
guard = new boolean[] {true, false, false, false, false, false, false};
notifyAll();

}

4.4 Translating the Interacting Choice Equation

Any group of branches of the interacting choice equation that start with the same
interaction is translated into a public synchronized method of the monitor class.

Synthesizing Concurrency Control Components 41

The resulting methods basically translate the communication of the passive-
control interactions of the monitor type with the active-control interactions of
native-thread types to which the passive-control ones are attached.

At the beginning of each such method, the boolean guard associated with the
related interaction is translated into a condition synchronization statement:

while (!<guard>)
wait();

If the boolean guard is true, a thread can enter the monitor without blocking.
Otherwise it blocks on the Java method wait() until another thread leaves the
monitor by setting the guard to true and notifying about this event.

The condition synchronization is implemented in a different way whenever
the related interaction is asynchronous. The reason is that in this case, if the
condition synchronization is false, an entering thread has to exit the monitor
without blocking. This is implemented as follows:

if (!<guard>)
throw new AsyncInteractionNotReadyException();

After the condition synchronization, within the method associated with an
interaction we have an if-else statement, which handles the selection among
the branches (starting with the considered interaction) based on the value of eq.
For those branches sharing the same value of eq a nested selection statement is
necessary, which is based on inherited conditions.

Referring to the monitor normal form of the cruise controller, the branches
of the interacting choice equations starting with engineOff are translated into
the following method (index 1 of guard[] is associated with engineOff):

public synchronized void engineOff()
throws AsyncInteractionNotReadyException {

if (!guard[1])
throw new AsyncInteractionNotReadyException();

if ((eq == SPLIT_1_INACTIVE) || (eq == STANDBY))
inactive();

else /* if (eq == CRUISING) */ {
laController.disableControl();
inactive();

}
}

5 Conclusion

In this paper we have addressed the problem of synthesizing concurrency control
components, in the form of Java monitor classes, from arbitrary process algebraic
specifications. The problem of synthesizing Java monitors has been previously
addressed in [16, 8] outside the process algebra field.

42 E. Bontà et al.

In [16] a tool equipped with a model checker automatically generates Java
monitor classes from monitor descriptions written in Action Language. The cor-
rectness of the synchronization and of the behavior of the generated Java mon-
itor is guaranteed by construction, independently of the context of the monitor
description. Unlike our approach, this approach requires that the monitor de-
scription conforms a priori to a specific monitor template.

In [8] implementations of synchronization policies are generated in Java
through synchronized methods and lock objects. While in the previously de-
scribed approaches the generated Java monitors are obtained from formal speci-
fications and are correct by construction, in this approach the code is generated
from critical regions delimited by the developer with high-level synchronization
directives and the correctness of the implemented synchronization policies is
verified at the code level via model checking.

For the future we plan to conduct further investigations on the monitor con-
straints, in particular with respect to specific contexts, and to develop a tool –
to be hopefully integrated inside the automatic code generator PADL2Java [4, 5]
– that synthesizes a Java monitor class from any process algebraic specification
that satisfies the three constraints.

References

1. A. Aldini and M. Bernardo, “On the Usability of Process Algebra: An Architectural
View”, in Theoretical Computer Science 335:281-329, 2005.

2. R. Allen and D. Garlan, “A Formal Basis for Architectural Connection”, in ACM
Trans. on Software Engineering and Methodology 6:213-249, 1997.

3. J.A. Bergstra, A. Ponse, and S.A. Smolka (eds.), “Handbook of Process Algebra”,
Elsevier, 2001.

4. M. Bernardo and E. Bontà, “Generating Well-Synchronized Multithreaded Pro-
grams from Software Architecture Descriptions”, in Proc. of the 4th Working
IEEE/IFIP Conf. on Software Architecture (WICSA 2004), IEEE-CS Press,
pp. 167-176, Oslo (Norway), 2004.

5. M. Bernardo and E. Bontà, “Preserving Architectural Properties in Multithreaded
Code Generation”, in Proc. of the 7th Int. Conf. on Coordination Models and Lan-
guages (COORDINATION 2005), LNCS 3454:188-203, Namur (Belgium), 2005.

6. T. Bolognesi and E. Brinksma, “Introduction to the ISO Specification Language
LOTOS”, in Computer Networks and ISDN Systems 14:25-59, 1987.

7. C. Canal, E. Pimentel, and J.M. Troya, “Compatibility and Inheritance in Software
Architectures”, in Science of Computer Programming 41:105-138, 2001.

8. X. Deng, M.B. Dwyer, J. Hatcliff, and M. Mizuno, “Invariant-based Specification,
Synthesis, and Verification of Synchronization in Concurrent Programs”, in Proc.
of the 24th Int. Conf. on Software Engineering (ICSE 2002), ACM press, pp. 442-
452, Orlando (Florida), 2002.

9. C.A.R. Hoare, “Communicating Sequential Processes”, Prentice Hall, 1985.
10. P. Inverardi and S. Uchitel, “Proving Deadlock Freedom in Component-Based Pro-

gramming”, in Proc. of the 4th Int. Conf. on Fundamental Approaches to Software
Engineering (FASE 2001), LNCS 2029:60-75, Genova (Italy), 2001.

11. P. Inverardi, A.L. Wolf, and D. Yankelevich, “Static Checking of System Behaviors
Using Derived Component Assumptions”, in ACM Trans. on Software Engineering
and Methodology 9:239-272, 2000.

Synthesizing Concurrency Control Components 43

12. J. Magee and J. Kramer, “Concurrency: State Models & Java Programs”, Wiley,
1999.

13. R. Milner, “Communication and Concurrency”, Prentice Hall, 1989.
14. D.E. Perry and A.L. Wolf, “Foundations for the Study of Software Architecture”,

in ACM SIGSOFT Software Engineering Notes 17:40-52, 1992.
15. M. Shaw and D. Garlan, “Software Architecture: Perspectives on an Emerging

Discipline”, Prentice Hall, 1996.
16. T. Yavuz-Kahveci and T. Bultan, “Specification, Verification, and Synthesis of

Concurrency Control Components”, in ACM SIGSOFT Software Engineering
Notes 27:169-179, 2002.

P. Ciancarini and H. Wiklicky (Eds.): COORDINATION 2006, LNCS 4038, pp. 44 – 62, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Automated Evaluation of Coordination Approaches

Tibor Bosse, Mark Hoogendoorn, and Jan Treur

Vrije Universiteit Amsterdam, Department of Artificial Intelligence
De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands

{tbosse, mhoogen, treur}@cs.vu.nl
 http://www.cs.vu.nl/~{tbosse, mhoogen, treur}

Abstract. How to coordinate the processes in a complex component-based
software system is a nontrivial issue. Many different coordination approaches
exist, each with its own specific advantages and drawbacks. To support their
mutual comparison, this paper proposes a formal methodology to automatically
evaluate the performance of coordination approaches. This methodology
comprises (1) creation of simulation models of coordination approaches, (2)
execution of simulation experiments of these models applied to test examples,
and (3) automated evaluation of the models against specified requirements.
Moreover, in a specific case study, the methodology is used to evaluate some
coordination approaches that originate from various disciplines.

1 Introduction

Coordinating processes in a complex software system is a nontrivial issue. By a
component-based approach to software systems, a divide and conquer strategy can be
used to address the various aspects involved. This may lead to a possibly large
number of components, which each can be analysed and designed independently.
However, a designer may still be left with the problem how all these fragments can be
combined into a coherent system. To solve such a problem, many different
coordination approaches have been proposed, each having its advantages and
drawbacks. Important questions when choosing such a coordination approach are the
suitability, correct functioning, and efficiency of the approach for the particular
component-based system.

This paper presents a methodology to enable a comparison of such factors for the
different coordination approaches in a series of test examples. First of all, this
methodology allows for the creation of simulation models for each of the coordination
approaches. Secondly, it comprises an engine which simulates the different
coordination approaches for a variety of test examples. Finally, the methodology
consists of an automatic evaluation of the outcome of the simulations against
specified requirements (e.g. successfulness and efficiency).

The problem of coordination of component-based software systems has crucial
aspects in common with the problem of coordination in natural (biological), cognitive
(human and animal mind) or societal systems (organisational structures). Evolution
processes over long time periods have generated solutions for the coordination
problem in these areas. Therefore, it may make sense to analyse in more detail how

 Automated Evaluation of Coordination Approaches 45

these solutions work. Some literature is available that describes theories for
coordination in these areas. This literature can be used as a source of inspiration to
obtain new approaches to coordination of complex component-based software
systems. As a first step, this paper evaluates a number of such approaches in a specific
case study, to see to what extent they provide satisfactory solutions.

First, in Section 2 the methodology and supporting software tools are described. In
Section 3 a number of coordination approaches obtained from the literature in various
disciplines are briefly introduced. Section 4 describes a set of test examples that can
be used as input for the evaluation of the coordination approaches. In Section 5 the
simulations that were undertaken to evaluate the usefulness of the coordination
approaches for the test examples are briefly discussed. Section 6 presents the results,
and Section 7 is a final discussion.

2 Evaluation Method

To explore possibilities to address the coordination problem, an evaluation
methodology, supported by a software environment, has been created: (a) a number of
coordination approaches are selected, (b) a number of test examples representing
specific software component configurations are chosen, (c) based on each of these
coordination approaches a simulation model is formally specified, (d) related to the
test examples, relevant requirements are formally specified in the form of relevant
dynamic properties, (e) simulations are performed where selected coordination
approaches are applied to the chosen test examples, resulting in a number of
simulation traces, and (f) the simulation traces are evaluated (automatically) for the
specified requirements.

To evaluate a given coordination approach, adequate test examples of component-
based software configurations are needed. One may be tempted to use a real-life
component-based software system as a test example, e.g., consisting of hundreds of
components. However, such type of testing for one case would take a lot of effort, and
to get a reasonable idea it should be repeated for a representative number of software
systems at least. For this stage of the exploration this would not be appropriate.
Instead, a number of smaller but representative test examples have been identified. As
a source, the library of workflow patterns described in [1] has been used. The
examples given there have been extended with input and output data and information
flow channels.

To test the selected coordination approaches on the chosen examples, implement-
tations have to be made. One way to do this would be to create specific imple-
mentations for each of the (abstract) test examples, by explicitly defining the internal
functioning of the components involved. Next, one would add to these implement-
tations one by one implementations of the coordination approaches, and then run each
of these implementations. The resulting log data, which should include a registration
of the processing time, for example, in terms of processor time or number of
computation steps, can then be evaluated. Such an evaluation at an implementation
level, however, has some drawbacks: the specific implementations chosen may affect
the results, and the specific underlying software/hardware combination may affect the
processing times measured; e.g., think of aspects of concurrency that within a

46 T. Bosse, M. Hoogendoorn, and J. Treur

software/hardware environment may have to be mapped onto a form of interleaving
of processes. Therefore a different approach is chosen. All the testing is done within
one given simulation environment. Within this environment, one by one the
processing of a software system based on one example and one coordination approach
is simulated. In that case, the examples are defined at an abstract level (i.e., only in
terms of input-output relations, ignoring the internal functioning). The measured time
then is simulated time, not processing time. In simulated time, processes can easily be
active in parallel. The simulation environment chosen is logic-based, so that the
simulation models and the resulting simulation traces can be logically analysed,
supported by another software environment.

To evaluate the resulting simulation traces, in the first place it is needed to identify
the relevant properties, serving as requirements, on which such an evaluation should
be based. A number of aspects can be covered in such requirements. A first aspect is
effectiveness or successfulness to provide the desired output for the example system.
When a coordination approach does not involve the right components at the right
times, and therefore is not able to generate the desired output, then it is not effective.
A second aspect to evaluate is efficiency: to what extent time is wasted in the process
to obtain the eventual goals. A third aspect is to what extent the coordination
approach is able to generate the possible activation traces one has in mind for the
given example. Such properties can be formally specified and automatically checked
for the simulation traces.

To support the evaluation method described a software environment is used: to
logically specify simulation models and to execute these models in order to get
simulation traces, and to specify relevant dynamic properties and to check such
properties against simulation traces. For the simulation part, the language LEADSTO
is used [6], based on a variant of Executable Temporal Logic [4]. The basic building
blocks of this language are causal relations of the format α →→e, f, g, h β, which means:

 if state property α holds for a certain time interval with duration g,
 then after some delay (between e and f) state property β will hold

for a certain time interval of length h.

where α and β are state properties of the form ‘conjunction of literals’ (where a literal
is an atom or the negation of an atom), and e, f, g, h non-negative real numbers. For the
analysis part the language TTL is used [7]. This predicate logical language supports
formal specification and analysis of dynamic properties, covering both qualitative and
quantitative aspects. TTL is built on atoms referring to states, time points and traces.
A state of a process for (state) ontology Ont is an assignment of truth values to the set
of ground atoms in the ontology. The set of all possible states for ontology Ont is
denoted by STATES(Ont). To describe sequences of states, a fixed time frame T is
assumed which is linearly ordered. A trace γ over state ontology Ont and time frame T

is a mapping γ : T → STATES(Ont), i.e., a sequence of states γt (t ∈ T) in STATES(Ont).
The set of dynamic properties DYNPROP(Ont) is the set of temporal statements that can
be formulated with respect to traces based on the state ontology Ont in the following
manner. Given a trace γ over state ontology Ont, the state in γ at time point t is
denoted by state(γ, t). These states can be related to state properties via the formally
defined satisfaction relation |=, comparable to the Holds-predicate in the Situation
Calculus: state(γ, t) |= p denotes that state property p holds in trace γ at time t. Based on

 Automated Evaluation of Coordination Approaches 47

these statements, dynamic properties can be formulated in a formal manner in a sorted
first-order predicate logic, using quantifiers over time and traces and the usual first-
order logical connectives such as ¬, ∧, ∨, , ∀, ∃. A special software environment
has been developed for TTL, featuring both a Property Editor for building and editing
TTL properties and a Checking Tool that enables formal verification of such
properties against a set of (simulated or empirical) traces.

3 Coordination Approaches

As mentioned earlier, the coordination problem in software systems has crucial aspects
in common with the problem of coordination in natural (biological), cognitive (human
and animal mind) or societal systems (organisational structures). Therefore, a large
body of literature is available that describes coordination approaches in these areas. In
this section, some of the most well-known approaches are discussed. Section 3.1
focusses on the behavior networks approach by Pattie Maes [17]. Section 3.2 desc-
ribes Selfridge’s pandemonium model [22], and Section 3.3 addresses the decision-
making techniques known as voting methods [18]. These approaches were chosen for
two reasons. First, because they are well-known approaches in the (wider) literature in
various disciplines on coordination. Second, because together they more or less cover
the area of different coordination approaches: the behavior networks use a rather
global and sequential strategy (i.e., the approach determines which component is
activated based on global information concerning all components), whereas voting
methods and (especially) the pandemonium model use a local and possibly
nonsequential strategy (i.e., the components involved only use information about
themselves or their direct neighbours to determine which component is activated).

3.1 Behavior Networks

Behavior networks have been introduced by Pattie Maes in 1989. She distinguishes
competence modules within a system, where each module is specified by a tuple
containing four elements: (1) a list of preconditions to be fulfilled before a compe-
tence module can become active; (2) the competence module’s action in terms of an
add list; (3) the competence module’s actions in terms of a delete list; (4) a level of
activation. A competence module is said to be executable in case the list of
preconditions is fulfilled. A network of competence modules is created via three types
of links: successor links (a link from x to y for every element on the add list of x
which is on the preconditions list of y), predecessor links (a link from x to y for every
element on the precondition list of x which is on y’s add list), and conflictor links (a
link from x to y for every element on the precondition list of y which is on x’s delete
list). Through these links the competence modules activate and inhibit each other, so
that “after some time the activation energy accumulates in the modules that represent
the ‘best’ actions to take given the current situation and goals” [17]. The patterns of
these spreading activations among modules, as well as the input of new activation
energy into the network, is determined by the state of the environment and goals via
three ways: activation by state (add activation to modules that (partially) match the
current state), activation by goals (add activation to modules which (partially) achieve

48 T. Bosse, M. Hoogendoorn, and J. Treur

the goals), and inhibition by protected goals (remove activation from modules that
(partially) remove the protected goals). Thereafter, activation spreads through the
network via activation of successors, activation of predecessors, and inhibition of
conflictors. After having spread the activation, a decay phase makes sure the overall
activation remains constant within the network. Once performed, a competence
module fires in case it is executable, the activation is over the threshold that has been
set, and it is the competence module with the highest activation. In case the module
indeed fires, its activation goes to 0, and all thresholds return to their normal value. In
case no module fires, the threshold is reduced by 10%. For more mathematical details,
see [17].

3.2 The Pandemonium Model

In 1958, Selfridge proposes an approach he calls pandemonium, to enable pattern
recognition [22]. This is a system composed of primitive constructs called demons,
each representing a possible pattern. Once an image is presented, each of the demons
computes the similarity of the image with the pattern it represents, and gives an output
depending monotonically on that similarity. Finally, a decision demon selects the
pattern belonging to the demon whose output is largest.

Jackson [14] extends this idea to a theory of mind. Besides demons involved in
perception, he also identifies demons that cause external actions and demons that act
internally on other demons. Jackson pictures the demons as living in a stadium.
Almost all of them are the crowd, cheering on the performers. The remainder of the
demons are down on the playing field, exciting the crowd in the stands. Demons in
the stands respond selectively to these attempts to excite them. Some are more excited
than others; some shout louder. The loudest demon in the stands replaces one of those
currently performing which is sent back to the stands. The loudness of the shouting of
a demon is dependant upon being linked with the demon that must excite. Stronger
links produce louder responses. The system starts off with initial built-in links
between the demons. New links are made between demons, and existing links are
strengthened in proportion to the time they have been together on the field, plus the
gain of the system (i.e., when all is going well, the gain is higher).

3.3 Voting Methods

The concept of voting refers to a wide collection of techniques that are used to
describe decision-making processes involving multiple agents. Although originating
from political science, voting methods are currently used within a number of domains,
including game theory (where they are used as methods for conflict resolution) and
pattern recognition (where they are used to combine classifier outputs).

The general idea of voting methods is rather intuitive, and is comparable to the
techniques used in elections. Consider a set of agents N, and a set of possible
outcomes S of an election. Each agent i ∈ N has preferences over the outcomes: ≤i ⊆
S x S. The voting approach uses a function F that selects a candidate outcome S,
given the preferences of the voters. A simple instance of F would be to count all
votes, and to select the outcome with the highest amount of votes. However, a large
number of (more complex) voting approaches exist. These can roughly be divided

 Automated Evaluation of Coordination Approaches 49

into three classes: unweighed voting methods in which each vote carries equal weight,
confidence voting methods in which voters can express a degree of preference for a
candidate, and ranked voting methods in which the voters are asked for a preference
ranking over the candidates. See [18] for an overview of different voting methods.

As mentioned above, voting methods are currently used in many different domains,
such as game theory and pattern recognition. In this paper it will be explored whether
they are of any use to solve coordination problems in complex (component-based)
software systems. To this end, the electorate will be filled in by certain components,
and the candidates by the possible activations of components.

4 Test Examples

Test examples have been identified to test the different coordination approaches. The
examples were inspired by the workflow patterns defined by van der Aalst [1]. These
patterns can be seen as building blocks for more complex patterns occurring in real-
life component-based systems. In total, seven test examples have been described, two
of which are discussed below. A test example consists of a number of components,
called {C1, C2,..}, and several types of data, called {d1, d2,..}. Different components
need different data as input, and create different data as output. The complete set of
test examples is described in [5].

Pattern 1 - Sequence
The first pattern is straightforward: it involves three components. After completion of
the first component, the second component is activated, and after completion of the
second, the third component is activated.

On the basis of this pattern, a next step was to create a corresponding test example.
In principle, this means defining an example (in terms of components and data) in
such a way that, if provided as input to a coordination approach, pattern 1 will come
out. A visualisation of such an example is given in Figure 1. In this case component
C1 needs data d1 as input, and creates data d2 as output. Moreover, as indicated in the
box on the right, the input data (the data that is initially available to the system) is d1,
and the goal data (the data that the system needs to create in order to be successful) is
d4. Given this situation, the expectation is that if any coordination approach is applied
to the example, the result will be a trace in which the components are activated in
sequence (i.e., first C1, then C2, and then C3). Note that it is assumed that data is
shared, i.e., whenever a component generates output data, this data is immediately
available to all other components in the system. This could be implemented, for
example, by incorporating a shared repository, where all components store their
output data and read their input data from. Another assumption is that data cannot be

Fig. 1. Test example 1 – Sequence

System input: d1

System output: d4

C1
 d2 d1

C2
 d3 d2

C3
 d4 d3

50 T. Bosse, M. Hoogendoorn, and J. Treur

removed. Thus, once data is written to the shared repository, it will stay there. Other
approaches such as explicit communication channels can however easily be incorpo-
rated into the methodology.

Pattern 7 - Synchronizing Merge
Pattern 7 involves four components. After completion of the first component, there is
a choice between the second and third component: either one of them can be
activated, or both. In case one of them is activated, the fourth component is activated
after this component has completed. In case both of them are activated, the fourth
component is activated after both have completed.

The test example that was created on the basis of this pattern is shown in Figure 2.
As can be seen in the figure, in this example both a conjunction in a component’s
output data and a disjunction in a component’s input data occur. Furthermore, note
that, when formalising this example in LEADSTO, the disjunction on the input side of
C4 is modelled by defining three separate variants of C4: one variant (called C4) with
d4 as input, one variant (called C5) with d5 as input, and one variant (called C6) with
d4 and d5 as input.

Fig. 2. Test example 7 - Synchronizing Merge

5 Simulation

To compare the coordination approaches described in Section 3 against the above test
examples, a number of simulation experiments have been performed. First, the three
selected coordination approaches have been implemented in the LEADSTO
simulation language, see [5]. Next, the implemented simulation models have been
applied to the test examples. The simulation models for the behavior networks, the
pandemonium, and the voting method, are addressed, respectively, in Section 5.1, 5.2,
and 5.3. For each simulation model, an example simulation trace (resulting from
applying the model to test example 7) is provided.

5.1 Behavior Networks Simulation

The simulation model for Maes’ behavior networks is created on the basis of the
mathematical model as presented in [17]. There is one difference: within the
simulation model, the lowering of the threshold is not performed, as the available data
does not change due to external influences (i.e., the highest executable component
will remain the highest until a component has been activated). Therefore, the highest
executable component is simply selected, avoiding unnecessary computation. The

System input: d1

System output: d6

C1
d2∧d3 d1

C2
 d4 d2

C3
 d5 d3

C4
 d6d4∨d5

 Automated Evaluation of Coordination Approaches 51

data((d|1))
goal((d|6))

alpha(0, (c|1), 0)
alpha(0, (c|2), 0)
alpha(0, (c|3), 0)
alpha(0, (c|4), 0)
alpha(0, (c|5), 0)
alpha(0, (c|6), 0)

alpha(1, (c|1), 0.25)
alpha(1, (c|2), 0)
alpha(1, (c|3), 0)

alpha(1, (c|4), 0.25)
alpha(1, (c|5), 0.25)
alpha(1, (c|6), 0.25)

activated((c|1))
data((d|2))
data((d|3))

alpha(2, (c|1), 0.0425532)
alpha(2, (c|2), 0.255319)
alpha(2, (c|3), 0.255319)
alpha(2, (c|4), 0.148936)
alpha(2, (c|5), 0.148936)
alpha(2, (c|6), 0.148936)

activated((c|2))
data((d|4))

alpha(3, (c|1), 0.0800239)
alpha(3, (c|2), 0.0561362)

alpha(3, (c|3), 0.366677)
alpha(3, (c|4), 0.167811)
alpha(3, (c|5), 0.163631)
alpha(3, (c|6), 0.165721)

activated((c|3))
data((d|5))

alpha(4, (c|1), 0.130139)
alpha(4, (c|2), 0.11287)

alpha(4, (c|3), 0.0722897)
alpha(4, (c|4), 0.229745)
alpha(4, (c|5), 0.226723)
alpha(4, (c|6), 0.228234)

activated((c|4))
data((d|6))

time 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fig. 3. Simulation Trace - Behavior Networks against Test Example 7

LEADSTO specification for the approach roughly corresponds to the description in
Section 3.1.

Figure 3 presents a simulation trace that has resulted from executing the approach
on test example 7. Initially, the data present is set to d1: data(d1). Furthermore, the goal
is set to d6 for this particular scenario: goal(d6). Before starting, the activation value,
referred to as the alpha value of the components currently present in the system are set
to 0 for the time point before the current time point (i.e. time point 0): alpha(0, c1, 0),
alpha(0, c2, 0), alpha(0, c3, 0), alpha(0, c4, 0), alpha(0, c5, 0), and alpha(0, c6, 0). Thereafter
calculations are performed to determine the activity within the different components:
The input from the current state is calculated (i.e. given the current data available,
calculate the activation caused for the different components) as well as the input from
the goals. Since only C4, C5, and C6 have a goal as an output, these components are

52 T. Bosse, M. Hoogendoorn, and J. Treur

the only ones to receive activation through this source. Due to the fact that the
previous alpha value is 0, no activation is spread around the network. The next alpha
value for the six components present in the system is therefore obtained by simply
summing up the input from the goals and state per component, and normalizing it to
1: alpha(1, c1, 0.25), alpha(1, c2, 0), alpha(1, c3, 0), alpha(1, c4, 0.25), alpha(1, c5, 0.25), and alpha(1, c6,

0.25). As a result, component C1 is activated, as this is the executable component with
the highest alpha value: activated(c1). Due to the activity of component C1, its output
data is generated, which is shown in the trace: the presence of data d2 and d3: data(d2)
and data(d3).

A new round of computation is performed; the input from the goals remains the
same, as these have not changed. However, the input from the current state changes,
due to the additional data d2 and d3 being present. Furthermore, activation is now
spread through the network, since the previous alpha values are non-zero. After
calculation and normalisation the following alpha values are the result: alpha(1, c1,

0.0425532), alpha(1, c2, 0.255319), alpha(1, c3, 0.255319), alpha(1, c4, 0.148936), alpha(1, c5, 0.148936),
and alpha(1, c6, 0.148936). Since both C2 and C3 are executable and have the highest
alpha value, one of them is randomly selected; in Figure 3 this is component C2.

As can be seen in the figure, after activation of C2, component C3 is activated.
Finally, C4 is activated, outputting the goal data, which results in termination.

5.2 Pandemonium Simulation

The pandemonium is used as described in Section 3.2, but modified with some
simplifying assumptions. In particular, the following procedure is assumed: at the
beginning of the process, only the initial data is placed at the shared repository.
Whenever new data has been added to the repository, a new round starts in which all
components can shout. The idea is that, the more urgent a component thinks it is for
him to be activated, the louder it will shout. The component that shouts loudest will
be allowed to start processing. In case two components shout with exactly the same
strength, then either the first component, or the second component, or both are
activated (this decision is made randomly, with equal probabilities). When a
component is activated, this results in the component adding its output data to the
shared repository (see Section 4), and the start of a new round.

To determine how loud they will shout, the components make use of a shout
function. For different variants of the pandemonium model, different shout functions
may be used. In the current model, each component uses the following types of
information in its shout function at time point t:

• the amount of data it needs as input (represented by i1)
• the amount of its input data that is available at t (represented by i2)
• the amount of data it produces as output (represented by o1)
• the amount of its output data that is already present at t (represented by o2)
• the highest i1 for the set of components (represented by max_i)
• the highest o1 for the set of components (represented by max_o)

Given these elements, the shout value (i.e., the strength with which a component
shouts, represented by sv) is modelled as follows:

sv = (i2/i1)β1 * (1 - o2/o1)β2 * (i1/max_i)β3 * (o1/max_o)β4

 Automated Evaluation of Coordination Approaches 53

data((d|1))
data((d|2))
data((d|3))
data((d|4))
data((d|5))
data((d|6))

shout((c|1), 0.0)
shout((c|1), 0.466516)

shout((c|2), 0.0)
shout((c|2), 0.203063)

shout((c|3), 0.0)
shout((c|3), 0.203063)

shout((c|4), 0.0)
shout((c|4), 0.203063)

shout((c|5), 0.0)
shout((c|5), 0.203063)

shout((c|6), 0.0)
shout((c|6), 0.435275)

active_component((c|1))
active_component((c|2))
active_component((c|3))
active_component((c|6))

time 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Fig. 4. Simulation Trace - Pandemonium against Test Example 7

Here, β1, β2, β3, and β4 are real numbers between 1 and 1.5, indicating the importance
of the corresponding factor. Several settings have been tested for these parameters. In
the examples shown here, β1=1.4, β2=1.3, β3=1.1, and β4=1.2. Since the factors can
never exceed 1, the shout value sv will be a value between 0 and 1.

Figure 4 depicts the simulation trace that has resulted from applying the
pandemonium approach to test example 7. As the figure shows, initially the only data
that is present is d1: data(d1). Based on this data, every component starts shouting.
Component C1 shouts loudest (with strength 0.47, whilst the others shout with
strength 0.0): shout(c1, 0.466516), shout(c2, 0.0), ..., shout(c6, 0.0). Thus, component C1 is
selected to become active: active_component(c1). As a result, C1 creates data d2 and d3,
which are stored at the repository as well: data(d2), data(d3). Then again, every
component starts shouting. This time, both component C2 and C3 shout loudest (with
strength 0.20, whilst the others shout with strength 0.0): shout(c1, 0.0), shout(c2, 0.203063),

shout(c6, 0.0). As a result, both component C2 and C3 are selected to become active:
active_component(c2), active_component(c3). Note that this selection is based on the
assumption that multiple components may be activated at the same time. If this is not
allowed, the approach would select one of the components at random. Next,
component C2 creates data d4, and component C3 creates data d5. These data are
stored at the repository: data(d4), data(d5). Again, every component starts shouting.
Component C6 (which is a specific variant of C4, see the description of the example)
shouts loudest (with strength 0.44): shout(c1, 0.0), shout(c2, 0.0), shout(c6, 0.435275). Thus,
component C6 is selected to become active: active_component(c6). Eventually, component
C6 creates data d6, which is stored at the repository: data(d6). Since d6 is the goal data,
at this point the process terminates.

54 T. Bosse, M. Hoogendoorn, and J. Treur

5.3 Voting Simulation

The simulation of the voting method uses the same assumptions as the pandemonium
method, with one difference: instead of shouting, all components can vote. The idea is
that each component can vote on only one component (possibly on itself). After all
components have voted, the votes are counted, and the component with most votes
will be allowed to start processing. To determine on whom they will vote, the
components make use of a voting procedure. For different variants of the voting
method, different voting procedures may be used. In the current model, each
component follows the following procedure:

1. if my input is present, and my output is not, then I vote for myself
2. if my input is not present, and this input is generated by one other component,

vote for that component
3. if my input is not present, and this input is generated by n>1 other components,

vote for one of those components (at random)
4. if my output is present, and this output is used by one other component, vote for

that component
5. if my output is present, and this output is used by n>1 other components, vote for

one of those components (at random)
6. if my output is present, and this output is used by no other components (i.e., it is

part of the goal data), do not vote

Note that this approach assumes a local perspective of the components. This means
that each component only has knowledge about itself and its direct neighbours. For
example, each component knows which other components need the data that it pro-
duces as input, but does not know which data the other components produce as output.

Figure 5 depicts the simulation trace that has resulted from applying the voting
approach to test example 7. Initially the only data that is present is d1: data(d1). Based
on this data, every component starts voting: vote_for(c1, c1), vote_for(c2, c1), vote_for(c3, c1),

vote_for(c4, c2). Component C1 receives 3 votes, component C2 receives one vote, and
the other components receive no votes. Thus, component C1 is selected to become
active: active_component(c1). As a result, C1 creates data d2 and d3, which are stored at
the repository as well: data(d2), data(d3). Then again, every component starts voting:
vote_for(c1, c3), vote_for(c2, c2), vote_for(c3, c3), vote_for(c4, c3). Component C3 receives 3 votes,
component C2 receives one vote, and the other components receive no votes. Thus,
component C3 is selected to become active: active_component(c3). Next, component C3
creates data d5, which is stored at the repository: data(d5). Voting starts again:
vote_for(c1, c2), vote_for(c2, c2), vote_for(c3, c5), vote_for(c4, c2). Component C2 receives 3 votes,
component C5 (which is a specific variant of C4) receives one vote, and the others
receive no votes. Thus, component C2 is now selected to become active:
active_component(c2). Component C2 creates data d4, which is stored at the repository:
data(d4). In the next round, the components vote as follows: vote_for(c1, c2), vote_for(c2, c6),

vote_for(c3, c6), vote_for(c4, c6). Component C6 (which is a specific variant of C4) receives
3 votes, component C2 receives one vote, and the others receive no votes.
Consequently, component C6 is selected to become active: active_component(c6). Even-
tually, component C6 creates data d6, which is stored at the repository: data(d6). Since
d6 is the goal data, at this point the process terminates.

 Automated Evaluation of Coordination Approaches 55

data((d|1))
data((d|2))
data((d|3))
data((d|4))
data((d|5))
data((d|6))

vote_for((c|1), (c|1))
vote_for((c|1), (c|2))
vote_for((c|1), (c|3))
vote_for((c|2), (c|1))
vote_for((c|2), (c|2))
vote_for((c|2), (c|6))
vote_for((c|3), (c|1))
vote_for((c|3), (c|3))
vote_for((c|3), (c|5))
vote_for((c|3), (c|6))
vote_for((c|4), (c|2))
vote_for((c|4), (c|3))
vote_for((c|4), (c|6))

active_component((c|1))
active_component((c|2))
active_component((c|3))
active_component((c|6))

time 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

Fig. 5. Simulation Trace - Voting against Test Example 7

6 Evaluation

This section addresses the evaluation of the performance for the different approaches
that have been simulated as described above. This evaluation can be performed from
multiple perspectives. First of all, the achievement of the goals that have been set for
the system are an important evaluation criterion. Secondly, an element in the
evaluation is the efficiency of the approach. Finally, patterns can be specified which
are (allowed) to occur in the component configurations used as test examples, and it
can be checked whether a coordination approach indeed identifies these patterns. To
enable automated checking of the results of the approaches, a formal specification of
the different types of properties is required. For this purpose, the language TTL
introduced in Section 2 is used. After such a formal description has been obtained, the
automated TTL-checker can be used to see how well the approach performs.

6.1 Successfulness

The first property to be checked is called successfulness. Informally, this property states
that in the trace γ all goal data d will eventually be derived. Formally:

successfulness(γ:TRACE) ≡
∀t:TIME, d:DATA [state(γ, t) = goal(d)
∃t2:TIME [t2 ≥ t ∧ state(γ, t2) |= data(d)]]

The results of automatically checking this property against the traces that were
generated in the simulation show that all approaches eventually find the solution for

56 T. Bosse, M. Hoogendoorn, and J. Treur

the examples that have been used. Prerequisite is that there must exist at least one
path to the solution.

6.2 Efficiency

Efficiency can be viewed from multiple perspectives. First, one can look at the
efficiency of the solution path found by the approach. For now, it is assumed that each
component takes an equal amount of time to obtain its output. Therefore, the most
efficient solution is simply the solution in which the least amount of components have
been activated. Another way to describe efficiency is the efficiency of the approach
itself, i.e., the amount of computation time the approach needs to generate a solution.
The approach taken in this section is to check whether the shortest activation path is
used to reach the goals that are set. For the formalisation of this property, it is
assumed that the length of the shortest path is known for the particular example being
checked:

efficiency(γ:TRACE, shortest_path:INTEGER) ≡
successfulness(γ) ∧
component_activations(γ, shortest_path)

To enable a definition of the amount of activations of a component, first the activation
of one component is defined, including its interval:

has_activation_interval(γ:TRACE, c:COMPONENT, tb:TIME, te:TIME) ≡
tb < te ∧ state(γ,te) |≠ activated(c) ∧
[∀t tb≤t<te state(γ,t) |= activated(c)] ∧
∃t1<tb [∀t2 t1≤t2<tb state(γ,t2) |≠ activated(c)]

An example of a definition for a trace with one component activation is shown below.

component_activations(γ:TRACE, 1) ≡
∃c:COMPONENT, tb:TIME, te:TIME
has_activation_interval(γ, c:COMPONENT, tb:TIME, te:TIME) ∧
[∀c2:COMPONENT, tb2:TIME, te2:TIME
[has_activation_interval(γ, c2:COMPONENT, tb2:TIME, te2:TIME) c = c2 ∧ tb = tb2 ∧ te = te2]]

Table 1 shows the outcome of checking the property efficiency in the TTL Checker
for the generated traces. A plus indicates that in all generated traces the efficient
solution was found; a minus indicates that no efficient solution is found in at least one
of the generated traces.

Table 1. Efficiency of the different approaches on the examples

Example Behavior Networks Pandemonium Voting
Sequence + + +
Parallel Split + + -
Synchronization + + +
Exclusive choice + + +
Simple Merge + + +
Multi Choice - - +
Synchronizing merge - - -

For the first five examples, both the behavior networks and the pandemonium
always find the optimal path to the solution. For voting, the optimal solution for the

 Automated Evaluation of Coordination Approaches 57

parallel split is not always found: apparently, there are situations when this approach
is not efficient. This is mainly due to the fact that the voting components have only
local information. As a result, their voting behaviour is not always fully rational. This
problem could be solved by allowing a more global perspective for the components.

For the synchronizing merge and the multi-choice (which can be described as the
synchronizing merge without component C4), the behavior networks approach fails to
find the optimal solution in some cases. For the first, it activates both C2 and C3
whereas only one of the components is required to obtain the goal data. Adapting the
parameters of the approach could probably prevent this from occurring. Furthermore,
in the synchronizing merge case, both C2 and C3 are activated whereas C4 only needs
one input to generate output.

Also the pandemonium model is not always efficient for the multi-choice and
synchronizing merge. For the multi-choice, this is the case because the model
sometimes generates traces where first C1 is activated, and then C2 and C3 are
activated simultaneously. Although this solution is efficient in terms of activation
rounds (i.e., only two rounds), it is not efficient in terms of component activations:
three components are activated in total, where two activations would have been
sufficient (i.e., C1 followed by C2, or C1 followed by C3). For the synchronizing
merge, in some cases the same situation occurs as with the behavior networks:
sometimes both C2 and C3 are activated simultaneously, whilst only one of them is
required.

The voting method however succeeds in always finding the efficient solution for
the multi-choice. Here, the aforementioned situation that both C2 and C3 are activated
never occurs, because there is always one component that receives more votes than
the others. However, like the other approaches, the voting method is sometimes
inefficient with respect to the synchronizing merge. Here, again the same situation
occurs as with the behavior networks and the pandemonium: sometimes both C2 and
C3 are activated, where only one of them is necessary.

6.3 Specifying and Checking Patterns

As has been mentioned, certain expected patterns can be specified for component
configuration examples, and it can be checked whether these patterns are indeed
found by the different approaches. For the test examples used in this document, the
component configuration specifications originate from workflow patterns. Therefore,
the patterns taken for the test examples are precisely the workflow patterns from
which these examples have been derived. Specification of patterns can be done from
two perspectives: (1) exhaustively summing up all possible outcomes; (2) specifying
the constraints between activation intervals of different components. For the second
approach, the interval relations as identified by Allen [2] were used and specified in
TTL, for example the before relation:

before(b1:TIME, e1:TIME, b2:TIME, e2:TIME) ≡ e1 < b2

Below, workflow patterns 1 and 7 are specified using TTL expressions. For both
patterns, all traces are first summed up in an informal fashion (according to
perspective 1 above). After that, the formal TTL expressions specifying the const-
raints between the activation intervals of the different components are shown

58 T. Bosse, M. Hoogendoorn, and J. Treur

(according to perspective 2). The complete set of seven TTL expressions can be found
in [5].

Pattern 1 - Sequence
Possible traces: ABC.

Activation interval constraints in TTL:

∃bA,eA,bB,eB,bC,eC:TIME
has_activation_interval(trace1, A, bA, eA) ∧
has_activation_interval(trace1, B, bB, eB) ∧
has_activation_interval(trace1, C, bC, eC) ∧
before(bA, eA, bB, eB) ∧
before(bB, eB, bC, eC)

Pattern 7 - Synchronizing Merge
Possible traces: ABD, ACD, ABCD, ABCD, A B|C D.
Here, “B|C” indicates that B and C are activated simultaneously.

Activation interval constraints in TTL:

[∃bA,eA,bB,eB,bD,eD:TIME
has_activation_interval(trace1, A, bA, eA) ∧
has_activation_interval(trace1, B, bB, eB) ∧
has_activation_interval(trace1, D, bD, eD) ∧
before(bA, eA, bB, eB) ∧
before(bB, eB, bD, eD)]
∨
[∃bA,eA,bC,eC,bD,eD:TIME
has_activation_interval(trace1, A, bA, eA) ∧
has_activation_interval(trace1, C, bC, eC) ∧
has_activation_interval(trace1, D, bD, eD) ∧
before(bA, eA, bC, eC) ∧
before(bC, eC, bD, eD)]
∨
[∃bA,eA,bB,eB,bC,eC,bD,eD:TIME
has_activation_interval(trace1, A, bA, eA) ∧
has_activation_interval(trace1, B, bB, eB) ∧
has_activation_interval(trace1, C, bC, eC) ∧
has_activation_interval(trace1, D, bD, eD) ∧
before(bA, eA, bB, eB) ∧
before(bA, eA, bC, eC) ∧
before(bB, eB, bD, eD) ∧
before(bC, eC, bD, eD)]

Automated checks have pointed out that the behavior networks, pandemonium, and
voting approaches always find the patterns that have been identified. In the parallel
split case, the success of the voting approach however is debatable. The reason for
this is that besides the expected patterns (A[BC]) also patterns such as A-B-B-C
appear. According to personal communication with van der Aalst this is however not
a violation of the pattern. Following his perspective, a trace satisfies a pattern when
the components as prescribed by the patterns occur being active in the trace in the
specified sequence. It is however allowed for other components (either a different
component or activation of the same component at another time point) to be active
within the same trace. For checking the more strict version (i.e. exactly the prescribed
sequence without other activations) a closed world assumption version of the property
has been specified as well.

 Automated Evaluation of Coordination Approaches 59

Since the abstract way of modelling used here is not computationally expensive,
checking a property against a trace on average took no more than one second. For
more information about the complexity of checking TTL expressions, see [7].

7 Discussion

To conclude, this paper presented a formal methodology to evaluate and compare the
performance of different coordination approaches. The methodology comprises the
creation of simulation models for the coordination approaches, the execution of
simulation experiments of these models applied to test examples, and their automated
evaluation against specified requirements. In a specific case study, the methodology
was used to evaluate three well-known coordination approaches from the literature.
During this case study, the simulation approach turned out quite beneficial. Within a
reasonable time, a nontrivial number of approaches have been tested against a
nontrivial number of cases: 3 x 7 = 21 combinations have been explored.
Furthermore, the automated checks of dynamic properties against generated traces
have turned out useful to evaluate the simulations for the different approaches against
requirements. Finally, an existing library of workflow patterns [1] turned out an
appropriate source for cases to be explored, although their specification also needs to
cover data flow aspects. It was not too difficult to add such data flow aspects.

Concerning the specific case study performed, the voting, pandemonium and
behavior networks approach have been thoroughly evaluated with respect to a number
of relevant performance indicators, namely successfulness, efficiency, and pattern
checks. All approaches turned out effective in finding the solution in all cases.
However, none of the approaches is always efficient for all patterns. The behavior
networks and pandemonium approaches perform equally well; they succeed for the
“simple” cases and sometimes fail to be efficient for the two complicated cases (i.e.
multi-choice and synchronizing merge). Surprisingly, the voting approach always
finds the most efficient solution for one of the complicated cases, namely the multi-
choice. It does however fail in the rather trivial case of the parallel split. All
approaches also find the patterns specified for each of the component configuration
examples.

All in all, when comparing the different coordination approaches, the performance
based on the criteria specified above is almost similar. The way in which they find the
component activation sequences is however completely different. The behavior
networks approach needs a global overview of the system: it needs to know for each
component what data it needs as input and what data it generates as output. Such a
global view might not always be available or might be inconvenient. On the other
hand, for the pandemonium a completely local view is sufficient: each component
only needs information about its own input and output data. In between is the voting
approach, which needs information about itself and its direct neighbours. When
comparing the approaches on required computation time, the behavior networks
approach takes far more computation time than the other approaches. This has two
causes: first, due to the fact that all global information is used within the approach, it
has a lot more information to take into consideration. Second, both for the voting and

60 T. Bosse, M. Hoogendoorn, and J. Treur

pandemonium approach the calculations per component can be performed in parallel,
which can not be done in the behavior networks approach.

Work related to the approach presented in this paper can, first of all, be found in
the field of action selection mechanisms (also called behaviour coordination mecha-
nisms) in robotics. Pirjanian [19] presents an overview of several mechanisms used in
that particular field, including a classification of these mechanisms. He identifies two
main streams: arbitration and command fusion. In the arbitration approach, one
behaviour is arbitrarily selected from a group of competing ones, giving it the
ultimate control. For command fusion mechanisms however, recommendations are
combined from multiple behaviours to form a control action that represents their
consensus. The behaviour networks approach as presented by Maes [17] is an
example of an arbitration mechanism, whereas both voting and the pandemonium
model can be placed in the command fusion category. Tyrrell [23] presents a
comparison between several mechanisms for action selection, using a simulator of an
animal world. The comparison approach is however not formal like the approach
presented in this paper. Furthermore, the framework for comparison is not generic,
but developed for a specific case study, making it hard to generalise the results
obtained. Another related field can be found within multi-agent systems, where
coordination mechanisms play an essential role to ensure a proper functioning of the
system as a whole. These coordination mechanisms address types of interactions and
agreements between the different agents that were not considered in this paper. For a
comparison between different coordination mechanisms in agent systems, see for
example [8]. Concerning other related work, coordination models and languages for
interfacing between components often focus on how different components within a
software system can interact, see for example [3]. Due to the assumption of data being
available and interpretable for all components, these component interaction models
have not been considered in this paper, but can easily be incorporated in the
methodology.

The methodology presented in this paper is supported by two software environ-
ments: the LEADSTO environment for simulation [6], and the TTL environment for
verification of properties [7]. For simulation, various other approaches exist, such as
the Dynamical Systems Theory [20], Executable Temporal Logic [4], PLC automata
[9], qualitative reasoning (see, e.g., [10]), and stochastic pi-calculus (as used in [12]).
For verification of properties, alternative approaches are standard temporal lang-
uages such as LTL and CTL [13], and calculi like the situation calculus [21] and the
event calculus [15]. See, respectively, [6] and [7] for an extensive comparison of
LEADSTO and TTL with these approaches.

Finally, the work as reported has led to a number of ideas for further research.
While the specific coordination approaches borrowed from other disciplines were
found to have value, no attempts have been made yet to come up with refinements,
extensions or improvements of these approaches, or, inspired by these approaches, to
design completely new (and possibly better) approaches. Some possible future
extensions are allowing preference for certain components, allowing a dynamic
environment, and enabling the components to process partial data.

 Automated Evaluation of Coordination Approaches 61

Acknowledgements

This work has been performed as part of a project funded by CAMS-Force Vision, the
software development company associated with the Royal Netherlands Navy.
Moreover, the authors are grateful to Egon van den Broek, Rob Duell, Andy van der
Mee, and Bas Vermeulen for various fruitful discussions.

References

1. Aalst, W.M.P. van der, Hofstede, A.H.M. ter, Kiepuszewski, B., and Barros, A.P.
Workflow Patterns. QUT Technical report FIT-TR-2002-02, Queensland University of
Technology, Brisbane, 2002.

2. Allen, J. F. Maintaining knowledge about temporal intervals. In: Communications of the
ACM, 26, 1983, pp. 832-843.

3. Arbab, F. Reo: A Channel-based Coordination Model for Component Composition,
Mathematical Structures in Computer Science, Cambridge University Press, vol. 14, No. 3,
2004, pp. 329-366.

4. Barringer, H., Fisher, M., Gabbay, D., Owens, R., and Reynolds, M. The Imperative
Future: Principles of Executable Temporal Logic, John Wiley & Sons, 1996.

5. Bosse, T., Hoogendoorn, M., and Treur, J. Coordination Approaches for Complex
Software Systems. Technical report 06-04ASRAI, Vrije Universiteit Amsterdam,
Amsterdam, 2006. URL: http://hdl.handle.net/1871/9195.

6. Bosse, T., Jonker, C.M., Meij, L. van der, and Treur, J. LEADSTO: a Language and
Environment for Analysis of Dynamics by SimulaTiOn. In: Eymann, T., et al. (eds.), Proc.
of the Third German Conference on Multi-Agent System Technologies, MATES'05. Lecture
Notes in Artificial Intelligence, vol. 3550. Springer Verlag, 2005, pp. 165-178.

7. Bosse, T., Jonker, C.M., Meij, L. van der, Sharpanskykh, A, and Treur, J. A Temporal
Trace Language for the Formal Analysis of Dynamic Properties. Technical Report, Vrije
Universiteit Amsterdam, Department of Artificial Intelligence, 2006.

8. Bourne, R., Shoop, K., and Jennings, N. Dynamic evaluation of coordination mechanisms
for autonomous agents. In P. Brazdil and A. Jorge, editors, Progress in Artificial
Intelligence, Lecture Notes in Artificial Intelligence. Springer Verlag, 2001, pp. 155-168.

9. Dierks, H. PLC-automata: A new class of implementable real-time automata. In M.
Bertran and T. Rus, editors, Transformation-Based Reactive Systems Development
(ARTS'97), volume 1231 of Lecture Notes in Computer Science. Springer-Verlag, 1997,
pp. 111-125.

10. Forbus, K.D. Qualitative process theory. Artificial Intelligence, vol. 24, no. 1-3, 1984, pp.
85-168.

11. Franklin, S. Artificial Minds, MIT Press, Cambridge Massachusetts, 1997.
12. Gardelli, L., Viroli, M., Omicini, A.: On the Role of Simulations in Engineering Self-

Organizing MAS: the Case of an Intrusion Detection System in TuCSoN. In: 3rd
International Workshop “Engineering Self-Organising Applications” (ESOA), 2005, pp.
161-175.

13. Goldblatt, R. Logics of Time and Computation, 2nd edition, CSLI Lecture Notes 7, 1992.
14. Jackson, J.V. Idea for a Mind, SIGGART Newsletter, no 181, 1987, pp. 23-26.
15. Kowalski, R. and Sergot, M.A. A logic-based calculus of events, New Generation

Computing, 4, 1986, pp. 67-95.

62 T. Bosse, M. Hoogendoorn, and J. Treur

16. Lindsay, P. H., and Norman, D. A. Human Information Processing: An Introduction to
Psychology. Academic Press, Inc., New York, 1977.

17. Maes, P. How to do the right thing. Connection Science, 1989. 1(3): pp. 291-323.
18. Ordeshook, P. Game theory and political theory: An Introduction. Cambridge: Cambridge

University Press, 1986.
19. Pirjanian, P. Behavior coordination mechanisms -- state-of-the-art. Technical Report IRIS-

99-375, Institute of Robotics and Intelligent Systems, School of Engineering, University of
Southern California, October 1999.

20. Port, R.F., and Gelder, T. van (eds.) Mind as Motion: Explorations in the Dynamics of
Cognition. MIT Press, Cambridge, Mass, 1995.

21. Reiter, R. Knowledge in Action: Logical Foundations for Specifying and Implementing
Dynamical Systems, Cambridge MA: MIT Press, 2001.

22. Selfridge, O. G. Pandemonium: a paradigm for learning in mechanization of thought
processes. In Proceedings of a Symposium Held at the National Physical Laboratory,
London, November 1958, pp. 513-526.

23. Tyrrell, T. Computational Mechanisms for Action Selection, PhD thesis, University of
Edinburgh, 1993.

Choreography and Orchestration Conformance
for System Design�

Nadia Busi, Roberto Gorrieri, Claudio Guidi,
Roberto Lucchi, and Gianluigi Zavattaro

Department of Computer Science,
University of Bologna, Italy

{busi, gorrieri, cguidi, lucchi, zavattar}@cs.unibo.it

Abstract. In a previous work we have presented a formal framework
devoted to show the relevance of choreography and orchestration in the
design of service oriented applications. Even if useful to start a formal in-
vestigation of the relationship between choreography and orchestration,
the proposed framework was not suitable to specify real case studies. In
fact, it simply permitted to specify all possible computations abstract-
ing away from the conditions driving the choice of the actual behaviour.
In this paper we tackle this problem by introducing the notion of state
variables. The addition of state requires a substantial modification of the
entire framework because the same state variable, at the level of choreog-
raphy, can be actually stored in distributed orchestrators that will need
to synchronize in order to maintain consistent views. In order to faith-
fully investigate this problem we also need to modify the formal model at
the orchestration level, moving from synchronous to asynchronous com-
munication as the latter is the communication modality of the ordinary
communication infrastructures.

1 Introduction

Choreography and orchestration languages are used for composing service-based
applications. The former ones allow to manage applications composed of a num-
ber of services in a top view manner, that is the conversation rules which govern
the interactions between the services involved in the applications, whereas the
latter ones provide a mean to program the internal executable behaviour of some
specific service, called orchestrator, responsible to coordinate the collaborating
services. These approaches have been separately developed by industrial consor-
tia and international organizations as W3C and OASIS. In particular, WS-CDL
[W3C] and WS-BPEL [OAS] specifications represent the most credited languages
for the Web Services technology which deal with choreography and orchestration
respectively.

Our work aims at synergically exploiting both languages for designing service-
based applications where choreography and orchestration can be used for giving
different views of the same system. The former one abstracts away from single
� Research partially funded by EU Integrated Project Sensoria, contract n. 016004.

P. Ciancarini and H. Wiklicky (Eds.): COORDINATION 2006, LNCS 4038, pp. 63–81, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

64 N. Busi et al.

service peculiarities and, by means of roles, describes the behaviours of system
participants focusing on their access points and the interactions they perform.
The latter one is centered on single services by allowing to design their internal
activities by means of workflow operators and message exchange capabilities.

In this context the challenge is to identify the interdependencies between the
two views and, in particular, a relationship which allows to verify whether a
choreography and an orchestrated system describe the same application. A first
effort in this direction has been presented in [BGG+05] where a formal frame-
work, devoted to express the relationship between choreography and orches-
tration, was introduced. The framework is composed by two calculi, inspired
by WS-CDL and WS-BPEL, which capture the peculiarities of choreography
and orchestration and a notion of conformance between them. In particular, all
the framework is centered on the basic interaction mechanisms and the com-
positional operators exploited to program more complex patterns. Even if the
compositional operators are the same at the choreography and the orchestration
levels, the basic interaction mechanisms are significantly different. At the chore-
ography level, the basic interaction mechanisms are atomic synchronizations that
permit an instantaneous flow of information between two roles. At the orchestra-
tion level, on the contrary, the basic interaction mechanisms consider the act of
sending (executed by one process) separated from the act of receiving (executed
by another independent process). Finally, conformance is a relationship between
the two calculi, inspired to bisimulation, which allows us to verify whether the
interactions performed by an orchestrated system behave in accordance with the
interactions expressed by a given choreography.

Although the interaction mechanisms that can be described with the frame-
work that we have proposed in [BGG+05] are relevant for managing service-
oriented applications, they are insufficient for describing complex systems. The
main lack of expressiveness is concerned with the impossibility to describe the
choices that are performed depending on the contents of the exchanged mes-
sages. For instance, let us consider a electronic shop that allows payments via
services provided by either Visa or Master Card depending on the kind of credit
card used by the buyer. In this example, the interaction pattern that can be
expressed with the choreography calculus in [BGG+05] is an alternative choice
between a basic interaction involving the electronic shop and the Visa service,
or a basic interaction involving the electronic shop and the Marter Card ser-
vice. The condition governing this choice cannot be specified. Nevertheless, this
condition is definitely relevant when conformance comes into play; for instance,
an orchestrator that randomly sends the request for payment to either Visa or
Master Card is conformant if we abstract away from this aspect.

The aim of this paper is to tackle this lack of expressiveness of our previous
version of the framework. The main idea we follow is to introduce state vari-
ables both in the choreography and in the orchestration calculi. This extension
requires a substantial redefinition of the entire framework. Intuitively, the main
problem is concerned with the fact that a state variable at the choreography
level could be distributed among different and possibly distributed processes at

Choreography and Orchestration Conformance for System Design 65

the orchestration level. For instance, an airplane reservation role could be em-
bodied by a travel agency and several airplane company services. In this case,
a state variable associated to the airplane reservation role (e.g. the departure
date) is distributed among the travel agency and the airplane companies con-
tacted to complete the reservation. Moreover, in order to faithfully model at
the orchestration level the problem of synchronizing the distributed views on
the shared state variables, we need to consider asynchronous communication1

as this is the communication modality provided by the ordinary communication
infrastructures.

Many technical novelties are necessary to model faithfully state variables; here
we simply recall the most relevant ones. In the calculi, choices are now expressed
with two distinct operators: an external non-deterministic choice guarded by
basic interaction operations and a conditional construct depending on the state
of variables. The operational semantics of the orchestration language is strongly
influenced by the asynchronous communication mechanism; in fact, in order
to model the basic request-response communication pattern, it is necessary to
keep track of the relationship between an asynchronous request message and
the corresponding asynchronous response message. The main novelties are in
the definition of the conformance relation. In particular it deals with the initial
internal state of processes and then introduces different kinds of silent actions
for distinguishing between internal and coordinating interactions. The former
one is used to describe internal synchronization while the latter one expresses
the interactions the orchestrators exploit for respecting the constraints of the
choreography and that are not considered in it.

There are other works that consider both choreography and orchestration as
complementary approaches for managing service oriented systems. In [CHYa]
and [CHYb] Honda et al. present two process calculi: one inspired to WS-
CDL and the other to pi-calculus, they formalize the two calculi without pre-
senting any formal relation between them. In [DD04] Dijkman and Dumas
exploit Petri nets for describing choreography, orchestration and service inter-
face behaviours focusing on the relationship between a single orchestrator w.r.t.
a given choreography. In [BBM+05] Schifanella et al., by means of automa-
ton, defines a conformance notion which allows them to test whether interop-
erability is guaranteed by limiting the notion to systems involving only two
peers. Some other papers about conformance exist like [HM05] and [BGJ+05].
The former focuses on automated testing of behavioural contracts provided
by a service, whereas the latter deals only with systems composed by two
peers.

The paper is structured as follows. Section 2 presents the language for de-
scribing choreography whereas in Section 3 we present the orchestration one. In
Section 4 the conformance notion is defined and in Section 5 a business appli-
cation case study is reported. Section 6 concludes the paper by reporting some
final remarks and future work.

1 The formal framework in [BGG+05] considers synchronous communication both for
choreography and for orchestration.

66 N. Busi et al.

2 A Formal Model for Choreography

In this section we introduce the formal model for representing choreography.
Intuitively, a choreography is described by three main components: the roles,
the initial state constraints on variables and the conversations.

A role represents the behaviour that a participant has to exhibit in order to
fulfill the activity defined by the choreography. Each role, which is identified by
a name, is equipped with a set of variables and a set of operations.

Operations represent the access point and can have one of the following in-
teraction modalities: One-Way or Request-Response. Indeed, in WSDL specifi-
cations, the most significant types of operations are the One-Way, where only
the incoming message is defined, and the Request-Response, where both the
incoming message and the response one are defined.

Let us now introduce the formalization of roles, variables and operations. Let
V ar be the set of variables ranged over by x, y, z, k. We denote with x̃ tuples
of variables, for instance, we may have x̃ = 〈x1, x2, ..., xn〉. Let OpName be the
set of operation names, ranged over by o, and OpType = {ow, rr} be the set
of operation types where ow denotes a One-Way operation whereas rr denotes
the Request-Response one. An operation is described by its operation name and
operation type. Namely, let Op = {(o, t) | o ∈ OpName, t ∈ OpType} be the
set of operations where each operation is univocally identified by its name. Let
RName be the set of the role names, ranged over by ρ and Role, defined as
{(ρ, ω, V) | ρ ∈ RName, ω ⊆ Op, V ⊆ V ar}, be the set which contains all the
possible roles.

The state of a choreography describes the variable values and it is represented
by a function SC : V ar → V al∪{⊥} from variables to the set V al∪{⊥} ranged
over by w. V al, ranged over by v, is a generic set of values on which it is defined
a total order relation2. SC(x) represents the value of variable x in the state SC

(SC(x) = ⊥ means that x is not yet initialized), while SC [v/x] denotes the state
SC where x holds value v (we use SC [ṽ/x̃] when dealing with tuples of variables),
formally:

SC [v/x] = S′
C S′

C(x′) =
{

v if x′ = x
SC(x′) otherwise

A choreography can be designed by considering the fact that some variables
can hold only a limited set of values within the initial state. This is the case,
for example, of a binary variable which can assume only the values 0 or 1. The
following grammar allows us to generate logic conditions on variables which we
will exploit for expressing the constraints of the initial state and conditional
constructs:

χ ::= x ≤ e | e ≤ x | ¬χ | χ ∧ χ

where e denotes an expression which can contain variables references and which
can be evaluated into a value v or, when some variables within the expression
2 we extend such an order relation on the set V al ∪ {⊥} considering ⊥ < v, ∀v ∈ V al

Choreography and Orchestration Conformance for System Design 67

are not instantiated, into the symbol ⊥. In the following we use e ↪→SC w to
denote that, when the state is SC , the expression e is evaluated into the value
w. It is worth noting that constraints such as x = v, x �= v and v1 ≤ x < v2 can
be defined as abbreviations. We exploit the notation SC � χ for denoting that
the state SC satisfies the condition χ. The satisfaction relation for � is defined
by the following rules:

1. SC(x) = ⊥ ⇒ SC � (x ≤ ⊥ ∧⊥ ≤ x)
2. e ↪→SC v,SC(x) ≤ v ⇒ SC � x ≤ e
3. e ↪→SC v, v ≤ SC(x) ⇒ SC � e ≤ x
4. SC � χ′ ∧ SC � χ′′ ⇒ SC � χ′ ∧ χ′′

5. ¬(SC � χ) ⇒ SC � ¬χ

We highlight the fact that rule 1 states that when a variable x is defined with
value ⊥ the only condition which can be satisfied on such a state is x = ⊥.

The conversations among the roles are defined by using a conversation lan-
guage whose definition follows where we intend I as a finite non-empty subset
of natural numbers:

C ::= 0 | η | C; C | C|C | ∑+
i∈I ηi; Ci |

∑⊕
i∈I χi?ηi; Ci

η ::= (ρA, ρB, o, x̃, ỹ, dir) | x := e

In the following we use CLP , ranged over by C, to denote the set of con-
versations. η represents the basic building block of a conversation which can be
an interaction or an assignment. (ρA, ρB, o, x̃, ỹ, dir) means that an interaction
from role ρA to role ρB is performed. In particular, o is the name of the oper-
ation (o, t) ∈ Op on which the message exchange is performed. Variables x̃ and
ỹ are those used by the sender and the receiver, respectively and dir ∈ {↑, ↓}
represents if the interaction is a request (↑) or a response (↓) one. x := e means
that the result of the evaluation of the expression e is assigned to the variable
x. Coherently with the grammar of logic conditions, here we abstract away from
the syntax of expression e and we exploit the evaluation function ↪→SC intro-
duced above. A conversation can be the null one (0), a basic operation (η), the
sequential composition (C; C), the parallel composition (C | C) or two different
kind of choices: the non-deterministic choice (

∑+
i∈I ηi; Ci) and the deterministic

one (
∑⊕

i∈I χi?ηi; Ci). The former non-deterministically selects a conversation to
execute independently from the state of the choreography whereas in the latter
the selection is driven by guard conditions χ. The choice is deterministic because
the guards are evaluated in a sequential order.

The semantics of CLP is defined in terms of a labelled transition system
[Kel76] which describes the evolution of a conversation joined with a state. Let
ActC = {μ | μ = (ρA, ρB, o, ṽ, dir)} ∪ {τ} be the set of actions ranged over by ν

where μ represents parameterized interactions. (C,SC) ν→ (C′,S′
C) means that

the conversation C in the state SC evolves in one step in a configuration (C′,S′
C)

performing the action ν. Let ΓC be the set of all possible states over the variables
in V ar. We define →⊆ (CLP , ΓC)×ActC×(CLP , ΓC) as the least relation which

68 N. Busi et al.

Table 1. Semantics of CLP

(Interaction 1)

((ρA, ρB , o, x̃, ỹ, ↑), SC)
μ→ (0, SC [w̃/ỹ]), μ = (ρA, ρB, o, w̃, ↑), w̃ = SC(x̃)

(Interaction 2)

((ρA, ρB , o, x̃, ỹ, ↓), SC)
μ→ (0, SC [w̃/x̃]), μ = (ρA, ρB, o, w̃, ↓), w̃ = SC(ỹ)

(Assign)
e ↪→SC v

(x := e,SC) τ→ (0, SC [v/x])

(Sequence)

(C, SC) ν→ (C′, S ′
C)

(C; D, SC) ν→ (C′; D, S ′
C)

(Parallel)

(C, SC) ν→ (C′, S ′
C)

(C | D, SC) ν→ (C′ | D, S ′
C)

(Congr)

C′ ≡ C, (C, SC) ν→ (D, S ′
C), D ≡ D′

(C′, SC) ν→ (D′, S ′
C)

(Choice 1)

(ηi; Ci, SC) ν→ (C′
i, S ′

C), i ∈ I

(+
i∈I ηi; Ci, SC) ν→ (C′

i, S ′
C)

(Choice 2)

SC � χi, (ηi, SC) ν→ (0, S ′
C), SC �/χj , j ∈ I, j < i

(⊕
i∈I χi?ηi; Ci, SC) ν→ (Ci, S ′

C)

(Structural Congruenge)

0; C ≡ C C | 0 ≡ C
C | D ≡ D | C (C | D) | F ≡ C | (D | F)

satisfies the axioms and rules of Table 1 and closed w.r.t. ≡, where ≡ is the least
congruence relation satisfying the axioms at the end of Table 1.

The structural congruence ≡, which equates the conversations whose behav-
iour cannot be distinguished, expresses that (C, |) is an abelian monoid where
0 is the null element. Furthermore, the rule 0; C ≡ C means that when a conver-
sation completes then the other one which follows in sequence can be performed.

The description of axioms and rules follows. The axioms Interaction de-
scribe that an interaction, which is a request or a response one depending on
the value of dir, is performed. When a request is performed (dir =↑) the in-
formation contained in the variables x̃ within the sender role ρA are passed to
the variables ỹ within the receiver role ρB exploiting the operation o of the
role ρB. When a response is performed (dir =↓) the information contained in
the variables ỹ within the receiver role ρB are passed to the variables x̃ within
the sender role ρA exploiting the operation o of the role ρB. The rule Assign
states that the resulting value of the expression e, evaluated within the state SC ,
is assigned to a variable x thus updating the state of the choreography. Rules
Sequence, Parallel and Congr are standard. Rule Choice 1 deals with
the non-deterministic choice which is independent of the state. It is worth not-
ing that the construct ηi; Ci guarantees that the conversation can always move.
Rule Choice 2, on the contrary, deals with deterministic choice depending on
the state SC . Here, we want to highlight that guards are sequentially evaluated
and the first which is satisfied in the state SC is selected.

Choreography and Orchestration Conformance for System Design 69

Now we are ready to define a choreography. A choreography, denoted by C,
is defined by the tuple (C, Σ, X) where C ∈ CLP , Σ ⊆ Role is a finite set
containing all involved roles and X is a logic condition which expresses the
variables constraints of the initial state. The constraint expressed by X is strictly
pertaining to the choreography because it expresses the set of possible values that
variables can hold at the initial state. It is worth noting that such a constraint
is not considered when the system evolves.

We say that a choreography C = (C, Σ, X) is well-formed if: i) the sets of
variables used by roles are disjoint, ii) the variables appearing in each guard
condition and each assignment in C involve variables of a single role. In the
following we consider only well-formed choreographies.

3 A Formal Model for Orchestration

An orchestrator can be seen as a process, associated to an identifier, that can
exchange information, represented by variables, with other processes. Let ID be
the set of possible orchestrator identifiers ranged over by id. The language is
defined as it follows where we intend I as a finite non-empty set of indexes:

P ::= 0 | ō | ō(ỹ) | ō(x̃, ỹ) | ε | x := e | P ; P | P | P | ∑+
i∈I εi; Pi |

∑⊕
i∈I χi?Pi

ε ::= o | o(x̃) | o(x̃, ỹ, P)
E ::= [P,S]id | E ‖ E

An orchestrated system E consists of the parallel composition of orchestrators.
An orchestrator [P,S]id is a process P identified by id whose variables state is S.
The variables state of an orchestrator is described by a function S : V ar → V al∪
{⊥} mapping variables to values as defined for the choreography. Informally, the
idea is that orchestrators are executed on different locations, thus they can be
composed by using only the parallel operator (‖). Processes can be composed in
parallel (|), sequence (;) and with two different alternative composition operators:
one is composed of input guarded processes and the other one is composed of
processes guarded by conditions on variables state (such processes are of the
form χ?P where χ is the condition associated to P).

0 represents the null process. Communication mechanisms model Web Ser-
vices One-Way and Request-Response operations. In particular, we have three
kinds of primitives for synchronization, one for the internal synchronization and
two for the external one. The former simply consists of a channel o that different
threads of the process running in parallel can use to coordinate their activities. In
this case no message is exchanged; this is because the orchestrator variables are
shared by all threads running on that orchestrator. The primitives for external
synchronization, that is between different orchestrators, are the following ones:
o(x̃) and ō(ỹ) represent the input and the output of a single message whereas
the primitives o(x̃, ỹ, P) and ō(x̃, ỹ) represent coupled messages exchanges. In
particular we have that o(x̃) represents a One-Way operation whose name is o
where the received information is stored in the tuple of variable x̃ of the receiver.

70 N. Busi et al.

Table 2. Axioms over P

(In)

(o, S) o→ (0, S)
(Out)

(ō, S) ō→ (0, S)

(One-WayOutAsyn)

(ō(ỹ), S) τ→ (〈ō(S(ỹ))〉 , S)
(One-WayOut)

(〈ō(ṽ)〉 , S)
ō(ṽ)→ (0, S)

(One-WayIn)

(o(x̃), S)
o(ṽ)→ (0, S [ṽ/x̃])

(Req-OutAsyn)

(ō(x̃, ỹ), S) τ→ (〈ō(S(x̃), ỹ)〉 , S)
(Req-Out)

(〈ō(ṽ, ỹ)〉 , S)
ō(ṽ,ỹ)(n)→ (on(ỹ), S)

(Resp-OutAsyn)

(ōn(ỹ), S) τ→ (〈ōn(S(ỹ))〉 , S)
(Resp-Out)

(〈ōn(ṽ)〉 , S)
ōn(ṽ)→ (0, S)

(Req-In)

(o(x̃, ỹ, P),S)
o(ṽ,ỹ)(n)→ (P ; ōn(ỹ), S [ṽ/x̃])

(Resp-In)

(on(x̃), S)
on(ṽ)→ (0, S [ṽ/x̃])

ō(ỹ) represents a One-Way invocation whose name is o and the sent information
is stored in the tuple ỹ of the sender. o(x̃, ỹ, P) represents a Request-Response
operation whose name is o. In this case the process receives a message and stores
the received information in x̃ then it executes the process P and, at the end,
sends the information contained in ỹ as a response message to the invoker. Fi-
nally, ō(x̃, ỹ) represents the invocation of a Request-Response operation whose
name is o. The process sends the information contained in x̃ as a request message
and stores the information of the response message in ỹ. The processes x := e
deal with variable assignment.

Let OL be the set of all the orchestrated system ranged over by E. The se-
mantics of OL is defined in terms of a labelled transition system which describes
the evolution of an orchestrated system. To this end we exploit the syntax of the
language enhanced with terms we use to describe asynchronous communication
as it follows:

P ::= . . . | 〈o(ṽ)〉 | 〈o(ṽ, ỹ)〉 | 〈ōn(ṽ)〉

We define → as the least relation which satisfies the axioms and rules of
Tables 2, 3 and 4. Let ActOL = {ō, o, ō(ṽ), o(ṽ), ō(ṽ, k̃)(n), o(ṽ, z̃)(n), ōn(ṽ), on(ṽ),
σ, τ} be the set of actions ranged over by γ. σ is a parameterized action of the
form (id, id′, o, ṽ, dir) where id, id′ are orchestrators ids, o is an operation name,
ṽ are tuples of values and dir ∈ {↑, ↓}.

Table 2 deals with In, Out, One-WayOut, One-Way-In, Req-Out, Req-
In, Resp-Out, Resp-In axioms. It is worth noting that the processes 〈o〉,
〈o(ỹ)〉,〈o(x̃, ỹ)〉,〈ōn(ṽ)〉 model asynchronous communication which characterize
Service Oriented Computing and in particular Web Services. Indeed, every time
an outcoming message process is performed, they “freeze” the value of the vari-
able to be sent and, by exploiting the structural congruence rules of Table 3, they

Choreography and Orchestration Conformance for System Design 71

Table 3. Rules over P

(Assign)
e ↪→S v

(x := e,S) τ→ (0, S [v/x])

(Int-Sync)

(P, S) o→ (P ′, S) , (Q, S) ō→ (Q′, S)

(P | Q, S) τ→ (P ′ | Q′, S)

(CongrP)

P ≡P P ′ , (P ′, S) γ→ (Q′, S ′), Q′ ≡P Q

(P, S)
γ→ (Q,S ′)

(Par-Int)

(P, S)
γ→ (P ′, S ′)

(P | Q, S)
γ→ (P ′ | Q, S ′)

(Seq)

(P, S)
γ→ (P ′, S ′)

(P ; Q,S)
γ→ (P ′; Q, S ′)

(Choice 1)

(εi; Pi, S)
γ→ (P ′, S ′) i ∈ I

(+
i∈I εi; Pi, S) γ→ (P ′, S ′)

(Choice 2)
S � χi S �/χj , j ∈ I, j < i

(⊕
i∈I χi?Pi, S) τ→ (Pi, S)

(Structural Congruenge over P)

P | 0 ≡P P 0; P ≡P P (P | Q) ≡P (Q | P) (P | Q) | R ≡P P | (Q | R)
(〈ō〉 ; Q) ≡P (〈ō〉 |Q) (〈ō(ṽ)〉 ; Q) ≡P (〈ō(ṽ)〉 |Q)

(〈ō(ṽ, ỹ)〉 ; Q) ≡P (〈ō(ṽ, ỹ))〉 |Q) (〈ōn(ṽ)〉 ; Q) ≡P (〈ōn(ṽ)〉 |Q)

goes in parallel with the other processes. In the Req-In rule, after the reception
of a request on a Request-Response operation the process P must be executed
before sending the response.

In Table 3 there are the rules over P where the Assign one deals with vari-
ables assignment within the orchestrators. Rule Int-Sync deals with internal
synchronization whereas CongrP with internal structural congruence denoted
by ≡P . Par-Int and Seq describe the behaviour of processes composed in par-
allel and sequentially, respectively. Finally Choice1 and Choice2 describe the
behavior of the two alternative composition operators. The former one non-
deterministically selects among the processes guarded by inputs which can be
consumed, while the latter one resembles the deterministic choice, depending on
variables state, used in choreography.

In Table 4 the rules at the level of orchestrator system are considered. Rule
One-WaySync deals with the synchronization on a One-Way operation be-
tween two orchestrators whereas the rules Req-Sync and Resp-Sync deal with
that on a Request-Response one. Rule Req-Sync exploits a fresh label n which
is generated in order to univocally link the response synchronization defined in
rule Resp-Sync. Considering the axioms Req-Out and Req-In indeed, the
Request-Response primitives will be transformed into two One-Way (invoca-
tion and reception) identified by the label n which is unique and univocally

72 N. Busi et al.

Table 4. Rules over E

(Rules over E)

(One-WaySync)

[P, S]id
ō(ṽ)→ [P ′, S ′]id , [Q, T]id′

o(ṽ)→ [Q′, T ′]id′

[P, S]id ‖ [Q, T]id′
σ→ [P ′, S ′]id ‖ [Q′, T ′]id′

, σ = (id, id′, o, ṽ, ↑)

(Req-Sync)

[P, S]id
ō(ṽ,ỹ)(n)→ [P ′, S ′]id , [Q, T]id′

o(ṽ,ỹ)(n)→ [Q′, T ′]id′

[P, S]id ‖ [Q, T]id′
σ→ [P ′, S ′]id ‖ [Q′, T ′]id′

,
n fresh
σ = (id, id′, o, ṽ, ↑)

(Resp-Sync)

[P, S]id
on(ṽ)→ [P ′, S ′]id , [Q, T]id′

ōn(ṽ)→ [Q′, T ′]id′

[P, S]id ‖ [Q, T]id′
σ→ [P ′, S ′]id ‖ [Q′, T ′]id′

, σ = (id, id′, o, ṽ, ↓)

(Par-Ext)

E1
γ→ E′

1

E1 ‖ E2
γ→ E′

1 ‖ E2

(CongrE)

E1 ≡ E′
1 , E′

1
γ→ E′

2, E′
2 ≡ E2

E1
γ→ E2

(Int-Ext)

(P, S)
γ→ (P ′, S ′)

[P, S]id
γ→ [P ′, S ′]id

(Structural Congruence over E)

P ≡P Q

[P, S]id ≡ [Q, S]id
E1 ‖ E2 ≡ E2 ‖ E1 E1 ‖ (E2 ‖ E3) ≡ (E1 ‖ E2) ‖ E3

determined during the synchronization. It is worth noting that all the synchro-
nizations which are performed between different orchestrators are labelled with
an action σ. This fact will be fundamental for the definition of the conformance
notion presented in the next section. Par-Ext deals with external parallel com-
position and CongrE is for external structural congruence denoted by ≡. Int-
Ext expresses the fact that an orchestrator behaves in accordance with its in-
ternal processes.

4 Conformance Between Choreography and Orchestration

Our proposal defines a conformance notion based on a relation between the la-
belled transition system of choreography and the labelled transition system of
another model obtained from the orchestration system by associating choreogra-
phy roles to the orchestrators. In particular, let C = (C, Σ, X) be a choreography
and E be an orchestrated system. We define a joining function, named Ψ , for
associating the orchestrators and the variables of E to the roles of C and we test
the conformance, up to Ψ , of E and C by using a relation where the σ labels of
the former are compared with the μ ones of the latter.

Choreography and Orchestration Conformance for System Design 73

Definition 1 (joining functions). A joining function is an element of the set

{Ψ | Ψ : ID → RName ∪ {⊥} × (V ar → V ar ∪ {⊥})}
containing functions which associate to each orchestrator identifier a pair com-
posed of a choreography role (or the ⊥ value in case no role is associated) and
a function from orchestrator variables to choreography variables (or the ⊥ value
in case no variable is associated). We denote with Ψ1 the projection of Ψ on
the first element of the pair (the associated role), with Ψ2 the projection on the
second element (the variable mapping function).

Given a joining function Ψ and an action σ = (id, id′, o, ṽ, dir) of a given orches-
trated system where id and id′ are orchestrator identifiers, o is an operation, ṽ
are tuples of values and dir ∈ {↑, ↓}, we denote with

Ψ [σ] = (Ψ1(id), Ψ1(id′), o, ṽ, dir)

the renaming of the orchestrator identifiers with the joined roles. The projection
Ψ2 will be exploited for joining the initial values of the choreography variables
to the related ones of the orchestrated system.

Now we introduce the conformance notion between a choreography and an
orchestrated system which exploits a relation, named conformability relation,
inspired to bisimulation [Mil89]. Given a choreography C = (C, Σ, X) an orches-
trated system E and a joining function Ψ , the idea is to consider all the possible
choreography states which satisfy the initial constraint X and for each of them
test, up to Ψ , the conformability (�Ψ) between the labelled transition system
of the choreography and a new labeled transition system for the orchestrated
systems that we call the joined labelled transition system. In particular, in this
new transition system the initial values of the variables of the orchestrated sys-
tem are joined with the choreography ones up to Ψ2. Furthermore, some hiding
operators are applied to the orchestrated system in order to observe only those
interactions which are relevant for the choreography. Hiding consists of replacing
labels with τ or with a special label τ̃ and it is applied to three kinds of actions:
(i) the interactions that involve an orchestrator not joined with any role are
replaced with τ̃ ; (ii) the interactions performed on operations not declared in
the choreography are replaced with τ̃ ; (iii) the interactions which are performed
between orchestrators joined with the same role are replaced with τ . The case
(iii) is concerned with interactions that corresponds to internal operation within
the same role at the level of choreography, while cases (i) and (ii) correspond to
coordinating actions that are introduced only at the level of orchestration in or-
der to coordinate distributed orchestrators. For this reason we distinguish these
two kinds of actions introducing the new label τ̃ . Formally, such a difference
comes into play in the conformability relation.

Definition 2 (Joined labelled transition system). Given a choreography
C = (C, Σ, X), an orchestrated system E ∈ OL and a joining function Ψ such
that Im1(Ψ) = Σ ∪ {⊥}3, let ωC be the set of operations involved within the
3 Im1(Ψ) = Ψ1(id) | id ∈ ID

74 N. Busi et al.

choreography C, let ωo be the set of operations exhibited by the processes of E
and let EOP = ωo/ωC be the set of operations exhibited by E and which do not
appear within the roles of C. Let E⊥ be the set of orchestrator identifiers id of
E for which Ψ(id) = ⊥. We denote the joined labelled transition system with:

E�Ψ2/EOP //E⊥///Eid

where:

– E�Ψ2 is an operator which associates the values of the choreography vari-
ables in SC to the corresponding variables in the states of E up to the joining
function Ψ2. Formally let x̃id and ỹid be the tuples of variables in V ar which
belong to the state of the orchestrator id and for which the following con-
ditions hold respectively: Ψ2(id)(x̃id) �= ⊥, Ψ2(id)(ỹid) = ⊥ and let ṽid be
the tuple of values of the choreography variables joined with the variables x̃id

that is ṽid = SC(Ψ2(id)(x̃id)). We have that the E�Ψ2 is inductively defined
as follows:

- [P,S]�id Ψ2 = [P,S[ṽid/x̃id,⊥/ỹid]]id
- E�Ψ2 = [P,S[ṽid/x̃id,⊥/ỹid]]id ‖ E′�Ψ2

– /EOP is a hiding operator which hides, replacing with τ̃ moves, all the tran-
sitions which contain operations contained in EOP

– //E⊥ is a hiding operator which hides, replacing with τ̃ moves, all the tran-
sitions which contain orchestrators not joined with any role.

– ///Eid hides, replacing with τ moves, all the interactions between the same
role (the id of the sender is the same of the receiver).

In the following we present the conformability relation between the labelled
transition system of the choreography and the orchestrated system one. Con-
formability is inspired by bisimulation but some differences exist. In particular,
conformability considers τ̃ and τ moves differently. Indeed, in order to abstract
away from coordinating interactions on the orchestration side, we will exploit the
particular arrows σ⇒ and τ⇒ for representing the concatenation of the following
transitions τ̃∗→ σ→ τ̃∗→ and τ̃∗→ τ→ τ̃∗→ respectively. This means that we focus on observ-
able interactions which are represented by σ for the orchestrated system and by
μ = Ψ1[σ] for the choreography. Furthermore, τ actions in choreography, which
correspond to assignments, are related to internal role actions in orchestration.
It is worth noting that here, we are not interested to distinguish between dead-
lock and termination states both in choreography and orchestration which are
related in conformability by introducing the set of states Cδ(SC) and Eδ defined
in the following.

Definition 3 (Conformability). Let Ψ be a joining function. A relation RΨ ⊆
((CLP , ΓC)×OL) is a conformability relation if ((C,SC), E) ∈ RΨ implies that
C ∈ Cδ(SC) and E ∈ Eδ or, for all μ ∈ ActC and for all σ ∈ ActOL, the
following conditions hold:

Choreography and Orchestration Conformance for System Design 75

1. (C,SC)
μ→ (C′,S′

C) ⇒ E
τ̂→

∗
E′ ∧ E′ σ→ E′′ ∧ E′′ τ̂→

∗
E′′′

∧ ((C′,S′
C), E′′′) ∈ RΨ ∧ Ψ1[σ] = μ

2. (C,SC) τ→ (C′,S′
C) ⇒ E

τ̂→
∗

E′ ∧ E′ τ→ E′′ ∧ E′′ τ̂→
∗

E′′′

∧ ((C′,S′
C), E′′′) ∈ RΨ

3. E
σ⇒ E′ ⇒ (C,SC) τ→∗

(C′,S′
C) ∧ (C′,S′

C)
μ→ (C′′,S′′

C) ∧
∧ (C′′,S′′

C) τ→∗
(C′′′,S′′′

C) ∧ ((C′′′,S′′′
C), E′) ∈ RΨ ∧ Ψ1[σ] = μ

4. E
τ⇒ E′ ⇒ ((C,SC), E′) ∈ RΨ ∨ ((C,SC) τ→ (C′,S′

C)∧ ((C′,S′
C), E′) ∈ RΨ)

where τ̂ ∈ {τ, τ̃}, the arrow
γ⇒ means the concatenation of the following transi-

tions: τ̃∗→ γ→ τ̃∗→ and Cδ(SC) and Eδ are defined as follows:

– Cδ(SC) = {C ∈ CLP | ∀C′ ∈ CLP ∃/ ν,S′
C s.t. (C,SC) ν→ (C′,S′

C)}
– Eδ = {E ∈ OL | ∃/E′ ∈ OL s.t. E

σ→ E′ ∨ E
τ̃→ E′ ∨ E

τ→ E′}
We write (C,SC) �Ψ E if there exists a conformability relation RΨ such that

((C,SC), E) ∈ RΨ .

We can now conclude this section reporting the formal definition of our confor-
mance notion.

Definition 4 (Conformance). Given a choreography C = (C, Σ, X), an or-
chestrated system E ∈ OL and a joining function Ψ such that Im1(Ψ) = Σ∪{⊥},
let ωC be the set of operations involved within the choreography C, let ωo be the
set of operations exhibited by the processes of E and let EOP = ωo/ωC be the set
of operations exhibited by E and which do not appear within the roles of C. Let
E⊥ be the set of orchestrator identifiers id of E for which Ψ(id) = ⊥. We say
that E is conformant to C if the following condition holds:

∀SC ∈ ΓC s.t. SC � X, (C,SC) �Ψ E�Ψ2/EOP //E⊥///Eid

Observe that on the right hand side of �Ψ the joined labelled transition system
of the orchestrated system defined in Definition 2 is considered.

5 Example

Here we reason about the meaning of conformance by using an example. Let us
now consider a business scenario where a customer invokes a market service in
order to buy some goods and it receives the price as a response. Considering the
price, the customer will buy or not the goods (in this case, for the sake of clarity,
we have choosen 100 as a constant for discriminating the price but, in order to
abstract away from this value, it could be possible to use a variable with a range
of values). If the customer sends a message for buying the market will invoke

76 N. Busi et al.

a supplier service for making the order. The supplier service will accept or not
the order. In the case the order can be fulfilled, the market service will invoke a
bank service for the payment and will return a positive answer to the customer,
the bank service concurrently will send a receipt to the cutomer.

In order to define the choreography let us consider four roles: ρC which repre-
sents the customer behaviour, ρM which represents the market service, ρB which
represents the bank service for credit card payment and ρS which represents the
supplier service. For each role we define the following operations and sets of
variables:

ωC ={(RESULT, ow), (RECEIPT, ow)}, ωM ={(PRICE, rr), (BUY, ow)},
ωS = {(ORDER, rr)}, ωB = {(PAY, ow)}.
VC = {goodC , numC , buyC , cardC , ncardC , priceC , outcomeC , receiptC}
VM = {goodM , numM , buyM , cardM , ncardM , priceM , outcomeM}
VS = {goodS , numS , priceS, outcomeS}
VB = {cardB , ncardB , receiptB, priceB}

Let Σ be the set of roles defined in the following way:
Σ = {(ρC , ωC , VC), (ρM , ωM , VM), (ρS , ωS, VS), (ρB, ωB, VB)}.

Let Con be the following conversation:

Con ::= (PriceReq;BuyReq; (buyC = accepted?Order;BuyResp)) |
| outcomeM = OK?Payment

PriceReq ::= (ρC , ρM ,PRICE, goodC ◦ numC , goodM ◦ numM , ↑)
; (ρC , ρM ,PRICE, priceC , priceM , ↓)

BuyReq ::= ((priceC ≥ 100?buyC := cancelled; cardC := null;ncardC := null)
⊕ (priceC < 100?buyC := accepted))
; (ρC , ρM ,BUY, buyC ◦ cardC ◦ ncardC , buyM ◦ cardM ◦ ncardM , ↑))

Order ::= (ρM , ρS ,ORDER, goodM ◦ numM , goodS ◦ numS , ↑)
; (ρM , ρS ,ORDER, outcomeM , outcomeS , ↓)

BuyResp ::= (ρM , ρC ,RESULT, outcomeM , outcomeC , ↑)

Payment ::= (ρM , ρB ,PAY, cardM ◦ ncardM ◦ priceM , cardB ◦ ncardB ◦ priceB , ↑)
; (ρB , ρC ,RECEIPT, receiptB , receiptC , ↑)

Finally, we define the following initial constraints over the variables:

X = goodC ∈ {apple, banana} ∧
∧ 0 ≤ numC ≤ 200 ∧
∧ cardC ∈ {visa, mastercard} ∧
∧ ncardC = priceC = buyC = receiptC = outcomeC = ⊥ ∧

Choreography and Orchestration Conformance for System Design 77

Fig. 1. Interactions among the roles

Fig. 2. Orchestration system E2

∧ goodM = numM = cardM = ncardM = buyM = outcomeM = ⊥ ∧
∧ 50 ≤ priceM ≤ 200 ∧
∧ goodS = numS = cardS = ⊥ ∧
∧ outcomeS ∈ {OK, REJECTED} ∧
∧ receiptB = ReceiptDoc ∧
∧ cardB = ncardB = priceB = ⊥

We consider the choreography Chor = (Con, Σ, X). In Fig. 1 are graphically
represented the interactions among the roles set by Con without showing the
order they are performed. The circles are the roles, the bold segments are the
operations and the arrows are the interactions. In the following we present two
possible orchestrated systems both conformant with the choreography Chor.
Here we intend to show that the orchestrated system can have different levels of
refinement without loosing the conformance with a given choreography.

78 N. Busi et al.

1. We consider an orchestrated system E1 with four orchestrators: C, M , S
and B whose definition follows:

E1 ::= C ‖M ‖ S ‖ B

C ::= [(PRICE(goodC ◦ numC , priceC);
; ((priceC ≥ 100?buyC := cancelled; cardC := null; ncardC := null)
⊕ (priceC < 100?buyC := accepted));BUY(buyC ◦ cardC ◦ ncardC)
; RESULT(outcomeC)) | RECEIPT(receiptC)]C

M ::= [PRICE(goodM ◦ numM , priceM ,0)
| (BUY(buyM ◦ cardM ◦ ncardM); buyM = accepted?Ord)]M

Ord ::= ORDER(goodM ◦ numM , outcomeM); (RESULT(outcomeM)
| outcomeM = OK?PAY(cardM ◦ ncardM ◦ priceM))

S ::= [ORDER(goodS ◦ numS, outcomeS ,0)]S

B ::= [PAY(cardB ◦ ncardB ◦ priceB);RECEIPT(receiptB)]B
We consider a joining function Ψ where C, M , S and B embody roles ρC , ρM , ρS

and ρB, respectively that is:
Ψ1(C) = ρC , Ψ1(M) = ρM , Ψ1(S) = ρS , Ψ1(B) = ρB,
Ψ1(id) = ⊥ for id /∈ {C, M, S, B}.
As far as the variables are concerned we consider a joining function projection
Ψ2 which joins the orchestrated system variables with the choreography ones
that have the same name.

2. We consider a system E2 where there are more than four orchestrators.
In particular the supplier service and the bank service are splitted into three
orchestrators which are joined to the same role.

E2 ::= C ‖M ‖ S1 ‖ S2 ‖ S3 ‖ B1 ‖ B2 ‖ B3

C ::= [(PRICE(goodC ◦ numC , priceC);
; ((priceC ≥ 100?buyC := cancelled; cardC := null; ncardC := null)
⊕ (priceC < 100?buyC := accepted));BUY(buyC ◦ cardC ◦ ncardC))
; RESULT(outcomeC)) | RECEIPT(receiptC)]C

M ::= [PRICE(goodM ◦ numM , priceM ,0) |
| ((BUY(buyM ◦ cardM ◦ ncardM); buyM = accepted?Ord))]M
Ord ::= ORDER(goodM ◦ numM , outcomeM); (RESULT(outcomeM)
| outcomeM = OK?PAY(cardM ◦ ncardM ◦ priceM))

S1 ::= [ORDER(goodS1 ◦ numS1, outcomeS1, SelS)]S1
SelS ::= goodS1 = apple?ORDER2(goodS1 ◦ numS1, outcomeS1)
⊕ goodS1 = banana?ORDER3(goodS1 ◦ numS1, outcomeS1)

Choreography and Orchestration Conformance for System Design 79

S2 ::= [ORDER2(goodS2 ◦ numS2, outcomeS2,0)]S2
S3 ::= [ORDER3(goodS3 ◦ numS3, outcomeS3,0)]S3

B1 ::= [PAY(cardB1 ◦ ncardB1 ◦ priceB1);
; (cardB1 = visa?PAY2(cardB1 ◦ ncardB1 ◦ priceB1)
⊕ cardB1 = mastercard?PAY3(cardB1 ◦ ncardB1 ◦ priceB1))]B1

B2 ::= [PAY2(cardB2 ◦ ncardB2 ◦ priceB2);RECEIPT(receiptB2)]B2
B3 ::= [PAY3(cardB3 ◦ ncardB3 ◦ priceB3);RECEIPT(receiptB3)]B3

We consider the following joining function: Ψ1(C) = ρC , Ψ1(M) = ρM , Ψ1(S1)
= ρS , Ψ1(S2) = ρS , Ψ1(S3) = ρS , Ψ1(B1) = ρB, Ψ1(B2) = ρB, Ψ1(B3) = ρB

Ψ1(id) = ⊥ for id /∈ {C, M, S1, S2, S3, B1, B2, B3}.
As for as the variables are concerned we exploit the same rule used for exam-

ple 1 but with the following differences:

Ψ2(S1)(goodS1 = goodS)
Ψ2(S1)(numS1 = numS)
Ψ2(B1)(cardB1 = cardB)
Ψ2(B1)(priceB1 = priceB)
Ψ2(S2)(outcomeS2 = outcomeS)
Ψ2(S3)(outcomeS3 = outcomeS)
Ψ2(B2)(receiptB2 = receiptB)
Ψ2(B3)(receiptB3 = receiptB)

The first orchestrated system joins strongly the choreography because there is
an orchestrator for each role and all the variables are the same, furthermore
all the communications follow the choreography conversation. On the contrary,
the second one shows how roles can be splitted on more than one orchestrator
without loosing the conformance with the choreography. In particular it is worth
noting that interactions within roles S and B are irrelevant to the end of confor-
mance because they are performed between orchestrators joined with the same
role. Such a kind of interaction are hidden by the ///Eid operator.

6 Conclusion

In this work we continue the line of research initiated in [BGG+05] devoted to
the formalization of the notion of conformance between a choreography and an
orchestrated system, as well as the formalization of the notion of orchestration
and choreography languages. More precisely, we extend our formal framework
with the notion of state and asynchronous communication. The introduction of
state is fundamental to specify the dependencies of system behavior on actual
values, for instance, the fact that a customer selects one seller because it offers
the best price. The second modification is useful to have a closer modeling of
the way orchestrators actually communicate on, e.g., the Internet.

80 N. Busi et al.

From a technical point of view, these extensions have required a considerable
amount of work related to an appropriate modeling of nondeterminism. In par-
ticular, we had to significantly rephrase the notion of conformance. Moreover,
the new notion of conformance supports the distributed implementation at the
orchestration level of choreography roles. For instance, an abstract role for credit
card payment can be actually implemented by means of a group of orchestrators
that support the interaction between banks and credit card institutions.

The conformance notion we have defined between these two concrete languages
is a powerful mechanism for designing and developing complex systems. The
designer can start the design phase by programming the choreography and, in a
second stage, to program and refine orchestrated systems testing, step by step,
its conformance w.r.t. the choreography thus obtaining a correct implementation
of the system.

As future work we intend to develop a mathematical machinery for extracting
the interfaces and the workflow skeleton of the orchestrators starting from a given
choreography. This will permit to verify the conformance even when the whole
set of orchestrator is not completely known (the unknown orchestrators will be
synthesized directly from the the choreography). As far as process calculi are
concerned we intend to make a closer comparison between the two languages we
propose and the most interesting proposals like WS-BPEL for orchestration and
WS-CDL for choreography. In [GGL05] we present a partial comparison which
investigates the interactions patterns by drawing a parallel between WS-CDL
and our choreography language.

References

[BBM+05] M. Baldoni, C. Badoglio, A. Martelli, V. Patti, and C. Schifanella. Ver-
ifying the conformance of web services to global interaction protocols: a
first step. In Proc. of Web Services and Formal Methods Workshop (WS-
FM’05), volume 3670 of LNCS, pages 257–271. Springer-Verlag, 2005.

[BGG+05] Nadia Busi, Roberto Gorrieri, Claudio Guidi, Roberto Lucchi, and Gian-
luigi Zavattaro. Choreography and orchestration: A synergic approach for
system design. In ICSOC (International Conference of Service Oriented
Computing), pages 228–240, 2005.

[BGJ+05] T. Berg, O. Grinchtein, B. Jonsson, M. Leucker, H. Raffelt, and B. Stef-
fen. On the Correspondence Between Conformance Testing and Regular
Inference. In Proc. of Fundmental Approaches to Software Engineering
(FASE’05), volume 3442 of LNCS, pages 175–189. Springer-Verlag, 2005.

[CHYa] Marco Carbone, Kohei Honda, and Nabuko Yoshida. Program-
ming interaction with types. [http://www.w3.org/2002/ws/chor/5/06/
F2FJune14.pdf], W3C WS-CDL WG London F2F, June 14 2002.

[CHYb] Marco Carbone, Kohei Honda, and Nabuko Yoshida. A theoretical basis
of communication-centred concurrent programming. Posted at w3-chor
mailing list, November 2005.

[DD04] Remco Dijkman and Marlon Dumas. Service-oriented design: A multi-
viewpoint approach. Int. J. Cooperative Inf. Syst., 13(4):337–368, 2004.

Choreography and Orchestration Conformance for System Design 81

[GGL05] R. Gorrieri, C. Guidi, and R. Lucchi. Reasoning on the interaction patterns
in choreography. In Proc. of Web Services and Formal Methods Workshop
(WS-FM’05), volume 3670 of LNCS, pages 333–348. Springer-Verlag, 2005.

[HM05] R. Heckel and L. Mariani. Automatic Conformance Testing of Web
Services. In Proc. of Fundmental Approaches to Software Engineering
(FASE’05), volume 3442 of LNCS, pages 34–48. Springer-Verlag, 2005.

[Kel76] Robert M. Keller. Formal verification of parallel programs. Commun.
ACM, 19(7):371–384, 1976.

[Mil89] Robin Milner. Communication and Concurrency. Prentice Hall, 1989.
[OAS] OASIS. Web Services Business Process Execution Language Version 2.0,

Working Draft. [http://www.oasis-open.org/committees/download.php/
10347/wsbpel-specification-draft-120204.htm].

[W3C] W3C. Web Services Choreography Description Language Version
1.0. Working draft 17 December 2004. [http://www.w3.org/TR/2004/
WD-ws-cdl-10-20041217/].

Workflow Patterns in Orc

William R. Cook, Sourabh Patwardhan, and Jayadev Misra

Department of Computer Sciences, University of Texas at Austin
{wcook, sourabh, misra}@cs.utexas.edu

Abstract. Van der Aalst recently proposed a set of workflow patterns to
characterize the kinds of control flow that appear frequently in workflow
processes. These patterns are useful for evaluating the capabilities of
workflow systems and models. In this paper we provide implementations
of the workflow patterns in Orc, a new process calculus for orchestrating
wide-area computations. A key feature of the Orc implementations is
that they are expressed as definitions that can be reused as needed.

1 Introduction

The concept of workflow is familiar to anyone who has worked in an organization:
achieving almost any goal requires coordination of multiple activities involving
multiple participants. These activities are typically subject to many constraints
and dependencies governing the order of activities and the capabilities of par-
ticipants. Exceptional situations, interrupts, and failures must also be handled
without losing sight of the end goal.

Despite the familiar and prosaic nature of workflow, developing formal models
and languages for expressing workflows has proven to be a significant research
challenge. The Workflow Management Coalition defines workflow informally as
“The computerised facilitation or automation of a business process, in whole or
part.” [14] Their reference model defines vocabulary and identifies the interfaces
into and out of a workflow system, but it does not provide a formal model of
workflow.

Formal models of concurrency are being applied to the analysis of workflow.
Petri Nets, which are a variant of finite state automata, have been used to model
workflows for many years [1, 5]. Others have proposed using the π-calculus as a
workflow model [9]. UML activity diagrams, which are a form of flowchart, have
also been used extensively in analysis and design of workflows [4, 6]. There is
as yet no widely-accepted formal model of workflow. The lack of a fundamental
model of workflow makes it difficult to compare different models.

Recently van der Aalst proposed a set of workflow patterns [2] to character-
ize the kinds of control flow that appear frequently in workflow processes. The
patterns facilitate comparison of very different workflow products and models:
products can be compared quantitatively by counting the number of workflow
patterns they can express directly, and qualitatively by examining the complex-
ity of each pattern’s implementation. The patterns have been implemented in a
wide range of systems, providing surprising range of solutions to these common
problems [2, 11, 13, 9].

P. Ciancarini and H. Wiklicky (Eds.): COORDINATION 2006, LNCS 4038, pp. 82–96, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Workflow Patterns in Orc 83

This paper shows how Orc [8], a new orchestration language, can be used to
implement the workflow patterns. Orc is a process calculus in which basic ser-
vices, like user interaction and data manipulation, are implemented by primitive
sites. Orc provides constructs to orchestrate the concurrent invocation of sites
to achieve a goal – while managing time-outs, priorities, and failure of sites or
communication. Orc has already been used to implement a variety of traditional
concurrent programming patterns [8], some of which overlap with the workflow
patterns.

One difficulty in using van der Aalst’s patterns is that the patterns are not
formally defined. The informal descriptions are suggestive but in many cases
admit several interpretations. The implementations in this paper are based on a
study of the original pattern descriptions [2] and their implementation in [11].

2 Overview of Orc

An Orc program consists of a set of definitions and a goal expression which is to
be evaluated. The evaluation of the goal expression calls sites (see below) and
defined expressions, and publishes values. In this section, we give an informal
overview of the programming model. For more a more detailed discussion and a
formal semantics, see [8].

2.1 Syntax

In the following syntax, E is an expression name, M a site name, x a variable,
c a constant, p̄ a list of actual parameters and q̄ a list of formal parameters.

e, f, g, h ∈ Expression ::= M(p̄) || E(p̄) || f >x> g || f | g || f where x :∈ g || x
p ∈ Actual ::= x || M || c || f
q ∈ Formal ::= x || M

Definition ::= E(q̄) Δ f

An expression can be a site call M(p̄), or a call to a defined expression E(p̄).
There are only three operators: >x> for sequential composition, | for parallel
composition, and where for asymmetric parallel composition. The operators are
listed in decreasing order of precedence, so that f >x> g | h means (f >x> g) | h.
The following sections discuss each kind of expression in turn. The syntax of Orc
is extended here to include expressions as arguments in calls to definitions, using
the same substitution semantics given in [8].

2.2 Site Call

The simplest Orc expression is a site call M(p̄), where M is a site name and
p̄ is a list of actual parameters. A site is a separately defined procedure, like a
web service. The site may be implemented on the client’s machine or a remote
machine. A site call elicits at most one response; it is possible that a site never
responds to a call.

84 W.R. Cook, S. Patwardhan, and J. Misra

A site call CNN (d), where CNN is a news service and d is a date, may down-
load the newspage for the specified date. Calling Email(a, m) sends message m
to address a, causing permanent change in the state of the recipient’s mailbox,
and returns a signal to the client to denote completion of the operation. Call-
ing an airline flight-booking site returns the booking information and causes a
tentative state change in the airline database.

Site calls are strict, i.e., a site is called only if all its parameters have values.
We define a few sites in Table 1 that are fundamental to effective programming

in Orc. Additionally, 0 represents a site which never responds; it may be used
to terminate certain parts of a computation. Orc expressions can use Rtimer to
manage time, although none of the current workflow patterns require this ability.

Table 1. Fundamental Sites

let(x, y, · · ·) Returns argument values as a tuple.
if (b) Returns a signal if b is true, and it does not respond if b

is false.
Signal Returns a signal. It is same as if (true).
Rtimer(t) Returns a signal after exactly t time units.

We have made very few assumptions about the behaviors of sites because we
want to orchestrate sites which may have unpredictable delays, including infinite
delays, i.e., failing to respond. This generality allows us to regard humans (and
their communication devices) as sites and include them in orchestrations. An
Orc program may act as the director of a coordinated activity, such as 9-11
dispatching, in which it instructs humans (police, medical personnel) and listens
to their responses.

A site M can have multiple entry points, denoted by M.n where n is the name
of a method in the site.

2.3 Composition Operators

As we have described earlier, evaluation of an Orc expression calls some sites and
publishes a set of values. In Section 2.2, we considered simple expressions like
CNN (d); evaluation of this expression calls site CNN and publishes the value,
if any, returned by the site. In this section, we discuss the syntax and semantics
of general Orc expressions in informal terms.

There are three composition operators in Orc to combine expressions. Sym-
metric composition of f and g, written as f | g, evaluates f and g independently.
The sites called by f and g are the ones called by f | g and a value published
by either f or g is a value published by f | g. Expressions f and g are evaluated
independently. There is no direct communication or interaction between these
two computations; the computations may interact only by accessing a common
site. For example, f may write into a cell by calling site Write and g may read
that cell by calling Read .

Workflow Patterns in Orc 85

Condition : set, wait
A condition allows multiple activities to wait until an event happens.
Before set is called, all calls to wait block. When set is called, all
waiting activities are enabled and future calls to wait return imme-
diately.

Buffer : put, get
The result of Buffer is a local buffer site with two operations, put
and get. The put operation adds values to the buffer and publishes
a signal on completion. The get operation returns an item from the
buffer – it blocks until an item is available.

Lock : acquire, release
A lock has exactly one owner. When the lock is created it is not
owned. An expression that acquires the lock becomes its owner, and
all subsequent calls to acquire will block until the owner calls release.
At that point, one of the blocked expressions, if any, will be given
ownership and unblocked.

Fig. 1. Definition of three factory sites used in the workflow implementations. Each
factory site returns a local site that implements one or more methods. The method
names are listed in italics after the factory name.

In f >x> g, expression f is evaluated, each value published by it initiates a
fresh evaluation of g as a separate computation, and the value published by f
is called x in g’s computation. Variable x may be a parameter in a site call in
g. Evaluation of f continues while (possibly several) evaluations of g are run.
This is the only mechanism in Orc similar to spawning threads. If f is silent
(i.e. publishes no value), g is never evaluated. If f publishes a single value, there
is strict sequencing in the evaluations of f and g. The values published by the
executions of g are the values published by f >x> g. As an example, the following
expressions calls sites CNN and BBC in parallel to get the news for date d. Any
results from either of these sites are bound to x and then site email is called to
send the information to address a.

(CNN (d) | BBC (d)) >x> email(a, x)

The expression f � g is a short-hand for f >x> g when the variable x is not
needed.

To evaluate (g where x :∈ f), start by evaluating both f and g in parallel.
Evaluation of parts of g which do not depend on x can proceed, but site calls
in which x is a parameter are suspended until it acquires a value. In ((M |
N(x)) where x :∈ R), for example, evaluation M can proceed even before x has
a value. If f publishes a value, then x is assigned this value, f ’s evaluation is
terminated and the suspended parts of g can proceed. This is the only mechanism
in Orc to block and terminate parts of a computation.

86 W.R. Cook, S. Patwardhan, and J. Misra

2.4 Definitions

Declaration E(q̄) Δ f defines expression E whose formal parameter list is q̄ and
body is expression f . A call E(p̄) is evaluated by replacing the formal parameters
q̄ by the actual parameters p̄ in the body of the definition f . Sites are called by
value, while definitions are called by name.

2.5 Local Sites

A local site is a site that is created during execution of an expression. A local
site is constructed by a factory site, which publishes a site when called. The
factory sites used in the workflow implementations are defined in Fig. 1. The
sites returned by the factory contain multiple methods. For example, the Buffer
factory returns a site with put and get methods.

The following Orc expression illustrates the use of local sites. It creates a
buffer, then executes three expressions in parallel, two of which insert numbers
into the buffer while the other attempts to read from the buffer:

Buffer >b> (b.put(3) | b.put(5) | b.get)
The value obtained by b.get is either 3 or 5. Expression b.get is blocked until one
of the first two expressions is completed.

2.6 Synchronous Execution

We impose the following constraints on the Orc semantics: (1) a site is called
as soon as possible, and (2) response from a site is processed only if there is no
pending site call to be made. Therefore, initially, Orc calls all sites which can
be called, and then it waits to receive a response. On receiving a response, it
may publish some values and call some sites and waits for the next response. An
expression publishes a (possibly empty) stream of values (position in the stream
depends on the time of publication). The synchronous semantics ensures that in
(g where x :∈ f), the first value published by f is assigned to x.

3 Workflows in Orc

A workflow consists of a set of activities generating output in the form of data
or events which may trigger further actions. These activities can be executed
in sequential or parallel order. A workflow can be represented by a composition
of elementary patterns as discussed in the subsequent sections. These patterns
are modeled by composition of basic Orc expressions and Orc site calls. An Orc
expression or site call may publish (produce) zero or more values as output.

We will use the workflow term “activity” to refer to an Orc expression that
publishes at most one value and stops execution after this value is produced: an
activity is complete when it publishes its value. Orc expressions that produce
more then one value, or continue to call sites after producing a value, are not

Workflow Patterns in Orc 87

considered well-formed activities, but they can be converted into proper form by
terminating them after the first value is produced.

Some patterns also use activities to signal events. In this case the event occurs
when the activity publishes its value.

The following sections correspond to the patterns defined by van der Aalst [2].
We assume that f and g represent well-formed activities, unless stated otherwise.

WP 1: Sequence. “An activity in a workflow process is enabled after the
completion of another activity in the same process. Example: After the activity
order registration the activity customer notification is executed.”[11]

Sequential execution is a built-in feature of Orc.

Seq(f, g) Δ f � g

If f and g are activities, then the sequential composition is an activity. Note that
if f is not an activity (i.e. it produces more than one value) g will be executed
more than once.

WP 2: Parallel Split. “A point in the process where a single thread of control
splits into multiple threads of control which can be executed in parallel, thus
allowing activities to be executed simultaneously or in any order. Example: After
activity new cellphone subscription order the activity insert new subscription
in Home Location Registry application and insert new subscription in Mobile
answer application are executed in parallel.”[11]

The ability to run activities in parallel is an inherent feature of Orc.

Par (f̄) Δ f1 | · · · | fn

A bar over an expression x̄ represents a list of items x1, . . . , xn. The expression
created by Par is not a well-formed activity, however, because it produces more
than one value. The Discriminator pattern discussed in Section 3 can be used
to model a well-formed activity by ensuring termination after the first value has
been produced.

WP 3: Synchronization. “A point in the process where multiple parallel
branches converge into one single thread of control, thus synchronizing multiple
threads. ... Example: Activity archive is executed after the completion of both
activity send tickets and activity receive payment.”[11]

Synchronization is a standard pattern in concurrent systems; its implementa-
tion in Orc was presented in [8].

Sync(f̄) Δ let(x1) � · · · � let(xn)
where x1 :∈ f1

· · ·
where xn :∈ fn

This expression uses asymmetric parallel composition to run the expressions fi in
parallel. The output of each expression is captured in a corresponding variable xi,

88 W.R. Cook, S. Patwardhan, and J. Misra

A

B D

�

�

�

�

�
C

�

�

�

�
Sync

Sync

Split

Split

(a) Example from [11]

Condition >M>

Sync(A � Par(M.set , B),
Sync(C, M.wait) � D)

(b) Orc implementation of Fig. 2(a)

Condition >M>

Sync(A � M.set � B,
C � M.wait � D)

(c) Simplified form of Fig. 2(b)

Fig. 2. Unstructured workflow example

which is undefined until fi publishes its value. The body of the where expression
calls let on each variable: since site calls are strict, the sequence of calls will block
until all the variables x̄ are defined – that is, it will block until all the activities
fi are complete.

Synchronization of multiple activities is always a well-formed activity, even if
fi may produce more than one value. This is because Sync takes just the first
value of each sub-expression and then terminates the sub-expression.

The previous example is a structured workflow, because the structure of
synchronization matches the control flow structure: the expressions being syn-
chronized are defined within the same composition operator. In an unstructured
workflow, the expressions being synchronized appear in different places in the
flow of control. Unstructured workflows are frequently more difficult to describe
than structured workflows. Van der Aalst gives an example of an unstructured
workflow, reproduced in Fig. 2(a), in which the synchronization path does not
follow the structure of sub-expressions. This workflow cannot be expressed using
only structured workflow constructs. In Orc, it requires a local site to express the
communication between parallel branches, as defined in Fig. 2(b). The expres-
sion first creates a Condition, a local site defined in Section 2.5. The first Sync
expression represents the Split/Sync nodes at the top and bottom of Fig. 2(a).
This is a structured synchronization. The left path A/Split/B is implemented
by A � (M.set | B), which executes A and then sets the condition to true and
executes B. The right path C/Sync/D is implemented by Sync(C, M.wait) � D,
which uses Sync to wait for C to complete and the condition to be set. When
these two events have been synchronized, D is executed.

The expression in Fig. 2(b) corresponds closely to the diagram in Fig. 2(a),
but it can be simplified to a more readable from in Fig. 2(c). This simplification
replaces parallel execution with sequential execution. But the overall effect is
the same if set and wait are instantaneous: instead of executing them in parallel
with B or C, they can simply executed sequentially (before B and after C, respec-
tively). Such transformations can be obtained through algebraic manipulation
of Orc expressions.

Workflow Patterns in Orc 89

WP 4: Exclusive Choice. “A point in the process where, based on a deci-
sion or workflow control data, one of several branches is chosen. Example: The
manager is informed if an order exceeds $600, otherwise not.”[11]

An exclusive choice is simply a conditional, or “if” statement.

XOR(b, f, g) Δ if (b) � f | if (¬b) � g

The built-in if site (see Table 1) does not publish a value when the condition is
false, so only one of the two parallel alternatives will execute. Exclusive choice,
like other patterns above, naturally generalizes to a choice between a set of
options, also known as a case statement. Nested conditional constructs can also
be represented using XOR. An example is given below.

XOR(b1, f,XOR(b2, g,XOR(b3, h, i)))

WP 5: Simple Merge. A merge is “a point in the workflow process where two
or more alternative branches come together ... Example: After the payment is
received or the credit is granted the car is delivered to the customer.”[2] A simple
merge assumes that only one of the expressions being merged is executing, so
synchronization is not needed. Petri nets represent merges explicitly, while in
Orc a merge is implicit in the structure of an expression. In the following, we
assume that only of the fi expressions will produce a value.

Merge(f̄ , h) Δ Par (f̄) � h

WP 6: Multi-choice. “A point in the process, where, based on a decision or
control data, a number of branches are chosen and executed as parallel threads.
Example: After executing the activity evaluate damage the activity contact fire
department or the activity contact insurance company is executed. At least one
of these activities is executed. However, it is also possible that both need to be
executed.”[11]

A Multi-Choice is a non-exclusive choice. A separate condition controls the
execution of each choice, and multiple conditions can be true.

MultiChoice(b̄, f̄) Δ IfDo(b1, f1) | · · · | IfDo(bn, fn)
IfDo(b, f) Δ if (b) � f

WP 7: Synchronizing Merge. “A point in the process where multiple paths
converge into one single thread. Some of these paths are active (i.e. they are
being executed) and some are not. If only one path is active, the activity after
the merge is triggered as soon as this path completes. If more than one path is
active, synchronization of all active paths needs to take place before the next
activity is triggered. ... Example: After either or both of the activities contact
fire department and contact insurance company have been completed (depending
on whether they were executed at all), the activity submit report needs to be
performed (exactly once).”[11]

90 W.R. Cook, S. Patwardhan, and J. Misra

This pattern is implemented in Orc by modifying the IfDo expression to
always publish a signal when it completes, even if the condition is false. The
resulting conditional activities can then be synchronized.

SyncMerge(b̄, f̄) Δ Sync(IfSignal(b1, f1), · · · , IfSignal(bn, fn))
IfSignal(b, f) Δ if (b) � f | if (¬b)

Van der Aalst creates an unstructured example of synchronizing merge by replac-
ing the Split at the top of Fig. 2(a) with a Multi-Choice, and the two Synchronize
nodes with Synchronizing Merges. He says “then the process must somehow keep
track of the activation of the left thread in order to determine whether activ-
ity D should be activated immediately after activity C completes, or whether it
should also wait for activity A to complete.”[11] Assuming that the left and right
conditions for the Multi-Choice are α and β respectively, the resulting workflow
can be expressed by making appropriate changes to workflow can be encoded
easily in Orc:

Condition >M> Sync(XOR(α, A � M.set � B,Signal |M.set),
IfSignal(β, C � M.wait � D))

The call to XOR (see WP 4) either executes the left path A � M.set � B or else
sets the condition M and signals completion, so that the condition is set in both
alternatives. The right-hand path is the same as in Fig. 2(c) with the addition
of the IfSignal (see WP 7) condition for β. This expression cannot be written
using SyncMerge because of the additional call to M.set when α is false. Orc
cannot fully encapsulate this pattern as a definition. Some mechanism would be
needed to track the collection of active synchronization variables, so that they
can be set in the false branch of conditionals.

WP 8: Multi-merge. A multi-merge allows multiple branches to converge
without synchronization. “If more than one branch gets activated, possibly con-
currently, the activity following the merge is started for every activation of every
incoming branch.”[11] The sequential composition operator in Orc supports this
behavior directly.

MultMerge(f̄ , h) Δ (f1 | · · · | fn) � h

≡ Par(f̄) � h

WP 9: Discriminator. “A point in the workflow process that waits for one
of the incoming branches to complete before activating the subsequent activity.
From that moment on it waits for all remaining branches to complete and ignores
them. ... Example: To improve query response time a complex search is sent to
two different databases over the Internet. The first one that comes up with the
result should proceed the flow.”[11]

A discriminator returns the first value produced by a set of expressions but
allows the remaining expressions to continue executing. To implement this be-
havior, Orc uses a local channel S created by a Buffer site.

Discr(f̄) Δ Buffer >S> (Par (f̄) >x> S.put(x) | S.get)

Workflow Patterns in Orc 91

A

B D

Merge

Merge

�
�

XOR

F

C

XOR

XOR E

�

�G

β

¬β

χ

¬χ

α

¬α

�

�

�
�

	

�

�	
�

(a) Fig. 6 of [2]

P Δ XOR(α, PB,PA)

PA Δ A � PC

PB Δ B � PD

PC Δ C � PD

PD Δ D � XOR(β, E, PF)

PF Δ F � XOR(χ, G, PC)

(b) Orc implementation of (a)

Fig. 3. Arbitrary cycles example

The discriminator publishes only the first value that is placed in the buffer by
f̄ , but allows f̄ to continue running.

When applied to any expression f̄ , First terminates the computation of f̄
after its first value is produced:

First(f̄) Δ let(x) where x :∈ f̄

First can be used to ensure termination of any expression f after it has produced
its first value.

Van der Aalst uses discriminator to create another variation on the unstruc-
tured workflow in Fig. 2(a), by replacing the synchronize node between C and D
with a discriminator. This means that D can start as soon as A or C completes.
This example is easily defined in Orc, by simply replacing the corresponding
Sync with Discr :

Condition >M> Sync(A � M.set � B,
Discr(C, M.wait) � D)

WP 10: Arbitrary Cycles. Workflows with arbitrary cycles and loops are
easily created in Orc using recursive definitions. Fig. 3(a) gives a workflow from
van der Aalst [2]. The diagram is a Petri Net, which can be understood as a
form of flowchart. An XOR node is an exclusive choice in which the outgoing
branches are labeled by a condition. A Merge node is a simple merge (WP 5).

Fig. 3(b) is an implementation of this flowchart in Orc. Each node is translated
to a definition. An arc to a node in the flowchart is translated to a call to
the corresponding definition. These expressions are equivalent to loops, because
Orc is defined to optimize tail calls. Note that the Merge nodes are modelled
implicitly.

Arbitrary cycles can be difficult to model when computations can only be
structured as iterations with one entry and exit point [7]. Although Orc is highly
structured, this example illustrates the use of recursion to define loops, which
do not suffer from the problems of structured iteration.

92 W.R. Cook, S. Patwardhan, and J. Misra

Simple while loops can also be easily created. In the following definition, g
publishes a boolean that controls execution of the loop. The call to IfSignal (see
WP 7) evaluates f � Loop(g, f) if b is true, and produces a signal otherwise.

Loop(g, f) Δ g >b> IfSignal(b, f � Loop(g, f))

WP 11: Implicit Termination. “A given subprocess should be terminated
when there is nothing else to be done. In other words, there are no active activ-
ities in the workflow and no other activity can be made active (and at the same
time the workflow is not in deadlock).”[2]

Implicit termination simply means that an expression continues running as
long as there is more work to do, and that no explicit “stop” action is required.
Since there is no explicit stop action in Orc, it supports implicit termination.

WP 12-15: Multiple Instances. There are three patterns covering creation
of multiple instances of a workflow, one without synchronization, and two more
with and without a priori design time knowledge.

The use of “process instance” in van der Aalst’s patterns is probably influ-
enced by his work on Petri nets: since Petri nets are (traditionally) understood
as a form of finite state machine, they do not have the concept of block structure
and instantiation as in process calculi like CCS, π-calculus and Orc.

Multiple threads are created using parallel composition Par (WP 12). If the list
of instances is known at design time, then they can be synchronized by using Sync
instead of Par (WP 13). For WP 14, the number of instances is known as a runtime
quantity before the instances are created. We represent this runtime knowledge
as a list in Orc, using a notation borrowed from Haskell [3]. An activity is started
for each item in the list, and all the activities are synchronized using Sync.

SyncList(F, []) Δ Signal
SyncList(F, a : as) Δ Sync(F (a),SyncList(F, as))

Finally, WP 15 allows creation of instances where the number of instances is
not known in advance: more instances may be created until some condition
is satisfied. One implementation is a synchronized form of while loop. ParLoop
is the same as Loop (see WP 10) except that iterations of the loop are performed
in parallel and synchronized.

ParLoop(g, f) Δ g >b> IfSignal(b,Sync(f,ParLoop(g, f)))

WP 16: Deferred Choice. “A point in a process where one among several
alternative branches is chosen based on information which is not necessarily avail-
able when this point is reached. This differs from the normal exclusive choice, in
that the choice is not made immediately when the point is reached, but instead
several alternatives are offered, and the choice between them is delayed until
the occurrence of some event. Example: When a contract is finalized, it has to
be reviewed and signed either by the director or by the operations manager,
whoever is available first. Both the director and the operations manager would

Workflow Patterns in Orc 93

be notified that the contract is to be reviewed: the first one who is available will
proceed with the review.”[11]

Deferred choice happens when a set of events is used to select an alternative:
the first event that fires causes its corresponding action to be activated. Deferred
choice is called arbitration in [8]. Assume that the events are specified by a set
of Orc expressions ē and that the actions are defined by the Orc expressions f̄ .
Note that, in Orc, the firing of an event is represented in terms of a site call
to the environment. This enables the environment to participate in making a
choice.

In the following definitions, Which produces an index identifying which event
signalled; the call to First terminates the remaining events. The Select expression
then runs the selected action.

DefChoiceTerm(ē, f̄) Δ Which(ē) >k> Select(k, f̄)
Which(ē) Δ First(e1 � let(1) | · · · | en � let(n))

Select(k, f̄) Δ if (k = 1) � f1 | · · · | if (k = n) � fn

WP 17: Interleaved Parallel Routing. “A set of activities is executed in
an arbitrary order: Each activity in the set is executed, the order is decided at
run-time, and no two activities are executed at the same moment (i.e. no two
activities are active for the same workflow instance at the same time).”[2]

This pattern is essentially an example of mutual exclusion between concurrent
processes.

Interleave(f̄) Δ Lock >M> (wait(M, f1) | · · · | wait(M, fn))
wait(M, f) Δ M.acquire � f >x> M.release � let(x)

WP 18: Milestone. “A given activity can only be enabled if a certain milestone
has been reached which has not yet expired. ... Example: After having placed
a purchase order, a customer can withdraw it at any time before the shipping
takes place.”[2]

Consider three Orc activities f , g, and e. The completion of activity f enables
g. Let e be an event that is raised when g is no longer allowed to run. Thus f
precedes g and e, while e can interrupt g.

Milestone(f, g, e) Δ f � Interrupt(g, e)
Interrupt(g, e) Δ First(g | e)

This simple definition does not fully express the intent of the pattern: the
intent is for f and e to be part of one workflow, while g is a part of another
workflow. The workflows should communicate through channels, not be defined
in a single expression. An improved definition uses two conditions, S and E.
The S condition signals the start of the milestone, while E signals the end of
the milestone.

94 W.R. Cook, S. Patwardhan, and J. Misra

Notify(f, S, E, e) Δ f � S.set � e � E.set
Listener(S, E, g) Δ S.wait � Interrupt(g, E.wait)
Milestone(f, e, g) Δ Condition >S> Condition >E>

(Notify(f, S, E, e) | Listener(S, E, g))

Van der Aalst also considers the case where g may be repeated arbitrarily after
f and before e: this is done by replacing g by Loop(true, g).

WP 19/20: Cancel Activity/Case. Cancelling can apply to an activity that
is part of a workflow an entire workflow case. The Interrupt operator can be
applied to a part of a workflow or the entire workflow to cancel part or all of the
activity. This will cancel any activity immediately. Interrupt and Condition can
be used in conjunction to model a set of cancellable activities.

4 Related Work

Orc implementations of the workflow patterns are most similar to BPML [11]
and π-calculus. However, BPML is much more verbose than Orc. The mechanism
for creating reusable definitions is also more cumbersome. There does not seem
to be a mechanism analogous to local sites, so Interleaved Parallel Routing (WP
17) does not have a clean solution.

The π-calculus [9] versions of the workflow patterns are similar in structure
to the Orc implementations. One significant difference is that π-calculus uses
channels for all communication and synchronization. Orc expressions, on the
other hand, embody structured forms of communication and control, so explicit
channels (local sites) are needed only for unstructured workflows. The π-calculus
explanation of the cancellation pattern is incomplete, because π-calculus does not
provide built-in support for terminating a process, and the proposed encoding
of a “global cancel trigger” is left undefined. The synchronizing merge pattern
also does not specify how it is determined which processes are active.

Van der Aalst et al. defined a new workflow language, YAWL[10, 12], specif-
ically to support the workflow patterns. The language is based on Petri nets,
but is extended with special constructs for creating multiple instances and can-
celling tokens in a group of nodes. The mechanism for multiple instantiation
is analogous to Orc’s sequential composition, but provides built-in synchroniza-
tion. The node grouping and cancellation construct is similar to Orc’s where
operator. Rather than build specific workflow patterns into the language, Orc
provides few fundamental primitives with a mechanism to define new operators
for user-defined composition patterns.

5 Conclusion

We have implemented a set of standard workflow patterns using Orc, a new
orchestration language. The solutions are generally easy to read and understand.

Workflow Patterns in Orc 95

There is no reason to assume that the workflow patterns proposed by van der
Aalst are complete. Orc has already been used to implement common concur-
rency patterns, like Priority and Timeout [8]. The Implicit Termination pattern
suggests a need for an Explicit Termination pattern, in which an activity explic-
itly signals when it is complete. This pattern can also be implemented in Orc,
although the machinery to do so is somewhat more complex.

One novelty of our approach is the encapsulation of pattern as reusable defi-
nitions. These definitions can be used to create larger programs; this technique
is illustrated many times in this paper. Van der Aalst argues that all the work-
flow patterns should be expressed directly in the workflow language without any
encodings. In his summary of the workflow patterns supported by various com-
mercial systems, a pattern is marked as “not supported” if any form of encoding
is required. In Orc some of the patterns require a combination of operators to
implement – however, the pattern itself can be expressed as a definition, which
can be reused whenever that pattern is required. Thus the pattern becomes an-
other composition operator that can be used in larger programs. The operators
that define patterns are reused extensively in this paper. This demonstrates the
power of a language that can grow by adding new definitions, rather than re-
quiring building a fixed set of primitives that cannot be easily extended by new
definitions.

References

1. W. Aalst. The Application of Petri Nets to Workflow Management. The Journal
of Circuits, Systems and Computers, 8(1):21–66, 1998.

2. W. M. P. V. D. Aalst, A. H. M. T. Hofstede, B. Kiepuszewski, and A. P. Barros.
Workflow patterns. Distrib. Parallel Databases, 14(1):5–51, 2003.

3. R. Bird. Introduction to Functional Programming using Haskell. International Se-
ries in Computer Science, C.A.R. Hoare and Richard Bird, Series Editors. Prentice-
Hall International, 1998.

4. M. Dumas and A. H. ter Hofstede. UML Activity Diagrams as a Workflow Specif-
cation Language. Technical report, Cooperative Information Systems Research
Centre, Queensland University of Technology GPO Box 2434, Brisbane QLD 4001,
Australia, Nov. 2003.

5. R. Eshuis and J. Dehnert. Reactive petri nets for workflow modeling. In W. M. P.
van der Aalst and E. Best, editors, Proceedings of the 24th International Conference
on Applications and Theory of Petri Nets (ICATPN 2003), volume 2679 of Lecture
Notes in Computer Science, pages 296–315. Springer-Verlag, June 2003.

6. R. Eshuis and R. Wieringa. Comparing petri net and activity diagram variants
for workflow modelling - a quest for reactive petri nets. In H. Ehrig, W. Reisig,
G. Rozenberg, and H. Weber, editors, Petri Net Technology for Communication-
Based Systems, volume 2472 of Lecture Notes in Computer Science, pages 321–351.
Springer-Verlag, November 2003.

7. B. Kiepuszewski, A. H. M. ter Hofstede, and C. Bussler. On structured workflow
modelling. In Conference on Advanced Information Systems Engineering, pages
431–445, 2000.

8. J. Misra and W. R. Cook. Computation orchestration: A basis for wide-area com-
puting. To appear in the Journal of Software & Systems Modeling, 2006.

96 W.R. Cook, S. Patwardhan, and J. Misra

9. F. Puhlmann and M. Weske. Using the π-calculus for formalizing workflow pat-
terns. In Proceedings of the 3rd International Conference on Business Process
Management, volume 3649 of Lecture Notes in Computer Science, 2005.

10. W. van der Aalst and A. ter Hofstede. YAWL: Yet Another Workflow Language.
Technical report, Department of Technology Management, Eindhoven University of
Technology P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands, Nov. 2003.

11. W. M. van der Aalst, M. Dumas, A. H. ter Hofstede, and P. Wohed. Pattern
Based Analysis of BPML (and WSCI). Technical report, Department of Technology
Management Eindhoven, University of Technology, The Netherlands, nov 2003.

12. W. M. P. van der Aalst, L. Aldred, M. Dumas, and A. H. M. ter Hofstede. De-
sign and implementation of the yawl system. In A. Persson and J. Stirna, edi-
tors, CAiSE, volume 3084 of Lecture Notes in Computer Science, pages 142–159.
Springer, 2004.

13. P. Wohed, W. M. van der Aalst, M. Dumas, and A. H. ter Hofstede. Pattern based
analysis of BPEL4WS. Technical Report FIT-TR-2002-04, Queensland University
of Technology, 2002.

14. The Workflow Reference Model. The Workflow Management Coalition, Jan. 1995.

Evolution On-the-Fly with Paradigm

Luuk Groenewegen1 and Erik de Vink1,2

1 LIACS, Leiden University, The Netherlands
2 Department of Mathematics and Computer Science
Technische Universiteit Eindhoven, The Netherlands

luuk@liacs.nl, evink@win.tue.nl

Abstract. The coordination language Paradigm allows for a flexible
and orthogonal modeling of interprocess relationships at the architec-
tural level. It is shown how dynamic system adaptation can be captured
in Paradigm by means of a special evolution component and associated
evolution coordination scheme. The component, called McPal, drives
the migration following a just-in-time strategy in its own view of the
system, independent of other coordination relations. During migration,
dynamic consistency between components remains assured, even for mix-
tures of old, intermediate and new behaviour. A restricted scheme of Mc-
Pal that supports various forms of self-adaptation is presented. A simple
but generic example of a scheduler and workers illustrates on-the-fly up-
dating of coordination and run-time adaptation of scheduling policies
using McPal.

Keywords: evolution on-the-fly, dynamic consistency, self-adaptation,
migration, software architecture, Paradigm.

1 Introduction

Dynamic aspects of coordination arise naturally when considering evolution on-
the-fly of systems at the architectural level. Here, evolution on-the-fly, such as
dynamic software updating, is in contrast to other unanticipated system adap-
tation where components are first put to a halt, subsequently supplied with new
behaviour, and finally restarted, likely with their state restored. In the setting
here, the execution of the system should continue as much as possible. While
running, the system will adapt itself and evolve into a new one via a number of
migration steps, taken by the different components in a well-coordinated fashion.

The system architectures addressed in this paper are given as Paradigm
models. Paradigm is a coordination language distinguishing detailed and global
behaviour of processes (see [8, 12]). Coordination is achieved, by properly con-
necting the detailed and global views via so-called consistency rules. These rules
relate detailed transitions between states of a process in a manager role to global
change of subprocess constraints of other processes in an employee role. In Par-
adigm, separate coordination solutions for multiple collaborations can be rela-
tively easily combined into one single architecture.

P. Ciancarini and H. Wiklicky (Eds.): COORDINATION 2006, LNCS 4038, pp. 97–112, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

98 L. Groenewegen and E. de Vink

The paper’s main contribution lies in showing how a specific component, called
McPal –abbreviating Managing changing Processes ad libitum (or at leisure)–
allows for modifying the dynamics of the system on-the-fly, while all components
remain in execution in a dynamically consistent manner. The important intuition
here is, a process within a model is viewed as a subprocess of an unknown larger
process. As long as this subprocess constraint is valid, it is irrelevant whether
the remainder of that process is known or not. This allows for defining new
fragments of the process in a lazy manner, by modeling them just in time.
After having such new fragments defined in a suitable manner, McPal can, on
the basis of newly added dynamics, start to coordinate global level behaviour,
eventually leading into a new evolutionary phase for each component. Thereby,
the Paradigm notions guarantee enduring consistency between the components’
behaviours before, during and after the migration, even for mixtures of old,
intermediate and new behaviours.

To keep our explanation clear and sufficiently brief, we restrict this paper to
a relatively simple form of McPal, not changing its own behaviour. This way,
an evolution pattern for Paradigm models emerges, illustrated by an example
of a scheduler and workers involved in different evolution scenarios. The start-
ing point is a scheduler that excludes almost all overlapping of activity of the
workers. As a first illustration, the coordination evolves to a situation where this
restriction is significantly alleviated, allowing for more parallelism amongst the
workers. A second illustration of the evolution pattern focuses on the scheduler,
that migrates from a non-deterministic selection of workers to a round-robin
selection policy.

In view of the above, the remainder of the paper has the following struc-
ture. Section 2 briefly describes Paradigm and introduces a small coordination
example model. First, the model is extended in Section 3 with McPal for coordi-
nating future self-adaptation of the model. Sections 4 and 5 present two different
evolutionary continuations, one for reducing the critical sections, the other for
changing the scheduling policy of workers. Both evolutionary changes are on-
the-fly. Finally, Section 6 gives conclusions and discusses both related work and
future research.

2 Paradigm

This section provides a very brief introduction to the coordination language
Paradigm by means of a small example. The example serves two purposes, of
illustrating the notions explained and of preparing the evolution to be addressed
later. For more detailed explanation, including formal operational semantics,
see e.g. [8, 12, 11]. Consider the following coordination situation. A scheduler
is coordinating the activities of three workers. The workers are performing the
same life-cycle simultaneously: alternating between not working and working. A
worker is idle in the state free. The activity working actually consists of four
smaller consecutive activities: nonCrit, pre, crit and post. The scheduler is
coordinating their working. For the moment, the scheduler allows at most one

Evolution On-the-Fly with Paradigm 99

iWorker , = 1, 2, 3i

free

pre

crit

post

asg1

idle

asg3asg2

Scheduler

nonCrit

Fig. 1. Processes Workeri and Scheduler

worker outside of free and nonCrit. The activities of the workers and of the
scheduler can be described by a process or state transition diagram (STD).

In general, a process or STD S is a triple 〈ST, AC, TS〉, with ST the set of
states, with AC the set of actions or labels, and with TS ⊆ ST× AC× ST the set of
transitions. We write x

a→ x′ in case (x, a, x′) ∈ TS, or even x→ x′ if the precise
action is irrelevant.

Figure 1 visualizes the processes of a worker and of the scheduler as directed
graphs: transitions as edges and states as nodes. Activities have been mapped
to states (as time spent for an activity coincides with a sojourn in a state);
actions have been left empty. Each worker process, starts in state free, its non-
working activity. After state free, Workeri continues to work: in nonCrit he
does non-critical work, in pre he prepares the critical activity, in crit he does
his critical work and in post he does its follow-up. Thereby he finishes working
and continues in free with non-working. Process Scheduler starts in state idle
where he does not allow any worker to do non-critical working. From state idle
he can go non-deterministically to any of his states asgi, i = 1, 2, 3, where he
only allows Workeri to enter and leave states pre, crit and post for performing
one full turn of critical activity.

The coordination exerted by the scheduler is formulated in terms of three
global processes, each constituting a coarse-grained view of a worker process.
Global processes are built from subprocesses and traps of the process it cor-
responds to. In general, a subprocess of a process S = 〈ST, AC, TS〉 is a process
〈st, ac, ts〉 such that st ⊆ ST, ac ⊆ AC and ts ⊆ {(x, a, x′) ∈ TS | x, x′ ∈ st, a ∈
ac }. Furthermore, a trap θ of a subprocess S = 〈st, ac, ts〉 is a non-empty set
of states θ ⊆ st such that x ∈ θ and x

a→ x′ ∈ ts imply that x′ ∈ θ. If θ = st,
the trap is called trivial. For the worker processes we model two subprocesses,

global process
Worker (CSM)

Free

Busy

done
started

pre

nonCritfree

crit

post

Busy

nonCrit

started
Free

free

done

i

Fig. 2. Partition CSM and global worker process at the level of CSM

100 L. Groenewegen and E. de Vink

viz. Free and Busy with their traps started and done visualized as polygons
surrounding the states belonging to it. See the left part of Figure 2.

Subprocesses and traps are both constraints: a subprocess of a process is a
constraint on the possible behaviours of the process, meant to be temporary and
meant to be imposed from outside the process by a manager. In the example, as
we shall see, the process Scheduler will be the manager. A trap of a subprocess
is a constraint on the subprocess’ state space –once entered the trap cannot be
left– valid only for the time the subprocess constraint holds, and committed to
from inside the process in its employee role. So, a trap indicates a final stage of
a subprocess.

To build suitable dynamics from such constraints, two more notions are
needed: partition and connecting trap. In general, a partition π of a process P =
〈ST, AC, TS〉 is a collection { (Si, Ti) | i ∈ I } of subprocesses Si = 〈sti, aci, tsi〉
of P , each with a set Ti of its traps. Furthermore, for two subprocesses S =
〈st, ac, ts〉 and S′ = 〈st′, ac′, ts′〉 of a partition π, a trap θ of S is called a
connecting trap from S to S′, if the states, of S, belonging to the trap θ are
states in S′ as well, i.e. θ ⊆ st′. If such a connecting trap θ from S to S′ ex-
ists, the triple (S, θ, S′) is called a subprocess change or transfer. In Figure 2,
the left part presents the elements of partition CSM (abbreviating critical section
management) of a worker process, comprising the two subprocesses and the two
traps. In this case, trap started of Free is connecting from Free to Busy as its
state nonCrit belongs to Busy too. Similarly, trap done of Busy is connecting
from Busy to Free as its state free belongs to Free too. A connecting trap
provides a kind of overlap between two consecutive subprocess constraints.

On the basis of a partition π of a process P , we construct a new process, re-
ferred to as the global process at the level of partition π. This process is denoted
by P (π). Its states are the subprocesses from π, its actions are connecting traps
from π and its transitions are the subprocess changes corresponding to these con-
necting traps. The one subprocess expressing the constraint valid at a certain
moment, is referred to as the current subprocess of a partition at that moment.
By construction, the current subprocess of a partition corresponds to the cur-
rent state of the global process at the level of the partition. A process not being
global, is referred to as detailed. Figure 2’s right part presents the global process
Workeri(CSM), with its starting state Free chosen such that, as subprocess, it con-
tains starting state free of process Workeri. The process Workeri(CSM) presents
a behavioural view on the original Workeri process; being less detailed than
Workeri, process Workeri(CSM) is more coarse-grained, which is referred to as
global in our terminology. Note that, a process can have multiple partitions, for
each of which a global process exists.

Given a number of processes with associated partitions, so-called consistency
rules relate detailed transitions between states of a manager process to global
transfer between subprocesses of employee processes. (In this context, ‘consis-
tency’ refers to the notions of dynamic consistency, horizontal or vertical, as
proposed by Küster [14].) For a consistency rule to be applicable, one has to keep
track of the current state of detailed as well as global processes. Any applicable

Evolution On-the-Fly with Paradigm 101

consistency rule, no matter of what manager and partition, can be selected for
application. In general, a consistency rule has the format

P : s a→ s′ ∗ P1(π1): S1
θ1→ S′

1, . . . , Pn(πn): Sn
θn→ S′

n . (1)

In consistency rule (1), process P is the manager and process P1 to Pn are the
employees. Paradigm is restricted to having exactly one manager in a consistency
rule. In case there are no employees, i.e. n = 0, we simply write P : s a→ s′. Note
that the local transition of P in (1) does not refer to a partition. The requirement
on P for the consistency rule to apply is that the transition s

a→ s′ is possible
in every current subprocess of process P , with respect to the various partitions
of P . The requirements on P1 to Pn with respect to consistency rule (1) is that
each process Pi in its partition πi has Si as the current subprocess and within
this subprocess trap θi has been entered. After application of the consistency
rule the current state of manager P becomes s′, the current subprocesses of
employees P1 to Pn become S′

1 to S′
n, respectively. Because of the demand of

traps θi being connecting for subprocesses Si and S′
i, it does not matter in which

detailed state the employees reside precisely. For each connecting trap, the whole
of it is admitted in the new subprocess as a possible state to continue from.

For the scheduler process of our example, we provide the consistency rules

Scheduler: idle→ asgi ∗ Workeri(CSM): Free
started→ Busy

Scheduler: asgi → idle ∗ Workeri(CSM): Busy
done→ Free

The first consistency rule expresses that Scheduler may change its current state
idle into asgi, provided the current subprocess constraint on Workeri is Free
and the trap started has been entered, i.e. Workeri’s current state belongs to
the trap started. If Scheduler changes its current state from idle to asgi

indeed, then, according to the rule, global process Workeri(CSM) changes its
current state from Free to Busy, or, put otherwise, the subprocess constraint of
Workeri in partition CSM becomes Busy instead of Free. This is an example of
horizontal dynamic consistency [14], as the rule couples behaviours from different
components. Analogously, the second rule says, Schedulermay return from state
asgi to state idle, provided the current subprocess constraint on Workeri is Busy
and Workeri’s current state belongs to trap done. If Scheduler indeed changes its
current state from asgi to idle, then also global process Workeri(CSM) changes
its current state from Busy to Free. We see how both consistency rules couple one
local scheduler transition to a (simultaneous) global Workeri(CSM) transition. As
Scheduler does not have a partition, it neither has any process at such a level,
so Scheduler’s state transitions are not restricted by any current subprocess
constraint from such a global level.

The workers have no employees. Therefore, their consistency rules are simpler
than for the scheduler, each rule containing one of Workeri’s detailed transitions
only.

Workeri: free→ nonCrit

Workeri: nonCrit→ pre

Workeri: pre→ crit

Workeri: crit→ post

Workeri: post→ free

102 L. Groenewegen and E. de Vink

A Workeri transition is possible only if it belongs to the current subprocess con-
straint of detailed process Workeri or, equivalently, to the current state of global
process Workeri(CSM). This is an example of vertical behavioural consistency in
the sense of [14] between a detailed process and the global processes at the levels
of its partitions.

In addition to the consistency rule format of (1), one can also have a so-called
change clause, a consistency rule used here solely for changing the total set of
consistency rules, instead of a consistency rule prescribing subprocess changes.
A change clause is formulated as

P : s a→ s′ ∗ [var := expr] (2)

concerning a variable var, typically holding the list of consistency rules. It spec-
ifies that after application of the rule, process P has moved to state s′ and the
value of expr in s has been assigned to variable var. This way consistency rules
can be added or deleted dynamically.

The initial configuration of a Paradigm model does not only comprise the
starting states of the various detailed processes, but also those of the various
global processes. Therefore, for every detailed process a starting state has to be
specified, together with a subprocess to start from, for each of its partitions. Our
example illustrates this as follows. The combined starting states are, grouped per
detailed process and with i = 1, 2, 3:

(Workeri, Workeri(CSM)) : (free, Free), Scheduler : idle

Note, each detailed starting state belongs indeed to each current subprocess
constraint for that particular detailed process. The consistency rules guarantee
the following property to be invariant: each current state of a detailed process
belongs for each partition of that process to the current subprocess.

In summary, the above is an example of a Paradigm model. In general, a
Paradigm model is a collection of detailed processes and global processes at
the level of their given partitions, together with a set of consistency rules and a
combination of detailed and global starting states. Dynamics within such a model
stem from subsequent application of consistency rules. Any change of constraint
specified by the particular consistency rule applied, then yields a number of
global process transitions, i.e. subprocess transfers.

3 Self-adaptation and McPal

In this section we shall present a different model for the original coordination
problem from the previous section. Apart from solving the same coordination
problem, the model can modify itself and evolve, while remaining in execution,
into another model, unknown in the beginning. For this we add the special
process McPal. This McPal starts with not influencing the model as-is, nothing
special to begin with. But our McPal, by its careful design, has the property to
adapt the Paradigm model it belongs to. Process McPal is visualized in Figure 3.

Evolution On-the-Fly with Paradigm 103

McPal

obs startMigr contMigr endMigr

Fig. 3. Process McPal

free nonCrit

post pre

crit
asg2 asg3

idle

asg1 Phase

Phase

Scheduler(Evol):

Worker (Evol):i

1

1

triv Worker (Evol)’s Phasei 1
triv Scheduler(Evol)’s Phase 1

Fig. 4. Evolutionary phases and evolutionary processes to begin with

In state obs, McPal is observing the model as a whole and possibly comput-
ing or perhaps hearing from elsewhere how to change the model. As soon as
McPal arrives in state startMigr, it knows the new consistency rules accord-
ing to which the executing model is going to migrate uninterruptedly towards
a new model. This migration is coordinated by McPal outside its state obs. To
support the migration, every other detailed process has an additional partition
called Evol. It contains the subprocesses reflecting the evolutionary phases so-far
of that particular detailed process. As long as McPal is in state obs for the first
time, each such partition consists of exactly one subprocess, here called Phase1,
always being the full, unconstrained process itself, typically with the trivial trap
connecting from Phase1 towards an as yet unknown subprocess reflecting an in-
termediate migration phase. Figure 4 presents the Evol partitions for Workeri as
well as for Scheduler together with the degenerate global processes at the level
of these partitions. All other partitions are unchanged. The consistency rules for
the extended model are the original rules together with only one new rule for
McPal, viz. consistency rule (3) below, for the moment.

McPal: obs→ startMigr ∗ [CR := CR ∪ CRmig ∪ CRnext] (3)

This one rule is a change clause: as the set of consistency rules we start with,
is going to change during the migration, the set of consistency rules is bound
to a local variable of McPal, here denoted as CR. Change clause (3) should be
taken parametrically, i.e., at the very moment process McPal decides to take the
transition from its state obs to state startMigr, the collection of consistency
rules gets updated via the assignment in the change clause with the whole of
consistency rules in CR, CRmig and CRnext at that moment. So the effect of the
change clause (3) fully depends on the actual values of its two parameters CRmig
and CRnext . As we shall see later, McPal determines the pace of evolution.

With respect to the new detailed process McPal it is important to note, only
the first transition of McPal, from state obs to startMigr is supported by a

104 L. Groenewegen and E. de Vink

consistency rule. This means, in the first phase of the evolution the other tran-
sitions cannot occur. But, as a result of this, one possible transition in McPal,
the set CR of consistency rules is extended with two more sets: one, CRmig , for
the intermediate phase proper and the other, CRnext , for the next evolutionary
phase. In particular, once CRmig is known, there are consistency rules for the
other McPal transitions too, readily made, JIT-modeled (just in time), either
by computational effort of McPal while in state obs, or by modeling effort from
outside McPal and given as input to McPal while in state obs.

For this paper we shall keep process McPal unchanged. This means, we choose
one particular form of sufficiently useful standard behaviour of McPal for actually
coordinating the migration steps of other processes involved. By its first transi-
tion obs→ startMigr, McPal extends via change clause (3) the rules, such that
other processes’ Phase1 constraint is going to be relaxed, if necessary. For the
examples we want to discuss here, three more migration steps will do: a tran-
sition startMigr → contMigr for continuing the migration, only if necessary,
by adjusting the migration already begun; a transition contMigr → endMigr
for restraining the other processes’ constraints to the Phase2 behaviours aimed
at, thus closing their migration; the last one, transition endMigr→ obs, for re-
straining the migrational freedom for McPal too, thus preventing McPal in some
unknown future to repeat an old migration when a new one is in place. In the
next two sections we present some concrete self-adapting Paradigm models and
provide detail for McPal’s remaining three transitions.

The combined starting states of the Paradigm model are grouped according
to the five detailed processes:

(Workeri, Workeri(CSM), Workeri(Evol)) : (free, Free, Phase1),
(Scheduler, Scheduler(Evol)) : (idle, Phase1),

McPal : obs.

4 Reducing the Extent of Exclusive Behaviour

The example variants presented in this section exhibit a restricted form of self-
adaptation through step-wise modification of non-evolutionary global behaviours
only, i.e. exclusively at the level of the three Workeri(CSM) partitions. For the
moment, the detailed worker and scheduler processes are not going to change at
all, so their Phase1 subprocess constraints remain unchanged during the evolu-
tion as discussed here. The non-evolutionary global processes Workeri(CSM) do
change, however.

To become more concrete, suppose we want to modify the original mutual
exclusion management in two ways: by substantially restricting the exclusive
behaviour as well as by making the return to non-critical working most asyn-
chronous. These two improvements are realized by the new subprocesses OutCS
and InCS, drawn in Figure 5, with their traps entering and left. Trap entering
has been chosen as ‘near’ to state crit and as ‘small’ as possible. Trap left
has been chosen as ‘large’ as possible –the larger the more asynchronous– and
starting ‘immediately after’ state crit.

Evolution On-the-Fly with Paradigm 105

OutCS

post

Busy

free nonCrit

pre

entering

nonCritfree

post

left

crit

pre

Free
triv

OutCS

InCS

left
entering

done

done

started

Worker (CSM)i

InCS

Fig. 5. Extensions of partition CSM and of global process Workeri(CSM)

The trivial trap triv of subprocess Free is self-evident, so we do not redraw
Free with its newly added trap. Nevertheless, it now also belongs to parti-
tion CSM. What is even more important, trap triv is connecting from Free
to OutCS and the original trap done is connecting from Busy to OutCS. This is
used for constructing the global process Workeri(CSM) on the basis of the newly
extended partition CSM. See Figure 5. The consistency rules in play are the origi-
nal consistency rules in CR, the consistency rules CRmig that guide the migration,
and the consistency rules CRnext for the next evolutionary phase. The original
consistency rules are bound to McPal’s local variable CR, that is to say, CR has
the rules mentioned in Section 3 as initial value. The consistency rules CRmig for
the migration are the following.

McPal: startMigr→ contMigr

McPal: contMigr→ endMigr ∗ Worker1(CSM): OutCS
triv→ OutCS

McPal: endMigr→ obs ∗ [CR := CRnext]

Scheduler: asgi → idle ∗ Workeri(CSM): Busy
done→ OutCS,

Workeri−1(CSM): Free
triv→ OutCS, Workeri+1(CSM)Free

triv→ OutCS

Here i−1 and i+1 denote the usual predecessor and successor values of i in the
cyclic order of 1, 2, 3.

The first rule for McPal above states that, in this migration, there is no coordi-
nation task for McPal in the first step. The second rule for McPal expresses that
the migration has been completed, when the first worker runs restricted to the
OutCS subprocess at the level of its CSM partition. Once in state endMigr, McPal
cleans up the old and intermediate consistency rules by binding CR to CRnext

and comes back in state obs again. Here the actual migration is in the new
rule for Scheduler. When returning from any of the states asg1, asg2, asg3,
all workers, including the Worker1 that is checked by McPal, are transfered to
subprocess OutCS of the next evolution phase. Note, the actual migration is not
really enforced: Scheduler might carry on with the old coordination forever. As

106 L. Groenewegen and E. de Vink

soon as the new consistency rule has been applied, however, migration has taken
place irreversibly.

The consistency rules CRnext for the next evolutionary phase, the new solution
we are actually aiming at, are

Workeri: free→ nonCrit

Workeri: nonCrit→ pre

Workeri: pre→ crit

Workeri: crit→ post

Workeri: post→ free

Scheduler: idle→ asgi ∗ Workeri(CSM): OutCS
entering→ InCS

Scheduler: asgi → idle ∗ Workeri(CSM): InCS
left→ OutCS

McPal: obs→ startMigr ∗ [CR := CR ∪ CRmig ∪ CRnext]

In the new evolution phase, the same scheduler continues to coordinate the
same workers with more parallelism between the workers, now the extent of the
exclusive, critical working interval has been reduced and trap left allows for
a most asynchronous continuation of a worker after having finished his critical
activity. The change clause for McPal for the transition from obs to startMigr
caters for later evolution, at McPal’s leisure.

Free Free OutCS OutCS

InCSInCSBusyBusy

left

triv

entering

entering
startedstarted

done left

done

done

evolutionary phase 2during migrationevolutionary phase 1

Fig. 6. Migration of process Workeri(CSM), first variant

Figure 6 might be viewed as a movie of global process Workeri(CSM) repre-
sented through three subsequent takes reflecting subsequent migration. The first
take of the movie lasts until McPal leaves state obs. The second take lasts while
McPal is in its three states startMigr, contMigr and endMigr. Upon arrival in
state endMigr it is guaranteed that the worker process executes either subprocess
OutCS or InCS. The third take starts when McPal returns in state obs.

An interesting variant, slightly different only, is McPal’s first migration rule
in the above set CRmig replaced by

McPal: startMigr→ contMigr ∗ [CR := CR\CRhelp]

where CRhelp has been computed or has been read from input in state obs,
consisting of the ‘migration avoiding’ rules

Scheduler: asgi → idle ∗ Workeri(CSM): Busy
done→ Free

Evolution On-the-Fly with Paradigm 107

Free

Busy

started

evolutionary phase 1

done

triv
OutCS

InCSBusy

Free

entering

migration, enforced

started left

done InCS

OutCS

evolutionary phase 2

entering

left

started

Free

Busy

triv OutCS

InCSdone

entering

migration, initial stage

left

done

Fig. 7. Migration of process Workeri(CSM), second variant

The consequence thereof is, from McPal’s arrival in state contMigr, the migra-
tion is more enforcing towards Phase2, the actual evolutionary phase aimed at.
The movie now consists of four takes, see Figure 7. The enforcing is an exam-
ple of migration adjusting. Note, we have indeed specified the self-adaptation
through new global behaviour at the level of Workeri(CSM) only, leaving all de-
tailed behaviours untouched.

5 Changing Scheduling Order

This section presents example variants of self-adaptation affecting a detailed
process and involving non-trivial global behaviour at the level of partition Evol
of that detailed process, really evolutionary behaviour in terms of subsequent
phases.

To this aim, we reorganize the Paradigm model of Section 3 in a different way,
namely by changing the non-deterministic selection policy of the scheduler into
round robin selection. Figure 8 visualizes a combination of the original scheduler
process and a new, envisaged one. The four upper states, of the seven states
displayed, constitute the STD of the Scheduler process as in Figure 1. The six
lower states, asg1 to asg3 and check1 to check3, will comprise the state space
of the evolved Scheduler process. So, here we have a different type of change:
a detailed process is going to get new behaviour. Round robin checking of a
worker’s wish to enter its critical section, is done in the states checki, whereas
the meaning of states asgi is kept unchanged. The combined behaviours as
presented in Figure 8 actually obscure what transitions could be taken during

Scheduler idle

asg3asg2asg1

check1 check2 check3

Fig. 8. Combined STD of two incarnations of Scheduler

108 L. Groenewegen and E. de Vink

idle asg2

asg1

asg3

idle

Phase
1 2’Phase

Scheduler(Evol) trivPhase1 Migration Phase
migration

Done 2’

check1

check2

check3

asg2

asg1

asg3

check1

check2

check3

asg2

asg1

asg3

migrationDone

Migration

triv triv

Fig. 9. Partition Evol of Scheduler, first variant

which evolutionary phase. At level of the partition Evol this becomes rather more
clear from global process Scheduler(Evol). Figure 9 presents the partition Evol
of the extended process Scheduler under migration, together with global process
Scheduler(Evol). Without the traps and with idle added as starting state of
the first evolutionary phase, it can be taken as a movie of process Scheduler’s
evolution represented through three subsequent takes. Consistency rules for the
migration as well as for the new way of scheduling are grouped into the two
sets CRmig and CRnext , like before. Remember, we start with CR as modeled in
Section 3. As before, i+1 denotes the successor of i from the cyclic values 1, 2, 3.

In addition, we use the negative side rule P (π): S θ
� for the condition that

within partition π of process P either S is not the current subprocess, or trap θ
of subprocess S has not yet been entered. This condition is necessary for the
corresponding manager transition to occur and it leaves the current subprocess
at the level of partition π of P unchanged. The consistency rules for the migration
are now the following.

McPal: startMigr→ contMigr ∗
Scheduler(Evol): Phase1

triv→ Migration

McPal: contMigr→ endMigr ∗
Scheduler(Evol): Migration

migrationDone→ Phase2

McPal: endMigr→ obs ∗ [CR := CRnext]

Scheduler: idle→ check1

Please note, from the above list, the first rule for McPal starts the evolutionary
migration phase for Scheduler. The one rule of Scheduler expresses the actual
migration step, by going from idle to check1. The second rule of McPal stabilizes
the migration: Scheduler is in evolutionary phase Phase2 from the moment
the rule is applied. McPal’s last rule then discards rules no longer needed, by
keeping those from CRnext only. It may happen, that the actual migration step
to be taken by Scheduler does not occur, as Scheduler, while in asgi, gets its

Evolution On-the-Fly with Paradigm 109

phase Migration as the current subprocess constraint. In that case, Scheduler
migrates right then implicitly, without taking an explicit step. As an aside, we
have a non-trivial management relation: McPal manages the scheduler, while the
scheduler manages the workers.

The consistency rules CRnext for the envisioned evolutionary phase are the
following

Workeri: free→ nonCrit

Workeri: nonCrit→ pre

Workeri: pre→ crit

Workeri: crit→ post

Workeri: post→ free

Scheduler: checki → asgi ∗ Workeri(CSM): Free
started→ Busy

Scheduler: asgi → checki+1 ∗ Workeri(CSM): Busy
done→ Free

Scheduler: checki → checki+1 ∗ Workeri(CSM): Free
started

�

McPal: obs→ startMigr ∗ [CR := CR ∪ CRmig ∪ CRnext]

idle asg2

asg1

asg3

idle

Phase
1 2’Phase

Scheduler(Evol) trivPhase1 Migration Phase
migration

Done 2’

check1

check2

check3

asg2

asg1

asg3

check1

check2

check3

asg2

asg1

asg3

migrationDone

Migration

triv triv

Fig. 10. Partition Evol of Scheduler, second variant

Figure 10 gives an alternative for partition Evol of the Scheduler process: during
migration it allows for some extra delay of introducing the round robin approach,
by a kind of last-orders possibility for at most one worker according to the old-
fashioned non-deterministic selection mechanism. (See the transition from state
idle to the states asgi in subprocess Migration.) Note that by thus changing
the definition of subprocess Migration, i.e. the concrete constraint, we do not
have to change our consistency rule formulations for achieving the evolution as
depicted in Figure 10.

6 Conclusions, Related Work and Future Work

The scheduler and worker examples illustrate evolution on-the-fly as supported
in Paradigm. The detailed transitions of the special component McPal mark the

110 L. Groenewegen and E. de Vink

various migration steps from one evolutionary stage of the system to the next.
Via consistency rules, new subprocesses of old or new behaviour can be intro-
duced. Change clauses for McPal provide these consistency rules and dispose
of coordination that is not desired any more. Although, the mechanism of sub-
processes constrain the behaviour of components, the proposed evolution scheme
itself does not require any component to stop, to be restarted later with new
behaviour installed. In this sense, evolution is on-the-fly.

The evolution pattern as described allows for iterated evolution, as the McPal
process is persistent in the model. A new migration can take place as soon as
new consistency rules for intermediate and targeted behaviour and interaction
are defined. With new semantics specified lazily, just-in-time, the self-adaptation
is on-the-fly. In its present form, only one intermediate stage is foreseen in the
evolution pattern, represented by the state contMigr of the detailed process
of McPal. In the first evolution example variant, we have seen that this state
was superfluous. The opposite, having more than one intermediate migration
stage, is possible as well. Even stronger, the detailed behaviour of McPal can
be specified just-in-time, determining the migration trajectory on-the-fly too.
As such, our scheme provides unconstrained run-time selection of a migration
trajectory. In general, any finite DAG with a unique starting state will do, as
far as the structure of McPal is concerned.

Related work The contracts of Colman and Han [6] for the coordination of
loosely coupled systems connect the organizational and functional views on an
architecture, a distinction reminiscent to our managers and employees. The con-
nection of Colman and Han, though, is by role instantiation, mapping the ab-
stract to the concrete. Fundamental for Paradigm is the coupling of detailed
state transitions with global subprocess transfer.

In the context of Component Based Software Engineering, adaptation is to be
understood as component adaptation for interoperability purposes. Formal de-
scriptional approaches are gaining impact in this field [2, 19, 16, 4], moving from
IDLs based on finite state machines towards mobility-oriented process calculi
and induced bisimulation equivalences. Although Paradigm is supported by a
transition-based operational semantics [12], at present the behavioural theory to
compare different evolutions or different stages within the same evolution, is not
yet fully established. However, see [3, 13].

Oriol proposes to exploit asynchronous channels to drive unanticipated soft-
ware evolution [17]. Leading principles are anonymity of entities, late binding
and asynchronous communication in a setting of service-directed architectures.
A variation geared towards tuple spaces has been reported in [18]. Because of the
atomicity of the services involved, the granularity is more coarse-grained than
in the approach presented here, however.

There is a vast amount of literature on dynamic updating at the code level, for
example on concrete dynamic software updating systems design (see e.g. [15, 20]).
In the context of declarative programming, dynamic logic programming (see [1]
amongst others) involves sequences of logic programs to express the evolution of
knowledge over time. Controls have to be put in place to deal with inconsistencies

Evolution On-the-Fly with Paradigm 111

among separate programs and to fine-tune asserts and retracts of Horn clauses.
However, as with the work on imperative programming languages mentioned
above, as yet no migration pattern or architectural support is provided to guide
the evolution.

In addition, we like to mention [9, 10] as examples reporting on self-adaptive
systems on an architectural level. In these papers there is the same tendency
as noted above (service atomicity) of concentrating on forms of self-adaptation
referred to as: reconfiguration, structured reorganization, data-driven readjust-
ment, canned workflows being triggered, recomposition and the like. The sur-
vey [5] compares fourteen different approaches to self-adaptation, none of which
appears to achieve so-called unconstrained run-time selection. Our McPal pat-
tern however, allows for exactly this: the outcome of our JIT-modeling, occurring
while being in state obs, fully determines such run-time freedom: nothing hap-
pening during migration or during later evolutionary phases has been foreseen
from the beginning. The paper [7] is coming closest to our approach. It draws
attention to the dynamic consistency problem, which should be solved by co-
ordination; details about how to do this, are not given however, contrarily to
our McPal component which, based on Paradigm, specifies such coordination in
detail.

Future work Further research will be devoted to more elaborate migration
schemes. A case study of the dining philosophers evolving from deadlock to
starvation and beyond is under way. For the treatment of more intricate evo-
lution patterns, dynamic creation and deletion of complete detailed processes
is involved, which requires extension of Paradigm’s formal semantics. Larger
software architectures, for example in a setting of changes at the business level
requiring software adaptation of lower-level support-systems, are likely to be-
come multi-tier. Concise models will benefit from higher-order consistency rules
and coordination patterns. Thesis work is devoted to tooling that supports the
analysis of extensive examples as well as refactoring, transformation and refine-
ment strategies of Paradigm models.

Acknowledgment. We are indebted to our colleagues of the FaST-group, including
Fahrad Arbab, Frank de Boer, Marcello Bonsangue, Jetty Kleijn, and Andries
Stam for various stimulating discussions on the subject.

References

1. J.J. Alferes, J.A. Leite, L.M. Pereira, H. Przymusinska, and T. Przymusinski. Dy-
namic updates of non-monotonic knowledge bases. Journal of Logic Programming,
45:43–70, 2000.

2. R. Allen and G. Garlan. A formal basis for architectural connection. ACM Trans-
actions on Software Engineering Methodology, 6:213–249, 1997.

3. J.C. Augosto and R.S. Gomez. A temporal logic view of Paradigm models. In
Proc. SEKE 2002, Ischia, Italy, pages 497–503. ACM, 2002.

4. A. Bracciali, A. Brogi, and C. Canal. A formal approach to component adaptation.
Journal of Systems and Software, 74:45–54, 2005.

112 L. Groenewegen and E. de Vink

5. J. Bradbury, J. Cordy, J. Dingel, and M. Wermelinger. A survey of self-management
in dynamic software architecture specifications. In [10], pages 28–33. ACM Press,
2004.

6. A. Colman and Jun Han. Coordination systems in role-based adaptive software.
In J.-M. Jacquet and G.P. Picco, editors, Proc. Coordination 2005, volume 3454 of
LNCS, pages 63–78, 2005.

7. L. Desmet, N. Janssens, S. Michiels, F. Piessens, W. Joonsen, and P. Verbaeten.
Towards preserving coorectness in self-managed software systems. In [10], pages
34–38. ACM Press, 2004.

8. G. Engels, L.P.J. Groenewegen, and G. Kappel. Coordinated Collaboration of
Objects. In M. Papazoglou, S. Spaccapietra, and Z. Tari, editors, Advances in
Object-Oriented Data Modeling, pages 307–331. MIT Press, 2000.

9. D. Garlan, J. Kramer, and A. Wolf, editors. Proceedings of the 1st Workshop on
Self-Healing Systems, Charleston SC. ACM, 2002.

10. D. Garlan, J. Kramer, and A. Wolf, editors. Proceedings of the 1st ACM SIGSOFT
Workshop on Self-Managing Systems, Newport Beach CA. ACM, 2004.

11. L. Groenewegen, N. van Kampenhout, and E. de Vink. Delegation Modeling with
Paradigm. In J.-M. Jacquet and G.P. Picco, editors, Proc. Coordination 2005,
volume 3454 of LNCS, pages 94–108, 2005.

12. L. Groenewegen and E. de Vink. Operational semantics for coordination in Para-
digm. In F. Arbab and C. Talcott, editors, Proc. Coordination 2002, volume 2315
of LNCS, pages 191–206, 2002.

13. N. van Kampenhout. Systematic Specification and Verification of Coordination:
towards Patterns for Paradigm Models. Master’s thesis, LIACS, 2003.

14. J. Küster. Consistency Management of Object-Oriented Behavioral Models. PhD
thesis, University of Paderborn, 2004.

15. S. Malabarba, R. Pandey, J. Gragg, E. Barr, and J.F. Barnes. Runtime support for
type-safe dynamic Java classes. In E. Bertino, editor, Proc. ECOOP 2000, volume
1850 of LNCS, pages 337–361, 2000.

16. Sun Meng and L.S. Barbosa. On refinement of generic state-based software com-
ponents. In C. Rattray, S. Maharaj, and C. Shankland, editors, Proc. AMAST’04,
volume 3116 of LNCS, pages 506–520, 2004.

17. M. Oriol. An Approach to the Dynamic Evolution of Software Systems. PhD thesis,
Department of Information Systems, University of Geneva, 2004.

18. M. Oriol and M.W. Hicks. Tagged sets: A secure and transparent coordination
medium. In J.-M. Jacquet and G.P. Picco, editors, Proc. Coordination 2005, volume
3454 of LNCS, pages 252–267, 2005.

19. P. Poizat. Korrigan: un formalisme et une méthode pour la spécification formelle
et structurée de systèmes mixtes. PhD thesis, IRIN, University of Nantes, 2000.

20. G. Stoyle, M.W. Hicks, G. M. Bierman, P. Sewell, and I. Neamtiu. Mutatis mutan-
dis: safe and predictable dynamic software updating. In Proc. POPL 2005, Long
Beach, Calefornia, pages 183–194. ACM, 2005.

Formalising Business Process Execution with
Bigraphs and Reactive XML

Thomas Hildebrandt, Henning Niss, and Martin Olsen�

IT University of Copenhagen, Denmark
{hilde, hniss, mol}@itu.dk

Abstract. Bigraphical Reactive Systems have been proposed as a meta
model for global ubiquitous computing generalising process calculi for
mobility such as the pi-calculus and the Mobile Ambients calculus as
well as graphical models for concurrency such as Petri Nets. We inves-
tigate in this paper how Bigraphical Reactive Systems represented as
Reactive XML can be used to provide a formal semantics as well as an
extensible and mobile platform independent execution format for XML
based business process and workflow description languages such as WS-
BPEL and XPDL. We propose to extend the formalism with primitives
for XPath evaluation and higher-order reaction rules to allow for a very
direct and succinct semantics.

1 Introduction

Recently proposed language standards for business process coordination such as
WS-BPEL [2], XLANG [28], WSFL [18], and XPDL [7] have a syntax based
on XML to facilitate exchange of process descriptions between different process
execution engines and analysis tools. Business processes are so-called long-lived
processes. This means that the state of a running process is continuously per-
sisted, and also that mobility of running processes is highly relevant, for in-
stance if an active business case is needed in a different part of the world or the
process execution engine is updated. Interestingly, however, there is no standard
representations of the state of processes and or the execution rules (i.e. the se-
mantics) of business process languages relating the process description to the
possible state changes. The state of a business process is usually assumed to be
persisted in a proprietary format in a relational database [13] and the actual se-
mantics, derived from an informal specification, is hidden in the implementation
of a specific process tool. In other words, while the standards allow for exchange
of process descriptions there is no platform independent standard for the mo-
bility and exchange of running processes and execution rules, which limits the
mobility of business processes in practice. The lack of formal semantics makes it
difficult to guarantee consistency between different process tools, and the lack
� Authors listed alphabetically. This work was funded in part by the Danish Research

Agency (grant no.: 2059-03-0031) and the IT University of Copenhagen (the Bi-
graphical Programming Languages project).

P. Ciancarini and H. Wiklicky (Eds.): COORDINATION 2006, LNCS 4038, pp. 113–129, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

114 T. Hildebrandt, H. Niss, and M. Olsen

of an extensible format for the process language semantics makes it expensive to
change tools when the process languages evolve.

In the present paper we describe a general approach to define an XML-based
exchange and execution format for business process coordination, as well as an
XML-based format for the process language semantics based on the meta process
model of Bigraphical Reactive Systems (BRS) [10, 17, 20, 21]. The BRS meta
model provides a format for specifying a signature for a process language and a
set of reaction rules (rewrite rules) for its semantics and a general theory for de-
riving from the reaction rules a labelled bisimulation congruence for the process
language [10]. Processes are represented as two graphs (explaining the name
bigraphs), named the place graph and the link graph respectively, which are
designed to generalise the pi-calculus [22] and the Mobile Ambients calculus [4];
bigraphs has been shown also to encompass Petri Nets [19].

Concretely, we investigate how BRSs, by exploiting similarities between Bi-
graphs and XML, can be used to provide a formal semantics and execution
format for XML-based business process languages, using a small subset of WS-
BPEL as an illustration of the idea. In spite of being just a small subset, the WS-
BPEL case provides several benefits: Firstly, the case illustrates how an industry
standard XML-based programming language can be extended to an XML-based
execution format using ideas from process calculi. Secondly, we show how the
semantics can be given as XML-based rewrite rules thereby both providing an
extensible and interchangeable format for the semantics and narrowing the gap
usually arising between a programming language and its formalisation, as it is
the case for π-calculus formalisations of business processes. Finally, the case sug-
gests an interesting extension of BRS to allow for (linear) higher-order reaction
rules and tree logics, in this concrete case a subset of XPath. The higher-order
reaction rules is essentially a format for wide reaction rules in which the different
parts of the rule may be nested inside each other, and thus parameters of the
reaction rules may be contexts. Subsequently, we employ XPath to constrain
such context parameters, resulting in a kind of context-dependent reaction rules.

Our formalisation is presented as an instance of a distributed meta process
calculus DiX , which at the same time can be regarded as a term language for a
(generalisation of) pure open bigraphs and a process calculus notation for tuples
of (unordered) XML, XML contexts and XML-rewrite rules. The DiX calculus
and the theory of bigraphical reactive systems form the theoretical foundation
for a distributed XML-centric model of computation. This has been implemented
in a prototype called Distributed Reactive XML; it provides an extensible, dis-
tributed (peer-to-peer) process execution engine for the calculus directly based
on the formalisation, and in particular a process engine for any concrete in-
stance. Our approach thus constitutes a general approach to develop extensible
and distributed process execution engines from formal process semantics.

The calculus with first-order reaction rules and its implementation as Dis-
tributed Reactive XML was presented in [15] based on the Reactive XML im-
plementation given in [14, 31]. The case of WS-BPEL and the extension of
the calculus and implementation to higher-order reaction rules and XPath is

Formalising Business Process Execution with Bigraphs and Reactive XML 115

described in [23]. The present paper focus on the semantics; a follow up paper
will address the implementation.

Related Work. Much work has been carried out recently on formalisations of
workflow languages, in particular within the Petri Net [24] and pi-calculus for-
malisms. Indeed the question of which of these two formalisms is most suitable
has raised a lively debate [30]. The work in [26] is the most comprenhensive,
describing a complete Petri Net-semantics for WS-BPEL. Pi-calculus formalisa-
tions of business and workflow processes have been described in [25, 27]. With
respect to comprehensibility and extensibility, all of these formalisations suffer
from the fact that the business process language is formalised in very abstract
models with few primitives for interaction. In comparison, the process semantics
given in the present paper stays very close to the WS-BPEL language by utiliz-
ing the extensibility of bigraphical reactive systems and the similarities between
bigraphs and XML. An argument for employing abstract minimalistic models
such as the π-calculus and Petri Nets is of course to be able to perform formal
reasoning and utilize verification tools. We retain this hope by relying on the for-
mal theory for bigraphical reactive systems, notably the theory of bisimulation
congruences, which will be pursued in future work.

Our representation of bigraphs as XML is inspired by the similarities between
process calculi for mobility and semi-structured data observed in [3] and is closely
related to the work in [9]. However the focus of [9] is to represent XML as bigraphs
(and using bigraph-logics introduced by the same authors in [8] to describe
properties of XML) as opposed to the present paper that have the opposite
focus, namely to represent bigraphs as XML, and using XML as an platform
independent execution format for bigraphical reactive systems. A possible joining
point of the two lines of work would be to use bigraph-logics in place (and as a
possibly semantics) of XPath.

The work on XML-based execution formats relates to the proactive XML-
centric models of computation and coordination surveyed in [6], in which
processes that manipulates XML-documents are embedded inside the documents
themselves. In particular our work relates to the Workspaces approach [29] in
which an XPDL process description is transformed into a set of XML documents
representing the steps to be carried out, thus providing a distributed XML rep-
resentation of the process state. The main difference between the Workspace
approach and ours is that the computation steps in Workspaces are based on
XSLT, which has the clear benefit of being an open and widely implemented
standard. On the other hand, XSLT is in itself a complex programming lan-
guage without a formal semantics.

2 Bigraphical Reactive Systems and Reactive XML

In this section we recall the extensible process and context calculus presented
in [15] and its relationship to bigraphs and representation as Reactive XML.

Notation: We let n, m, i, j range over natural numbers and write [m] for the
set (ordinal) {1, . . .m}.

116 T. Hildebrandt, H. Niss, and M. Olsen

2.1 Signatures and Process expressions

The starting point of our extensible process calculus is a general notion of sig-
natures that encompasses both the signatures of XML documents and bigraph
signatures. The terminology is partly borrowed from bigraph signatures.

Definition 1. A signature is a tuple (Σ, Ξ �Δ ⊆ Σ, Nc ⊆ N, Att, ar), where
Σ is a set of controls ranged over by κ, Ξ and Δ are resp. the subsets of active
and atomic controls, N is an infinite set of names ranged over by n, Nc is a set
of constant names, Att is a set of finite attribute index sets, and ar : Σ → Att
is a function assigning an attribute index set to each control. ��
As a signature for XML, Σ is a set of XML element names, N is a set of
XML attribute values and variables where Nc is the subset of attribute values
(concretely the strings not beginning with a $), and Att is the set of finite
sets of XML attribute names. The subset of active controls Ξ in the signature
determines where reactions (or rewrites) can take place as described below and
the subset of atomic controls Δ are controls that can not have any children.
Following [9] we assume the existence of an atomic control with no attributes
for each possible #PCDATA node.

The notion of constant names is an extension of the notion of bigraph sig-
natures and will be explained when we introduce contexts below. For bigraph
signatures the attribute index set Att is the set ω = {[n] | n ≥ 0} of finite or-
dinals and the attribute indexes ar(κ) of a bigraph control κ are referred to as
the ports of κ. The attributes of bigraph controls are thus simply a list of names
indicating which name each port is linked to. In other words, bigraph signatures
has the form (Σ, Ξ �Δ ⊆ Σ, ∅, ω, ar).

A distributed Σ-process is an ordered set of unordered trees for which each
node is labelled by a control κ ∈ Σ and a set of name attributes indexed by
ar(κ), which we write as κ{ai : ni}ai∈ar(κ). If ar(κ) = {a1, . . . , ak} the control
κ{ai : ni}ai∈ar(κ) corresponds to the XML element <κ a1="n1" . . . ak="nk">.

As formulated in Def. 2 below, we use a commutative and associative bi-
nary parallel composition | to separate siblings and the prefix notation κ{ai :
ni}ai∈ar(κ).p for a tree with root κ{ai : ni}ai∈ar(κ) and sub tree p. For XML
the prefix operator corresponds to surrounding p with the usual open and close
elements as <κ a1="n1" . . . ak="nk"> p </κ>. We collect trees into an ordered
set of trees by an associative binary parallel composition ‖. Using bigraph termi-
nology, we refer to | as the prime parallel composition and ‖ as the wide parallel
composition. We also refer to trees as prime processes and ordered collections
of trees as wide processes (rather than distributed processes). We let 0 denote
the empty collection of trees (i.e. wide process) and 1 the emtpy tree (i.e. prime
process).

Definition 2. For a signature Σ = (Σ, Ξ � Δ ⊆ Σ, Nc ⊆ N, Att, ar) the Σ-
processes are given by the grammar

w ::= w ‖ w | p | 0 wide Σ-processes

p ::= κ{ai : ni}ai∈ar(κ).p | κa{i : ni}i∈ar(κa).1 | p | p | 1 prime Σ-processes

Formalising Business Process Execution with Bigraphs and Reactive XML 117

where κ ∈ Σ\Δ, κa ∈ Δ, ni ∈ N , and j ≥ 0. Let ≡ be the structural congruence
defined as the least congruence with respect to the operators above that makes |
associative and commutative with identity 1 and ‖ associative with identity 0.

Associativity of the parallel compositions allows us to leave out the parenthesis,
writing respectively Πi∈[n] pi and ΠΠi∈[n] pi for the n times prime and wide paral-
lel compositions and letting Πi∈∅ pi = 1 and ΠΠi∈∅ pi = 0 . As usual we will often
leave out trailing nil processes, writing κ{ai : ni}ai∈ar(κ) for κ{ai : ni}ai∈ar(κ).1.
We say that the width of a wide process expression ΠΠ i∈[n] pi is n, i.e. the process
is the wide parallel product of n primes.

2.2 Context Expressions and Reactions

To define reactions formally we first need to define process contexts formally.

Definition 3. For a signature Σ = (Σ, Ξ � Δ ⊂ Σ, Nc ⊆ N, Att, ar) the Σ-
bigraph contexts are pairs G = (W, σ), where σ : N → N is a finite substitution
respecting constant names referred to as the attribute context and W is the place
context defined by the grammar

W ::= W ‖W | P | 0

P ::= κ{i : ni}i∈ar(κ).P | κa{i : ni}i∈ar(κa).1 | P |P | 1 | []j

where κ ∈ Σ\Δ, κa ∈ Δ, ni ∈ N , and j ≥ 0. Define the names n(W) of a place
context W to be the set of attributes appearing at controls.

The first component of a context is what one may first expect of a (multi-hole)
process context, namely a process expression with indexed holes []j in which
processes can be placed. The second component, the finite name substitution
σ, act as a context of the attribute variables. An attribute context thus allow
renaming, fusion and instantiation of attribute variables. In bigraph terminology,
the attribute context is called the link map and the place context is called the
place graph. That the substitution σ is finite means that the set dom(σ) = {x |
σ(x) �= x} is finite. That it respects contant names means that dom(σ)∩Nc = ∅.

We type contexts (W, σ) : (n, X)−→(m, Y) if W has width m and for any
hole []j in W the index j is in [n], and the attribute context satisfies that
dom(σ) ⊆ X and σ(X)∪n(W) ⊆ Y . Using bigraph terminology we refer to (n, X)
and (m, Y) as interfaces, and (n, X) as the innerface and (m, Y) as the outerface
of (W, σ) : (n, X)−→(m, Y). We write (W, σ)⊕X ′ : (n, X �X ′)−→(m, Y ∪X ′)
for the extension of the interfaces with a set of names X ′ satisfying X ′ ∩X = ∅.
The condition ensures that X ′ ∩ dom(σ) = ∅ and thus well typedness.

We say that a context (W, σ) : (n, X)−→(m, Y) is affine if the same index
appear at most once at a hole and that a context (W, σ) : (n, X)−→(m, Y) is
linear if all indexes in [n] appear exactly once. For bigraph signatures, the typed
linear contexts given above is a term language for open pure bigraphs [10]. That
the bigraphs are open and pure means respectively that we do not have the usual
constructor for local names used to represent name binding in the pi-calculus nor

118 T. Hildebrandt, H. Niss, and M. Olsen

the possibility of binding names within the attributes of controls, as e.g. used
for the input prefix in the pi-calculus. Local names and binding is allowed in
general, binding bigraphs but they are not needed for the work presented in this
paper and is thus left for future work. We let 0 be short for the empty interface
(0, ∅). As usual, a process p can be viewed as a context (p, id) : 0−→(m, Y) with
the empty innerface, referred to as a ground context. We will often abbreviate
the type of a ground context as (p, id) : (m, Y).

Contexts (W, σ) : (n, X)−→(m, Y) and (W ′, σ′) : (m, Y)−→(k, Z) compose
as (W ′, σ′) ◦(W, σ) = (W ′(Wσ′), σ′ ◦ σ) : (n, X)−→(k, Z) where Wσ′ is the
context obtained from W by substituting all attribute values n with σ′(n) and
W ′(W) is the context obtained by for all indexes i ∈ [m] inserting the ith prime
of W into every i-indexed hole of W ′.

We say that a context is active if no holes are nested inside non-active controls.
The dynamics of a process language is then defined by a set R of parametric
reaction rules. A parametric reaction rule is a pair (WL : (n, X)−→(m, Y), WR :
(n, X)−→(m, Y)) of wide contexts, where WL is required to be linear. The set
of process reactions is then defined by W : (k, Z)−→W ′ : (k, Z) if there exists a
parametric rule (WL : (n, X)−→(m, Y), WR : (n, X)−→(m, Y)) ∈ R, an active
context WA : (m, Y ∪X ′)−→(k, Z) and a parameter process WP : (n, X �X ′)
such that W ≡WA ◦WL ⊕X ′ ◦WP and W ′ ≡WA ◦WR ⊕X ′ ◦WP .

2.3 Reactive XML

Table 1 shows how processes and contexts are represented as XML, where ε
denote the empty document. As indicated above we represent controls as XML
elements (except for the #PCDATA controls represented as character data) and
attributes as XML-attributes. We use the reserved1 element names wide, reg,
and hole for respectively the root of the wide process, the root of the primes
(referred to as regions in bigraphs) and the holes. The hole element has an
attribute name providing the index of the hole.

We represent the set of reaction rules as an XML document containing the
rules encoded as pairs of contexts as well as an XPath representation of the
active controls as will be described in Sec. 3. The technical report [16] contains
the set of WS-BPEL reaction rules from [23] in Reactive XML format.

3 Formalising XML Business Process Execution

When representing WS-BPEL processes as bigraphs we leverage the fact that
Reactive XML provides an XML-based syntax for bigraphs and that a bigraph-
ical reactive system may tailor the exact expressions to the application. In
other words, the representation makes it possible to view the original WS-BPEL
process expression as a Reactive XML expression. In order to make the reac-
tion rules simpler we have chosen to relax this a bit, and the translation from
WS-BPEL process expressions to bigraphs may insert helper controls.
1 Technically, this can be reserved using the notion of XML namespaces.

Formalising Business Process Execution with Bigraphs and Reactive XML 119

Table 1. Process contexts as XML

[[Πi∈[n] Pi]] = <wide> <reg>[[P1]]</reg> . . . <reg>[[Pn]]</reg> </wide>

[[κ{ai : xi}ai∈ar(κ).P]] = <κ a1="x1" . . . an="xn"> [[p]] </κ>, for |ar(κ)| = n

[[κa]] = κa, for κa ∈ #PCDATA

[[P |P ′]] = [[P]][[P ′]]

[[1]] = ε

[[[]j]] = <hole name="j"/>

In this section we investigate how to formalise XML business process exe-
cution, concretely a subset of WS-BPEL, as bigraphical reactive systems. The
contributions of this are twofold: on the one hand it gives a succint representa-
tion of the semantics of WS-BPEL subset, on the other hand it directly provides
a subsequent implementation based on our earlier work on Reactive XML [15].
Due to space considerations the present paper addresses the first of these only;
for the second we refer to [23]. For a bigraphical reactive system, one gets to
specify not only process expressions in the formalism, but also the reaction rules.
This makes bigraphical reactive systems particularly well-suited for representing
the semantics of WS-BPEL as we can capture the semantics of each kind of
WS-BPEL process as one or more bigraphical reaction rules.

3.1 A Subset of WS-BPEL as Processes

Figure 1 gives the grammar of the WS-BPEL process language we consider
presented in the more compact DiX notation. The translation to XML (as de-
scribed in Table 1) is straightforward. The corresponding signature Σ is defined
in Table 2. The signature has the controls process, variables, variable, sequence,
flow, while, assign, copy, from, to and invoke corresponding directly to elements
in WS-BPEL and four additional controls: next, body, condition, and instance,
to be described below.

We employ a simple kind of sorting (i.e. schema) restricting the allowed chil-
dren of controls and the allowed names for attributes. We let q range over a subset
of XPath expressions (including the contants true and false), defined below. We
use sets in sorts to represent disjunction and let & represent conjunction. We
use ? for zero or one, and ∗ for zero or more. The process control thus have zero
or one variables control as child and zero or one control from the set ACT (of
actions). From a high-level perspective, a WS-BPEL process description consists
of a number of processes in parallel

proc1 | . . . | procn

represented by procs in Figure 1. During execution, each of the processes proci

may get instantiated, eg., when it is being invoked. A process instance needs

120 T. Hildebrandt, H. Niss, and M. Olsen

system ::= procs | state
procs ::= proc | . . . | proc
state ::= inst| . . . | inst
proc ::= process{name : n}.(vars | act)
vars ::= variables.(var | . . . | var)
var ::= variable{name : n}
act ::= seq | while | flow | inv | rec | rep | assign | 1
seq ::= sequence.(act | next.act)
while ::= while{condition : q}.body.act
flow ::= flow.(act | . . . | act)
inv ::= invoke{operation : n, inputVariable : n}
rec ::= receive{operation : n, variable : n}
rep ::= reply{operation : n, variable : n}
assign ::= assign.copy.(from | to)
from ::= from{var : n} | from expr{query : q}
to ::= to{var : n}
inst ::= instance{name : n}.(instvars | act)
instvars ::= variables.(instvar | . . . | instvar)
instvar ::= variable{name : n}.v

Fig. 1. A grammar for the WS-BPEL subset

Table 2. BPEL process signature

Control Activity Attributes Sort
process passive {name:n} {variables}?&ACT ?

variables passive {variable}∗

variable passive {name:n} #PCDATA

sequence active ACT ?&next
flow active ACT ∗

while passive {condition:q} {condition}?&{body}
assign passive {copy}
copy passive {from}&{to}
from atomic {var:n} ∅
from expr atomic {query:q} ∅
to atomic {var:n} ∅
invoke atomic {operation:n, inputVariable:n} ∅
receive atomic {operation:n, variable:n} ∅
reply atomic {operation:n, variable:n} ∅
next passive ACT ?

body passive ACT ?

condition passive ACT ?

instance active {variables}?&ACT ?

where ACT = {sequence, flow, while, assign, invoke, receive, reply} and #PCDATA is
the set of #PCDATA controls.

Formalising Business Process Execution with Bigraphs and Reactive XML 121

to maintain the current “program counter” indicating what activity is currently
being executed and an assignment of values to the variables of the process. We
shall refer to the representation of program counters and variable assignments for
all process instances as the execution state of the WS-BPEL process description.

Traditionally, execution engines store execution state in proprietary formats,
typically in a database. We propose to represent not only the WS-BPEL process
description as XML, but also the execution state. This allows us to use Reactive
XML to implement the execution steps taken by WS-BPEL processes. Reaction
rules implement the semantics of WS-BPEL by rewriting the execution state
appropriately. Again from a high-level perspective the current state of the ex-
ecution of a WS-BPEL process description has the following form, represented
by system in the grammar:

(proc1 | . . . | procn) |(inst1 | . . .| instm)

that is a set of process descriptions together with a set of the currently instan-
tiated processes. We need the descriptions in order to be able to instantiate
new processes; the instances capture the execution state, not as program pro-
gram pointers but in the style of process calculi as descriptions of the current
state and possible future behaviour. Process instances are represented using the
control instance which is just like process except variables carry a current value.

Since process descriptions are only meant to be used when instantiating
processes the process control is passive; dually, process instances are meant to
be executed (ie., rewritten) and therefore the instance control is active.

Associated with each syntactic construct we present a number of reaction
rules specifying how the execution state evolves for the construct in question.
For example, there are two rules specifying how to execute while loops. The
reaction rules rewrite the XML representation of the execution state; specifically,
the process instance for which an execution step is to be taken. These reaction
rules “capture” the semantics of WS-BPEL.

3.2 Combining Activities

WS-BPEL defines a number of structural activities; activities which combine
smaller activities into a combined activity.

One of the most basic structural activities in WS-BPEL is that of parallel com-
position, known as flow. Activities prefixed by a flow are concurrent and thus may
execute concurrently2. The execution of the flow activity ends when all parallel
activities have finshed executing. By making the corresponding control flow ac-
tive we ensure, appealing to the underlying bigraphical model, that the activi-
ties may execute in parallel. It would also have been possible to omit the explicit
control completely, however, at the cost of more differences between the original
WS-BPEL process and its encoding. We use a reaction rule to remove the flow
control when all activities have ended

flow.1→ 1 (1)

2 Future work will address the representation of links to constrain the execution order.

122 T. Hildebrandt, H. Niss, and M. Olsen

An equally important structural activity is sequential composition (using
sequence). The activities are executed in the order in which they occur as chil-
dren of the sequence control (ie., so-called “document order”). The execution
of the sequence activity ends when the last activity in the sequence has fin-
ished executing. In contrast to flow its encoding has to address the fact that
the children of a control are unordered in bigraphs. This means that we can-
not just group two sequential activities under a sequence control which is ac-
tive, as that would allow either of them to execute. Instead we introduce a
new, passive control, next, to block execution of the second activity, and pro-
vide an explicit reaction rule for execution. That is, we represent two WS-
BPEL activities in sequence <sequence> act1 act2 </sequence> by the process
sequence.(act1 | next.act2) and use the following reaction rule to start execution
of the second activity once the first has finished:

sequence.next.[]1 → []1. (2)

The while structural activity provides for the repeated execution of an ac-
tivity. The activity is executed repeatedly until the XPath condition no longer
evalutes to true, in which case the execution of the while activity ends. To sup-
port basing conditions on XPaths we extend Reactive XML with a primitive for
evaluating XPath expressions (rather than extending the underlying calculus,
we could have written an XPath interpreter in DiX). Consider a rule containing
EvalXPath(query) on the right-hand side, Reactive XML rewrites using this rule
by evaluating the XPath expression query against the DiX context matching the
left-hand side of the rule and inserting the result in place of EvalXPath(query).

Equipped with this primitive we can easily specify the semantics of while by
first appealing to the primitive (3) and then proceeding based on whether the
condition evaluates to true (4) or false (5). As for sequence, we use a passive
control body to block rewriting the body of the while; the control condition
serves to delimit the results of XPath evaluation from WS-BPEL (in the event
that the XPath generates valid WS-BPEL code).

while{condition : q}.body.[]1 (3)
→ while{condition : q}.(condition.EvalXPath(q) | body.[]1)
while{condition : q}.(condition.true | body.[]1) (4)
→ sequence.([]1 | next.while{condition : q}.body.[]1)
while{condition : q}.(condition.false | body.[]1) (5)
→ 1

The allowed XPath expressions are boolean and simple typed (i.e. integer) ex-
pressions over constants and the functions bpws:getVariableData(’n’) for ex-
tracting the value of a variable.

3.3 Variables

Assigning values to variables is one of the primitive activities of WS-BPEL (in
the subset we consider the only other primitive activities are concerned with

Formalising Business Process Execution with Bigraphs and Reactive XML 123

invoking processes as discussed in the next section). Variable assignments take
the form assign.copy.(from | to).

The intention is to assign the value specified by from to the variable specified
by to. In the WS-BPEL subset we consider in the present paper, to can only
specify a variable as in to{var : x}. The value to assign to the to variable
is specified by from : it can be either another variable, from{var : x}, or an
XPath expression, from expr{expr : q}. Below we describe how to define variable
assignments of the form from{var : x}, the form from expr{expr : q} is simpler as
it appeals simply to EvalXPath(q) rather than involving looking up the current
binding of a variable.

Recall, that process instances record the current bindings of values to vari-
ables, as in

instance.(variables.(variable{var : x}.17 | variable{var : y}.list.(. . .)) | . . .) (6)

binding the value 17 to x, and the XML element list.(. . .) to y.
Executing an assignment assign.copy.(from | to) is therefore a matter of ma-

nipulating the correct variables in the instance’s variables control. In order to
not let an assignment from one process instance affect the variables of another
instance, we need to insist that the controls assign and variables are both located
under the same instance control. Furthermore, since the assignment may occur
within a structural activity, the reaction rule for variable-to-variable assignment
takes the form:

instance{name : $i}.(C(assign.copy.(from{var : $f} | to{var : $t}))
| variables.(variable{name : $f}.[]1 | variable{name : $t}.[]2 | []3))

−→ instance{name : $i}.(C(1)
| variables.(variable{name : $f}.[]1 | variable{name : $t}.[]1 | []3))

(7)

(where []1 is the value of the variable matched by $f , []2 is the value of the
variable matched by $t , and []3 are the remaining bindings).

Intuitively, the context C above captures the fact that assign may be nested
under active controls, i.e. flow, while, or a sequence. For example, considering
again the process instance in (6) we could have

instance.(variables.(. . .)
| sequence.(assign.copy.(from{var : x} | to{var : y}) | next. . . .))

(6’)

in which case C therefore is sequence.([] | next.(. . .)).
Formally, we want to have an infinite set of rules obtained by instatiating

C with all possible active contexts. In the next sections we will suggest a for-
mat of higher-order parametric reaction rules that allow us to specify such rule
sets.

124 T. Hildebrandt, H. Niss, and M. Olsen

3.4 Higher-Order Reaction Rules

Consider again the reaction rule for assignment. We wish to be able to abstract
the context C in the reaction rule by a hole, writing:

instance{name : $iname}.([(assign.(copy.(from{var : $f} | to{var : $t})))]4
| variables.(variable{name : $f}.[]1 | variable{name : $t}.[]2 | []3))

−→ instance{name : $iname}.([1]4
| variables.(variable{name : $f}.[]1 | variable{name : $t}.[]1 | []3))

(8)
The parameters of holes 1, 2 and 3 are as usual prime processes, i.e. con-
texts Pi : 0−→(1, X), but the parameter of the 4th hole is a prime context
C : (1, Z)−→(1, Z) with a single hole and Z = {$f, $t}. That is, we wish to
instantiate (8) with a wide process W = P1 ‖ P2 ‖ P3 ‖ C resulting in the
ground rule

instance{name : $iname}.(C ◦(assign.(copy.(from{var : $f} | to{var : $t})))
| variables.(variable{name : $f}.P1 | variable{name : $t}.P2 |P3))

−→ instance{name : $iname}.(C ◦ 1
| variables.(variable{name : $f}.P1 | variable{name : $t}.P1 |P3))

Formally, we extend the types for interfaces with a limited function space
considering types of the form t ::= (t̄, X), where t̄ is a vector of types t1t2 . . . tn.
The idea is, that if (t̄, X) is the innerface of a context W then every hole with
index i is of the form [W ′]i where W ′ is a process of type ti. A prime context
C of type ti−→(1, X) can be placed in the hole [W ′]i, replacing the hole with
the process C ◦W ′. We will write 0 for the empty interface (ε, ∅) where ε is the
empty vector, and we write (n, X) for the type (t̄, X) where ti = 0 for all i ∈ [|t̄|].
The type of the redex WL and reactum WR in the reaction rule above is then
(t̄, Z)−→(1, Z ′) where t1 = t2 = t3 = 0, t4 = (1, Z) and Z ′ = {$f, $t, $iname}.

However, note that the parameter W = P1 ‖ P2 ‖ P3 ‖ C above has type
(1, Z)−→(4, X ∪ Z), so it can not immediately be composed with WL and WR.
Essentially, we need the hole to be part of the outerface. To this end, we define
the involution of a process (W)− having the type (W)− : 0−→(t̄, X) for t̄ =
t1t2 . . . tn if W ≡ Πi∈[n] Pi and Pi can be typed ti−→(1, X). Now for W = P1 ‖
P2 ‖ P3 ‖ C we have (W)− : 0−→(t̄, X ∪Z) for t1 = t2 = t3 = 0 and t4 = (1, Z)
matching the innerface of WL⊕X\Z and WR⊕X\Z. We restrict ourself to only
consider higher-order processes of type (t̄, X)−→(n, Y) and 0−→(t̄, X) given by
the grammar below.

Definition 4. For a signature Σ = (Σ, Ξ, Nc ⊆ N, Att, ar) the Higher-order
Σ-bigraph contexts H are defined by the grammar

H ::= (Who, σ) | (Who, σ)−

Who ::= Who ‖Who | Pho | 0

Pho ::= κ{i : ni}i∈ar(κ).Pho | Pho |Pho | 1 | [(Who, σ)]j

Formalising Business Process Execution with Bigraphs and Reactive XML 125

where σ : N → N are finite substitutions, κ ∈ Σ, ni ∈ N , and j ≥ 0 as for
1st-order contexts. We will often write Who for (Who, id).

As indicated above, we type contexts (Who, σ) : (t̄, X)−→(m, Y) for t̄= t1t2 . . . tn
if Who has width m, dom(σ) ⊆ X and σ(X) ∪ n(Who) ⊆ Y , and for any hole
[(W ′

ho, σ
′)]j ,j ∈ [n] and (W ′

ho, σ
′)− can be typed 0−→ tj . We type contexts

(Who, σ)− : 0−→(t̄, X) for t̄ = t1t2 . . . tn if Who ≡ Πi∈[n] Pi and Pi can be typed
ti−→(1, X).

The higher-order contexts allow us to specify the reaction rule for assign as
in (8) above. However, we wish to constrain the parameter of the 4th hole to
only active contexts. In general the constraints may depend on attribute values,
for instance to guarantee the existence of a certain path of controls between the
root and the hole(s) as it is the case for the XPath addressing of sub contents
of variables allowed in WS-BPEL. In the following section we address how this
can be achieved.

3.5 XPath Attribute Values and Context Constraints

We consider a small subset of XPath given by the grammar

φ ::= naos | exp

naos ::= //*[not (ancestor-or-self::*[nameset])] | //*
nameset ::= name()=’n’ | name()=’n’ or nameset

exp ::= bpws:getVariableData(’n’) | . . .

The XPath expressions defined by naos are of the form

//*[not (ancestor-or-self::*[name()=’n1’ or . . . or name()=’nk’])]

and selects nodes not nested within any of the controls ni for i ∈ [k]. These
expressions are for instance used to identify active contexts, by letting the set
{n1, . . . , nk} be the set of passive controls. We will let φactive denote this ex-
pression. The XPath expressions defined by exp are as for the while conditions,
booleans and simple typed expressions.

Recall that an XPath expression evaluated with respect to a node (somewhat
confusingly referred to as the context) in an XML-document and results in a
nodeset. We define that a prime context P satisfies an XPath constraint if all
of the holes are children of one of the nodes in the nodesets resulting from
evaluating XPath on the children of the reserved reg control of [[P]] (the context
represented as XML). The syntax of higher-order context holes is then extended
to [(W ′

ho, σ
′)]φj , where φ is an XPath expression belonging to the subset defined

above. We extend the interface types accordingly to t ::= (t̄, φ̄, X) where t̄ as
before is a vector t1 . . . tn of types and φ̄ is a vector φ1 . . . φn of limited XPath
expressions as defined by the grammar above. We omit the XPath constraints
from the type if they all are the expression //* that selects all contexts.

We extend the typing condition to require for (Who, σ) : (t̄, φ̄, X)−→(m, Y)
for t̄ = t1t2 . . . tn that for any hole [(W ′

ho, σ
′)]φj φ = φj and for the involuted

126 T. Hildebrandt, H. Niss, and M. Olsen

contexts with XPath constraints (Who, σ)− : 0−→(t̄, φ̄, X) for t̄ = t1t2 . . . tnand
φ̄ = φ1 . . . φn ifWho ≡ Πi∈[n] Pi and Pi can be typed ti−→(1, X) and satisfies
φi.

Returning to the assign case, we can now add the constraint φactive to the hole
with index 4 and type the redex (and reactum) WL : (t̄, φ̄, X)−→(1, X) where
t1 = t2 = t3 = 0 and t4 = (1, Z) and φ1 = φ2 = φ3 = //* and φ4 = φactive.

3.6 Process Communication

Communication amongst processes is the other form of basic activities of WS-
BPEL we consider. The specification of communication takes up a large fraction
of the WS-BPEL specification; here we shall focus on the basics of invoking a
process and process communication. WS-BPEL addresses orchestration of web
services and as such integrate features from WSDL (Web Services Description
Language) [5]. In the present work, rather than working with web services, we
consider a system as a collection of processes and interpret process invocation
and communication as between the processes in the system. Furthermore, WS-
BPEL also specifies how to correlate the messages between multiple (instances
of) processes using so-called “correlation sets”. See [23] for the details of repre-
senting this in Reactive XML.

A business process may invoke another process, thereby creating an instance of
the invoked process, using operation{operation : op, . . .}. This creates an instance
of the process in the system which contains a set{operation : op, . . .} activity.
The invoking process instance may specify parameters to the receiving process
by including a variable in the invoke attribute inputVariable . The intention is to
look up the current value of the variable in the instance, and bind that value
to the formal parameter specified in the receive’s variable attribute (just as was
done for variable assignment).

The above informal description can be expressed in the following reaction
rule:

instance{name : $i}.([invoke{operation : $o, inputVariable : $in}]φactive

3
| variables.(variable{name : $in}.[]1 | []2))

| process{name : $p}.([receive{operation : $o, variable : $var, }]φactive

6
| variables.(variable{name : $var} | []4) | []5)

−→
instance{name : $i}.([1]φactive

3 | variables.(variable{name : $in}.[]1 | []2))
| instance{name : $p}.(variables.(variable{name : $var}.[]1 | []4) | []5)
| process{name : $p}.([receive{operation : $o, variable : $var}]φactive

6
| variables.(variable{name : $var} | []4) | []5)

Observe (1) how the invoking process instance simply discards the invoke (in
other words, it is asynchronous), (2) that the receiving process description re-
mains unchanged (making it possible to create more instances), and (3) a new
process instance has been added to the system with the correct variable binding
and the “body” of the receiving process description ([]5). We have used the

Formalising Business Process Execution with Bigraphs and Reactive XML 127

same trick as for assign in order to locate the invoke under seq, flow, and while.
One similarly needs a reaction that allows sending messages between two process
instances (in WS-BPEL using reply and receive) following the pattern above:

instance{name : $rp}.([reply{operation : $o, variable : $out}]φactive

3
| variables.(variable{name : $out}.[]1 | []2))

| instance{name : $rv}.([receive{operation : $o, variable : $var}]φactive

6
| variables.(variable{name : $var}.[]4 | []5))

−→
instance{name : $rp}.([1]φactive

3 | variables.(variable{name : $out}.[]1 | []2))
| instance{name : $rv}.([1]φactive

6 | variables.(variable{name : $var}.[]1 | []5))

4 Conclusion and Future Work

We have demonstrated how Bigraphical Reactive Systems, by exploiting the sim-
ilarities of Bigraphs and XML, can be used to provide a formal semantics and
a mobile and extensible XML execution format for XML-based business process
languages. We used a small subset of WS-BPEL to illustrate how an industry
standard XML-based programming language can be extended to an XML-based
execution format using ideas from process calculi. By also representing the re-
action rules as XML we provide an interchangeable format for the semantics
and narrowing the gap usually arising between a programming language and its
formalisation. The case suggested an interesting extension of BRS to allow for
(linear) higher-order reaction rules constrained by tree logics, in this concrete
case a subset of XPath, resulting in a kind of context-dependent reaction rules.
We are currently working on expressing a more general category of higher-order
contexts as a Geometry of Interaction [1, 11, 12] construction on the under-
lying category of bigraphs and show that the general theory of bisimulation
congruences for bigraphs can be extended to this setting.

The WS-BPEL process calculus described in the previous sections is just a
subset of a WS-BPEL process calculus which has been described and imple-
mented as Distributed Reactive XML in [23]. We have so far only focussed on
language primitives found in the XLANG subset. We leave for future work to
demonstrate that the flow-graph primitives of the WFDL subset can be repre-
sented equally succinct.

The implementation of Distributed Reactive XML so far serves as a proof of
concept. However, by representing the business process descriptions, their state
and semantics of the process languages as XML and implementing it on top of
a distributed peer-to-peer XML storage layer allowing concurrent reactions on
shared processes and data, we achieve a middleware supporting many of the
features of the ideal scenario described in [6]. We leave for future work to study
the relationship between our approach and the approaches surveyed in [6], in
particular the Workspaces approach.

128 T. Hildebrandt, H. Niss, and M. Olsen

References

[1] Samson Abramsky. Retracing some paths in process algebra. In Proceedings of
CONCUR’96, volume 1119 of LNCS, pages 1–17, 1996.

[2] Tony Andrews and et al. Business process execution language for web services
(version 1.1). Technical report, IBM, Microsoft, SAP and others, May 2003.

[3] Luca Cardelli. Semistructured computation. In Proceedings of the 7th Interna-
tional Workshop on Database Programming Languages (DBPL), volume 1949 of
LNCS, pages 1–16. Springer-Verlag, 2000.

[4] Luca Cardelli and Andrew D. Gordon. Mobile ambients. In Proceedings of FoS-
SaCS’98, volume 1378, pages 140–155. Springer-Verlag, 1998.

[5] Roberto Chinnici, Jean-Jacques Moreau, Arthur Ryman, and Sanjiva Weer-
awarana. Web services description language (wsdl). Technical report, W3C,
January 2006.

[6] P. Ciancarini, R. Tolksdorf, and F. Zambonelli. Coordination middleware for
XML-centric applications. In Proc. ACM/SIGAPP Symp. on Applied Computing
(SAC). ACM Press, 2002.

[7] The Workflow Management Coalition. Process definition interface — XML
process definition language (version 2.00). Technical Report WFMC-TC-1025,
Workflow Management Coalition (WfMC), 2005.

[8] Giovanni Conforti, Damiano Macedonio, and Vladimiro Sassone. Bilogics: Spatial-
nominal logics for bigraphs. 2004.

[9] Giovanni Conforti, Damiano Macedonio, and Vladimiro Sassone. Bigraphical log-
ics for XML. In Proceedings of the Thirteenth Italian Symposium on Advanced
Database Systems (SEBD), pages 392–399, 2005.

[10] Ole Høgh Jensen and Robin Milner. Bigraphs and transitions. In Proceedings
of the 30th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL), pages 38–49. ACM Press, 2003.

[11] J.Y. Girard. Geometry of interaction I: interpretation of system F. In Proceedings
Logic Colloquium, number 88, pages 221–260. North-Holland, 1989.

[12] J.Y. Girard. Geometry of interaction II: deadlock free algorithms. In Proceedings
of COLOG 88, number 417 in LNCS, pages 76–93. Springer-Verlag, 1989.

[13] Mike Havey. Essential Business Process Modelling. O’Reilly, 2005.
[14] Thomas Hildebrandt and Jacob W. Winther. Bigraphs and (Reactive) XML.

Technical Report TR-2005-56, IT University of Copenhagen, 2005.
[15] Thomas Hildebrandt, Henning Niss, Martin Olsen, and Jacob W. Winther. Dis-

tributed Reactive XML. In 1st International Workshop on Methods and Tools for
Coordinating Concurrent, Distributed and Mobile Systems (MTCoord), 2005.

[16] Thomas Hildebrandt, Henning Niss, and Martin Olsen. Business process execution
languages as bigraphs and reactive xml. Technical Report TR 85, IT University
of Copenhagen, 2006.

[17] Ole Høgh Jensen and Robin Milner. Bigraphs and mobile processes (revised).
Technical Report UCAM-CL-TR-580, University of Cambridge, Computer Labo-
ratory, February 2004.

[18] Frank Leymann. Web services flow language (WSFL). Technical report, IBM
Software Group, 2001.

[19] Robin Milner. Bigraphs for petri nets. In Lectures on Concurrency and Petri
Nets, pages 686–701, 2003.

[20] Robin Milner. Bigraphical reactive systems. In Proceedings of 12th International
Conference on Concurrency Theory (CONCUR), pages 16–35, 2001.

Formalising Business Process Execution with Bigraphs and Reactive XML 129

[21] Robin Milner. Axioms for bigraphical structure. Technical Report UCAM-CL-
TR-581, University of Cambridge, Computer Laboratory, 2004.

[22] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes,
I. Information and Computation, 100(1):1–40, 1992.

[23] Martin Olsen. Encoding mobile workflows in Reactive XML. Master’s thesis, IT
University of Copenhagen, 2006. In Danish.

[24] Carl Adam Petri. Kommunikation mit Automaten. PhD thesis, Bonn: Institut für
Instrumentelle Mathematik, Schriften des IIM Nr. 2, 1962. Second Edition:, New
York: Griffiss Air Force Base, Technical Report RADC-TR-65–377, Vol.1, 1966,
Pages: Suppl. 1, English translation.

[25] Frank Puhlmanm and Mathias Weske. Using the pi-calculus for formalizing work-
flow patterns. In Proceedings of BPM 2005, number 2678 in LNCS. Springer-
Verlag, 2005.

[26] Christian Stahl. A Petri net semantics for BPEL. Informatik-Berichte 188,
Humboldt-Universität zu Berlin, jul 2005.

[27] Christian Stefansen. A declarative framework for enterprise information systems.
Master’s thesis, Dept. of Computer Science, University of Copenhagen (DIKU),
2005. Qualification Report.

[28] Satish Thatte. XLANG: Web services for business process design. Technical
report, Microsoft Corporation, 2001.

[29] Robert Tolksdorf. Workspaces: A web-based workflow management system. IEEE
Internet Computing, september 2002.

[30] Wil M.P van der Aalst. Pi calculus versus Petri nets: Let us eat “humble pie”
rather than further inflate the “Pi hype”. BPTrends, 3(5):1–11, 2005.

[31] Jacob W. Winther. Reactive XML. Master’s thesis, IT University of Copenhagen,
2004.

Enabling Ubiquitous Coordination
Using Application Sessions

Christine Julien and Drew Stovall

The Center for Excellence in Distributed Global Environments
The Department of Electrical and Computer Engineering

The University of Texas at Austin
{c.julien, dstovall}@mail.utexas.edu

Abstract. Enabling coordination among ubiquitous computing applica-
tions and resources requires programming abstractions and development
tools tailored to this unique environment. This paper introduces a suite
of coordination abstractions that enables expressive interaction between
ubiquitous computing applications and dynamically available resources.
In our model, applications express their coordination needs in terms of
application sessions that are loosely defined by a set of interactions with
remote resources. Our approach allows developers to delegate responsibil-
ity for the construction and maintenance of the communication links nec-
essary to support the application’s sessions to an underlying middleware.
In this paper, we formalize a suite of session definitions for coordination
in general classes of ubiquitous computing applications. We also present
a middleware based on this coordination model that directly supports
the software development task. Finally, we demonstrate the simplicity
and flexibility of our approach using a real-world application.

1 Introduction

The increasing pervasiveness of computing capabilities has enabled new classes
of ubiquitous applications that rely on interactions with dynamically available
resources to provide an adaptive, responsive, and intuitive computing experi-
ence. Many applications have been built, but existing development tools are not
flexible enough to meet the demands of interactive general-purpose applications.
This paper undertakes a coordination approach to specifying and managing the
interactions between application and resources. We leverage the benefits of this
coordination to realize a programming framework that removes the need for an
application programmer to be intimately familiar with the details of communi-
cation in pervasive computing. Our approach promises to simplify application
development by promoting abstraction, reuse, and transparency.

Within this paper, we use two application domains that exemplify the unique
challenges of building ubiquitous computing applications. In first responder ap-
plications, a dynamic set of participants is deployed in an emergency situation.
People with differing tasks (e.g., paramedics, firemen, policemen, search and res-
cue personnel, etc.) converge on a geographic area, bringing with them comput-
ing, communicating, and sensing devices. Their applications benefit significantly

P. Ciancarini and H. Wiklicky (Eds.): COORDINATION 2006, LNCS 4038, pp. 130–144, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Enabling Ubiquitous Coordination Using Application Sessions 131

from heightened degrees of cooperation involving pairs of participants or large
dynamic groups of people. As a second example, construction sites are becoming
increasingly loaded with sensing and computing capabilities. Supervisors and
workers on the site desire to connect to local resources in real time to monitor
and maintain safety or to track materials for planning.

This work defines new coordination mechanisms specifically tailored to perva-
sive computing applications. We define an application session to be a temporary
logical connection among two or more networked devices over which application
data is exchanged. We differentiate this application session from other connection
mechanisms in that the state maintained involves an application-level dialog be-
tween the communicating entities and depends significantly on the application.
As such, a session is further defined by the set of operations the application in-
tends to perform over the logical connection, which is provided by an underlying
physical connection between two (or more) distinct endpoints.

This paper’s contributions are on two fronts, both focused on using coordi-
nation to simplify application development for ubiquitous computing. First, we
define a coordination framework around the concept of application sessions and
provide formal characterizations of a useful set of such sessions that clearly com-
municate the constructs’ behavior to application developers. Second, we provide
a middleware infrastructure that allows application developers to use these coor-
dination constructs to create flexible and adaptive applications. Our framework
is the first such programming environment to recognize applications’ needs for
diverse session semantics and to provide them in a unified manner.

This paper is organized as follows. Section 2 describes related projects.
Section 3 introduces the new coordination constructs. In Section 4 we describe
the programming interface and middleware implementation. Section 5 demon-
strates the use of the framework in a real-world scenario, and Section 6 con-
cludes.

2 Related Work

It has been shown that adopting a coordination approach to handling the un-
predictability inherent in mobile computing can lead to solutions that simplify
programming [1]. Several middleware solutions have taken this approach [2, 3, 4]
but focus on exchanging data items in dynamic conditions and not on generic
resource usage in pervasive computing situations. As ubiquitous computing has
come to the forefront, projects have increasingly focused on providing dynamic
access to a changing set of resources. Many efforts mediate quality of service re-
quirements by leveraging object mobility to enhance application responsiveness
and network-wide performance metrics [5, 6, 7]. These approaches focus on bring-
ing objects closer to clients instead of on mobile clients that require inherently
location-dependent resources.

Projects closer to our goals update bindings between clients and services as
processing or environment dictates [8, 9]. A follow-me session [10] provides con-
stant connectivity to services by transferring a connection from one provider to

132 C. Julien and D. Stovall

another. Context-Sensitive Bindings [10, 11] implement the follow-me session by
defining a context and selecting resources from that context that match an appli-
cation’s specification. The approach favors complete transparency, and assumes
that a resource binding should always be transferred, subject to an applica-
tion’s specified policies. Service Oriented Network Sockets [12] provide a similar
abstraction but use well-accepted service discovery mechanisms to gather all
matching services locally, then decide which services to connect to. This can in-
cur significant amounts of overhead in networks that are dynamic, large in size,
or contain numerous satisfactory services. iMash [13] presents a dynamic session
hand-off scheme but relies on knowledgeable intermediaries that handle service
switches on behalf of clients and resources. Similarly, Atlas [14] uses a central
server to mediate the transfer of a service binding from one provider to another.

Our framework differs from these projects in several ways. First, we seek not
to limit an application’s sessions to a single type but to adapt to an applica-
tion’s needs, including simple queries, lasting connections, transparent resource
migration, etc. Second, while we aim to decouple the semantics of application
sessions from the implementation supporting the session, we recognize that the
extreme scale and device constraints necessitate communication protocols tai-
lored to particular session requirements. Instead of requiring all session types to
use the same communication style, our framework incorporates a suite of novel
protocols that efficiently support a variety of coordination semantics.

3 Defining Application Sessions

Our model introduces a set of application session definitions that coordinate
interactions between ubiquitous computing applications and dynamic resources.

As shown in Fig. 1, we explicitly sep-
shared

variables

spec

o

session
management

user
program

Fig. 1. Separation of Session Manage-
ment from User Program

arate a user program (i.e., the appli-
cation) from the session management
infrastructure that manages coordina-
tion with available resources. The only
knowledge shared between the session
management and the user program are
a specification (spec) that describes the
resource(s) the application is looking
for and an object handle (o) that al-
lows the application to access the re-
source(s) that the infrastructure connects it to. Through the coordination primi-
tives this framework provides, the application completely delegates responsibility
for maintaining resource connections to the infrastructure.

Substantial work has focused on allowing applications to abstractly define
their resource needs through a variety of specification mechanisms. We assume
resource requirements are described using semi-structured data [15], an
approach common among description languages [16, 17, 18] and tuple based sys-
tems [2, 3, 19, 20]. Our approach can incorporate any of these schemes, so applica-
tion developers can utilize specification languages with which they are familiar.

Enabling Ubiquitous Coordination Using Application Sessions 133

3.1 A Notation

Section 3.2 will introduce the sessions that provide varying coordination seman-
tics between applications and resources. Each requires the application to provide
a resource specification, and the session mechanics fill in and maintain the ob-
ject handle on behalf of the application. In general, an application will invoke a
session using code with semantics similar to those shown in Fig. 2.

The uninitialized value (⊥) indicates that a re-

spec = specification
[request session]
〈await o �=⊥〉
if o �= ε then

[use o]
fi

Fig. 2. Application Session
Interaction

source o declared by an application has not yet been
modified by the session management scheme (i.e., a
search is in progress). A null value (ε) indicates that
a matching resource does not exist (or no longer ex-
ists). The 〈awaitB → S〉 construct [21] allows a pro-
gram to delay execution until the condition B holds.
When B is true, the statements in S are executed
in order. The angle brackets enclosing the construct
indicate that the statement is executed atomically,
i.e., no state internal to S is visible outside the exe-
cution of S. If S is omitted (as in Fig. 2), then the
entire expression signifies a point of conditional synchronization.

Throughout the next section, we will use some additional notational conven-
tions. First, the entails (|=) relation expresses the fact that a resource satisfies
a specification, i.e., o |= spec indicates that the resource o satisfies the speci-
fication spec. The selection of a resource matching a specification will use the
non-deterministic assignment statement [22]. A statement x := x′.Q assigns to
x a value x′ nondeterministically selected from among the values satisfying the
predicate Q. If an assignment is not possible, the statement aborts; we assume
this results in assigning ε (a null value) to x. Within our model’s semantics, we
will use this notation to indicate that a resource is selected nondeterministically
from any that satisfy the application’s provided specification. Finally, we will
also use a three-part notation: 〈op quantified variables : range :: expression〉,
in which the variables from quantified variables take on all possible values per-
mitted by range. Each instantiation of the variables is substituted in expression,
producing a multiset of values to which op is applied, yielding the value of the
three-part expression. If no instantiation of the variables satisfies range, then the
value of the three part expression is the identity element for op, e.g., true if op
is ∀ or ∅ when op is set.

3.2 Basic Session Types

We next detail four basic sessions that form the foundation of our coordination
framework. In Section 3.3, we describe a few generic extensions.

Query Session. Some application requests are simple data queries. For exam-
ple, a first responder might request a copy of a nearby building’s blueprints.
After downloading the blueprints, the application may have no further need for
interactions with the device providing the data. Using the constraints provided

134 C. Julien and D. Stovall

in the specification, the application should be connected to a single resource
for the duration of the operation. Our first session type provides no long-lived
interaction with the selected resource. This can be both beneficial (in terms of
reduced network overhead) and limiting (in terms of capturing the environment’s
dynamics). We write the semantics of a query session as:

o = spec

� o = o′.(o′ |= spec ∧ o′.connected)

In these definitions, the expression in the box denotes the particular session
semantic; in this case, the query semantic is expressed by assigning the specifi-
cation to the shared object handle, o. The remainder of the expression defines
the session’s semantics. In a query session, the value assigned to o is nondeter-
ministically selected from all objects that satisfy the specification spec and are
connected. The connected relationship models the requirement that the applica-
tion’s device must be able to communicate with the selected resource’s device.
This abstraction allows the developer to delegate communication management
to the middleware that implements the session constructs. In some cases, con-
nectedness alone may not be enough to model usefulness of a resource; other
characteristics can be handled as discussed in Section 3.3.

Provider Session. In many cases, once an

vital statistics

treatment plan

Fig. 3. Using a Provider Session in
a first responder application.

application connects to a resource, it needs
to perform several operations with that spe-
cific resource. For example, a paramedic
may request a connection to a critical pa-
tient designated by a medical tag [23] placed
by a triage worker. Once a patient is dis-
covered, the paramedic may further query
the patient’s tag for injury information, vital
signs, etc., and may wish to change and/or
add information. As depicted in Fig. 3.2,
to ensure data consistency, the paramedic
must interact with the same tag that sat-
isfied the initial request. The operational
semantics for this session are:

o �← spec

� o = o′.(o′ |= spec ∧ o′.connected)
if o �= ε then
〈await ¬o.connected→ o = ε〉

fi

In a provider session, an application requests that the infrastructure maintains
the connection to a particular resource given dynamics in the network topology.
The application attaches the specification (spec) to the object handle o. If an
object is found, the connection to it is monitored, and as long as the middleware
can maintain communication between the application and the resource, it does

Enabling Ubiquitous Coordination Using Application Sessions 135

so. This session is a two-way connection, so not only can the application make
requests of the resource, but, if the resource changes, the client is also updated.
If two paramedics are treating the same patient, and one changes the resource
(e.g., updates the patient’s record), this change is propagated to the second
paramedic. The application’s resource handle o is a local reflection of the remote
resource. When the connection to the resource fails (i.e., when o.connected
becomes false), the handle is assigned ε, which effectively notifies the application
that the requested resource is no longer available.

Type Session. In other scenarios, an ap-
location servers

session
transfer

Fig. 4. Using a Type Session on a
construction site

plication may need persistent connection to
any matching resource. On the construction
site, safety applications may require that
a device always knows its location (or an
estimate of its location). Location servers
around the site may periodically publish
a region identifier, and a vehicle moving
through the site can maintain a connec-
tion to a nearby location server. As Fig. 3.2
shows, as the vehicle moves, the particular
server offering the location data may change,
but the application receives a steady stream of location updates. We express a
type session as:

o⇐ spec

� o = o′.(o′ |= spec ∧ o′.connected)
while o �= ε do
〈await ¬o.connected→ o = o′.(o′ |= spec ∧ o′.connected)〉

od

This expression uses an open arrow (⇐) to represent the dynamic nature of a
type session. When an attached resource becomes unavailable, the infrastructure
attempts to locate a new resource that is connected and matches the specifica-
tion. As long as such a resource is available, the application is connected to one,
nondeterministically chosen from those that meet the requirements. If a match
is not possible, the application’s reference handle is assigned ε, which indicates
that no matching resource is available. The above definition is a bit restrictive
in that if a satisfactory resource is not available, the application must poll until
one becomes available. This limitation will be addressed in Section 3.3.

Group Session. Some applications require a session with a group of resources.
For example, an application may monitor the movement of workers and vehicles
within the arc of a crane’s movement. A device in the crane needs a session that
includes the devices of workers and vehicles in this region, as shown in Fig. 3.2.
In a group session, the application is connected to every resource that matches
its specification, and the connections to matching resources are maintained as
long as some resource matches. This session can be expressed as:

136 C. Julien and D. Stovall

o⇐{} spec

� o = 〈set o′ : o′ |= spec ∧ o′.connected :: o′〉
while o �= ∅ do
〈await group-change → o = 〈set o′ : o′ |= spec ∧ o′.connected :: o′〉 〉

od

where group-change is defined by the following expression:

group-change

≡ 〈∃o′ : o′ ∈ o ∧ ¬o′.connected〉
∨〈∃o′ : o′ ∈ o ∧ o �|= spec〉
∨〈∃o′ : o′ /∈ o ∧ o′.connected∧ o′ |= spec〉

The object handle o is connected to

crane arc

Fig. 5. Using a Group Session on a con-
struction site

a set of objects that match the specifi-
cation, and the application can subse-
quently use set operations to interact
with the resources. As this set changes
(either because a matching resource dis-
connected, dynamics caused a matching
resource to no longer satisfy spec, or
because a new matching resource
connected), the set reflects all of the
connected matching resources. Some
group definitions are easier to maintain
than others, i.e., the communication
constructs required for certain group
definitions have acceptable perfor-
mance under reasonable guarantees.
The mechanisms our infrastructure
uses to provide group communications
are discussed in Section 4.

3.3 Session Extensions

We next describe generic extensions that add flexibility and expressiveness.

Specifications of Preference. In many instances, an application would like to
express preferences that determine a partial ordering of matching resources. We
allow programmers to specify a metric (f(R)) that selects a preferred resource
over others. Generically, a metric accepts a resource’s description (which can
include information about the device where the resource is located) and generates
an integer. Preferences may be specified for query sessions, provider sessions, or
type sessions. The semantics of the augmented query session are:

o = spec/f(R)

� o = 〈max o′ : o′ |= spec ∧ o′.connected :: f(o′)〉

Enabling Ubiquitous Coordination Using Application Sessions 137

This statement selects the resource with the largest metric value. If multiple
resources have the same value, one is selected nondeterministically. For a provider
session, the selection statement is very similar. In a type session, an additional
change ensures that the connection is maintained to the most preferred resource:

o⇐ spec/f(R)

� o = 〈max o′ : o′ |= spec ∧ o′.connected :: f(o′)〉
while o �= ε do
〈await ¬o.connected ∨ 〈∃o′ : o′.connected∧ o′ |= spec ∧ f(o′) > f(o)〉 →

o = 〈max o′ : o′ |= spec ∧ o′.connected :: f(o′)〉
od

For brevity, the mechanics behind metric definition are omitted from this
paper; an example is provided in Section 5. Useful metrics include:

– relative mobility: more stationary (i.e., less mobile) resources may be prefer-
able due to their increased stability.

– proximity: closer resources (or resources in the same building) may often be
preferable to more distant ones.

– reliability: resources with more consistent up-times are likely to be preferable.
– error rate: resources with smaller potential for error are more desirable.

These metrics can also be used to account for the cost or quality of service
associated with using a particular resource, based on application-level definitions.

More Persistent Connections. In the basic session types, if an application’s
request cannot be satisfied, the infrastructure ceases looking for matches. This
reduces communication overhead, but an application that cannot continue with-
out a matching resource must poll on its own. For this reason we augment our
type and group sessions with the ability to request that a session remain “active”
even in the absence of a matching resource. As soon as a satisfactory resource
does appear, it is connected. An active session ends only when the application
explicitly shuts it down. The semantics for an active type session are:

o⇐ spec

� o = o′.(o′ |= spec ∧ o′.connected)
while ¬stop do
〈await o = ε ∨ ¬o.connected→ o = o′.(o′ |= spec ∧ o′.connected)〉

od

This differs from the regular type session in a few subtle ways. First, the guard
on the await statement now also attempts to reassign a resource when o is already
ε. Second, the condition on the while loop is ¬stop, which references a third
shared variable that is true when the session begins and set to false when the
application quits the session. Without the stop variable, an application simply
stops using the object handle o, which implicitly signals the end to the session.
In the implementation, however, the underlying communication protocols should
stop maintaining the session as soon as possible to ensure the best overall network
performance, so our implementation uses the stop variable in all cases.

138 C. Julien and D. Stovall

Maintenance and Migration of State. One aspect of sessions we have ig-
nored so far is the migration of session state from one resource provider to
another. This is significant in the case of the type session (as it directly involves
moving an ongoing session from one provider to another) and may also affect
group sessions (if a newcomer needs the history of an ongoing session). For now,
our framework does not support the transfer of such session state and instead
leaves its maintenance up to the application. Future work will include the for-
malization of such state transfers and their integration into our middleware.

4 Application Sessions: A Middleware

We provide our session constructs in a programming framework that enables
rapid development of ubiquitous computing applications. We briefly detail the
programming interface and our prototype implementation. Where appropriate,
we also describe intended enhancements to the existing prototype.

4.1 Data Types

While our model does not restrict the format of descriptions and specifications,
our implementation uses the eLights tuple space implementation [3]. Resources
are provided as tuples that contain not only the resource (or its proxy) but
also describe its properties. The Resource class serves as a wrapper for the
ETuple; the Specification class is a wrapper of the ETemplate and provides
restrictions over Resources. The Metric interface allows applications to provide
resource preferences and requires an implementing class to provide an evaluate
method, which returns the metric’s value for a provided Resource. Finally, we
explicitly separate the properties of an application’s group specification into two
categories. The Region contains all those properties that can be used to restrict
the communication region (e.g., distance, latency of communication, bandwidth,
etc.). The remainder of the properties are placed in a regular Specification.
We can use the Region to parameterize the communication protocols, thereby
maximizing the application’s performance.

4.2 The Session Factory

The major point of interaction between an application and the framework is the
SessionFactory. A version of its interface (slightly simplified for presentation
purposes) is shown in Fig. 6. The first three methods create basic sessions us-
ing a provided specification. The active boolean in the type session designates
whether the middleware should monitor the available resources for a new match.
The fourth method, createGroupSession uses information about the Region of
communication. The next three methods allow a metric for preference in addition
to the resource specification. The method endSession allows the application to
determine when a session for a given Specification ends (instead of waiting
until a resource is no longer available). The final method allows applications to
make resources available to other components.

Enabling Ubiquitous Coordination Using Application Sessions 139

public class SessionFactory {
public Resource createQuerySession(Specification spec);
public Resource createProviderSession(Specification spec);
public Resource createTypeSession(Specification spec, boolean active);
public Resource[] createGroupSession(Region r, Specification spec,

boolean active);
public Resource createQuerySession(Specification spec, Metric m);
public Resource createProviderSession(Specification spec, Metric m);
public Resource createTypeSession(Specification spec, Metric m,

boolean active);
public void endSession(Specification spec);
public void addResource(Resource r);

}

Fig. 6. Application Sessions Programming Interface

4.3 Middleware Support

Fig. 7 overviews our middleware’s architecture. When requests arrive, the session
factory determines whether a matching resource exists at this location (by look-
ing in the local repository). Because our implementation represents resources and
requests as tuples and templates, this matching occurs within eLights. While
matching tuples against templates is straightforward, the complexity of check-
ing o |= spec depends on both the specification language used (e.g., eLights
vs. another service description language) and the application. Future work will
evaluate the difficulty associated with this aspect of the framework.

Efficiently discovering a resource in

Fig. 7. Application Session Middleware

a dynamic pervasive computing en-
vironment can be very difficult. As
Figure 7 shows, we use a package of
discovery protocols. In relatively static
environments, where the devices and
resources change rarely, we use a reg-
istry method similar to Jini [18]. While
such an approach is straightforward to
implement, we have shown that a more
application-aware protocol is more ef-
ficient in dynamic environments [24].
We have created Cross-Layer Discov-
ery and Routing (CDR) [24] that uses
information encapsulated in applica-
tion requests to perform distributed
resource discovery without a lookup
service. Our evaluations have further shown that an ideal discovery protocol
may lie between the above two implementations. A hybrid protocol that com-
bines the proactive style with the reactive style is under development. Currently,
the selection of protocols associated with static or dynamic environments is
performed off-line; future work will integrate context-awareness and adaptation

140 C. Julien and D. Stovall

into the middleware to allow it to switch between protocols as the environment
dictates.

In our tuple based approach, descriptions contain “advertised” resource prop-
erties. Based on these properties and network conditions (e.g., latency, band-
width, and mobility conditions), a session can use the application’s preferences
to determine which discovered resource best satisfies a request. In our prototype,
the protocol waits for a predetermined time (based on the double of an estimate
of the network’s worst case round trip time) to ensure that it has received a
response from the “best” resource. Currently, QoS requirements and preferences
are sorted out as part of the resource matching process. In the future, using this
information as part of the communication protocol may boost performance; we
have seen promising results with the protocol for group communication (below)
and are incorporating similar mechanisms into our CDR protocol.

To provide the long-lived connection required by a provider session, we use
a mobile ad hoc routing scheme (DSR [25]) to maintain a route and discover
when the route fails. In our current implementation, we provide a type session
as a series of provider sessions. The connection to the first discovered resource is
maintained as long as possible. When the connection to the resource breaks, the
implementation attempts to launch another provider session. As long as this is
successful, the application remains connected to a satisfactory resource. When
applications specify preferences, the implementation must monitor the network
for new resources that better satisfy the request. In this case, the middleware
periodically reissues this initial request to determine whether a better resource
exists. This polling implementation does not exactly match the semantics of the
type session given in Section 3, and future work will develop reactive protocols
for updating type session bindings that are not cost or performance prohibitive.

Our approach to providing efficient communication in group sessions is based
on our Source-Initiated Context Construction (SICC) protocol [26] that creates
and maintains connections to a set of devices that satisfy the application’s region
specification. Effectively, SICC creates a reverse multicast tree that allows infor-
mation to funnel back to the requesting device from devices within the region.
By providing the region abstraction to the developer, our framework ensures that
the regions a programmer defines satisfy the underlying protocol’s requirements.
By issuing persistent queries over SICC’s network structure, a group session re-
ceives notification of new resources and removes old resources as mobility and
other conditions change the group membership.

A prototype implementation of this coordination middleware and its associ-
ated documentation are available at http://dstovall.org/servicesessions/.

5 An Application Scenario

To demonstrate how a developer uses our framework to build pervasive appli-
cations, we consider a team of first responders in an urban environment, tasked
with search and rescue. A responder moves from building to building, looks
for survivors, tags them with small sensors that emit information about their

Enabling Ubiquitous Coordination Using Application Sessions 141

conditions and locations, and summons transportation. We take a few of the
tasks that the responder’s application supports and examine how these oper-
ations use our framework to find and coordinate with resources in the envi-
ronment. To simplify the example code fragments, we use very simple resource
specifications that search for resources based only on their types; most applica-
tions (including the ones we describe) will use more sophisticated requests.

Finding a Local Map. When the responder is first deployed, she may download
a street map of the region. This map may be available on the device of a nearby
responder who has already downloaded it or it may need to be downloaded from
a central server. The application code that performs this action is:

Specification spec = new Specification();
spec.addConstraint(type, Specification.EQUALS, ‘‘Map’’);
Map localMap = (Map)sessionFactory.createQuerySession(spec);
if(localMap != null)

[display map]

The Map class extends Resource and is defined within the application. The first
two lines define the simple resource specification. The third line requires that the
returned resource must be of type “Map” and calls the createQuerySession
method to retrieve the specified resource. When a map has been discovered,
localMap will reflect the map, and it can be displayed to the user.

Staying Connected to Local Blueprints. As the responder moves from one
building to the next, she will likely want a copy of the blueprints of the local
building if they are available. These blueprints could be stored in a device in the
building itself (e.g., as part of the building’s security system) or constructed by
the device of a nearby responder. The application creates a type session:

Specification spec = new Specification();
spec.addConstraint(type, Specification.EQUALS, ‘‘Blueprint’’);
Metric local = new MyBuildingMetric();
Blueprint building =

(Blueprint)sessionFactory.createTypeSession(spec, local, true);
[display blueprints when available]

The type session prefers blueprints for the current building over any others.
This preference is encapsulated in MyBuildingMetric, whose evaluate method
assigns “1” to resources in my building and “0” to any other resource. When the
responder moves to a new building, a different set of blueprints are automatically
attached to the building handle and can be displayed.

It is possible for the application’s session to connect to a blueprint for a
building other than the current one if a blueprint for the current building is
unavailable. This disadvantage may be overcome by an extension of our approach
that allows specifications to be based on contextual properties. In the above
example, this would allow the specification to require that a matching resource
is within the current building. Future work will investigate this approach.

Learning About Nearby Workers’ Movements. Once the responder has a
good picture of her environment, she wants to coordinate with other responders.

142 C. Julien and D. Stovall

In our application, each responder keeps track of the buildings (and the rooms
within the buildings) he or she has recently visited. Then the map (or the blue-
print) can be overlaid with this information to ensure that our responder does
not cover the same territory that has been searched by one of her colleagues.
The code to discover and monitor these trajectories is:

Specification spec = new Specification();
spec.addConstraint(type, Specification.EQUALS,‘‘Trajectory’’);
Region r = DistanceRegion(100);
Trajectory[] trajectories =

(Trajectory[])sessionFactory.createGroupSession(r, spec, true);
[display trajectories on map]

This code fragment defines a DistanceRegion that restricts the returned tra-
jectories to those belonging to other first responders within 100 meters. This
DistanceRegion class is provided within our framework and restricts a group
to only those devices within the number of meters specified. Once this session is
created, our responder’s application will be constantly updated with respect to
changes to the trajectories of other responders within 100 meters.

Summoning Evacuation Transportation. Once our responder has located
a survivor, she tags him and loads information about the survivor’s condition
and location into the tag. She then needs to contact some form of evacuation
vehicle to transport the survivor to safety. The responder would like to contact
a particular vehicle, transfer the information about the survivor (including his
location), and receive a confirmation that a particular vehicle will be retrieving
the survivor. To ensure data consistency, the responder’s device should connect
to a proper vehicle and remain connected for the duration of the exchange:

Specification spec = new Specification();
spec.addConstraint(type, Specification.EQUALS, ‘‘Ambulance’’);
Vehicle ambulance = (Vehicle)sessionFactory.createProviderSession(spec);
[transfer information about survivor]
[receive confirmation]
sessionFactory.endSession(spec)

Because this session is defined by a discrete number of well-known tasks, when
the session completes, the application invokes the endSession method to tear
down the communication lines that were created for the session.

Sharing Resources. The previous discussions assume that another applica-
tion component has made the requested resource available. When an application
shares a resource, the resource and its description are placed in a local reposi-
tory. For example, a first responder creates an instance of the Trajectory class
(which extends the Resource class). As the responder moves, he updates his tra-
jectory, changing the resource stored in the local repository. This change then
propagates to a first responder who has requested a group session that monitors
other nearby responders.

Enabling Ubiquitous Coordination Using Application Sessions 143

6 Conclusions

Simplifying the development of pervasive computing applications requires coor-
dination abstractions that succinctly represent the interactions among applica-
tions and ubiquitous resources. In this paper, we have defined such a coordina-
tion model based on application sessions and demonstrated a novel set of such
sessions that prove useful to a wide range of dynamic interactive applications.
By subsequently capturing our rigorously defined sessions in a programming in-
frastructure, we present application developers with abstractions that ease their
programming burdens and enable programmers to create complex, adaptive ap-
plications. By incorporating a suite of dynamic and adaptive communication
protocols, the middleware that supports these session definitions provides appro-
priate, efficient, and scalable form of communication for different session types
in varying environments. Such an integrative approach to abstraction and com-
munication is imperative to meeting the rapidly growing demand for ubiquitous
computing applications.

Acknowledgements

The authors would like to thank the Center for Excellence in Distributed Global
Environments for providing research facilities and the collaborative environment.
This research was funded, in part, by the National Science Foundation (NSF),
Grant # CNS-0620245. The views and conclusions herein are those of the authors
and do not necessarily reflect the views of the sponsoring agencies.

References

1. Roman, G.C., Murphy, A.L., Picco, G.P.: Coordination and mobility. In Omicini,
A., Zambonelli, F., Klusch, M., Tolksdorf, R., eds.: Coordination of Internet
Agents: Models, Technologies and Applications. (2000) 254–273

2. Murphy, A.L., Picco, G.P., Roman, G.C.: Lime: A middleware for physical and
logical mobility. In: Proc. of the 21st Int’l. Conf. on Distributed Comput. Sys.
(2001) 524–533

3. Julien, C., Roman, G.C.: Egocentric context-aware programming in ad hoc mobile
environments. In: Proc. of the 10th Int’l. Symp. on the Foundations of Software
Engineering. (2002) 21–30

4. Fok, C.L., Roman, G.C., Hackmann, G.: A lightweight coordination middleware
for mobile computing. In: Proc. of the 6th Int’l. Conf. on Coordination Models and
Languages. (2004) 135–151

5. Grimm, R., Davis, J., Lemar, E., MacBeth, A., Swanson, S., Anderson, T., Ber-
shad, B., Borriello, G., Gribble, S., Wetherall, D.: System support for pervasive
applications. ACM Trans. on Computer Sys. 22(4) (2004) 421–486

6. Holder, O., Ben-Shaul, I., Gazit, H.: Dynamic layout of distributed applications in
FarGo. In: Proc. of the 21st Int’l. Conf. on Software Engineering. (1999) 163–173

7. Ryan, C., Westhorpe, C.: Application adaptation through transparent and portable
object mobility in java. In: Proc. of OTM Federated Conf. (2004) 1262–1284

144 C. Julien and D. Stovall

8. Bellavista, P., Corradi, A., Montanari, R., Stefanelli, C.: Dynamic binding in mobile
applications: A middleware approach. IEEE Internet Comput. 7(2) (2003) 34–42

9. Klein, M., Konig-Ries, B.: Combining query and preference: An approach to fully
automize dynamic service binding. In: Proc. of the IEEE Int’l. Conf. on Web
Services. (2004) 788–791

10. Handorean, R., Sen, R., Hackmann, G., Roman, G.C.: Context aware session
management for services in ad hoc networks. In: Proc. of the IEEE Int’l. Conf. on
Services Comput. (2005) 113–120

11. Roman, G.C., Julien, C., Murphy, A.L.: A declarative approach to agent-centered
context-aware computing in ad hoc wireless environments. In: Software Engineering
for Large-Scale Multi-Agent Sys. Volume 2603 of LNCS. (2003) 94–109

12. Saif, U., Paluska, J.M.: Service-oriented network sockets. In: Proc. of the 1st Int’l.
Conf. on Mobile Sys., Applications, and Services. (2003) 159–172

13. Bagrodia, R., Bhattacharyya, S., Cheng, F., Gerding, S., Glazer, G., Guy, R., Ji,
Z., Lin, J., Phan, T., Skow, E., Varshney, M., Zorpas, G.: iMASH: Interactive
mobile application session handoff. In: Proc. of the 1st Int’l. Conf. on Mobile Sys.,
Applications, and Services. (2003) 259–272

14. Cole, A., Duri, S., Munson, J., Murdock, J., Wood, D.: Adaptive service binding
middleware to support mobility. In: Proc. of the 23rd Int’l. Conf. on Distributed
Comput. Wkshps. (2003) 369–374

15. Abiteboul, S.: Querying semi-structured data. In: Proc. of the 6th Int’l. Conf. on
Database Theory. (1997) 1–18

16. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American
284(5) (2001) 34–43

17. Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web services de-
scription language (WSDL) 1.1 (2001) Current as of 2005.

18. Edwards, K.: Core Jini. Prentice Hall (1999)
19. Cabri, G., Leonardi, L., Zambonelli, F.: MARS: A programmable coordination

architecture for mobile agents. IEEE Internet Comput. 4(4) (2000) 26–35
20. Gelernter, D.: Generative communication in Linda. ACM Trans. on Programming

Languages and Sys. 7(1) (1985) 80–112
21. Andrews, G.: Foundations of Multithreaded, Parallel, and Distributed Program-

ming. Addison Wesley (1999)
22. Back, R., Sere, K.: Stepwise refinement of parallel algorithms. Science of Computer

Programming 13(2-3) (1990) 133–180
23. Malan, D., Fulford-Jones, T., Welsh, M., Moulton, S.: CodeBlue: An ad hoc sensor

network infrastructure for emergency medical care. In: Proc. of the Int’l. Wkshp.
on Wearable and Implanted Body Sensor Networks. (2004)

24. Julien, C., Venkataraman, M.: Resource-directed discovery and routing in mobile
ad hoc networks. Technical Report TR-UTEDGE-2005-01, Univ. of Texas (2005)

25. Johnson, D., Maltz, D., Broch, J.: DSR: The dynamic source routing protocol for
multi-hop wireless ad hoc networks. Ad Hoc Networking (2001) 139–172

26. Julien, C., Roman, G.C.: Supporting context-aware interaction in dynamic multi-
agent systems (invited paper). In: Environments for Multiagent Sys. Volume 3374
of LNCS. (2005) 168–189

A WSDL-Based Type System for WS-BPEL�

Alessandro Lapadula, Rosario Pugliese, and Francesco Tiezzi

Dipartimento di Sistemi e Informatica Università degli Studi di Firenze

Abstract. We tackle the problem of providing rigorous formal foundations to
current software engineering technologies for web services. We focus on two of
the most used XML-based languages for web services: WSDL and WS-BPEL.
To this aim, first we select an expressive subset of WS-BPEL, with special con-
cern for modeling the interactions among web service instances in a network
context, and define its operational semantics. We call ws-calculus the result-
ing formalism. Then, we put forward a rigorous typing discipline that formalizes
the relationship existing between ws-calculus terms and the associated WSDL
documents and supports verification of their compliance. We prove that the type
system and the operational semantics of ws-calculus are ‘sound’ and apply our
approach to an example application involving three interacting web services.

1 Introduction

Service-Oriented Computing (SOC) has recently put forward as a promising computing
paradigm for developing massively distributed, interoperable, evolvable systems and
applications that exploit the pervasiveness of the Internet and its related technologies.
The SOC paradigm advocates the use of ‘services’, to be understood as autonomous,
platform-independent computational entities that can be described, published, discov-
ered, and dynamically assembled, as the basic blocks for building applications. Web
services (WS), along with grid computing, are the present most successful instantia-
tion of the SOC paradigm, as it is demonstrated by the fact that companies like IBM,
Microsoft and Sun invested a lot of efforts and resources to promote their deployment.

A web service is basically a set of operations that can be invoked through the Web via
XML messages complying with given standard formats. To support the WS approach,
many new languages, most of which based on XML, have been designed, like e.g.
business coordination languages (such as WS-BPEL, WSFL, WSCI, and XLANG),
contract languages (such as WSDL and SWS), and query languages (such as XPath
and XQuery). However, current software engineering technologies for WS still lack
rigorous formal foundations. The challenges come from the necessity of dealing at once
with issues like communication, co-operation, resource usage, failures, security, etc. in
a setting where demands and guarantees can be very different for the many components.

In this paper we focus on two of the most used XML-based languages for WS:
Web Services Description Language (WSDL [CCMW01]) and Web Services Business
Process Execution Language (WS-BPEL [BCG+05]). The former is a W3C standard

� Supported by EU within the FP6-2004-IST-FET Proactive project SENSORIA proposal con-
tract number 016004.

P. Ciancarini and H. Wiklicky (Eds.): COORDINATION 2006, LNCS 4038, pp. 145–163, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

146 A. Lapadula, R. Pugliese, and F. Tiezzi

that permits to express the functionalities offered and required by web services by
defining, akin object interfaces in Object-Oriented Programming, the signatures of op-
erations and the structure of the documents for invoking them and returned by them.
The latter, currently under evaluation to become a standard by OASIS, permits to de-
scribe the activities to be executed for completing the service as a reaction to a service
invocation. WSDL declarations can be exploited to verify the possibility of connecting
different services, while WS-BPEL descriptions can be used to define new services by
appropriately composing other existing ones.

We aim at formalizing the relationship existing between WS-BPEL processes and
the associated WSDL documents by putting forward a rigorous typing discipline. In
general, the WSDL document associated to a WS-BPEL process does not contain the
declarations of all the operations provided and required by the process, together with
the structure of the messages exchanged. In fact, some of these declarations usually are
in the WSDL documents of the orchestrated services. Moreover, WSDL provides four
different types of operations, but only two of them are really supported by WS-BPEL:
(synchronous) request-response and one-way. There is another interaction pattern that
is largely used in WS-BPEL (see, e.g., the example 16.1 in [BCG+05]) but it is not
provided by WSDL: asynchronous request-response. This last pattern is implemented
through a partner link connecting two one-way operations but no constraint is imposed
on which process must declare the type of the operations. Finally, WS-BPEL provides
many redundant programming constructs and suggest a quite liberal programming style.
For example, it is possible for a programmer to write parallel activities that have strict
implicit dependencies so that they are sequentially (rather than concurrently) executed.

To achieve our goal, we first define a semantic model for WS-BPEL because the
semantics of the language, as presented in [BCG+05], is informal and, sometimes, am-
biguous. Hence, as a first contribution of this paper, we introduce a process language,
that we callws-calculus (web services calculus), that formalizes the semantics of an ex-
pressive subset of WS-BPEL, with special concern for modeling the interactions among
web services, be them WS-BPEL processes or not, in a network context. This allows us
to tackle those problems arising when executing WS-BPEL processes, such as multiple
start activities, receive conflicts, routing of messages, while avoiding the intricacies of
dealing with any, possibly redundant, WS-BPEL construct.

As a second contribution, we define a type system for ws-calculus terms and show
that the type system and the operational semantics are ‘sound’, in the sense that ws-
calculus terms reached along any reduction sequence starting from well-typed terms
are still well-typed and, thus, do not generate runtime errors. The type system enforces
many of the constraints imposed by WSDL/WS-BPEL, e.g. it prevents programs from
passing links that have been implicitly initialized and from invoking callback opera-
tions that do not have previous triggering receive operations. However, in some cases
it is even further restrictive so to enforce a more disciplined programming style. Thus,
for example, the type system deems as ill-typed those programs containing flow activi-
ties that have strict implicit dependencies. Moreover, in case of asynchronous request-
response, it forces the WSDL document associated to the process providing the service
to contain the declaration of both the two operations, that for invoking the service and
that for sending the reply back to the client. This last choice is dictated by the need to

A WSDL-Based Type System for WS-BPEL 147

preserve two important properties of web services, namely compositionality and loose
coupling. Indeed, should each client contain the declaration for the reply, then, if the
service provider wants to modify such a declaration, all clients should be updated.

The rest of the paper is organized as follows. Syntax and operational semantics of
ws-calculus are defined in Section 2, while the type system and the soundness results
are presented in Section 3. Section 4 illustrates an application of our framework to mod-
elling an example of web services composition. In Section 5 we touch upon directions
for future work and comparisons with related work. We refer the interested reader to the
full paper [LPT06] for a complete semantic account of WS-BPEL, for further examples
and for the proofs of all results stated in this paper.

2 ws-calculus

ws-calculus (web services calculus) permits to express web services in a primitive
form with special concern for modeling the interactions among web service instances
in a network context. Although ws-calculus can directly model the semantics of an
expressive subset of WS-BPEL, we refer the interested reader to [LPT06] for a more
complete account of this topic. Indeed, due to lack of space, here we do not deal with
many features such as, e.g., flow graphs, timed activities, scopes and compensation han-
dling, that should be considered for modeling the semantics of full-blown orchestration
languages.

The syntax of ws-calculus, given in Table 1, is parameterized with respect to the fol-
lowing syntactic sets, which we assume to be countable and pairwise disjoint: proper-
ties (sorts of late bound constants storing some relevant values within service instances,
ranged over by p), basic values (integers Int, strings Str, and booleans) and corre-
sponding variables (ranged over by b), addresses (ranged over by a) and partner links
(namely variables storing addresses used to identify service partners within an inter-
action, ranged over by l), and service identifiers (ranged over by A) each with a fixed
nonnegative arity. The language is also parametric with respect to a set of operations,
ranged over by o, which we do not specify, and expressions, ranged over by e, whose
exact syntax is deliberately omitted; we just assume that expressions contain, at least,
basic values and variables, partner links, addresses and properties. Notationally, we will
use u to range over values (i.e. basic values and addresses), v to range over variables
(i.e. basic variables and partner links), w to range over operation parameters (i.e. vari-
ables and properties), c to range over correlation patterns (i.e. values and properties),
and r to range over addresses and partner links. Addresses may be underlined to de-
note that they cannot be transmitted as operation parameters, while partner links may
be subject to the operator �· � that forces them to be already initialized.

Notation ·̄ denotes tuples of objects. E.g. v̄ is a tuple of variables; this will sometimes
be written as v̄i∈I , for an appropriate index-set I, and vi denotes the i-th element. We
assume that variables in the same tuple are pairwise distinct. When convenient, we
shall regard a tuple simply as a set writing e.g. a ∈ ū to mean that a is an element of ū.
All notations shall extend to tuples component-wise.

A ws-calculus node can be thought of as a WS-BPEL process web service. Nodes,
written as a ::Op,L C, are uniquely identified by an address a and have a declarative part

148 A. Lapadula, R. Pugliese, and F. Tiezzi

Table 1. ws-calculus syntax (The syntax of types Op, L is in Table 4)

n ::= a ::Op,L C (nodes)
C ::= ∗s | m� s | 〈a, o, ū〉 | C | C (components)
m ::= ∅ | {p = u} | m ∪ m (correlation constraints)
s ::= (services)

0 (null)
| exit (exit)
| ass (w̄, ē) (assign)
| inv (r, o, w̄) (invoke)
| rec (r, o, w̄) (receive)
| if (e) then {s} else {s} (switch)
| s; s (sequence)
| s | s (flow)
| ∑i∈I rec (ri, oi, w̄i) ; si (pick)
| A(w̄) (call)

Op, L, i.e. its type, and a behavioural part C. Finite sets of nodes are called nets and
are ranged over by N,N′,N1, The type of a node collects all the information about
the format of the messages exchanged by the operations available at the node, Op, and
the local declarations, L, like the WSDL document associated to the corresponding
WS-BPEL process web service. Since we are interested in describing asynchronous in-
teractions, we model each communication pattern by connecting one or more one-way
operations. In the simplest interaction, a single one-way operation suffices; the service
provider process, which is the one that performs the receive activity, holds the type de-
finition of the requested operation. The more complex asynchronous request-response
interaction pattern is expressed by connecting two one-way operations (request and
callback); in this case, the provider holds the type definitions of both operations (the
rationale for this choice has been explained in the Introduction). We defer syntax of
types and comments on them to Section 3.

Components C may be service specifications, instances or requests. The behavioural
specification of a service s is written ∗s, while m � s′ represents a service instance
that behaves according to s′ and whose properties evaluate according to the (possi-
bly empty) set m of correlation constraints. A correlation constraint is a pair, written
p = u, recording the value u assigned to the property p. Properties are used to store
values that are important to identify service instances. For example, one might use a
property named purchase-order-id to uniquely identify instances of a service that han-
dles purchase orders. A service request 〈a, o, ū〉 represents an operation invocation that
must still be processed and contains the invoker address a, the operation name o and
the data ū for operation execution. ws-calculus operation names represent WS-BPEL
pairs ‘partner link – operation’ (instead, WS-BPEL partner links are not explicitly mod-
eled), thus pairs ‘a – o’, that are the first two components of service requests, represent
endpoints between two interacting process web services.

Services are structured activities built from basic activities, i.e. instance forced ter-
mination exit, assignment ass (·, ·), service invocation inv (·, ·, ·) and service request
processing rec (·, ·, ·), by exploiting operators for conditional choice if (·) then {·} else {·}

A WSDL-Based Type System for WS-BPEL 149

(switch), sequential composition ·; · (sequence), parallel composition · | · (flow), exter-
nal choice1 ∑

i∈I rec (·, ·, ·) ; · (pick) and service call A(w1, · · · ,wn) where n is the ar-
ity of A. Every service identifier A with arity n has a unique definition of the form
A(v̄i∈{1,..,n} : τ̄�i∈{1,..,n})

de f
= s, where the vi must be fresh and pairwise distinct. Notably,

parameters of a service definition are typed (see the next section).
The ws-calculus binding constructs are ass (w̄, ē) and rec (r, o, w̄) that bind the vari-

ables and the properties in w̄. The latter also binds r if it is a partner link and is not
subject to the operator �· �; we will say that r is implicitly initialized (conversely, we
will say that a partner link is explicitly initialized in all other cases). This means that
�l � represents a free occurrence of l (e.g. a callback address) that must have been bound
previously. The scope of the bindings extends to the whole component where the binder
occurs (namely, like in WS-BPEL, variables and properties are global to the instance).
A variable occurrence is free if it is not under the scope of a binder. We assume that
all bound partner links are pairwise distinct, but for those occurring within alternative
branches of switch and pick constructs. Thus, the following fragment of service is well-
defined:

. . . if (e) then {. . . rec (l, . . . , . . .) . . .} else {. . . rec (l, . . . , . . .) . . .}; inv (l, . . . , . . .) . . .

In general, we use f v(s) (resp. bv(s)) to denote the set of variables which occur free
(resp. bound) in s. In particular, variables of w̄ are free in A(w̄). In a definition A(v̄ :
τ̄�)

de f
= s we assume f v(s) ⊆ v̄.

In the sequel we shall only consider nets that are well-formed in the sense that they
comply with the following syntactic constraints. First, pairwise distinct nodes must have
different addresses. Then, if we call start activities of a service s all those activities that
are not syntactically preceded by other ones (as formalized by function eR() whose
inductive definition can be found in [LPT06]), then at least one start activity of ∗s must
be a rec (·, ·, ·) and, if multiple rec (·, ·, ·) are enabled concurrently, then they must use
the same non-empty set of properties.

The operational semantics of ws-calculus is given in terms of a structural congru-
ence and of a reduction relation over nets. Due to space limitations, here we only present
the major ingredients and refer the interested reader to [LPT06] for the details. For in-
stance, we omit the rules for fault throwing and handling, and model taking place of
errors (e.g. when the premises of reduction rules are not satisfied) simply as deadlock.

The semantics of nets will be defined over an enriched set of nets that also includes
those auxiliary nets resulting from replacing (free occurrences of) variables with values
in nets produced by the syntax of Table 1. Therefore, we will let free occurrences of v
(and w) to also denote corresponding values.

The structural congruence, denoted by ≡, identifies syntactically different terms
which intuitively represent the same term. At the level of services, the structural con-
gruence states that: the sequence operator is associative and has 0 as identity element
(thus we have the law 0; s ≡ s, which is exploited to enable a new activity when a
syntactically preceding one terminates); the flow operator is commutative, associative
and has 0 as identity element; the pick operator enjoys the same properties and, ad-
ditionally, is idempotent; services only differing for the bound variables are the same

1 Whenever the external choice is between two activities, we shall simply write s1 + s2.

150 A. Lapadula, R. Pugliese, and F. Tiezzi

(alpha-conversion). The structural congruence is extended to components and nets in
the obvious way. In particular, components composition is commutative and associative,
and has m � 0 as identity element (i.e. instances of this form are terminated instances
and, thus, can be removed).

The reduction relation over nets, written
−→, relies on a labelled transition relation
α−−→ over service instances, where α is generated by the following production:

α ::= � | w̄ := ū | i(a, o, ū) | r(r, o, w̄)

The meaning of labels is as follows: � denotes forced termination of a service instance,
w̄ := ū denotes execution of a multiple assignment, i(a, o, ū) denotes invocation of
operation o located at a with data ū and r(r, o, w̄) denotes launching of o with operation
parameters w̄ on request of a web service instance located at r.

To define the operational semantics, we exploit a few auxiliary functions. First, we
define a function for evaluating expressions: it takes an expression and returns a basic
value or an address. We write m � e such a function, but we do not explicitly define
it because the exact syntax of expressions is deliberately not specified (recall that ws-
calculus is parameterized wrt the syntax of expressions). Expressions to be evaluated can
contain properties; thus, evaluation of e takes place wrt a set of correlation constraints m
storing the values of the properties that may occur within e. On the contrary, expressions
to be evaluated cannot contain (free) variables because these occurrences are replaced
with the corresponding values as soon as the variables are bound. Indeed, execution of
a binding construct generates a substitution (ranged over by σ), i.e. a map from basic
variables to basic values and from partner links to addresses, that is applied to the whole
instance where the binder occurs. A substitution σ will be sometimes written as (v̄ �→
σ(v̄)) for v̄ = dom(σ). Application of substitution σ to s is written s · σ. The effect of
s · σ is that, for each x ∈ dom(σ), every free occurrence of x in s is replaced with σ(x).

Another ingredient we need to define the semantics is a mechanism for checking if
the assignments of ui to wi, for any index i in a given set I, comply with the correlation
constraints in m. We will write m � (w̄i∈I := ūi∈I) such a mechanism. In case the check
succeeds, to take care of the effect of the assignments, a pair 〈m′, σ〉 is returned where
m′ is the set of the correlation constraints for the properties in w̄i∈I and σ is the substi-
tution for the variables in w̄i∈I . The function is defined inductively on the syntax of w̄ as
follows:

m � (v := u) = 〈∅, (v �→ u)〉

m � (p := u) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
〈∅, ∅〉 if p = u ∈ m
〈{p = u}, ∅〉 if it does not exists u′ s.t. p = u′ ∈ m
undef otherwise

m � (w, w̄ := u, ū) = 〈m′ ∪ m′′, σ ◦ σ′〉
{

if m � (w := u) = 〈m′, σ〉 and
m ∪ m′ � (w̄ := ū) = 〈m′′, σ′〉

Finally, the last two auxiliary functions we need are:

– P(w̄) returns the set of properties contained in the set of operation parameters w̄.
– eR(C) returns the set of activities rec (·, ·, ·) that are start activities of instances in C

(it is defined inductively on the syntax of C, see [LPT06]).

A WSDL-Based Type System for WS-BPEL 151

Table 2. ws-calculus operational semantics: instances

m � exit
�−→ 0 (Exit) m � ass (w̄, ē)

w̄:=m�ē−−−−−−→ 0 (Assign)

m � inv (a, o, c̄)
i(a,o,m�c̄)−−−−−−−−→ 0 (Invoke)

r � �l �

m � rec (r, o, w̄)
r(r,o,w̄)−−−−−−→ 0

(Receive)

m � e = false m � s2
α−−→ s′2

m � if (e) then {s1} else {s2} α−−→ s′2
(Ifff)

m � e = true m � s1
α−−→ s′1

m � if (e) then {s1} else {s2} α−−→ s′1
(Iftt)

m � s1
α−−→ s′1

m � s1; s2
α−−→ s′1; s2

(Sequence)
m � s1

α−−→ s′1 α � r(·, ·, ·)
m � s1 | s2

α−−→ s′1 | s2

(Flow)

m � s1
r(r,o,w̄)−−−−−−→ s′1 � rec (r, o, w̄′) ∈ eR(s2) . P(w̄) = P(w̄′)

m � s1 | s2
r(r,o,w̄)−−−−−−→ s′1 | s2

(FlowRec)

m � rec (r, o, w̄) ; s
r(r,o,w̄)−−−−−−→ s′ � i ∈ I . ri = r ∧ oi = o ∧ P(w̄i) = P(w̄)

m � rec (r, o, w̄) ; s +
∑
i∈I

rec (ri, oi, w̄i) ; si
r(r,o,w̄)−−−−−−→ s′

(Pick)

m � s · (v̄ �→ m � c̄)
α−−→ s′

m � A(c̄)
α−−→ s′

A(v̄ : τ̄�)
de f
= s (Call)

The labelled transition
α−−→ is the least relation over service instances induced by the

rules in Table 2. For the sake of simplicity, we explicitly write only those entities that are
necessary for a transition to occur or are modified by it. For example, since correlation
constraints are sometimes necessary but are never modified by a transition, we write the

relation as m � s
α−−→ s′ instead of m � s

α−−→m � s′. The most of the rules are obvious,
we only remark a few points. Rule (Receive) states that a rec (·, ·, ·) cannot be performed
when the address of the sender of a request is unknown and cannot be learned (i.e. the
first argument is neither an address nor a link). Rules (Flow) and (FlowRec) state that, in
case no receive conflict occurs 2 (i.e. there aren’t two or more receive activities simul-
taneously enabled for the same combination of partner link, operation and correlation

2 Sets of correlation constraints are exploited precisely to deal with receive conflicts: they
prevent loss of correlation information (which would be lost if properties are simply re-
placed by the corresponding values). For example, if properties are dealt with as basic vari-
ables, by applying the substitution (p �→ 5) to the service instance (. . . rec (r, o, 〈�p �, v〉) |
rec (r, o, 〈�p �, v′〉) . . .) we would obtain (. . . rec (r, o, 〈5, v〉) | rec (r, o, 〈5, v′〉) . . .) that does
not permit to establish if the receive activities are in conflict. Indeed, we would obtain
the same term by applying the substitution (p �→ 5, v′′ �→ 5) to (. . . rec (r, o, 〈�p �, v〉) |
rec (r, o, 〈v′′, v′〉) . . .), where no conflict occurs.

152 A. Lapadula, R. Pugliese, and F. Tiezzi

Table 3. ws-calculus operational semantics: nets

m � s
w̄:= ū−−−−→ s′ m � (w̄ := ū) = 〈m′, σ〉

{a :: m� s | C}
−→ {a :: (m ∪m′) � s′ · σ | C}
(Assign)

m � s
i(a2,o,ū)−−−−−−→ s′ a′ � ū

{a1 :: m � s | C1, a2 :: C2}
−→ {a1 :: m � s′ | C1, a2 :: 〈a1, o, ū〉 | C2}
(Invoke)

m � s
r(a′ ,o,w̄)−−−−−−→ s′ m � (w̄ := ū) = 〈m′, σ〉 m � ∅

{a :: m � s | 〈a′, o, ū〉 | C}
−→ {a :: (m ∪m′)� s′ · σ | C}
(ReceiveaI)

m � s
r(l,o,w̄)−−−−−−→ s′ m � (l, w̄ := a′, ū) = 〈m′, σ〉 m � ∅

{a :: m� s | 〈a′, o, ū〉 | C}
−→ {a :: (m ∪ m′) � s′ · σ | C}
(ReceivelI)

∅ � s
r(a′ ,o,w̄)−−−−−−→ s′ ∅ � (w̄ := ū) = 〈m, σ〉 rec (a′, o, w̄) � eR(C)

{a :: ∗s | 〈a′, o, ū〉 | C}
−→ {a :: ∗s | m � s′ · σ | C}
(ReceiveaS)

∅ � s
r(l,o,w̄)−−−−−−→ s′ ∅ � (l, w̄ := a′, ū) = 〈m, σ〉 rec (l, o, w̄) � eR(C)

{a :: ∗s | 〈a′, o, ū〉 | C}
−→ {a :: ∗s | m � s′ · σ | C}
(ReceivelS)

m � s
�−→ s′

{a :: m � s | C}
−→ {a :: C}
(Terminate)

N1
−→ N′1

N1 ∪ N2
−→ N′1 ∪ N2

(Part)

N ≡ N1 N1
−→ N2 N2 ≡ N′

N
−→ N′
(Cong)

set), executions of the two argument services are interleaved. Rule (Pick) states that, in
case no receive conflict occurs, the pick activity can execute any of its receive activities
and then proceed accordingly.

The reduction relation
−→ is the least relation over nets induced by the rules in
Table 3. Types of nodes are omitted because they play no role in the operational se-
mantics of ws-calculus. Let us now comment on the rules. Rule (Assign) states that the
effect of an assignment is global wrt the instance and consists of replacing the free oc-
currences of the variables bound by the assignment with the corresponding values and
of extending the set of correlation constraints identifying the instance with the pairs re-
sulting from the assignment. Rule (Invoke) states that service invocation corresponds to
adding a service request to the dataspace of the invoked service provided that no address
implicitly received is exported as operation parameter. The request is a tuple, containing
the address a1 of the invoker, the name of the invoked operation o and the message ū
(i.e. the arguments to be passed to o). Hence, the invocation of a remote service is asyn-
chronous because the invoker can proceed before its request is processed. WS-BPEL
also provides a synchronous invocation that forces the invoker to wait for an answer by

A WSDL-Based Type System for WS-BPEL 153

Table 4. Type syntax

Op ::= ∅ | {o : τ̄} | Op ∪ Op (operation type sets)
L ::= ∅ | {b : bt} | {p : bt} | L ∪ L (local declarations)
bt ::= Int | Str | Bool (basic types)
τ ::= bt | Op (message types)
t ::= τ̄ | bnet | bserv (generic types)

the invoked service, which indeed performs a pair of activities receive – reply. In ws-
calculus, this behaviour is rendered as execution of a pair of activities invoke – receive
by the invoker and of a pair of activities receive – invoke by the invoked service. Rule
(ReceiveaI) states that activity receive cannot progress until a matching request has been
received. Thus, differently from activity invoke, it is blocking. Requests are routed to
the correct service instance by exploiting the partner link and the operation contained
in the request, which must coincide with those in the label of the transition performed
by the service instance, and the correlation constraints identifying the instance, which
must enable the assignment of the values contained in the request to the parameters
contained in the receive. The correlation set identifying the instance must not be empty
otherwise it could not be possible to determine the correct instance to which the request
must be delivered. When the reduction takes place, the matching request is consumed
and the effect on the instance is the same as that of the corresponding assignment. Rule
(ReceivelI) differs only because in this case the address of the invoker is not known
in advance. After the reduction, the address contained in the request is marked as not
further transmissible and is used to replace the partner link occurring in the receive.
The last two rules for the activity receive, (ReceiveaS) and (ReceivelS), permit to create
a new service instance on receipt of a request that cannot be routed to an existing in-
stance. The additional premise prevents interferences with the first two rules for receive
in case of multiple start activities, as illustrated by the example

{a :: ∗(rec (l, o, 〈p〉) | rec
(
l′, o′, 〈p〉)) | {p = 10} � rec (l, o, 〈p〉) | 〈a′, o, 〈10〉〉}

where only the service instance can evolve. Rule (Terminate) states that the whole ser-
vice instance performing a transition labelled � immediately terminates. Rule (Part)
states that if a part of a larger net evolves, the whole net evolves accordingly. Rule
(Cong) is standard and states that structural congruent nets have the same reductions.

3 Types

The syntax of types is defined in Table 4. An operation type set Op is a collection of type
definitions of operations o : τ̄, where τ̄ is a tuple of message types that characterizes the
format of the arguments that an operation requires. We assume that the type definition
of a given operation only occurs at a single node within a net. Local declarations L
consist of type definitions of basic variables and properties, which have basic types bt
(for simplicity sake, we only consider Int, Str and Bool). Types bnet and bserv are
those of (well-typed) nets and services, respectively.

154 A. Lapadula, R. Pugliese, and F. Tiezzi

In the sequel, we will use the symbol � to type partner links that are implicitly
initialized (i.e. they are bound as first argument of a rec (, ,)). Notation τ�, which is
used to type the parameters of service definitions (see the previous section), stands for
a message type τ or for �. Typing a parameter with � means that it is a partner link
that should have been bound implicitly by a receive activity that syntactically precedes
the service call. Moreover, notation s shall denote both service specifications (∗s) and
service instances (m � s).

Type inference. Type environments, ranged over by Γ, map addresses and partner links
to sets of operation types Op or to �, and service identifiers to bserv. If x � dom(Γ),
we write Γ, x : t for the type environment obtained by extending Γ with the binding of
x to t (the notation generalizes to Γ, {xi : ti}i∈I with the obvious meaning). We write ∅
to denote the type environment with empty domain. Type environments are ordered by
the standard preorder over functions, thus we write Γ � Γ′ when dom(Γ) ⊇ dom(Γ′)
and Γ(x) = Γ′(x) for each x ∈ dom(Γ′).

Type environments hold the types of nodes and of partner links. This information is
exploited to properly deal with address passing (indeed, invoke and receive activities
can use partner links as parameters to exchange node addresses). The type of a partner
link is a set of operation types Op stating that the partner link can be bound only to ad-
dresses holding a type Op′ such that Op ⊆ Op′. During the type checking wrt Γ, we can
easily determine if a partner link l has been implicitly or explicitly initialized according
to the fact that Γ(l) is � or Op, respectively. When a partner link is implicitly initialized,
the type system checks that the associated address is never transmitted (the example in
Section 4 shows that this limitation does not affect the expressive power of the calcu-
lus), as required by WSDL /WS-BPEL. When a partner link is explicitly initialized, the
type system checks that the link is not reassigned (in fact, this control is done implicitly
because if l ∈ dom(Γ) then Γ, l : Op is undefined). Type environments also hold service
identifiers: this information is exploited when typing recursive service definitions.

The judgment Γ � N : bnet, defined by the inference rules of Table 5, says that a
net N is well-typed under the type environment Γ. The initial type environment used
to typecheck a net does not contain type associations for partner links; this kind of
associations may be added to the environment during the type checking of services,
by means of the function envExt·,·(·). Rule (net) says that a net is well-typed under a
type environment, if each node is well-typed under the environment extended with type
information extracted from all nodes. Rule (netToServ) says that a node is well-typed
if its components are well-typed. Rule (netWeak) says that a type environment can be
replaced with a stronger one (i.e. one making more assumptions).

The judgment Γ �L
a S : t, defined by the set of inference rules shown in Tables 6

and 7, says that S has type t, where S is a metavariable denoting values, variables,
properties, requests and services, wrt a type environment Γ and a pair a–L made of the
address of a node and a set of local declarations. The symbol � denotes the subtyping
preorder over τ induced by letting Op � Op′ if Op ⊆ Op′. The preorder extends to
tuples of message types by letting 〈τ1, . . . , τn〉 � 〈τ′1, . . . , τ′n〉 if τi � τ′i for i = 1..n.
To distinguish partner links within a tuple of variables and properties, we exploit the
auxiliary function pl(·) that, given a tuple w̄i∈I , returns the set of indexes of the partner
links therein. The function is defined inductively on the syntax of w̄i∈I as follows:

A WSDL-Based Type System for WS-BPEL 155

Table 5. Inference rules for Γ � N : bnet

∀ i ∈ I Γ, {aj : Opj | j ∈ I} � ai ::Opi,Li Ci : bnet

Γ � {ai ::Opi,Li Ci | i ∈ I} : bnet
(net)

Γ �L
a C : bserv

Γ � a ::Op,L C : bnet
(netToServ)

Γ′ � N : bnet Γ � Γ′

Γ � N : bnet
(netWeak)

pl(bi) = ∅ pl(pi) = ∅ pl(li) = {i} pl(w̄i∈I) =
⋃
i∈I

pl(wi)

We comment on the most significant rules in Table 7, since the rules in Table 6 are
standard. Rule (inv) is applied when an invoke activity is performed by a client in a
one-way interaction or to start a request-response interaction. In these cases, indeed,
the address of the provider (holding the type definition of the operation) is given by r.
Of course, the parameters of the invoked operation must conform to the correspond-
ing operation type. In particular, when an invoke transmits an address, e.g. w̄ = w̄i∈I ,
wk = r′ and τk = Op′′, then it must be that Op′′ ⊆ Op′ where Op′ is the operation
type set associated to r′ in Γ (i.e. Γ �L

a r′ : Op′). This is indeed what the condition
τ̄ � τ̄′ checks. Rule (inv cb) is applied to an invoke activity performed as a callback
in a request-response interaction. The local node is the operation provider. The only
difference with the previous rule is that, in case the first argument of the activity is a
partner link l, it is additionally checked that a triggering receive activity which initial-
izes l logically precedes the invoke (this is expressed by the premise Γ �L

a l : �). Rule
(rec cb) is applied when a client performs a receive activity to obtain a callback in a
request-response interaction. Similarly to rule (inv), the type of the operation must be
retrieved from the provider node whose address is given by r. In case the first argument
of the operation is a free occurrence of a link it is checked that the link is not transmit-
ted. Rule (rec) is similar but is applied when the local node is the provider of the receive
activity. Rule (seq) says that a sequence of services s1; s2 is well-typed under Γ if s1

is well-typed under Γ and s2 is well-typed under Γ extended with the type associations
for the partner links bound by s1 (notably, the extension is possible only if such part-
ner links are not reassigned). The set of new associations is returned by the auxiliary
function envExt·,·(·), that can be defined inductively on the syntax of services. The most
significant cases, i.e. those for the binding constructs, are defined as follows:

envExtΓ,a(rec (r, o, w̄)) =⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

{l : τi | ∃ i . wi = l ∧ τi ∩Op = ∅} ∪ {l′ : � | r = l′} if Γ �∅a a : Op ∧ o : τ̄ ∈ Op

{l : τi | ∃ i . wi = l ∧ Γ �∅a r : Op′ ∧ o : τ̄ ∈ Op′ ∧ otherwise
Γ �∅a a : Op ∧ τi ∩Op = ∅}

envExtΓ,a(ass (w̄, ē)) = {l : τi | ∃ i . wi = l ∧ Γ �∅a ē : τ̄ ∧ Γ �∅a a : Op ∧ τi ∩Op = ∅}
Condition τi ∩ Op = ∅ avoids that the service executing the activity can receive its
same address as an argument. Finally, rule (flow) forces the two component services to

156 A. Lapadula, R. Pugliese, and F. Tiezzi

Table 6. Inference rules for Γ �L
a S : t

u ∈ Int

∅ �L
a u : Int

(int)
u ∈ Str

∅ �L
a u : Str

(str)
u ∈ {true, false}

∅ �L
a u : Bool

(bool)

r : Op �L
a r : Op (ref)

b : τ ∈ L

∅ �L
a b : τ

(var)
p : τ ∈ L

∅ �L
a p : τ

(prop)

l : Op �L
a �l � : Op (ref2)

Γ �L
a w1 : τ1 . . . Γ �L

a wn : τn

Γ �L
a 〈w1, . . . ,wn〉 : 〈τ1, . . . , τn〉

(w̄)

Γ′ �L
a S : t Γ � Γ′

Γ �L
a S : t

(weak)
Γ �L

a e1 : τ1 . . . Γ �L
a en : τn

Γ �L
a 〈e1, . . . , en〉 : 〈τ1, . . . , τn〉

(ē)

type check in the same environment. This control prevents implicit flow of addresses
from one component to the other (recall that partner link declarations are global to the
instance) which would force a strict execution ordering of the components (thus, e.g.,
the service instance rec (l, o,w) | inv (l, o′, 5) does not type check).

Type soundness. The major property of our type system is that if a net typechecks then
it does never generate runtime errors (Corollary 1). The proof proceeds in the style
of [WF94] by first proving subject reduction, namely that nets well-typedness is an
invariant of the reduction relation (Theorem 1), and then proving type safety, namely
that well-typed nets do not immediately generate errors (Theorem 2). Due to lack of
space, we omit the proofs of the results presented in this section (they are quite standard
and can be found in [LPT06]).

First, we introduce some auxiliary definitions. A (generic) context Cg is a service
with one subterm replaced by a hole, denoted [·]. Formally, Cg is defined as follows:

Cg ::= [·] | Cg | s | Cg; s | s;Cg | rec (r, o, w̄) ;Cg +
∑

i∈I rec (ri, oi, w̄i) ; si

| if (e) then {s} else {Cg} | if (e) then {Cg} else {s} | A(c̄)

where the body of the service definition is a context, i.e. A(v̄ : τ̄�)
de f
= Cg. Notably, terms

of the form [·] ; s +
∑

i∈I rec (ri, oi, w̄i) ; si are not considered (for the moment). Notation
Cg[s] denotes the service resulting from filling the hole of Cg with service s.

An execution context C is a context such that, once the hole is filled with a service
s, the resulting service C[s] is capable of immediately performing an activity of s. For-
mally, C is defined by the following grammar:

C ::= [·] | C | s | C; s | if (e) then {C} else {s} |
if (e) then {s} else {C} | A(c̄)

where A(v̄ : τ̄�)
de f
= C. Whenever, we only consider basic receive activities, we can

extend the set of possible execution contexts as follows:

Cr ::= C | [·] ; s +
∑

i∈I rec (ri, oi, w̄i) ; si

A WSDL-Based Type System for WS-BPEL 157

Table 7. Inference rules for Γ �L
a S : t (cont)

Γ �L
a C1 : bserv Γ �L

a C2 : bserv

Γ �L
a C1 | C2 : bserv

(par)
Γ �L

a s : bserv

Γ �L
a s : bserv

(serv)

Γ �L
a a : Op Γ �L

a a′ : Op′ o : τ̄ ∈ Op ∪ Op′ Γ �L
a ū : τ̄′ τ̄ � τ̄′

Γ �L
a 〈a′, o, ū〉 : bserv

(req)

∅ �L
a 0 : bserv (nil) ∅ �L

a exit : bserv (exit) A : bserv �L
a A : bserv (def2)

Γ �L
a ēi∈I : τ̄i∈I Γ �L

a w̄i∈(I\J) : τ̄i∈(I\J)

Γ �L
a ass (w̄i∈I , ēi∈I) : bserv

J = pl(w̄i∈I) (ass)

Γ �L
a r : Op o : τ̄ ∈ Op Γ �L

a w̄ : τ̄′ τ̄ � τ̄′

Γ �L
a inv (r, o, w̄) : bserv

(inv)

Γ �L
a a : Op o : τ̄ ∈ Op Γ �L

a w̄ : τ̄′ τ̄ � τ̄′ r = l⇒ Γ �L
a l : �

Γ �L
a inv (r, o, w̄) : bserv

(inv cb)

Γ �L
a r : Op o : τ̄i∈I ∈ Op Γ �L

a w̄ j∈(I\J) : τ̄ j∈(I\J)

r � l r = �l �⇒ ∀ i ∈ J wi � l

Γ �L
a rec (r, o, w̄i∈I) : bserv

J = pl(w̄i∈I) (rec cb)

Γ �L
a a : Op o : τ̄i∈I ∈ Op Γ �L

a w̄ j∈(I\J) : τ̄ j∈(I\J)

r = �l �⇒ ∀ i ∈ J wi � l ∧ Γ �L
a l : �

Γ �L
a rec (r, o, w̄i∈I) : bserv

J = pl(w̄i∈I) (rec)

Γ �L
a e : Bool Γ �L

a s1 : bserv Γ �L
a s2 : bserv

Γ �L
a if (e) then {s1} else {s2} : bserv

(if)

Γ �L
a s1 : bserv Γ, envExtΓ,a(s1) �L

a s2 : bserv

Γ �L
a s1; s2 : bserv

(seq)

Γ �L
a s1 : bserv Γ �L

a s2 : bserv

Γ �L
a s1 | s2 : bserv

(flow)

∀ i ∈ I Γ �L
a rec (ri, oi, w̄i) ; si : bserv

Γ �L
a

∑
i∈I

rec (ri, oi, w̄i) ; si : bserv (pick)

Γ �L
a A : bserv Γ �L

a w̄ : τ̄�1 τ̄� � τ̄�1
Γ �L

a A(w̄) : bserv
A(v̄ : τ̄�)

de f
= s (call)

Γ, A : bserv, v̄ j∈J : τ̄�j∈J �
L ∪ {v̄i∈(I\J) : τ̄�i∈(I\J)}
a s : bserv

Γ �L
a A : bserv

A(v̄i∈I : τ̄�i∈I)
de f
= s , J = pl(v̄i∈I) (def1)

158 A. Lapadula, R. Pugliese, and F. Tiezzi

Table 8. Runtime errors (selected rules)

s ≡ C[inv (a′, o, w̄)] o : τ̄ � Op o : τ̄ � Op′

{a ::Op,L s | C, a′ ::Op′,L′ C′}
→err
(opDefError1)

s ≡ Cr[rec (l, o, w̄)] o : τ̄ � Op

{a ::Op,L s | C}
→err
(opDefError2)

s ≡ Cr[rec (a′, o, w̄)] o : τ̄ � Op o : τ̄ � Op′

{a ::Op,L s | C, a′ ::Op′,L′ C′}
→err
(opDefError3)

s ≡ Cr[rec (l, o, w̄) ;Cg[inv (l′, o′, w̄′)]] ∃ i . w′i = l

{a ::Op,L s | C}
→err
(linkError)

s ≡ C[inv (l, o, w̄)] o : τ̄ ∈ Op

{a ::Op,L s | C}
→err
(rrError1)

s ≡ C[ass (w̄, ū) ;Cg[inv (l, o, w̄′)]] o : τ̄ ∈ Op ∃ i . wi = l

{a ::Op,L s | C}
→err
(rrError2)

The subject reduction theorem exploits the following two auxiliary lemmas. The
former is the key for showing type preservation for reductions involving substitutions,
the latter states that if a service is well-typed then its continuation after a transition is
well-typed too.

Lemma 1. Suppose Γ �L
a s : bserv. If Γ �L

a v : τ, Γ �L
a u : τ′ and τ � τ′, then

Γ �L
a s · (v �→ u) : bserv.

Lemma 2. If Γ �L
a s : bserv and m � s

α−−→ s′ then Γ′ �L
a s′ : bserv with Γ′ such that3:

– Γ′ � Γ in case of α = �, i(a′, o, ū);
– Γ′ � Γ, envExtΓ,a(rec (r, o, w̄)) in case of α = r(r, o, w̄);
– Γ′ � Γ, envExtΓ,a(ass (w̄, ē)) in case of α = (w̄ := ū) and s ≡ C[ass (w̄, ē)].

Theorem 1 (Subject Reduction). If Γ � N : bnet and N
−→ N′ then Γ′ � N′ : bnet
for some Γ′.

The errors that our type system can capture, are characterized by predicate
→err that
holds true when a net can immediately generate a runtime error. The most significant
rules defining
→err are in Table 8 (the remaining rules can be found in [LPT06]).

Rule (opDefError1) raises an error when an operation is invoked whose type decla-
ration is neither in the type of the caller nor in that of the callee. Rule (opDefError2)
raises an error if the type declaration of the requested operation is not found in the type

3 Notably, wrt the type environment on the right of � , Γ′ can additionally contain further asso-
ciations due to service calls. This explains the use of � instead of =.

A WSDL-Based Type System for WS-BPEL 159

of the local node. Indeed, the service must be the provider since the activity first ar-
gument is a link. If the first argument of the activity is an address, there is no way to
tell if the service is a client or a provider. Therefore, rule (opDefError3) raises an error
only if the type declaration of the requested operation is neither in the type of the callee
nor in that of the caller. Rule (linkError) raises an error when a partner link implicitly
initialized is going to be passed in a communication. Rule (rrError1) raises an error if
a callback invoke is going to be executed that does not have a previous triggering re-
ceive (indeed, its first argument is uninitialized). Finally, rule (rrError2) raises an error
if the first argument of a callback invoke is initialized by an assignment rather than by
a triggering receive.

Theorem 2 (Type Safety). Γ � N : bnet implies that N
→err holds false.

To conclude, we have (
−→∗ denotes the reflexive and transitive closure of
−→).

Corollary 1 (Type Soundness). Let Γ � N : bnet. Then N′
→err holds false for every
net N′ such that N
−→∗ N′.

4 A Brokerage Scenario

In this section we show an application of our framework. Suppose a client process
invokes a process that acts as a broker for a third process. The latter process, once
received a message with an integer value and the client address, increases the value by
one (of course, this can be replaced with any complex operation) and sends the response
back to the client by exploiting the received address. This scenario is modelled by the
net (we write Z � W to assign a symbolic name Z to the term W).

N � {ac ::Opc ,Lc ∗sc | 〈ac, oinit, 10〉 , ab ::Opb ,Lb ∗sb , ar ::Opr ,Lr ∗sr} (1)

where ac, ab and ar are the addresses of client, broker and responder, respectively.
The client service is defined as follows:

sc � rec (linit, oinit, p) ; inv (ab, o, 〈p, ac〉) ; rec (lr, ocb, 〈p, res〉)
The first receive creates a client instance by consuming the initialization tuple
〈ac, oinit, 10〉. Since multiple client instances can wait a response along the same part-
ner link and operation, we use a correlation set to route each incoming message to
the correct instance. At instantiation time, a correlation set consisting of the prop-
erty p is initialized. When the client process invokes the broker, it must send an in-
teger value and its address to allow the responder process to send back the reply.
After this invocation, the client waits the callback. The client type declarations are
Opc = {oinit : 〈Int〉, ocb : 〈Int, Int〉} and Lc = {p : Int, res : Int}. Notice that, in
this communication pattern, differently from asynchronous request-response, the client
has the provider role for the callback operation.

The broker service is defined as follows:

sb � rec (l, o, 〈b, lc〉) ; inv (ar, o′, 〈b, lc〉)

160 A. Lapadula, R. Pugliese, and F. Tiezzi

When invoked, the broker creates an instance (by using the receive activity) that will
forward the client request to the responder and then terminate. Since no session with
multiple interactions is started, the broker does not use a correlation mechanism. The
broker type declarations are Opb = {o : τ̄} with τ̄ = 〈Int, {ocb : 〈Int, Int〉}〉 and Lb =

{b : Int}. Of course, the broker has the provider role for the operation invoked by the
client. In the message type of the operation, the second field is an operation type set and
identifies the client operations that are visible to the broker.

Finally, the responder service is defined as follows:

sr � rec (l, o′, 〈b, lcb〉) ; ass (b′, b + 1) ; inv (lcb, ocb, 〈b, b′〉)

When invoked, the responder creates an instance that will process the received value
and send the response back to the client. Also this process does not need a correlation
mechanism. The responder type declarations are Opr = {o′ : τ̄} and Lr = {b : Int, b′ :
Int}. Notice that, since the responder receives the client address from the broker, its
view of client operations along the partner link lcb agrees with that of the broker.

According to our framework, to ensure that N will never generate errors, it suffices
to prove that N is well-typed wrt the empty environment, i.e. ∅ � N : bnet. This, by
rule (net), means that each node of N must be well-typed wrt the type environment Γ =
{ac : Opc, ab : Opb, ar : Opr}. Now, by the rule (netToServ), (par) and (serv) this holds
if all components 〈ac, oinit, 10〉, sc, sb and sr are well-typed wrt Γ and appropriate local
type declarations. Formally, we must check that judgements Γ �Lc

ac
〈ac, oinit, 10〉 : bserv,

Γ �Lc
ac

sc : bserv, Γ �Lb
ab

sb : bserv and Γ �Lr
ar

sr : bserv hold. The second inference is
fully shown in Table 9 (the remaining inferences can be found in [LPT06]). For the sake
of presentation, the inferences are split in a few parts with references between them.

Notably, for both receive activities we must apply rule (rec), because the type en-
vironment does not store type information for the partner links linit and lr . Indeed, the
client has provider role for both the operations oinit and ocb and we check if their type
definitions are in the set of operation types of the client Opc, which is obtained by infer-
ring Γ �Lc

ac
ac : Opc. Instead, to check the invoke activity, we apply rule (inv), because in

this case the service has client role. Opb contains the type definition of the invoked oper-
ation o and is obtained by the inference of Γc �Lc

ac
ab : Opb, where ab is the target of the

invoke activity. Notice that the type associated to o is a subtype of the type associated
to the operation parameters (i.e. τ̄ � 〈Int,Opc〉), because {ocb : 〈Int, Int〉} ⊆ Opc.

We have thus proved that the net N defined in 1 behaves correctly. Now, we smoothly
modify N so that its execution would eventually generate a runtime error and show
that our type system can statically point out this situation. Indeed, suppose that ocb :
〈Int, Int〉 � Opc. This could take place, for example, in case the client tries a request-
response interaction with the broker (which would be the provider of both operations).
The modified net N′ would behave as follows (we omit the responder node because it
plays no role):

N′
−→ {ac ::Opc,Lc ∗sc | 〈ac, oinit, 10〉 , ab ::Opb,Lb ∗sb}

−→ {ac ::Opc,Lc ∗sc | {p = 10} � s′c , ab ::Opb,Lb ∗sb}

−→ {ac ::Opc,Lc ∗sc | {p = 10} � rec (lr, ocb, 〈p, res〉) , ab ::Opb,Lb ∗sb | 〈ac, o, 〈10, ac〉〉}

→err

A WSDL-Based Type System for WS-BPEL 161
Ta

bl
e

9.
Ty

pe
in

fe
re

nc
e

fo
r

th
e

cl
ie

nt
se

rv
ic

e
s c

(Γ
c

is
(Γ
,

l in
it

:�
))

(r
ef

)
a c

:O
p c
�

L c a c
a c

:O
p c

(w
ea

k)
Γ

c
�

L c a c
a c

:O
p c

o c
b

:〈
In
t
,I
n
t
〉
∈

O
p c

p
:I
n
t
∈

L c
(p

ro
p)

∅
�

L c a c
p

:I
n
t

(w
ea

k)
Γ

c
�

L c a c
p

:I
n
t

re
s

:I
n
t
∈

L c
(v

ar
)

∅
�

L c a c
re

s
:I
n
t

(w
ea

k)
Γ

c
�

L c a c
re

s
:I
n
t

(w̄
)

Γ
c
�

L c a c
〈
p,

re
s〉

:〈
In
t
,I
n
t
〉

(r
ec

)
(2

)Γ
c
�

L c a c
re

c(
l r
,o

cb
,〈

p,
re

s〉
)

:b
se
r
v

(r
ef

)
a b

:O
p b
�

L c a c
a b

:O
p b

(w
ea

k)
Γ

c
�

L c a c
a b

:O
p b

o
:τ̄
∈

O
p b

p
:I
n
t
∈

L c
(p

ro
p)

∅
�

L c a c
p

:I
n
t

(w
ea

k)
Γ

c
�

L c a c
p

:I
n
t

(r
ef

)
a c

:O
p c
�

L c a c
a c

:O
p c

(w
ea

k)
Γ

c
�

L c a c
a c

:O
p c

(w̄
)

Γ
c
�

L c a c
〈
p,

a c
〉

:〈
In
t
,O

p c
〉

τ̄
�
〈I
n
t
,O

p c
〉

(i
nv

)
(1

)Γ
c
�

L c a c
in

v
(a

b,
o,
〈
p,

a c
〉)

:b
se
r
v

(r
ef

)
a c

:O
p c
�

L c a c
a c

:O
p c

(w
ea

k)
Γ
�

L c a c
a c

:O
p c

o i
ni

t
:〈

In
t
〉
∈

O
p c

p
:I
n
t
∈

L c
(p

ro
p)

∅
�

L c a c
p

:I
n
t

(w
ea

k)
Γ
�

L c a c
p

:I
n
t

(r
ec

)
Γ
�

L c a c
re

c(
l in

it
,o

in
it
,
p)

:b
se
r
v

(1
)Γ

c
�

L c a c
in

v
(a

b,
o,
〈
p,

a c
〉)

:b
se
r
v

(2
)Γ

c
�

L c a c
re

c(
l r
,o

cb
,〈

p,
re

s〉
)

:b
se
r
v

(s
eq

)
Γ

c
�

L c a c
in

v
(a

b,
o,
〈
p,

a c
〉)

;r
ec

(l
r,

o c
b,
〈
p,

re
s〉

)
:b
se
r
v

(s
eq

)
Γ
�

L c a c
re

c(
l in

it
,o

in
it
,
p)

;i
nv

(a
b,

o,
〈
p,

a c
〉)

;r
ec

(l
r,

o c
b,
〈
p,

re
s〉

)
:b
se
r
v

162 A. Lapadula, R. Pugliese, and F. Tiezzi

where the runtime error is generated by rule (opDefError2). This situation can be cap-
tured in advance, since N′ is not well-typed because, in the inference for the client
service, Γc �Lc

ac
rec (lr, ocb, 〈p, res〉) : bserv cannot be inferred.

5 Concluding Remarks

We have set a formal semantics framework for web services orchestration languages,
and particularly for WS-BPEL. We have introduced ws-calculus, a foundational lan-
guage specifically designed for modelling interactions among web services, and a type
system that permits to formalize the relationship between WS-BPEL processes and the
associated WSDL documents. The type system forces a neat programming discipline
for communicating processes. We have shown that the type system and the operational
semantics of ws-calculus are ‘sound’ and presented an illustrative example.

We are currently extending the typing system, and the related results, to the enriched
language described in [LPT06]. We also plan to enrich the type system to enforce more
rigorous type disciplines. For example, partner links could have assigned more sophisti-
cated types that would correspond to complex interaction patterns, such as, e.g., ‘one re-
quest – multiple responses’ or ‘one request – one of two possible responses’. Moreover,
by exploiting some form of ‘behavioural’ types, such dynamic aspects of ws-calculus
processes could be captured as, e.g., ‘an operation parameter may determine whether
a callback uses operation A vs. operation B’ or ‘the invocation of a service of type X
must be preceded by the invocation of a service of type Y’.

One major contribution of our work is the formal modelling of different aspects of
WS-BPEL, such as multiple start activities, receive conflicts, routing of correlated mes-
sages, interactions among different web services, that have not been tackled at once in
the literature. The mechanism of correlation sets was first investigated in [Vir04], that
however only consider interaction of different instances of a single business process.
Other works take the opposite route, and enrich some well-known process calculus with
constructs inspired by those of WS-BPEL. The most of them deal with issues of web
transactions such as interruptible processes, failure handlers and time. This is, for in-
stance, the case of [LZ05a, LZ05b] that present a timed extension of the π-calculus,
called webπ, tailored to study a simplified version of the scope construct of WS-BPEL.
We have focused on service orchestration rather than on service choreography (that pro-
vides a means to describe service interactions in a top-view way) because we wanted to
study those problems arising when executing WS-BPEL processes. In [BGG+05] both
aspects are studied. Following [MB03], we have pushed forward the use of a type system
to define basic contracts for web services. In [CL06, HSS05], alternative approaches are
proposed that are based on the use of schema languages and Petri nets, respectively.

Acknowledgements. We thank the anonymous referees for their useful comments.

References

[BCG+05] B. Bloch, F. Curbera, Y. Goland, N. Kartha, C. K. Liu, S. Thatte, P. Yendluri,
and A. Yiu. Web services business process execution language version 2.0. TR,
WS-BPEL TC OASIS, 2005. http://www.oasis-open.org/.

A WSDL-Based Type System for WS-BPEL 163

[BGG+05] N. Busi, R. Gorrieri, C. Guidi, R. Lucchi, and G. Zavattaro. Choreography and
orchestration: A synergic approach for system design. In ICSOC 2005, pages
228–240, 2005.

[CCMW01] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web services de-
scription language (wsdl) 1.1. TR, W3C, 2001. http://www.w3.org/TR/wsdl/.

[CL06] S. Carpineti and C. Laneve. A basic contract language for web services. In Pro-
ceedings of ESOP 06, LNCS, 2006.

[HSS05] S. Hinz, K. Schmidt, and C. Stahl. Transforming bpel to petri nets. In Business
Process Management, pages 220–235, 2005.

[LPT06] A. Lapadula, R. Pugliese, and F. Tiezzi. A WSDL-based type system for
WS-BPEL. TR, Dipartimento di Sistemi e Informatica, Univ. Firenze, 2006.
http://www.dsi.unifi.it/∼pugliese/DOWNLOAD/wsc-full.ps.

[LZ05a] C. Laneve and G. Zavattaro. Foundations of web transactions. Fossacs’05,
LNCS(3441):282–298, 2005.

[LZ05b] C. Laneve and G. Zavattaro. Webπ at work. In TGC’05, 2005.
[MB03] L. G. Meredith and S. Bjorg. Contracts and types. Comm. ACM, 46(10):41–47,

2003.
[Vir04] M. Viroli. Towards a formal foundational to orchestration languages. Electronic

Notes in Theoretical Computer Science, 105:51–71, 2004.
[WF94] A.K. Wright and M. Felleisen. A syntactic approach to type soundness. Informa-

tion and Computation, 115(1):38–94, 1994.

Managing Ad-Hoc Networks Through the Formal
Specification of Service Requirements�

Martín López-Nores, Jorge García-Duque, and José J. Pazos-Arias

Department of Telematics Engineering, University of Vigo. 36310, Vigo (Spain)
{mlnores, jgd, jose}@det.uvigo.es

Abstract. Mobile ad-hoc networks (MANETs) are dynamic computing environ-
ments where it is hard to make predictions about service provision. To ensure a
level of predictability —and thus make the services more dependable—, it has
been argued that the hosts must exchange information that allows guessing how
the network is set up at a given moment, and how it will be in the near future.
This paper introduces an approach to handling that information, which has been
explicitly devised to deal with incomplete and changeable knowledge. As a con-
tribution to the current state of the art, this approach enables a practical scheme
where the different hosts in a MANET can collaborate to make up the network
that best satisfies their service requirements.

1 Introduction

The past few years have witnessed a shift from traditional desktop machines reliant on
fixed, wired networks to ubiquitous, wireless networks of mobile devices. At the head
of this movement, mobile ad-hoc networks (MANETs) are computing environments
supported collectively by the hosts they comprise, and where a small device can provide
support for complex tasks by leaning on the services provided by the others [1]. This
paradigm has a number of increasingly relevant real-world applications, from sensor
networks [2] to peer-to-peer wireless computing [3].

MANETs are characterized by frequent changes in network topology. Small devices
opportunistically arise and communicate with no reliance on any form of fixed infra-
structure, and their physical mobility results in unpredictable connectivity. In turn, this
volatility causes limited dependability at the level of service provision, as the applica-
tions may suffer disconnections at any time. To tackle this problem, several authors have
argued that it is necessary to augment the predictability of the networks through knowl-
edge dissemination and exploitation. The idea is to have the hosts expose and gather
information that allows them to guess how the network is set up at a given moment and
how it will be in the near future [4, 5]. Thus, it would be possible for the hosts to detect
whether their service requirements1 are likely to be satisfied, and react conveniently in
case not (moving to specific locations, accomplishing service migrations, etc.).

� This work has been partially funded by the Xunta de Galicia Basic Research Project
PGIDIT04PXIB32201PR.

1 By service requirements, we mean indications that certain services should be available at
specific times and places. Such indications can be issued by software applications or directly
by human users.

P. Ciancarini and H. Wiklicky (Eds.): COORDINATION 2006, LNCS 4038, pp. 164–178, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Managing Ad-Hoc Networks Through the Formal Specification 165

The commented approach faces a fundamental problem: the knowledge available
about a MANET is very likely to be imperfect. It is unrealistic to assume that the knowl-
edge may be complete, because every host gathers information in a progressive way
from the initial situation that it knows nothing about others. Also, it frequently happens
that a host cannot even expose complete information about itself (for example, it may
not be able to predict its future moves). Finally, the dynamism of the network worsens
the problem, because the gathered information can easily become stale.

The works presented in [6, 7] evidence that there is still much research to do re-
garding what can be done when there are limitations in the knowledge available about
a MANET. The authors in [6] proved the advantages of having the hosts gather and
exploit knowledge about the network, but they left “the partial observability of the do-
main” as a crucial feature to consider in the future to attain much better results. On
their part, the authors in [7] suggested that it could be a good starting point to assume
perfect knowledge, and then examine the implications of gradually eliminating that as-
sumption; this approach can certainly bring light from a theoretical point of view, but
the initial assumption makes it inapplicable in practice.

In this paper, we introduce a practical approach to the management of knowledge
about MANETs, leaning on a formal basis explicitly devised to handle imperfect and
changeable knowledge. This solution has the following two major strengths:

– First, it endows mobile hosts with the ability to reason safely in the face of uncer-
tainty (i.e. missing knowledge), allowing them to tune the amount of information
they handle according to their memory and computing capabilities.

– Second, it provides efficient means to evolve a knowledge base in order to assimi-
late frequent updates/changes in the hosts’ intents, as well as to analyze the service
requirements and derive possibilities to increase the odds that they will be satisfied.

The next section presents a simplified scheme of our proposal, to motivate the formal
basis we have adopted and explain its advantages. Section 3 shows the formal basis in
action through an example that illustrates the building and maintenance of a knowledge
base. Section 4 introduces the complete scheme of our proposal, describing the solu-
tions it enables to improve the dependability of MANETs. The paper finishes with a
discussion and the motivation of future work in Sect. 5 and Sect. 6, respectively.

2 The Core of the Scheme

The core of our proposal is the scheme shown in Fig. 1. Every host gathers information
about the MANET from other hosts, and uses that information to automatically generate
(synthesize) a formal model of the network. That model is later employed to check
(analyze) whether it is possible to satisfy the host’s service requirements, using a model-
checking [8] algorithm.

For the time being, we will assume that the knowledge exchanged between the hosts
is merely involved with i) the services they plan to make available for others to use, and
ii) their intended/expected motion profiles2. Thereby, the formal model of the MANET
can reflect the availability of the different services against time and space.

2 A motion profile is any characterization of a host’s spatial trajectory against time [4, 9].

166 M. López-Nores, J. García-Duque, and J.J. Pazos-Arias

Fig. 1. The basic scheme: synthesis of formal models and analysis of service requirements

2.1 Capturing the Uncertainty of Having Incomplete Knowledge

Having generated a model that captures what is known about the network, a fundamen-
tal point to note about Fig. 1 is that the analysis of the service requirements can return
three different results:

– [satisfied]: the service requirements can be satisfied in the envisaged network;
– [not satisfied]: the service requirements cannot be satisfied in the envisaged net-

work;
– [uncertain]: the knowledge available does not suffice to conclude whether it is

possible to satisfy the service requirements.

According to this fact, we cannot build up a solution to reason about MANETs over
the classical Boolean logic, because it cannot reflect uncertainty (everything is either
true or false, which leads to erroneous conclusions about the satisfiability of the service
requirements).

To avoid taking for false what is indeed unknown, we advocate the use of model-
ing formalisms like Partial Kripke Structures (PKS [10]), Modal Transition Systems
(MTS [11]) and Models of Unspecified States (MUS [12]), which lean on Kleene’s
three-valued semantics [13]. This semantics, depicted in Fig. 2, enables an explicit dif-
ferentiation of what is known to be true (meaning ‘allowed’, ‘possible’, ‘reachable’ or
‘available’), what is known to be false (meaning the opposite), and what is still unknown
(represented by the symbol⊥).

As shown in the diagram of Fig. 2, the logical value⊥ lies halfway between the truth
levels of the others (certainly, unknown is neither falser than false, nor truer than true);
⊥ is also placed in a knowledge level below false and true, thus capturing the point that
learning new information can turn the unknown facts into known ones.

false true

⊥
truth

kn
ow

le
dg

e

Fig. 2. The double Hasse diagram of Kleene’s three-valued logic

Managing Ad-Hoc Networks Through the Formal Specification 167

2.2 Reacting to Updates/Changes in the Knowledge Base

The second crucial point about the scheme of Fig. 1 is that the knowledge available
about a MANET can be highly changeable. Therefore, the utility of the whole approach
depends on the ability to have the model of the network updated rapidly enough. The
presumably-reduced power of a mobile device makes further claims for low computa-
tional cost.

Clearly, every piece of information received either provides new knowledge or con-
tradicts part of what was known. So, the models must be readily capable of accomplish-
ing two types of evolutions: refinements [14] and retrenchments [15]. As explained
below, this requisite is catered for by the knowledge ordering of Kleene’s logical values:

– The addition of new knowledge to a model is done by turning unknown elements
into true or false ones, with no concern for whatever was already false or true (in
other words, a model can be refined by keeping the previous synthesis efforts).
Obviously, this incremental synthesis process has much lower computational cost
than proceeding from scratch; in fact, as proved in [16], the complexity of the for-
mer is exponential with the amount of added knowledge, whereas it is exponential
with the size of the knowledge base for the latter. Previous approaches to the syn-
thesis problem using Boolean formalisms have only been able to reduce that high
complexity by introducing human intervention [17, 18], which is pointless in our
context.

– To alter a model in a way that it contradicts part of the knowledge it originally
captured, it is first necessary to perform an abstraction, to turn into unknown the
elements that were either true or false and have become obsolete; after that, the
model is refined to incorporate the fresher information. Therefore, using a mod-
eling formalism based on Kleene’s semantics, the computational cost implied by
a retrenchment is that of a refinement plus that of the preceding abstraction; the
complexity of the latter is simply linear with the size of the model. Using Boolean
formalisms, in contrast, it would even be questionable whether we could talk about
abstractions, because true and false have the same knowledge level; anyway, since
the transformation would consist of turning true elements into false ones or vice
versa, it follows that it would have just the same complexity as the non-incremental
synthesis.

The management of refinements and retrenchments has a greatly beneficial impact
on the computational cost of verifying the service requirements, inasmuch as it helps
identifying immediately the parts of a model that change in response to any new in-
formation. This way, the model-checking algorithm can revise the satisfiability of the
service requirements by looking only at the updated parts of the model. This incremen-
tal approach has been successfully applied in software development (see [16, 19]) as a
means to overcome the well-known problem of state space explosion [20], and so we
adopt it in our approach to managing knowledge about MANETs.

2.3 Adopted Formalisms

From among the formalisms cited in Sect. 2.1, we have resorted to a variant of MUS
conceived for the modeling of real-time systems, called MUS-T (Timed Models of

168 M. López-Nores, J. García-Duque, and J.J. Pazos-Arias

s1s1s1

s2s2s2

e[0, 1]

e[2, 3]

M

s1s1s1

s2s2s2

e[0, 2)

e[2, 3]
f

M′

s1s1s1

s2s2s2 s3s3s3

e[0, 1] f

e(1, 3]

M∗

refinement

abstractio
n

refinement

abstraction

retrenchment

Fig. 3. Evolutions of MUS-T models

Unspecified States) [21]. This formalism is an extension of the classical timed automa-
ton [22], the main difference being that it is based on Kleene’s three-valued semantics
instead of Boole’s true/false interpretations.

To understand the MUS-T notation, consider the minimal MUS-T model M of
Fig. 3. In this model, the event e is true (i.e. we know it can occur) in the time in-
terval from t = 0 to t = 1, whereas it is false (we know it cannot occur) between t = 2
and t = 3. The rest of the time, we do not know whether event e can occur —this is not
represented in the model, because ⊥ is the default value.

Figure 3 also depicts the notions of refinement and retrenchment applied to MUS-T.
The modelsM′ andM∗ are two refinements ofM, obtained by adding the knowledge
that i) event e can/cannot occur between t = 1 and t = 2, and that ii) a new event, f ,
cannot/can occur at any time. Since the two knowledge additions are contradictory, it
follows thatM′ andM∗ are retrenchments of one another.

As a final remark, note that the scheme of Fig. 1 requires a suitable specification
language, for a twofold purpose: first, to serve as the vehicle for exchanging knowl-
edge between the hosts; and second, to express the service requirements that will be
checked against the models. To this aim, we have opted for a temporal logic called
SCTL-T (Timed, Simple and Causal Temporal Logic), which has been previously ap-
plied in conjunction with MUS-T —both in synthesis and analysis tasks— in the de-
velopment of real-time systems (see [21]). Applied to the management of knowledge
about MANETs, SCTL-T is flexible and powerful enough to express the phenomena
on which we are interested: delays, dependencies between the requested services and
spatial locations, usage times, etc.

3 Illustrating the Management of a Knowledge Base

In this section, we provide an example about managing a knowledge base in the sim-
plified scheme of Sect. 2. We shall illustrate the evolutions of the MUS-T model of a

Managing Ad-Hoc Networks Through the Formal Specification 169

MANET in response to successive knowledge acquisitions, explaining the conclusions
enabled at any time. For the sake of space, we will not indicate the SCTL-T expressions
employed in the exchange of knowledge, but rather give textual explanations —readers
interested on the details of the language should take a look at [21].

To start with, assume that we are running a host called h1 that is continually offering
the service aaa, and that this is indeed the only knowledge we have. The corresponding
MUS-T model of the MANET is shown in Fig. 4, which must be interpreted according
to the following general guidelines:

– The states of the model represent the overlaps between the communication ranges
of the known hosts; these zones map to spatial locations where there is direct com-
munication with the corresponding hosts. There always exists a zone z0 where none
of the known hosts is within range.

– For each state si, there are true, false or unknown events zj depending on what we
know about the possibility to move directly from zone zi to zone zj . The true zj

events take the model into the corresponding state sj —a unit loop through event
zi indicates that it is possible to stay in the zone zi.

– Also in each state si, there are true, false or unknown events representing the avail-
ability of the different services in the corresponding zone zi —the available services
are represented with unit loops, acting as state variables.

– Finally, for every host we know of, its being within communication range in a given
zone is represented just the same way as the availability of the services.

s0s0s0

s1s1s1

z0

z1

z0

h1 z1 aaa

h1 aaa

h1

z0

z1

Fig. 4. Initial situation: the host h1 only knows about itself

The model of Fig. 4 captures the fact that (obviously) the host h1 delimits only one
zone, z1, where the service aaa is available at any time (aaa is a true event in state s1). It
is always possible to move from zone z1 into z0 (z0 is a true event in s1 at any time)
and vice versa. We also know that h1 is not within range in z0 (event h1 appears as a
false event in s0), but ignore whether the service aaa is available in that zone (event aaa is
unknown in s0); the reason for the latter is that some other host could be offering that
service at some locations outside z1.

Suppose that a new host h2 appears, informing us about the existence of a third one,
h3. In addition, h2 reports that it is continually offering the service bbb, whereas h3 does
the same with service ccc. The updated (refined) model of the network is that of Fig. 5.

Since h1 has received the new information directly from h2, it follows that the com-
munication ranges of the two hosts do partially overlap. This fact has caused the appear-
ance of the new state s12 representing the common zone z12, where both the services
aaa and bbb are available for use. The refinement has also implied the appearance of true

170 M. López-Nores, J. García-Duque, and J.J. Pazos-Arias

s0s0s0

s1s1s1

s2s2s2 s3s3s3

s12s12s12

z0

z1 z0

z2

z0

z3z1

z2z1

z12 z2

z12

z0

z12

z0

h1 z1 aaa

h2
z2
bbb

h3
z3
ccc

h1 aaa
h2 bbb
z12

h1 h2 h3

h2

h1

aaa

bbb

ccc

h1

h2

h3

z0

z1

z2

z3

z12

Fig. 5. Adding some knowledge about two new hosts, h2 and h3

events z1, z2 and z12 between s1, s2 and s12, indicating the possibility to move di-
rectly between those zones. In contrast, the zone z3 delimited by h3 is only known to
be reachable from z0, because h2 has not yet given us any information about where h3
is located. Thanks to the three-valued semantics of MUS-T, this observation does not
lead to concluding that h3 cannot communicate directly with the other hosts; instead,
as noted by the question marks in Fig. 5, we are uncertain about that possibility.

Assume that h2 now says that the communication range of h3 will never overlap the
ranges of either h1 and h2. Having added this new knowledge, the model of the MANET
becomes that of Fig. 6. This time, the events that have become false in states s1, s12, s2
and s3 do indicate that, for example, h1 cannot communicate directly with h3.

s0s0s0

s1s1s1

s2s2s2 s3s3s3

s12s12s12

z0

z1 z0

z2

z0

z3z1

z2z1

z12 z2

z12

z0

z12

z0

h1 z1 aaa

h2
z2
bbb

h3
z3
ccc

h1 aaa
h2 bbb
z12

h1 h2 h3

h2 h3 z3

h1 h3 z3

h3 z3

h1 z1
h2 z2
z12

aaa

bbb

ccc

h1

h2

h3

z0

z1

z2

z3

z12

Fig. 6. Adding the knowledge that h3 will never overlap h1 or h2

If, for whichever reason, we realized that the service aaa can only be provided by host
h1, the model of the network would be refined so as to remove the uncertainty about aaa
in the zones not covered by h1 (see Fig. 7).

To finish, suppose that h2 now reports that (contrary to the previous expectations)
h3 will move so as to partially overlap the communication range of h2 during the time
interval (t1, t2). This information implies a retrenchment of the current model of the
MANET, inasmuch as this model negates the possibility for h2 to ever communicate
directly with h3 (in Fig. 7, h3 is a false event all the time in the states where h2 is true).
The result of the retrenchment is depicted in Fig. 8.

Managing Ad-Hoc Networks Through the Formal Specification 171

s0s0s0

s1s1s1

s2s2s2 s3s3s3

s12s12s12

z0

z1 z0

z2

z0

z3z1

z2z1

z12 z2

z12

z0

z12

z0

h1 z1 aaa

h2
z2
bbb

h3
z3
ccc

h1 aaa
h2 bbb
z12

h1 aaa
h2 h3

h2 h3 z3

h1 aaa
h3 z3

h3 z3

h1 z1 aaa
h2 z2
z12

Fig. 7. Learning that the service aaa can only be provided by h1

We see that a new zone z23 has appeared, covered by both h2 and h3, where it is
possible to access the services bbb and ccc. This zone exists only between t1 and t2: as
indicated by the temporal predicates linked to the true events z23 in s0, s2 and s3, the
new zone cannot be reached before t1; on the other hand, z23 is a false event in s23 from
t2 onwards, indicating that it is not possible to stay in that zone any longer.

s1s1s1

s12s12s12

s0s0s0

s2s2s2

s3s3s3

s23s23s23

z0

z1 z0

z2

z0 z3

z1

z2

z0

z12

z1

z12 z2

z12

z2[t1, t2)

z3[t1, t2)
z0

z23[t1, t2)z2

z23[t1, t2)

z3

z23[t1, t2)

z0

h1 z1 aaa

h2 z2 bbb

h3 z3 ccc

h1 aaa
h2 bbb
z12

h2 bbb
h3 ccc
z23(t1, t2)

h1 aaa
h2 h3

z23[τ, t1)

h2 h3 z3 z23

h1 aaa h3
z3[τ, t1) z3[t2,∞)

z23[τ, t1) z23[t2,∞)h3 z3 z23

h1 z1 aaa h2
z2[τ, t1)
z2[t2,∞)
z23[τ, t1)
z23[t2,∞)
z12

h1 aaa z1 z12
z23[t2,∞)

τ t ∈ (t1, t2)

aaaaaa
bbbbbb
cccccc

h1h1

h2h2 h3

h3

z0z0

z1z1

z2z2

z3

z3

z12z12

z23

Fig. 8. Capturing a transient overlap between h2 and h3
†

† The symbol ‘τ ’ means “now”.

172 M. López-Nores, J. García-Duque, and J.J. Pazos-Arias

4 A Taste of the Complete Scheme

Having explained the basics of our approach, we now describe the whole solution,
which is intended to allow the hosts in a MANET to collaborate in making up the
network that best satisfies their service requirements.

Our proposal augments the scheme of Fig. 1 to construct the layer of Fig. 9, which is
to be placed between the applications and networking levels of every host in a MANET.
The inputs to this middleware are as follows:

– From the applications level, the middleware receives information about its lodging
host, indicating whatever is known about the host’s intended motion profile and the
services it plans to provide.

– From the networking level, the middleware receives analogous information about
other hosts.

– From either level, the middleware can also receive information about the impos-
sibility to take certain moves (e.g. due to the presence of walls), the fact that a
given service can only be provided by certain hosts, etc. Moreover, as a remarkable
addition with regard to the basic scheme we have been considering so far, it can
receive information about the elasticity properties of the services, which indicate
whether the services can be migrated from one host to another, cloned for hoarding
purposes, leased for a duration of time or a combination of all three [23].

– Finally, the middleware is informed of the service requirements of its lodging host
from the applications level.

Fig. 9. A middleware to manage MANETs on the basis of the hosts’ service requirements

All the information entering the middleware is expressed in SCTL-T statements, and
all of it —except the service requirements— enters the “Synthesis” module to obtain a
MUS-T model of the MANET. The “Maintenance” submodule periodically examines
the model to discard the parts that refer to the past, thus preventing it from growing
indefinitely.

The possibility to satisfy the service requirements of the host lodging the middleware
is checked in the “Analysis” module using a model-checking algorithm. The “Watch-
dog” submodule is in charge of the incremental part (remember Sect. 2.2), supervising

Managing Ad-Hoc Networks Through the Formal Specification 173

the updates of the MUS-T models to rapidly identify the service requirements affected
and re-check their satisfiability.

Compared to other formal verification techniques, model-checking is advantageous
for being fully systematic —even with multi-valued logics like Kleene’s (see [24])—
and not at all limited to finding YES/NO responses (in our case YES/NO/DON’T KNOW).
Quite the opposite, as previously noticed in [25, 26], model-checking algorithms can
explicitly record the traces (i.e. sequences of events and states) traversed over a model,
helping to identify i) the reasons for a negative outcome, ii) the particular situations
that yield a positive one, and iii) the missing knowledge that prevents from return-
ing a conclusive response. This ability enables the main features of our middleware
(the outputs in Fig. 9), which we describe and exemplify in the following subsections.

4.1 Routing/Relocating Possibilities

If the analysis finds that it is possible to satisfy the service requirements, the traces of
the model-checking algorithm provide routing possibilities for the communication in
the form of direct, multihop or disconnected routes [27, 28].

Example 1. Suppose that we are running host h1 in the situation of Fig. 8. If we wanted
to use the service ccc, we would be informed that there is no direct route to the zones
where this service is available; instead of that, the analysis finds a multihop route to
communicate with h3 using h2 as a relay. ��
Due to the exchange of knowledge about the elasticity of the services, the MUS-T
model of the MANET does not only capture the kind of knowledge we illustrated in
Sect. 3, but also the changes implied by events related to service migration, cloning, etc.
Thereby, the analysis can find possibilities to satisfy the service requirements through
certain relocations; in this case, the traces of the model-checking algorithm indicate the
communications needed with the hosts involved in the relocations.

Example 2. Suppose that we are running host h1 in the situation of Fig. 8. If we had
received information indicating that it is possible to migrate the service ccc from h3 to
h2, the model of the network would include a true event migrate

ccc,h2
in state s23; also,

some new states would appear to reflect the fact that the occurrence of migrate
ccc,h2

would make the service ccc available in the zones covered by h2, leaving it unknown in
the zone covered only by h3.

Now, assume that we want to use the service ccc during the time period (tinit, tend),
with tinit ∈ (t1, t2) and tend > t2. With the available knowledge, the analysis would
find that the only possibility to satisfy this requirement implies migrating ccc from h3 to
h2 at some time t between tinit and t2. Remark that the model-checking algorithm is
not only informing that there exists a possibility to satisfy the service requirement; in
addition to that, its traces indicate that this possibility requires some collaboration from
h2 and h3. ��

4.2 Queries for Knowledge

For the cases when there is not sufficient knowledge to conclude about the possibility
to satisfy the service requirements, the traces of the model-checking algorithm allow

174 M. López-Nores, J. García-Duque, and J.J. Pazos-Arias

identifying accurately what further information would be needed to provide a conclu-
sive response. Thus, a host can inquire others just about the precise knowledge it needs.

Example 3. Suppose that we are running host h1 in the situation of Fig. 5, and that
we want to communicate with host h3. The model-checking algorithm would find that
there is uncertainty about this requirement, due to the fact that event z3 is unknown in
the states s1, s2 and s12. So informed, h1 would send a query to h2 (the only host with
which h1 can surely communicate) asking for any details it might know about z3, and
h2 would reply with the knowledge that takes from Fig. 5 to Fig. 6. ��
Generally, it is not necessary to know everything about the hosts and services involved
to conclude about the possibility to satisfy a service requirement. An important feature
of our middleware is that the conclusions obtained over partial knowledge are always
sound, so that learning new information can never lead to contradicting previous analy-
ses. This would not be true using a Boolean formal basis.

Example 4. In the same situation of Example 3, suppose that we require the service bbb
to be available whenever we can communicate with host h3. Any logic would find that
this requirement can be satisfied even without having received information about the
location of h3, because service bbb is always available for h1 to use.

However, if the service requirement merely indicated that we want to communicate
with h3 at some time in the future (just like in Example 3), a Boolean approach would
mistakenly report that the requirement cannot be satisfied, assuming some information
that h1 has never received. The sound approach is to notify the uncertainty about the
requirement. ��
The soundness property is important because it allows every host to tune the amount of
information it handles according to its capabilities (memory, processor, etc.), with no
risk of taking erroneous conclusions.

4.3 Revisions Suggestions

When the analysis finds that it is not possible to satisfy the service requirements, the
middleware looks for ways to alter the planning of the network in quest for better ex-
pectations. To this aim, it can consider revisions of the intents announced by any host in
the MANET (consisting of retrenchments of the SCTL-T statements used to construct
the MUS-T model), as well as of the service requirements of the lodging host. Those
revisions are derived directly from the traces of the model-checking algorithm —using
analysis-revision mechanisms similar to the ones presented in [29, 30].

The revisions are provided as mere suggestions, and it depends on the applications
to accept or reject the proposed solutions through whichever negotiation mechanisms.
For instance, the applications could opt not to alter the service requirements unless it
is absolutely necessary, and there may be cases in which the advertised motion profiles
admit no variation (as when the hosts are attached to rails). The middleware limits itself
to providing revision possibilities upon request, starting with the simplest solutions.

Example 5. Suppose that we are running host h1 in the situation of Fig. 8, and that
we want to use the service ccc during the time period (tinit, tend), with tinit < t1 and

Managing Ad-Hoc Networks Through the Formal Specification 175

tend ∈ (t1, t2). With the knowledge available, the analysis does not find a way to
satisfy this requirement, because service ccc is only known to be accessible for h1 from
t1 to t2. In this case, the middleware would successively provide the following revision
suggestions:

1. Change the service requirement, so that tinit is greater than t1.
2. Tell h1 to move so as to overlap the range of h3 during a time period greater than

(tinit, tend).
3. Tell h2 to move so that it starts overlapping the range of h3 sooner, making t1 lower

than the requested tinit.
4. Tell h3 to move faster, so that it starts overlapping the range of h2 sooner, making

t1 lower than the requested tinit.

The latter suggestion would be passed to h2 in a best-effort attempt, because h1 does
not know a way to communicate with h3 —maybe h2 knows a way, through other hosts
which are currently unknown for us. ��
The acceptance of a revision suggestion implies that the hosts have agreed on a possibil-
ity to satisfy a given service requirement. With the aim of preserving that possibility, the
host owning the requirement annotates the corresponding traces of the MUS-T model
in the “Consolidation” submodule of the middleware (Figure 9), so that they are not
considered as the subject for future revisions as far as possible.† The same submod-
ule takes note of rejected suggestions, so that future ones do not insist on unwanted
solutions unless all other alternatives have been discarded. This scheme allows imple-
menting a range of policies at the applications level to support collaboration between
multiple hosts, pursuing the global objective of building the network that best satisfies
their service requirements.

5 Discussion

We have presented an approach to managing MANETs on the basis of the service re-
quirements of their forming hosts, with the goal of achieving better dependability in
terms of service provision. We have worked on the idea of knowledge dissemination
and exploitation, paying special attention to the fact —only considered superficially in
literature so far— that the knowledge that a host may gather about other hosts, about
the services they provide and about their motion profiles is very likely to be partial and
changeable.

Our solution takes the form of a middleware layer that provides the necessary model-
ing and reasoning mechanisms for the applications to check their service requirements.
The middleware provides useful information (routing and relocating possibilities) if the
service requirements can be satisfied, suggests re-arrangements of the MANET if they
cannot, and guides the search for more information when there is uncertainty. It is not

† The “Consolidation” submodule also handles the cases commented in Sect. 4.1, storing the
traces corresponding to service requirements which are found to be satisfiable with no need to
revise the knowledge about the MANET.

176 M. López-Nores, J. García-Duque, and J.J. Pazos-Arias

involved with issues like the mapping of spatial locations to zones or the agreement on
a time basis for the communications, which can be tackled with any of the solutions
available in literature and practice.

At the core of our scheme, the modeling based on the MUS-T formalism provides
two fundamental features for the practicality of the approach:

– On the one hand, by enabling sound reasoning over partial knowledge, we allow
the hosts to tune the amount of information they handle according to their memory
and computing power, without dooming themselves to providing erroneous analysis
results. The missing knowledge that may prevent from drawing conclusions can be
easily identified and requested from other hosts.

– On the other hand, the ability to identify the knowledge preserved or contradicted
through any evolution of the knowledge base allows implementing efficient mech-
anisms for the synthesis, analysis and revision tasks. All of our algorithms proceed
incrementally instead of from scratch.

6 Future Work

In this paper, we have addressed the changeability of the knowledge available about
a MANET by implicitly assuming that the fresh information is always correct. This
way, a retrenchment is immediately triggered whenever the middleware receives new
information that conflicts with part of the knowledge it had previously gathered (as in
the last step of the example in Sect. 3). Inspired by the works presented in [31, 32], we
are currently considering the possibility to temporarily handle inconsistent knowledge,
as it may be a better way to handle the changeability of the networks and to cope
with malicious hosts publishing erroneous information. To this aim, we are resorting
to previous works on inconsistencies in software development (see [33]) to make our
middleware capable of i) interpreting the analysis results in the light of the agreement
achievable between sources of conflicting information, and ii) guiding the search for
information to support one of several conflicting stances.

Our current work also involves doing research to identify the best usage policies
for our middleware, since there are many factors to be considered for optimal perfor-
mance. From the networking point of view, we are mostly interested on characterizing
the suitable balance between a push and a pull approach for knowledge dissemination.
Our conjecture is that the best option depends mainly on the MANETs being sparsely-
populated or densely-populated:

– In sparsely-populated networks, it is necessary to be aware of (and exploit) all the
communication possibilities, because there may not be many. So, these networks
seem good candidates for a push approach, in which the hosts exchange informa-
tion proactively (i.e. in the background). This approach helps keeping the knowl-
edge bases of the hosts fresh and complete, allowing fast reactions to the analysis
results (it is rarely necessary to spend time querying information for other hosts).
Moreover, since there are not many hosts, the overhead in the communications will
be surely outweighed by the benefits achieved.

Managing Ad-Hoc Networks Through the Formal Specification 177

– In densely-populated networks, it seems wiser to opt for a predominantly pull ap-
proach, to have the hosts send information to others mainly (though not exclusively)
upon request. In this kind of networks, there are generally many possibilities for the
hosts to communicate, and so they can certainly tolerate a degree of staleness in the
knowledge bases. Attempting to have complete and fresh knowledge bases in all
of the hosts would imply an excessive (and unneeded) overhead, whereas the pull
approach allows the hosts to handle little more than the information they need to
check their service requirements.

From the software engineering point of view, our current work is devoted to studying
the best policies to have the applications (or their human users, where applicable) ne-
gotiate re-arrangements of the network interpreting the revisions suggestions provided
by our middleware. Here, we conjecture that the simplest policy (adopt the viable sug-
gestions immediately, with no negotiation at all) may work well in densely-populated
networks, with the advantage of incurring no overhead; in contrast, sparsely-populated
networks should benefit from implementing policies that warn all the hosts affected by
the re-arrangements.

References

1. Handorean, R., Roman, G.C.: Service provision in ad hoc networks. Lecture Notes in Com-
puter Science 2315 (2002) 207–219

2. Akyildiz, I., Su, W., Sankarasubramaniam, Y., Cayirci, E.: A survey on sensor networks.
IEEE Communications Magazine 40(8) (2002) 102–114

3. Ghandeharizadeh, S., Krishnamachari, B., Song, S.: Placement of continuous media in wire-
less peer-to-peer networks. IEEE Transactions on Multimedia 6(4) (2004) 335–342

4. Sen, R., Hackmann, G., Roman, G.C., Gill, C.: Towards predictable service provision in mo-
bile ad-hoc networks. Technical Report WUCSE-04-60, Department of Computer Science
and Engineering, Washington University (2004)

5. Dolev, S., Gilbert, S., Lynch, N., Schiller, E., Shvartsman, A., Welch, J.: Virtual mobile nodes
for mobile ad hoc networks. Lecture Notes in Computer Science 3274 (2004) 230–244

6. Chang, Y.H., Ho, T., Pack Kaelbling, L.: Mobilized ad-hoc networks: A reinforcement learn-
ing approach. Technical Report AIM-2003-025, MIT (2003)

7. Sen, R., Hackmann, G., Roman, G.C., Gill, C.: Opportunistic exploitation of knowledge to
increase predictability of agent interactions in MANETs. In: Proceedings of the 4th Interna-
tional Workshop on Software Engineering for Large-scale Multi-agent Systems. (2005)

8. Clarke, E., Grumberg, O., Peled, D.: Model checking. The MIT Press (2000)
9. Goldenberg, D.K., Lin, J., Morse, A.S., Rosen, B.E., Yang, Y.R.: Towards mobility as a

network control primitive. In: Proceedings of the 5th ACM international Symposium on
Mobile Ad-hoc Networking and Computing. (2004) 163–174

10. Bruns, G., Godefroid, P.: Model checking partial state spaces with 3-valued temporal logics.
Lectures Notes in Computer Science 1633 (1999) 274–287

11. Larsen, K.G., Thomsen, B.: A modal process logic. In: Proceedings of the 3rd Annual
Symposium on Logic in Computer Science, Edinburgh, United Kingdom (1988) 203–210

12. Pazos-Arias, J.J., García-Duque, J.: SCTL-MUS: A formal methodology for software de-
velopment of distributed systems. A case study. Formal Aspects of Computing 13 (2001)
50–91

13. Kleene, S.C.: Introduction to Metamathematics. Volume 1 of Bibliotheca Mathematica.
North-Holland (1952)

178 M. López-Nores, J. García-Duque, and J.J. Pazos-Arias

14. Huth, M.R.A., Jagadeesan, R., Schmidt, D.A.: A domain equation for refinement of partial
systems. Mathematical Structures in Computer Science 14 (2004) 469–505

15. Banach, R., Poppleton, M.: Retrenching partial requirements into system definitions: A sim-
ple feature interaction case study. Requirements Engineering 8(4) (2003) 266–288

16. Swamy, G.: Incremental methods for formal verification and logic synthesis. PhD thesis,
University of California at Berkeley (1996) UMI publication 9723211.

17. Mäkinen, E., Systä, T.: MAS – an interactive synthesizer to support behavioral modelling
in UML. In: Proceedings of the 23rd International Conference on Software Engineering,
Toronto, Canada (2001) 15–24

18. Uchitel, S., Kramer, J.: A workbench for synthesising behaviour models from scenarios. In:
Proceedings of the 23rd International Conference on Software Engineering, Toronto, Canada
(2001) 188–197

19. Sokolsky, O.V., Smolka, S.A.: Incremental model checking in the modal μ-calculus. Lecture
Notes in Computer Science 818 (1994) 351–363

20. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Progress on the state explosion
problem in model checking. In: Informatics - 10 years back, 10 years ahead. Springer (2001)
176–194

21. Fernández-Vilas, A., Pazos-Arias, J.J., Gil-Solla, A., Díaz-Redondo, R.P., García-Duque, J.,
Barragáns-Martínez, B.: Incremental specification with SCTL/MUS-T: A case study. Journal
of Systems and Software 70(2) (2004) 189–208

22. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science 126(2)
(1994) 183–235

23. Braun, P., Rossak, W.: Mobile agents. Morgan Kaufmann (2005)
24. Easterbrook, S., Chechik, M.: A framework for multi-valued reasoning over inconsistent

viewpoints. In: Proceedings of the 23rd International Conference on Software Engineering.
(2001)

25. Ball, T., Naik, M., Rajamani, S.: From symptom to cause: Localizing errors in counterexam-
ple traces. In: Proceedings of the 30th Annual ACM Symposium on Principles of Program-
ming Languages. (2003) 97–105

26. Gurfinkel, A., Chechik, M.: Generating counterexamples for multi-valued model-checking.
In: Proceedings of the 12th International Symposium on Formal Methods, Pisa, Italy (2003)
503–521

27. Rappaport, T.: Wireless communications: Principles and practice. Prentice Hall (2002)
28. Zhao, W., Amma, M.: Message ferrying: proactive routing in highly-partitioned wireless ad

hoc networks. In: Proceedings of the 9th IEEE Workshop on Future Trends of Distributed
Computing Systems. (2003)

29. García-Duque, J., Pazos-Arias, J.J., Barragáns-Martínez, B.: An analysis-revision cycle to
evolve requirements specifications by using the SCTL-MUS methodology. In: Proceedings
of the 10th IEEE International Conference on Requirements Engineering, Essen, Germany
(2002) 282–288

30. López-Nores, M., Pazos-Arias, J.J., García-Duque, J., Barragáns-Martínez, B.: An agile
approach to support incremental development of requirements specifications. In: Proceedings
of the IEEE Australian Software Engineering Conference, Sydney, Australia (2006)

31. Hunter, A.: Reasoning with contradictory information using quasi-classical logic. Journal of
Logic and Computation 10(5) (2000) 677–703

32. Nuseibeh, B., Easterbrook, S., Russo, A.: Making inconsistency respectable in software
development. Journal of Systems and Software 58(2) (2001) 171–180

33. Barragáns-Martínez, B., Pazos-Arias, J., Fernández-Vilas, A.: On measuring levels of in-
consistency in multi-perspective requirements specifications. In: Proceedings of the 1st
International Conference on the Principles of Software Engineering, Buenos Aires, Argentina
(2004) 21–30

A Logical View of Choreography

Carlo Montangero and Laura Semini

Dipartimento di Informatica, Università di Pisa

Abstract. We present a model for choreography à la WS–CDL and
formalize it in ΔDSTL(x), a spatio–temporal logic for the specification
and verification of global computing systems. The approach builds on
the formalization of an atomic interaction and defines composition rules
to describe complex choreographies.

The logic permits to reason on the choreography formalization and
to derive the properties of interest. A pleasant characteristics of the pro-
posed approach is that the composition of formulae, corresponding to a
choreography, results in a formula shaping as an atomic interaction for-
mula. Therefore, the properties of complex choreographies can be uni-
formly described as interactions.

We demonstrate the approach using a business scenario already tack-
led in the literature.

1 Introduction

Service-oriented computing (SOC) is strongly influencing the way distributed
software applications are designed and developed. Services are autonomous and
heterogeneous computational entities that may be running on different platforms
and/or owned by different organizations. Applications are built as networks of
collaborating services distributed within and across organizational boundaries.
The tenets of the SOC approach are the service description languages and the
protocols for service publishing and discovering. Besides, the so–called orchestra-
tors are used to coordinate the interaction among collaborating services. Finally,
the global view of the interactions are described by the so–called choreographies.
A thorough discussion of the differences between choreography and orchestration
can be found in [4] and [14].

Much work has been carried out and much is still going on under the coordi-
nation of standard organizations like W3C and OASIS, to define a technological
platform for SOC. The most important results are the orchestration language
WS–BPEL [12] and the choreography language WS–CDL [15]. Both builds on
the WebServices standard for service description WSDL [16].

WSDL defines the interface a Web service exhibits: other services can invoke
it via this interface. An interface defines a set of operations by an XML schema.
The most interesting kinds of operations are one–way and request-response. In
the former only the incoming message is defined. In the latter both the incoming
message and the response one are defined.

In WS–CDL a choreography is in essence a pair: a set of roles, describing the
involved entities, and a set of interactions among the roles. The basic building

P. Ciancarini and H. Wiklicky (Eds.): COORDINATION 2006, LNCS 4038, pp. 179–193, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

180 C. Montangero and L. Semini

blocks are the primitives for expressing an interaction with a one–way operation
or with a request–response operation. Then, interactions can be composed via
sequence, parallel and choice operators to build full fledged choreographies. How-
ever, such proposals remain at the descriptive level, and do not provide any kind
of reasoning mechanisms. There are a few formalization proposals that follow an
operational approach, exploiting variations of process calculi [3, 11].

In this paper we present a first contribution towards a logical framework for
SOC: we introduce a logical view of choreography, formalizing the WS–CDL
approach. The final goal is to have also a formalization of the WS–BPEL ap-
proach to orchestration, and link the two by a refinement relationship, so that
the behaviour of the peers and that of the overall system can be designed hand-
in-hand, with the proof support offered by the logic. A similar approach is being
pursued in an operational setting by [11], exploiting a bisimilarity notion to link
orchestration and choreography.

In our approach, we characterize a choreography as a pair: a logical theory
that expresses all the properties of the choreography, and a black box view, i.e.
a formula holding in the theory which gives an abstract view of the behaviour
of the choreography. More precisely, the black box view relates the conditions
that enable the choreography in the initial state to the conditions holding in its
final state. We call these pre– and post–conditions triggers and consequences,
respectively. We exploit the spatial features of ΔDSTL(x) to specify triggers
and consequences, and the temporal features to link triggers and consequences.
The shape of the black box view is the same for elementary interactions and
for complex choreographies. Indeed, thanks to the expressiveness of the spatial
facet of ΔDSTL(x), it is natural to express conditions in the initial and final
states, even if these states are distributed and pertain to different roles. We
start by characterizing the elementary interactions (one–way and request– re-
sponse) as choreographies, and then we provide rules to compose choreographies
in sequence, parallel and choice. We also show how to exploit variables to deal
with dynamic channel passing.

Compositions are monotonic, in the sense that all the properties holding for
the composing choreographies also hold (modulo a sistematic transformation in
the case of choice) in the composed one: in particular all the black box views of
the components express properties of the composed choreography.

2 The Logic

Our long term research goal is logical reasoning on systems based on asyn-
chronous communication [8, 7]. We defined a Distributed States Temporal Logic
(ΔDSTL(x)), whose pragmatic aim is to ease the expression of properties in a
setting of growing interest. The logic permits to name system components and
to causally relate properties which might hold in distinguished components, in
an asynchronous setting. A typical formula is m p leads to n q∧mw where the
operator leads to is similar to Unity’s �→ (leads to) [5], and m, n express locality.
The formula says that a property p holding in component m, causes properties

A Logical View of Choreography 181

q and w to hold in future states of components n and m, respectively. Future
has to be intended as the partial order relationship defined by state transitions
and communications. An example model is the computation in Figure 1.

For reasons of space, we present here only a fragment of the logic. Full pre-
sentation and discussion are given in [9, 10].

2.1 Syntax

We assume a denumerable set of component names {m, n, m1, m2, . . .}, and a
denumerable set of variables, which includes the set of component variables,
{M, N, M1, M2, . . .}.

We introduce location modalities for each component in a system: we use
component names, with a different font. For instance, m1 is the location modality
corresponding to component m1, and m1Iam(m1) stands for “in component
m1, Iam(m1) holds”. We let quantifiers range over modalities, and M , N ,
Mi . . . are location modality variables. Binding between location variables and
regular variables is possible. For example, saying that for all M , MIam(M)
holds, means that for all components mi, miIam(mi) holds. Quantification over
modality variables is done in a standard way, following, for instance [6].

F ::= A
∣∣ ⊥ ∣∣ ∼ F

∣∣ F ∧ F ′ ∣∣ MiF

ψ ::= F
∣∣ F leads to F ′ ∣∣ F because F ′

The first equation defines distributed state formulae, which are used to build
ΔDSTL(x) formulae: A is an atom, ⊥ is the propositional constant false. With
M̄i we denote the dual of Mi , i.e., M̄iF ≡∼ Mi ∼ F . With � we denote true,
i.e. � ≡∼ ⊥.

The second equation defines ΔDSTL(x) formulae. They are implicitly uni-
versally quantified, and all variables appearing in the consequences of a formula
must be bound by the formula premises. For instance, m p(x, S) leads to S q(x),
is implicitly prefixed by ∀S, x. The domain over which a variable is quantified
(i.e. its sort) can be understood from the context or explicitly defined. We assume
that these domains are invariant during time and in space.

The following sections informally present the semantics of the logic. The for-
mal definitions are in [9, 10].

2.2 Models

The key characteristic of the logic is a novel semantic domain: the Kripke models
are built on worlds that are arbitrary sets of computation states, rather than sin-
gle states or tuples of them (one for each component), as it is normally proposed.

(m) p �� q

�����
��

�� r �� u, z �� z �� z ��

(n) p, t �� u �� v �� p �� w, t ��

�������
w, t ��

Fig. 1. An example model for ΔDSTL(x) formulae

182 C. Montangero and L. Semini

A computation is an n–partite directed acyclic graphs like the one in
Figure 1, which describes the computation of a system with two components.
Here, p, q, . . . are the properties holding in the states, arrows from a component
to another denote communications, and arrows in one component denote local
state transitions, as the computation progresses locally.

We call Si the set of states of component mi, and S the set of all the states of
the computation. A distributed state is any subset ds of S, i.e. any set of states,
and ds0 is the set of the initial states. We say that ds follows ds′ if and only if
each state in ds′ is followed by a state in ds, and each state in ds is preceded
by a state in ds′, where a state s follows s′ if and only if there is a path in the
model graph from s to s′. Symmetrically, we define ds precedes ds′.

2.3 Semantics by Examples

F a distributed state formula is also a ΔDSTL(x) formula, with the meaning
of being an invariant: all distributed states (in particular all the singletons,
i.e. all the computation states) must satisfy the formula.

For instance, ōv ∨ ō ∼v means that, chosen an arbitrary distributed state
ds either all the states in ds belonging to component o satisfy v or they satisfy
∼ v. A particular distributed state is So, the set of states of component o.
Hence either v or ∼v are invariants of o.

A distributed state ds satisfies the distributed state formula mF iff ds
contains a singleton state of component m satisfying F . Consider, in figure 1,
the distributed state ds composed of the first two states of m: ds satisfies
mp, mq, and mp ∧ mq. On the contrary, ds does not satisfy m(p ∧ q): no
singleton state satisfies the conjunction.

F leads to F ′ means that F is always followed by F ′: each distributed state
satisfying F is followed by a distributed state satisfying F ′. Operator leads to
expresses a liveness condition, and is similar to Unity’s �→ (leads to).

F because F ′ says that F must be preceded by F ′: because is a safety op-
erator, used to express “only if” temporal conditions. Formally, a system
satisfies F because F ′ if and only if each distributed state that satisfies F
is preceded by a distributed state satisfying F ′.

2.4 Design Methodology and Tools

Our design methodology is based on refinements [2], and the refinement relation
between two logical theories corresponds to logical deduction. MaRK, our proof
assistant [7] that partially automates the verification process, is a valuable tool
supporting the refinement process, making it feasible to avoid error prone “by
hand” arguments. Axioms and rules of the logic were presented in our previous
papers, we list here only:

– the axioms for the location modality, namely axiom K, Necessitation, and
three axioms characterizing distributed states:

A Logical View of Choreography 183

DSL1 : M̄(M̄F ↔ F) DSL2 : M �= N→ M̄N̄⊥ DSL3 : (∀M M̄p) ↔ p

– the axioms and rules of leads to relevant for this paper. Corresponding rules
hold for because, just replace leads to with because.

F leads to F ′F ′ leads to G
LTR

F leads to G

G → F F leads to F ′ F ′ → G′
LSW

G leads to G′

F leads to G F ′ leads to G
LPD

F ∨ F ′ leads to G

G leads to F G leads to F ′
LCC

G leads to F ∧ F ′

2.5 OLTO

It is useful in this paper to express liveness and safety conditions paired, i.e. to
say that in a model both F leads to G and G because F hold. To this purpose,
we introduce operator olto , which reads only leads to. The following rules hold:

F leads to G G because F
olto i

F olto G
F olto G

olto E1
F leads to G

F olto G
olto E2

G because F
F olto G G olto H

olto TR
F olto H

F olto F ′ G olto G′
olto ∧

F ∧G olto F ′ ∧G′
F olto F ′ G olto G′

olto ∨
F ∨G olto F ′ ∨G′

3 The Logical View

Definition 1. We say that a formula is in canonical form if it shapes

F olto F ′

Definition 2. Let C be a choreography, T a logical theory, and φ a formula in
canonical form. By

C : T ! φ

we mean T ! φ is the logical view of C. We also say that C is described by T
and it is abstracted by its black box view φ. As the notation suggests, we require
that φ can be derived from T .

The idea is that any choreography has a trigger state, and a consequence. For-
mula φ abstracting a choreography, relates trigger and consequence. This holds
for the single interactions, as well as for complex choreographies. Using a UML
like notation, we draw:

184 C. Montangero and L. Semini

ref

C

F

F’

r r rn21

to say that F is the trigger of C, and F ′ are the consequences. Using the logic,
we say that F olto F ′ is the formula abstracting C.

An interaction is the exchange of messages between roles, and represent the
basic building block of any choreography. An interaction can be one–way inter-
action (the sending of single message) or a request–response:

c s

p

q

c s

p

q

r

c s

p

r

Request−response interaction
as a pair of one−ways

Request−response interaction
as a choreography

One−way interaction

We build on the logical view of a one–way interaction to define a describing
theory and a black box view for request–response, i.e. its logical view. Then,
recursively, we can build the logical view of any choreography.

Let p be a property holding in role c, acting as a trigger for the one–way
interaction, and let q be a property of s, consequence of the interaction. Then
we say:

ONE −WAY : {c p olto s q} ! c p olto s q

Remark 3. In the very basic case the describing theory coincides with its black
box view. From now on, to enhance readability of the basic interactions, not to
repeat the formula twice, we simply write C : φ.

Now consider request–response as a pair of interactions, where the receipt of the
request acts as trigger for the response. We have:

REQUEST : c p olto s q

RESPONSE : s q olto c r

REQ −RESP : {c p olto s q, s q olto c r} ! c p olto c r

A Logical View of Choreography 185

Following CL [4], we depart from WS–CDL with respect to the request-response
operations, and we consider as primitives the single interactions, i.e the request
and the response. In this way it is easier to express how a choreography can
implement a service, enhancing the support for the definition of complex services
out of simpler ones. Obviously, the choreographer can restrict himself, and always
use request-response pairs in a strict sequence à la WS–CDL.

As an example, consider the case of two nested request–response: a client c
invoking a service s, which in turn invokes s′ to build the response. The chore-
ography, call it NEST ED, can be illustrated as follows:

p

s’c s

q

r

q’

p’

and has the following logical view:

NEST ED :
{

c p olto s q, s q olto s’ r
s’ r olto s q′, s q olto c p′

}
! c p olto c p′

We can now show how model the WS–CDL composition operators, i.e. how to
build the logical view of any choreography. We do it in a recursive manner,
building on the logical view of the basic interaction, and defining sequence,
choice, parallel, and dynamic passing of channel values.

In the following paragraphs we will compose pairs of choreographies. These can
involve disjoint, overlapping, or coincident sets of roles as in the figures below.

The rules to compose logical views are independent of the various cases. For
simplicity, in the next paragraphs, we will only exhibit pictures for overlapping
roles.

G1

F

2

2

G 2

F 1

1

G1

F 2

2

G 2

1

F 1

1

F

F

G

1

1

2

2

G 2

Disjoint participants Overlapping participants Coincident participants

r3

ref
C

ref
C

ref
C

r3 r r
21

ref
C

r r
21

r r
21

ref
C

ref
C

r4

186 C. Montangero and L. Semini

Interaction. In the general case, an interaction can be triggered by a distributed
formula, and have distributed consequences, hence:

INT ERACT ION : F olto F ′

where F and F ′ are distributed state formulae.

Sequence. Let C1 and C2 be choreographies, with logical views:

C1 : T1 ! F1 olto G1

C2 : T2 ! F2 olto G2

The sequencing of C1 and C2 is possible if the consequences of C1 coincide with
the trigger of C2 as in the request–response, or more in general if an olto relation
holds between them. Hence the new formula in the describing theory. The rule
is sound by transitivity.

C1 : T1 ! F1 olto G1 C2 : T2 ! F2 olto G2

(C1; C2) : T1 ∪ T2 ∪ {G1 olto F2} ! F1 olto G2

The union of theories does not lead to inconsistencies, as discussed in Section 3.1.

Parallel. Let C1 and C2 be choreographies. Their parallel composition is described
by the union of the theories, and abstracted by a formula where the trigger
is the conjunction of the triggers, and the consequence the conjunction of the
consequences. The rule is sound thanks to olto ∧.

C1 : T1 ! F1 olto G1 C2 : T2 ! F2 olto G2

(C1 ‖ C2) : T1 ∪ T2 ! (F1 ∧ F2) olto (G1 ∧G2)

Choice. Let C1 and C2 be choreographies. We want to derive the logical view of
the choice between them. Choice is intended to be exclusive, which, in a logical
perspective means that either the trigger of C1 or the trigger of C2 hold, but
not both of them. To the purpose, we introduce a discriminating oracle, i.e. a
component (belonging to the roles of the two choreographies or not) where a
given predicate, say v is always true or always false. The oracle o is described
by the formula ōv ∨ ō∼v. Now, let toE be a function that transforms a canonical
formula according to the following pattern:

toE(F olto F ′) = (F ∧ ōE) olto (F ′ ∧ ōE)

The resulting formula, when E is the predicate v of an oracle, is meaningful
only in half of the possible models, and the complementary one, where E is the
predicate ∼ v, in the other half. We overload the notation toE and use it also
for the function that transforms a whole theory, applying the transformation
piecewise to all the canonical formulae in the theory.

A Logical View of Choreography 187

2

1

Parallel composition

F1

2

/\ G1

GF /\ 2

G1

F

2

2

G 2

1

F 1

A pair of choreographies

2

F 1

G 2

1

Sequence

2

1

Choice

[o~v]

[ov]

r3

ref
C

ref
C

r r
21

par

r3

ref
C

r r
21

ref
C

r3

ref
C

r r
21

ref
C

seq

ref
C

ref
C

r3r r
21

alt

ov) \/ (F /\ o~v)(F /\

(G /\ ov) \/ (G /\ o~v)21

1 2

Fig. 2. Sequence, parallel composition, and choice between two choreographies

Assume again C1 and C2 as above. The following rule is sound thanks to
olto ∨.

C1 : T1 ! F1 olto G1 C2 : T2 ! F2 olto G2

(C1 + C2) : tov(T1) ∪ to∼v(T2) ∪ {ōv ∨ ō∼v} !
[(F1 ∧ ōv) ∨ (F2 ∧ ō∼v)] olto [(G1 ∧ ōv) ∨ (G2 ∧ ō∼v)]

The use of eclusive “or” might apparently look like a simpler solution. However,
to preserve the correctness of the canonical formula, one need to relate F1 with
G1 and F2 with G2. The indexing that is needed is a mechanism equivalent to
the oracle, and would only add complexity to the logic.

Dynamic passing of channel values. We can model dynamic passing of channel
values, by letting the recipient of an interaction to be a variable name. To this
purpose, we use the location variables. The binding between normal variables and
location variables permits to communicate recipient names with any interaction.

DYNAMIC : {c p(S) olto S q} ! c p(S) olto S q

188 C. Montangero and L. Semini

3.1 Discussion

Consistency. Note that the union of two overlapping theories could lead to ill-
formed choreographies, for which there are no possible executions. E.g., the union
of two formulae with overlapping triggers and contradictory consequences, like
for instance ōv and ō ∼ v. It is obvious that the constraint in the choice rule
does not lead to inconsistency. We note that there is the need to have different
v for different choices, to make them independent.

Monotonicity. Choreography composition has a property of monotonicity, of
a sort: essentially, the black box views φ1 and φ2 of the choreographies under
composition still hold in the composed choreography, modulo the transformation
in the case of choice. More precisely, given two choreographies

C1 : T1 ! φ1

C2 : T2 ! φ2

let T be the theory of (C1 op C2), where op is either ; or ‖. We have T ! φ1 and
T ! φ2.

Besides, if T is the theory of (C1 + C2), we have T ! tov(φ1) and T ! to∼v(φ2).
That is, the properties of the composing choreographies still hold, once they
have been tagged with the oracle.

Properties. The composition of choreographies enjoys some associativity and
commutativity properties, namely:

C1; (C2; C3) ≡ (C1; C2); C3 C1 ‖ (C2 ‖ C3) ≡ (C1 ‖ C2) ‖ C3
C1 ‖ C2 ≡ C2 ‖ C1 C1 + C2 ≡ C2 + C1

Equivalence means that the sets of models are the same. The last equivalence
holds modulo isomorphisms.

4 Example

We consider the example in [11], and derive the choreography’s logical view. The
example consists in a business scenario where a customer invokes a store service
in order to buy a good and where, depending on the customer’s credit card type
(Visa or American Express), the store service invokes the respective payment
service. After the payment is performed, the store service can send the response
to the customer. At the end, the receipt from the credit card agency can be sent
to the customer.

We first follow the formalization of [11], then, in Section 4.2 exploit the logical
view of dynamic passing of channel names.

4.1 Modeling with Choice

The formal model for representing choreography in [11] consists of a declaration
of roles and variables, and the formal description of the conversation between

A Logical View of Choreography 189

the roles, where a conversation is a message or a sequence, choice, or parallel
composition of conversations.

Choreography is defined by introducing four roles: the customer c, the store
service s, the Visa and American Express payment services v and ae, respectively,
communicating as illustrated by the sequence diagram in the figure below.

v: payment
 service

ae: payment
 servicec: Customer s: Store

receipt

receipt

buy

pay

pay_ack

buy_ack

pay

buy_ack

[c uses visa]

[c uses ae]

alt

pay_ack

The basic interactions shown in the figure above are the following:

C1 : c want to buy olto s buy

C2 : s buy olto v pay

C3 : v pay olto s pay ack

C4 : s pay ack olto c buy ack

C5 : v paid olto c receipt

C6 : s buy olto ae pay

C7 : ae pay olto s pay ack

C8 : ae paid olto c receipt

Note that we systematically use the name of the message in the sequence dia-
gram as the predicate for the consequence of the corresponding interaction. With
respect to triggers, we use the consequences of an interaction as triggers for the
next one, whenever they are in immediate sequence in the diagram, as in the
case of the messages pay and pay ack, and of pay ack and buy ack. Instead, we
need to introduce an explicit trigger when there is not an incoming message that
immediately precedes an outgoing one, as it happens for the first interaction of
the customer, where we introduce want to buy, and for the receipt message of
the payment services, where we introduce paid.

190 C. Montangero and L. Semini

The complete choreography for the business service is

Cbs = C1 ; (Cvisa + Cae)

where

Cvisa = (C2 ; C3 ; C4 ; C5)
Cae = (C6 ; C7 ; C4 ; C8)

and the choice is controlled by the customer c with oracle c̄ visa ∨ c̄∼visa.
To compute the black box view, we proceed bottom–up.

Remark 4. In the following we write Ti for the theory of choreography Ci.

C2 : s buy olto v pay C3 : v pay olto s pay ack

C23 : T2 ∪ T3 ! s buy olto s pay ack

C23 : T2 ∪ T3 ! s buy olto s pay ack C4 : s pay ack olto c buy ack

C234 : T2 ∪ T3 ∪ T4 ! s buy olto c buy ack

C234 : T2 ∪ T3 ∪ T4 ! s buy olto c buy ack C5 : v paid olto c receipt

Cvisa : T2 ∪ T3 ∪ T4 ∪ T5 ∪ {c buy ack olto v paid} ! s buy olto c receipt

Similarly we obtain

Cae : T6 ∪ T7 ∪ T4 ∪ T8 ∪ {c buy ack olto ae paid} ! s buy olto c receipt

We can now choose between the two payment services, with c̄ visa ∨ c̄∼visa:

Cvisa : Tvisa ! s buy olto c receipt Cae : Tae ! s buy olto c receipt

Cps : tcvisa(Tvisa) ∪ tc∼visa(Tae) ∪ {c̄ visa ∨ c̄∼visa} !
[(s buy ∧ c̄ visa) ∨ (s buy ∧ c̄∼visa)] olto
[(c receipt ∧ c̄ visa) ∨ (c receipt ∧ c̄∼visa)]

The logical view of Cps can be simplified by propositional calculuss. Thus the
last step:

C1 : c want to buy olto s buy Cps : Tps ! s buy olto c receipt

Cbs : T1 ∪ Tps ! c want to buy olto c receipt

We can exploit monotonicity to derive a property of example choreography,
which has been discussed at some length in [11]: the customer receives both a
confirmation from the payment service and a receipt. By monotonicity, the black
box view of C234, s buy olto c buy ack, also holds in the theory describing Cvisa.
Hence we can derive that Cvisa satisfies s buy olto (c buy ack ∧ c receipt).

Finally the sequencing of C4 and C5 (C4 and C8) entails c buy ack olto c
receipt, i.e. that the acknowledgment preceded the receipt.

A Logical View of Choreography 191

4.2 Modeling with Dynamic Binding

Consider the following interactions

C1 : c want to buy(PS) olto s buy(PS)
C2 : s buy(PS) olto PS pay

C3 : PS pay olto s pay ack(PS)
C4 : s pay ack(PS) olto c buy ack(PS)
C5 : PS paid olto c receipt(PS)

where the customer expresses his choice of payment service assigning a value to
variable PS (C1), and the store uses this value to select the appropriate service
(C2). C3 subsumes the payment interactions of the two services of the example
in the previous section (there known as C3 and C7). The variable PS in the
consequence of the black box view of C3 and in C4 keeps track of the payment
service in use (visa or ae). Finally, C5 subsumes the receipt interactions C5 and
C8 of the previous version, always keeping track of the payment service in use.

It is easy to verify that the black box view of C1; C2; C3; C4; C5 is

c want to buy(PS) olto c receipt(PS)

its theory being

T1 ∪ T2 ∪ T3 ∪ T4 ∪ T5 ∪ {c buy ack(PS) olto PS paid}
By monotonicity, also the following property holds:

c want to buy(PS) olto c buy ack(PS) ∧ c receipt(PS)

5 Conclusions

The technological platform which is being developped for SOC includes a lan-
guage (WS–CDL) to describe choreographies. However, these proposals remain
at the descriptive level, and do not provide any kind of reasoning mechanisms.

In this paper we present a first contribution towards a declarative framework
for SOC: we introduce a logical view of choreography, formalizing the WS–CDL
approach. We start by formalizing the elementary interactions as choreographies,
in terms of properties of their initial and final states. Then, we provide rules to
compose choreographies in sequence, parallel and choice. Finally, we show how
to deal with dynamic channel passing.

We characterize a choreography as a pair: a logical theory that keeps track
of all the interactions, and a formula that gives an abstract view. The logic,
ΔDSTL(x), shows spatial and temporal features. The formers permit to ex-
press conditions of the initial and final states of a choreography even if they are
distributed (e.g. pertaining to different roles), the temporal features permit to
temporally relate them.

192 C. Montangero and L. Semini

Our final goal is to have also a formalization of the WS–BPEL approach to
orchestration, and to assess the conformance by providing a refinement relation
between the theories for choreography and orchestration, with the tool support
offered by MaRK [7].

We used, in this paper a fragment of the logic. The full logic ΔDSTL(x)
includes an event operator Δ [10]. We say that ds satisfies ΔF iff ds is a model
for F , and the state ds′ immediately preceding ds does not satisfy F . The use
of a mix of events and conditions as in m(ΔF ∧G), offers a straightforward way
to express the premises of event–condition rules.

The ability to deal with events explicitly, and to use pairs event–condition as
triggers, may enhance the expressivity and simplicity of logical specifications,
and actually the interest for event–condition description is growing in the SOC
community [1, 13].

Acknowledgments

The work was supported by the Software Engineering for Service-Oriented Over-
lay Computers (SENSORIA) project, an IST project funded by the European
Union as an integrated project in the FP6 GC initiative.

References

1. J.J. Alferes, R. Amador, and W. May. A general language for evolution and reac-
tivity in the semantic web. In Principles and Practice of Semantic Web Reasoning
(PPSWR’04), volume 3703 of Lecture Notes in Computer Science, pages 101–115,
2005.

2. R.J.R. Back and J. von Wright. Refinement Calculus. A Systematic Introduction.
Graduate texts in computer science. Springer-Verlag, 1998.

3. A. Brogi, C. Canal, E. Pimentel, and A. Vallecillo. Formalizing Web Service Chore-
ographies. In First International Workshop on Web Services and Formal Methods
(WSFM 2004), volume 105 of ENTSC. Elsevier, 2004.

4. N. Busi, R. Gorrieri, C. Guidi, R. Lucchi, and G. Zavattaro. Towards a formal
framework for Choreography. In International Workshop on Distributed and Mobile
Collaboration (DMC 2005). IEEE Computer Society Press.

5. K.M. Chandy and J. Misra. Parallel Program Design: A Foundation. Addison-
Wesley, Reading Mass., 1988.

6. T. Costello and A. Patterson. Quantifiers and operations on modalities and con-
texts. In A.G. Cohn, L. Schubert, and S.C. Shapiro, editors, KR’98: Principles of
Knowledge Representation and Reasoning, pages 270–281. Morgan Kaufmann, San
Francisco, 1998.

7. G. Ferrari, C. Montangero, L. Semini, and S. Semprini. Mark, a reasoning kit for
mobility. Automated Software Engineering, 9(2):137–150, Apr 2002.

8. C. Montangero and L. Semini. Composing Specifications for Coordination. In
P. Ciancarini and A. Wolf, editors, Proc. 3nd Int. Conf. on Coordination Models
and Languages, volume 1594 of Lecture Notes in Computer Science, pages 118–133,
Amsterdam, April 1999. Springer-Verlag.

A Logical View of Choreography 193

9. C. Montangero and L. Semini. Distributed states logic. In 9th International Sym-
posium on Temporal Representation and Reasoning (TIME’02), Manchester, UK,
July 2002. IEEE CS Press.

10. C. Montangero, L. Semini, and S. Semprini. Logic Based Coordination for
Event–Driven Self–Healing Distributed Systems. In R.De Nicola, G.Ferrari, and
G. Meredith, editors, Proc. 6th Int. Conf. on Coordination Models and Languages,
COORDINATION’04, volume 2949 of Lecture Notes in Computer Science, pages
248–262, Pisa, Italy, Feb. 2004. Springer-Verlag.

11. N.Busi, R.Gorrieri, C.Guidi, R. Lucchi, and G.Zavattaro. Choreography and Or-
chestration: A Synergic Approach for System Design. In ICSOC, volume 3826
of Lecture Notes in Computer Science, pages 228–240, Amsterdam, Dec 2005.
Springer-Verlag.

12. OASIS. Web Services Business Process Execution Language Version
2.0. www.oasis-open.org/committees/download.php/16024/wsbpel-specification-
draft-Dec-22-2005.htm.

13. G. Papamarkos, A. Poulovassilis, and P. T. Wood. Event–Condition–Action Rules
on RDF Metadata in P2P Environments. In 2nd Workshop on Metadata Man-
agement in Grid and P2P Systems (MMGPS): Models, Services and Architectures,
Dec. 2004. To be published in Elsevier Computer Networks journal, (October
2006).

14. Chris Peltz. Web services orchestration and choreography. IEEE Computer, 36(10):
46–52, 2003.

15. W3C. Web Services Choreography Description Language Version 1.0. www.w3.org/
TR/ws-cdl-10/.

16. W3C. Web Services Description Language (WSDL) 1.1. www.w3.org/TR/wsdl.

Using Lime to Support Replication for
Availability in Mobile Ad Hoc Networks

Amy L. Murphy1 and Gian Pietro Picco2

1 Faculty of Informatics, University of Lugano, Switzerland
amy.murphy@unisi.ch

2 Dipartimento di Elettronica e Informazione, Politecnico di Milano, Italy
picco@elet.polimi.it

Abstract. Mobile ad hoc networks (MANETs) define a challenging
computing scenario where access to resources is restrained by connec-
tivity among hosts. Replication offers an opportunity to increase data
availability beyond the span of transient connections. Unfortunately,
standard replication techniques for wired environments mostly target
improvements to fault-tolerance and access time, and in general are not
well-suited to the dynamic environment defined by MANETs.

In this paper we explore replication for mobility in the context of a
veneer for Lime, a Linda-based middleware for MANETs. This veneer
puts into the hands of the application programmer control over what
to replicate as well as a set of novel replication and consistency modes
meaningful in mobile ad hoc networks. The entire replication veneer is
built on top of the existing Lime model and implementation, confirming
their versatility.

1 Introduction

Mobile ad hoc networks (MANETs) recently emerged as a technology enabling
distributed computing in untethered scenarios. Typical applications exhibiting
novel coordination patterns range from collaborative work in impromptu meet-
ings to coordination of rescue teams in a disaster recovery setting. As MANETs
are characterized by fluid topology and transient connectivity, they undermine
the assumptions traditionally made by established distributed computing meth-
ods, algorithms, and technologies, and in many cases demand new solutions
taking into account the opportunistic nature of communication in the mobile ad
hoc environment.

In this paper we focus on the issue of data replication. In traditional distrib-
uted systems, replication is usually employed for fault tolerance or performance
by exploiting, respectively, the redundancy and the locality of data copies. In a
mobile environment, and especially in MANETs, replication achieves data avail-
ability by enabling access to the data beyond the span of a transient connection.
Moreover, traditional replication schemes usually aim at providing a high degree
of consistency in the way clients perceive access to replicas. Consistency proto-
cols introduce synchronization and therefore communication and computational

P. Ciancarini and H. Wiklicky (Eds.): COORDINATION 2006, LNCS 4038, pp. 194–211, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Using Lime to Support Replication 195

overhead, often make assumptions about the placement of replicas, and usually
assume stable connectivity—characteristics that often clash with the require-
ments of MANET applications.

The work we present here tackles replication from a different angle. To begin
with, the data we replicate are tuples belonging to a distributed tuple space
system. More specifically, we developed our replication strategy as a veneer on
top of the federated tuple space provided by Lime [18, 14, 21], a middleware we
developed expressly for the MANET environment. In Lime, each mobile host1

carries a local tuple space; an agent running on a given host is given access to a
global, federated tuple space constituted by the “fusion” of all the tuple spaces
belonging to the hosts in range. Therefore, in a mobile setting the content of
this global tuple space changes dynamically based on the current connectivity.

In Lime, a tuple exists at a single location, and becomes available only for
the time span during which the host carrying it is transiently connected to the
rest of the system. Following what has been done in related work targeted to
improving fault tolerance or access performance, one could support replication
by copying tuples across machines and providing transparent, consistent access
to them (e.g., by properly serializing read and write operations). As we men-
tioned, however, the available techniques need substantial adaptation to become
usable in the MANET environment. Replicating the whole tuple space is likely
to generate too much overhead, and keeping the tuple space consistent is hard
if not impossible in the presence of hosts that can disconnect arbitrarily and
possibly never reconnect.

Instead, our focus here is a simple and yet effective mechanism to increase
data availability. We achieve this by providing the programmer with the ability
to specify replication profiles, denoting the tuples of interest for the application.
The underlying replication system exploits these profiles to opportunistically and
automatically create a local replica whenever a matching tuple is encountered in
the system. Differently from traditional replication systems, where replication is
entirely transparent to the programmer, in our model the programmer is aware
of whether a tuple is the original copy or a replica, as in the uncertain environ-
ment we target this information is often key in determining the confidence to
be placed in the data being communicated. We do, however, provide guarantees
about when a tuple is updated to a newer version, and provide options for spec-
ifying constraints on how this update is performed (e.g., only from the master
copy or from any replica). Notably, replicating from replicated data instead of
only from original data enables transitive models of coordination where replicas
epidemically spread in the system, even if the master copy is not available.

In the work we present here, all these aspects are folded into the Lime ap-
plication programming interface (API). This provides the programmer with the
ability to query for and react to conventional tuples as well as replicas—and to
do this in a distributed fashion regardless of connectivity, by exploiting the Lime
federated tuple space. Moreover, our replication veneer is entirely built on top of

1 Lime actually provides support for both mobile agents and hosts, therefore encom-
passing both logical and physical mobility.

196 A.L. Murphy and G.P. Picco

the original Lime middleware, exploiting in particular its reactive features, and
therefore providing additional evidence of Lime’s versatility and expressiveness.

The paper is structured as follows. Section 2 provides the reader with the
necessary background, by surveying related work and concisely illustrating the
features of the Lime middleware. Section 3 illustrates the motivations behind
our approach by leveraging our previously reported experience [13] in developing
context-aware applications with Lime. Section 4 presents the replication model
we define, together with the API provided to the programmer. Section 5 re-
ports about the design and implementation of our replication veneer. Section 6
elaborates on the previous sections and highlights opportunities for alternative
designs. Section 7 contains brief concluding remarks.

2 Background

In this section we first survey related work concerning replication applied to
tuple space systems or in the mobile environment, and then provide a concise
overview of the Lime model and middleware.

2.1 Related Work

With the growing interest in MANETs, strategies have been investigated for
hoarding data and keeping it accessible when hosts are disconnected from data
servers. Coda [12] was among the first hoarding systems, using user profiles
to decide what to hoard and requiring user intervention for conflict resolution.
Bayou [22] and IceCube [11] maintain consistency by logging changes and ensur-
ing log serializability. Similarly, [2] proposes a middleware service for increasing
data availability among groups of users according to user-specified profiles. It
applies a conservative coherence protocol to ensure data is accessed consistently
among group members in the presence of data updates and allows any member
to update data as long as the object’s unique consistency token is available. In-
stead, the work presented here is based on less constraining assumptions about
the connectivity among hosts and thus their ability to reconcile inconsistent data.
This choice simplifies the model, yet still addresses the needs of a wide range of
applications where data availability is necessary even during disconnection.

In fixed networks, some distributed implementations of Linda investigated
replication for fault tolerance [23, 1, 19] and strategies have been proposed for
maintaining consistency among the distributed data [5]. All of these approaches
assume that disconnection of a host is a failure and require extensive network
communication to maintain data consistency. Both of these assumptions are
fundamentally challenged by the MANET environment in which disconnection
is an expected event and wireless communication is more constrained than wired
communication.

Two interesting alternatives are GSpace [20] and PeerSpaces [3]. GSpace pro-
poses a system-level framework for managing the trade-offs between replication
for availability versus performance. PeerSpaces supports shared data spaces in
the peer-to-peer environment and introduces replication for availability, but only

Using Lime to Support Replication 197

for read-only data. Nonetheless, both systems target large scale networks, and
are not applicable in MANET environments.

MobiSpaces [9] targets replication of tuple spaces among mobile devices and
shares many goals with the work presented here. It allows replication from non-
primary sources and accepts interest profiles from mobile users to control what
data is replicated. However, The MobiSpaces assumes a single, master tuple
space that serves as the primary holder of the data and determines the legal
sequence of access to tuples based on a form of causal ordering. In contrast, our
work assumes each mobile device can be the primary holder data and we do
not assume any causal ordering semantics among access to tuples, keeping our
semantics closer to the original Linda.

2.2 Lime: Linda in a Mobile Environment

The Lime model [18] defines a coordination layer for applications that exhibit
logical and/or physical mobility, and has been embodied in a middleware [14]
available as open source at http://lime.sourceforge.net. Lime borrows and
adapts the communication model made popular by Linda [10].

In Linda, processes communicate through a shared tuple space, a multiset of
tuples accessed concurrently by several processes. Each tuple is a sequence of
typed parameters, such as <"foo",9,27.5>, and contains the actual information
being communicated. Tuples are added to a tuple space by performing an out(t)
operation. Tuples are anonymous, thus their removal by in(p), or read by rd(p),
takes place through pattern matching on the tuple content. The argument p is
often called a template, and its fields contain either actuals or formals. Actuals
are values; the parameters of the previous tuple are all actuals, while the last two
parameters of <"foo",?integer,?float> are formals. Formals act like “wild
cards” and are matched against actuals when selecting a tuple from the tuple
space. For instance, the template above matches the tuple defined earlier. If
multiple tuples match a template, selection is non-deterministic.

Linda characteristics resonate with the mobile setting. Communication is im-
plicit, and decoupled in time and space. This decoupling is of paramount impor-
tance in a mobile setting, where the parties involved in communication change
dynamically due to migration, and hence the global context for operations is
continuously redefined. Lime accomplishes the shift from a fixed context to a
dynamically changing one by breaking up the Linda tuple space into many tuple
spaces, each permanently associated to a mobile unit, and by introducing rules
for transient sharing of the individual tuple spaces based on connectivity.

Transiently shared tuple spaces. In Lime, a mobile unit accesses the global data
context only through a so-called interface tuple space (its), permanently and
exclusively attached to the unit itself. The its, accessed using Linda primitives,
contains tuples that are physically co-located with the unit and defines the only
data available to a lone unit. Nevertheless, this tuple space is also transiently
shared with the itss belonging to the mobile units currently accessible. Upon
arrival of a new unit, the tuples in its its are logically merged with those already
shared, belonging to the other mobile units, and the result is made accessible

198 A.L. Murphy and G.P. Picco

Interface Tuple SpaceHost-Level Tuple Space

Federated Tuple Space

migrate

Mobile Agents
Mobile Host

Fig. 1. Transiently shared tuple spaces encompass physical and logical mobility

through the its of each of the units. This sequence of operations, called engage-
ment, is performed as a single atomic operation. Similarly, the departure of a
mobile unit results in the disengagement of the corresponding tuple space, whose
tuples are no longer available through the its of the other units.

Transient sharing of the its is a very powerful abstraction, providing a mobile
unit with the illusion of a local tuple space containing tuples coming from all the
units currently accessible, without any need to know them explicitly. Moreover,
the content perceived through this tuple space changes dynamically according
to changes in the system configuration.

The Lime notion of a transiently shared tuple space is applicable to a mobile
unit regardless of its nature, as long as a notion of connectivity ruling engagement
and disengagement is properly defined. Figure 1 shows how transient sharing may
take place among mobile agents co-located on a given host, and among hosts in
communication range. Mobile agents are the only active components, and the
ones carrying a “concrete” tuple space; mobile hosts are just roaming containers
providing connectivity and execution support for agents.

Operations on the transiently shared tuple space of Lime include those already
mentioned for Linda, namely out, rd, and in, as well as the probing operations
rdp and inp whose semantics is to return a matching tuple or return null if
no matching tuple exists at the time the query is issued. For convenience Lime
also provides the bulk operations rdg and ing that return a set of tuples that
match the given pattern. If no matching tuples exist, the set is empty.

Restricting Operation Scope. The concept of transiently shared tuple space re-
duces the details of distribution and mobility to changes in what is perceived as
a local tuple space. This view is powerful as it relieves the designer from specifi-
cally addressing configuration changes, but sometimes applications may need to
address explicitly the distributed nature of data for performance or optimization
reasons. For this reason, Lime extends Linda operations with scoping parame-
ters, expressed in terms of agent or host identifiers, that restrict operations to a
given projection of the transiently shared tuple space. For instance, rd[ω, λ](p)
looks for tuples matching p that are currently located at ω but destined to λ.
Lime allows ω to be either a host or an agent, enabling queries over the entire
host-level tuple space or only over the subset pertaining to a specific agent.

Using Lime to Support Replication 199

Reacting to changes. In the dynamic environment defined by mobility, reacting
to changes constitutes a large fraction of application design. Therefore, Lime
extends the basic Linda tuple space with a notion of reaction. A reaction R(s, p)
is defined by a code fragment s specifying the actions to be performed when a
tuple matching the pattern p is found in the tuple space. A notion of mode is
also provided to control the extent to which a reaction is allowed to execute.
A reaction registered with mode once is allowed to fire only one time, i.e., it
becomes automatically deregistered after its execution. Instead, a reaction regis-
tered with mode oncepertuple is allowed to fire an arbitrary number of times,
but never twice for the same tuple. Details about the semantics of reactions can
be found in [15]. Here, it is sufficient to note that two kinds of reactions are
provided. Strong reactions couple in a single atomic step the detection of a tuple
matching p and the execution of s. Instead, weak reactions decouple the two by
allowing execution to take place eventually after detection. Strong reactions are
useful to react locally to a host, while weak reactions are suitable for use across
hosts, and hence on the entire transiently shared tuple space.

Lime provides a number of additional features, including the ability to output
a tuple into the tuple space of a different agent with the out[λ](t) operation,
and to obtain information about the host, agents, and tuple spaces currently
present in the system through a specialized LimeSystem tuple space. However, as
these and other features are not central to the work described here, we redirect
the reader interested in a comprehensive description to [15], which also includes
a formal semantics of the Lime model.

3 A Motivating Example

In this section we discuss the motivation behind our particular approach to
improving data availability through replication by leveraging off our previously
reported experience [13] with the Lime tuple space primitives to develop context-
aware applications.

In [13] we discussed the design of Tuling, a location-aware application sup-
porting collaborative exploration of geographical areas, e.g., to coordinate the
help in a disaster recovery scenario. Users are equipped with portable comput-
ing devices and a localization system (e.g., GPS), are freely mobile, and are
transiently connected through ad hoc wireless links. The key functionality pro-
vided is the ability for a user to request the visualization of the current location
and/or trajectory of any other user, provided wireless connectivity is available
towards her. Additionally, applicative data (e.g., images or notes) can be an-
notated with location information before being stored in the tuple space, and
therefore searched based on context. The implementation exploits tuple spaces
as repositories for context information—i.e., location data in this case. The Lime
primitives are used to seamlessly perform queries not only on a local tuple space,
but on all the spaces in range. For instance, a user’s location can be determined
by performing a rdp operation for the location tuple associated to the given
user identifier. Similarly, reactions can be used to trigger some behavior when a
user changes her location.

200 A.L. Murphy and G.P. Picco

The thesis of the paper was simple and yet relevant: tuple spaces can be suc-
cessfully exploited to store not only the application data needed for coordination,
but also data representing the physical context. The advantage is the provision of
a single, unified programming interface—the Lime coordination primitives—for
accessing both forms of data, therefore simplifying the programmer’s chore.

Nevertheless, the paper also elicited a number of shortcomings in the primi-
tives and mechanisms traditionally provided by tuple space systems in general,
and by Lime in particular. For instance, it evidenced how the matching by equal-
ity traditionally provided by Linda is not sufficiently expressive for context-aware
applications. This observation provided the main motivation for a recent exten-
sion [17] to the LighTS tuple space engine [16] at the core of Lime.

Similarly, the motivation for the particular flavor of replication presented here
can be found among the “lessons learned” we reported after developing Tuling,
as evident in the following excerpt (see [13], p. 276):

Another feature to consider adding to Lime is replication. In Tuling, the
previous locations of the other components are effectively replicated at
the application level, to enable their visualization. Location information,
however, is not duplicated within the tuple space. Therefore, if A copies
B’s history, and then later meets C, the information about B is outside
the tuple space and therefore not accessible to C. Several efforts in the
mobile ad hoc community have looked at the issue of replication [. . .],
but none of the solutions is immediately applicable to the tuple space
environment.

This excerpt captures the essence of the problem. The reactive primitives
provided by Lime can be used effectively to copy location information as soon
as it becomes available through the federated space and carry on the associ-
ated behavior, but replication occurs at the application level and therefore does
not enable further sharing of the information acquired. The desired scenario is
instead the one shown in Figure 2.

Clearly, one could write a reaction reinserting the location tuple in the local
tuple space, but care must be taken in “tagging” this copy so that it does not
get reacted again, locally or remotely. Therefore, rather than simply build this
behavior into Tuling, we created an application-independent middleware layer
on top of Lime to support this kind of replication. As we detail in the next
section, the goal is to give users the ability to declare the patterns of tuples
to be replicated, when and how to replicate, and whether and how the replica
should be updated in the presence of new values.

Obviously, location is only one of the many kinds of data that is meaningful
to replicate. Besides other contextual data (e.g., energy level, temperature, light,
and so on), replication of application data is useful as well. For instance, Tuling
users can share images, e.g., pictures useful for a damage assessment of buildings
in an earthquake scenario.

By using the features of our middleware, programmers can leverage replica-
tion in many ways. Not only can the programmer specify replication profiles
such as “replicate all pictures of buildings between the 5th and 7th avenue”,

Using Lime to Support Replication 201

host B

host C

host A

(a) A and B engage: B’s tuple is
replicated in A’s tuple space.

host B

host C

host A

(b) A disengages from B and en-
gages with C: the replica of B’s tu-
ple is copied in C’s tuple space.

Fig. 2. A motivating scenario. Dashed outlines indicate replicated data.

but she can also choose whether such pictures should be downloaded only from
the user that took them or from anyone. The implications of what looks like
a trivial choice are amplified by the integration of replication with the tran-
siently shared tuple space abstraction provided by Lime. Indeed, in the first
case our system implicitly supports a sort of “hoarding” [12] from information
producers, which materializes the requested information in the tuple space of
a potential consumer tuple space as soon as it becomes available in the sys-
tem. In the second case, by allowing duplication from any replica, information
can flow even in the absence of a connected path between its producer and its
consumers, by “hopping” opportunistically from one machine to another when-
ever connectivity becomes available. This pattern of information dissemination,
somewhat reminiscent of epidemic protocols [7], is more closely related to the
disconnected transitive communication model explored in [4] and, more recently,
by the networking community under the notion of delay tolerant network [8].

Therefore, besides enhancing data availability, our replication layer can be
regarded (and exploited) as a building block for a different form of coordination
that extends the transient communication enabled by Lime by removing the
need for interacting parties to be present at the same time.

4 Replication Model and API

Throughout the development of the model and implementation, our goal was
to put control over replication in the hands of the programmer while keeping

202 A.L. Murphy and G.P. Picco

the interface straightforward and easy to use. The primary issues to address are
updating tuple contents to allow tuples to evolve over time, identifying what
to replicate based on user input, and updating replicas when master tuples are
updated and connectivity allows. In this section we address each of these issues
as they relate to the model, concluding with a description of the API.

Updating tuples. Some applications logically create multiple versions of the same
piece of information with each successive version invalidating the previous. For
example, location data in Tuling constantly changes as a host moves through
space. Each new location represents an update, replacing the now-irrelevant
previous location. In most tuple space systems, it is only possible to remove the
old data and insert new data, losing any logical connection between the two.
Instead, it is meaningful to allow the data to be changed, associating it with the
old data and at the same time identifying that it has been updated.

This is precisely what we provide, allowing the user to specify a template for
the old data together with the actual new data. The new data is distinguished
from the old with a version number. This mechanism also serves as a building
block upon which consistency between master and replicas is managed.

Identifying what to replicate. As our goal is to improve availability of data for
users rather than to improve the performance of the system, our replication
mechanism is driven by user input in the form of replication profiles. These
are composed of the template specifying the tuples to be replicated, together
with the replication and consistency modes controlling the replica creation and
update.

As we discussed in Section 2.2, the scope of Lime operations can be restricted
to the tuple space associated to a single host or agent, by properly setting the
current and destination location of matching tuples. We provide a similar feature
for replication, therefore enabling the programmer to to replicate matching data
only if it belongs to the specified tuple space projection, e.g., tuples belonging to
a given host. Alternately, this tuple location information can be left unspecified
in the template, therefore enabling replication of tuples from any connected host.
One notable exception, however, is that replication of local tuples is suppressed
because it does not improve information availability.

Another dimension of the replication profiles is whether replicas should be
made only from original data or also from replicas held by other users. Because no
single policy holds for all applications, we place this decision in the hands of the
programmer in the form of a replication mode as shown in Figure 3. Replication
mode master makes replicas only from the original data while mode any allows
a replica to be made indifferently from the original or a replica.

To make this more concrete, consider an extension of the case outlined in
Section 3 in which host A replicates B’s location information and then later
meets C. Without replication inside the tuple space information about B is
not available to C, as in Tuling. However, with the mechanism described here
and replication mode any, this information is available as replica tuples carried
inside A’s tuple space. This enables transitive communication of data as shown
in Figure 2(b) even though B and C have never been in communication range.

Using Lime to Support Replication 203

Updating replicas. When a tuple is updated, a new version is created that makes
any replicas of this tuple out of date. If connectivity exists between the holder
of the master tuple and the holder of the replica it is possible to update the
replica to the new version, however this comes at the cost of the data transfer.
Depending on the type of data, it is reasonable to keep the replica out of date
or to update it. Location information, for example, is typically small and most
useful if kept up to date. Large documents, instead, may remain useful even if
they are slightly out of date. Therefore, our model allows the user to specify
the policy for keeping replicated data consistent with the original. As shown in
Figure 3, three possibilities are provided: never, which never updates a replica,
master, which updates only from the master version of the tuple, and any,
which updates from master or replica versions. If a replica is updated, its previous
copy is deleted from the system.

To continue with the location example, by using replication mode any and
consistency mode any at host A, when it engages with C as in Figure 2(b), C
will have access to the most recently known location of B from when A and B
were last connected. Although this is likely to be out of date with respect to
the actual, current location of B, is it the best that can be done in the mobile
environment with transient connections.

Replication API. For the programmer familiar with Lime, using replication re-
quires minor changes to deal with extensions of tuple and template formats
and new operations for dealing with replication profiles. The primary access
to the tuple space is through an instance of the ReplicableLimeTupleSpace,
as shown in Figure 4. The operations here retain the same meaning as in the
original LimeTupleSpace, however the parameters are changed to deal with the
additional information maintained for replication. Specifically, tuples, templates,
and reactions have been replaced with their “replicable” counterparts, as seen
in the figure.

For space reasons, we do not show the interfaces of all public classes here,
however it is worth noting that the ReplicableTemplate allows the user to
specify whether the tuple returned should be a master, replica, or any. Fur-
thermore, ReplicableTuple exposes the isMaster method to allow the user to
distinguish if the tuple returned from the tuple space is a master or not.

Reactions are also extended with respect to what available in Lime. Namely,
when specifying a ReplicableReaction and a ReplicableLocalizedReaction,
the user must identify the reaction mode. In addition to the once mode which

Replication Mode master The first replica must be made from the master
any The first replica can be made from any tuple

Consistency Mode never Replicas must never be updated
master Replicas must only be updated from their master

any Replicas can be updated from any newer version

Fig. 3. Replication and consistency modes

204 A.L. Murphy and G.P. Picco

public class ReplicableLimeTupleSpace {
public ReplicableLimeTupleSpace(String name);
public boolean setShared(boolean isShared);
public ReplicableTuple out(ITuple t);
public ReplicableTuple out(AgentLocation destination, ITuple t);
public ReplicableTuple in(ReplicableTemplate p);
public ReplicableTuple inp(ReplicableTemplate p);
public ReplicableTuple[] ing(ReplicableTemplate p);
public ReplicableTuple rd(ReplicableTemplate p);
public ReplicableTuple rdp(ReplicableTemplate p);
public ReplicableTuple[] rdg(ReplicableTemplate p);
public ReplicableRegisteredReaction[] addStrongReaction(ReplicableLocalizedReaction[] rlr);
public ReplicableRegisteredReaction[] addWeakReaction(ReplicableReaction[] rr);
public void removeStrongReaction(ReplicableRegisteredReaction[] rrr);
public void removeWeakReaction(ReplicableRegisteredReaction[] rrr);
// REPLICATION-SPECIFIC OPERATIONS
public ReplicableTuple change(ReplicableTemplate p, ITuple t);
public RegisteredReplicaRequest addReplicaRequest(LimeTemplate p,

int replicationMode,
int consistencyMode);

public void removeReplicaRequest(RegisteredReplicaRequest r);
}

Fig. 4. The class ReplicableLimeTupleSpace

reacts one time before deregistering, we provide onceperreplica and on-
ceperchange. The former allows the user to react one time for each tuple,
but not for each version of that tuple. The latter reacts also to each version.

The ReplicableLimeTupleSpace offers three new methods not present in the
LimeTupleSpace to support tuple updating and replication. The change method
accepts as parameters the template of the tuple to change and the contents of the
new tuple. If no tuple matches the template, no change is made to the tuple space.
Similar to the out operation, change operates only on the local tuples contained
in the tuple space of the agent issuing the operation. Moreover, only master
tuples can be selected and changed. The last two methods, addReplicaRequest
and removeReplicaRequest allow the user to activate replication for the speci-
fied replication profile (template, replication mode, and consistency mode), and
stop it, respectively.

5 Design and Implementation

Implementing the replication model just described was accomplished as a com-
bination of two application-level packages above Lime, requiring no changes
to Lime itself. The two layers support tuple versioning and tuple replication,
respectively. Internally, each layer is implemented as a wrapper around the
lower layer. Specifically, the VersionedLimeTupleSpace wraps an instance of
LimeTupleSpace and the ReplicableLimeTupleSpace of Figure 4 wraps a Ver-
sionedLimeTupleSpace. Each layer implements the operations visible to the
user by adapting and delegating them to the layer below. It should be noted
that in a federated system, all tuple spaces must be of the same type, e.g., it is
not possible to federate a LimeTupleSpace with a VersionedLimeTupleSpace.

In this section we describe the key components of each layer, focusing primar-
ily on the replication layer.

Using Lime to Support Replication 205

5.1 Versioning

The primary functionality of the versioning layer is to support the change op-
eration, allowing tuples to be updated instead of replaced. This requires changes
both to the tuple format and to the primary tuple space operations.

Tuple format. Versioning of tuples requires that the new version both be asso-
ciated with the old and distinguished as newer. The former is accomplished by
assigning a tuple identifier to each newly created tuple. This identifier is simply
prepended to the user data before the tuple is passed to Lime. When a tuple is
updated, the new version uses the same tuple identifier. To identify the relative
newness of a tuple, we also insert a version number, incremented each time the
tuple is changed. To clarify, if the user requests insertion of the tuple 〈data〉, the
versioning layer creates the following and passes it to Lime:

〈data〉 → 〈tupleID , versNum, data〉

Operations. To support updating tuples, the API is extended with the change
operation, similar to that shown in Figure 4, accepting the template and new
data as parameters. Internally, change is implemented by performing an inp on
the embedded LimeTupleSpace to remove a tuple matching the pattern. If a
tuple is returned, the versioning layer extracts the tuple identifier and version
number, increments the version number, prepends both to the tuple, and issues
an out to insert the new tuple.

Similar to ReplicableLimeTupleSpace, the VersionedLimeTupleSpace op-
erations have been modified to accept “versioned” tuples and templates to ad-
dress the tuple identifier and version number. Reactions have also been modified
to use two new modes in addition to once, namely onceperid and onceper-
version to react only one time per tuple identifier, or one time to each version
of each tuple. These reactions, with their enhanced modes, are actually the main
building block for implementing replication, as described next.

5.2 Replication

Building replication on top of the versioning layer involved much the same
process as implementing the versioning layer on top of Lime. It requires fields
to be added to tuples and new operations to accept and implement replication
profiles. The new operations, however, have already been described in Section 4:
here, we describe their implementation.

Tuple format. The first design decision we faced was whether to keep the replica
tuples in the same tuple space as the master tuples or to divide the two explicitly.
We chose the former, opting to tag each tuple with a new field (isReplica) to
distinguish whether it is a master or a replica. A nice side effect of this choice is
that a query for a tuple without explicitly specifying replica or master requires
only one operation, with the aforementioned field set to formal. Dividing the
tuples would require issuing operations on both spaces.

206 A.L. Murphy and G.P. Picco

In addition to the isReplica field, tuples are also extended with two fields
representing the current and destination locations of the master tuple. To un-
derstand the need for these new fields, it is important to remember that Lime
uses current and destination fields to identify the current location of a tuple
and whether it should be migrated into the tuple space of a different, remote
agent upon engagement. Because replica tuples are normal Lime tuples, location
information is also maintained for all replica tuples internally to Lime. However,
this information reflects the current and destination of the replica tuples, namely
the agent that requested the replication, not the original location of the mas-
ter tuple. Because the user may need to know this original location, we provide
accessor methods on ReplicableTuple and append fields to all user tuples to
represent the original current and destination locations of the master tuple as in
the following:

〈data〉 → 〈origCur , origDest , isReplica, data〉

Note how the tuple we obtain is then passed as a “data” tuple to the versioning
layer where it gets extended with other fields, as described in Section 5.1.

Implementing replication. The core of the implementation is the internal mecha-
nism used for replication. Our model requires creation and updating of replicas.
Both operations occur in reaction to the appearance, in the federated tuple
space, of new tuples matching the specified pattern and conforming to the repli-
cation and consistency modes. Therefore, implementing reaction with a set of
(versioning-layer) reactions over master and replica tuples is a natural approach.

Implementing a replication request for a given profile involves installing a
reaction watching for master tuples and, depending on the replication and con-
sistency modes, possibly one for replica tuples as well. When the reaction fires
with a new tuple, the listener for that reaction must take the appropriate action
to keep the replicas inside the tuple space in line with the replication profile.

Consider, for instance, a case where the programmer requests a replication
profile with a master replication mode and a never consistency mode. In this
case, only the reaction watching for master tuples is needed, as subsequent ver-
sions are uninteresting. For the same reason, the corresponding listener needs to
react each time a new master tuple is inserted, but not when it is updated. There-
fore, the reaction (with the semantics defined in Section 5.1 for the versioning
layer), must be installed with a onceperid reaction mode. The reaction takes
care of sending matching tuples from their owner to the requesting host when
connectivity is available. However, Lime ensures also, through its engagement
protocol, that the reaction is installed when hosts initially come into contact and
that it remains enabled while the hosts are connected. Therefore, because Lime
deals with the distribution and installation of listeners as connectivity changes,
the replication layer can simply use this functionality, significantly reducing its
own complexity.

To round out the other actions that must be taken to effect the various replica-
tion profiles, Figure 5 shows all combinations of the replication and consistency

Using Lime to Support Replication 207

Replication Consistency Master listener Replica listener
Mode Mode

master never Keep —
master master Keep or update —
master any Keep or update Discard if first, else update

any never Keep Keep
any master Keep or update Keep
any any Keep or update Keep or update

Fig. 5. Implementing replication using reactions belonging to the versioning layer. For
all combinations of replication and consistency mode, the listeners describe the actions
performed when the reaction fires with a tuple on either a master or replica tuple.
Italicized listeners are mode onceperid, all others are onceperversion.

modes and the actions of all listeners for master and replica tuples. The other
listeners for master tuples differ from the one we just described because they
must also update the replica if it already exists. Therefore, the listener “Keep
or update” updates the replica tuple if it already exists, or creates one if not.
The combination master/any utilizes a third type of listener that does not al-
low creation of the first replica from another one, but instead uses replicas only
to update existing ones. Finally, all the combinations requiring updates upon a
change in version number utilize onceperversion reactions in order to capture
all updates.

6 Discussion

Our current implementation, albeit fully working according to the design just
described, must be considered as a proof-of-concept prototype demonstrating
the feasibility of our ideas. A number of improvements and additional features
can be introduced, some of which are discussed in the following.

Communication overhead. The current implementation just described may gen-
erate unnecessary overhead when the network is dense and stable and many
nodes requested the replication mode any. Consider a host joining the system
with replication mode any. By virtue of engagement its replication reactions are
propagated to the other hosts, where they are immediately evaluated and return
any matching replicas the hosts possess. However, if in turn the replication mode
on the other hosts is any as well, the same process unfolds in the opposite di-
rection. This causes not only new replicas brought by the joining host to be
communicated to the other hosts, but also the newly inserted replica to follow
the same destiny. This last replica is most likely discarded, because it carries
information already present in the network. In the scenarios mentioned above,
this unnecessary extra step my cause a significant contribution to overhead.

A couple of points are worth making, however. First of all, in scenarios where
the system contains many hosts enjoying rather stable connectivity, the repli-
cation mode any is bound to generate a lot of traffic anyway, since everybody

208 A.L. Murphy and G.P. Picco

is likely to be up-to-date with respect to the system. Consider an impromptu
meeting: a replication mode master is probably the best choice, allowing each
meeting attendees to obtain a copy of the document as soon as the latter is pub-
lished by its owner. Instead, the mode any is well-suited to address the sparse
scenarios typical of many MANET applications, where very few nodes are con-
nected at any given time but over time overall system connectivity is provided as
a consequence of movement and opportunistic interaction. For instance, in a dis-
aster recovery scenario the members of the exploration team may be connected
only transiently and unpredictably, and yet be able to get the images and notes
posted by fellow members without ever being connected with them, thanks to
transitive replication of replicas of the original documents. As we pointed out in
Section 3, these scenarios are similar to those targeted, at the network layer, by
disconnected transitive communication [4] and delay tolerant networks [8].

From an implementation standpoint, it is worth saying that there are ways
to remove the aforementioned extra communication. A quick-and-dirty solution
is simply to timestamp replicas upon their insertion in the tuple space, and use
this time information to defer its propagation by a time T , under the assumption
that the rest of the system (from where it came in the first place) is already
aware of it. The question is clearly how to set the deferring time T : values
too small reduce the benefit of the optimization if the network is stable, while
in dynamic scenarios values too high may prevent propagation of the replica
to hosts that recently joined the system. More sophisticated mechanisms (e.g.,
piggybacking lists of reacted-upon replicas) can be implemented, but at the cost
of building replication management directly into the Lime system. Indeed, our
mechanism is based on Lime’s oncepertuple reactions, which are not aware
of replication and simply react to the presence of a new tuple. In our current
prototype we aimed instead at preserving the independence of the replication
layer from the base middleware, in an effort to foster separation of concerns and
modularity.

Ultimately, the need for more optimized communication must be weighed
against the deployment scenario and the way applications use replication. We
contend that the design and implementation we chose is appropriate for the
assumptions made by the deployment scenario and application examples mo-
tivating this work, as well as for the “exploratory” goals of the research we
report. Its exploitation in scenarios characterized by different assumptions may
obviously require significant adaptation.

Automatic purging of local replicas. In the current implementation, replicated
tuples are automatically inserted in the local tuple space, where they remain until
the programmer expressly decides to remove them. This policy constitutes the
most basic solution and meets the needs of simple applications. Nevertheless, in
the presence of several replicas that need different treatment, their management
may place considerable bookkeeping burden on the programmer.

Automatic purging can be easily defined by modifying addReplicaRequest
to accept, in addition to replication and consistency mode, a “purge mode”. For
instance, the purge mode can be one of the values manual, number, time.

Using Lime to Support Replication 209

manual corresponds to the current strategy, while the other two modes allow
purging of the tuple space based on an additional parameter, i.e., either the maxi-
mum number of replicas for the specified template or their maximum permanence
time in the tuple space. The implementation of this additional functionality is
straightforward, and consists of either modifying the replication listeners to keep
track of a counter (number) or associating a timer to the replica (time).

Removal of the master copy. As we discussed in Section 3, our motivation for
tackling replication was provided by applications where the data being replicated
is continuously updated (e.g., location). As such, we did not include mechanisms
for dealing with the removal of a master tuple, and accordingly remove the
replicas in the system. Moreover, in a true MANET scenario no assumption can
be made about the movement of hosts, which therefore can remain out for range
after the tuple withdrawal has been performed, complicating—or completely
preventing—the reconciliation of the distributed tuple space.

One way to achieve this functionality is through the notion of a “death cer-
tificate” [6] associated to the tuple. A simple implementation of this notion is to
update the master tuple by nullifying the application data, while retaining the
version identifier. Hosts becoming connected with the master’s host would get
a copy of the master tuple, but its nullified content would signal that the mas-
ter has actually been withdrawn from the tuple space, and therefore the replica
must be withdrawn as well.

In a MANET environment, however, there is no guarantee that all the hosts
owning a replica eventually become again part of the system, thus receiving the
death certificate. Interestingly, a replication mode any somewhat helps in this
respect, as its ability to epidemically spread information may bypass disconnec-
tions. At the same time, however, it complicates matters since the master host
has absolutely no control over the replication of its tuple, which can be dupli-
cated from a different replica. Therefore, the master faces the option of either
keeping the death certificate ad infinitum, or removing it after a given time but
potentially leaving some hosts with an inconsistent view of the tuple space.

Future work will investigate more sophisticated schemes able to strike better
tradeoffs by making different assumptions about the movement of hosts.

7 Conclusions

Replication is a well-studied topic in distributed system, often applied also in
the case of coordination languages exploiting tuple spaces. Nevertheless, the
motivations for exploiting replication are typically to improve fault-tolerance or
access time to tuples, while preserving a consistent view of the tuple space.

In this work, we took a different angle motivated by the desire to exploit
coordination in the highly dynamic and disconnected environment characterizing
MANETs, where the preeminent reason for replication is to ensure availability
of the replicated data in the face of disconnection. Consistency is less important,
as it may be difficult if not impossible to provide if no assumption about the
movement of hosts is made. This particular flavor of replication may also be

210 A.L. Murphy and G.P. Picco

effectively exploited as a new form of coordination, based on interactions that
occur without the coordination parties ever being connected at the same time.

We made these observations concrete by describing how they can be incorpo-
rated in Lime, an existing coordination middleware for MANETs. We defined
an appropriate replication model, extended the Lime API with replication prim-
itives, and built replication mechanisms as a veneer on top of Lime.

Acknowledgments. The work described in this paper was partially supported
by the Italian Ministry of Education, University, and Research (MIUR) under the
VICOM project, by the National Research Council (CNR) under the IS-MANET
project, and by the European Community under the IST-004536 RUNES project.
The authors wish to thank Francesco Merlo and Massimo Montani for their
implementation of the work described here.

References

1. D.E. Bakken and R. Schlichting. Supporting fault-tolerant parallel programming
in Linda. IEEE Transactions on Parallel and Distributed Systems, 1994.

2. M. Boulkenafed and V. Issarny. A middleware service for mobile ad hoc data
sharing, enhancing data availability. In Proc. of the Int. Middleware Conf., 2003.

3. N. Busi, C. Manfredini, A. Montresor, and G. Zavattaro. PeerSpaces: Data-driven
coordination in peer-to-peer networks. In Proc. of ACM Symposium on Applied
Computing (SAC). ACM Press, 2003.

4. X. Chen and A.L. Murphy. Enabling disconnected transitive communication in
mobile ad hoc networks. In Proc. of the Workshop on Principles of Mobile Com-
puting (POMC), pages 21–27, Newport (RI, USA), August 2001.

5. A. Corradi, L. Leonardi, and F. Zambonelli. Strategies and protocols for highly
parallel Linda servers. Software: Practice and Experience, 28(14):1493–1517, 1998.

6. A. Demers et al. Epidemic algorithms for replicated data management. In Proc.
of the 6th Symp. on Principles of Distributed Computing, pages 1–12, 1987.

7. P. Eugster, R. Guerraoui, A.-M. Kermarrec, and L. Massoulié. From epidemics to
distributed computing. IEEE Computer, 37(5):60–67, May 2004.

8. K. Fall. A delay-tolerant network architecture for challenged internets. In Proc. of
ACM SIGCOMM, pages 27–34. ACM Press, 2003.

9. A. Fongen and S. J. E Taylor. MobiSpace: A Distributed Tuplespace for J2ME
Environments. In 14th IASTED Int. Conf. on Parallel and Distributed Computing
and Systems, Arizona, USA, 2005.

10. D. Gelernter. Generative Communication in Linda. ACM Computing Surveys,
7(1):80–112, Jan. 1985.

11. A.-M. Kermarrec, A. Rowstron, M.Shapiro, and P. Druschel. The IceCube
approach to the reconciliation of divergent replicas. In 20th Symp. on Principles
of Distributed Computing (PODC), August 2001.

12. J.J. Kistler and M. Satyanarayanan. Disconnected Operation in the Coda File
System. ACM Trans. on Computer Systems, 10(1):3–25, 1992.

13. A.L. Murphy and G.P. Picco. Using coordination middleware for location-aware
computing: A Lime case study. In Proc. of the 6th Int. Conf. on Coordination
Models and Languages, LNCS 2949, pages 263–278. Springer, February 2004.

Using Lime to Support Replication 211

14. A.L. Murphy, G.P. Picco, and G.-C. Roman. Lime: A Middleware for Physical
and Logical Mobility. In Proc. of the 21st Int. Conf. on Distributed Computing
Systems (ICDCS-21), pages 524–533, May 2001.

15. A.L. Murphy, G.P. Picco, and G.-C. Roman. Lime: A coordination middleware
supporting mobility of hosts and agents. ACM Trans. on Software Engineering
and Methodology (TOSEM), 2006. To appear. Available at www.elet.polimi.it/
upload/picco.

16. G.P. Picco. lighTS Web page. lights.sourceforge.net.
17. G.P. Picco, D. Balzarotti, and P. Costa. LighTS: A Lightweight, Customizable

Tuple Space Supporting Context-Aware Applications. In Proc. of the 20th ACM
Symposium on Applied Computing (SAC05)—Special Track on Coordination Mod-
els, Languages and Applications, pages 1134–1140, March 2005. Extended version
to appear in the Int. J. on Web Intelligence and Agent Systems (WAIS).

18. G.P. Picco, A.L. Murphy, and G.-C. Roman. Lime: Linda Meets Mobility. In Proc.
of the 21st Int. Conf. on Software Engineering, pages 368–377, May 1999.

19. J. Pinakis. Using Linda as the Basis of an Operating System Microkernel. PhD
thesis, University of Western Australia, Australia, August 1993.

20. G. Russello, M. Chaudron, and M. van Steen. Dynamically adapting tuple repli-
cation for managing availability in a shared data space. In Proc. of the 7th Int.
Conf. on Coordination Models and Languages, LNCS 3454. Springer, April 2005.

21. Lime Team. Lime Web page. lime.sourceforge.net.
22. D. Terry, M. Theimer, K. Petersen, A. Demers, M. Spreitzer, and C. Hauser. Man-

aging Update Conflicts in Bayou, a Weakly Connected Replicated Storage System.
Operating Systems Review, 29(5):172–183, 1995.

23. A. Xu and B. Liskov. A design for a fault-tolerant, distributed implementation of
Linda. In Digest of Papers of the 19th Int. Symp. on Fault-Tolerant Computing,
pages 199–206, June 1989.

Coordinating Computation with Communication

Thomas Nitsche

Research Institute for Communication, Information Processing and Ergonomics
(FGAN/FKIE)
nitsche@fgan.de

Abstract. While in the sequential world the programmer can concen-
trate on the algorithmic solution to his given problem, in parallel and
distributed systems he also has to consider aspects of communication,
synchronization and data movement. In this paper we describe a pro-
totypical middleware solution that enables the clear separation of these
aspects. We combine algorithmic skeletons describing the computational
aspects with overlapping data distributions describing the communica-
tion and synchronization. Both are expressed in a high-level manner. The
system automatically coordinates the different activities and allows the
programmer to easily change the underlying communication topology.

1 Introduction

Programming of massive parallel systems is much more complex than in the
sequential case. This is due to the fact, that in addition to the problems occur-
ring in the sequential case, the programmer must coordinate different parallel
activities, which means that synchronization and communication issues have to
be taken into account [13]. The programmer thus has to consider the distri-
bution of the work respectively data onto the different processors, as well as
synchronization and data exchange between them.

The decision of which data will be communicated and when depends largely
on the characteristics of the parallel computer such as its network topology,
bandwidth, etc. To achieve maximum efficiency, many low-level machine- and
algorithm-specific details have to be considered. The resulting parallel program is
highly problem- and machine-specific, which makes it difficult to port to another
parallel machine or to reuse the code for another program. Since one of the ideas
behind grid computing is to make parallel computing power as easily available
on the market as today’s electricity or telephony services [14], parallel programs
should not be written for a specific parallel machine but rather parameterized
using certain architectural parameters. The number of available processors is one
such architectural parameter; others are the computing power of each processor,
its memory, the network parameter, etc.

For the communication among different processors there have emerged stan-
dardized message passing libraries like MPI [31, 19] or PVM [15]. However, their
use is relatively low-level as the whole responsibility for a correct communication
is left to the user. This is quite error-prone and may easily result in deadlocks.

P. Ciancarini and H. Wiklicky (Eds.): COORDINATION 2006, LNCS 4038, pp. 212–227, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Coordinating Computation with Communication 213

The use of low-level message passing primitives like send and receive is some-
times seen as assembler-level programming [17].

A second observation is that although low-level message-passing routines ap-
pear to be the most efficient way of communicating, this is not always the case.
Since different messages may interfere with each other owing to network con-
tention, the local view may hinder optimal performance results. BSPlib [21],
for instance, achieves performance improvements as large as a factor of two over
MPI if an overall knowledge of all message sizes and a randomized communica-
tion schedule is used [11].

To achieve a higher level of programming effectiveness and coordination of
parallel activities, we can use algorithmic skeletons [7].

The remainder of this paper is organized as follows. In order to make this
paper self-contained, Sect. 2 describes the use of algorithmic skeletons for par-
allel coordination. Sect. 3 introduces the notion of data distributions as an ab-
stract means to specify communication operations, while Sect. 4 describes the
extension of the usual skeleton approach with data distributions and our proto-
typical middleware system that automatically coordinates both computational
and communicational aspects of the program. We use a PDE solver as a case
study to illustrate the benefits of our approach and compare the run-time re-
sults of our middleware solution with that of a hand-coded, low-level program.
Finally, Sect. 5 concludes.

2 Algorithmic Skeletons as Parallel Coordination
Framework

Using algorithmic skeletons as a kind of collective operation instead of directly
using low-level (point-to-point) communication operations not only avoids pro-
gramming errors such as deadlocks but also enables better cost predictions,
program optimizations and, in some cases, better performance because global
knowledge about the program allows optimized communication schedules.

2.1 Parallel Coordination

Algorithmic skeletons are abstractions of certain algorithmic aspects which are to
be executed in parallel. The idea behind using them is to encapsulate parallelism
within the skeletons which are supposed to be the only parallel algorithmic
operations within the program. This creates a coordination language in which
the skeletons describe the parallel behavior of the overall program, while the
parameter functions of the skeletons describe the sequential parts that have to
be executed locally on each processor.

Algorithmic skeletons can be seen as patterns for parallel and distributed
computing [30]. More formally, they can be specified as higher-order functions
with an efficient implementation on different parallel systems [9].

2.2 Standard Skeletons

Examples of standard skeletons are given in Figures 1 and 2.

214 T. Nitsche

�� �� �� ��
���������

��

���������

���������
��

���������

���������

��

���������

���������
��

���������

������
�

������
�

�� ��

�� ��

�������
������

�

Fig. 1. Some standard skeletons

Map(f) Scan(⊕)

a1 · · · an

f(a1) · · · f(an)

f f

a1 a2 · · · an

a1 a1⊕a2 · · · a1⊕ · · · ⊕an

⊕ · · ·

Zip(�) Reduce(⊕)

a1 · · · an

b1 · · · bn

a1�b1 · · · an�bn

� �

a1

a1⊕a2

a2 · · ·
... · · · a1⊕ · · · ⊕an

an−1 · · ·

an−1⊕an

an

Fig. 2. Some standard data-parallel skeletons

Pipeline: The pipe skeleton combines a sequence of functions which are applied
in different stages one after the other.

Map: Here, a function f is applied to all data elements of a data structure.
This generally requires the decomposition or traversal of the data structure

Coordinating Computation with Communication 215

down to the data elements, applying the function and recomposing the data
structure with the updated elements.

Farm: The farm skeleton applies a worker function to a set of tasks. These
tasks can be distributed among the available processors either statically or
dynamically according to the manager-worker model.

DC: The DC or divide-and-conquer skeleton recursively divides a given problem
into a list of subproblems until the problems are simple enough to be solved
directly. Then, the partial solutions are combined to form the solution to the
main problem.
This skeleton is quite flexible because it allows us to express other skele-
tons as well as numerous algorithms which give rise to a hierarchy of DC
skeleton variants [20]. The broadcast skeleton, which sends a value from a
root processor to all processors, and the quick-sort function are examples for
possible divide-and-conquer instantiations, where the work is mainly done
in the dividing phase. On the other hand, reducing a set of values to a single
one or the merge-sort function mainly involve work in the combine phase.1

Even map can be expressed as a special case of divide-and-conquer, divid-
ing and combining corresponding to decomposing and recomposing the data
structure and the function application to the data elements corresponding
to the solution of the trivial cases. However, in most cases it is advisable
to use the specialized skeletons like map or reduce instead of the general
DC because they are more appropriate to the special problem and can also
achieve better performance.

Zip: It combines the elements of two data structures of the same size using
an arbitrary binary operator. We can extend the zip skeleton such that it
combines k data structure elementwise using an operator " : t1×· · ·×tk → t.
Moreover, the data structures itself can even have different shape, as long as
their size is the same.

Reduce: The reduce skeleton, sometimes also called fold, combines all elements
of a data structure using some binary operator.
It allows us, for instance, to summarize or multiply all elements or to com-
pute the maximum or minimum over all values. If the binary operator ⊕ is
associative, the reduce skeleton can calculate the result in parallel using a
tree-like algorithm (see Figure 2) in O(log N) time steps. Since reduce is
otherwise a sequential operation, associativity of ⊕ is often required.

Scan: If we are not only interested in the accumulated value of all data elements
but also in partial results, we can use the scan skeleton. It computes all
partial sums a1 ⊕ · · · ⊕ ai.

Their behavior can formally be specified as follows:

map(f)([a1, . . . , aN]) def= [f(a1), . . . , f(aN)] (1)

zip(")([a1, . . . , aN], [b1, . . . , bN]) def= [a1 " b1, . . . , aN " bN] (2)

1 The former correspond to recursion schemes where the values are propagated down-
wards the tree structure, while the latter correspond to upward recursion schemes.

216 T. Nitsche

reduce, e(⊕)([a1, . . . , aN]) def= ((e⊕ a1)⊕ · · ·)⊕ aN (3)

scan(⊕)([a1, a2, . . . , aN]) def= [a1, a1 ⊕ a2, . . . , a1 ⊕ · · · ⊕ aN] (4)

2.3 Communication Handling in Skeletal Systems

Parallel programming with algorithmic skeletons has been an active field of re-
search for the last few years starting with the work of Cole [7]. See [30, 8] for
more recent surveys.

To handle communication and data movement, skeleton systems try to fully
hide these aspects from the user, or offer some specific skeletons for explicit
communication operations.

Examples for the first approach are Skil (Skeleton Imperative Language) [5]
and eSkel (Edinburgh Skeleton Library) [2]. Skil offers a library of skeletons for
the efficient solution of numerical problems. However, much of these skeletons
are domain specific and to extend the library one has to explicitly code the
low-level communication details within the new skeletons by hand. eSkel, on the
other hand, is explicitly designed as an extension of MPI’s collective operations
suite, so to use the (currently five) skeletons the user has to program (a small
portion of his program) in a MPI style.

In the second approach systems like the structured coordination language
SCL2 [9] or the Münster skeleton library Muesli [24] have some explicit commu-
nication skeletons. These include rotate, brdcast and even explicit send/fetch
operations in case of SCL, or broadcast, gather and allToAll communication
primitives in Muesli. Thus the programmer has to call the corresponding commu-
nication functions explicitly. Computation and communication are hence mixed
with each other. However, if both aspects were separated more explicitly, the
resulting program could become even easier.

3 Data Distributions as Abstractions for Communication
Operations

In our approach, we extend the skeletons by data distributions [32, 25]. The main
idea behind this concept is overlapping data structures. A data structure is split
into overlapping subobjects, which are distributed among different processors.
Fig. 3 shows, by way of an example, the splitting of a matrix into overlapping
submatrices. This approach allows us to express both local computations as
well as communication on a high, abstract level. Computations on subobjects
correspond to local computations (see Eq. (6) in Sect. 4.1 below), while accesses
to overlapping data elements induces communication (cf. Fig. 5).

3.1 Covers

Conceptually, a cover C of an object O is simply a set C = {Si|i ∈ I} of
subobjects Si ⊆ O. Each of the subobjects is partitioned into an own part
2 SCL embeds a skeletal coordination language into a sequential host language like

Fortran or C.

Coordinating Computation with Communication 217

Fig. 3. An overlapping column-block cover with p = 4 subobjects with one column
overlapping to the left and two columns overlapping to the right

cover ColumnBlock[α, p, left, right] --cover−specific parameter
sort α --type of data elements
fun p : nat --number of processors
fun left, right : nat --number of overlapping columns on each side

type obj[α] == matrix[α] --whole object
subobj[α] == matrix[α] --local subobjects
cover[α] == vector[subobj[α]] --topology of local subobjects

fun split : obj[α] → cover[subobj[α]] --matrix [α] → vector [matrix [α]]
fun glue : cover[subobj[α]] → obj[α] --vector [matrix [α]] → matrix [α]
axm glue ◦ split = Id

Fig. 4. Definition of the column-block cover

and a foreign part. The own parts of all subobjects have to be a partition of
the object, i.e., the disjoint union of the own parts restores the whole object:⊎

i∈I own(Si) = O. Thus, each data-element belongs to the own part of exactly
one particular subobject. The idea is that the own part specifies local data, while
the foreign part can be regarded as a reference to the data of another processor.

Consider, for example, the division of a matrix into a vector of column blocks
(Fig. 3). Formally, each cover can be described in terms of splitting an object
into subobjects and a corresponding gluing function, together with corresponding
type definitions for object, subobject and cover structure (Fig. 4). Note, that we
make also the topology, i.e. the structure of the the neighborhood-relation of
the subobjects, explicit by a corresponding cover structure.3 In the case of the
column-block cover this is merely a one-dimensional vector of submatrices.

3 Here, code[subobj[α]] means that the type cover[β] is parameterized with β =
subobj[α].

218 T. Nitsche

3.2 Overlapping Data Structures Specify Communication
Requirements

A subobject can be regarded as a node in the network that can request and
provide overlapping data. Foreign access thus imposes communication require-
ments, as shown below in Fig. 5 for the column-block cover. Reading foreign
elements (open circles) involves transferring their values from the own part (full
circles) of the subobjects in which they originate (Fig. 5).

Fig. 5. Communication through foreign accesses (column-block cover with p = 4 sub-
objects and overlapping sizes left = 1 and right = 2)

Note, however, that there is not necessarily a one-to-one correspondence be-
tween subobjects and processors. If the object is split into more subobjects
than the number of processors available, multiple subobjects are mapped to one
processor. In this case, the computation on a subobject corresponds to a thread,
so the subobject can still be regarded conceptually as an independent processing
unit.

Covers can be defined not only for matrices but for arbitrary container types
as well, i.e., arbitrary algebraic data types, arrays and nested combinations of
these [25]. Fig. 6 shows some example covers on different data types. We define
container types t ∈ C(V, B) over sets of base types B and type variables V 4

formally as follows:

C(V, B) −→ B base type
| V type variable
| C(V, B) × C(V, B) product
| C(V, B) + C(V, B) sum
| C(V, B)n array

(5)

They are used to formalize the notion of shape, i.e. the structure of a data type,
and hence to separate the shape from the actual data elements which are to
be distributed onto the different processors [25, 22]. Abbot et al. [1] give a more
general, categorical definition of containers. In the case of locally cartesian closed
categories,5 this is equivalent to the notion of shapely types [23].

4 Base types and arguments for the type parameter variables can be arbitrary types
including function types.

5 Note, that cartesian closed categories can be used to model the λ-calculus.

Coordinating Computation with Communication 219

Fig. 6. Examples for overlapping covers

4 Combining Algorithmic Skeletons with Data
Distributions — Coordinating Computation with
Communication

4.1 Parameterizing Skeletons with Overlapping Covers

Now we extend the usual notion of algorithmic skeletons (abstracting parallel
computations) with data distributions (specifying communication). A skeleton
is, in our system, parameterized by a – possibly overlapping – data distribution
(cover).

Formally, this can be expressed by defining a skeleton operation in such a way
that it operates on a cover, i.e., an overlapping data structure. If C is a cover, we
can lift a function f : subobjC[α] → subobjC[β] on subobjects onto the original
object Obj ∈ objC[α]. For example, the map skeleton can be defined as follows:

fun Map : cover → (subobjC[α]→ subobjC[β])→ objC[α]→ objC[β]
def Map(C)(f)(Obj) = (glueC ◦ map(f) ◦ splitC)(Obj) (6)

The object is thus split into subobjects, which are then transformed by the
parameter function f (cf. the definition of map(f) in (1)). If we have, for instance,
a function stencil that (sequentially) applies a stencil to a matrix block, we
can obtain a function Map(ColumnBlock[real, p, 1, 1])(stencil) that operates
on each submatrix in parallel. Note that we have here a single overlapping
column to both the left and right neighbors. Its semantics is – according to
Eq. 6 – such that the whole matrix is split into overlapping submatrices with
the overlapping columns being duplicated, the function stencil is then applied
to each submatrix independently from the others, and, finally, the resulting sub-
matrices are glued together to a new matrix. In the implementation proper,
however, we do not exchange full subobjects between processors in each skele-
ton application. Instead, we keep the subobjects distributed over the different
processors. Thus we merely communicate the referenced overlapping elements to
the neighbor processors in order to update their current values (cf. Fig. 5), and
then continue with the local computation.

More generally, we can even allow the map skeleton to be applied to different
covers C1 and C2. Analogously, we can define other skeletons operating on covers.

220 T. Nitsche

west Ui,j east

south

north

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

��

�

�

��

�

(a) stencil definition (b) application to a tiling-block distribution

Fig. 7. 5-point stencil

4.2 Case Study: PDE Solver

To demonstrate the benefits of our approach, we consider as a case study the solu-
tion of the Poisson equation δ2u(x,y)

δx2 + δ2u(x,y)
δy2 = g(x, y) with Dirichlet boundary

condition as a simple example of partial differential equations (PDEs). To solve
this equation in the domain [0, 1]× [0, 1], we use a discretization with a grid of
N × N grid points, i.e., a step width of h = 1

N−1 leading to a two-dimensional
matrix U of grid points Ui,j . The value of each grid point of iteration t+1 can be
computed by using the values of the four neighboring grid points of the previous
iteration t (Jacobi–Method):

U t+1
i,j =

1
4

(
U t

i,j−1 + U t
i−1,j + U t

i+1,j + U t
i,j+1 − h2g(i, j)

)
(7)

These neighboring values are given by the usual Laplacian finite-difference 5-
point stencil (Fig. 7-(a)). Distributing the matrix U onto multiple processors
leads to overlapping data at the border (cf., e.g., Fig. 7-(b)).

By using algorithmic skeletons and covers, the programmer is not bothered by
low-level communicationdetails and can concentrate on the algorithmic solution to
the problem.Fig. 8 shows the Jacobi algorithm in skeletal formbased ondatadistri-
butions. The function solve gets a distributed matrix (type objectInfo[matrix]
in line 2)6 as a parameter and computes the new matrix with the map skeleton on
an overlapping cover

C1
def= coverEnv(p, foreign(1), foreign(1)),

which corresponds to ColumnBlock[real, p, 1, 1] (lines 4,10). To compute the
residuum as the termination criteria we first calculate the absolute difference be-
tween the old and new matrix using the skeleton zip (line 5). Then we can calcu-
late the residuum as the maximal difference value of the matrix
using reduce (line 6). Note that the later two skeleton applications operate
on a non-overlapping cover C0 == ColumnBlock[real, p, 0, 0] (line 9).

Not only is this an elegant solution, we can now very easily change the data
distribution used. Another distribution of the matrix can be specified simply
6 The communication side effects of the function are denoted by the monad type com[α].

Coordinating Computation with Communication 221

Fig. 8. Jacobi iterative PDE solver (version with skeletons over covers)

by using another cover while the rest of the program remains unchanged. This
is a significant advantage compared to other implementations like, e.g., a low-
level MPI implementation, because the parallel program remains readable and
maintainable. A tiling-block distribution with one line and column overlapping
on each side can be achieved simply by importing the TilingBlock cover and
defining the corresponding cover environment

C1 = coverEnv(√p,√p, foreign(1), foreign(1), foreign(1), foreign(1))
to specify the overlapping. The new communication pattern is then automatically
derived by the system. The Map skeleton is thus applied to the two-dimensional
tiling-block cover and we can benefit from its better computation-to-communi-
cation ratio.

In an MPI implementation, this is much harder to achieve. Here the user code
is three to five times larger than our high-level solution because all communi-
cation operations have to be programmed explicitly. In the resulting program
computational aspects dealing with the algorithmic solution and communication
aspects are intermixed with each other. This not only complicates programming
but also makes it harder to change the data distribution and its resulting com-
munication structure. Moreover, the user explicitly has to match all send oper-
ations with their matching receive operations in order to avoid deadlocks. Even
for the simple one-dimensional column-block distribution we have to distinguish
between groups with odd or even processor number and need four communi-
cation phases, while for a two-dimensional (tiling-block) or three-dimensional
cover as many as four or eight versions necessary, respectively. So not only in-
creases the code size, and therefore the probability of errors in it, but the actual
algorithmic part of the program also becomes hidden by the large overhead for
the parallelization.

In our system, however, programmers do not have to take care of such low-level
details as shown before. It enables a clean separation of computational opera-
tions and communication aspects, where both parts can be combined (and hence
changed) easily. The necessary communication is than managed automatically
by the middleware system (see [26] for a more detailed description). Despite the
high-level of programming abstraction in our system, the performance results
are comparable to that of a low-level hand-coded MPI implementation (Fig. 9).

222 T. Nitsche

0

10

20

30

40

50

60

70

2 4 6 8 10 12

T
im

e
(in

 s
)

Processors

Jacobi Solver (n = 10^5, 10 Steps)

Skeletons & Cover
MPI hand-coded

Fig. 9. Runtime of the PDE solver, (skeletons with cover vs. MPI)

4.3 Implementation

To achieve such a high-level programming style, the application programmer
can use a library of predefined skeletons and data distributions. Extensions to
this library can be made in a high-level, purely functional manner without hav-
ing to deal with explicit communication operations. The different layers of the
implementation (see [25] for details) are shown in Fig. 10.

The underlying basis is a communication library, which could be MPI, BSP,
a (distributed) shared-memory system, etc. In our current implementation, we
use MPI. Since the MPI standard only defines the message passing operations
for standard languages like C and Fortran, we have to lift the corresponding
communication functions to our implementation language OPAL [10, 27].

On top of this communication layer, we have implemented a generic cover
that handles all the communication necessary for foreign data access and data
distributions in a generalized way. It provides a common interface for parallel
operations, based on getSubobj and storeSubobj to access the local subobjects
on each processor. The generic cover encapsulates all communication operations
for the upper layers (skeletons and specific data distributions). It is generic
because it allows all specific covers over arbitrary data types to be built on it.

Specific data distributions (covers) over arbitrary data types are then defined
by parameter functions to specify overlappings and traversing the cover struc-
ture. Overlappings are specified by types for requesting foreign data and the
corresponding answers as well as functions for extracting and inserting foreign
values from and into subobjects, respectively.

Algorithmic skeletons can be defined based on the operations of the generic
cover. This leads to generic skeletons that operate with arbitrary data distribu-
tions over any types. It allows the easy combination and replacement of skeletons
and data distributions as shown in Sect. 4.2. In the implementation proper, we
internally operate on the set of subobjects rather than the whole object itself.

Coordinating Computation with Communication 223

Parallel
Program Application

Algorithmic
Skeletons

Data Distributions
(Overlapping Covers) Library

Traversal

Generic
Cover System

Thread-Comm. Communication

Threads OPAL-MPI

C+MPI

Parallel System

Fig. 10. System architecture

That means that we regard the cover as a distributed object whose subobjects
are distributed among the available computers. Algorithmic skeletons now oper-
ate in a collective manner on the locally available subobjects of each computer.
The skeletons are hence independent of the cover type because only the local
subobjects are relevant. Thus we can, for instance, combine different data struc-
tures with the zip skeleton, provided the number and mapping of subobjects
are the same.

In order to respect the semantics of the parallel program, we have to update
the overlapping foreign parts of the subobjects within each skeleton execution.
This is done automatically, since the access function getSubobject from the
underlying generic cover always yields subobjects whose foreign parts have been
updated already. If an algorithmic skeleton is used for the first time, a function
is called that computes the necessary communication schedule. The resulting
communication operations are specific for each subobject and depend on the
overlapping specification of the corresponding cover. The corresponding (neigh-
bor) communication scheme may look as in Fig. 5.

In the parallel program, we now merely have to select the proper algorithmic
skeletons and data distributions and combine them.

224 T. Nitsche

4.4 Programming Model

In our programming model we distinguish the following roles:

Application programmer: Ordinary application programmers do not have to
worry about the complexity of the specification of a data distribution or skele-
ton. They merely have to know what is available in the library without having
to be able to read and understand their specifications. A novice, i.e. an ordi-
nary user, has only to import the skeletons and covers from the library.
Application programmers thus have a high-level view onto the parallel sys-
tem. However, the parallelism itself is still visible to them. The skeleton
describe the parallel algorithm itself, while the (size of the) overlappings
give a prediction of the communication costs.

Library programmer: An experienced user can extend the library. New data
distributions (covers) are defined purely functionally within the base lan-
guage. This is done in a high-level style without the need for explicit (low-
level) communication operations.
Thus even application programmers can extend the library by themselves
because no explicit message passing operations are necessary. The library
programmer only has to use the operations provided by the generic cover
which serve as the underlying middleware. However, further optimizations
are still possible.

System programmer: The system programmer that implemented the under-
lying middleware is the only person that has to deal with communication
operations explicitly. In this layer the necessary communication is generated,
thus encapsulating all the lower-level details of data management, commu-
nication and synchronization from the upper layers and their users.

5 Conclusion

In this paper we described a system that allows the programming of parallel
systems on a high, abstract level using algorithmic skeletons. In contrast to co-
ordination languages like Linda [16], that also abstract MIMD parallel computa-
tions but (like the Linda tuple space) interact via shared memory, we explicitly
target at distributed memory systems. These systems can consists of thousands
of machines, so data distribution and communication issues are crucial for an
efficient program execution.

We extend the skeleton approach by a notion of (overlapping) data distrib-
utions which are thus under explicit control of the programmer. However, we
do not complicate the problem solution by technicalities of communication and
synchronization details. These are handled implicitly on the application level,
where overlapping parts specify communication requirements. The underlying
middleware system then derives and schedules the necessary communication au-
tomatically. Note that, for reasons of efficiency, we try to exchange only the
overlapping data elements and not full subobjects.7 In contrast to common
7 Which can be done in the case of shapely covers [25, 23].

Coordinating Computation with Communication 225

data-parallel languages like HPF [12], Nesl/Nepal [3, 6] or SAC [18] we do not
restrict ourself to certain data types like arrays or nested vectors, but allow
arbitrary container types, i.e. combinations or algebraic types and arrays, to
be used.

The separation of concerns allows skeletons and data distributions to be de-
fined and used independently from each other. The skeletons encapsulate the
algorithmic aspects of the (parallel) behavior, while the data distributions (cov-
ers) encapsulate the aspects of the distribution and the (overlapping neighbor-
ing) communication. Both aspects can be defined independently from each other,
while their combined use within the program is coordinated by the underlying
generic cover system (cf. Fig. 10).

Obviously we cannot completely eliminate the inherent complexity of the par-
allel program, but we can reduce it. Since algorithmic aspects and distribu-
tion/communication aspects are clearly separated, it is easier to write programs
that are correct than when using lower-level approaches where these aspects are
intermixed and confuse the programmer.

Our approach can be classified as an endogenous, data-driven coordination
model according to [28]. The description of the data distribution defines the
communication and synchronization requirements. Unlike [4], where the shared
data is duplicated among the different processors and write operations corre-
spond to broadcasting of data, we explicitly distribute the subobjects onto the
different processors. The list of local subobjects can thus be seen as a kind of
local data space, with the subobjects being the data stored. In this sense we
have some similarities with the TuCSoN model [28], which enhances the or-
dinary, global Linda tuple space with behavior specifications and a notion of
local tuple-based interaction spaces, called tuple centers. A control-oriented co-
ordination language is, e.g., Manifold [29]. Here the processes are separated into
computation and coordination processes, allowing event-driven control-structure
to be described independently of the actual data elements. In our system, the
communication structure is also independent of the data elements themselves,
provided the data distribution is shapely, but, obviously, depends on the shape
of the data structure.

As future work we plan to re-implement our prototypical system in an object-
oriented language like Java (or C++) to make it usable for real-world applica-
tions and the Grid. The libraries of the generic cover and the skeletons built on
top of it can be carried over to any other implementation language.

In this context we also want to examine how we can define skeletons that
operate on covers that are not distributed onto different machines but whose
subobjects are all locally on the same machine. From the semantical definition of
overlapping data distributions (covers) this is possible, which allows algorithms
to be expressed very concisely. We can, e.g., change the Jacobi algorithm to a
Gauß-Seidel like methods merely by using an overlapping data distributions with
future synchronization.

Acknowledgments. I would like to thank the anonymous reviewers for their help-
ful comments, and Phil Bacon for improving the English presentation.

226 T. Nitsche

References

[1] M. Abbott, T. Altenkirch, and N. Ghani. Categories of containers. In A. D.
Gordon, editor, FOSSACS’03, volume 2620 of LNCS, pages 23–38. Springer, 2003.

[2] A. Benoit, M. Cole, S. Gilmore, and J. Hillston. Flexible skeletal programming
with eSkel. In Euro-Par’05, volume 3648 of LNCS, pages 761–770. Springer, 2005.

[3] G. E. Blelloch. Vector Models for Data-Parallel Computing. MIT Press, 1990.
[4] M. M. Bonsangue, J. N. Kok, and G. Zavattaro. Comparing software architectures

for coordination languages. In P. Ciancarini and A. L. Wolf, editors, COORDI-
NATION’99, volume 1594 of LNCS, pages 150–165. Springer, Apr. 1999.

[5] G.H. Botorog and H. Kuchen. Efficient high-level parallel programming. Theo-
retical Computer Science, Special Issue on Parallel Computing, 1998.

[6] M. M. T. Chakravarty, G. Keller, R. Leshchinskiy, and W. Pfannenstiel. Nepal
- nested data parallelism in Haskell. In Euro-Par’01 Parallel Processing, volume
2150 of LNCS, pages 524–534. Springer, 2001.

[7] M. I. Cole. Algorithmic Skeletons: Structured Management of Parallel Computa-
tion. MIT Press, 1989.

[8] M. I. Cole. Bringing skeletons out of the closet: a pragmatic manifesto for skeletal
parallel programming. Parallel Computing, 30(3):389–406, 2004.

[9] J. Darlington, Y. Guo, H.W. To, and J. Yang. Functional skeletons for parallel
coordination. In S. Haridi, K. Ali, and P. Magnusson, editors, Euro-Par’95 Parallel
Processing, volume 966 of LNCS, pages 55–69. Springer, Aug. 1995.

[10] K. Didrich, A. Fett, C. Gerke, W. Grieskamp, and P. Pepper. OPAL: Design
and Implementation of an Algebraic Programming Language. In J. Gutknecht,
editor, Programming Languages and System Architectures (PLSA’94), volume 782
of LNCS, pages 228–244. Springer, 1994.

[11] S. R. Donaldson, J. M. D. Hill, and D. B. Skillicorn. Predictable performance
on unpredictable networks: Implementing BSP over TCP/IP. In Euro-Par’98
Parallel Processing, volume 1470 of LNCS, pages 970–980. Springer, 1998.

[12] High Performance Fortran Forum. High Performance Fortran — language speci-
fication. Scientific Programming, 2(1), Jun. 1993.

[13] I. Foster. Designing and Building Parallel Programs: Concepts and Tools for
Parallel Software Engineering. Addison-Wesley, 1995.

[14] I. Foster and C. Kesselmann. The Grid: Blueprint for a New Computing In-
frastructure. Morgan Kaufmann Publishers, 1999.

[15] G. A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Mancheck, and V. S. Sun-
deram. PVM: Parallel Virtual Machine – A Users’ Guide and Tutorial for Net-
worked Parallel Computing. MIT Press, 1994.

[16] D. Gelernter and N. Carriero. Coordination languages and their significance.
Commun. ACM, 35(2):97–107, Feb. 1992.

[17] S. Gorlatch. Send-receive considered harmful: Myths and realities of message
passing. ACM Transactions on Programming Languages and Systems (TOPLAS),
26(1):47–56, Jan. 2004.

[18] C. Grelck and S.-B. Scholz. Generic array programming in SAC. In W. Goerigk,
editor, Programmiersprachen und Rechenkonzepte. 21. GI-Workshop, 2004, pages
43–53, Jan. 2005.

[19] W. Gropp. Learning from the success of MPI. In High Performance Computing
- HiPC 2001, volume 2228 of LNCS, pages 81–92, 2001.

[20] C. Herrmann and C. Lengauer. Parallelization of divide-and-conquer by transla-
tion to nested loops. Journal of Functional Programming, 9(3):279–310, 1999.

Coordinating Computation with Communication 227

[21] J. M. D. Hill, B. McColl, D. C. Stefanescu, M. W. Goudreau, K. Lang, S. B. Rao,
T. Suel, T. Tsantilas, and R. H. Bisseling. BSPlib: The BSP programming library.
Parallel Computing, 24(14):1947–1980, 1998.

[22] C. B. Jay. Separating shape from data. In Category Theory and Computer Science
(CTCS’97), volume 1290 of LNCS, pages 47–48. Springer, 1997.

[23] C.B. Jay. A semantics for shape. Sci. Comput. Program., 25(2-3):251–283, 1995.
[24] H. Kuchen. A skeleton library. In B. Monien and R. Feldmann, editors, Euro-

Par’02 Parallel Processing, volume 2400 of LNCS, pages 620–629. Springer, 2002.
[25] T. Nitsche. Data Distribution and Communication Management for Parallel Sys-

tems. PhD thesis, Technical Univ. of Berlin, Dept. of Comp. Sci. and Electr. Eng.,
2005.

[26] T. Nitsche. Deriving and scheduling communication operations for generic skele-
ton implementations. Parallel Processing Letters, 15(3):337–352, Sep. 2005.

[27] T. Nitsche and W. Webers. Functional message passing with OPAL-MPI. In
Proc. EuroPVM/MPI’98, volume 1497 of LNCS, pages 281–288. Springer, 1998.

[28] A. Omicini and F. Zambonelli. Coordination of mobile agents in TuSCoN. Internet
Research, 8(5), 1998.

[29] G. A. Papadopoulos and F. Arbab. Coordination models and languages. Advances
in Computers, 46, 1998.

[30] F. A. Rabhi and S. Gorlatch, editors. Patterns and Skeletons for Parallel and
Distributed Computing. Springer, 2003.

[31] M. Snir, S. W. Otto, S. Huss-Ledermann, D. W. Walker, and J. Dongarra. MPI
— The Complete Reference: Volume 1, The MPI Core. MIT Press, 1998.

[32] M. Südholt. The Transformational Derivation of Parallel Programs using Data
Distribution Algebras and Skeletons. PhD thesis, Technical Univ. of Berlin, 1997.

Distributed Workflow
upon Linkable Coordination Artifacts

Andrea Omicini, Alessandro Ricci, and Nicola Zaghini

DEIS, Alma Mater Studiorum—Università di Bologna
via Venezia 52, 47023 Cesena, Italy

{andrea.omicini, a.ricci, nicola.zaghini}@unibo.it

Abstract. Coordination infrastructures can be used for the general-
purpose support of WfMSs (workflow management systems). Suitably-
expressive coordination artifacts can be specialised as workflow engines,
encapsulating workflow rules expressed in terms of coordination laws.

In this paper, we focus on the issue of inter-organisational workflow
(IOW), and show how the issue of multiple, interdependent, distributed
workflows requires coordination artifacts to be linkable, so as to create a
network of inter-connected coordination flows.

After discussing a model of workflow engine based on ReSpecT tu-
ple centres, we introduce a distributed workflow architecture based on
TuCSoN, exploiting a logic-based workflow language. In particular, we fo-
cus on the definition of a scoping mechanism, and show how this enable
workflows to be dynamically governed and distributed upon a coordi-
nation infrastructure based on artifact linkability. An example of a VE
(virtual enterprise) workflow is finally discussed.

1 Introduction

The ever-increasing requirements of today distributed scenarios are making many
results of the research in the field of coordination models and languages become
of interest for real-world applications and systems. WfMSs (workflow manage-
ment systems), for their very nature, apparently represent one of the most nat-
ural applications for coordination models and languages. As discussed in [1],
agent-based coordination infrastructures are seemingly well-suited to support
workflow management—especially in the case of VEs (virtual enterprises) and
inter-organisational workflows [2], where decoupling and autonomy of execution
are essential features. In particular, the notion of coordination artifact, intro-
duced in the field of MASs (multiagent systems) as a generalisation of coordina-
tion media [3, 4, 5], is in principle expressive enough to fully capture the structure
and function of workflow engines, by encapsulating workflow rules in terms of
coordination laws.

In this paper, we focus on the issue of inter-organisational workflow, where
multiple, interdependent, distributed workflows have to be synchronised and co-
ordinated across different participant organisations. To this end, in Sect. 2 we
introduce a model of workflow engine based on ReSpecT tuple centres, which

P. Ciancarini and H. Wiklicky (Eds.): COORDINATION 2006, LNCS 4038, pp. 228–246, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Distributed Workflow Upon Linkable Coordination Artifacts 229

are programmed as general-purpose interpreters for workflow specifications ex-
pressed in terms of a logic-based workflow language. Then, in Sect. 3 we motivate
the issue of distributed workflow, and elicit requirements: accordingly, we define
a scoping mechanism enabling workflows to be dynamically distributed. Such a
mechanism requires coordination artifacts to be linkable—that is, able to be com-
posed and interact with each other—so as to create a network of inter-connected
coordination flows: this allows distributed workflow engines to synchronise, and
workflow activities to be coordinated across the network. In order to give a better
intuition of our approach, in Sect. 4 we present an example of a VE (virtual en-
terprise) based on inter-organisational workflow (IOW). Finally, Sect. 5 reports
on related works, and concludes.

2 Workflow Engines Upon ReSpecT

2.1 Workflow Engines as Coordination Artifacts

In the context of WfMSs, workflow engines play a fundamental role as the com-
ponents in charge of the coordination of the workflow activities, encapsulating
the execution of workflow specifications, encoded in some workflow language
(examples are BPEL [6], XPDL [7]). When a WfMS is to be built upon a coor-
dination infrastructure, workflow engines are to be modelled and engineered as
coordination artifacts, encapsulating the workflow specification in terms of their
coordinating behaviour.

As discussed in [1], on the one hand agents can be used to encapsulate the
execution of tasks and individual activities, aimed at the achievement of some
kind of goal, possibly requiring different levels of skills and reasoning capabilities.
Agents can either play the role of artificial workflow participants—responsible
of the automated execution of some tasks—, or work as personal assistants of
humans—as intelligent interfaces with respect to the workflow system. On the
other hand, artifacts can be used either as the target of the agents activities—as
computational objects being constructed, manipulated, evolved—, or the tools
that agents use either individually or collectively to support their work toward
goal achievement.

In the context of WfMSs two basic kinds of artifacts can be considered as
useful: (i) artifacts supporting awareness, as means to improve mutual knowledge
and reuse by agents (and humans) [3]; (ii) artifacts supporting coordination, i.e.,
artifacts specialised to manage dependencies and interactions occurring among
agents (and humans) involved in the same activities [8]. Workflow engines can
then be naturally modelled as coordination artifacts, embedding the (workflow)
rules that define the coordination among the tasks executed by the workflow
participants (agents).

The basic properties defined in general for the coordination artifact abstract-
ion—inspectability, controllability, malleability, predictability, formalisability,
linkability, distribution [4]—can be suitably exploited to create flexible, dynamic
and scalable workflow management architectures. First of all, malleability allows

230 A. Omicini, A. Ricci, and N. Zaghini

the coordinating behaviour of workflow engines to be forged and tuned dynam-
ically. Then, inspectability makes it possible to design workflow engines whose
coordinating state and behaviour are fully observable, thus providing a straight-
forward support for management activities, in particular for automated forms of
on-line analysis of workflow data. Finally, linkability can be suitably exploited for
enabling the distribution of the workflow activities and scaling with their com-
plexity, by allowing multiple workflow engines (built as coordination artifacts) to
be linked together, carrying on parts of the same (distributed) workflow within
different execution contexts.

2.2 ReSpecT Tuple Centres as Coordination Artifacts

As a concrete technology for implementing coordination artifacts, we adopt
ReSpecT tuple centres [9]. Generally speaking, features provided by the tuple
centre model make it an effective model for designing and implementing flexible
agent-based WfMSs [1].

Tuple centres are programmable tuple spaces: while the behaviour of a tuple
space in response to communication events is fixed, the behaviour of a tuple
centre can be in fact programmed through the ReSpecT language [10]. ReSpecT
specification tuples define the behaviour of a tuple centre in terms of reactions to
interaction, by determining how a tuple centre should react to incoming/outgoing
communication events—such as Linda-like operations like out, rd, in. In short,
ReSpecT primitives make it possible to catch and observe interaction events in-
volving the tuple centre, to manipulate tuples inside the tuple centre, and also
to interact with other tuple centres, for instance making it possible to insert tu-
ples in other tuple centres [11]. Since ReSpecT is Turing-equivalent, any kind of
computable coordination law can be in principle embedded in a ReSpecT tuple
centre. Also, two basic operations, set spec and get spec, are provided to sup-
port run-time inspection and modification of the specification tuples of a tuple
centre. In the overall, then, tuple centres can be framed as general-purpose coor-
dination artifacts that can be dynamically customised (programmed) to provide
specific coordination functionalities.

The kind of communication featured in general by tuple-based models [12]
provides for time, space, and name uncoupling, by making tuple spaces (tuple
centres in ReSpecT) mediate all interactions. Agent interacting via tuple spaces
(and tuple centres, as well) need not to coexist in time and / or space, nor are
they required to know each other or to share a common implementation / archi-
tecture. This is a desirable property of any open workflow system indeed, where
agents behaviour cannot be predicted, and also eases interoperability among a
set of agents that could be heterogeneous under many aspects. Moreover, as-
sociative access to information represented in form of tuples makes it easier
for agents acting in an open and heterogeneous environments to work with in-
complete knowledge, whether in task description or in workflow documents. So,
facing heterogeneity of information is made easy by the possibility of access-
ing information only on the basis of partial / incomplete knowledge. As a fur-
ther benefit of tuple-based coordination, synchronisation based on information

Distributed Workflow Upon Linkable Coordination Artifacts 231

availability is well-suited to represent task-based or document-based synchroni-
sation of most workflow processes.

The very notion of coordination artifacts represented by tuple centres is the
most important feature with respect to workflow management. By enabling the
representation of workflow rules in terms of coordination rules programmed into
tuple centres, tuple centres can work as workflow engines, encapsulating the set
of rules constituting the workflow. Inspectability and malleability are supported
by the possibility respectively to read and change dynamically both the content
(logic tuples) of the tuple centres and their behaviour (specification tuples).
Linkability is supported by the possibility of exchanging tuples with other tuple
centres directly from the execution of reactions inside a tuple centre itself [11].

2.3 A General-Purpose Workflow Engine upon ReSpecT

By exploiting the expressive power of the Turing-equivalent ReSpecT language,
it is possible to design and develop a general purpose workflow engine on top of a
ReSpecT tuple centre. Accordingly, a ReSpecT tuple centre is programmed so as
to enact workflow specification encoded in terms of a set of logic tuples, stored
dynamically inside the tuple centre. So, on the one side ReSpecT specification
tuples define the behaviour of the tuple centre as an interpreter of the workflow
specification; on the other side, logic tuples dynamically stored inside the tuple
centre are used to represent both the state of a workflow in execution, and the
description of the workflow to be executed or in execution.

The model described here is intentionally kept simple, by omitting some de-
tails that are not strictly needed to understand the essential features of the ap-
proach. In the following, we sketch the model, by articulating the fundamental
aspects that typically concern the design of a workflow engine.

Basic Ontology. The elementary unit of work inside a workflow is the task : a
workflow schema is then a collection of tasks that collectively achieve the goal(s)
of a process. Tasks are interrelated into a flow structure via connectors, such as
split and join elements, which define the execution dependencies among tasks—
that is, the order in which tasks should be executed. A (workflow) case is an
execution of a workflow schema, i.e. an instance of the corresponding business
process. A case is composed by a collection of task instances, as instances of
the task specified in the corresponding workflow schema. Each workflow schema
has a meaningful name used as an identifier, and so does each task inside a
workflow. Analogously, runtime cases and task instances are denoted by a unique
identifier—automatically generated by the workflow engines.1

In order to better support workflow (de)composition—and distribution, as
discussed in the next section—the notion of scope is introduced, as a way to
identify the context where a part of a case should be executed [14]. A workflow
schema can then be partitioned by identifying a set of scopes and specifying
1 We deviate from WfMC terminology just to be clear and avoid ambiguities [13]:

the interested reader could easily find the straightforward mapping between the two
syntaxes.

232 A. Omicini, A. Ricci, and N. Zaghini

which part of the workflow—i.e. which tasks—is to be executed in which scope.
Scopes can be naturally organised in hierarchies, with child scopes defined as
linked to a parent scope. The main scope is the root of the hierarchy, and defines
the scope for the global workflow.

Scopes are used to specify the granularity of the mapping between workflows
and their execution engines—tuple centres in our case. One or multiple scopes
can be executed by a single workflow engine, and the execution of each individual
scope is associated to exactly one workflow engine. As detailed in next section,
different scopes of the same workflow schema can be executed on top of different
workflow engines, linked together.

The design of a general purpose workflow engine on top of ReSpecT tuple
centres concerns three main aspects:

– the agent interaction protocol, which specifies the actions that agents can
perform on the workflow engines;

– the event model, defining which kind of internal and external events should
be accounted for;

– the process model, describing the behavioural aspects of a workflow specifi-
cation, from its initial state to (one of) its final states.

The Agent Interaction Protocol. This protocol specifies which actions can
be performed by agents on the workflow engine, and how they should be ex-
pressed. Agent actions typically concern task allocation and task completion. As
usual in tuple-based models, actions are manifested in our model by requiring
that agents deliberately insert in the tuple centre a tuple to express their activ-
ity: such a tuple is said to reify the agent’s action, and may cause events inside
the workflow engine.

Here we assume that an agent willing to take charge of a given task does so by
removing from the workflow engine tuple centre the corresponding task_todo
tuple, performing a inp operation2 of the form

inp(task todo(?TaskName,?CaseID,-TaskID))3

where TaskName identifies the type of tasks the agent wants to take charge
of, CaseID the specific case that the agent is considering, and TaskID is the
identifier of the specific task instance, returned by the engine. The operation
is issued on the tuple centre where the case is running. Information possibly
required for task execution is meant to be stored in tuples apart, readable by
the agent after taking in charge the task.

2 The inp primitive removes a tuple matching the template specified as argument,
and returns a success / failure condition: the operation succeeds if a matching tuple
is found, or immediately fails otherwise, yet without blocking the agent activity.

3 Following Prolog convention for parameter passing, the + sign means that it is an
input parameter (can be also not specified:), the - sign means that it is an output
parameter (variable), the ? sign means that it can be both input and output, the @
sign means that it is an input parameter and must be specified (it cannot be).

Distributed Workflow Upon Linkable Coordination Artifacts 233

Analogously, agents manifest the successful completion of the task TaskID
that they were charged of by inserting in the tuple centre a suitable task success
tuple by performing an out invocation:

out(task success(@TaskID))

Analogously to information required by task execution, also information eventu-
ally provided with task execution is meant to be stored in tuples apart, inserted
by the agent before signalling task completion.

The Event Model. As for agent actions above, also the occurrence of events is
represented here through reifying tuples. According to [15], events can be either
internal or external.

Internal events define the normal flow of activities within the workflow (such
as temporal events related to the beginning and the termination of a task):
tuples reifying these events are not inserted by agents, but are generated by the
workflow engine itself as a result of its coordination activity. Such tuples take
the form event(Desc,Time), where Desc is a description of the event, Time is
a timestamp indicating when the event occurred (taking the local time of the
tuple centre as a reference).

– the start of a new task, represented by a task started(TaskID, Exe-
cutorID) tuple—where TaskID is the identifier of the task, and ExecutorID
is the identifier of the agent responsible for this task;

– the termination of a task, represented by a task finished(TaskID,Result)
tuple—where TaskID is the identifier of the task, and Result is the infor-
mation about the success / failure of the task;

– the start of a case, represented by a case started(CaseID,ExecutorID)
tuple—where CaseID is the identifier of the case, and ExecutorID is the
identifier of the agent initiator of the case;

– the termination of a case, represented by a case finished(CaseID,Result)
tuple—where CaseID is the identifier of the case, and Result is the infor-
mation about the success / failure of the case.

External events are instead outside the control of the WfMS, and typically rep-
resent error conditions: examples are asynchronous external events (such as task
cancellation), changes in the process organisation (such as the sudden unavail-
ability of an agent), or the violation of constraints either on the workflow data
or on the workflow timing. In state-of-the-art workflow systems, exception man-
agement usually requires the definition of a set of triggers (rules) which specify
the asynchronous actions (typically notifications) to be taken when the condi-
tions defining exceptions occur. Analogously, workflow exceptions are managed
in tuple centres by reactions triggered by the interaction events related to the
exception conditions: exception events, too, are reified as tuples inserted in the
tuple centre.

Since these issues are not essential for the focus of the paper, we forward the
interested readers to other articles [1] where the problems of exception handling
and workflow dynamic change are considered.

234 A. Omicini, A. Ricci, and N. Zaghini

The Process Model. Typically, a WfMS describes control flow structures
by means of either flow diagrams (Petri-nets and similar) or special-purpose
languages designed for workflow management, such as XPDL [7] or BPEL [6]. In
our approach such information is described declaratively, as a logic theory about
the coordination enacted by the workflow. Basically, the theory is composed
by (i) a set of assertion describing the tasks involved in the workflow, (ii) a
set of assertions describing the workflow rules which define task coordination,
and (iii) a set of assertions that define the scopes on which the workflow is
structured.

WF-Connector

t1 t2 t3

t4 t5 t6

Fig. 1. A generic workflow connector

By using the ReSpecT tuple centre model, such theory is encoded as a set of
logic tuples of the following kind:

task def(TaskName,WfName,TaskDesc,ScopeName) defines a task, characterised by
a name TaskName , the name WfName of the workflow schema where it is
defined, a task description TaskDesc , and the scope ScopeName where the
task is supposed to be executed. For each task defined in a schema, a tuple
of this kind must be specified;

wf def(WfName,InTasks,OutTasks,Pattern) defines a workflow rule belonging to
the workflow schema WfName , linking together two sets of tasks—listed in
InTasks and OutTasks—, according to a specific semantics. The two sets of
tasks can be thought as the input and the output tasks of a workflow connec-
tor as typically presented in workflow diagrams (see Fig. 1), coordinating the
completion of input tasks and the triggering of output tasks. The semantics
of the connector is defined by specifying Pattern , which represents the type

Distributed Workflow Upon Linkable Coordination Artifacts 235

of connection among the tasks. Pattern can be either a PatternName—that
is, a term denoting one of the basic types of connection such as sequence,
and split, and join, or join— or a CondList—that is, a list of logic terms
denoting the conditions that must dynamically hold to trigger the execution
of the output tasks (activating condition), defined through cond/3 clauses.
While the former syntax is maybe the most natural for the straightforward
representation of workflow schema, the latter is the most general (including
the former as a subcase), and can supposedly express most (if not all) of the
patterns listed in [14].

scope def(ScopeName,WfName,ParentScopeName) defines a scope, belonging to
workflow schema WfName , identified by the term ScopeName and whose par-
ent scope is ParentScopeName .

Tuple centres acting as workflow engines are programmed so as to dynamically
react to the communication events that characterise agent interaction during the
workflow, and to update the state of the coordination activity—by consuming,
transforming, producing set of tuples. Such updates trigger new tasks to be
executed as well as agent activities according to the theory defined in wf def,
task def and scope def tuples.

In short, here is how a tuple centre behaves as a workflow engine:4 A workflow
case starts when a tuple case tostart(WfName,ScopeName) is inserted in the
workflow engine tuple centre. This event triggers a set of reactions, which sets
the basic data structures (in form of logic tuples) required for the execution of a
new case, and collects the names of all the tasks that should be triggered to start
the workflow. In particular, this is achieved by reading all the wf def tuples that
have the task case start among the input tasks.

The conditions specified in wf def are dynamically evaluated, and only the
output tasks for which the related condition holds are triggered, by generating
a tuple task todo(TaskName,CaseID,TaskID). Actually, this tuple is gener-
ated only if the scope specified for the task in the tuple task def is mapped
on the tuple centre executing the reaction: otherwise, as described in the next
section, the task execution is exported to the tuple centre where such a scope is
mapped.

When an agent retrieves a task todo—preparing for the execution of a task—,
the tuple centre reacts and updates the tuples carrying the state of the workflow
accordingly. The core of the coordinating activity of the tuple centre takes place
when agents insert task finished tuples, to manifest the completion of tasks.
This event triggers a set of reactions, which find out the next tasks to do by
evaluating the content of the wf def tuples that have the task completed among
the input tasks. The coordinating activity goes on as long as case end is specified
as the task to be triggered.

4 ReSpecT reactions defining the tuple centre behaviour are here omitted for the lack
of space: the interested reader can find all the code at http://www.alice.unibo.it/
download/workflow/coord06.zip.

236 A. Omicini, A. Ricci, and N. Zaghini

3 Distributing Workflows with Linkability

3.1 Distributed Workflow: Motivations and Requirements

Whereas exploiting a single coordination artifact as a workflow engine for com-
plex workflows is technically feasible, e.g. by using the approach discussed in
previous section, this is seemingly not an sensible solution under many respects.

The ability to distribute a workflow among different engines is first of all re-
quired for reasons of expressiveness. Distribution, in fact, may be inherent to
the application scenario, where agents, services and resources could be intrin-
sically distributed in space. So, simple principles of locality and encapsulation
would require the corresponding activities to be distributed as well, along with
the workflow engines. Also, distribution may in principle improve efficiency, in
particular when independent activities can be carried on concurrently by dis-
tinct workflow nodes. Finally, distribution may also have a favourable impact on
robustness, since the failure of a workflow node does not necessarily lead to the
global workflow failure.

This holds in particular in the case of inter-organisational workflow (IOW) [2].
There, portions of multiple distributed workflows have typically to be combined
and aggregated into complex workflow structures, constituting for instance the
backbone of a VE. So, the problem is not to distribute a workflow, rather the
other way round: that is, to aggregate some inherently distributed activities in
a higher-level workflow. Distribution is no longer an option, then—just a matter
of fact.

The first point here is then composability of workflows, in general, and in
particular of workflow engines. How to share information among several inde-
pendent activities, and how to coordinate them over a distributed, asynchronous
scenario, are the central issues here.

The second point is ownership: stakeholders of independent activities within
an IOW may not be willing to share everything, and to open up completely
to the other participants. It is quite often the case, for instance, that VEs are
made up of competitors, typically fighting each other in the local market, but
willing to cooperate to win some share on a larger setting. In this scenario, most
of the workflow activities should remain under the control of each participant,
which should then be allowed to carry on its portions of workflow locally and in
autonomy.

The third and final point is alterity: IOW does not belong in principle to
any of the participant organisations—at least, not necessarily. So, it is typically
required that the main workflow is hosted by a third-party (an external host,
a provider, a shared space) that is not directly owned / controlled by any of
the workflow participants—and so, that an external infrastructure of some sort
supports the main workflow engine.

In next subsection, we take the above requirements for IOW as driving prin-
ciples for distributed workflow in general, and show how an architecture for
distributed workflow can be accordingly defined based on a distributed coordi-
nation infrastructure.

Distributed Workflow Upon Linkable Coordination Artifacts 237

3.2 A Coordination Architecture for Distributed Workflows

Based on the remarks in previous subsection, it is now quite straightforward to
devise out an abstract architecture for distributed workflow based on a coordi-
nation infrastructure.

First of all, ownership implies that portions of the supporting infrastructure
should be owned by each of the participants, and autonomously governed by
them. Of course, this also means that such an infrastructure does not need to
be pervasive, but should only affect those processes that need to be shared in
the workflow. So, each of the workflow nodes may contain one or more workflow
engines, built as suitably-specialised coordination artifacts, as discussed in the
previous section. The engines represent in principle the only things that each
node (for instance, a participant to an IOW) is required to open and share
with other nodes (other participant organisations) to function as a part of the
distributed workflow. Local activities can then be carried on autonomously by
local agents, with no need for unnecessary disclosures. The main consequence,
then, is that the supporting coordination infrastructure needs to be distributed,
and owned by each of the workflow participants in terms of one or more workflow
nodes, connected to each other through the network.

Then, composability of workflow engines is a fundamental pre-condition to dis-
tribute workflow activities. In fact, while interoperability of nodes is an obvious
feature for any distributed infrastructure, the same does not hold for distributed
coordination artifacts, at least for Linda-based models: interaction between tu-
ple spaces, for instance, is not a typical features of Linda-like models. Instead,
the ability to link different stages of separate but related workflows is essen-
tial to synchronise and coordinate the activities of multiple autonomous agents
in a distributed workflow. This obviously mandates for the ability to exchange
information among the coordination artifacts working as workflow engines: to
set when a task can be started, when another task has been completed, when
a problem arises. Linkability of artifacts is then another essential feature for a
coordination infrastructure to support distribution of workflow.

Finally, alterity means that a distributed workflow may in principle be hosted
by a workflow node (call it the main workflow node, implicitly defining the main
scope of the workflow) which is not required to belong to one of the workflow
participants—in IOW, it might be required not to.

In all, a simple abstract architecture for distributed workflow could be en-
visioned as follows: (i) a main workflow node, containing the general specifica-
tion of the distributed workflow, (ii) a number of workflow nodes distributed
across workflow participants (one or more node for each participant), in charge
of their own portions of the workflow, (iii) a network of workflow events ex-
changed among the workflow engines, in order to maintain global consistency
of the distributed workflow activities. In terms of the supporting coordina-
tion architecture, this essentially means that coordination artifacts should be
(i) programmable—working as general-purpose workflow engines—, (ii) distri-
butable—so they can be located chez each workflow node, and (iii) linkable—to

238 A. Omicini, A. Ricci, and N. Zaghini

reify workflow events, so that distributed workflow engines can synchronise and
coordinate across the network.

3.3 Distributing Workflows Via Artifact Linkability

All the above requires also some suitable abstractions with the expressive power
to encapsulate workflow portions (simple tasks, more articulated workflow
branches) so as to preserve consistency while distributing them. The notion
of scope can be used to this purpose. In short, a scope is an independent work-
flow process generated by a parent process, and represents a sort of container
for workflow activities. To us, here, it works as a sort of local environment for
workflow activities, and as such can be conceived as the basic abstraction to
encapsulate and distribute workflows.

As shown in the previous section, a scope is defined among the three main en-
tities of our basic approach (workflow schema, task structures, scopes) through
the scope def/3 predicate. Beyond these three predicates, a fourth predicate
scope location/3 is then used to structure the “workflow environment” by as-
sociating each node of the scope hierarchy to a workflow engine belonging to a
given workflow node. Since workflow engines are here mapped upon coordina-
tion artifacts, a clause scope location(ScopeName,WfName,ArtID) associates
scope WfName:ScopeName to the workflow engine built upon coordination arti-
fact ArtID . The portion of the workflow associated to scope WfName:ScopeName
by clauses of the form task def(TaskName,WfName,...,ScopeName) has to be
then executed on the workflow engine running over artifact ArtID .

Of course, artifact denotation should include the syntax for distribution.
For instance, in our reference architecture, TuCSoN, artifacts are tuple centres
denoted by a TupleCentreID composed as TupleCentreName@HostID , where
TupleCentreName is just the local tuple centre name, and HostID is the DNS
identifier of the TuCSoN node hosting the tuple centre.5 As a result, a clause of
the form scope location(ScopeName, TupleCentreID) makes a given number
of workflow tasks associated to scope ScopeName be executed by the workflow
engine built on tuple centre TupleCentreID .

Distributing a workflow is now a matter of when, what and how. Whereas
the when and the what are soon solved, the how is precisely when linkability
of artifacts comes in. Distribution of a workflow starts as soon as a task is
activated whose execution should happen elsewhere: that is, when its scope is
associated to an artifact that is not the engine where the workflow is currently
being executed. Since scopes are defined hierarchically, all the subsequent tasks
defined in the same scope and in all the subscopes should be moved along with
the corresponding ontology definitions: workflow schema, tasks, scope definitions
and locations are what should be moved across workflow engines.

How this should happen—it is on the one hand a quite simple issue, on the
other hand the core point of this paper. Two things in fact need to be transferred:

5 According to the TuCSoN syntax, when TupleCentreID is simply TupleCentreName ,
it means that the tuple centre is hosted locally in the same TuCSoN node.

Distributed Workflow Upon Linkable Coordination Artifacts 239

information and control. Information needs to flow among engines in order to
allow the execution of workflow (sub-)processes to move along while maintaining
structural consistency. Then, control needs to be exchanged among workflow
engines so as to allow for synchronisation and coordination of distributed and
interdependent activities.

To this end, coordination artifacts should be linkable, by allowing informa-
tion to be exchanged, events to be notified, and exchanges to be captured across
different artifacts. So, first of all, a mechanism to send information to another
coordination artifact is required to distribute scopes—along with the correspond-
ing workflow, task and subscope information. Then, a way to ask for informa-
tion when available is needed, in order to synchronise and coordinate distributed
workflows: for instance, to be notified of the end of a task, of a milestone reached,
of a task failure. Finally, a way to capture information coming from another
artifact—either solicited or not—and to associate it to computational activities,
is mandatory to ensure timeliness of workflow activities, such as distributed task
selection and activation.

In the case of the TuCSoN coordination infrastructure, the last requirement
is straightforwardly met by the reaction model: the ReSpecT language, in fact,
not only enables programmability of the tuple centres, but also allows any event
traversing the tuple centre’s boundaries to be captured, associated to a specific
computation (a reaction) and there fully observed so as to catch and exploit any
relevant related information [9]. The other two aspects, instead, clearly need
tuples to be sent from a tuple centre to another, and to be required for delivery
when available by a tuple centre to another: this means that tuple centres have
to be able to perform ins, rds and outs one another.

Even though linkability is not a property of the original ReSpecT model [9], it
has been added later to deal with multiple coordination flows [11]. So, ReSpecT
reactions can contain out_tc, in_tc, rd_tc, inp_tc, rdp_tc primitives, which
allow tuples to flow bi-directionally between tuple centres, and distributed tu-
ple centres to synchronise and coordinate their activities. The semantics of
such operations is exactly what anyone would expect by any Linda-like set of
primitives—on the side of the receiving tuple centre, so for instance an in_tc
waits for a suitable tuple, then consumes it and returns it to the caller tuple
centre. By contrast, on the side of the requesting tuple centre, the properties
of ReSpecT are maintained, while the expected Linda ones are not—so, for in-
stance, ins and rds are asynchronous: their execution is triggered only at the
end of a successful reaction invoking them, reactions do not wait for them to
complete, and the completions of the operations (when an answer is returned)
is handled through further specialised reactions.

In all, linkability of tuple centres is exploited by the WfMS essentially in two
fundamental phases: (i) when a workflow portion, defined by a scope, has to be
moved from a workflow node to another, (ii) when any activity requires a form
of distributed notification to be started. ReSpecT setter (out_tc) and getter
primitives (in_tc, rd_tc, inp_tc, rdp_tc), respectively, are used for this.

240 A. Omicini, A. Ricci, and N. Zaghini

While the general distributed implementation of the WfMS is relatively sim-
ple, it is anyway too large for this paper to be presented in detail. To this end,
next section discusses a workflow example, allowing us to illustrate many of the
issues raised till now.

4 A Case Study: The Simple-Goods-Seller over the
Internet Virtual Enterprise

As our (toy) case study, here we consider the design and development of a WfMS
for a virtual organisation called SGSI (Simple-Goods-Seller over the Internet),
and its engineering upon the TuCSoN coordination infrastructure. The goal of
this example is mainly to provide the reader with some glimpses of the actual
implementation of a WfMS upon TuCSoN according to the approach presented in
this paper—in particular, how scopes implemented on top of artifact linkability
can be used to have multiple, interdependent, distributed workflows, and to
create a network of inter-connected coordination flows. The case study does not
pretend to cover in detail all the complex issue of real-world scenarios: however,
it should be useful to understand how these issues could be further addressed
by adopting the logic-based workflow language and the distributed workflow
architecture discussed in previous sections.

4.1 SGSI Distributed Workflow General Description

The aim of the SGSI virtual enterprise is to expand a real shop marketplace to the
Internet virtual market, by exploiting the competences of several collaborating
enterprises. We assume that four companies participate to the VE:

Web Portal company which manages the web interface and collects the on-
line client orders;

Financial company which manages all the financial and administrative details
about money transactions;

Goods company which manages all the process concerning the development
and wherehousing of assets;

Delivery company which manages the delivery of the acquired goods.

The VE business process starts when the Web Portal receives an order by cus-
tomer. The process goes on enabling and validating payment and collecting all
the assets required, in parallel. When payment is received, the invoice can be
generated; when the assets are collected, goods can be delivered. Finally, the
client can be informed that shipment has been executed.

4.2 SGSI Distributed Workflow Specification

The behaviour of the SGSI VE can be modelled by assuming that all the partici-
pants have agreed on a business workflow schema representing the VE workflow,
like the one in Fig. 2. We consider two description levels. At the first level, the

Distributed Workflow Upon Linkable Coordination Artifacts 241

fc_scope
gc_scope

dc_scope

wpc_scope

AND-split

obtain
payment

generate
invoice

collect
order

collect
assets

AND-join

delivery

inform
client

AND-split

obtain
payment

generate
invoice

collect
order

collect
assets

AND-join

delivery

inform
client

wf def(sgsiWf, [case start], [obtain payment,collect order], and split).

wf def(sgsiWf, [obtain payment], [generate invoice], sequence).

wf def(sgsiWf, [collect order], [collect assets], sequence).

wf def(sgsiWf, [collect assets], [delivery], sequence).

wf def(sgsiWf, [generate invoice,delivery], [inform client], and join).

wf def(sgsiWf, [inform client], [case end], sequence).

task def(obtain payment, sgsiWf, ..., fc scope).

task def(generate invoice, sgsiWf, ..., fc scope).

task def(collect order, sgsiWf, ..., gc scope).

task def(collect assets, sgsiWf, ..., gc scope).

task def(delivery, sgsiWf, ..., dc scope).

task def(inform client, sgsiWf, ..., wpc scope).

scope def(main scope, sgsiWf, root).

scope def(fcscope, sgsiWf, main scope).

scope def(gcscope, sgsiWf, main scope).

scope def(dcscope, sgsiWf, main scope).

scope def(wpcscope, sgsiWf, main scope).

scope location(main scope, sgsi@web portal node).

scope location(fc scope, fc@financial node).

scope location(gc scope, gc@goods node).

scope location(dc scope, dc@delivery node).

scope location(wp cscope, wpc@webportal node).

Fig. 2. (Top) Workflow schema of the selling business process for SGSI VE (left), with
tasks allocated to scopes (right). (Bottom) Sketch of the workflow schema specification
using our logic-based approach.

242 A. Omicini, A. Ricci, and N. Zaghini

focus of the workflow manager/designer is related to the real business, abstract-
ing away from the real context in which tasks will be performed. At this level,
abstract tasks are identified, encapsulating the execution of complex activities,
and dependencies among such tasks are defined (top of Fig. 2, left). At a second
level, the content of the first level is refined by defining the scopes and associating
tasks to scopes (top of Fig. 2, right).

The bottom part of Fig. 2 reports the logic-based description of the workflow,
where the two distinct parts are in evidence—corresponding to the two levels: the
description of the overall process—and of the task dependencies in particular—,
and the description of the scopes and of the mapping between scopes and tasks.

4.3 SGSI Distributed Workflow Behaviour

Given the simple structure of the SGSI VE, we can assume here the main scope
of the workflow is handled by the Web Provider company, hosting a workflow
engine (a suitably-programmed TuCSoN tuple centre) containing the SGSI VE
workflow specification.

The worklow case starts when the Web Provider company receives an order
confirmation from a client. The case_start clause is evaluated, and the two
out-tasks obtain_payment and collect_order are activated. Since they both
are associated to external scopes (fc_scope and gc_scope), two scope-export
processes are activated, copying all the clauses defining such scopes (as well as
the other tasks belonging to them, such as collect_assets for gc_scope) to
the workflow engines / tuple centres specified by scope_location/2 clauses.
Then, the two corresponding sub-cases are activated by the main workflow en-
gine (the Web Portal one), which also manages synchronisation by waiting for
task_finished tuples from the fc_scope and gc_scope tuple centres, manifest-
ing the end of the two sub-cases. The rest of the workflow follows as intuitive, and
ends when also the last inform_client task has been successfully completed.

5 Related Work and Conclusion

With respect to our previous work on the subject of workflow management and
coordination infrastructures, in this paper we explicitly face for the first time the
issue of workflow distribution through linkability of coordination artifacts, based
on TuCSoN tuple centres programmed in ReSpecT. After discussing a model of
workflow engine based on ReSpecT tuple centres, in this paper we introduce
a distributed workflow architecture based on TuCSoN, exploiting a logic-based
workflow language, capable of capturing all the known workflow patterns [14].
The issue of workflow distribution is addressed through the definition of an ex-
plicit scoping mechanism, enabling workflows to be dynamically governed and
distributed upon a coordination infrastructure based on linkability of coordina-
tion artifacts.

Linkability in its most general acceptation is not strictly a new idea in the
field of coordination models and languages. The most prominent example is Reo

Distributed Workflow Upon Linkable Coordination Artifacts 243

[16], where channel composition is one of the most important and relevant fea-
tures. Also, Reo has been recently experimented explicitly in the MAS field [17].
However, Linda-based approaches better cope with agent autonomy, since co-
ordination is not forced upon the agents participating to the workflow, but is
instead provided them as a service [18]. Also, the properties of generative com-
munication and associative access of Linda-like models, along with the use of
logic tuples, are essential for our declarative approach to agent-based workflow.
Even more, programmability of tuple centres in TuCSoN enables coordination
artifacts to be suitably modelled as workflow engines with the fundamental prop-
erties of inspectability and malleability.

In the context of Linda-based models, to the best of our knowledge, only
Lime [19] could exhibit some sort of mechanism for tuple space composition.
However, such a mechanism is essentially implicit, and does not allow for the
explicit control required in WfMSs—and allowed instead by ReSpecT linkability
primitives.

In the area of (research and industrial) WfMSs, currently available approaches
are mainly extensions of DBMS. Notable examples are WIDE [20], Regatta [21],
APM [22], MILANO [23], TriGS [24], and the commercial systems ATI Action
Workflow, XSoft InConcert, and TeamWARE Flow. The above systems face the
requirements for classic WfMS, but are not especially suited to support Inter-
Organisational and Web-based WfMS [2].

Indeed, this scenario requires the ability to cope with the openness and distri-
bution of the Web environment, the capability to face heterogeneity at different
levels (information models, resources, processes), to support the dynamic modi-
fication of workflow rules, and to adapt the evolution of business processes so as
to easily face changes and exceptions, which frequently occur in an open envi-
ronment. However, approaches based on agents and coordination infrastructures
are now emerging. The METEOR2 system [25], for instance, goes beyond the
classic workflow systems, addressing issues such as Web-based workflow, work-
flow adaptation and integral support for collaboration. In [26], the researchers
involved in the METEOR project asserted that “Coordination (as supported
by current generation of workflow technology), collaboration (as supported by
CSCW and work group systems) and information management will increasingly
together merge into a higher level form of middleware”. OrbWork and WebWork,
which are two implementations of the METEOR2 model, make a meaningful step
toward coordination and collaboration, even though they might not be expres-
sive enough to provide the required general-purpose coordination middleware.
On the other hand, TuCSoN provides a general-purpose, distributed coordina-
tion infrastructure, which seems to be expressive enough to support distributed
workflow management, as well as coordination and collaboration among hetero-
geneous agents.

In [27], [28], and [29], mobile and intelligent agent technologies are used for
VE management, yet without providing an explicit model for WfMS. In [30] and
[31], VEs are represented using MASs, with an explicit model of WfMS. Basi-
cally, all these approaches support business processes execution with subjective

244 A. Omicini, A. Ricci, and N. Zaghini

coordination, encapsulating the social rules directly within agents. As discussed
in [1], we found that objective coordination, provided by TuCSoN and by most
approaches from the field of coordination models and languages [32], is better
suited to the context of VE than subjective coordination, since it provides a
more effective support for dynamics, heterogeneity, and process traceability.

The Workspaces coordination technology [33], specifically developed for
distributed workflow management, provides one further way of developing a
Web-based WfMS making explicit use of a coordination infrastructure for agent-
based systems. Basically, its architecture is based on coordinated transformation
of XML documents by means of distributed XSL (workflow) engines: the work-
flow rules are expressed via an XML-based Workspaces Coordination Language,
and then compiled into a set of XSL rules to specify the engine behaviour. Our
TuCSoN-based approach uses logic tuples for both communication and coordi-
nation, instead of XML: however, as far as any XML fragment can be expressed
in terms of first-order logic, an analogous approach could in principle be adopted
by TuCSoN, too. Also, Workspaces apparently does not faces explicitly the issue
of workflow distribution—which was instead the main motivation behind this
work.

References

1. Ricci, A., Omicini, A., Denti, E.: Virtual enterprises and workflow management
as agent coordination issues. International Journal of Cooperative Information
Systems 11(3/4) (2002) 355–379 Special Issue: Cooperative Information Agents –
Best Papers of CIA 2001.

2. Divitini, M., Hanachi, C., Sibertin-Blanc, C.: Inter–organizational workflows for
enterprise coordination. In Omicini, A., Zambonelli, F., Klusch, M., Tolksdorf,
R., eds.: Coordination of Internet Agents: Models, Technologies, and Applications.
Springer-Verlag (2001) 369–398

3. Omicini, A., Ricci, A., Viroli, M., Castelfranchi, C., Tummolini, L.: Coordination
artifacts: Environment-based coordination for intelligent agents. In Jennings, N.R.,
Sierra, C., Sonenberg, L., Tambe, M., eds.: 3rd international Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2004). Volume 1. ACM,
New York, USA (2004) 286–293

4. Omicini, A., Ricci, A., Viroli, M.: Agens Faber: Toward a theory of artefacts
for MAS. Electronic Notes in Theoretical Computer Sciences (2006) 1st Interna-
tional Workshop “Coordination and Organization” (CoOrg 2005), COORDINA-
TION 2005, Namur, Belgium, 22 April 2005. Post-proceedings.

5. Ricci, A., Viroli, M., Omicini, A.: Programming MAS with artifacts. In Bor-
dini, R.P., Dastani, M., Dix, J., El Fallah Seghrouchni, A., eds.: Programming
Multi-Agent Systems III. Volume 3862 of LNAI. Springer (2006) 206–221 3rd In-
ternational Workshop (PROMAS 2005), AAMAS 2005, Utrecht, The Netherlands,
26 July 2005. Revised and Selected Papers.

6. OASIS Consortium: Business Process Execution Language. http://

www.oasis-open.org/committees/ tc home.php?wg abbrev=wsbpel (2005)
7. Workflow Management Coalition Group: XML Process Definition Language.

http://www.wfmc.org/standards/XPDL.htm (2003)

Distributed Workflow Upon Linkable Coordination Artifacts 245

8. Malone, T., Crowstone, K.: The interdisciplinary study of coordination. ACM
Computing Surveys 26(1) (1994) 87–119

9. Omicini, A., Denti, E.: From tuple spaces to tuple centres. Science of Computer
Programming 41(3) (2001) 277–294

10. Omicini, A., Denti, E.: Formal ReSpecT. In Dovier, A., Meo, M.C., Omicini,
A., eds.: Declarative Programming – Selected Papers from AGP’00. Volume 48 of
Electronic Notes in Theoretical Computer Science. Elsevier Science B. V. (2001)
179–196

11. Ricci, A., Omicini, A., Viroli, M.: Extending ReSpecT for multiple coordination
flows. In Arabnia, H.R., ed.: International Conference on Parallel and Distributed
Processing Techniques and Applications (PDPTA’02). Volume III. CSREA Press,
Las Vegas, NV, USA (2002) 1407–1413

12. Gelernter, D.: Generative communication in Linda. ACM Transactions on Pro-
gramming Languages and Systems 7(1) (1985) 80–112

13. Workflow Management Coalition: Home page. http://www.wfmc.org/ (2006)
14. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.:

Workflow patterns. Distributed and Parallel Databases 14(1) (2003) 5–51
15. Casati, F., Castano, S., Fugini, M., Mirabel, I., Pernici, B.: Using patterns to design

rules in workflows. IEEE Transactions on Software Engineering 26(8) (2000) 760–
785

16. Arbab, F.: Reo: A channel-based coordination model for component composition.
Mathematical Structures in Computer Science 14 (2004) 329–366

17. Dastani, M.: Coordination and Composition of Multi-Agent Systems. Invited
talk, 1st International Workshop on Coordination and Organisation (CoOrg 2005),
COORDINATION 2005, Namur, Belgium (2005)

18. Viroli, M., Omicini, A.: Coordination as a service. Fundamenta Informaticae 71(4)
(2006)

19. Picco, G.P., Murphy, A.L., Roman, G.C.: Lime: Linda Meets Mobility. In Garlan,
D., ed.: 21st International Conference on Software Engineering (ICSE’99), Los
Angeles, CA, USA, ACM Press (1999) 368–377

20. Grefen, P., Pernici, B., Sanchez, G., eds.: Database support for Workflow Manage-
ment – The WIDE Project. Kluwer Academic Publishers (1999)

21. Swenson, K.D., Maxwell, R.J., Matsumoto, T., Saghari, B., Irwin, K.: A Business
Process Environment Supporting Collaborative Planning. Collaborative Comput-
ing 1(1) (1994) 15–34

22. Carlsen, S.: Action port model: A mixed paradigm conceptual workflow modeling
language. In Halper, M., ed.: 3rd IFCIS International Conference on Cooperative
Information Systems, IEEE Computer Society (1998) 300–309

23. Agostini, A., De Michelis, G., Grasso, M.A.: Rethinking CSCW systems: The ar-
chitecture of MILANO. In Hughes, J.A., Prinz, W., Rodden, T., Schmidt, K.,
eds.: 5th European Conference on Computer Supported Cooperative Work (EC-
SCW’97), Kluwer Academic Publishers (1997) 33–48

24. Kappel, G., Rausch-Scott, S., Retschitzegger, W.: A framework for workflow man-
agement systems based on objects, rules and roles. ACM Computing Surveys
32(1es) (2000) Article no. 27.

25. Miller, J.A., Palaniswami, D., Sheth, K.J., Singh, H.: Webwork: METEOR2’s web-
based workflow management system. Journal of Intelligent Information Systems
10(2) (1998) 185–215

26. Sheth, A.P., Kochut, K.J.: Workflow applications to research agenda: Scalable and
dynamic work co-ordination and collaborative systems. In Dogaç, A., Kalinichenko,

246 A. Omicini, A. Ricci, and N. Zaghini

L., Tamer Özsu, M., Sheth, A.P., eds.: Advances in Workflow Management Systems
and Interoperability, Istanbul (Turkey) (1997)

27. Fischer, K., Muller, J., Heimig, I., Scheer, A.W.: Intelligent agents in virtual enter-
prises. In: Practical Application of Intelligent Agents and Multi-Agent Technology
(PAAM 96). (1996)

28. Shen, W., Norrie, D.H.: Implementing internet enabled virtual enterprises using
collaborative agents. In: Infrastructures for Virtual Enterprises, Kluwer Academic
Publisher (1999) 343–352

29. Aerts, A., Szirbik, N., Hammer, D., Goossenaerts, J., Wortmann, H.: On the design
of a mobile agent web for supporting virtual enterprises. In: IEEE 9th International
Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises
“Web-based Infrastructures and Coordination Architectures for Collaborative En-
terprises” (WET ICE 2000), Gaithersburg (MD), IEEE CS (2000) 236–241

30. Chrysanthis, P.K., Znati, T., Banerjee, S., Chang, S.K.: Establishing virtual en-
terprises by means of mobile agents. In: Workshop on Research Issues in Data
Engineering (RIDE 1999), IEEE CS (1999) 116–125

31. Merz, M., Liberman, B., Lamersdorf, W.: Using mobile agents to support interor-
ganizational workflow-management. Applied Artificial Intelligence 6(11) (1997)
551–572

32. Tolksdorf, R.: Models of coordination. In Omicini, A., Tolksdorf, R., Zam-
bonelli, F., eds.: Engineering Societies in the Agents World. Volume 1972 of LNAI.,
Springer-Verlag (2000) 78–92

33. Tolksdorf, R.: Coordinating work on the Web with Workspaces. In: IEEE 9th In-
ternational Workshops on Enabling Technologies: Infrastructure for Collaborative
Enterprises “Web-based Infrastructures and Coordination Architectures for Col-
laborative Enterprises” (WET ICE 2000), Gaithersburg (MD), IEEE CS (2000)
248–253

P. Ciancarini and H. Wiklicky (Eds.): COORDINATION 2006, LNCS 4038, pp. 247 – 265, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Actors, Roles and Coordinators — A Coordination Model
for Open Distributed and Embedded Systems*

Shangping Ren, Yue Yu, Nianen Chen,
Kevin Marth, Pierre-Etienne Poirot, Limin Shen

Computer Science Department
Illinois Institute of Technology

Chicago, IL 60616
{ren,yyu8,nchen3,marth,poirpie,shenl}@iit.edu

Abstract. This paper presents a coordination model, the Actor, Role and Coor-
dinator (ARC) model, to address three main concerns inherent in a pervasive
Open Distributed and Embedded (ODE) system: dynamicity, scalability, and
stringent QoS requirements. The model treats a pervasive ODE system as a
composition of concurrent computation and coerced coordination. In particular,
concurrent computation is modeled as Actors, while coerced coordination
specifies the system’s QoS requirements by mapping them to coordination con-
straints. The coordination constraints are transparently imposed on actors
through message manipulations, which are carried out by the roles and coordi-
nators. The coordinators are responsible for the coordination among roles, while
the roles in our model provide abstractions for coordinated behaviors that may
be shared by multiple actors and further assume local coordination responsibili-
ties for the actors playing the roles. The role’s behavior abstraction decouples
the syntactic dependencies between the coordinators and the actors, thus shield-
ing the coordinator layer from the dynamicity of underlying actors inherent in
ODE systems. This paper also formally defines the role and coordinator behav-
iors and the composition of the actor computation model with the proposed co-
erced coordination model. Our formal study has shown that the ARC system is
closed under composition and recursion.

1 Introduction

As smart devices and communication schemes advance, embedded computer systems
and their applications are emerging from closed and centralized domains into a more
open and distributed environment. Open, distributed, and embedded (ODE) software
systems must be concerned with the environment in which they are executed. One
aspect of the environment is its extent. Computational entities may join or leave at
any time, introducing dynamicity into the system. This openness also implies that the
number of entities entering the system is not bounded, so the system could be arbitrar-
ily large. A second aspect is the quality of service (QoS) requirements. An embedded
application by nature has rigid requirements not only on the accuracy of the delivered

* This research is supported by NSF under grant CNS 0431832.

248 S. Ren et al.

functionality, but also on the quality of the delivery, which is usually manifested
through real-time constraints, reliability, fault-tolerance, and other QoS requirements.
The dynamicity, scalability, and QoS concerns therefore distinguish ODE systems.

To accomplish the desirable delivery of certain functionalities, special policies —
such as real-time constraints, adaptation strategies, security, reliability and fault-
tolerance — must be integrated into the systems so that the autonomous and often
asynchronous embedded software entities are forced to coordinate with each other and
to respect the QoS requirements.

Concurrent and distributed computation models have been well studied over the
past decades. CSP [1], -calculus [2], and the Actor model [3, 4] are good examples.
These models are well-defined mathematical abstractions for concurrent computation
in a distributed environment. To meet the QoS demands in embedded applications, a
separate coordination model needs to be composed with the concurrent computation
model, coercing asynchronous entities to coordinate.

In this paper, we present a group-based and distributed coordination model, the Ac-
tor, Role and Coordinator (ARC) model. The focus of the ARC model is to better
address the dynamicity and scalability issues inherent in pervasive ODE systems
while fulfilling the system’s QoS requirements. The ARC model has the following
characteristics:

1. The Actor model is used to model the concurrent computational part of an ODE
system, while an independent coordination model is developed to address the
system’s QoS requirements.

2. The concept of role is introduced into the coordination model. The role provides
an abstraction for coordinated behaviors that may be shared by multiple actors
and also provides localized coordination among its players.

3. Coordination in our model is divided into inter-role and intra-role coordination
to ensure clearer separation of responsibilities, reduce the complexity of indi-
vidual coordination entities, and enable distributed coordination among active
roles and coordinators.

4. QoS requirements are mapped to coordination constraints and are transparently
imposed on actors through message manipulations carried out by roles and
coordinators.

The rest of the paper is organized as follows: Section 2 discusses related work.
Section 3 presents the design considerations of the ARC model. Section 4 formally
defines the ARC model and the composition between the computational subsystem
(actors) and coordination subsystem (roles and coordinators). The section further uses
an example to illustrate the composition scheme and show the soundness of the
model. Section 5 draws conclusion and discusses future work.

2 Related Work

There are a number of proposals to capture QoS requirements as first class aspects in
open distributed software, such as [5, 6, 7, 8]. However, few proposals have consid-
ered interpreting QoS requirements as coordination constraints so that qualitative
demands can be specified and realized by utilizing the power of coordination models.

 Actors, Roles and Coordinators — A Coordination Model 249

Recent research has yielded significant contributions on coordination models and
languages. In their landmark survey [9], Papadopoulos et. al. conclude that coordina-
tion models can be classified into two categories, i.e., data-driven and control-driven.
The tuple space [10] model and their extensions represent the data-driven category;
while the IWIM and Manifold [11] present a control-driven or “exogenous” category.
Recently, tuple center and ReSpecT [12, 13] provide a hybrid view.

Control-driven models, such as ABT [14], LGI [15], ROAD [16], IWIM [11] and
CoLaS [17] isolate coordination by considering functional entities as black boxes. For
example, the ABT model and its language Reo [14, 18] extend the IWIM by treating
both computation and coordination components as composable Abstract Behavior
Types (ABT). Similarly to IWIM, ABT is a two-level control-driven coordination
model where computation and coordination concerns are achieved in separate and
independent levels.

Other control-driven models, such as ROAD, CoLaS, TuCSoN with ACC [19] and
Finesse [20] target the scalability issues of open distributed systems through group-
based coordination models. In these group-based coordination models, roles are often
treated as organizational concepts abstracting coordination behaviors among partici-
pants who play them. The ARC model differs from this increasing body of work
by treating roles as proactive, stateful and first class entities. A survey of existing
role-based coordination models is presented by Cabri and colleagues in [21].

Additionally, quite a few coordination models take decentralization into account.
TuCSoN [12] distributes communication abstractions (tuple centers) to the Internet
nodes. Every tuple center produces and maintains its own local coordination rules.
CoLaS divides the whole distributed system into multiple coordination groups. Each
coordination group takes care of an independent set of coordination policies. ROAD
provides a recursive structure that composes fine-grained, small coordination groups
into coarse-grained, large ones. LGI follows a controller metaphor and provides a con-
troller for every object in the system, and hence implements a full-fledged decentrali-
zation. The ARC model differs from these models by separating inter-role coordination
and intra-role coordination and distributing the coordination among coordinators and
roles. The distribution of coordination responsibility is based on the functionalities of
roles and is therefore more logical and customizable.

A set of coordination models have been proposed to address the coordination issues
involving autonomous, asynchronous and active actors. In particular, Frølund [22]
proposed a set of declarative linguistic constructs (Synchronizers) to specify two types
of synchronization among actors: atomic dispatch of messages among a group of
actors and synchronization constraints local to an actor that selectively disable mes-
sage processing. Synchronizers are closed in the sense that all participant actors must
be individually specified when a synchronizer is instantiated, whereas the role-based
coordination in the ARC model is open and collectively based on actor behaviors.
Furthermore, the ARC model directly addresses the potential behavioral volatility of
coordinated actors, while the dynamicity was not a main concern for synchronizers.
Ren [28] further extended Frølund’s work to support quantitative synchronizations,
such as real-time constraints, among actors. The coordination objects in both Frølund
and Ren’s work can be treated as meta-actors that are capable of intercepting actor
messages and enforcing certain temporal and timing constraints upon message dis-
patches. Venkatasubramaniam’s [23] two-level actor model further separates actor

250 S. Ren et al.

messages from the communications among coordinators (meta-message). However,
the emphasis on role-based coordination distinguishes the ARC model from previous
multi-level meta architectures.

Instead of treating coordination objects or communications as meta-level entities,
Varela [24] has introduced the concept of hierarchal directors which encapsulate
coordination among a cast of actors. However, the cast is not based on roles or be-
haviors. The directors are regular actors in the sense that the directors do not have the
capability of intercepting messages. Nevertheless, a director represents a group of
actors when the group interfaces with other groups. In particular, when a message is
targeted to an actor within a group, the message must first be routed to the director of
the group, and then routed to the director’s director, and so forth. The message is
dispatched to the target actor only after all directors on the hierarchical path have
approved. As the author noted in [24], such a hierarchical model avoids the special
runtime support required by a meta-level approach; however, the price paid for such
simplicity is the coordination transparency. Furthermore, as the hierarchical model
does not put a limit on the depth of a director tree, it is possible for a simple message
dispatch to require many levels of potentially expensive routing and approval.

3 The Actor, Role, and Coordinator (ARC) Model

In this section, we first give a high level description of the ARC model, and then the
explanations of the main concepts associated with the model and the intuitions behind
them.

3.1 The ARC Model

The ARC model may be conceptualized as the composition of three layers, with each
of the three components associated with a dedicated layer, as illustrated in Figure 1.
The separation of concerns is apparent in the relationships involving the layers. The
actor layer is dedicated to functional behavior and is oblivious to the coordination
enacted in the role and coordinator layers. The roles and coordinators form a disjoint
coordination layer responsible for imposing coordination and QoS constraints among
the actors. The coordinator layer is oblivious to the actor layer and is reserved to in-
ter-role coordination. The role layer bridges the actor layer and the coordinator layer
and may therefore be viewed from two perspectives. From the perspective of a coor-
dinator, a role enables the coordination of a set of actors that share the static descrip-
tion of abstract behavior associated with the role without requiring the coordinator to
have fine-grained knowledge of the individual actors that play the role. From the
perspective of an actor, a role is an active coordinator that transparently manipulates
the messages sent and received by the actor.

The roles in the role layer and the coordinators in the coordinator layer are meta-
actors. Role meta-actors are able to observe and manipulate messages in the actor
layer. The role and coordinator meta-actors react to events that are communicated via
special meta-messages. All events and message manipulation associated with an initial
triggering event appear to be indivisible and atomic, with no intermediate states visible
across or within the three layers. Since the role and coordinator meta-actors are state-
based objects, the coordination policies within an application may adapt over time.

 Actors, Roles and Coordinators — A Coordination Model 251

Fig. 1. ARC Model

3.2 Roles, Coordinators and Their Responsibilities

Because of the intrinsic dynamicity and extent of an ODE environment, the underlying
actors could be both very dynamic and very extensive in number. The stability and
scalability of coordination policies is difficult to maintain if coordination is based on
these numerous and highly dynamic actors. However, the numerous actors in an ODE
system have a limited set of well-defined behaviors. Hence, the concept of roles that
represent abstractions for system behaviors/functionalities is introduced as a remedy to
conceal the dynamicity and extent of an ODE environment from the coordinators.

Roles serve two purposes. First, roles provide static abstractions (declarative prop-
erties) for functional behaviors that must be realized by actors. Coordination based on
roles is therefore relatively stable, even though the underlying actors may be numer-
ous and dynamic. In addition, roles actively coordinate the actors playing the roles to
satisfy QoS requirements. The intra-role coordination coerced by roles complements
the inter-role coordination enacted by coordinators.

Each role has a distinct purpose. This assumption disallows overlapping roles,
eliminating the possibility that a role may be replaced by a set of other roles and
eliminating the possibility that conflicting constraints will be imposed on an actor.
This assumption also has its basis in the underlying actor model: each actor has only a
single thread of control and therefore may play only one role at any given time. More
precisely, let)(γB denote the actor functional behaviors declared by role γ ,)(αB

denote the functional behaviors provided by actorα , Γ and Α denote the set of roles
and actors in the system, respectively, and :F Α → Γ is the actor to role assignment
function. At any given time, well-defined roles and actors in a system must satisfy the
following requirements:

Roles are exclusive: role declared behaviors do not overlap, i.e.,

∅=∩≠∀)()(,
ji

BBji γγ

252 S. Ren et al.

1. Roles are exhaustive: every actor belongs to one of the roles, i.e.,

, , . . () ()s t B Bα γ α γ∀ ∈ Α ∃ ∈Γ ⊆

2. Roles are repetitive: repeated actor behaviors replicate the assignment of the
actor to the same role, i.e.,

, , () () () ()i j i j i jB B F Fα α α α α α∀ ∈ Α = → =

It is worth pointing out that requirement 1 and 2 ensure that the function :F Α → Γ is
well-defined.

As an active object, a role has state, and based on its state, the role actively coordi-
nates the actors sharing the role. Because of the involvement of roles in the coordina-
tion process, the coordination in the ARC model becomes decentralized.

3.3 Concurrent Constraints

In the ARC model, we adopt Saraswat’s distributed concurrent constraint program-
ming (CCP) model [25] to propagate constraints from coordinators to roles. In the
CCP model, there are two principal operations: ask and tell. The tell operation posts
constraints to a constraint store and will succeed if the constraint to be told is logically
consistent with the current contents of the store. The ask operation will block until it
is decidable whether the constraint being asked is consistent or inconsistent with the
constraint store. Once the ask operation is decidable, the operation will succeed or
fail, respectively. By using the constraint store and the tell and ask primitives, a coor-
dinator propagates role-based constraints to the corresponding roles. Based on the
consistency of the constraint store, the role decides whether to reject or accept the
constraints and further propagated the constraints to the underlying actors.

3.4 Coerce Coordination Through Message Manipulation

In the ARC model, the underlying computation of an ODE system is modeled by
message-based actors. Messages exist in time and space. Our preliminary study has
shown that most of the QoS requirements can be realized through message time-space
manipulations. For instance, real-time related QoS constraints, such as deadlines,
earliest invocation time, frequencies, jitters, etc. can be mapped to message con-
straints on the time-axis [26, 27, 28]. On the other hand, requirements for reliability,
security, fault-tolerance, etc. can be mapped to message management in the actor
space domain [29]. For example, based on QoS requirements and the current envi-
ronment, a message may be rerouted to another destination for security, reliability or
adaptation purposes or may be broadcast to a group for reliability and fault-tolerance
purposes. In the ARC model, coordination among actors is coerced through message
time-space manipulations, and QoS requirements are fulfilled by the coerced coordi-
nation that is transparent to the actors. On the time-axis, coordination operators give
high level instructions for schedulers as to when a message must be moved to
the beginning of a job queue, blocked, or postponed to a later time. In the space do-
main, the coordination operators manipulate messages in the actor space to satisfy the
coordination requirements.

 Actors, Roles and Coordinators — A Coordination Model 253

4 Composition of Concurrent Computation and Coerced
Coordination

In this section, we formally define the three different entities that constitute the ARC
model and focus our study on the composition of concurrent computation (actor sys-
tem) with coerced coordination (role-coordinator system).

4.1 Actor Behavior

In the ARC model, actors are independent from the roles and coordinators. The coor-
dination among actors is imposed on actors through message manipulations that are
transparent to the actors, thus preserving the semantics of the original actor model [3,
4]. For completeness, we quote key results that are related to our work here.

Definition 4.1 (Actor Behavior): An actor behavior is a mapping which specifies the
set of operations an actor may perform upon receiving a message.

Upon receiving a message (rcv), an actor may send (send) messages, create (new)
actors, initialize (init) the behaviors of the created actors, and change its own behavior
(bec). Primitives in and out specify inter-configuration communication. The opera-
tional semantics of actor primitives, i.e. fun, rcv, send, new, init, bec, in and out are
defined in terms of transitions between actor configurations.

Definition 4.2 (Actor Configuration): An actor configuration contains an actor map
α , multi-set of messages, μ , receptionists, ρ , and external actors, χ :

ρ

χ
μα

The set of receptionists are names of actors within the configuration that are exter-
nally visible. External actors are names of actors that are outside this configuration
but to which messages may be sent.

4.2 Role Behaviors

The role behavior has both group and coordination aspects: membership management
behavior (which presents an abstraction for actors’ behavior to the coordinators) and
coordination behavior.

For completeness of the roles in our system, we introduce a default role 0γ .

Let)(γB denote the functional behaviors declared by role γ , and)(αB denote the

functional behaviors provided by actors, we have:
m

i i

n

i i BBB
110)()()(

==
−= γαγ

where, iγ are the roles defined in the system. The behavior declared by the default
role 0γ covers the behaviors provided by actors, but not claimed by existing roles in
the system. Hence, by introducing the default role and the restrictions discussed in
section 3.2, the roles partition the underlying actor system into disjoint actor subsys-
tems and every actor plays a role. To formally define the role’s behavior, we first
define role configurations.

254 S. Ren et al.

Definition 4.3 (Role configuration): A role configuration contains a set of actors
playing the role, γα , the role itself, γ , a multi-set of messages stored in the mail-
boxes of the actors playing the role, γμ , a set of events that the role observes, γε ,
receptionists, ρ , and external actors, χ . It is denoted as:

ρ

χγγγ εμγα ,,

It should be noted that an actor configuration is equivalent to a default role configura-
tion with empty observable event set, i.e.

ρ

χ

ρ

χ
μγαμα ∅≅ ,, 0

4.2.1 Membership Management Behavior
A role’s membership management behavior is reflected by the membership changes
within the role. When a role observes an actor init event or an actor become event,
the potential new actor behavior is tested against the role membership criteria to
determine whether the actor should join or leave the role. More precisely, a role’s
management behavior is a mapping from a set of actor events to role configurations
defined in Definition 4.3.

Definition 4.4 (Membership Management Behavior):

γαγ Cmanagement →ΕΒ − :

where αΕ is the set of actor events, and γC is the set of role configurations.

The set of actor events includes observable actor behaviors, namely: fun, rcv, send,
new, init, bec, in and out, which correspond to reduction rules given in [4]. For a

role’s management behavior, we restrict observable actor events to be init and bec
which corresponds to the two actor primitives that result in new actor behaviors. The
membership management behavior of a role can be defined using the primitives join
and leave operations.

Definition 4.5 (join): Given an actor subsystem with configuration
αρ

αχαμα , the

actor subsystem can join a role with configuration
ρ

χγγγ εμγα ,, if:

(1) the domains of actor maps and (i.e. the set of internal actor addresses)
are disjoint, which entails that the receptionists of and are disjoint:

() ()∅=∩∅=∩ αγ ρραα)()(DomDom

(2) should not know the addresses of the actors within other than its de-
clared receptionists and vice versa:

() ()αγα ραχραχ ⊆∩∧⊆∩)()(DomDom
The primitive join is given as >< αε :][

/
join

becinit

 Actors, Roles and Coordinators — A Coordination Model 255

[]

[]

/ /

() ()

, [: ()] ,

, [] ,

init bec init becR join

R nil
α

α α

ρ

γ γ γγ χ

ρ ρ

γ γ α γγ χ χ ρ ρ

α ε α μ ε ε

α α μ μ ε
∪

∪ − ∪

< >

∪

The two sufficient conditions for an actor to join a role are adopted from the defini-
tion of composability of actor configurations in [4]. The first condition immediately
follows from the restrictions mentioned in section 3.2. Similar to join, we define the
primitive leave as follows:

Definition 4.6 (leave): >< αε :][
/

leave
becinit

[]

[]

/ /
() ()

, [: ()] ,

, [] ,

init bec init becR leave

R nil

α

α α

ρ ρ

γ γ α γγ χ χ ρ ρ

ρ

γ γ γγ χ

α α ε α μ μ ε ε

α μ ε

∪

∪ − ∪
∪ < >

4.2.2 Coordination Behavior
A role’s coordination behavior propagates intra-role coordination constrains to actors
by manipulating messages in the underlying actor model and is defined by the follow-
ing mapping:

Definition 4.7 (Coordination Behavior):

():coordination sF Rγ α θ γ−Β Ε Ε → Μ × Ε ×

where αΕ , θΕ , γΕ are a set of actor events, coordinator events, and role events,
respectively, R is a set of role states, and Μ is multiple sets of messages.

The coordination behavior of a role can be given the following interpretation.
Upon observing an event from either an actor or a coordinator, based on its current
state, the role may manipulate messages, generate events (which are observable by
coordinators) and change its state. As we discussed, coordination constraints are
mapped to manipulation of messages in the time and space dimensions, so here we
provide a primitive reroute, which manipulates messages in the space dimension, and
a timed sink actor, which is used to buffer messages for a specific period of time to
achieve control in the time dimension.

Definition 4.8 (reroute): ><
21

,,:][aacvrerouteε

[]

[]

1 2 1

2

, [: (, ,)] ,

, [] ,

R reroute cv a a a cv

R nil a cv

ρ

γ γ γγ χ

ρ

γ γ γγ χ

α ε μ ε ε

α μ ε

< ⇐ > < >

< ⇐ >

Our intuition is that reroute is functionally complete for most of the coordination
behaviors. For example:

256 S. Ren et al.

(1) Broadcast a message >⇐< cva to all actors performing the role:

γ∈
><>=<

ia iaacvrerouteacvreplicate ,,:,:

(2) Permanently block (delete) a message >⇐< cva :

))(..(

,,:,:

bbecomembrecbehaviora

aacvrerouteacvdelete

λλα =
>>=<<

⊥⊥

⊥

 withactor sink a is where

(3) Temporarily block (delay) a message >⇐< cva :

))),(,(

)),((

))((

)),,(((

...(

)(

)(,,:,,:

)(

mselfsendtseq

mmcustsend

tZeroif

selftbbecomeseq

selftmbrecbehavior

ta

taacvreroutetacvdelay

t

−−

=

>>=<<

⊥

⊥

⊥

λλλλα

 withactor sink timed a is where

(4) Serialize the delivery of two messages >⇐< 11 cva , >⇐< 22 cva :

>∞<>∞<
>=<

⊥><⊥ 221,122

2211

),(,:][)(,,:

,;,:

aacvrerouteaacvreroute

acvacvserialize

cvarcv
ε

The “targeted send and receive” (TSR) intrinsic in the actor model has been criticized
by the coordination community ([11, 14]). However, a role’s transparent reroute func-
tionality avoids the shortcoming of the TSR model and achieves the same effect as
connecting components by channels.

As meta-actors, roles are also active and may change their states upon observing an
event. The become primitive is defined to represent the transition of role state change.

Definition 4.9 (become): >< vbecome :][ε

[], [: ()] , , () ,R become v v
ρ ρ

γ γ γ γ γ γ γγ χχ
α ε μ ε ε α μ ε< >

Moreover, roles also support two primitives, i.e., tell and ask that are adopted from
CCP to maintain the constraint consistencies. The detailed semantics of tell and ask is
introduced in [25].

These primitives permit the roles to impose coordination constraints on actors.

4.3 Coordinator Behavior

Coordinators are responsible for coordinating system-wide QoS requirements among
different roles. Coordinators are meta-actors and are able to observe events. Based on

 Actors, Roles and Coordinators — A Coordination Model 257

observed events, the coordinators may change their states and enact different coordi-
nation constraints on coordinated roles. The behavior of a coordinator is defined by
the following mapping.

Definition 4.10 (Coordinator Behavior): The coordination behavior is a mapping
from a set of role events and a constraint store to a set of coordinator events and a
new constraint store.

() CFs ×Ε→ΕΒ θγθ :

The observable role events are tell, ask, which correspond to the two role primitives,
and the observable coordinator events are fail and success, which indicate the results of
tell and ask. The Concurrent Constraint Programming semantics enable a coordinator
to refine the constraint store and propagate constraints to the coordinated roles.

4.4 System Behavior

Our last conclusion is to recall a principle that has been so often fruitful in computer
science and that is central to Scott’s theory of computation:

A good concept is one that is closed
1. under arbitrary composition,
2. under recursion

-Gilles Kahn (1974)

In this section, we discuss system behavior in terms of the actor, role and coordina-

tor discussed in previous sections.

Definition 4.11 (System Configuration): An ARC system configuration is a set of
actor subsystems categorized by roles, Γ , a set of coordinators, θ , a multi-set of
messages stored in the mailboxes of the actors in the system, θμ , a set of observable
events, θε , receptionists, ρ , and external actors, χ . It is represented as:

ρ

χθθ εμθ ,,Γ

4.4.1 Subsystem Composition
Despite the fact that actors are dynamic, at the role level, coordination is relatively
stable because the actor behavior changes are transparent to the coordinators. For
example, consider a system within which an actor changes its behavior by executing a
bec primitive. Because of the behavior change from α to 'α , the actor leaves its
original role (1γ) and join a new role (2γ), i.e.,

)()'()()(',:
21

γαγααα BBandBBwherebec ⊆⊆><

This will trigger an event bec that is observable by both 1γ and 2γ . The manage-
ment behaviors of 1γ and 2γ guarantee the following system configuration transition:

258 S. Ren et al.

1 2 1

2

1 2

1

1 2 1 2 (, ') .[] :
.[] : '

1 2 1 2

1

1 1

{ }, { }, () ,

{ }, { '}, (),

: , '
:

'

[] :
:

,

bec

bec

bec leave
join

bec

where

bec
behavior

leave
behavior

α α

α α

ρ

γ γ θ α θ α α γ ε αχ γ ε α

ρ

γ γ θ α θ χ

ρ ρ
α αχ χ

γ

γ α α γ α θ μ μ μ μ ε ε

γ α γ α α θ μ μ μ μ ε

α αα
α μ α μ

ε αγ
α α γ μ

< >
< >

∪

∪

< >

< >

∪
1 1

11 1

2 2

2 2
2 2 2

1 1 1 1
() ()

2

2 2 2 2 2 2
() ()

, , ,

[] : '
:

, , ', ,

bec

bec

bec

join
behavior

α

α α

α

α α

ρ ρ ρ

α γ χχ χ ρ ρ

ρ ρ ρ

γ γ αχ χ χ ρ ρ

μ ε ε α γ μ ε

ε αγ
α γ μ ε ε α α γ μ μ ε

∪

∪ − ∪

∪

∪ − ∪

< >

< >

< > ∪

For simplicity, the redexes in actor and role configurations are ignored. As we can
see from the above reduction, by partitioning the actor subsystem into equivalence
classes based on their behavior abstractions, the crucial compositional closure prop-
erty advocated by Kahn is guaranteed by the roles.

4.4.2 Composed System Behavior
An ARC system can also be recursively viewed as an actor system.

Definition 4.12 (ARC System Behavior): The ARC system behavior defines the set
of actions an actor can take upon receiving a message in Μ :

() () Α×Α×Μ→ΜΒ
SS

FF:α

For example, consider an ARC system }{

}{0
},{

car

car

α

α
θαγ ∅∪Γ , where car is a car actor and

 is an external actor. The system can be viewed as an actor system which has the
following behavior),},({)(selfcarcarcarARC ∅>⇐<=>⇐<Β αα . Based on the ARC

system behavior definition, the processing of the ‘produce a car’ message by the ARC
system will result in the following reduction

}{

}{
'

}{

0

}{

}{
'

}{

0
}{,{}},{{},}{},{

α

αμ

α

χμ

α

αμ

α

χμ ααθαγααθαγ
car

car

car
car

car

carcar
carcar >⇐<∪Γ>⇐<∪Γ

As will be seen in the following example, the ARC system reduces to an actor sys-

tem from computation perspective in which the actor semantics remains intact.

4.5 Case Study

In this section, we present an extension of the car manufacturer example first intro-
duced in [30] to illustrate the transition rules and the closure properties of the ARC
model. In this example, the cars are simplified as having only 4 wheels and 1 chassis.
The manufacturer produces cars on several production lines. Two assumptions are
made: (1) the product lines are heterogeneous; and (2) the manufactory system is
dynamic in that a product line may freely go on/off line. Further, it is possible for a

 Actors, Roles and Coordinators — A Coordination Model 259

line to produce both wheels and chassis, but only one type at any given time. In addi-
tion, we have the following coordination requirements:

 Requirement 1: the ratio of wheels and chassis must be 4:1.
 Requirement 2: atomicity of wheel and chassis delivery.
 Requirement 3: even distribution of wheel production on the product lines.

Coordination requirements 1 and 2 are global (inter-role) because they involve rela-
tionships between different roles; coordination requirement 1 defines a quantitative
relationship and coordination requirement 2 defines a temporal relationship. Coordi-
nation requirement 3 is local (intra-role) because it only specifies distinct policies
within roles.

4.5.1 Role and Coordinator Behaviors
Role wheel wγ with state variable 0x = can be written as:

1 ()

2 '. (,)

3 . (,)

4

(0) :

:[] (() ()) ();

:[] ('){

(' ()){ (())}

() '. () () (, , ())}

:[] ((0));

:[
car

w

init w

send m w w

w w

w

send car w

x

if join

if

if t become x x

tell X x out m ask X x reroute m t

become x

α

α α

α α

γ
ε α γ α
ε α γ α γ

α α γ
α α α

ε γ

ε

⊥

⊥

=
Ρ Β ⊆ Β

Ρ ∉ ∧ ∈

≠ = + +
= → ≠ →

Ρ =

Ρ . () '] (' . .) (, , ');in m wif s t reroute mα α αα γ μ μ α α α∃ ∈ < < ⇐ >

The four behaviors (P1, P2, P3, and P4) are interpreted respectively as follows:

 Actor behavior change triggers role membership change.
 Each time an actor within the role sends a message to an actor outside the role,

the role increments its state variable (except for the case the sending actor is a
sink) and makes a consistency check. If the check succeeds, the message is al-
lowed to continue to the receiver; otherwise, the message is delayed. (The dis-
junctive operator “ ” in CCP means the corresponding actions will be taken if
either tell(X=x) or ask(X x) succeeds.)

 After a car actor assembles the parts (the four wheels and one chassis) and sends
the result back to its customer, reset the state variable.

 When a message comes into the role subsystem, reroute the message to the actor
under the role with a smaller number of unprocessed messages (load balancing).

()c yγ is similar to ()w xγ except that it does not support the load balancing.
The coordinator θ state variable X:Y=4:1 is in fact a constraint store. We implic-

itly add a constraint NN ∈∧∈ YX , that is, the domain of X and Y are natural num-
bers so that tell(X=1) will not succeed because it would entail that Y=0.25, which is
not a natural number. The behavior is defined as:

260 S. Ren et al.

. ((0)) . ((0))(: 4 :1) :[] ((: 4 :1))
w w c cbecome x become yX Y become X Yγ γ γ γθ ε ε θ= == ∪ =

The behavior states that after the car actor assembles the car, the coordinator will
reset its constraint store (since roles will modify the store during the course). The
atomicity constraint (requirement 2) is accomplished as follows:

Given the original constraint store X:Y=4:1, if a wheel actor completes a wheel and
tell(X=1), this tell will not succeed and the message will be temporarily blocked. Only
when the number of wheel is four and tell(X=4) succeeds that all four wheels are
delivered atomically. All subsequent wheel deliveries will again be delayed before the
delivery of one chassis since tell(X=5) is not entailed by the current store
X:Y=4:1∧X=4. Therefore, the atomicity constraint is guaranteed by the constraint
store in the coordinator as well as the message manipulation (delay) in the role. For
details of how this works, please refer to the reductions in the appendix.

4.5.2 Composed System Behavior
The following configuration transition shows the reduction of the ARC system upon
receiving a message from an external actor :

{ } { }

0 1 '
{ }

{ } { }

0 1 2 3 '
{ }

{ }, (){ , ()}, (){ ()}, (: 4:1) { } ,{} , {} *

{ }, (){ , , ()}, (){ , ()}, (: 4:1) {} ,{} , { }

car

car

car

car

car w w c c car

car w w c c

x t y t X Y car

x t y t X Y car

α α

μ ε μχ α

α α

μ ε μχ α

γ α γ α α γ α θ α α

γ α γ α α α γ α α θ α α

⊥ ⊥

⊥ ⊥

= < ⇐ >

= < ⇐ >

One possible reduction path based on the pseudo code described is given in the ap-
pendix. As the example shows, the composed system fulfills the coordination con-
straints while preserving the actor semantics.

5 Conclusion and Future Work

In this paper, we have presented the ARC model, a role-based decentralized coordina-
tion model for open distributed and embedded systems. In the ARC model, we map
system’s QoS requirements to coordination concerns and separate these concerns
from concurrent computation logic. The coordination constraints are imposed on
computations through message manipulations that are transparent to the computation
itself. Furthermore, to address the dynamicity and the openness inherent in an ODE
system, we introduced active roles that not only provide abstractions for actor
functional behaviors, but also take part in the coordination activities. Hence, the coor-
dination subsystem itself becomes distributed and thus inherits all the benefits a dis-
tributed system may offer. Our formal study on the role and coordinator’s behavior
and their composition with the actor model shows that the composed system is closed
under composition and recursion.

The ARC model presently employs the concurrent constraint programming model
for the satisfaction and communication of coordination constraints among the active
and concurrent ARC coordinator objects. The shared constraint store in CCP may
only be monotonically refined, and constraints are either satisfied or violated in an
absolute sense. The ARC model disallows overlapping roles to avoid conflicting con-
straints to be applied on the computation subsystem, i.e., the actors. However, at the
coordinator level, multiple coordinators may impose constraints upon a single role,

 Actors, Roles and Coordinators — A Coordination Model 261

which implies the possibility of conflicting constraints and the requirement to resolve
the conflicts. We plan to investigate the soft CCP model [31] as an alternative, since
the ability to express preferences and priorities among constraints during constraint
satisfaction is inherent to the soft CCP model.

The other aspect of future work is to study if a general scheme can be defined to
map other QoS related constraints, such as adaptability constraints, security con-
straints, etc., to message manipulations on time-space axis.

Acknowledgements

We would like to thank those anonymous reviewers for their valuable comments on
this work.

References

1. Hoare, C. A. R.: Communicating Sequential Processes. Prentice Hall International Series
in Computer Science (1985)

2. Milner, R.: The Pi Calculus and its Applications (keynote address). In IJCSL (1998)
3. Agha, G.: Actors: A Model of Concurrent Computation in Distributed Systems. MIT Press

(1986)
4. Agha, G., Mason, I., Smith, S., Talcott, C.: Towards a Theory of Actor Computation. In

Third International Conference on Concurrency Theory. Lecture Notes in Computer Sci-
ence, Springer-Verlag (1992) 565-579

5. Siqueira, F., Cahill, V.: Quartz: A QoS architecture for Open Systems. In Proceedings of
International Conference on Distributed Computing Systems (2000) 197–204

6. Becker, C., Geihs, K.: MAQS: management for adaptive QoS-enabled services. In Pro-
ceedings of the IEEE Workshop on Middleware for Distributed Real-Time Systems and
Services. (1997)

7. Nahrstedt, K., Wichadakul, D., and Xu, D.: Distributed QoS Compilation and Runtime In-
stantiation. In Proceedings of IEEE/IFIP International Workshop on QoS (2000)

8. Halteren, A. T.: A reflective QoS provisioning service for object middleware. Position
paper for the Workshop on Reflective Middleware (2000)

9. Papadopoulos, G. A., Arbab, F.: Coordination models and languages. Advances in Com-
puter. (1998) 329–400

10. Carriero, N., Gelernter, D.: Linda in context. Communications of the ACM (1989)
444–458

11. Arbab, F.: IWIM: A communication model for cooperative systems. In Proceedings of the
2nd International Conference on the Design of Cooperative Systems, Juanle-Pins, France
(1996) 567-585

12. Omicini, A., Zambonelli, F.: Tuple Centres for the Coordination of Internet Agents. In
Proceedings of the ACM Symposium on Applied Computing (1999)

13. Omicini, A., Denti, E.: Formal ReSpecT. Electronic Notes in Theoretical Computer Sci-
ence. (2001)

14. Arbab, F.: Abstract behavior types: A foundation model for components and their compo-
sition. Technical report, CWI, Amsterdam, Netherlands (2004)

15. Minsky, N. H., Ungureanu, V.: Law-governed interaction: a coordination and control
mechanism for heterogeneous distributed systems. ACM Trans. (2000) 273–305

262 S. Ren et al.

16. Colman, A., Han, J.: Coordination Systems in Role-based Software. In Proceedings of 7th
International Conference on Coordination Models and Languages (2005)

17. Cruz, J. C., Ducasse, S.: A Group Based Approach for Coordinating Active Objects. In
Proceedings of 2nd International Conference on Coordination Models and Languages
(1999)

18. Arbab, F.: Reo: A Channel-based Coordination Model for Component Composition.
Mathematical Structures in Computer Science, Vol. 14, No. 3, (2004) 329–366

19. Omicini, A., Ricci, A., Viroli, M.: Formal Specification and Enactment of Security Poli-
cies through Agent Coordination Contexts. Electronic Notes in Theoretical Computer Sci-
ence, Elsevier Science B.V. (2003)

20. Berry, A. and Kaplan, S.: Open, Distributed Coordination with Finesse. Technical Report,
School of Information Technology. The University of Queensland, Australia (1999)

21. Cabri, G., Ferrari, L., Leonardi, L.: Agent role-based collaboration and coordination: a
survey about existing approaches. In International Conference on Systems, Man and
Cybernetics (2004) 5473–5478

22. Frølund, S.: Coordinating Distributed Objects: An Actor-Based Approach for Synchroni-
zation. MIT Press (1996).

23. Venkatasubramanian, N., Agha, G., Talcott, C.: A MetaObject Framework for QoS-Based
Distributed Resource Management. In Proceedings of the Third International Symposium
on Computing in Object-Oriented Parallel Environments (ISCOPE '99) (1999).

24. Varela, C. A.., Agha, G.: A Hierarchical Model for Coordination of Concurrent Activities,
International Conference on Coordination (COORDINATION '99), LNCS 1594 (1999)

25. Saraswat, V. A.: Concurrent Constraint Programming. The MIT Press. (1993).
26. Jamali, N., Ren, S.: A layered architecture for real-time open distributed systems. In Pro-

ceedings of the 4th International Workshop on Software Engineering for Large-Scale
Multi-Agent Systems (2005)

27. Ren, S., Shen L., Tsai, J.: Reconfigurable coordination model for dynamic autonomous
real-time systems. In The IEEE International Conference on Sensor Networks, Ubiquitous,
and Trustworthy Computing (2006)

28. Ren, S., Venkatasubramanian, N., Agha, G. A.: Formalizing qos constraints using actors.
In Proceedings of Second IFIP International Conference on Formal Methods for Open Ob-
ject Based Distributed Systems (1997)

29. Kwiat, K. and Ren, S.: A coordination model for improving software system attack toler-
ance and survivability in open hostile environments. In The IEEE International Conference
on Sensor Networks, Ubiquitous, and Trustworthy Computing (2006)

30. Callsen, C. J., Agha, G.: Open Heterogeneous Computing in Actor Space. Journal of Paral-
lel Distributed Computing (1994) 289–300

31. Bistarelli, S., Montanari, U., Rossi, F.: Soft Concurrent Constraint Programming. Euro-
pean Symposium on Programming (2002) 53–67

Appendix: ARC System Reduction for the Car Manufacturer
Example (Section 4.5)

0 1

{ }

{ }, (0){ , ()}, (0){ ()}, (: 4 :1)

{ } ,{}
car

car w w c c

car

x t y t X Y

a car
α

μ ε χ

γ α γ α α γ α θ⊥ ⊥= = =

< ⇐ >

 Actors, Roles and Coordinators — A Coordination Model 263

)3(.
)2(.

αα
αα

initcar
initcar

0 2 3 1

{ }

2 3

{ , , }, (0){ , ()}, (0){ ()}, (: 4 :1)

{} ,{ (), ()}
car

car w w c c

init init

x t y t X Y
α

μ ε χ

γ α α α γ α α γ α θ

ε α ε α

⊥ ⊥= = =

),3(.
4),2(.

)3(.)]3([
)2(.)]2([

csendcar
wsendcar
joincinit
joinwinit

αα
αα

αγαε
αγαε

×

2 3

0 1 2 3

{ }

2 3 . () . ()

{ }, (0){ , , ()}, (0){ , ()}, (: 4:1)

{ 4, } ,{ 4, }
car

car w w c c

in m in m

x t y t X Y

w c
α

μ α α ε χ

γ α γ α α α γ α α θ

α α ε ε

⊥ ⊥= = =

< ⇐ >× < ⇐ > ×

)1,2,2(.])(.2[
)1,2,2(.])(.2[

αααγαε
αααγαε

>⇐<
>⇐<

wreroutewmin

wreroutewmin

0 1 2 3

{ }

1 2 3

{ }, (0){ , , ()}, (0){ , ()}, (: 4:1)

{ 2, 2, } ,{}
car

car w w c cx t y t X Y

w w c
α

μ ε χ

γ α γ α α α γ α α θ

α α α

⊥ ⊥= = =

< ⇐ >× < ⇐ >× < ⇐ >

),(.2
),2(.2

wcarsend
wrcv

αα
αα

2

0 1 2 3

{ }

1 2 3 . (,)

{ }, (0){ , , ()}, (0){ , ()}, (: 4:1)

{ 2, , , } ,{ }
car

car

car w w c c

car send w

x t y t X Y

w w w c
α

μ α α ε χ

γ α γ α α α γ α α θ

α α α α ε

⊥ ⊥= = =

< ⇐ >× < ⇐ > < ⇐ > < ⇐ >

[]{. (,)2
. ((1));
. (1)()
. (, , ())}

send wcar
become xw w
tell X tell failw
reroute w tw car w

εα α
γ γ
γ
γ α α

=
=

⊥

0 1 2 3

{ }

1 2 3

{ }, (1){ , , ()}, (0){ , ()}, (: 4:1)

{ 2, , () , } ,{}
car

car w w c c

w

x t y t X Y

w w t w c
α

μ ε χ

γ α γ α α α γ α α θ

α α α α

⊥ ⊥

⊥

= = =

< ⇐ >× < ⇐ > < ⇐ > < ⇐ >

),(.3
),3(.3

ccarsend
crcv

αα
αα

264 S. Ren et al.

3

0 1 2 3

{ }

1 2 . (,)

{ }, (1){ , , ()}, (0){ , ()}, (: 4 :1)

{ 2, , () , } ,{ }
car

car

car w w c c

w car send c

x t y t X Y

w w t w c
α

μ α α ε χ

γ α γ α α α γ α α θ

α α α α ε

⊥ ⊥

⊥

= = =

< ⇐ > × < ⇐ > < ⇐ > < ⇐ >

[]{. (,)3
. ((1));
. (1)()
. (,);}3

send ccar
become yc c
tell Y tell succeedc
out ccar

εα α
γ γ
γ
α α

=
=

0 1 2 3

{ }

1

*two more messages under get delayed

 since 2 and 3 will also fail

{ }, (3){ , , ()}, (1){ , ()}, (: 4 :1 1)

{ , () 3, } ,{}
car

w

car w w c c

w car

tell(X) tell(X)

x t y t X Y Y

w t w c
α

μ ε χ

γ

γ α γ α α α γ α α θ

α α α

⊥ ⊥

⊥

= =

= = = ∧ =

< ⇐ > < ⇐ > × < ⇐ >

),(.1
),1(.1

wcarsend
wrcv

αα
αα

1

0 1 2 3

{ }

. (,)

{ }, (3){ , , ()}, (1){ , ()}, (: 4 :1 1)

{ , () 3, } ,{ }
car

car

car w w c c

car w car send w

x t y t X Y Y

w t w c
α

μ α α ε χ

γ α γ α α α γ α α θ

α α α ε

⊥ ⊥

⊥

= = = ∧ =

< ⇐ > < ⇐ > × < ⇐ >

[]{. (,)1
. ((4));
. (4)()
. (,);}1

send wcar
become xw w
tell X tell succeedw
out wcar

εα α
γ γ
γ
α α

=
=

0 1 2 3

{ }

{ }, (4){ , , ()}, (1){ , ()}, (: 4:1 1 4)

{ () 3, , } ,{}
car

car w w c c

w car car

x t y t X Y Y X

t w c w
α

μ ε χ

γ α γ α α α γ α α θ

α α α

⊥ ⊥

⊥

= = = ∧ = ∧ =

< ⇐ >× < ⇐ > < ⇐ >

3}
});,().(

))(4(.
)]{)(([
),().(

)(
{

×
⊥

=
→⊥

⊥
⊥

wcarouttw
succeedtellXtellw

cartwsnd
wcarsendtw

timeuptw

αα
γ

ααε
αα

α

0 1 2 3

{ }

{ }, (4){ , , ()}, (1){ , ()}, (: 4:1 1 4)

{ , 4} ,{}
car

car w w c c

car car

x t y t X Y Y X

c w
α

μ ε χ

γ α γ α α α γ α α θ

α α

⊥ ⊥= = = ∧ = ∧ =

< ⇐ > < ⇐ >×

),(.
4),(.

),(.

carsendcar
wcarrcvcar
ccarrcvcar

αα
αα
αα

×

 Actors, Roles and Coordinators — A Coordination Model 265

0 1 2 3

{ }

. (,)

{ }, (4){ , , ()}, (1){ , ()}, (: 4:1 1 4)

{ } ,{ }
car

car

car w w c c

send car

x t y t X Y Y X

car
α

μ α α ε χ

γ α γ α α α γ α α θ

α ε

⊥ ⊥= = = ∧ = ∧ =

< ⇐ >

[] . ((0)). (,)
[] . ((0)). (,)
[] . ((: 4:1)). ((0)) . ((0))

. (,)

become xsend car w wcar
become ysend car c ccar

become X Ybecome x become yw w c c
out carcar

ε γ γα α
ε γ γα α
ε ε θ θγ γ γ γ

α α

=
=

∪ == =

{ }

0 1 2 3{ }, (0){ , , ()}, (0){ , ()}, (: 4:1) {} ,{}
car

car w w c cx t y t X Y
α

μ ε χ
γ α γ α α α γ α α θ⊥ ⊥= = =

Tuple Space Coordination Across
Space and Time

Gruia-Catalin Roman1, Radu Handorean2, and Rohan Sen1

1 Department of Computer Science and Engineering
Washington University in St. Louis

Campus Box 1045, One Brookings Drive
St. Louis, MO 63130-4899, USA

2 Qualcomm Inc.
6180 Spine Road, Boulder, CO 80301

Abstract. CAST is a coordination model designed to support interac-
tions among agents executing on hosts that make up a mobile ad hoc
network (MANET). From an application programmer’s point of view,
CAST makes it possible for operations to be executed at arbitrary loca-
tions in space, at prescribed times which may be in the future, and on
remote hosts even when no end-to-end connected route exists between
the initiator and target(s) of the operation. To accomplish this, CAST
assumes that each host moves in space in accordance with a motion pro-
file which is accurate but which at any given time extends into the future
for a limited duration. These motion profiles are freely exchanged among
hosts in the network through a gossiping protocol. Knowledge about the
motion profiles of the other hosts in the network allows for source routing
of operation requests and replies over disconnected routes. In this paper,
we present the CAST model and its formalization. We also discuss the
feasibility of realizing this model.

1 Introduction

Mobile Ad hoc Networks (MANETs) are a special class of wireless networks,
which do not rely on any external infrastructure and are formed opportunistically
among physically mobile hosts. By definition, a MANET is an open, dynamic
environment where hosts may join or leave the network of their own volition
and connectivity between host pairs is transient, requiring a decoupled style
of computing. Developing applications for MANETs is especially challenging
because peer-to-peer interactions between hosts can be short lived and the hosts
participating in the computation change often and in an unpredictable fashion.

Coordination middleware is a software solution that has been proven to be
able to handle the open environment and decoupled interactions as evidenced
by systems such as MARS [1] and KLAIM [2], designed for wired settings, and
systems such as LIME [3], Limone [4] and Ara [5] which are targeted to mobile
settings. However, mobile settings, and MANETs in particular impose additional
challenges which cannot be handled by the current generation of coordination

P. Ciancarini and H. Wiklicky (Eds.): COORDINATION 2006, LNCS 4038, pp. 266–280, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Tuple Space Coordination Across Space and Time 267

models. The key problem is that current technology has a very restricted de-
finition of reachability in the dimensions of space (hosts must be strategically
located in space so as to have access to a route to the destination) as well as
time (the routes are only valid at the current instant). Handling more sophisti-
cated applications requires us to develop models that expand the present narrow
interpretation of reachability, allowing more predictable interactions with larger
numbers of participants in a MANET.

CAST (Coordination Across Space and Time) is a new kind of coordination
model that extends the reach of coordination activities across space and time by
addressing restrictions imposed by current models. In the spatial domain, we use
disconnected routing, a type of routing algorithm which does not enforce end-to-
end connectivity between the source and destination of a message. This type of
routing algorithm is similar to source routing in that the complete sequence of
intermediary hosts is specified in the message header. The difference lies in the
manner in which the hosts that form the route are selected. We use information
about the motion of hosts (exchanged among hosts using a gossiping protocol)
to compute intervals of pairwise connectivity among hosts extending from the
present moment for a fixed amount of time into the future. The hosts forming
the route are selected such that the sequence of intervals of pairwise connectivity
between them will be sufficient to deliver a message from the source to the
destination. The message is temporarily buffered on each host when the incoming
communication window and outgoing communication window do not coincide,
allowing coordination among hosts that are never in direct pairwise contact.

CAST also addresses the temporal domain by offering operations that have
an explicit space and time value associated with it. The operations are moved
to the required location using the mechanism described above and held in an
inactive status until the activation time is reached. If there is no route which can
get the operation to the required location by the specified time, the middleware
can immediately raise an exception and reject the operation. Spatiotemporal
operations allow coordination to occur across the reaches of space and time,
thereby expanding the reach of the model.

In this paper, we describe the CAST model and its operation. The model
assumes the use of a gossiping protocol to discover knowledge about the motion
of other hosts which is stored in a local knowledge base and used to compute
disconnected routes. Atop this, we offer Linda-like coordination operations via
a simple API. The remainder of the paper is organized as follows. Section 2
provides background and a motivating example. Section 3 formally describes
the key concept of reachability upon which disconnected routes are built, while
Section 4 describes the semantics of the operations we support. Section 5 covers
related work in coordination models before we conclude in Section 6.

2 Background and Motivation

Typically, a coordination model is characterized by its use of a shared dataspace
that offers the following operations: (1) out, which places data in the shared

268 G.-C. Roman, R. Handorean, and R. Sen

space, (2) in which removes data from the shared space, and (3) rd which cre-
ates a local copy of some data in the shared space. An agent that wishes to
interact with another agent places data in the shared space which is subse-
quently retrieved by the target agent, thereby completing the interaction. This
basic functionality, while sufficient for supporting applications that need simple
message passing, is not suited to more sophisticated scenarios, specifically those
where space and time are an inherent facet of the application.

Consider the example of a construction site where many people work in a
highly dynamic environment. Each person carries a PDA that serves as a multi-
purpose mobile computing platform. No fixed computing resources are available
since there is no safe, suitable location for them. SynchroTask is an application
that is used by construction supervisors on-site to manage day to day issues.
SynchroTask allows supervisors and workers to manage and exchange project
activities through opportunistic sharing of information.

Take for instance, the case of two shift supervisors needing to pass on lists
of outstanding concerns. The problem is that shifts seldom overlap due to lunch
breaks, etc. However, the construction site does have a rudimentary ready room
which is used by the crew to rest and almost always has someone occupying it.
The configuration is shown pictorially in Figure 1.

Ready Room

Bob

Chris
David

Eric

in @ 1:05 PM
by Eric

transfer @ 1 PM
to maintain tuple in

ready room

out @ 12 PM
to ready room

Chris leaves ready room
at 1 PM and David arrives

Fig. 1. Example of CAST in action

Towards the end of the shift, Bob uses SynchroTask to make notes on his
PDA which lists the tasks requiring attention on a priority basis by the super-
visor of the afternoon shift. As he leaves at 12 PM, he asks SynchroTask to
forward the list to the afternoon supervisor. Since the afternoon supervisor has
not yet arrived, SynchroTask requests that CAST, the middleware atop which
it is executing, to store the information in a location where the incoming super-
visor can easily retrieve it. The information is stored in the ready room. When

Tuple Space Coordination Across Space and Time 269

Eric arrives to supervise the next shift at 1:10 PM, he retrieves the informa-
tion from the ready room. Supporting such interactions requires features not
available in current coordination technology. The next two sections describe the
CAST model that is designed to support applications such as SynchroTask.

3 A Model for Disconnected Coordination

The notion of coordinating across time and space is the distinguishing feature
of CAST. By coordination we mean the execution of Linda-like operations on
tuple spaces that may be either local or remote. For simplicity, we will assume
that each tuple space is uniquely associated with a particular mobile host; this
allows us to talk about coordination among hosts while ignoring the structural
aspects of the host software. The scope of the coordination is controlled by which
remote hosts can be reached at any given time. CAST assumes that hosts move
according to some locally controlled plan called a motion profile, i.e., for a finite
duration of time the host knows where it is heading and will not change its mind
mid course. At first glance, the concept of using motion profiles might appear
restrictive and impractical. However, motion profiles can be built automatically
from individual schedules, thus avoiding the need for additional input by the
user. Additionally, motion profiles are not practical only when the motion of
hosts is completely random. When motion has even a simple pattern, motion
profiles can be effectively exploited. Information about motion profiles is shared
freely among hosts thus allowing them to build an egocentric view of where hosts
might be in the future. Each host maintains such information in a knowledge base,
which is a collection of the motion profiles of other hosts that the reference host
is aware of. It is this information that makes it possible to identify disconnected
routes which are used to transfer data and operation requests to a wider set of
hosts than otherwise might be possible.

By exploiting disconnected routes, CAST makes it possible to reach out into
the future and to coordinate across expanses of space. Coordination across time
is associated with the ability to specify a lifetime for both data and operations
in terms of a starting and an ending point. Coordination across space relates to
the ability to identify a specific location or area in which the operation or the
data is to exist, either initially or throughout its lifetime; the latter situation is
complicated by the mobility of hosts in and out of the area of interest.

At this point it is reasonable to ponder whether the central enabling notion
of computing and disseminating motion profile is reasonable. There exist some
situations in which hosts follow prescribed patterns over extended periods of
time because the application itself demands it: explorers follow a certain plan
for safety and in order to accomplish their daily tasks; unmanned vehicles are
restricted to a specific mission plan; robots are engaged in repetitive and re-
defined activities; office workers make their calendars public, etc. Despite these
considerations, we must acknowledge that a study of coordination under uncer-
tainty of motion profiles is intellectually exciting, but is out of the scope of this
paper.

270 G.-C. Roman, R. Handorean, and R. Sen

The remainder of this section is dedicated to a formal abstract description of
the CAST model. We present the formalization initially from a global oracular
point of view, where all available knowledge in the system is known to us. We
show how the system evolves from this perspective. We then examine the model
from an egocentric host perspective, where the available knowledge is a subset
of the knowledge that exists in the system as a whole. A discussion of how to
extend this formalization to cover the set of operations available in CAST is
postponed to Section 4.

3.1 Underlying Computational Model

The core concept in our definition of the CAST model is the notion of motion
profile. At the most basic level it is simply a function from time to space denoting
the expected location of a particular host at some time in the future. Because it
is mathematically convenient to work with total functions, we augment the space
domain with the symbol ⊥ (unknown location) and allow the motion profile to
be a function from time to the augmented space:

μ : T → S+

where
T denotes the time domain
S denotes the space domain
⊥ signifies an unknown location
S+ is defined as S ∪ {⊥}

We consider both time and space to be discrete. The time domain is modeled
as the set of natural numbers and space is defined as the Cartesian product of two
integer domains. Since we assume a global notion of time, we model the current
time simply as an integer variable τ . The current location of a host is given
by evaluating the motion profile at time τ . In general, we assume that motion
profiles associated with specific hosts are defined starting from the current time
up to some point in the future and nowhere else:

〈∃te : τ ≤ te :: 〈∀t :: t ∈ [τ, te]⇔ μ(t) �=⊥〉〉
We abuse language by referring to points in time when the motion profile takes
the value ⊥ as being ”undefined” from an application point of view, even though
mathematically speaking the function is defined for all values in T .

As a first approximation, we define a system of coordinating hosts as a set
of hosts H and their respective motion profiles. The state of the system is for-
mally characterized by its configuration C, a function that maps hosts to their
respective motion profiles

C : H → (T → S+)

The system configuration evolves in response to two different kinds of actions.
First, hosts may explicitly update their motion profiles by extending them into
the future as in

Tuple Space Coordination Across Space and Time 271

C := C[i/μ] where C(i)% μ

The condition captures the fact that the new motion profile μ for host i is defined
everywhere the old motion profile C(i) is defined. Formally, the relation % is
expressed as

μ1 % μ2 ≡ 〈∀t :: μ1(t) �=⊥=⇒ μ2(t) �=⊥〉
Second, time may advance affecting the value of the variable τ

τ := τ + 1

Time advance has an implicit global impact on the system configuration because
all host motion profiles that are older must become undefined.

C := C[i/C(i)[(τ − 1)/ ⊥]] ∀i ∈ H
where τ − 1 refers to the old value of τ

3.2 Disconnected Routes

Given a configuration C, one could (in principle) determine whether it is possible
to transfer data from host i1 to host i2. The first step involves identifying when
hosts are close enough and, therefore, able to communicate. We assume that
communication is possible whenever the distance between two hosts is less than
the communication range of the wireless transmitters, some constant δ. In reality,
transmission distances vary a great deal and rarely conform to an idealized
circular pattern. Nevertheless, it is always possible to select a conservative value
for δ, one that offers a high probability for successful communication between
any two hosts. The time intervals during which hosts can exchange data are
called communication windows and are formally captured in the definition of
the relation w below:

i1 w[t1, t2] i2 = 〈∀t : t ∈ [t1, t2] ::
C(i1, t) �=⊥ ∧ C(i2, t) �=⊥ ∧ |C(i1, t)− C(i2, t)| < δ〉

Disconnected communication is established by having data move from one
host to another during such periods of communication. Since we do not expect
all hosts to be end-to-end connected, the data is temporarily buffered on an
intermediate host until a communication window to the next host is available.
In this manner a route is established between a source and a destination. It is
called disconnected because the hosts along the route may never be simultane-
ously connected. A host along the route may obtain data from a peer and then
become completely isolated for an extended period of time before handing off
the same data to another peer. A disconnected route is said to exist between
two hosts i1 to in from time t1 to tn if there exists a set of hosts (i2 to in−1)
and communication windows between them such that data can travel from the
origin to the destination as described above. Formally, a disconnected route r is
a temporally ordered sequence of communication windows:

272 G.-C. Roman, R. Handorean, and R. Sen

r = (i1, i2, t1, t1′), ..., (in−1, in, tn−1, tn′−1)

subject to the constraint

ti < ti′ < ti+1 ∧ ii w[ti, ti′] ii+1 for i = 1, ..., n - 1

The corresponding disconnected path is defined as the sequence of hosts involved
in defining the route. In this case, the hosts involved in the disconnected route
above define the disconnected path

(i1, i2, ...in−1, in)

Computing disconnected routes from locally available knowledge about the
system configuration is central to our model. The brute force approach to ac-
complishing this entails building a directed graph which includes a vertex for
each host/time pair denoting the start and the end of a communication window
and an edge between any two vertices whose corresponding hosts can commu-
nicate in the respective time interval, i.e., two vertices (i1, t1) and (i2, t2) are
connected by an edge only if i1 w[t1, t2] i2. Once the graph is constructed, find-
ing a disconnected route is simply a matter of identifying a path in the graph
between the source and the destination vertices. However, the algorithms in-
volved in accomplishing this are outside the scope of this paper. For now, all we
need to consider is the fact that a disconnected route can be computed, if one
exists, given the current knowledge of the motion profiles of hosts in the system.
Post facto one may discover that many more routes were actually established
but planning can use only what is known at the time some coordination action
is initiated.

3.3 Reachability

In the most abstract sense, disconnected routes expand the definition of reach-
ability, which has been used in the past to determine the maximal set of hosts
with which a reference host can coordinate. We introduce a relation ρ to formally
capture this notion of reachability that is based on successive communication
windows. The definition is recursive with the base case being reachability within
a communication window, which includes the default case of a host being able
to “communicate with itself” across any interval of time by holding the data for
future delivery:

i1ρ[t1, t2]i2 ≡ i1w[t1, t2]i2 ∨ 〈∃i, t : t1 ≤ t ≤ t2 ::
i1ρ[t1, t]i ∧ iρ[t, t2]i2〉

It should be immediately obvious that prior forms of reachability differ from
this definition in two fundamental ways. First and foremost, earlier definitions of
reachability are not parametrized with respect to a time interval; they can be seen
as having an implicit time parameter defined by a single point in time. Second,
in such definitions w holds true if the hosts are collocated, form a connected
group, or are subject to other similar restrictions.

Tuple Space Coordination Across Space and Time 273

The other distinctive feature of CAST is the ability to coordinate across the
spatial domain without explicit knowledge of the other participating hosts. A
new notion of reachability needs to be introduced in order to accommodate this
capability, one that captures the idea that a specific point or region is reachable
within the constraints of a particular time interval. Clearly, the presence of some
host operating in that space is implicit and the extensions we are introducing
below make this fact evident in their respective formalizations. The simplest
extension considers a point p ∈ S to be reachable from some reference host in
a specific time interval whenever a reachable host exists at that point in space.
The new relation is called σ and it is defined as follows:

i1 σ[t1, t2] p ≡ 〈∃i : C(i, t2) = p :: i1 ρ[t1, t2] i〉
Similarly, a region r ⊆ S is considered reachable if it contains a point that is
reachable:

i1 σ[t1, t2] r ≡ 〈∃p : p ∈ r :: i1 σ[t1, t2] p 〉
Still other notions of reachability can be introduced to capture more subtle

aspects of the semantics of coordination across space. We conclude this section
with one such example. In some situations we may need to assert that data can
be disseminated to any host entering a specific region throughout a particular
interval in time. A region is said to be continuously covered with respect to some
host i holding the critical data at the start if all the hosts in the required area
are reachable from it during the specified time interval

i1 ν[t1, t2] r ≡ C(i1, t1) ∈ r ∧
〈∀i, t : t ∈ [t1, t2] ∧ C(i, t) ∈ r :: i1 ρ[t1, t2] i 〉

The presentation thus far has focused on considering reachability given global
knowledge. Such a view, while helpful for illustration purposes, does not mirror
the reality of a MANET where hosts have egocentric perspectives. Hosts in the
MANET have access only to a subset of the motion profiles that make up the
global knowledge. The difference between the local and global knowledge deter-
mines how effective a host is at coordinating with other hosts in the MANET
over disconnected routes. Since disconnected routes are calculated from motion
profiles, a dearth of motion profiles on a given host results in it having access
to fewer disconnected routes, which translates into fewer opportunities for dis-
connected coordination. In such a situation, a host is stymied with respect to
operations that it wants to carry out in the future and at locations other than
its own location. This is why the knowledge base on each individual host be-
comes critical to its functionality. The closer the host’s local knowledge is to
the global knowledge, the more effective the host is, the caveat being that in
some situations, even global knowledge may not be sufficient. For instance, if
all global knowledge only looks 1 second into the future, there are no oppor-
tunities for disconnected coordination beyond that time. Motion profiles that
extend reasonably far into the future allow for timely dissemination and better
planning.

274 G.-C. Roman, R. Handorean, and R. Sen

3.4 The Egocentric Perspective

In this section we make the transition from unattainable global knowledge to
maintainable local knowledge bases. Formally, the kind of information being
held locally is of the same type as the global configuration described earlier,
but what is known locally is only an approximation of the instantaneous global
configuration of the system. The fact that the formalization is identical is helpful
in system analysis. Properties of the system can be stated in terms of global
configurations and proven using local knowledge. During this transition we make
one fundamental change in the characterization of the individual hosts. Recall
that so far a host i has been characterized by its unique identifier and a motion
profile μ. The change consists of replacing the local motion profile with a more
general knowledge base M(i) of the same type as the system configuration C
but which is always a subset thereof.

As expected, the motion profile of i in the global view C is identical to the
motion profile in its own knowledge base M(i). In other words, a host i always
knows its own motion profile fully, which is proper as i establishes its own motion
profile:

M(i, i) = C(i)

The situation changes when we consider the knowledge that host i has regarding
the motion profile of some other host j:

〈∀j :: M(i, j)% C(j)〉
We use a gossiping protocol to exchange motion knowledge among hosts.

Whenever two hosts encounter each other, i.e., they are directly connected, they
exchange the contents of their knowledge bases (their own motion profile and
the motion profiles collected through previous encounters). Hence, it is always
the case that the motion profile of a reference host as known at another host is
most often less defined than on the reference host; updates could have occurred
on the reference host after the motion profile was given away.

The system now evolves in three different ways: (1) implicitly through the
passage of time, (2) explicitly due to a change in a host’s own motion profile
where we define change to be an extension to the existing motion profile rather
than a complete replacement, and (3) by acquisition of knowledge about other
hosts as shown below:

M(i) := M(i) ∪M(j) where
〈∀l, MM : MM = M(i) ∪M(j) :: M(i, l)%MM(i, l) ∧M(j, l)%

MM(j, l) ∧ (M(i, l) = MM(i, l) ∨M(j, l) = MM(j, l))〉
When two hosts exchange knowledge bases, the motion profile for a particular

host as known by host i is compared against the motion profile for the same host
as known by host j. The profile that extends farthest into the future is adopted
as the “new” motion profile. In this way, two hosts synchronize their knowledge
bases thus improving the quality of the information each holds. Even though
this may seem to lead to unbounded growth in terms of storage requirements,
the progression of time eliminates data that is older than a predefined limit.

Tuple Space Coordination Across Space and Time 275

4 Operations

Given the central role motion profiles play in planning interactions among mo-
bile hosts in our model, it is natural to employ a similar formalization for the
operations which execute across disconnected routes. The approach is attractive
because it provides the opportunity to employ a unified knowledge-based treat-
ment to describe all aspects of the coordination model. Take for instance an
out operation. A reference host issues the operation, specifying a target for the
operation. The target can be a remote host as in traditional distributed systems,
or simply a set of spatiotemporal constraints that define a place and time where
the operation must execute. Allowing hosts to perform remote operations can
be complicated since it requires synchronized access to the data state on the
target host. Thus, any operation that has a remote target is converted to an
operation request which is routed to the target host which queues requests and
sequentially performs the operations locally on behalf of the originator of the
operation.

At this point we must consider how the operation is routed to its target. In
CAST, the system formulates a plan for moving the operation request to the
target. A plan is simply a motion profile that the operation request must follow
to reach its target. This motion profile can be easily derived from the reach-
ability information that is contained in the knowledge base of the originating
host as described in Section 3. However, using the same type of motion profile
for operations as is used for hosts is not possible. This is because the motion
profile of a host can be arbitrary whereas the motion profile of an operation
must always map to a location where a host is present. To remedy this, we use
an allocation profile which is similar to a motion profile but returns the host on
which the operation is to be located at a particular time rather than a physical
location. This motivates the need for a separate knowledge base that contains
all operations which are transferred between hosts at the same time they are
gossiping to exchange host motion profiles.

The final issue we must consider is the actual insertion of the tuple in the
target tuple space. At a basic level, we can build this action into the system
itself. However, we can gain much more expressive power by allowing actions to
be customized according to the task at hand. Consider an out operation to a
physical space. The semantics of this operation call for each host in the physical
area to receive a copy of the tuple associated with the out operation. However,
the allocation profile yields a path to only one host among those present in the
target area. The built-in action would simply place the tuple in the tuple space
of that one host. To overcome this, we introduced the concept of an operation
function, which operates on the data state of all target hosts. This concept is
especially important as it allows a great deal of flexibility when specifying the
effects of coordination operations. In the case of the out operation, operation
function places the tuple in the tuple space of the host that is reachable via the
allocation profile. After this, the function uses the knowledge base on the host to
compute which other hosts are in the target area and sends them copies of the
tuple using out operations to those specific hosts. Thus, the operation function

276 G.-C. Roman, R. Handorean, and R. Sen

encapsulates the basic operation and the maintenance of the operation in its
target scope.

An in operation is a three phase operation that requires three paths between
the originator and the target. During the first phase, the in operation can be
routed to its target destination in the same manner as the out operation. The
only difference between the two is the operation function which determines what
action must be taken at the target. Here again, we emphasize the importance of
the operation function which helps separate the concerns related to routing of
the operation to its target from the actual effect of the operation. This allows
CAST to treat all operations uniformly during the routing phase, with the actual
effect of the operation being hidden until the target is reached, which is the only
time that it is relevant. The in operation is a more complex operation than
the out because an in request to multiple hosts could result in multiple tuples
being removed which is inconsistent with the semantics of the operation. Thus,
once an in request reaches its target, it searches for tuples that match the
required template, which specifies the data being searched for. Every tuple that
matches the template, is removed from the main data tuple space to a temporary
tuple space by the operation function of in. The function then formulates, for
each tuple, an out operation targeted towards the originator of the in function
containing copies of the matching tuples. These out operations are routed to the
originator in the standard way. Upon arrival, the operation function in the out
operation places the copies in temporary storage on the originator since placing
them in the main tuple space would indicate that this data is available for use.
The system then chooses one of the copies returned non-deterministically. This
completes the second phase of the operation. During the last phase, the host
that owns the original of the copy selected is sent yet another operation request
which destroys the original tuple in the temporary storage of that host. All
others are sent a different operation that restores the original to the main data
space. The copies of the tuples that were not chosen during the second phase are
destroyed. Thus at the end of the in operation, only one tuple is removed from
the system. The system registers a reaction on behalf of the calling application on
the temporary storage space of the originator to return the result of the in to the
caller.

We have seen how a knowledge base consisting solely of motion profiles is not
sufficient since it does not account for the operational and data aspects of the
coordination model. Thus, we split K(i) as follows:

M(i) - the set of motion profiles known to the local host (Section 3)
O(i) - the set of operation requests that are on the local host
D(i) - the data state of the local host
T(i) - temporary storage space (not accessible to applications)

M(i) holds tuples that contain motion profiles, O(i) holds tuples that contain
operation requests while D(i) and T(i) can hold any type of data tuple. The
separation of these knowledge bases is key since M(i) is modified using a gos-
siping protocol, D(i) and T(i) are modified only locally by operation requests,

Tuple Space Coordination Across Space and Time 277

and O(i) is modified by either 1) operations requests moving from one host to
another, 2) operation requests being serviced, or 3) operation requests expiring.
We have already described the nature of the contents of M(i), while D(i) and
T(i) contain generic data tuples. O(i) contains operation requests that are gen-
erated by hosts to have an operation execute on their behalf. To summarize the
presentation above, each generic operation request is formulated as a 6-tuple as
follows:

a unique identifier for the request
the allocation profile of the operation
the time at which the operation becomes active
the time at which the operation becomes inactive
the operation function
the originator of the operation request

The unique identifier is required to distinguish requests for similar operations by
different hosts, and more importantly, to distinguish the results so that a host
does not mistakenly collect the results of a similar operation issued by another
host. The allocation profile describes the hosts on which the operation is resident
at a given time. The time of activation and deactivation indicate the time interval
for which the operation is valid and able to be executed. There are two points
of note: (1) in most cases, there is an implicit dependency between activation
time and the allocation profile since the activation time cannot precede the
time at which the operation reaches the target host as given by the allocation
profile and (2) a bounded deactivation time in effect makes every operation in
CAST a polling operation because the system waits for the result of an operation
only for the duration that it is active. If the current time exceeds the time at
which the operation becomes inactive, the system unblocks and lets the execution
continue. The operation function is a constant function that encodes the effect
of the operation on the knowledge state of the target host and may also manage
adequate coverage of the operation in a physical space. Examples of operation
functions for out and in have already been described.

Before concluding, we return to SynchroTrack, presented in Section 2. Syn-
chroTask uses various facilities provided by CAST to deliver the intended func-
tionality. Consider the time when Bob placed the message in the ready room.
CAST’s spatial out operation was used to deliver the tuple to the ready room.
The CAST system’s knowledge base on Bob’s PDA was used to determine that
Chris will be in the ready room from 12 PM to 1 PM and David from 1 PM to
2 PM. This information resulted in the message being moved from Bob to Chris
at 12 PM and from Chris to David at 1 PM, allowing a message to be associ-
ated with a physical area rather than be associated with any particular host.
SynchroTask on Eric’s PDA used a spatially targeted in operation to retrieve
the information when he came in. The entire structure allowed the person that
fulfilled the role of the afternoon supervisor to retrieve the information. If an
operation was targeted specifically to Alice (the expected afternoon supervisor),
then Eric would have not gotten the message.

278 G.-C. Roman, R. Handorean, and R. Sen

5 Related Work

Since the work presented in this paper is a new approach to coordination built
on top of a novel MANET routing protocol, we address related work in two
areas–coordination models and MANET routing protocols.

The first example of a coordination model was Linda [6]. In Linda, coordi-
nation is characterized by a centralized coordination mechanism while the ap-
plication that uses it may be distributed. In modern implementations of the
coordination concept, such as JavaSpaces [7] and TSpaces [8], various parts of
the application coordinate with each other by means of a tuple space maintained
at a central location.

Coordination models have also found favor in agent-based systems. TuCSoN
[9] introduced multiple tuple spaces called tuple centers while in MARS [10],
mobile agents are provided upon arrival on a particular host with a handle to
the local tuple space, which is shared among all agents present on the same
host. Ara [11] introduced a constrained rendezvous type of coordination: some
agents assume the role of coordination servers and represent meeting points
where agents can ask for services.

More recently, coordination models have been adapted to novel computational
environments [12], [13], [14], and [15], which highlights their versatility. One
such environment where coordination models were introduced in support of new
classes of applications was MANETs. LIME [3] proposed the idea of multiple
(local) tuple spaces that were transiently shared to form a federated shared
dataspace when hosts are in communication range. Limone [4] is a lightweight
alternative to LIME implemented to offer fewer guarantees. TOTA [16] uses
spatially distributed tuples, injected in the networks and propagated according
to applications specific patterns.

Coordination models adapted for MANETs often support only peer-to-peer
connections. To support multihop connections, they need to be combined with
MANET routing protocols which fall into four broad categories: (1) proactive
protocols such as DSDV[17], WRP[18], CSGR[19], which constantly maintain
and update routes using routing tables at the cost of high bandwidth usage; (2)
reactive protocols such as AODV[20], TORA[21], ABR[22], DSR[23], which only
search for routes when they are required at the cost of low responsiveness; and
(3) disconnected routing such as Epidemic[24], Message Relay[25], which allow
messages to be sent via a gossiping protocol.

Most of the protocols mentioned above use broadcasts for route discovery and
maintenance. Recent developments have targeted the use of location informa-
tion to reduce the overhead required to discover and maintain routes. This has
resulted in a new family of routing protocols called geographic routing protocols
[26], [27]. The basic idea is to greedily forward the message to the next hop neigh-
bor physically the closest to the destination. The greedy approach fails often in
local optima that become dead-ends before the target is reached. This problem
has multiple solutions in the form of the GPSR protocol [28], terminode routing
[29], among others. Our work is different from geographic routing protocols in
that (1) we do not use location information to optimize routing tasks, (2) we

Tuple Space Coordination Across Space and Time 279

do not enforce an end-to-end route, and (3) common problems with geographic
routing such as topology holes and local minima do not affect our approach.
Location information is important to us for the purpose of determining when
hosts are going to be connected with each other and are an integral part of the
model (along with time).

6 Conclusions

In this paper, we have presented Coordination Across Space and Time (CAST), a
new coordination model tailored for MANETs that enables coordination across
the reaches of space and time. CAST achieves this functionality by its use of
1) disconnected routing, which allows two hosts that are not in direct contact
to coordinate with each other, 2) spatiotemporal operations that enable oper-
ations to execute at specific locations in space and at any point in time, and
3) a knowledge driven architecture that unifies the treatment of motion of hosts,
operations, and data state. The next steps in our investigation are a formal ex-
amination of the model’s expressive power and an engineering effort to deliver
the model’s functionality in the form of an operational middleware.

Acknowledgments. This research was supported in part by ONR-MURI re-
search contract N00014-02-1-0715. Any opinions, findings, and conclusions ex-
pressed in this paper are those of the authors and do not necessarily represent
the views of the sponsors.

References

1. Cabri, G., Leonardi, L., Zambonelli, F.: MARS: A programmable coordination
architecture for mobile agents. IEEE Internet Computing 4 (2000) 26–35

2. de Nicola, R., Ferrari, G.L., Pugliese, R.: klaim: a kernel language for agents
interaction and mobility. IEEE Transactions on Software Engineering (Special
Issue on Mobility and Network Aware Computing) (1998)

3. Murphy, A., Picco, G., Roman, G.C.: Lime: A middleware for physical and logical
mobility. In: Proc. of the 21st Int’l Conf. on Distributed Computing Systems.
(2001) 524–533

4. Fok, C.L., Roman, G.C., Hackmann, G.: A lightweight coordination middleware
for mobile computing. In: Proceedings of COORDINATION 2004. Volume 2949 of
LNCS., Springer Verlag (2004) 135–151

5. Peine, H., Stolpmann, T.: The architecture of the Ara platform for mobile agents.
In Popescu-Zeletin, R., Rothermel, K., eds.: First International Workshop on Mo-
bile Agents MA’97. Volume 1219 of Lecture Notes in Computer Science., Berlin,
Germany, Springer Verlag (1997) 50

6. Gerlenter, D.: Generative communication in Linda. ACM Computing Surveys 7
(1985) 80–112

7. Microsystems, S.: Javaspace specification. (http://java.sun.com/products/jini/
specs)

8. Wyckoff, P.: Tspaces. IBM System Journal 37 (1998) 454–474

280 G.-C. Roman, R. Handorean, and R. Sen

9. Omicini, A., Zambonelli, F.: The TuCSoN coordination model for mobile infor-
mation agents. In: Proceedings of the 1st Workshop on Innovative Internet
Information Systems, Pisa, Italy (1998)

10. Cabri, G., Leonardi, L., Zambonelli, F.: MARS: A programmable coordination
architecture for mobile agents. IEEE Internet Computing 4 (2000) 26–35

11. Peine, H., Stolpmann, T.: The architecture of the Ara platform for mobile agents.
In Popescu-Zeletin, R., Rothermel, K., eds.: First International Workshop on Mo-
bile Agents MA’97. Volume 1219 of Lecture Notes in Computer Science., Berlin,
Germany, Springer Verlag (1997) 50–61

12. Papadopoulos, G.A., Arbab, F.: Coordination models and languages. In: 761.
Centrum voor Wiskunde en Informatica (CWI) (1998) 55

13. Papadopoulos, G.: Models and technologies for the coordination of internet agents:
A survey (2000)

14. Cabri, G., Leonardi, L., Zambonelli, F.: The impact of the coordination model in
the design of mobile agent applications. In: Proceedings of the 22nd International
Computer Software and Application Conference. (1998) 436–442

15. Fok, C.L., Roman, G.C., Lu, C.: Software support for application development in
wireless sensor network. In: Mobile Middleware. CRC Press (2005)

16. Mamei, M., Zambonelli, F., Leonardi, L.: Tuples on the air: a middleware for
context-aware computing in dynamic networks. In: Proceedings of the 2nd Inter-
national Workshop on Mobile Computing Middleware at the 23rd International
Conference on Distributed Computing Systems (ICDCS). (2003) 342–347

17. Perkins, C., Bhagwat, P.: Highly dynamic destination-sequenced distance-vector
routing (DSDV) for mobile computers. In: ACM SIGCOMM’94 Conference on
Communications Architectures, Protocols and Applications. (1994)

18. Murthy, S., Garcia-Luna-Aceves, J.J.: An efficient routing protocol for wireless
networks. Mobile Networks and Applications 1 (1996) 183–197

19. Chiang, C., Wu, H., Liu, W., Gerla, M.: Routing in clustered multihop, mobile wire-
less networks. In: IEEE Singapore International Conference on Networks. (1997)
197–211

20. Perkins, C.: Ad-hoc on-demand distance vector routing. In: MILCOM ’97 panel
on Ad Hoc Networks. (1997)

21. Park, V.D., Corson, M.S.: A highly adaptive distributed routing algorithm for
mobile wireless networks. In: Proceedings of INFOCOM’97. (1997) 1405–1413

22. Toh, C.K.: A novel distributed routing protocol to support ad-hoc mobile com-
puting. In: Fifteenth Annual International Phoenix Conference on Computers and
Communications. (1996) 480–486

23. Johnson, D.B., Maltz, D.A.: Dynamic source routing in ad hoc wireless networks.
Mobile Computing 353 (1996)

24. Vahdat, A., Becker, D.: Epidemic routing for partially connected ad hoc networks.
Technical Report CS-200006, Duke University (2000)

25. Li, Q., Rus, D.: Communication in disconnected ad hoc networks using message
relay. Parallel and Distributed Computing 63 (2003) 75–86

26. Imielinski, T., Navas, J.: Rfc 2009 - gps-based addressing and routing. http://
rfc2009.x42.com/ (1996)

27. Navas, J.C., Imielinski, T.: GeoCast – geographic addressing and routing. In:
Mobile Computing and Networking. (1997) 66–76

28. Karp, B., Kung, H.T.: GPSR: greedy perimeter stateless routing for wireless net-
works. In: Mobile Computing and Networking. (2000) 243–254

29. Blazevic, L., Boudec, J.Y.L., Giordano, S.: A location-based routing method for
mobile ad hoc networks. IEEE Transactions on Mobile Computing 4 (2005) 97–110

Compositional Semantics of an Actor-Based
Language Using Constraint Automata

Marjan Sirjani1,2, Mohammad Mahdi Jaghoori2,
Christel Baier3, and Farhad Arbab4,5

1 University of Tehran, Tehran, Iran
2 IPM School of Computer Science, Tehran, Iran

3 University of Bonn, Bonn, Germany
4 CWI, Amsterdam, Netherlands

5 Leiden University, Leiden, Netherlands
msirjani@ut.ac.ir, jaghoori@mehr.sharif.edu, baier@cs.uni-bonn.de

farhad@cwi.nl

Abstract. Rebeca is an actor-based language which has been success-
fully applied to model concurrent and distributed systems. The seman-
tics of Rebeca in labeled transition system is not compositional. In this
paper, we investigate the possibility of mapping Rebeca models into a
coordination language, Reo, and present a natural mapping that pro-
vides a compositional semantics of Rebeca. To this end, we consider
reactive objects in Rebeca as components in Reo, and specify their be-
havior using constraint automata as black-box components within Reo
circuits. Modeling coordination and communication among reactive ob-
jects as Reo circuits, and the behavior of reactive objects as constraint
automata, provides a compositional semantics for Rebeca. Although the
result is a compositional model, its visual representation in Reo shows
very well that it still reflects the tight coupling inherent in the commu-
nication mechanism of object-based paradigms, whereby the real control
and coordination is built into the code of the reactive objects themselves.
We describe an alternative design that overcomes this deficiency. This
illustrates the differences between objects and components, and the chal-
lenges in moving from object-based to component-based designs.

Keywords: actor model, Compositional semantics, Rebeca, Reo, Con-
straint Automata.

1 Introduction

Managing large and complex systems requires techniques that support reusabil-
ity and modifiability [1]. In general, compositionality allows one to master both
the complexity of the design and verification of software models. Having a com-
positional semantics for a modeling language allows us to construct a model from
its sub-models and reuse the already derived semantics of the sub-models. Com-
positional construction and verification can be exploited effectively only when
the model is naturally decomposable [2], and there is no general approach for

P. Ciancarini and H. Wiklicky (Eds.): COORDINATION 2006, LNCS 4038, pp. 281–297, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

282 M. Sirjani et al.

decomposing a system into components [3]. Different researchers have worked
on composing specifications and verifying their properties [4, 5, 6]. In this pa-
per, we build up a compositional semantics for an actor-based language, using
a component-based language and taking advantage of its compositional seman-
tics. In this way we can use our object-based Java-like modeling language which
is familiar for software engineers, while benefitting from the component-based
paradigm to build models from their sub-models.

Rebeca (Reactive Objects Language) is an actor-based language with a for-
mal foundation, presented in [7, 8, 9]. A model in Rebeca consists of a set of reac-
tive objects (called rebecs) which are concurrently executing and asynchronously
communicating. Rebeca can be considered as a reference model for concurrent
computation, based on an operational interpretation of the actor model [10, 11].
It is also a platform for developing object-based concurrent systems in practice.
Formal verification approaches are used to ensure correctness of concurrent and
distributed systems. The Rebeca Verifier tool, as a front-end tool, translates
Rebeca code into languages of existing model-checkers, allowing verification of
their properties [12, 13]. There is also an ongoing project on developing a direct
model checker for Rebeca using state space reduction techniques [14, 15].

The Rebeca semantics, expressed in LTS (Labeled Transition System) [7, 8]
is not compositional. We cannot construct the semantics of the total model
by composing the semantics of each rebec used to construct the model. The
compositional verification approach proposed in [7, 9] is based on decomposing
a closed Rebeca model and not composing the rebecs as the components of a
model.

Reo [16, 17] is an exogenous coordination model wherein complex coordina-
tors, called connectors are compositionally built out of simpler ones. The atomic
connectors are a set of user-defined point-to-point channels. Reo is based on the
foundation model of Abstract Behavior Types (ABT), as a higher level alter-
native to Abstract Data Types (ADT), which serve as the foundation of object
oriented languages [18]. Reo can be used as a glue language for compositional
construction of connectors that orchestrate component instances in a component
based system.

In this paper, we investigate the possibility of mapping Rebeca models into
Reo and propose a natural mapping that provides a compositional semantics
of Rebeca. As reactive objects (rebecs) are encapsulated and loosely coupled
modules in Rebeca, we consider them as components in a coordination language.
Modeling the coordination and communication mechanisms between rebecs can
be done by Reo circuits, and the behavior of each rebec is specified by constraint
automata [19] as a black-box component within the Reo circuit.

In [20] and [21] a component-based version of Rebeca is proposed where the
components act as wrappers that provide higher level of abstraction and encap-
sulation. The main problem in constructing a component in this object-based
configuration is the rebec-to-rebec communication and the need to know the
receiver names. In [20] and [21] components are sets of rebecs and the commu-
nication between components is via broadcasting anonymous and asynchronous

Compositional Semantics of an Actor-Based Language 283

messages. In this paper, we use the coordination language Reo and model each
rebec as a component. The rebec-to-rebec communication remains the main
problem in exploiting the reusability provided by our compositional semantics.
The semantics of Rebeca in Reo demonstrates this problem very well. We propose
a solution based on the behavior of synchronous channels in Reo, the interleaving
nature of concurrency in Rebeca models, and the fact that, in this case, there is
only one message sent in an atomic step. Hence, the work in this paper is our
first successful attempt to build-up components out of reactive objects without
changing the semantics of Rebeca.

Another interesting outcome of our mapping is to clearly show the problems
in moving from an object-based model to a component-based model of the kind
proposed by Reo. The components that we construct out of reactive objects
are not really amenable to external coordination control provided by the glue
code. We cannot simply change the coordination glue code and expect another
execution pattern independent from the behavior of the rebecs. The coupling
inherent in the message passing mechanism will also be reflected in the Reo
circuitry representing their communication. We show that in this case the glue
code will grow in size and complexity as the system evolves. We then propose a
solution for the special case of Rebeca.

Organization of the Paper. In Section 2, we provide a brief overview of
Rebeca and a Rebeca model as an example which we also use in Section 7. Reo
is described in Section 3, and our mapping of Rebeca to Reo is explained in
Section 4. Constraint automata are used to build the compositional semantics of
Reo. In Section 5 we describe their extended form of parameterized constraint
automata which we use in this paper. In Section 6 we describe our algorithm
for generating parameterized constraint automata out of Rebeca code. Section 7
shows a case study. Section 8 is a short conclusion and a view of our future work.

2 Rebeca: An Actor-Based Language

Rebeca models consist of concurrently executing reactive objects, called rebecs.
Rebecs are encapsulated objects, with no shared variables, which can commu-
nicate only by asynchronous message passing. Each rebec is instantiated from
a reactive class and has a single thread of execution; it also has an unbounded
buffer, called a queue, for arriving messages. Computation takes place by mes-
sage passing and execution of the corresponding methods of messages. Each
message specifies a unique method to be invoked when the message is serviced.
In this paper we abstract from dynamic object creation and dynamic topology,
both of which are present in Rebeca models.

The operational semantics of Rebeca is defined using as a labeled transition
system, a quadruple of a set of states (S), a set of labels (L), a transition relation
on states (T), and a set of initial states of the system (s0), M = (S, L, T, s0),
where we have the followings (for a more detailed formal definition refer to [7]):
The state space of the model is

∏n
i=1(Si × qi), where each Si denotes the local

state of rebec ri consisting of a valuation that maps each local field variable to a

284 M. Sirjani et al.

value of the appropriate type; and the inbox qi, an unbounded buffer that stores
all incoming messages for rebec ri in a FIFO manner.

The set of action labels L is the set of all possible message calls in the given
model; such calls cause the processing of those messages that are part of the
target rebec (if it provides the corresponding message server).

A triple (s, l, s′) ∈ S × L× S is an element of the transition relation T iff

– in state s there is some ri such that l is the first message in the inbox qi, l is
of the form 〈sender , receiver ,msg〉, where sender is the rebec identifier of the
requester (implicitly known by the receiver), receiver is the rebec identifier
of ri (receiver rebec), and msg is the name of the method m of ri which is
invoked;

– state s′ results from state s through the atomic execution of two activities:
first, rebec ri deletes the first message l from its inbox qi, second, method m
is executed in state s. The latter may add requests to rebecs’ inboxes (by
sending messages), change the local state (by assignments), and/or create
new rebecs;

– if new rebecs are created in the invocation of m, then the state space S
expands dynamically, which is out of the scope of this paper.

Clearly, the execution of the above methods relies implicitly on a standard se-
mantic for the imperative code in the body of method m. Regarding the infinite
behavior of our semantics, communication is assumed to be fair [11]: all the
sent messages eventually reach their respective inboxes and will eventually be
serviced by the corresponding rebec. The initial state s0 is the one where each
rebec has its initial message as the sole element in its inbox.

We use a simple example of trains and a controller to show a Rebeca model
and also the mapping algorithm further in Section 7. Consider a bridge with a
track where only one train can pass at a time. There are two trains, entering the
bridge in opposite directions. A bridge controller uses red lights to prevent any
possible collision of trains, and guarantees that each train will finally enter the
bridge assuming that the trains pass the bridge after entering it.

Figure 1 shows the Rebeca code for the bridge controller example. There are
two reactive classes, one for the bridge controller and one for the trains. The
numbers in front of each reactive class name show the length of the queue of
the rebecs instantiated from that class. For model checking purposes we need
a bound on the queue lengths. The bridge controller uses its state variables to
keep the value of the red lights on each side, and has flags to know whether or
not a train is waiting on each side of the bridge. In the initial state, rebecs have
their initial messages as the only message in their queues.

3 Reo: A Coordination Language

Reo is a model for building component connectors in a compositional man-
ner [16, 17]. Reo offers a compositional approach to defining component con-
nectors. Reo connectors (also called circuits) are constructed in the same spirit

Compositional Semantics of an Actor-Based Language 285

reactiveclass BridgeController(5) { reactiveclass Train(3) {
knownobjects{Train t1; Train t2;} knownobjects{BridgeController controller;}
statevars { statevars { boolean onTheBridge; }

boolean isWaiting1; boolean isWaiting2; msgsrv initial() {
boolean signal1; boolean signal2; onTheBridge = false;

} self.Passed();
msgsrv initial() { }

signal1 = false; isWaiting1 = false; msgsrv YouMayPass() {
signal2 = false; isWaiting2 = false; onTheBridge = true;

} self.Passed();
msgsrv Arrive() { }

if (sender == t1) { msgsrv Passed() {
if (signal2 == false) { onTheBridge = false;

signal1 = true; controller.Leave();
t1.YouMayPass(); self.ReachBridge();

} else { isWaiting1 = true; } }
} else { msgsrv ReachBridge() {

if (signal1 == false) { controller.Arrive();
signal2 = true; }
t2.YouMayPass(); }

} else { isWaiting2 = true; } } main {
} Train train1(theController);
msgsrv Leave() { Train train2(theController);

if (sender == t1) { BridgeController theController
signal1 = false; (train1, train2);
if (isWaiting2) { }

signal2 = true;
t2.YouMayPass();
isWaiting2 = false; }

} else {
signal2 = false;
if (isWaiting1) {

signal1 = true;
t1.YouMayPass();
isWaiting1 = false; } }

}
}

Fig. 1. Rebeca Model for a Bridge Controller

as logic and electronics circuits: take basic elements and connect them. Basic
connectors in Reo are channels. Each channel has exactly two ends, which can
be a sink end or a source end. A sink end is where data flows out of a channel,
and a source end is where data flows into a channel. It is possible for the ends
of a channel to be both sinks or both sources. Reo places no restriction on the
behavior of a channel. This allows an open-ended set of different channel types
to be used simultaneously together in Reo, each with its own policy for syn-
chronization, buffering, ordering, computation, data retention/loss, etc. For our
purpose to model Rebeca models, we need a small set of basic channels, which
we define later (in Figure 5).

Channels are connected to make a circuit. Connecting (or joining) channels is
putting channel ends together in a node. So, a node is a set of coincident channel
ends. The semantics of a node is as follows.

286 M. Sirjani et al.

A component can write data items to a source node that it is connected to.
The write operation succeeds only if all (source) channel ends coincident on
the node accept the data item, in which case the data item is transparently
written to every source end coincident on the node. A source node, thus, acts as
a replicator. A component can obtain data items, by an input operation, from a
sink node that it is connected to. A take operation succeeds only if at least one
of the (sink) channel ends coincident on the node offers a suitable data item; if
more than one coincident channel end offers suitable data items, one is selected
nondeterministically. A sink node, thus, acts as a nondeterministic merger. A
mixed node nondeterministically selects and takes a suitable data item offered
by one of its coincident sink channel ends and replicates it into all of its coincident
source channel ends.

M
Z

W U
N

E B

X

F

Fig. 2. Exclusive Router in Reo

Figure 2 shows a Reo connector, an exclusive router, which we call Xrouter.
Here, we use it to show the visual syntax for presenting Reo connector graphs and
some frequently useful channel types. This circuit is also used to model Rebeca
in Reo. The enclosing thick box in this figure represents hiding: the topologies of
the nodes (and their edges) inside the box are hidden and cannot be modified.
It yields a connector with a number of input/output ports, represented as nodes
on the border of the bounding box, which can be used by other entities outside
the box to interact with and through the connector.

The simplest channels used in these connectors are synchronous (Sync) chan-
nels, represented as simple solid arrows (like edges FX and MW in Figure 2). A
Sync channel has a source and a sink end, and no buffer. It accepts a data item
through its source end iff it can simultaneously dispense it through its sink. A
lossy synchronous (LossySync) channel is similar to a Sync channel, except that
it always accepts all data items through its source end. If it is possible for it to
simultaneously dispense the data item through its sink (e.g., there is a take oper-
ation pending on its sink) the channel transfers the data item; otherwise the data
item is lost. LossySync channels are depicted as dashed arrows, e.g., XM and
XN in Figure 2. Another channel is the synchronous drain channel (SyncDrain),
whose visual symbol appears as the edge XZ in Figure 2. A SyncDrain chan-
nel has two source ends. Because it has no sink end, no data value can ever be

Compositional Semantics of an Actor-Based Language 287

obtained from this channel. It accepts a data item through one of its ends iff a
data item is also available for it to simultaneously accept through its other end
as well. All data accepted by this channel are lost.

Two channels that are used in modeling Rebeca but are not included in the
Xrouter circuit, are FIFO and Filter channels. We define FIFO as an unbounded
asynchronous channel where data can flow in unboundedly from its source and
flow out of its sink, if its buffer is not empty; input and output cannot take place
simultaneously when the buffer is empty. Figure 5.a in Section 5 shows the Reo
notation (and the constraint automaton) for a 1-bounded FIFO channel. Filter
is a channel with a corresponding data pattern. It lets the data that match with
the pattern pass and loses all other data. A Filter channel and its constraint
automaton are shown in Figure 5.b.

4 Rebecs as Components in Reo

To model Rebeca using Reo, we can consider each rebec as a black-box compo-
nent, and model the coordination and communication among the rebecs as Reo
circuits. To model this coordination, we use an Xrouter which passes the control
to each rebec nondeterministically. Communication takes place by asynchronous
message passing which is modeled by FIFO and filter channels in Reo.

Each rebec starts its execution by receiving a start signal, and sends an end
signal at its end. The behavior of a rebec as a component is to take a message
from its message queue upon receiving the start signal through its start port,
execute the corresponding message server, and send an end signal through its
end port. The coordination, which is modeled by interleaved execution of rebecs,
is handled by an Xrouter which passes the start signal to one and only one
rebec, waits until it receives an end signal, and passes the start signal again,
guaranteeing the atomic execution of each method according to the semantics of
Rebeca in [7]. This loop is repeated by Xrouter, and sending the signals is done
by a nondeterministic choice. The Reo circuit in Figure 3 shows the Xrouter
and other channels that are used to manage the coordination and facilitate the
communication among rebecs.

For communication between rebecs, we need FIFO and filter channels. The
message queues of rebecs are modeled by FIFO channels. We need to design a
circuit to allow only the messages that are sent to a specific rebec to get into its
queue, and filter out all other messages. To have an elegant design, we consider
a consistent pattern of wiring between components. In Figure 3, there are fork
nodes named Fi, and merge nodes named Mi. All messages that are sent by a
rebec rebeci get out of its port send , then pass a Sync channel and enter the
corresponding fork node Fi. Here, a message is copied into all the source channel
ends of the outgoing Sync channels that are merged again in the node Mi. For
a model with n rebecs, there are n Sync channels that connect each rebec to all
other rebecs and carry the messages. Following each merge node Mi there is a
Filter channel whose filter pattern is the ID of the receiver rebec. So, the filter
following the node Mi filters out every message whose receiver is not rebeci,

288 M. Sirjani et al.

FIFO

take send
rebec_i

end start

XRouter
1 … i … n

FIFO

take send
rebec_n

end start

FIFO

take send
rebec_1

end start

F_1M_1 F_i F_nM_nM_i

1...i ...n1...i ...n 1...i ...n1… i … n 1… i … n 1… i … n

Fig. 3. Modeling Rebeca in Reo

allowing only the proper messages to pass through and get into the message
queue of the rebec (the FIFO in Figure 3).

Upon receiving a start signal, a rebec takes a message from its queue by
enabling the take port, and then executes the corresponding message server.
During this execution, the messages that are sent, flow out of the rebec compo-
nent through its send port, and arrive at the message queue of the destination
rebec properly, passing the fork node, the merge node, and the filter channel.

Now, we have a Reo circuit that models a Rebeca model. But, to be able to
construct the compositional semantics of a model and verify its properties we
need to have a proper semantics for this Reo circuit and also for the rebecs.
Constraint automata [19] are presented as a compositional semantics for Reo
circuits and can be used to model components and the glue code circuit in a
consistent way. They also provide verification facilities.

Looking more carefully, we see that by adding or removing rebecs the Reo
circuit in Figure 3 which acts as the glue code will be changed. Our goal in
obtaining the compositional semantics of the model is to be able to reuse the
constraint automata of the parts of the Reo model that are not changed and
not to construct the constraint automata of the whole Reo model from scratch.
Observing that the glue code will change with a single change in the set of
constituent rebecs, we can see that there is no gain in this way of constructing
the compositional semantics. Although, the constraint automata for each rebec
does not change and can be reused, all the join operations must be done again.

This is a good example to show how the modules in an object-based model are
more tightly coupled than the modules in a component-based model. We changed
our Reo circuit in Figure 3 to the circuit in Figure 4 to gain more modifiability
and reusability. Here, the coordination part which is an Xrouter in Figure 3 is
replaced with a compositional variant in Figure 4. Also, the communication part
is changed to the simple circuit shown in Figure 4. This simplification is only

Compositional Semantics of an Actor-Based Language 289

FIFO

take send
rebec_2

end start

XRouter

FIFO

take send
rebec_n

end start

XRouter

FIFO

take send
rebec_1

end start

XRouter

F_1M_1 F_2 F_nM_nM_2

Fig. 4. Compositional modeling of Rebeca in Reo

valid because of the interleaved execution of each rebec and the fact that there
is only one message carried through the Sync channels in each atomic step. In
this way we have each rebec and its coordination and communication part as a
component which can be plugged into or removed from a model without changing
the rest of the model. Hence, by adding or removing a rebec, the entire model
will not change. Note that our goal here is not to achieve exogenous coordination,
because in Rebeca (like other object oriented models) the driving control and
coordination are built in the code of rebecs and the message passing pattern.

5 Constraint Automata: Compositional Semantics of Reo

Constraint automata are presented in [19] to model Reo connectors. We use
constraint automata to model the components, yielding Rebeca models fully
as constraint automata. In this section, we explain the definition of constraint
automata and how the constraint automata of a Reo circuit is constructed com-
positionally.

Using constraint automata as an operational model for Reo connectors, the
automata-states stand for the possible configurations (e.g., the contents of the
FIFO-channels of a Reo-connector) while the automata-transitions represent the
possible data flow and its effect on these configurations. The operational seman-
tics for Reo presented in [16] can be reformulated in terms of constraint au-
tomata. Constraint automaton of a given Reo connector can also be defined in
a compositional way. For this, the composition operator for constraint automata
and the constraint automata for a set of Reo connector primitives are presented
in [19].

Definition 1. [Constraint automata] A constraint automaton (over the data
domain Data) is a tuple A = (Q,Names,−→, Q0) where

– Q is a set of states,
– Names is a finite set of names,

290 M. Sirjani et al.

– −→ is a subset of Q× 2Names×DC ×Q, called the transition relation of A,
where DC is the set of data constraints,

– Q0 ⊆ Q is the set of initial states.

We write q
N,g−→ p instead of (q, N, g, p) ∈−→. We call N the name-set and g

the guard of the transition. For every transition

q
N,g−→ p

we require that (1) N �= ∅ and (2) g ∈ DC (N,Data). A is called finite iff Q, −→
and the underlying data domain Data are finite. �
Figure 5.a shows a constraint automaton for a 1-bounded FIFO channel with
input port (source end) A and output port (sink end) B. Here, we assume that
the data domain consists of two data items 0 and 1. Intuitively, the initial state
q0 stands for the configuration where the buffer is empty, while the states p0 and
p1 represent the configurations where the buffer is filled with one or the other
data item.

We now explain how constraint automata can be used to model the possible
data flow of a given Reo circuit. The nodes of a Reo-circuit play the role of
the ports in the constraint automata. To provide a compositional semantics for
Reo circuits, we need constraint automata for all basic channel connectors and
automata-operations to mimic the composition offered by the Reo-operations for
join and hiding.

q0

p0

p1

{A}
d_A=0

{B}
d_B=0

{A}
d_A=1

{B}
d_B=1

A B

A B

Sync
A B

SyncDrain

{A,B}
d_A = d_B

{A,B}

LossySync
A B

{A,B}
d_A = d_B {A}

Filter
A B

{A,B}
d_A = P
d_B = P

{A}
d_A = P

P

(a) (b)

Fig. 5. (a) Deterministic constraint automaton for a 1-bounded FIFO channel; and,
(b) Deterministic constraint automaton for some other channels

Figure 5.b shows the constraint automata for some of the standard basic
channel types: a synchronous channel, a synchronous drain, a lossy synchronous
channel, and a filter with pattern P . In every case, one single state is suffi-
cient. Moreover, the automata are deterministic. There are operators defined on
constraint automata that capture the meaning of Reo’s join and hiding opera-
tors [19].

Compositional Semantics of an Actor-Based Language 291

q(x)q_0

{A}
x := d_A

{B}

d_B=x

Fig. 6. Parameterized constraint automaton for a 1-bounded FIFO channel

Parameterized Constraint Automata. To simplify the pictures for constraint
automata for data-dependent connectors, we use a parameterized notation for
constraint automata, as proposed in [22]. For example, Figure 6 shows a para-
meterized constraint automata for a FIFO1 channel with source A and sink B.
Thus, q(x) in Figure 6 represents the states q(d) for d ∈ Data. The transition
from q0 to q(x) in the picture is a short-hand notation for the transitions from
q0 to q(d) with the name-set {A} and the data constraint d = dA where d ranges
over all data elements in Data.

Formally, a parameterized constraint automaton is defined as a tuple

P = (Loc,Var , v ,Names,�,Loc0, init)

where

– Loc is a set of locations,
– Var is a set of variables,
– v : Loc → 2Var assigns to any location � a (possibly empty) set of variables,
– Names is a finite set of names (like in constraint automata),
– � is a subset of Loc×2Names×PDC×X×Loc, called the transition relation

of P , where PDC is the set of parameterized data constraints and X is the
function showing assignments to variables,

– Loc0 ⊆ Loc is a set of initial locations,
– init is a function that assigns to any initial location � ∈ Loc0 a condition for

the variables.

v(�) can be viewed as the parameter list of location �. For instance, in Figure 6
we use q(x) to denote that q is a location with parameter list v(q) = {x}, while
q0 is a location with an empty parameter list. The initial condition for q0 is
omitted which denotes that init(q0) = true.

6 Compositional Semantics of Rebeca Using Constraint
Automata

To obtain the constraint automata of the coordination and communication parts
of the Rebeca model, which are modeled in Reo, we use the join and hide oper-
ations on constraint automata. For specifying the semantics of rebecs we need

292 M. Sirjani et al.

parameterized constraint automata. To obtain the parameterized constraint au-
tomaton (PCA) of each rebec, we use an algorithm, shown in Figure 7, to extract
the PCA directly from the Rebeca code.

In the parameterized constraint automaton for each rebec i,

Pi = (Loci,Var i, vi,Namesi, �i,Loc0i, init i)

where we have Namesi = {start, end, send, take}, and Loc0i = {idle}. For each
rebec Var i includes state variables of the rebec, local variables of each method,
and sender variable which holds the ID of the sender of each message.

VARS: sender; {state variables}; {local variables};

BEGIN
Create locations: Idle, Dispatch
Create transitions:

Idle
{start}−−−−−→ Dispatch

Dispatch
{take, end}, dtake.msg=empty−−−−−−−−−−−−−−−−−−−−−−−−−→ Idle

FOR each message server M DO

Create transition: Dispatch
{take}, dtake.msg= M−−−−−−−−−−−−−−−−−−→
sender := dtake.sender

startM

Create control graph from startM to endM
Create transition: endM

{end}−−−−→ Idle
OD

END

Fig. 7. Algorithm to construct parameterized constraint automaton from a rebec code

The initial state of the PCA (Parameterized Constraint Automaton) of each
rebec is denoted as the idle state. At the beginning all rebecs are in their idle
states. By getting the start signal as input from the Xrouter, a rebec moves
to its Dispatch state, where a message is taken from top of the corresponding
queue. The data item of the port take is assumed to be a tuple consisting of the
sender of the message and the message server name. According to the d take,
the next state is chosen. If the message queue is empty the transition goes back
to the idle state. If not, the transition goes to the state which is the beginning
of the execution of a message server. In fact, the second item of d take which
is the message server name specifies the next state. Suppose the messageM is
taken from the queue. This causes a transition to state startM, which denotes
the beginning of the execution of the message server ofM.

The execution of each message server can be shown with a control graph
representing its different branches and assignments. In this control graph, each
send statement contributes to a transition. The name of this transition is send,
and its data constraint is a tuple containing the name of the message being
sent, the ID of the receiving rebec, and the ID of the sender which is self. In
this phase, since the automata are created for the reactive classes and not the
rebecs, the receiving rebec is chosen as one of the known rebecs. This ID is

Compositional Semantics of an Actor-Based Language 293

0 1 2 3

send
sq0 := d_send.sender

mq0 := d_send.message

send
sq1 := d_send.sender

mq1 := d_send.message

send
sq2 := d_send.sender

mq2 := d_send.message

take
 d_take.sender = sq0

d_take.message = mq0
sq0 := self , mq0 := empty

take
d_take.sender = sq0

d_take.message = mq0
sq0 := sq1 , mq0 := mq1

sq1 := self
mq1 := empty

take
d_take.sender = sq0

d_take.message = mq0
sq0 := sq1 , mq0 := mq1
sq1 := sq2 , mq1 := mq2

sq2 := self , mq2 := empty

take

d_take.message = empty
d_take.sender = self

 sq0 := sq1 := … := self
mq0 := initial

 mq1 := mq2 := … := empty

Fig. 8. Constraint automaton for a message queue channel

used by the designated filter of each rebec to identify the real receiver of the
message. Each transition due to a send should also contain all the assignments
made before that send. The assignments after the last send (if any) constitute
the final transition of the control graph. This is a transition with end signal
which connects the last state of the control graph (endM) to the idle state. This
transition can be combined with the last transition of the control graph (and
hence removing endM) to reduce the number of states. We use the bridge con-
troller example of Section 2, to explain the algorithm in more detail in the next
section.

We use a special kind of a FIFO channel to model the message queue of a
rebec. The main point is that we want to be able to realize the situation when
the queue is empty. This cannot be done with the conventional definition of a
FIFO channel in Reo [17, 16]. We assume that there is a special data denoted
by empty that the channel emits to show that the queue is empty. We define
the behavior of the message queue channel as the constraint automaton shown
in Figure 8.

7 An Example: Bridge Controller

We use a bridge controller as an example to model by constraint automata. This
example is described in Section 2, and its Rebeca code is shown in Figure 1.

Figure 9.a shows the constraint automaton for the trains and Figure 9.b shows
the constraint automaton for the bridge controller. The initial state for a train
is the idle state. We move to the Dispatch state by receiving the start signal. A
train has four message servers: initial, YouMayPass, Passed, and ReachBridge.
For each one of these message servers there is an outgoing transition from the
Dispatch state. Each transition goes to a state that designates the start of its
corresponding message server. There is also another transition that is chosen
when the message queue is empty. This one goes back to the idle state and
outputs the end signal.

294 M. Sirjani et al.

Dispatch

Idle

initial
You May

Pass
Reach
Bridge

passed
take, end

d_take.m
sg =

 ‘em
pty’

ta
ke

d_
ta

ke
.m

sg
 =

 ‘i
ni

tia
l’

se
nd

er
 :=

 d
_t

ak
e.

se
nd

er

ta
ke

d_
ta

ke
.m

sg
 =

 ‘y
ou

M
ay

P
as

s’
se

nd
er

 :=
 d

_t
ak

e.
se

nd
er

take
d_take.m

sg
=

‘reachB
ridge’

sender
:=

d_take.sender

take
d_take.m

sg =
 ‘passed’

sender := d_take.sender

passed1

se
nd

, e
nd

d_
se

nd
.r

ec
ei

ve
r

=
 s

el
f,

 d
_s

en
d.

m
sg

 =
 ‘p

as
se

d’
d_

se
nd

.s
en

de
r

=
 s

el
f ,

 o
nT

he
B

rid
ge

 :=
 fa

ls
e

se
nd

, e
nd

on
T

he
B

rid
ge

 :=
 tr

ue
 ,

d_
se

nd
.m

sg
 =

 ‘p
as

se
d’

d_
se

nd
.r

ec
ei

ve
r

=
 s

el
f ,

 d
_s

en
d.

se
nd

er
 =

 s
el

f

send, end
d_send.receiver = self , d_send.sender = self

d_send.msg = ‘reachBridge’

start

send
d_send.receiver =

 controller , d_send.m
sg =

 ‘leave’
d_send.sender =

 self, onT
heB

ridge
:=

 false

send, end
d_send.receiver =

 controller
d_send.m

sg =
 ‘arrive’ , d_send.sender = self

Dispatch

ta
ke

, e
nd

d_
ta

ke
.m

sg
 =

 ‘e
m

pt
y’

ta
ke

d_
ta

ke
.m

sg
=

‘in
iti

al
’

se
nd

er
:=

d_
ta

ke
.s

en
de

r

en
d

si
gn

al
1

:=
 fa

ls
e

, s
ig

na
l2

 :=
 fa

ls
e

is
W

ai
tin

g1
 :=

 fa
ls

e
, i

sW
ai

tin
g2

 :=
 fa

ls
e

leave

arrive

take
d_take.m

sg =
 ‘arrive’

sender :=
 d_take.sender

take

d_take.m
sg

=
‘leave’

sender :=
d_take.sender

se
nd

er
!=

t1 sender =
 t1

signal1 :=
 false

sender !=
 t1

signal2 :=
 false

se
nd

, e
nd

si
gn

al
1

=
 fa

ls
e

, d
_s

en
d.

re
ce

iv
er

 =
 t2

d_
se

nd
.s

en
de

r
=

 s
el

f ,
 s

ig
na

l2
 :=

 tr
ue

d_
se

nd
.m

sg
 =

 ‘y
ou

M
ay

pa
ss

’

en
d

si
gn

al
1

!=
 fa

ls
e

is
W

ai
tin

g2
 :=

 tr
ue

se
nd

, e
nd

si
gn

al
2

=
 fa

ls
e

, d
_s

en
d.

m
sg

 =
 ‘y

ou
M

ay
pa

ss
’

d_
se

nd
.r

ec
ei

ve
r

=
 t1

 ,
d_

se
nd

.s
en

de
r

=
 s

el
f ,

 s
ig

na
l1

:=
 tr

ue

en
d

si
gn

al
2

!=
 fa

ls
e

, i
sW

ai
tin

g1
 :=

 tr
ue

send, end
isW

aiting2 =
 true , d_send.receiver =

 t2 , d_send.sender = self
d_send.m

sg = ‘youM
aypass’ , isW

aiting2 :=
 false , signal2 :=

 true

send, end
isW

aiting1 =
 true , d_send.receiver = t1 , d_send.sender =

 self
d_send.m

sg =
 ‘youM

aypass’ , signal1 := true , isW
aiting1 :=

 false

se
nd

er
 =

 t1

Idle
end

isW
aiting2 !=

 true

end
isW

aiting1 !=
 true

st
ar

t

initial
se

nd
er

!=
t1

se
nd

er
=

t1

sender =
t1

signal1
:= false

sender !=
 t1

signal2 :=
 false

(a) (b)

Fig. 9. Constraint Automata models for (a) Train; and, (b) Controller

As described in the algorithm of Figure 7, we must consider the different
flows of control in each message server as a ‘control graph’. In the message
servers of the trains we have a single path in the flow of control. We partition
each path by the send statements. For example in the message server Passed we
have two fragments. We have two transitions corresponding to the send state-
ments in Figure 9.a. The end signal is added to the last transition, which can be

Compositional Semantics of an Actor-Based Language 295

considered as an optimization issue. Considering the controller, we have condi-
tional statements in message servers Arrive and Leave, and hence more than one
possible path in the flow of control. The transitions generated for different flows
of controls can be seen in Figure 9.b.

The mapping presented in Section 4 and Figure 4 allow us to first construct the
constraint automata of the communication and coordination parts, which can
be reused in all Rebeca models. We can subsequently compose the constraint
automata of the rebecs with these constraint automata. Thus, we obtain the
constraint automaton of the whole system which shows the behavior of the model
and can also be used for model checking purposes. We have already developed a
tool to automate the specified mapping [23], and we have used it to map a few
case studies in Rebeca into constraint automata. In this tool a set of heuristic
rules are used to sequence a compositional construction of constraint automata
that help to prevent the state space explosion problem.

Our compositional semantics allows a natural modular mapping from the
problem space into the model space. To better show the benefit of this mapping,
consider a modified version of the bridge controller problem, where more than
one train can arrive from each side of the bridge (on multiple tracks). To avoid
“hard-coding” the number of trains in this example, it is more appropriate to
use a more component-based style model, where a queue on each side of the
bridge keeps the passage requests. The Rebeca code for this version of bridge
controller can be found on the Rebeca home page [24]. In this model, trains can
be plugged in, and the derived constraint automata can be reused and composed
together with the constraint automata of the new trains.

8 Conclusion and Future Work

We use the coordination language Reo to build a compositional semantics for
the actor-based language, Rebeca. We modified the Reo circuit from its primary
and natural layout to a more compositional and hence more reusable variant.
Constraint automata are the essential devices in building this compositional
semantics. The work presented in this paper can be used for both modeling and
verification purposes. In general, for the object-based models that are written in
a component-based paradigm, the compositional semantics presented here can be
fully exploited and the unchanged parts can be completely reused. For all kinds
of models, the constraint automata of the coordination and communication parts
and the individual rebecs can be reused.

Our work can also be regarded as a good example where constraint automata
are used for modeling components and connectors in a consistent manner, allow-
ing to derive the behavior of a whole system as a composition of the behavior
of its constituents. The differences between objects and components, and the
challenges in moving from objects to components are illustrated in this work.

In our future work, we intend to use the tool in [23] for further experiments.
We will continue our investigation of mapping reactive objects to components in
order to characterize the patterns in the behavior of rebecs that make a model

296 M. Sirjani et al.

more modifiable and the rebecs more reusable. Another direction in our future
work is to consider dynamic rebec creation and dynamic changing topology in
the mapping, although dynamic features are not yet supported by constraint
automata they are present in Reo. A formal proof for our mapping algorithm
will also be provided.

References

1. de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.P., eds.: Formal Methods
for Components and Objects, International Symposium, FMCO’02, Leiden, The
Netherlands, November 2002, Revised Lectures. Volume 2852 of LNCS, Springer-
Verlag, Germany (2003)

2. de Roever, W.P., Langmaack, h., Pnueli, A., eds.: Compositionality: The Signifi-
cant Difference, International Symposium, COMPOS’97, Bad Malente, Germany,
September 1997, Revised Lectures. Volume 1536 of LNCS, Springer-Verlag, Ger-
many (1998)

3. Lamport, L.: Composition: A way to make proofs harder. In: Proceedings of
COMPOS: International Symposium on Compositionality: The Significant Differ-
ence. Volume 1536 of LNCS, (Springer-Verlag, Germany, 1997) 402–407

4. Lynch, N.A., Tuttle, M.R.: Hierarchical correctness proofs for distributed algo-
rithms. Technical Report MIT/LCS/TR-387, MIT (1987)

5. Abadi, M., Lamport, L.: Composing specifications. In Jagadish, H.V., Mumick,
I.S., eds.: Proceedings of the 1996 ACM SIGMOD International Conference on
Management of Data, Montreal, Canada, ACM Press, USA, (1996) 365–376

6. Talcott, C.: Composable semantic models for actor theories. Higher-Order and
Symbolic Computation 11 (1998) 281–343

7. Sirjani, M., Movaghar, A., Shali, A., de Boer, F.: Modeling and verification of
reactive systems using Rebeca. Fundamenta Informatica 63 (Dec. 2004) 385–410

8. Sirjani, M., Movaghar, A.: An actor-based model for formal modelling of reactive
systems: Rebeca. Technical Report CS-TR-80-01, Tehran, Iran (2001)

9. Sirjani, M., Movaghar, A., Mousavi, M.: Compositional verification of an object-
based reactive system. In: Proceedings of AVoCS’01, Oxford, UK (2001) 114–118

10. Hewitt, C.: Description and theoretical analysis (using schemata) of PLANNER: A
language for proving theorems and manipulating models in a robot. MIT Artificial
Intelligence Technical Report 258, Department of Computer Science, MIT (1972)

11. Agha, G.: Actors: A Model of Concurrent Computation in Distributed Systems.
MIT Press, Cambridge, MA, USA (1990)

12. Sirjani, M., Movaghar, A., Shali, A., de Boer, F.: Model checking, automated
abstraction, and compositional verification of Rebeca models. Journal of Universal
Computer Science 11 (2005) 1054–1082

13. Sirjani, M., Shali, A., Jaghoori, M., Iravanchi, H., Movaghar, A.: A front-end tool
for automated abstraction and modular verification of actor-based models. In:
Proceedings of ACSD’04, (IEEE Computer Society, 2004) 145–148

14. Jaghoori, M.M., Sirjani, M., Mousavi, M.R., Movaghar, A.: Efficient symmetry re-
duction for an actor-based model. In: 2nd International Conference on Distributed
Computing and Internet Technology. Volume 3816 of LNCS. (2005) 494–507

15. Jaghoori, M.M., Movaghar, A., Sirjani, M.: Modere: The model-checking engine of
Rebeca. In: ACM Symposium on Applied Computing - Software Verificatin Track.
(2006) to appear.

Compositional Semantics of an Actor-Based Language 297

16. Arbab, F.: Reo: A channel-based coordination model for component composition.
Mathematical Structures in Computer Science 14 (2004) 329–366

17. Arbab, F., Rutten, J.J.: A coinductive calculus of component connectors. Tech-
nical Report SEN-R0216, CWI (Centre for Mathematics and Computer Science),
Amsterdam, The Netherlands (2002)

18. Arbab, F.: Abstract behavior types: A foundation model for components and their
composition. In: Proceedings of FMCO’03. Volume 2852 of LNCS. (2003) 33–70

19. Arbab, F., Baier, C., Rutten, J.J., Sirjani, M.: Modeling component connectors
in Reo by constraint automata. In: Proceedings of FOCLASA’03. Volume 97 of
ENTCS., Elsevier (2004) 25–46

20. Sirjani, M., de Boer, F.S., Movaghar, A., Shali, A.: Extended Rebeca: A
component-based actor language with synchronous message passing. In: Proceed-
ings of ACSD’05, IEEE Computer Society (2005) 212–221

21. Sirjani, M., de Boer, F.S., Movaghar, A.: Modular verification of a component-
based actor language. Journal of Universal Computer Science 11 (2005) 1695–1717

22. Baier, C., Sirjani, M., Arbab, F., Rutten, J.J.: Modeling component connectors in
Reo by constraint automata. (Science of Computer Programming) accepted 2005,
to appear.

23. Farrokhian, M.: Automating the mapping of Rebeca to constraint automata. Mas-
ter Thesis, Sharif University of Technology (2006)

24. Rebeca home page: Available through http://khorshid.ut.ac.ir/∼rebeca.

Author Index

Arbab, Farhad 281

Baier, Christel 1, 281
Bernardo, Marco 28
Bocchi, Laura 16
Bontà, Edoardo 28
Bosse, Tibor 44
Busi, Nadia 63

Chen, Nianen 247
Cook, William R. 82

de Vink, Erik 97

Garćıa-Duque, Jorge 164
Gorrieri, Roberto 63
Groenewegen, Luuk 97
Guidi, Claudio 63

Handorean, Radu 266
Hildebrandt, Thomas 113
Hoogendoorn, Mark 44

Jaghoori, Mohammad Mahdi 281
Julien, Christine 130

Kramer, Jeff 28

Lapadula, Alessandro 145
López-Nores, Mart́ın 164
Lucchi, Roberto 16, 63

Magee, Jeff 28
Marth, Kevin 247
Misra, Jayadev 82

Montangero, Carlo 179
Murphy, Amy L. 194

Niss, Henning 113
Nitsche, Thomas 212

Olsen, Martin 113
Omicini, Andrea 228

Patwardhan, Sourabh 82
Pazos-Arias, José J. 164
Picco, Gian Pietro 194
Poirot, Pierre-Etienne 247
Pugliese, Rosario 145

Ren, Shangping 247
Ricci, Alessandro 228
Roman, Gruia-Catalin 266

Semini, Laura 179
Sen, Rohan 266
Shen, Limin 247
Sirjani, Marjan 281
Stovall, Drew 130

Tiezzi, Francesco 145
Treur, Jan 44

Wolf, Verena 1

Yu, Yue 247

Zaghini, Nicola 228
Zavattaro, Gianluigi 63

	Frontmatter
	Stochastic Reasoning About Channel-Based Component Connectors
	Atomic Commit and Negotiation in Service Oriented Computing
	Synthesizing Concurrency Control Components from Process Algebraic Specifications
	Automated Evaluation of Coordination Approaches
	Choreography and Orchestration Conformance for System Design
	Workflow Patterns in Orc
	Evolution On-the-Fly with Paradigm
	Formalising Business Process Execution with Bigraphs and Reactive XML
	Enabling Ubiquitous Coordination Using Application Sessions
	A {\sc WSDL}-Based Type System for {\sc WS-BPEL}
	Managing Ad-Hoc Networks Through the Formal Specification of Service Requirements
	A Logical View of Choreography
	Using {\sc Lime} to Support Replication for Availability in Mobile Ad Hoc Networks
	Coordinating Computation with Communication
	Distributed Workflow upon Linkable Coordination Artifacts
	Actors, Roles and Coordinators --- A Coordination Model for Open Distributed and Embedded Systems
	Tuple Space Coordination Across Space and Time
	Compositional Semantics of an Actor-Based Language Using Constraint Automata
	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

