

Lecture Notes in Computer Science 4034
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Jürgen Münch Matias Vierimaa (Eds.)

Product-Focused
Software Process
Improvement

7th International Conference, PROFES 2006
Amsterdam, The Netherlands, June 12-14, 2006
Proceedings

13

Volume Editors

Jürgen Münch
Fraunhofer Institute for Experimental Software Engineering
Fraunhofer-Platz, 67663 Kaiserslautern, Germany
E-mail: Juergen.Muench@iese.fraunhofer.de

Matias Vierimaa
VTT Electronics
Kaitovayla 1,90570 Oulu, Finland
E-mail: Matias.Vierimaa@vtt.fi

Library of Congress Control Number: 2006926730

CR Subject Classification (1998): D.2, K.6, K.4.2, J.1

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-34682-1 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-34682-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11767718 06/3142 5 4 3 2 1 0

Preface

The 7th International Conference on Product Focused Software Process Improvement
(PROFES 2006) brought together researchers and industrial practitioners for reporting
new research results and exchanging experiences and findings in the area of process
and product improvement. The focus of the conference was on understanding,
evaluating, controlling, and improving the relationship between process improvement
activities (such as the deployment of innovative defect detection processes) and their
effects on products (such as improved product reliability and safety). Consequently,
major topics of the conference included the evaluation of existing software process
improvement (SPI) approaches in different contexts, the presentation of new or
modified SPI approaches, and the relation between SPI and new development
techniques or emerging application domains.

The need for SPI is being widely recognized. Current trends in software intensive
systems such as increased distribution of software development and growing
dependability on software-intensive systems in everyday life emphasize this need. This
implies the establishment of advanced process improvement capabilities and an
adequate understanding of the impact of the processes on the generated products,
services, and business value in different situations. Recent trends enforce the
establishment of such capabilities: more and more products are being developed in
distributed, global environments with many customer-supplier relations in the
development chain. Outsourcing, off-shoring, near-shoring, and in-sourcing aggravate
this trend. In addition, systems are being built from multiple disciplines (such
as electronics, mechanics, and software). Supporting such distributed and
multi-disciplinary development requires well-understood and accurately implemented
development process interfaces, process synchronization, and process evolution. In
addition, more and more organizations are forced to adhere to regulatory constraints
that require the existence of explicit processes and the demonstration of adherence to
those processes. Examples are the IEC 61508 standard for safety-related systems, the
tailoring of ECSS (European Cooperation for Space Standardization) software
engineering standards for ground segments in ESA (European Space Agency), or the
German national standard V-Model XT for systems used by public authorities.
Adhering to those standards requires systematic evolution of the existing processes.
Finally, market dynamics force organizations to adapt better and faster to changes in
the development environment and to enforce innovations (e.g., increase of reliability
levels). These process changes impose risk challenges for SPI approaches. Advanced
SPI is required to support the assessment of the impact of process changes and the
flexible adaptation of processes. Due to the fact that software development processes
are human-based and depend on the development context (including domain
characteristics, workforce capabilities, and organizational maturity), changes to these
processes typically cause significant costs and should be considered carefully.
Alternative improvement options need to be evaluated with respect to their
implementation cost and their potential impact on business goals.

Currently, two types of SPI approaches are mainly used in practice: a) continuous
SPI approaches (also referred to as problem-oriented approaches) and b) model-based
SPI approaches (also referred to as solution-oriented approaches).

VI Preface

Continuous SPI approaches (such as the Quality Improvement Paradigm, PDCA, or
Profes) focus on selected problems of a software development organization and usually
involve improvement cycles based on an initial baseline. One important advantage of
continuous approaches is that they focus on solving specific problems by analyzing the
problem at hand, implementing and observing problem-focused improvement actions,
and measuring the effects of the actions. The interpretation of the measurement data is
used as input for further optimization of the solution. In addition, solving one problem
typically reveals further improvement potential in related areas. Continuous
approaches are focused and, therefore, it is difficult to create an overall awareness for
quality issues in a very large software organization with thousands of employees.

Model-based SPI approaches (such as ISO/IEC 15504, CMMI, or BOOTSTRAP)
compare the current processes and practices of a development organization against a
reference model or a benchmark. They provide so-called capability maturity levels
with different sets of processes and practices. These levels define an improvement
roadmap. The advantage of such models is that they can be easily used to enforce an
awareness for quality issues in large organizations because many developers are
involved in the improvement of the maturity level. From the management point of
view, reaching a specific capability level can be defined as a clear and assessable goal.
One important disadvantage is that model-based SPI approaches typically do not assess
the impact of processes on product characteristics and therefore cannot be used to
analytically identify and tackle process problems that cause concrete product
deficiencies. Typically, it is checked whether a process or practice is in place, but its
impact on a business goal or its value for the organization is not evaluated. The
practices of the reference models are usually of a generic type and based on hypothesis.
Having a high maturity level does not mean that the organization is successful in
fulfilling its business goals (such as an appropriate trade-off between time-to-market
and product quality).

Continuous and model-based SPI approaches can be seen as being complementary:
model-based approaches can be used to identify problem areas and potential
improvement options, and continuous approaches can be used to implement and
optimize solutions. Although continuous approaches can be successfully applied
without having a high maturity level, model-based approaches usually require
continuous improvement at a certain maturity level.

In practice, the typical question is no longer whether process improvement is
necessary, but how to define and implement a strategy for introducing advanced
process improvement step by step and how to evaluate its success. Along with this,
many research questions need to be solved.

The technical program was selected by a committee of leading experts in software
process modeling and software process improvement research. This year, 55 papers
from 26 nations were submitted, with each paper receiving at least three reviews. The
Program Committee met in Amsterdam for one full day in February 2006. The Program
Committee finally selected 26 technical full papers. The topics indicate that software
process improvement remains a vibrant research discipline of high interest for industry.
Emerging technologies and application domains, a paradigm shift from software to
system engineering in many domains (such as automotive or space), and the need for
better decision support for software process improvement is reflected in these papers.

 Preface VII

The technical program consisted of tracks-decision support, embedded software and
system development, measurement, industrial experiences, process improvement, agile
development practices, and product line engineering. In addition, a track with 12
selected short paper presentations was added in order to demonstrate the variety of
approaches, to support the discussions, and to exchange experience. We were proud to
have four keynote speakers, Jan Bosch, Jan Jaap Cannegieter, Michiel van Gnuchten,
and Barbara Kitchenham, as well as interesting tutorials and co-located workshops.

We are thankful for the opportunity to serve as program co-chairs for this
conference. The Program Committee members and reviewers provided excellent
support in reviewing the papers. We are also grateful to the authors, presenters, and
session chairs for their time and effort to make PROFES 2006 a success. The General
Chair, Rini van Solingen, and the Steering Committee provided excellent guidance. We
wish to thank the Fraunhofer Institute for Experimental Software Engineering (IESE),
the Centrum for Wiskunde en Informatika (CWI), VTT, the University of Oulu,
Drenthe University, and Eindhoven University of Technology for supporting the
conference. We would like to thank the Organizing Committee and all the other
supporters for making the event possible. Last but not least, many thanks to Timo Klein
at IESE for copyediting this volume.

April 2006 Jürgen Münch
Matias Vierimaa

Conference Organization

General Chair

Rini van Solingen, Drenthe University (The Netherlands)

Program Co-chairs

Jürgen Münch, Fraunhofer IESE (Germany)
Matias Vierimaa, VTT Electronics (Finland)

Organizing Chair

Mark van den Brand, Hogeschool van Amsterdam and CWI (The Netherlands)

Tutorial Chair

Dirk Hamann, Fraunhofer IESE (Germany)

Industry Chair

Carol Dekkers, Quality Plus Technologies, Inc.

PR Chair

Pasi Kuvaja, University of Oulu (Finland)

Publicity Chairs

Central Europe:
Southern Europe:
USA:
Canada:
Japan:
Korea:
Finland:
Scandinavia:
Benelux:
France:
Oceania:
South America:

Michael Ochs, Fraunhofer IESE (Germany)
Gerardo Canfora, University of Sannio at Benevento (Italy)
Ioana Rus, Fraunhofer Center-Maryland (USA)
Dietmar Pfahl, University of Calgary (Canada)
Kenichi Matumoto, NAIST (Japan)
Ho-Won Jung, Korea University (Korea)
Tua Huomo, VTT Electronics (Finland)
Tora Dyba, Chief Scientist, SINTEF (Norway)
Ko Doorns, Philips
Pierre-Etienne Moreau, INRIA/LORIA Nancy (France)
Bernard Wong, University of Technology, Sydney (Australia)
Christiane Gresse van Wangenheim (Brazil)

X Organization

Program Committee

Pekka Abrahamsson, VTT Electronics, Finland
Andreas Birk, SD&M, Germany
Mark van den Brand, HvA & CWI, The Netherlands
Gerardo Canfora, University of Sannio at Benevento, Italy
Reidar Conradi, NTNU, Norway
Paolo Donzelli, University of Maryland - College Park, USA
Tore Dybå, SINTEF, Norway
Martin Höst, Lund University, Sweden
Frank Houdek, DaimlerChrysler, Germany
Tua Huomo, VTT Electronics, Finland
Hajimu Iida, Nara Institute of Science & Technology, Japan
Katsuro Inoue, Osaka University, Japan
Yasushi Ishigai, IPA, Japan
Janne Järvinen, Solid Information Technology, Finland
Erik Johansson, Q-Labs, Sweden
Philip Johnson, University of Hawaii, USA
Natalia Juristo, Universidad Politecnica de Madrid, Spain
Haruhiko Kaiya, Shinshu University, Japan
Kari Känsälä, Nokia Research Center, Finland
Masafumi Katahira, JAXA, Japan
Pasi Kuvaja, University of Oulu, Finland
Makoto Matsushita, Osaka University, Japan
Kenichi Matsumoto, NAIST, Japan
Pierre-Etienne Moreau, INRIA/LORIA, France
Maurizio Morisio, University of Turin, Italy
Jürgen Münch, Fraunhofer IESE, Germany
Paolo Nesi, University of Florence, Italy
Risto Nevalainen, STTF, Finland
Mahmood Niazi, Keele University, UK
Michael Ochs, Fraunhofer IESE, Germany
Hideto Ogasawara, Toshiba, Japan
Dietmar Pfahl, University of Calgary, Canada
Teade Punter, LAQUSO, The Netherlands
Karl Reed, La Tobe University, Australia
Günther Ruhe, University of Calgary, Canada
Ioana Rus, Fraunhofer Center - Maryland, USA
Kurt Schneider, University of Hannover, Germany
Carolyn Seaman, UMBC, Baltimore, USA
Veikko Seppäen, Elektrobit Ltd., Finland
Dag Sjöberg, University of Oslo, Norway
Matias Vierimaa, VTT Electronics, Finland
Otto Vinter, DELTA, Denmark
Giuseppe Visaggio, University of Bari, Italy
Hironori Washizaki, National Institute of Informatics, Japan
Isabella Wieczorek, Federal Ministery of Research and Education, Germany

 Organization XI

Claes Wohlin, Blekinge Institute of Technology, Sweden
Bernard Wong, University of Technology Sydney, Australia

External Reviewers

Silvia Acuña, University of Madrid, Spain
Fabio Bella, Fraunhofer IESE, Germany
Jens Heidrich, Fraunhofer IESE, Germany
Sira Vegas, University of Madrid, Spain
Stein Grimstad, University of Oslo, Norway

Table of Contents

Keynote Addresses

Processes and the Software Business
Michiel van Genuchten . 1

Controlling the Chaos of the CMMI Continuous Representation
Jan Jaap Cannegieter . 2

Evidence-Based Software Engineering and Systematic Literature
Reviews

Barbara Kitchenham . 3

Expanding the Scope of Software Product Families: Problems and
Alternative Approaches

Jan Bosch . 4

Decision Support

Defining the Process for Making Software System Modernization
Decisions

Jarmo J. Ahonen, Henna Sivula, Jussi Koskinen, Heikki Lintinen,
Tero Tilus, Irja Kankaanpää, Päivi Juutilainen . 5

Introducing Tool Support for Retrospective Analysis of Release
Planning Decisions

Lena Karlsson, Björn Regnell . 19

A Qualitative Evaluation Method for Business Process Tools
Erika M. Nieto-Ariza, Guillermo Rodŕıguez-Ortiz,
Javier Ortiz-Hernández . 34

Embedded Software and System Development

An Effective Source Code Review Process for Embedded Software
Masayuki Hirayama, Katsumi Ohno, Nao Kawai, Kichiro Tamaru,
Hiroshi Monden . 47

Troubleshooting Large-Scale New Product Development Embedded
Software Projects

Petri Kettunen . 61

XIV Table of Contents

Software Process Improvement with Agile Practices in a Large Telecom
Company

Jussi Auvinen, Rasmus Back, Jeanette Heidenberg, Piia Hirkman,
Luka Milovanov . 79

Measurement

Assessing Software Product Maintainability Based on Class-Level
Structural Measures

Hans Christian Benestad, Bente Anda, Erik Arisholm 94

Integrating Reuse Measurement Practices into the ERP Requirements
Engineering Process

Maya Daneva . 112

Process Definition and Project Tracking in Model Driven Engineering
Ivan Porres, Maŕıa C. Valiente . 127

Industrial Experiences

Difficulties in Establishing a Defect Management Process: A Case Study
Marko Jäntti, Tanja Toroi, Anne Eerola . 142

A Case Study on the Success of Introducing General Non-construction
Activities for Project Management and Planning Improvement

Topi Haapio, Jarmo J. Ahonen . 151

The Concerns of Prototypers and Their Mitigating Practices:
An Industrial Case-Study

Steve Counsell, Keith Phalp, Emilia Mendes, Stella Geddes 166

An Industrial Case Study on the Choice Between Language
Customization Mechanisms

Miroslaw Staron, Claes Wohlin . 177

Preliminary Results from a Survey of Multimedia Development
Practices in Australia

Anne Hannington, Karl Reed . 192

An ISO 9001:2000 Certificate and Quality Awards from
Outside – What’s Inside? – A Case Study

Darja Šmite, Nils Brede Moe . 208

Table of Contents XV

Process Improvement

Implementing Software Process Improvement Initiatives: An Empirical
Study

Mahmood Niazi, David Wilson, Didar Zowghi . 222

Using Linear Regression Models to Analyse the Effect of Software
Process Improvement

Joost Schalken, Sjaak Brinkkemper, Hans van Vliet 234

Taba Workstation: Supporting Software Process Deployment Based
on CMMI and MR-MPS.BR

Mariano Montoni, Gleison Santos, Ana Regina Rocha,
Sávio Figueiredo, Reinaldo Cabral, Rafael Barcellos, Ahilton Barreto,
Andréa Soares, Cristina Cerdeiral, Peter Lupo . 249

Analysis of an Artifact Oriented Test Process Model and of Testing
Aspects of CMMI

Paulo M.S. Bueno, Adalberto N. Crespo, Mario Jino 263

Agile Development Practices

The Impact of Pair Programming and Test-Driven Development on
Package Dependencies in Object-Oriented Design — An Experiment

Lech Madeyski . 278

Applying an Agility/Discipline Assessment for a Small Software
Organisation

Philip S. Taylor, Des Greer, Paul Sage, Gerry Coleman,
Kevin McDaid, Ian Lawthers, Ronan Corr . 290

Lessons Learned from an XP Experiment with Students: Test-First
Needs More Teachings

Thomas Flohr, Thorsten Schneider . 305

An Empirical Study on Design Quality Improvement from Best-Practice
Inspection and Pair Programming

Dietmar Winkler, Stefan Biffl . 319

Product Line Engineering

A Variability-Centric Approach to Instantiating Core Assets in Product
Line Engineering

Soo Ho Chang, Soo Dong Kim, Sung Yul Rhew . 334

XVI Table of Contents

Improving the Development of e-Business Systems by Introducing
Process-Based Software Product Lines

Joachim Bayer, Mathias Kose, Alexis Ocampo . 348

Assessing Requirements Compliance Scenarios in System Platform
Subcontracting

Björn Regnell, Hans O. Olsson, Staffan Mossberg 362

Short Papers

Software Inspections in Practice: Six Case Studies
Sami Kollanus, Jussi Koskinen . 377

Productivity of Test Driven Development: A Controlled Experiment
with Professionals

Gerardo Canfora, Aniello Cimitile, Felix Garcia, Mario Piattini,
Corrado Aaron Visaggio . 383

Results and Experiences from an Empirical Study of Fault Reports
in Industrial Projects

Jon Arvid Børretzen, Reidar Conradi . 389

Software Process Improvement: A Road to Success
Mahmood Niazi . 395

Characterization of Runaway Software Projects Using Association Rule
Mining

Sousuke Amasaki, Yasuhiro Hamano, Osamu Mizuno,
Tohru Kikuno . 402

A Framework for Selecting Change Strategies in IT Organizations
Jan Pries-Heje, Otto Vinter . 408

Building Software Process Line Architectures from Bottom Up
Hironori Washizaki . 415

Refinement of Software Architectures by Recursive Model
Transformations

Ricardo J. Machado, João M. Fernandes, Paula Monteiro,
Helena Rodrigues . 422

A UML-Based Process Meta-model Integrating a Rigorous Process
Patterns Definition

Hanh Nhi Tran, Bernard Coulette, Bich Thuy Dong 429

Table of Contents XVII

Ad Hoc Versus Systematic Planning of Software
Releases – A Three-Staged Experiment

Gengshen Du, Jim McElroy, Guenther Ruhe . 435

A Software Process Tailoring System Focusing to Quantitative
Management Plans

Kazumasa Hikichi, Kyohei Fushida, Hajimu Iida,
Ken’ichi Matsumoto . 441

An Extreme Approach to Automating Software Development with
CBD, PLE and MDA Integrated

Soo Dong Kim, Hyun Gi Min, Jin Sun Her, Soo Ho Chang 447

Workshops

Experiences and Methods from Integrating Evidence-Based Software
Engineering into Education

Andreas Jedlitschka, Markus Ciolkowski . 453

Workshop on Embedded Software Development in Collaboration
Pasi Kuvaja . 454

Tutorials

Software Product Metrics – Goal-Oriented Software Product
Measurement

Jürgen Münch, Dirk Hamann . 455

Art and Science of System Release Planning
Günther Ruhe, Omolade Saliu . 458

Multiple Risk Management Process Supported by Ontology
Cristine Martins Gomes de Gusmão, Hermano Perrelli de Moura 462

Get Your Experience Factory Ready for the Next Decade: Ten Years
After “How to Build and Run One”

Frank Bomarius, Raimund L. Feldmann . 466

Author Index . 473

J. Münch and M. Vierimaa (Eds.): PROFES 2006, LNCS 4034, p. 1, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Processes and the Software Business

Michiel van Genuchten

General Manager, Philips HDSoftware

The amount of software in many electronic products is growing rapidly.
Two examples: the amount of software in a mobile phone is expected to
increase from 2 million today to 20 million in 2010. The amount of
software in a car in 2010 is expected to be 100 million lines of source
code (Charrette, 2005). Many companies see their business change from
a hardware business to a software business. The impact on companies
goes far beyond development and development processes. Adoption of
proper software sales and legal processes is as important. The
presentation is based on research into the software business and 10
years of experience in managing software companies.

J. Münch and M. Vierimaa (Eds.): PROFES 2006, LNCS 4034, p. 2, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Controlling the Chaos of the CMMI
Continuous Representation

Jan Jaap Cannegieter

Director of SYSQA

In 2000, the Software Engineering Institute introduced the continuous
representation of the CMMI. In the following years, many organizations
based their process improvement effort on this representation. Despite
the advantages of this model, several of these organizations found it
hard to make a choice of which process areas to implement first. To
help organizations make these decisions, three improvement paths are
recognized: Project, Process and Product. This so-called PPP concept of
continuous and the improvement paths will be addressed in this keynote
presentation.

J. Münch and M. Vierimaa (Eds.): PROFES 2006, LNCS 4034, p. 3, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Evidence-Based Software Engineering and Systematic
Literature Reviews

Barbara Kitchenham

Professor of Quantitative Software Engineering at Keele University

This keynote addresses the evidence-based paradigm currently being
adopted in many practical sciences (e.g., medicine, education, social
policy) and discusses whether it is applicable to software engineering.
In the presentation, the view is taken that although Evidence-based
Software Engineering may be unproven, one aspect of the evidence-
based paradigm is hard to ignore, that is: Systematic literature reviews.
Systematic literature reviews aim to summarize research studies related
to a specific research question in a way that is fair, rigorous, and
auditable. The keynote presentation will outline the potential benefit of
systematic literature reviews and describe in detail the process of
performing such a systematic literature review.

J. Münch and M. Vierimaa (Eds.): PROFES 2006, LNCS 4034, p. 4, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Expanding the Scope of Software Product Families:
Problems and Alternative Approaches

Jan Bosch

Vice President of Research, Nokia Research

Software product families have found broad adoption in Nokia, the
telecom industry, and the embedded systems industry as a whole.
Product family thinking has been prevalent in this context for
mechanics and hardware, and adopting the same for software has been
viewed as a logical approach. During recent years, however, the trends
of convergence, end-to-end solutions, shortened innovation and R&D
cycles and differentiation through software engineering capabilities
have led to a development where organizations are stretching the scope
of their product families far beyond the initial design. Failing to adjust
the product family approach, including the architectural and process
dimensions, when the business strategy is changing is leading to several
challenging problems that can be viewed as symptoms of this approach.
The presentation discusses the key symptoms, the underlying causes for
these symptoms as well as solutions for realigning the product family
approach with the business strategy. The presentation uses examples
from Nokia to illustrate the solutions and approaches that will be
discussed.

Defining the Process for Making Software System
Modernization Decisions

Jarmo J. Ahonen1,�, Henna Sivula2, Jussi Koskinen2, Heikki Lintinen2, Tero Tilus2,
Irja Kankaanpää2, and Päivi Juutilainen2

1 Department of Computer Science,
University of Kuopio, P.O. Box 1627, FI-70211 Kuopio, Finland

jarmo.ahonen@uku.fi
2 Information Technology Research Institute,

P.O. Box 35 (Agora) FI-40014 University of Jyväskylä, Finland
{henna.sivula, jussi.koskinen, heikki.lintinen, tero.tilus,

irja.kankaanpaa, paivi.juutilainen}@titu.jyu.fi

Abstract. This paper outlines a process for software system modernization de-
cisions. The rationale of the process is explained and the process is defined in a
way that allows its adaptation for other organizations and situations. The process
is a light-weight one and is based on the use of objective data. The procedures
for collecting the data are explained. The process has been used to solve a real
industrial decision making situation in which the process was successful.

1 Introduction

Many large software systems, whether tailored or not, are nearing or have reached an
age which makes it necessary to decide what to do with them. The alternatives are
normally to do nothing really new — to continue with normal maintenance as be-
fore — reengineer the system, modernize the system, or replace the system. For large
software-oriented service provider or user organizations those decisions may be so com-
mon that the process of making such decisions should be documented and guidelines
for decisions should be provided. The making of those decisions should be imple-
mented as a well-thought part of the collection of software engineering processes of the
organization.

The reason why those decisions should be seriously considered is that the decision
whether to modernize an old system is a remarkable one in the case of a business crit-
ical system. Major modernizations create several risks to the user organization. Those
risks include the possible bugginess, potential misunderstandings of the previously im-
plemented business-critical knowledge, delays, and many other issues that may have
negative impacts to the business of the user organization. Therefore the economic im-
pacts of the decisions can be remarkably higher than the actual software engineering
costs caused by the decision. In the case of information technology infrastructure out-
sourcing or major long-time agreements those economic impacts should be taken into
account by the service provider organizations’ software engineering process.

� Corresponding author.

J. Münch and M. Vierimaa (Eds.): PROFES 2006, LNCS 4034, pp. 5–18, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

6 J.J. Ahonen et al.

One of the issues that should be taken into account is the fact that the life-cycle
costs of an information system tend to have 50–70 % of maintenance costs [1] — those
costs may be even higher [2][3]. That level of costs is not a surprise considering the
remarkable amount of effort already invested into an old legacy system. It is, however,
the case that an information system has to evolve in order to maintain its usability in the
changing world and that as a consequence of the evolution the system becomes more
and more complex and difficult to manage [4]. For every system there will be a day
when the user organization and the service provider organization have to decide what
to do with the system.

The cost of the modernization effort depends greatly on the complexity of the sys-
tem [5]. Although complexity and potential costs are major factors in the modernization
and replacement decisions [6], the actual need for the change should be considered. The
systems’ ability to perform its assigned task is one of the most important decision fac-
tors. The suitability of the system for the processes can be estimated by analyzing the
business value of the system and the exceptions and other types of problems encoun-
tered in the normal use of the system. Exceptions are real-world cases which have be
handled in order to perform the business process but which cannot be handled by using
the system in question [7].

The most common software process improvement frameworks do not provide re-
quired answers for an organization that wants to improve its decision processes regard-
ing old software systems. At least CMMI [8] and ISO [9] reference models do not in-
clude necessary information. There are some decision frameworks proposed. The most
promising ones are the planning framework for reengineering proposed by Sneed [10]
and the decisional framework for legacy system management proposed by De Lucia,
Fasolino and Pompella [11]. Both of those frameworks stress that the business value of
the existing software system should be evaluated and the ability of that system to serve
the business should be analyzed.

Neither of those frameworks do, however, provide a sufficiently detailed description
of the actual decision making process. Therefore an organization faced with such de-
cisions has to develop and define a process of its own. In this article such a process
is defined and tested with a real case. The structure of this article is: the rationale and
the requirements set for the process and the definition of the process in Section 2 and
outline of the industrial setting in which the process has been used for a test-run in
Section 3, an overview of the data collected during the test-run (Section 4), a brief
analysis of the process and its applicability in the real-world (Section 5), and discussion
on the results and on the general importance of performing studies like the reported one
(Section 6).

2 Defining the Process for Making Software System Modernization
Decisions

The available models for the modernization decision process include the sub-process
of finding out the business value of the analyzed system. Sneed’s model [10] proposes
the use of a business value evaluation table and De Lucia et al [11] propose a fairly
similar approach to be used. Both of those approaches assume that the business value

Defining the Process for Making Software System Modernization Decisions 7

of the system should be analyzed, especially the utility value of the system [11] should
be understood as well as the potential obsolescence of the system [10]. The utility value
evaluation of the system includes understanding the business function coverage rate,
actual usage frequency and user satisfaction of the system. The obsolescence is a factor
of the deviation between the functions the software fulfills and what functions it is
required to fulfill.

Using the proposed frameworks it is not easy to calculate the business value of a
system or the obsolescence of a system. The difficulty it at least due to the fact that
the actual process that should be used to calculate the business value of the system
or the obsolescence of the system are not defined. Defined and controllably repeatable
process of defining the business value of the system and the components of that busi-
ness value are, however, required in order to create a stable and documented process
for legacy system evaluation and management. A detailed work breakdown structure
and documented processes are required already at the CMMI level 1 [12]. There is
a clear need for a more detailed definition of the process and the techniques to be
used if a company wants to improve its operations by using a reference model like
CMMI.

The process should be easy to understand and based on unambiguous metrics. In
order to be understandable the process should be very straightforward and the number
of phases should be limited. During the early outlining of the requirements for the
process it was decided that the process should concentrate on three main issues:

– the business value of the analyzed system;
– the obsolescence of the system; and
– the cost efficiency of the system.

The main criteria for deciding the business value of an information system were decided
to be:

– the actual usability and usefulness of the system; and
– the amount of problems found in the system.

The usability and usefulness of the system were considered to be a combination of user
satisfaction and usage metrics. The amount of problems was considered to be the sum
of failures still present in the system and exceptions encountered in the real use of the
system. In the vocabulary used in this article an exception denotes a situation which
cannot be handled by an information system that should be able to handle the situation.
In that sense the term exception is used in practically the same meaning as it has been
used in [7].

The obsolescence of the system is not easy to measure. A part of the actual obso-
lescence is included in the problems — especially the exceptions — encountered in the
normal use of a system. That measure was not, however, deemed sufficient because the
number of exceptions do not tell anything about long-time trends without enough data
over time. Therefore the problems data was decided to be accompanied with asking the
users whether they think that the system is successful in everyday use and has the suc-
cessfulness of the system increased or decreased. That query would reveal a metric that
could be called the perceived obsolescence.

8 J.J. Ahonen et al.

The cost efficiency was decided to be divided into:

– the cost of continuing maintenance as is;
– the cost of reengineering and its estimated business benefits;
– the cost of modernizing the system partially or as a whole and the estimated busi-

ness benefits of the modernization; and
– the cost of replacement and its business benefits.

The calculation of the estimated business benefits is not, however, easy. There are no
easily applicable methods for that purpose although some of existing ones can be used
with proper modifications [13].

During the development of the process it was decided that the process should be as
light to perform as possible. The process should not require large amount of effort from
neither the software services provider nor the user organization. Therefore phases of the
process should be light to perform and the used metrics should be unambiguous, easy to
understand and easy to collect. The phases of the developed modernization/replacement
need measurement process are:

P1 Create the timetable for the analysis in cooperation with the user organization (and
the software services provider if necessary) and get the management to approve it.

P2 Get familiar with the system through documentation and interviews.
P3 Divide the use of the system into main functionalities which cover the most impor-

tant parts of the system.
P4 Decide the trigger levels for the user satisfaction. See the definition of the phase P7

for different types of user satisfaction.
P5 Decide the trigger levels for the perceived obsolescence.
P6 Decide the trigger levels for the amount of working hours lost due to problems

(including exceptions).
P7 Collect the user satisfaction data. Divide the user satisfaction into:

P7.1 General user satisfaction (the whole system).
P7.2 Perceived obsolescence, i.e. do the users think that the system is now bet-

ter/worse than before. Perform this query for every main functionality.
P7.3 Use of documentation and support.

P8 Collect data on exceptions and other problems during a suitable period of time. The
data should include:

P8.1 Data on different types of problems: frequencies and working hours lost.
P8.2 Data on problems per main functionality.

P9 Analyze the results of the user-satisfaction query and the data on encountered prob-
lems and their economical impact.

P10 Decide whether any of the triggers fire. If a trigger fires, then the process used to
perform the detailed analysis for the modernization/replacement decision should be
started. In the other case the process stops here.

The pre-set level of required user-satisfaction is required in order to achieve honest
decisions. That makes it sure that the interpretation of the query will be more objective
and the level of user satisfaction will not be interpreted in a creative way. Setting the
required levels will also help in describing and setting up the rationale for the decision.

Defining the Process for Making Software System Modernization Decisions 9

The importance of setting the required or critical levels is even more important in the
case of the working hours lost due to problems. The bugs are a sign of a bad program
and the exceptions are a sign which tells that the system does not support the business
process as well as it should. Both bugs and exceptions tell a clear story about the actual
usefulness of the system.

3 Applying the Process in an Industrial Setting

The software services provider for which the process model was developed had de-
livered the first version of a complex system at the late 1980’s. The provider and the
user organization decided that the system in its current state would provide a suitable
real-world setting for testing the process. The system will be denoted by the acronym
WTB and its main functions were work tracking and customer billing. The problem
with WTB was that there were many users who constantly complained that the user in-
terface of WTB was bad and that the system was practically out of date. Therefore the
management of the user organization had discussed the modernization needs of WTB
and even the possibility of a complete replacement.

One of the reasons why that particular case was decided to be used was that the
timing of the user organization’s needs was suitable for the testing of the process. In
addition to that, the user organization wanted to find out whether they should perform
a more detailed analysis of the system from the evolution perspective and use methods
like the ones reported in [14], [15], and [16]. Those methods were not, however, well
known to the practitioners and the effort required by those methods was considered a
way too expensive as the first level analysis. Therefore the developed light and business-
value oriented process was very suitable for the user organization.

In order to provide sound answers to the outlined problem the guidelines of empirical
research have been followed as well as possible in the field.. In [17] an extensive set of
guidelines for empirical research has been provided. Also [18] and [19] have discussed
these issues. Additional guidelines are provided in [17].

The process development was performed by academic researchers — the authors of
this article — in close cooperation with the software services provider and the test-
ing of the process in the real context was performed by the researchers. The whole
work, including process development and real-world testing required about 80 effec-
tive working days from the researches. The amount of work invested by the software
services provider or the user organization was not measured in any exact way. That
work was estimated to be 9 days for the software services provider and 14 days for the
user organization. Those amounts of work were in accordance to the required lightness
of the process.

The duration of the project, i.e. applying the process in the real setting, was from
May to March. The reasons for the long duration were the tight and limited resources
available from both the software services provider and the user organization. Especially
the available resources of the user organization were important in order to get the results
meaningful. Another reason was that the process development was partly performed in
parallel with the project. The phases of the project were:

10 J.J. Ahonen et al.

– Determining the objectives of the project (May);
– Getting familiar with the system (June–August);
– Planning of the project (August–October);
– Planning of the user satisfaction query (October);
– Performing the query (November);
– Gathering and analyzing the results of the query (December–January);
– Planning the problem mapping procedure (January);
– Performing the problem mapping (February);
– Gathering and analyzing the results of problem mapping (March); and
– General analysis and reporting of the results (March).

The general objectives of the project was to finish the definition of the process for
making software system modernization decisions and test the usefulness of the process
with a real case. The final set of the objectives was set in cooperation with both the
software services supplier and the user organization.

The second phase of the project was getting familiar with the system. That was per-
formed by analyzing the functionality and structure of the system with the representa-
tives of the software services provider and the user organization. During the visit to the
user organization several members of the staff of the user organization were interviewed
and several meetings held.

During the analysis of the system it turned out that the system was thought in terms
that were related to the functionality provided by the system. That was a positive sur-
prise since dividing the system into a group of functionalities, each of which consists of
several individual functions, made it easier to measure the obsolescence of the system
and to understand the relation between encountered problems and functionalities.

During that time it was decided that the internal functionality or system manage-
ment oriented functionality or maintenance oriented functionality was excluded from
the analysis. With the help from the users and the staff of the software services provider
it was possible to distinguish 18 main functionalities — as defined in the process phase
P3.

The user satisfaction query was performed by using a WWW-based system. The
system presented questions using Likert-scale:

1. Nonexistent (N)
2. Bad (B)
3. Medium (M)
4. Good (G)
5. Excellent (E)

It was decided that answers N and B would be interpreted as negative or does not like.
Answer G and E would be interpreted as does like, i.e. positive. Answer M was decided
to be interpreted as neutral. In addition to that, each of the functionalities was divided
into four subquestions which measured the following criteria:

1. Successfulness, in the beginning of the use;
2. Successfulness, current;
3. Usability; and

Defining the Process for Making Software System Modernization Decisions 11

4. Performance and availability.

It was understood during the creation of the query that all of the users would not be able
to answer every question. That was due to the fact that many of the frequent users used
only a few of the main functions of the system. In addition to those specific questions
the users were asked the general satisfaction by using the following scale:

1. Very rarely (N)
2. Less than half of the time (B)
3. Half of the time (M)
4. Over half of the time (G)
5. Practically all the time (E)

The results of the user satisfaction query are presented in Section 4.1.
The step following the user satisfaction query was the collection of problem data.

Although in many cases the organization responsible for running and managing the in-
formation systems of the user organization collects very precise problem data it was
decided that the decision making process should not assume that data to be available.
The data may be unavailable for various reasons, one of them being the fact that the
organization that manages the information systems may not be the actual user organiza-
tion nor the software service provider which has created the system. A problem is either
an exception in the sense of [7] or a bug inside the system. An exception is a situation
that cannot be handled by using the system. The data was collected by using the on-line
form shown in Figure 1. One of the basic ideas of the form was to collect data in a way
that would allow us to associate a specific problem with a specific main function.

Fig. 1. The form used for collecting problem data

12 J.J. Ahonen et al.

In this section the industrial setting has been described and in the next section the
collected data will be presented and briefly analyzed.

4 The Data and a Brief Analysis

In this section the data collected by applying the decision making process is described
and some immediate analysis is provided. There were 30 users participating the data
collection phases of the project.

4.1 User Satisfaction

The employees of the user organization who answered the query were from three main
staff groups. Those groups were assistants (18), low-level management (3), and mid-
level management (7). There were also two answers from people who did not belong to
any of those groups.

The general satisfaction was higher than expected. Before the query it was assumed
that most of the users would be unsatisfied with the system. The user satisfaction can
be seen from Table 1. Only a few evaluated criteria got less than 50 % of positive eval-
uations. An interesting issue is that all users were fairly satisfied with the information
provided by the system and the up-to-date nature of that information. During further
discussions with the representatives of the user organization it was clarified that some
users used almost all of the functionalities and the others used only a few functional-
ities. The users who used only a few functionalities used mainly reporting and other
similarly oriented functionalities. In those cases the business value of the provided in-
formation was realized and possible difficulties with the system endured. That analysis
is supported by the realization that those people were especially unsatisfied with the
user interface and usability of the system but were happier with the information pro-
vided by the system than the other users.

Table 1. The level of general user satisfaction

Issue N B M G E Likes

General satisfaction with the system - 1 4 17 8 83 %

Satisfaction with the UI 3 5 8 10 4 47 %

Satisfaction with the help-functionality 2 5 10 10 3 43 %

Commands are easy to remember 1 7 5 11 6 57 %

Easiness of learning the system 1 3 7 11 8 63 %

Satisfaction with the provided information - 1 7 13 9 73 %

The system is bug-free - 2 3 20 5 83 %

Clarity of the provided information 2 2 7 12 7 63 %

General easiness of use 3 2 9 12 4 53 %

Information is up-to-date - 1 7 12 10 73 %

Defining the Process for Making Software System Modernization Decisions 13

Table 2. Current successfulness of the main functionalities and the number and cost of problems
per functionality

Functionality N B M G E Likes % Problems Hours

F1 - - 2 11 9 91 % 1 0.25

F2 - - 4 18 8 87 % 12 10.40

F3 - - 8 18 3 72 % 0 0

F4 - - 2 16 4 91 % 2 1.10

F5 - 1 11 7 1 40 % 1 0.01

F6 - - - 8 10 100 % 11 2.15

F7 - - - 7 4 100 % 4 2.35

F8 - - - 9 8 100 % 0 0

F9 - - - 6 3 100 % 0 0

F10 - 1 2 10 4 82 % 4 3.15

F11 - - 1 11 5 94 % 1 1.00

F12 - - 3 8 7 83 % 4 3.55

F13 - - - 8 9 100 % 1 0.10

F14 - - - 11 5 100 % 1 1.00

F15 - - - 4 4 100 % 0 0

F16 - - - 3 3 100 % 0 0

F17 - 1 1 7 4 85 % 5 6.60

F18 - - 5 6 4 67 % 4 5.00

Total 50 36.66

In the beginning we got the impression that the users were not very satisfied with the
functionality of the system. The analysis showed a different story. The results are shown
in Table 2, which shows the number and cost of problems per main functionality also.
There was only one functionality that was not deemed satisfactory by the majority of the
users. In addition to the user satisfaction measured for the main functionalities, the users
were asked whether they thought that the successfulness of the system had improved
over the time. About 70 % of users thought that successfulness had improved, 27 %
thought that it had stayed the same and only 3 % thought that the successfulness of the
system had declined.

4.2 Documentation and Support

One of the analyzed issues was the level and use of documentation and technical sup-
port. In order to analyze that better we divided support into four types that were: doc-
umentation, training, technical support personnel and other users. The use of technical
support could, in some cases, be collected from the files of the organization that man-
ages the information systems of the user organization, but that information was decided
to be collected separately due to the same reason why information on problems was
decided to be separately collected.

14 J.J. Ahonen et al.

Table 3. Use and availability of different types of support

Type of technical support Not available Do not use Uses Do not know

Documentation 1 8 20 1

Training 0 4 20 6

Technical support personnel 1 2 26 1

Other users 1 2 24 3

All users were asked what type of support they use. The answers are shown in
Table 3. The users were also asked whether the technical support was adequate or not.
Twenty users answered that the documentation, training and support were adequate,
five users answered that the support was not adequate. Other users did not provide an
answer to this question.

4.3 Encountered Problems

Because the use of the system was very closely related to a monthly cycle, the data was
decided to be collected for a month. Due to the fact that the maintenance personnel and
the users could see different problems, it was decided that problems from both groups
would be collected.

In one month there were 50 problems. The distribution of problems between the
users and the maintenance personnel is shown in Figure 2 and its adjacent table. Further

Week6 Week7 Week8 Week9

Users
Maintenance
Total

0
5

10
15

20
25

Group Week 6 Week 7 Week 8 Week 9

Users 10 4 0 5
Maintenance 14 2 9 6
Total 24 6 9 11

Fig. 2. Encountered problems per week in one month

Defining the Process for Making Software System Modernization Decisions 15

Table 4. Types, frequencies and costs of encountered problems

Type of problem Users Maintenance Cost (min.) Cost (h)

Error in WTB 7 3 132 2.23

WTB is slow 8 0 143 2.29

Wrong data, reason: user 1 9 558 9.30

Wrong data, reason: WTB 0 2 12 0.20

Wrong data, reason: other 0 3 132 2.2

User mistake 1 5 497 8.28

Missing functionality 2 2 198 3.30

Missing data 0 3 300 5.00

Data transfer 0 4 225 3.75

Total 19 31 2199 36.66

analysis of the collected problem data showed that there were nine different types of
problems encountered by the maintenance personnel or the users. Four of those types
were encountered only by the maintenance personnel and one type was encountered by
the users only. The members of the maintenance group are not part of those 30 persons
who participated the other types of data gathering. The types of encountered problems
are shown in Table 4. The number of problems that could be identified as caused by
WTB was 24/50 problems (error in WTB, WTB is slow, wrong data due to WTB, and
missing functionality), which is about 50 % of the number of the problems.

One of the interesting issues is the amount of working hours lost due to the additional
work caused by the problems. In Table 4 the cost of the problems is shown. The cost is
not shown in money, it is shown as time. The total amount of the reported lost working
time was less than 37 hours. The amount of lost ime is very small when compared to the
amount of active working hours (1 743 hours/month) spent using the system. Therefore
the lost working time was a bit over 2 % of the total time.

In addition to the total amount of lost working hours the number of problems for
every main functionality was recorded. The distribution of lost work between the main
functionalities is shown in Table 2. The number of corrected problems was 42, which is
less than the number of encountered problems. It was not necessary to spend corrective
work on every problem either because the problem was one-off and impossible to be
corrected afterwards or because corrective action was deemed unnecessary.

5 An Analysis of the Process and the Data

The use of the decision making process was considered a success by both the software
services provider and the user organization, although probably for different reasons. In
this section the experiences of using the process and the results provided by the process
are discussed.

The general aim of the process was reached. The process provided a documented
way to perform a light-weight analysis of an information system. The effort required

16 J.J. Ahonen et al.

by both the software services supplier and the user organization was small enough to
justify the use of the process in real cases in which the costs of the evaluation are a very
significant factor. In addition to that, the collected measurements data was considered
sufficiently objective in order to enable rational and justifiable decisions.

The costs imposed by using the process were clearly lower than the costs caused by
even fairly minor reengineering, modernization or replacement decisions. The actual
numbers are not available to the authors, but both the software services provider and the
user organization were satisfied with the low costs and told the authors that the costs of
using the process were significantly lower than the cheapest considered alternative. The
difference in costs justified the costs caused by using the process.

The sufficient objectivity of the collected data was emphasized by the fact that the
results of the data-gathering were a surprise to the representatives of both the software
services provider and the user organization. Contrary to the original expectations the
general user satisfaction was fairly high and the perceived obsolescence was low. The
satisfaction with the information provided by the system was especially high, and that
was the most important issue considering the use of the system. In addition to that, most
of the users thought that WTB was more useful now than before, which was interpreted
to mean that it was less obsolescent than before. That change was assumed to be a direct
consequence of constant enhancive maintenance performed by the software services
provider.

In addition to the perceived successfulness of the system, the measured number of
problems and the working-time lost due to the problems were fairly small. Only 2%
of working time spent using the system was lost due to the problems. That time would
be only 2.4 hours in four weeks for an individual assuming that the effective working
time is 120 hours in four weeks and the lost time is distributed uniformly (the individual
amounts of lost time was not measured). That level was under the pre-set trigger-levels
(unfortunately the exact values of the decided trigger-levels are not known to the authors).

The level of user satisfaction with the system, the level of the perceived obsolescence,
and the measured number and cost of problems did not provide support for reengineer-
ing, modernization or replacement. In addition to that, those features of the system that
were most unsatisfactory were related to the user interface of the system. The level of
satisfaction with the user interface was related to the frequency of use. Frequent users
were more satisfied with the interface than those who used the system less frequently.
Even those users that were not satisfied with the user interface were satisfied with the
information content and the functionality. Hence the most important target for improve-
ments was the user interface of the system.

In general, the performed project revealed that the system was much more success-
ful and problem-free than the management and decision makers of the user organization
assumed before the project. Therefore the project, which was performed in a method-
ological and controlled way, provided results that were contrary to the expectations and
that were able to provide necessary information for rational business decision mak-
ing.The authors were later told that the results of applying the process had provided
both the software services supplier and the user organization enough data for achieving
an agreement on the modernization of WTB’s user interface. For other part the decision
was to continue as before with maintenance that includes enchantive aspects.

Defining the Process for Making Software System Modernization Decisions 17

It is often possible and even likely that the perception of the modernization or re-
placement needs are different when viewed from the management level when compared
to the need when viewed from the employee level or the level of the existing business
processes. Major changes in the business processes and the organizational models are,
of course, indisputable reasons for drastic decisions regarding the information systems
used by the organization. That type of drivers for change cannot be neglected and may
result in major modernizations or replacements in any case. One additional type of rea-
sons for change that cannot be neglected are technological ones like the end of support
for some types of technologies [6].

The fact that the management of the user organization did not expect results that
did not support replacement or major modernization decisions makes it interesting to
speculate on the possible percentage of unnecessary modernization or replacement de-
cisions. Such unnecessary decisions may be based on false assumptions and the lack
of hard data, i.e. bad process. The decision making process outlined in this article can
provide necessary guidelines in order to perform fact-based decision making. The use-
fulness of the process was tested out by using it in a real industrial case which showed
the process to be usable and reasonably light-weight in order to be applied in the case
of strict economic constraints.

6 Discussion

The subprocess defined in this article and used in the outlined industrial case is just one
of the processes that are required in order to define and document the whole spectrum
of software engineering processes. Those processes must be defined, documented and
tested in order to make the processes or an organization at least controlled. Actually
this type of definition is required at the CMMI level 1 [12]. Other quality and reference
models require the definition and documentation of the processes in any case.

A reference model like CMMI [8][12] requires the processes to be defined and doc-
umented. Those models do not provide process templates on which organizations could
base their own process definitions and documentation, and it should be noted that pro-
viding such templates it not the the aim of those models. The models tell what is re-
quired from the processes, their definition and documentation.

There is, however, a clear need for well-thought process templates that could be
adapted for the need of individual organizations. Such templates should be defined in
a sufficiently detailed way and they should have been tested in real industrial settings
before they are presented for a wider audience. The process presented in this paper can
be used as such a template for defining the organization specific software system mod-
ernization decision making processes. Further development and testing of the process
is, however, required before its general applicability can be asserted.

The authors of this article propose other researchers and organizations to document
and distribute their process definitions in order to strengthen the general understanding
of software engineering related processes and their aspects. The maturing of software
engineering requires publicly available process models and other types of empirically
asserted best-practices.

18 J.J. Ahonen et al.

References

1. Lientz, B., Swanson, E.: Problems in application software maintenance. Communications of
the ACM 24 (1981) 763–769

2. Erlikh, L.: Leveraging legacy system dollars for eBusiness. IT Pro (2000) 17–23
3. Seacord, R.C., Plakosh, D., Lewis, G.A.: Modernizing Legacy Systems. The SEI Series in

Software Engineering. Addison-Wesley (2003)
4. Lehman, M.M., Perry, D.E., Ramil, J.F.: Implications of evolution metrics on software main-

tenance. In: Proceedings of the International Conference on Software Maintenance, IEEE
Computer Society Press (1998) 208–217

5. Banker, R.D., Datar, S.M., Kemerer, C.F., Zweig, D.: Software complexity and maintenance
costs. Communications of the ACM 36 (1993) 81–94

6. Koskinen, J., Ahonen, J.J., Sivula, H., Tilus, T., Lintinen, H.: Software modernization deci-
sion criteria: An empirical study. In: Proceedings of the 9th European Conference on Soft-
ware Maintenance and Reengineering, CSMR’05, IEEE Computer Society (2005) 324–331

7. Saastamoinen, H.: On the Handling of Exceptions in Information Systems. Studies in com-
puter science, economics and statistics, vol. 28, University of Jyväskylä (1995) PhD Thesis.

8. SEI: Capability Maturity Model Integration (CMMI), Version 1.1, Continuous Representa-
tion. Technical Report CMU/SEI-2002-TR-028, ESC-TR-2002-028, CMU/SEI (2002)

9. ISO: ISO/IEC TR2 15504, Part 1 – Part 9, Information Technology — Software Process
Assessment. ISO, Geneva, Switzerland (1993)

10. Sneed, H.: Planning the reengineering of legacy systems. IEEE Software 12 (1995) 24–34
11. De Lucia, A., Fasolino, A.R., Pompella, E.: A decisional framework for legacy system man-

agement. In: Proceedings of the IEEE International Conference on Software Maintenance,
ICSM 2001. (2001) 642–651

12. SEI: Capability Maturity Model Integration (CMMI), Version 1.1, Staged Representation.
Technical Report CMU/SEI-2002-TE-029, ESC-TR-2002-029, CMU/SEI (2002)

13. Kankaanpää, I., Sivula, H., Ahonen, J.J., Tilus, T., Koskinen, J., Juutilainen, P.: ISEBA
— a framework for IS evolution benefit assessment. In Remenyi, D., ed.: Proceedings of
12th European Conference on Information Technology Evaluation, Academic Conferences
Limited (2005) 255–264

14. Sahin, I., Zahedi, F.: Policy analysis for warranty, maintenance and upgrade of software
systems. Journal of Software Maintenance and Evolution: Research and Practice 13 (2001)
469–493

15. Visaggio, G.: Value-based decision model for renewal processes in software maintenance.
Annals of Software Engineering 9 (2000) 215–233

16. Bennett, K., Ramage, M., Munro, M.: Decision model for legacy systems. IEE Proc. —
Software 146 (1999) 153–159

17. Kitchenham, B.A., Pfleeger, S.L., Pickard, L.M., Jones, P.W., Hoaglin, D.C., Emam, K.E.,
Rosenberg, J.: Preliminary guidelines for empirical research in software engineering. IEEE
Trans. Softw. Eng. 28 (2002) 721–734

18. Pickard, L.M., Kitchenham, B.A., Jones, P.: Combining empirical results in software engi-
neering. Information and Software Technology 40 (1998) 811–821

19. Kitchenham, B.A., Travassos, G.H., von Mayrhauser, A., Niessink, F., Schneidewind, N.F.,
Singer, J., Takada, S., Vehvilainen, R., Yang, H.: Towards an ontology of software mainte-
nance. Journal of Software Maintenance 11 (1999) 365–389

J. Münch and M. Vierimaa (Eds.): PROFES 2006, LNCS 4034, pp. 19 – 33, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Introducing Tool Support for Retrospective Analysis
of Release Planning Decisions

Lena Karlsson and Björn Regnell

Department of Communication Systems, Lund University,
Box 118, 221 00 Lund, Sweden

{lena.karlsson, bjorn.regnell}@telecom.lth.se

Abstract. The release planning activity in market-driven requirements
engineering is crucial but difficult. The quality of the decisions on product
content and release timing determines the market success, but as predictions of
market value and development cost are uncertain, the decisions are not always
optimal. This paper presents a prototype tool for retrospective analysis of
release planning decisions based on tool requirements gathered in two previous
empirical studies where retrospective analysis was done manually. The
supported method enables representation of different views in the decision-
making process. The results from an initial validation indicate that the
retrospective analysis benefits from the supporting tool.

1 Introduction

The purpose of this paper is to describe a tool1 that supports a method for
retrospective analysis of release planning decisions. The method is called PARSEQ
(Post-release Analysis of Requirements SElection Quality) and aims at finding
process improvement proposals for the release planning activity. The retrospective
analysis is acknowledged as an important means for software process
improvement [9]. Release planning is regarded as one of the most critical activities in
market-driven software development [2] as it can determine the success of the
product. Generation of feasible assignments of requirements to increments in a
changing environment is a very important but complex task [3]. The PARSEQ
method has been successfully investigated in two prior case studies performed in
industry. The experiences from the case studies provided the basis for developing the
tool support and were used to elicit the PARSEQ tool requirements.

In [7], the method was applied at a company developing a software product for an
open market. The company had regular releases and used a requirements management
(RM) tool [13] when planning their releases. The PARSEQ analysis yielded a number
of process improvements such as enhancing the overall picture of related
requirements, increased attention to the elicitation of usability requirements and
improved estimates of implementation costs. In the second case study [8], the method
was applied using a different approach. The investigated project had an agile
development procedure, inspired by the Extreme Programming (XP) [1]. The project

1 Download at http://serg.telecom.lth.se/research/packages/ParseqTool/index.html

20 L. Karlsson and B. Regnell

was conducted in-house, i.e. both users and developers of the project were from
within the company. Since the project used an agile approach to development, they
had frequent iterations and regular releases when the system was put into operation.
In each iteration the project used the Planning game [1] to prioritise the requirements
and plan the next release. The requirements were elicited in the beginning of the
project from internal stakeholders and documented in an excel sheet.

The experiences from the case studies have given input to the needed functionality
of the PARSEQ tool support. We believe that tool support may improve the
retrospective analysis in the following ways:

• Increase efficiency as more requirements may be analysed compared to the manual
case

• Increase visualisation potential of release planning problems through charts and
diagrams

• Decrease preparation and manual handling of requirements through import and
export possibilities

The tool was validated in a retrospective analysis of the development of the
PARSEQ tool itself. The analysis indicated that the tool is well functioning and we
believe it will be helpful in future case studies.

The paper is structured as follows. Section 2 describes the PARSEQ method and
Section 3 describes the PARSEQ tool that has been developed. Section 4 discusses
some threats to validity and concludes the paper with suggestions for further work.

2 The PARSEQ Method

Retrospective evaluation is used for different purposes within software engineering.
Some retrospective methods use metrics to evaluate a product from a certain
perspective, such as maintainability or program structure, in order to improve
software evolution [10]. Other methods aim at evaluating a conducted project in order
to improve future projects [9]. Unlike these retrospective analysis methods, PARSEQ
focuses on finding release planning process improvements through an analysis of
earlier release planning decisions.

Release planning is used when developing products in an incremental manner, and
provides the opportunity of releasing the most important functionality first instead of
delivering a monolithic system after a long development time [3]. Release planning is
used in incremental development and agile methods. Assigning requirements to
increments is a complex task as many factors influence, such as different stakeholder
needs, available resources, and technical precedence constraints. There are several
techniques for release planning e.g. EVOLVE [3] and Planning game [1]. There are
also a number of tools to support release planning e.g. ReleasePlanner [14] and
VersionOne [15]. In contrast to these tools, the PARSEQ tool is not intended as a
release planning tool, but as a tool for evaluating releases in retrospect. Thus, the aim
is not to come up with a perfect release plan but to find process issues that need
improvement in order to reach better release plans in the future.

The PARSEQ method is based on a systematic analysis of candidate requirements
from previous releases. By identifying and analysing a set of root causes to suspected

 Introducing Tool Support for Retrospective Analysis 21

incorrect requirements selection decisions, it may be possible to find relevant
improvements that are important when trying to increase the specific organisation’s
ability to plan successful software releases.

In order to perform the PARSEQ method the following is required:

• Multiple releases of the product and requirements from earlier releases saved in a
repository.

• Data for each requirement stating which release it is implemented in, or if the
requirement has been postponed or excluded.

• Methods for estimating each requirement’s cost and value.
• Employees who have decision-making experience from prior releases.
• A facilitator with experience in performing retrospective analysis.

Requirements
repository

Requirements
sampling

Re-estimation of
cost and value

Root cause
analysis

Elicitation of
improvements

Sub-set of
previous

candidates

Post-release
priority list

Process
improvement

proposals

Root causes

Fig. 1. An outline of the activities and products of the PARSEQ method

PARSEQ is divided into four steps: requirements sampling, re-estimation of cost
and value, root cause analysis, and elicitation of improvements, as shown in Fig. 1.
Each of the steps can be adapted to the particulars of a case study. For example, there
are different approaches to requirements sampling that can be selected for the first
step. There are also several different techniques for requirements prioritisation that
can be used in the second step.

The method uses a requirements repository as input and assumes that information
is available regarding when a requirement is issued and in which release a
requirement is implemented. The output of the method is a list of prioritised process
improvement proposals and a plan for improvement implementation. Each step in
PARSEQ is subsequently described in more detail.

22 L. Karlsson and B. Regnell

Step 1: Requirements sampling. The main input to the retrospective analysis is a list
of requirements that were candidates for previous releases of the investigated product.
The product should have been in operation long enough to allow for an assessment of
the current user value of its implemented requirements.

The purpose of the sampling is to compose a reasonably small but representative
sub-set of requirements, since the complete repository may be too large to investigate
in the retrospective analysis. The sample should include requirements that were
selected for implementation in one of the releases as well as postponed or rejected re-
quirements. The requirement set is thereby useful for the analysis as it consists of
typical examples of release planning decisions.

The requirements sampling can be performed with different focus, such as
concentrating on a special market segment or on a difficult part of the product or on
particularly difficult decisions. However, if the sample is to represent the whole
product and its market, the sample should be as comprehensive as possible. If a ran-
dom sample is used, some types of requirements may be excluded as they are not
representative, e.g. very similar requirements, requirements dated several releases ago
or dated recently, requirements estimated to have a very long or very short
implementation time, etc.

The output from the requirements sampling is a reasonable number of
requirements, large enough to be representative, yet small enough to allow the
following steps of PARSEQ to be completed within a reasonable time.

Step 2: Re-estimation of cost and value. The requirement sample is input to the next
step of PARSEQ, where a re-estimation of current market value and actual
development cost is made in order to find suspected inappropriate decisions that can
be further analysed. As the investigated product releases have been in operation for a
while, a new assessment can be made, which applies the knowledge gained after the
releases were launched. Presumably, this should result in more accurate priorities.
The re-estimation determines how the organisation would have decided, i.e. which
requirements would have been selected, if it knew then what it knows now. With
today’s knowledge, about market expectations and development costs, a different set
of requirements may have been selected for implementation in the different releases.
If this is not the case, either the organisation has not learned more about release
planning since the releases were launched, or the situation on the market has not
changed, or the organisation has been very successful with their estimations of cost
and value during release planning.

The implemented requirements have a known development cost (assuming that
actual implementation effort is measured for each requirement), but postponed or
rejected requirements need to be re-estimated based on the eventual architectural
decisions and the knowledge gained from the actual design of the subsequent releases.

By using, for example, a cost-value prioritisation approach, it is possible to see the
trade-off between the value to the users and the cost of development in a so-called
cost-value diagram [6], or in a bar chart [13]. These illustrations point out the
requirements with high value and low cost (they should be implemented early), as
well as the requirements with low value and high cost (they should be implemented
late or perhaps not at all).

 Introducing Tool Support for Retrospective Analysis 23

The purpose of the re-estimation is to apply the knowledge that has been gained
since the product was released, to discover decisions that would be made differently
today. The discrepancies between decisions made during release planning and during
post-release prioritisation are noted and used in the root cause analysis. The output of
this step is thus a number of requirements that were given a high post-release priority
but were implemented late or not at all, as well as requirements that were given a low
post-release priority but were implemented in an early release.

Step 3: Root cause analysis. The purpose of the root cause analysis is to understand
on what grounds release-planning decisions were made. By discussing prior release
planning decisions, and determining root causes of problematic ones, it may be
possible to determine what went wrong and recommend how to do it better next time.

The output of the re-estimation, i.e. the discrepancies between the post-release
prioritisation and what was actually selected for implementation in the different
releases, is analysed in order to find root causes for suspected inappropriate decisions.
This analysis is based on a discussion with persons involved in the requirements
selection process. The following questions can be used to stimulate the discussion and
provoke insights into the reasons behind the decisions:

• Why was the decision made? Based on what facts was the decision made?
• When was the decision made? What has changed since the decision was made?
• Was it a correct or incorrect decision?

Guided by these questions, categories of decision root causes are developed. Each
requirement found to be implemented either too early or too late is mapped to one or
several of these categories. This mapping of requirements to root cause categories is
the main output of this step together with the insights gained from retrospective
reflection.

Step 4: Elicitation of improvements. The outcome of the root cause analysis is used
to facilitate the elicitation of improvement proposals. The objective of this step of
PARSEQ is to arrive at a relevant list of high-priority areas of improvement. The
intention is to base the discussion on strengths and weaknesses of the requirements
selection process and to identify changes to current practice that can be realised. The
following questions can assist to keep focus on improvement possibilities:

• How could we have improved the decision-making?
• What would have been needed to make a better decision?
• Which changes to the current practices can be made to improve requirements

selection in the future?

In order to implement the most cost-effective and important ones first, it may be
necessary to conduct a prioritisation among the suggested improvements. The
prioritisation can be performed using a requirements prioritisation method, based on
cost and value. Prioritisation of process improvements has been successfully
conducted with a technique based on the Analytical Hierarchy Process (AHP), see [5].
The results of PARSEQ can be used in a process improvement programme where
process changes are designed, introduced and evaluated. These activities are,
however, beyond the scope of this paper.

24 L. Karlsson and B. Regnell

2.1 Case Studies

Two consecutive case studies have been conducted to try the PARSEQ method in
practice. These empirical studies were the foundation for developing tool support for
the method, as some steps in the method could be more efficient and easier to manage
if not performed manually. Each case study gave more information on the needed
characteristics of the tool, as the characteristics of the involved companies were
different. The organisational characteristics are described in Table 1.

Table 1. Comparison between the two studied cases

 Case A Case B
Project type Market-driven development In-house
User base Multiple, diverse views Few, similar views
User location Outside the organisation Within the organisation
Development approach Incremental Agile
Organisation size Small Medium

The following sections briefly describe the two empirical cases.

Case A – The Market-Driven Software Development Company
The first case study [7] took place at a small-sized software product developer. The
development followed an incremental approach with regular releases every 6
months. Users and customers were external as the product was sold on an open
market. The releases were planned with a commercial requirements management
(RM) tool [13]. The RM tool can be used to prioritise requirements according to an
approach based on the AHP [12]. The RM tool was used in the second step of the
method to re-prioritise the requirements. Several improvement suggestions for the
release planning activity was found in the case study: enhance the overall picture of
related requirements, increase attention to the elicitation of usability requirements,
improve estimates of implementation costs, trim the division of large requirements
into smaller increments, and improve estimations of market-value of features in
competing products.

Case B – The In-House Project at an Embedded Systems Developer
The second case [8] was an in-house project at a medium-sized company developing
embedded software products. The project used an agile development approach,
inspired by Extreme Programming [1] and had frequent iterations and regular
releases when the system was put into operation. They used the Planning game to
prioritise requirements and plan each iteration. The requirements were elicited in the
beginning of the project from internal stakeholders and documented in an excel
sheet.

As we wanted to investigate a more agile alternative to the RM tool, the Planning
Game was selected for the re-estimation of cost and value. The application of
PARSEQ in an agile setting seems promising and the release planning activity in the
investigated project was found successful. The participants concluded that this could
be due to the iterative development, as requirements were prioritised continually and

 Introducing Tool Support for Retrospective Analysis 25

release plans were flexible enough to adapt to the project scope. It may also be
explained by the project type; users of in-house projects have similar requirements,
and users and developers can co-operate during development as they are located close
by. The participants concluded that iterative development and prototyping were
reasons for the success.

Tool Requirements from Case Studies
The main problems with performing the PARSEQ analysis manually include time-
consumption and lack of visualisation. Commercial tools only support a few steps of
the method (as in case study A) and performing the method manually is too time-
consuming (as in case study B). It is also essential to be able to import requirements
automatically, and to export the discovered process improvements. Performing import
and export manually is very time-consuming. As different organisations are used to
different prioritisation techniques, we also needed the possibility to select different
requirements prioritisation techniques during the analysis.

3 The PARSEQ Tool Support

The experiences from conducting the two earlier PARSEQ case studies were used to
develop a requirements specification for the PARSEQ tool. The tool handles all steps
from the import of a sample of requirements to the export of process improvement
proposals, which in turn can be prioritised in the tool.

The PARSEQ tool was developed by two students in collaboration with the
researchers, who acted as customers. The students used ideas from Extreme
Programming in the development, and each release was planned in collaboration with
the customers.

3.1 Tool Description

The tool consists of a number of different windows guiding the user through the
PARSEQ process. The main window is returned to after each step of the process and
visualises the requirements at each step.

Step 1: Requirements sampling. The main window of the tool includes an Import
button, which is selected for the import of the requirements. We chose to support
import of requirements from MS ExcelTM, as a predefined Java library was found on
the Internet. For this prototype, we chose not to include import possibilities from RM
tools and other programs.

The tool requires the imported list of requirements to be in a certain format with
columns representing requirement number, requirement description and release
number, see Fig. 2. Therefore, the original requirements repository may need to be
altered before importing it. The tool supports manual entering of requirements as well
as editing of imported requirements. The tool cannot manage random sampling, only
manual selection of requirements from the imported list. Therefore, it is more
efficient to conduct the sampling prior to the PARSEQ session, so that manual
selection does not have to be performed.

26 L. Karlsson and B. Regnell

Fig. 2. Import window of the PARSEQ tool

Fig. 3. The Planning Game prioritisation boxes

Step 2: Re-estimation of cost and value. When requirements have been imported
into the tool along with each requirement’s release number and description, the
second step can be performed. The re-estimation of cost and value is performed by
using one of the three available requirements prioritisation techniques. We chose to

 Introducing Tool Support for Retrospective Analysis 27

include the two techniques that were used effectively in the prior case studies, i.e. the
AHP and the Planning game, and in addition we included the $100 technique, as it has
been used successfully by the researchers before [11].

At this step it is also necessary to select the criteria to base the prioritisation on.
Pre-defined criteria include cost, value, and risk. It is also possible to enter two
criteria of your own choice. It is essential to choose one criteria to maximise, e.g.
value, and one to minimise, e.g. cost.

The Planning Game helps the decision maker rank requirements by first assigning
each requirement to the high, medium or low box, and then within each box to
arrange them in falling order, see Fig. 3. This is performed for both selected criteria,
for example cost and value before continuing. Within each box it is possible to use
drag-and-drop to rearrange the order or requirements. The top requirement in each
box has the highest rank for that criterion. If some requirement is discovered to be in
the wrong box, the card can be sent back to the desk and be put in another box. In
addition to the ranks, it is also possible to assign relative values to the requirements
by using a modified $100-technique on the complete list of ranked requirements.

The AHP requires the user to perform pair-wise comparisons between all possible
pairs of requirements. As the number of comparisons increases drastically with the
number of requirements, this is very time-consuming for large amounts of
requirements. However, there are different algorithms to reduce the number of
comparisons, for example the Incomplete pair-wise comparisons (IPC) [4]. The
implementation of the AHP prioritisation technique was inspired by the IPC. In the
tool, it is possible to stop before all pairs are compared and receive an approximate
value. This reduces the necessary comparison effort, but also the trustworthiness of
the result. For each requirement pair, one of the radio buttons should be selected, see
Fig. 4. The one in the middle represents equal weight, and the further to the left the
more weight is given to the left requirement, and similarly for the requirement to the
right. The same process is performed for both selected criteria.

Fig. 4. Prioritisation with pair-wise comparisons, i.e. the AHP

28 L. Karlsson and B. Regnell

Fig. 5. The $100 technique window

The $100 technique prioritises the requirements by providing each requirement
with a share of a total budget of 100 dollars. This gives each requirement a percentage
of significance according to the currently used criteria. The cell at the bottom shows
the total amount spent so far, see Fig. 5. If a large number of requirements is
prioritised, the $100 limit can be extended to $1000 to make it easier to divide the
fictive money. The same process is performed for both criteria before continuing. If
the development costs of requirements are available, it is possible to use the $100-
technique and re-scale the actual costs accordingly.

Step 3: Root cause analysis. In the root-cause analysis, the requirements identified as
implemented too early or too late are analyzed. The support provided by the tool for
this step is divided into two windows, the Graph window and the Root-cause matrix.
In the Graph window, the results from the re-prioritisation are displayed in a cost-
value diagram. Each requirement’s position is shown with an icon: a “+” or one or
more circles, to tell releases apart. The requirements with a “+”-sign have no release
number assigned. The number of circles are decided in alphabetical or numerical
order, for instance if we have releases 1, 2 and 3 they would have one, two and three
circles respectively.

The graph window can take different shapes depending on the prioritisation used in
the prior step. If the AHP or the $100 technique was used, this means that we have
information about the relative distance between requirements. In this case, there are
two support lines, originating in the origin, that by default have the angles 2x and x/2,
see left side of Fig. 6. By switching viewing mode, the lines will be drawn with an
equal number of requirements at each side. If instead the Planning game was
used, and requirements are ranked, the axes represent ranks. There are horizontal
and vertical lines instead of diagonal ones, to distinguish the high, medium and low

 Introducing Tool Support for Retrospective Analysis 29

Fig. 6. Cost-value diagrams for the AHP or the $100 method (left), and the Planning game
(right)

Fig. 7. The Root cause matrix with two root causes and improvements

groups, see right side of Fig. 6. It is also possible to visualize dependencies between
requirements in the graph, which is indicated by the broken lines between
requirements in Fig. 6.

After discussing the root causes of making incorrect release planning decisions for
a certain requirement, the requirement can be added to the Root-cause matrix, see
Fig. 7. In the matrix, selected requirements end up in columns and root causes can be
entered at each row. By marking an “X” in the appropriate cell, it is possible to assign
root causes to requirements.

Step 4: Elicitation of improvements. At this point it is desirable to discuss the root
causes and reasons for making incorrect decisions. Possible improvements to manage
the incorrect decisions in the future can be entered next to the root causes in the root

30 L. Karlsson and B. Regnell

cause matrix. This is evidently the most important step of the method and it requires
intense discussion between decision makers.

When improvement proposals have been extracted, it is possible to export the
results back to MS ExcelTM. Both the Root cause matrix and the cost-value diagrams
can be exported and used for presentation purposes. Finally, it is possible to
prioritise the improvement proposals based on e.g. the importance of putting the
improvement into operation and the cost of doing so. In this manner the cost-value
approach is used again. This is achieved by performing the first steps of PARSEQ
again; importing the improvement proposals in the same manner as when
requirements were imported, then re-prioritise the improvements using one of the
prioritisation techniques. The resulting root cause diagram can indicate the most
important, yet cost-effective, improvements to implement first. The root cause
matrix can be used to enter reasons for implementing a certain improvement and
plans on how this can be done. It would also be possible to add notes about
dependencies between improvement proposals if, for example, conflicting proposals
are found. The improvements, the root cause diagram and the root cause matrix can
again be exported to MS ExcelTM.

3.2 Tool Analysis

The tool was developed in collaboration between the researchers and two master
thesis students. The researchers acted as customers and provided the students with a
requirements specification with all the known needs for the tool and the students acted
as developers who implemented the tool in collaboration, using pair-programming
[1]. This customer-developer situation is typical for the contract-driven development
where the requirements specification acts as a contract of what shall be delivered.
Nevertheless, ambiguity leaves room for developers to interpret requirements
differently than was intended by the customer, and the customer may change his mind
when the product is actually delivered. These uncertainties motivate the use of
PARSEQ as it can help find reasons for these problems, and learn for the future.
Therefore, we conducted a PARSEQ analysis using a sample of the requirements in
the original specification to analyze which requirements that should have been
implemented earlier, and which that should have been postponed. From the 52
product requirements, a sample of 20 randomly selected requirements were listed in
an Excel sheet together with their release status, to be used for the evaluation. We
decided to use the Planning game as prioritisation technique. First the customers
sorted the cards by value, i.e. how important they found the specific feature. Then the
developers sorted the cards by cost, i.e. the time it took to implement the feature or, if
the feature had been excluded, an estimate of the time it would have taken. After the
prioritisation, the cost/value graph was studied to find requirements implemented in a
too early or too late release. What were sought for were in other words, requirements
with high value and low cost that had been implemented in a late release and vice
versa. When the identification of these requirements was done, they were added to the
root-cause matrix. Then the PARSEQ evaluation was ended with completing the last
steps in the method by eliciting root-causes, possible reasons for the deviations and
possible improvements to, if possible, avoid the deviations in the future. The root
causes and improvements are shown in Table 2.

 Introducing Tool Support for Retrospective Analysis 31

Table 2. Root cause matrix resulting from the PARSEQ analysis of the PARSEQ tool
development

Root causes
(Requirements implemented
later than optimal)

Improvements

P
K

32
1

0
P

K
32

0
1

P
K

34
0

8
P

K
35

0
4

P
K

34
1

0
P

K
31

0
4

Inadequate elicitation (the req
was not in the original spec)

Earlier prototyping and more
disc. of spec. with customer

X X

The prototype did not need it Not an incorrect decision X X
Was expected to be time-
consuming before an existing
library was found

Search for existing solutions
before starting

 X X

The requirement was changed Write high-level reqs, not
solutions

 X

Expected to be time-consuming
and no good solution alternative

More discussion of spec. with
customer

 X

Partly implemented Not an incorrect decision X

Note that all of the root causes regard requirements that were implemented later
than optimal. Evidently, this could not have been completely prevented, as all features
cannot be implemented at once. The conclusions were entered in the root-cause
matrix and exported to an Excel file. The session was then completed by ranking the
possible process improvements for importance. The improvement suggestions are (in
order of importance):

1. More time should be spent on discussing and understanding the requirements and
the specification in the beginning of the project

2. The customer should write higher level requirements instead of solution-oriented
requirements

3. More time should be spent on looking for existing solutions to presented
problems

4. Earlier prototyping should be made to get earlier feedback

Note that some of the root causes do not reveal an incorrect decision, as some
requirements have to be implemented later than optimal due to e.g. architectural
reasons.

As the PARSEQ tool was possible to use for a PARSEQ evaluation, the conclusion
is that the tool works appropriately. It was also concluded that the tool usability is
high enough for users familiar with the PARSEQ method. Some parts of the process,
for example the automatically generated root cause graph, were found less time-
consuming and more flexible than without the tool. It remains to evaluate the tool in
an industrial case.

4 Discussion and Further Work

Earlier case studies [7, 8] have shown that the PARSEQ method is a valid means for
finding improvements to the release planning process. The experiences from the case
studies were used to design tool support for the method in order to make it more

32 L. Karlsson and B. Regnell

efficient and easier to use. The tool was developed in collaboration between the
researchers and two masters students. At the end of development, the tool was
evaluated and validated in a PARSEQ analysis of our own project. The input was the
requirements specification and the analysis consisted of the four steps described
earlier. The output was a number of possible improvements to the development of the
tool. First of all, we can draw the conclusion that the tool worked satisfactory. It
increased visualisation of release planning problems and time consumption was low
compared to earlier studies since certain steps were automated. Secondly, several
improvement proposals were extracted from the analysis, including more discussion
of the requirements specification to decrease misinterpretations, higher level
requirements in the specification instead of solution-oriented requirements, searching
for existing solutions e.g. on the internet, and earlier prototyping.

The generalisability of these findings is important, as we would like to use the tool
in future case studies in industry. The method itself has been satisfactory in prior case
studies, and the tool is demonstrated as useable in the analysis of the development of
the PARSEQ tool. Therefore, we believe that it will also work in an industrial case.
The results from the analysis of the PARSEQ tool may have been affected by
participant bias as the tool was developed in close collaboration between students and
researchers. This could have affected the type of root causes and improvements that
were found. However, as the improvements regard both suggestions for the
researchers and for the students, we believe that all participants were honest and
objective during the analysis and we do not regard this as a threat to validity.

Further work includes using the tool in an industrial case study to investigate
release planning issues in a collaborative environment in industry. This situation has
not been investigated before in a PARSEQ analysis and is therefore a complement to
the previous case studies of the method. One example of a collaborative situation is
when an organisation employs sub-contractors who produce separate parts to be
integrated in the product. Cross-organisational collaboration increases the complexity
of the release planning process and enhances the need for clarification of different
viewpoints. Therefore, we believe that the retrospective method may give valuable
insights to the collaboration regarding requirements engineering and release planning.
Representatives from both organisations are intended to participate in PARSEQ
workshops to extract retrospective priorities of requirements and to discuss different
perspectives of release planning decision-making.

The four steps of the PARSEQ method can take the following form:

1. Requirements sampling: The focus of the analysis is on requirements that are
collaborative, i.e. that are stated by the integrating partner and that should be
negotiated between the parties.

2. Re-estimation of cost and value: This can be performed with any of the three
implemented prioritisation techniques. However, if the organisations are used to
e.g. some kind of numeral assignment or grouping, the Planning game may be
appropriate. The developing organisation, e.g. a sub-contractor, re-estimates the
development cost and the integrating organisation re-estimates the customer value
as they probably have the best customer contacts.

3. Root cause analysis: The important issue for the third step is that both parties are
present so that a discussion regarding release planning problems can be discussed

 Introducing Tool Support for Retrospective Analysis 33

and dealt with. Decision makers need to explain how and why some release
planning decisions were made. Different opinions about the importance of
requirements can be highlighted and causes of late awareness of differences can be
identified.

4. Elicitation of improvements: Decision makers can discuss how release planning
problems can be prevented in the future. If several improvements are discovered,
these can be imported into the tool again for prioritisation regarding their expected
value to the collaborating organisations and the expected cost of implementation.

Acknowledgements

This work is supported by VINNOVA (Swedish Agency for Innovation Systems)
within the ITEA project MERLIN. We would like to give special thanks to Dr. Martin
Höst for careful reviewing and valuable comments. The authors would like to thank
Mikael Jönsson and Per Klingnäs, for high-quality implementation of the PARSEQ
prototype requirements.

References

1. Beck, K.: Extreme Programming Explained. Addison-Wesley (1999)
2. Carlshamre, P.: Release Planning in Market-Driven Software Product Development:

Provoking an Understanding. Requirements Engineering, Vol. 7. (2002) 139–151
3. Greer, D., Ruhe, G.: Software Release Planning: an Evolutionary and Iterative Approach.

Inf. and Software Techn., Vol. 46. (2004) 243–253
4. Harker, P. T.: Incomplete Pairwise Comparisons in the Analytical Hierarchy Process.

Math. Modelling, Vol. 9. (1987) 837–848
5. Kanungo, S., Monga, I.S.: Prioritizing Process Change Requests (PCRs) in Software Process

Improvement. Software Process Improvement and Practice, Vol. 10. (2005) 441–453
6. Karlsson, J., Ryan, K.: A Cost-Value Approach for Prioritizing Requirements. IEEE

Software. Sept/Oct (1997) 67–74
7. Karlsson, L., Regnell, B., Karlsson, J., Olsson, S.: Post-Release Analysis of Requirements

Selection Quality - An Industrial Case Study. Proc. of the 9th Int. Workshop on
Requirements Engineering - Foundation for Software Quality (REFSQ'03), Velden
Austria (2003) 47–56

8. Karlsson, L., Regnell, B., Thelin, T.: A Case Study in Retrospective Analysis of Release
Planning in an Agile Project. Workshop on the Interplay of Requirements Engineering and
Project Management in Software Projects (REProMan’05), Paris France (2005)

9. Kerth, N. L.: Project Retrospectives - A handbook for team reviews. Dorset House
Publishing, New York (2001)

10. Mens, T., Demeyer, S.: Evolution Metrics. International Workshop on Principles of
Software Evolution (IWPSE 2001), Vienna Austria (2001)

11. Regnell, B., Höst, M., Natt och Dag, J., Beremark, P., Hjelm, T.: An Industrial Case Study
on Distributed Prioritisation in Market-driven Requirements Engineering for Packaged
Software. Requirements Engineering, Vol. 6. Springer-Verlag (2001) 51–62

12. Saaty, T.L.: The Analytic Hierarchy Process. McGraw-Hill, New York (1980)
13. http://www.focalpointus.com (visited March 2006)
14. http://www.releaseplanner.com (visited March 2006)
15. http://www.versionone.net (visited March 2006)

J. Münch and M. Vierimaa (Eds.): PROFES 2006, LNCS 4034, pp. 34 – 46, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Qualitative Evaluation Method
for Business Process Tools

Erika M. Nieto-Ariza1, Guillermo Rodríguez-Ortiz1,2, and Javier Ortiz-Hernández1

1 Centro Nacional de Investigación y Desarrollo Tecnológico,
Interior internado Palmira s/n, Cuernavaca, Morelos, 62490 México

{erika, ortiz}@cenidet.edu.mx
2 Instituto de Investigaciones Eléctricas, Reforma 113, 62490,

Cuernavaca, Morelos, México
gro@iie.org.mx

Abstract. The web plays a central role in such diverse application domains as
business. As the use of web grows, organizations are increasingly choosing to
use it to provide their services to their clients. Services are the systemization of
the business processes in the organization. A bad definition and management of
the services makes the systematization fail or not to have the expected success.
The business process modeling is the first step in the systematization. Due to
the great number of modeling tools in existence it is necessary to identify the
information that they allow to specify. In this paper, a set of concepts is
proposed to evaluate modeling tools for business process modeling using three
levels of abstractions –organizational, conceptual and web. The evaluation com-
pares the modeling capabilities supplied by the different techniques. This
evaluation also allows determining what modeling tool is the most appropriate
to model specific concepts of interest to a particular organization or problem.

1 Introduction

The development projects fail due to a bad administration of the requirement, lack of
abilities of the responsible people and the incorrect use of the techniques to specify
requirements. Additionally, organizations confront the problem of integration of
different technology at their business process. They should decide how the technology
systems support business and how incrementally the technology systems become an
integral part of the business process [1, 2]. Models are commonly used to flexibility
represent complex systems and to observe the performance in the business process
when a technology system is integrated [3, 4, 5].

The documented knowledge about the organization and its business processes is a
great help to define the requirements for an information system to be develop. To
model a system that meets the organizational needs, must first understand both
business organization and the requirements specific to the desired web system. This
model must capture the domain without reference to a particular system
implementation or technology [4]. Information in the models about the organization
and business process allows to define the web system requirements. A business model
must include information about the business processes and among other things, the
rules that govern the business execution, the process goals, and the problems that

 A Qualitative Evaluation Method for Business Process Tools 35

might appear when trying to achieve these goals [4]. This information will support
better decision making that result in a correct business performance with the right
documentation to specify the web system requirements.

One of the problems in the process modeling is the great number of techniques to
model and specify requirements, each ones has its own elements, it makes complex
and laborious to compare the techniques. To select an incorrect technique makes that
the model of the organization does not represent the organization needs.

Three modeling levels are proposed who integrate a set of concepts to build web
application models (fig.1). Each level of abstraction describes the business process in
a specific view and certain information concepts are integrated. The concepts are
properties that structurally describe types of requirements in a specific level of ab-
straction [1, 2, 3, 4, 5]. Here, the concept of model is used to indicate a textual or
graphical knowledge representation at any of the following levels of abstraction:
a)Organizational, its goal is to describe how the organization works and the business
process that are going to be systematized with a web information system;
b)Conceptual, its goal is to describe the role of the software system and its integration
with a particular organizational environment; c) Web, its goal is to describe the busi-
ness process on the basis of the semantic of web application [6,7].

Fig. 1. Levels of abstraction

The basis of our contribution is in the detection and classification of a set of con-
cepts which are used to evaluate modeling tools and to identify the capabilities that
each tool has to model at the three levels of abstraction. There are some methods and
methodologies to evaluate business process modeling, however, they do not evaluate
capabilities but rather the functionality of the application or the modeling tools.
Rosemman proposal an ontology to evaluate organizational modeling grammars iden-
tifying their strength and weaknesses [8]. Luis Olsina [9] and Devanshu Dhyani [10],
their proposal is a methodology to evaluate the characteristics of a web application in
operational phases. The evaluation method proposed in this paper is useful for the
analyst, designer and evaluator; it allows knowing how many capacities the tools
offers and how complex the models obtained are when the tools are used. It is a pre-
vious step in the selection of a business modeling tool, and it allows to select a tool by
its capacities before to evaluate the functionality that it has.

The structure of this paper is as follows: in section 2 the modeling concepts that
comprise our approach are presented, in section 3 the evaluation methodology for

36 E.M. Nieto-Ariza, G. Rodríguez-Ortiz, and J. Ortiz-Hernández

tools is presented, in section 4 the results of the evaluation are presented, in section 5
the evaluation methodology for products is presented, in section 6 the benefits of the
methodology are presented, and last conclusions is discussed.

2 Concepts for a Business Process Modeling

Business processes model can be viewed at many levels of abstraction, and
complementary model views can be combined to give a more intelligible, accurate
view of a system to develop than a single model alone [3, 4, 5, 11]. For this reason,
this approach establishes three levels of abstraction and each one includes certain
modeling concepts of features as shown in table 1. Concepts in each one level of
abstraction were selected based on the analysis of several techniques and tools for
business process modeling [1, 3, 4, 6, 8, 9, 10, 11, 12, 13, 14, 15] at three levels of
abstraction –organizational, conceptual and web. Concepts define the key elements in
a business process.

Table 1. Modeling concepts at each level of abstraction

Organizational
level

Conceptual
level

Web level

 Business
process

Pure navigation

--- Navigation page
- Relationship

User profile (Rol) User profile
(Rol)

Actor Actor

Class (object) ---
Resource Artifact

Artifact Artifact
Goal Goal --- Goal
Task Function Service Service

Activity Event
Event ---

Business rule Constraint Precondition and
postcondition

Quality No functional
requirement

No functional
requirement

The concepts integrate the levels of abstraction, such that, starting with the
organizational model, the elements of the web application are identified. Through the
correspondence of an aspect in one level to its corresponding concept in the next
level, the three levels are integrated in a complete view of the business process. For
example, the task concept in the organizational level corresponds to the function
concept at the conceptual level and later it will be correspond to a service concept at
the Web level of abstraction (business process and pure navigation).

The organizational modeling concepts are as follows.

− Actor. It describes an entity (human, hardware, software or process activity) that
has a specific goal, participates in the business process, or has relationships with
other actors. An actor may have different roles.

 A Qualitative Evaluation Method for Business Process Tools 37

− Resource. It describes an informational or physical entity that is transferred
between actors as a result of a task executed by an actor.

− Goal. It describes a business process desired state that an organization imposes to
itself, with a certain degree of priority; the goal must be quantified whenever
possible.

− Task. It describes a series of activities oriented to reach a goal; it may indicate how
should be accomplished.

− Activity. It describes a set of actions to carry out one task.
− Business rule. It describes the actions and criteria that govern the execution of the

business process.
− Quality. It describes the desired characteristics in the business process as speed,

effectiveness, etc.

The conceptual modeling concepts are as follows.

− Actor. It describes an entity (human, hardware, software or process activity) that
interacts with the information system and that might play different roles.

− Artifact. It describes an abstract or physical entity that is transferred between an
actor and the information system.

− Goal. It describes the information system purpose, limitations and responsibilities,
from the business view point.

− Function. It describes a service that must be provided by the information system to
the actors.

− Event. It describes a change in the business process in one instant specific of time.
− Constraint. It describes a condition for a service execution provide by the

information system.
− Non functional. It describes the desired quality features or constraints for the

information system as for example, response time, platform and interface
requirements, etc.

The Web modeling concepts are as follows.

− Navigation relationship. It describes a global vision of the Web application
according to a user profile with relation to the information to be presented and the
desired page sequencing.

− User profile. It describes the user unique use of the Web application. A user can
have many profiles for the same Web application.

− Class. It describes an object type to model the entities that integrate the
application, and the information handling for the users to navigate. It is a set of
objects that share a template.

− Artifact. It describes an abstract object to be transferred between the Web
application and a user or vice versa as a result of an event execution.

− Objective. The purpose of the Web application, from a simple information pages
displayer to a complex and sophisticated corporate portal.

− Service. It describes an activity or an action that the web application has.
− Event. It describes the trigger of an activity or action that might be carried out to

obtain a result or artifact.

38 E.M. Nieto-Ariza, G. Rodríguez-Ortiz, and J. Ortiz-Hernández

− Pre and pos condition. Describes the performance of an event execution where a
precondition is a required object state before the event can be executed and a post
condition is the required object state after the event execution.

− Non functional. Describes the desired quality features or constraints for the Web
application, as for example, access security, data encryption, response time,
interface requirements, etc.

Each concept is used as an evaluation parameter of one capability of an
information modeling tool according to the following methodology. Each concept
integrated the business process modeling and they are related to each other. In this
paper we only present one of the three concepts relationships (fig.2).

Fig. 2. Concepts relationship at organizational level

3 Evaluation Method of Tools

In this approach, we use qualitative variables with a nominal scale for the evaluation
methodology tools. A nominal scale indicates assignments to groups or classes such
as gender, geographic region, business type, etc. Numerical identification is chosen
strictly for convenience [16]. The evaluation strategy first associates to each aspect a
scale between 0 and 5 which is going to be used to evaluate one of the modeling
capabilities. Then one information tool is evaluated for all the aspects in each level of
abstraction. After the first modeling tool, a second one is evaluated, and so on until all
selected tools are evaluated.

3.1 Concept Evaluation Scales

The definition of an evaluation scale for each aspect is a task that requires the
analysis of different modeling tools. An evaluation scale is obtained by first taking
a list of the capabilities of one tool, and then a list of capabilities from a second
tool, from a third, etc., until, finally a total set of all the capabilities from all the
tools analyzed is obtained. These capabilities are sorted by the concepts presented
before and a scale is defined for each aspect using the capabilities related to the
aspect. Also, a desired capability mentioned in the literature may be used in the
definition of a scale.

 A Qualitative Evaluation Method for Business Process Tools 39

Table 2. Evaluation scale for the actor concept at the organizational level of abstraction

The modeling tool has the capability to:
Show actors in a general way.
Indicate the type of an actor: a human, software, hardware or
a subprocess.
Indicate the role or roles of each one of the actors in the
business process.
Grade:
0:
2:
3:
3:
5:

No actors are supplied by the tool.
Describes actors in a general way.
Describes actors and their types.
Describes actors and their roles.
Describes actors, their types and their roles.

Table 3. Evaluation scale for the business rule concept at the organizational level of abstraction

The modeling tool has the capability to:
Show the business rules.
Indicate the type of a business rule: restriction, condition, law
or action.
Indicate who the origin of a business rule is.
Indicate who the concept connected to the business rule is.
Indicate the execution hierarchy.
Grade:
0:
1:
2:

3:

4:

5:

No business rules are supplied by the tool.
Describes business rules.
Describes business rules indicating which concept is
connected to it.
Describes business rules indicating which concept is
connected to it and one of the next characteristics:
origin, type or execution hierarchy.
Describes business rules indicating which concept is
connected to it and two the next characteristics: origin,
type or execution hierarchy.
Describes business rules indicating which concept is
connected to it, the origin, type and execution hierarchy.

The aspects evaluation scales facilitate the comparison of the different modeling
tools capabilities. In this paper we only present two of the 23 evaluation scales (see
Tables 2 and 3). The grade assigned to the properties of the concept is chosen strictly
for convenience

The evaluation consists in assign a value in each concept of the tool. For example,
the concept business rule at the organizational level of abstraction; if the method
contains the business rule concept, the method should have 1 point. If the method in
the business rule indicates which concept is connected to it; the method in this
concept should have 2. If the method contains the concept of business rule and it
indicates which concept is connected to it, and also one of the follows: the origin, type
or execution hierarchy, the method should have 3 points. If the method contains the
concept of business rule and it indicates which concept is connected to it, and also

40 E.M. Nieto-Ariza, G. Rodríguez-Ortiz, and J. Ortiz-Hernández

two of the follows: the origin, type or execution hierarchy; the method should have 4
points. The method should have 5 points if the method contains the concept of
business rule, it indicates which concept is connected to it, who is the origin, type and
execution hierarchy.

3.2 Evaluation of Tools

To perform an evaluation, the objective must be clear to the evaluators and the
modeling tools to be evaluated are selected accordingly. The evaluators have to
evaluate the three levels of abstraction –organizational, conceptual and Web- for a
total of 23 parameters and for each parameter pi and for a modeling tool a
corresponding evaluation ei is obtained.

The results are displayed in a table for easy of comparison and a total score is
obtained for each tool and for each level of abstraction as Σei. Here, the results are
integrated comparing them to determine the grade of satisfaction of each tool at one
level of abstraction. A tool that score better than other means that it has additional
capabilities to model requirements at the corresponding level of abstraction.

3.3 Weighted Assessment

The methodology allows assigning weights to each of the 23 evaluations to reflect the
interests of the enterprise or the modeling group, or the nature of a particular problem.
A weight wi is to be multiplied by the evaluation ei to ponder the corresponding
capacity with respect to the modeling capabilities necessary to build a particular
requirements model.

The weight wi can be seen as a relevance level of a modeling capability with
respect to a specific modeling task. The weight wi is a factor, for each evaluation ei,
defined by the representatives of the organization to characterize its interests, the final
evaluation of a tool will be calculated as follows:

Σ wi ei where 0 < wi < 2 (1)

The weight wi is given a value of 0, 1, or 2, where a 0 means that the enterprise does not
have any interest in that modeling capacity. A value of 2 for weight wi means that the
corresponding modeling capability is very important for the model(s) to be built, and
that if a tool does not have that modeling capacity, then the tool is not of use for a
problem domain or the organization needs. Finally, 1 means that the capability is to be
used for requirements modeling in the enterprise. In this way, the value of Σwi ei will be
greater for those tools that have the desired modeling capabilities for a specific problem.

4 Results in the Evaluation Tools

To evaluate the scale some tools were evaluated. The following tools i*, Tropos,
EKD, BPM-UML, OO-Method/OOWS, and OWS [6,8,4,9,10,11,12,13,14,15] were
evaluated as shown in tables 4, 5, 6a and 6b. Three different studio cases were
developed with each tool, they were used to observe the behavior of the tools and the
concepts they model or not. Some comments are included below each table.

 A Qualitative Evaluation Method for Business Process Tools 41

Table 4. Organizational level evaluation of the tools

Organizational level Max. Value I* Tropos EKD BPM-
UML

Actor 5 5 5 5 5
Resource 5 5 5 2 5
Goal 5 1 3 4 3
Task 5 2 4 3 2
Activity 5 0 2 0 4
Business rule 5 2 0 5 4
Quality 5 3 4 4 4
Total 35 18 23 23 27

The result shows the capacities of each tool. BPM-UML obtains good scores for
this level, but i* has the lowest score. The tools were evaluated with respect to the
parameters defined for the approach presented here. During the evaluation of tools,
they show their own characteristics, in this level we only present for the concept
actor:

− The modeling tool i* provide actors and a classification for them: agent, rol, and
position. An agent can be a person, artificial agents, hardware or software.

− The modeling tool Tropos does not provide actors, but uses the concept agent with
the same meaning in both concepts.

− The modeling tool EKD provides actors with the semantic of this approach.
− The modeling tool BPM-UML does not provide actors as such things, but uses

resources provided or required by the business processes. However, BPM-UML allows
describing person-resources that have the characteristics indicated above for actors.

Table 5. Conceptual level evaluation of the tools

Conceptual level Max.
Value

I* Tropos EKD BPM-UML OO-Method

Actor 5 5 5 5 5 1
Artifact 5 5 5 4 5 4
Goal 5 1 3 4 3 1
Function 5 2 2 5 5 2
Event 5 0 1 0 4 3
Constrain 5 2 0 5 4 5
No functional 5 3 4 4 4 0
Total 35 17 20 27 30 16

The result shows the capacities of each tool, for example, BPM-UML obtains good
scores for this level, but OO-Method has the lowest score. During the evaluation of
tools, they show their own characteristics, in this level we only present for the concept
event:

− The modeling tools i* and EKD do not provide events.
− The modeling tool Tropos does not provide events as such things, but uses the

concept sub-plan that has some characteristics indicated above for events.
− The modeling tools BPM-UML and OO-Method provide the concept event.

42 E.M. Nieto-Ariza, G. Rodríguez-Ortiz, and J. Ortiz-Hernández

Table 6 (a). Web level evaluation of the tools (business process)

Web level Max.
Value

Tropos OO-Method /
OOWS

OOWS

User profile 5 3 4 4
Class 5 0 5 5
Artifact 5 4 4 4
Service 5 3 3 3
Event 5 1 3 2
Pre and post condition 5 2 5 3
No functional 5 3 0 0

Total 35 16 24 21

The result shows the capacities of each tool, for example, OO-Method/OOWS
obtains good scores for this level, but Tropos has the lowest score. During the
evaluation of tools, they show their own characteristics, in this level we only present
for the concept precondition and postcondition:

− The modeling tools OO-Method/OOWS and OOWS provides the concept
precondition and postcondition.

− The modeling tool Tropos does not provide the concept precondition and
postcondition, but uses the concept of simples and complex action that have the
some characteristics indicated above for precondition and postcondition.

Table 6 (b). Web level evaluation of the tools (pure navigation)

Web level Max.
Value

Tropos OO-Method
/ OOWS

OOWS

Navegational page – relationship 5 1 5 5
User profile 5 3 4 4
Goal 5 3 0 0
Artifact 5 4 4 4
Service 5 3 3 3

Total 25 14 16 16

The result shows the capacities of each tool, for example, OO-Method/OOWS and
OOWS obtain highest scores for this level, but Tropos has the lowest score. During
the evaluation of tools, they show their own characteristics, in this level we only
present for the concept goal:

− The modeling tools OO-Method/OOWS and OOWS does not provide the concept
goal.

− The modeling tool Tropos provides the concept goal, but it provides the concept
with the following characteristics: a) describe the goal, b) who provide the goal,
and c) the service associated to it.

5 Evaluation Methodology of Products

The concepts allow to evaluate the products obtained when different tools are applied
to a definition problem. The evaluation capability can be completed with the product
evaluation. In this paper, we present a brief example of the product methodology.

 A Qualitative Evaluation Method for Business Process Tools 43

Business process (at conceptual level): Sale registration. The product existence
must be updating. A client selects a product and the system registers the sale. Also,
the system registers the payment. The payment must be with cash or VISA card.
When the sale is ended, the stock is updating, and then a receipt of sale is printed.

The model obtained with the i* tool is showed in the figure 3.

Fig. 3. Conceptual model with i*

The model obtained with the EKD tools is showed in the figure 4.

Fig. 4. Conceptual model with EKD

The model obtained with the BPM-UML tool is showed in the figure 5.
Some of the variables defined for the analysis and evaluation of the products are

the following:

44 E.M. Nieto-Ariza, G. Rodríguez-Ortiz, and J. Ortiz-Hernández

a) Work flow
b) Execution order in the function
c) Tree of decomposition
d) Organization.
e) Clear identification of the elements that the tools model

Fig. 5. Conceptual model with BPM-UML

The results obtained in the product evaluation of i*, EKD and BPM-UML tools are
presented in the table 5. In this paper we present only three models evaluated. The
results obtained in the product evaluation can be used with the results of the capability
evaluation. The capability evaluation shows that BPM-UML obtains good score, but
in the product evaluation EKD obtains the best score. A model in EKD presents the
four variables defined in this evaluation methodology. The product evaluation is
another reference to select a tool to model a specific problem or a business process
(capability – product).

Table 5. Products evaluation

VARIABLES

TOOLS

Work
flow

Execution
order

Tree of
decomposition

Organization Identification
of elements

I* YES NO YES NO NO

EKD YES YES YES YES YES

BPM-UML YES NO YES YES YES

6 Benefits of the Methodologies

The approach has been used to evaluate e-learnig systems [17]. Additionally, it has
been applied in the development of various study cases to evaluate tools and to clearly
appreciate the concepts that the tools allow to model. The approach has also the
advantage of the flexibility to use weights which allows evaluating tools with respect
to the desired capacities for the organization.

 A Qualitative Evaluation Method for Business Process Tools 45

There are many proposals to model the organizational, conceptual and web
requirements and each one has its own elements. Some use the same concepts but the
names are different, which makes it complex and laborious to compare the tools. The
approach presented here unifies the various terminologies allowing establishing
evaluation parameters for the tools modeling capacities and techniques. It is
unimportant if the technique or tool are graphical or not, because the evaluation
methodology gives the semantic assessments of the tools.

7 Conclusion

The approach presented allows to evaluate the modeling capacities offered by several
tools and to establish comparisons between the corresponding tools techniques. This
helps to select the tool that is more appropriate to the needs of the problem domain,
since the methodology is quite flexible. On the other hand, the actual definition of the
evaluation parameters can be changed, and on the other hand, the establishment of
weights by the evaluator, is a powerful means to select the relevant aspects for a
specific organization.

Additionally, the approach presented allows to evaluate the products or models
obtained when different tools are applied to a requirements definition problem. In this
evaluation a set of variables is proposed to evaluate the complexity of each model.
This allows not only knowing how many capacities the tools offers, but also how
complex the models obtained are when the tools are used. To continue with this
project, one future work is also to use metrics on the products or models obtained
when different tools are applied.

References

1. James Pasley, “How BPEKL and SOA are changing web services development”, IEEE
Internet Computing. May – June 2005.

2. Peter F. Green, Michael Rosemann y Marta Indulska, “Ontological Evaluation of Enterpri-
see systems Interoperability Using ebXML”, IEEE Transactions on Knowledge and Data
Engineering, Vol 17, No. 5, IEEE Computer Society, may 2005.

3. Mersevy T. and Fenstermacher K., “Transforming software development: and MDA road
map”, IEEE Computer Society, September 2005.

4. H. E. Eriksson and M. Penker, Bussiness, Modeling with UML, Chichester, UK, Wiley
Editorial, 2000.

5. Thomas O. Meservy and Kurt D. Fenstermacher, Transforming software development: An
MDA Road map, computer Society, IEEE, September 2005.

6. E. Yu, Modelling Strategic Relation for Process Reengineering, Universidad de Toronto,
Canada, 1995. Thesis submitted for the degree of Doctor of Philosophy.

7. Ginige and S. Murugesan, “Web Engineering: An Introduction” IEEE Multimedia, pp 1-5,
Jan-Mar 2001.

8. Peter F. Green, Michael Rosemann y Marta Indulska, “Ontological Evaluation of Enterpri-
see systems Interoperability Using ebXML”, IEEE Transactions on Knowledge and Data
Engineering, Vol 17, No. 5, IEEE Computer Society, may 2005.

46 E.M. Nieto-Ariza, G. Rodríguez-Ortiz, and J. Ortiz-Hernández

9. Olsina, Luis A., Metodología cuantitativa para la evaluación y comparación de la calidad
de sitios web. Tesis doctoral. Facultad de Ciencias Exactas, Universidad Nacional de La
Plata, noviembre de 1999.

10. Devanshu Dhyani, Wee Keong Ng, and Sourav S. Bhowmick, A survey of web metrics,
ACM computer survey, Vol 34, No. 4. December 2002, pp. 469-503.

11. Bubenko J., Brash D. y Stirna J. EKD User Guide, Royal Institute of technology (KTH)
and Stockholm University, Stockholm, Sweden, Dept. of Computer and Systems Sciences,
1998.

12. E. Insfrán, O.Pastor y R. Wieringa, “Requirements Engineering-Based conceptual Model-
ling”, Requirements Engineering Springer-Verlang, vol. 2, pp. 7:61-72, 2002.

13. J. Gómez, C. Cachero and O. Pastor, “Conceptual modeling of device-independent Web
applications” IEEE Multimedia, vol. 8 issue: 2 , pp 26-39, April-June 2001.

14. L. Liu, E. Yu Intentional Modeling to support Identity Management 23rd Int. Conference
on Conceptual Modeling (ER 2004). Shanghai, China, November, 2004. Springer. pp.
555-566.

15. J. Fons, O. Pastor, P. Valderas y M. Ruiz, OOWS: Un método de producción de software en
ambientes web. 2005. http://oomethod.dsic.upv.es/anonimo/..%5Cfiles%5CBookChapter%
5Cfons02b.pdf

16. William L. Carlson and Betty Thorne, Applied statistical methods economics, and the so-
cial sciences. Prentice may, 1997

17. Eduardo Islas P., Eric Zabre B. y Miguel Pérez R., “Evaluación de herramientas de softwa-
re y hardware para el desarrollo de aplicaciones de realidad virtual”, consultado en el
2005, http://www.iie.org.mx/boletin022004/tenden2.pdf

J. Münch and M. Vierimaa (Eds.): PROFES 2006, LNCS 4034, pp. 47 – 60, 2006.
© Springer-Verlag Berlin Heidelberg 2006

An Effective Source Code Review Process
for Embedded Software

Masayuki Hirayama, Katsumi Ohno, Nao Kawai, Kichiro Tamaru,
and Hiroshi Monden

Software Engineering Center, Information Technology Promotion Agency,
2-28-8, Honkomagome Bunkyo-ku, Tokyo, 113-6591, Japan

{m-hiraya, k-ohno, n-kawai, tamaru,h-monden}@ipa.go.jp

Abstract. This paper discusses about the improvement of source code review
process for embedded software development project, and also proposes an
effective approach to source code review for embedded software. As the start
point of the discussion, this paper firstly discusses the results of a survey we
conducted of about 290 embedded software development projects in Japan from
the viewpoint of quality. Next, this paper discusses the problems of current
source code review process and the way for improvement of the process. In the
discussion, we focus on quality characteristics in ISO/IEC9126 and apply this
to our improved review process. That is, we propose a new review process
which is based on selection of review target portion in the target source code
and selection of the review check items. As for the selection of review check
items, using the characteristics viewpoints in ISO/IEC9126, review check items
are selected according to the target software features.

1 Introduction

Recently, various embedded systems have come into widespread use in everyday life.
An embedded system is composed of various hardware devices and their control
software. According to the technical evolution of hardware devices, the functional
size of software embedded in this hardware has been increased. At the same time, the
code size or the code complexity of this software is also increasing. These trends tend
to lead to the increased incidence of serious trouble concerning the behavior of
embedded systems resulting in serious trouble concerning system behavior, which in
turn causes serious inconvenience in everyday life.

So, the problems for embedded software quality are very serious problems and the
suitable solutions are required. In this paper, we focus on quality perspective of
source code for embedded software and propose a way to improve source code review
process based on software quality characteristics in ISO/IEC9126[1] .

In this paper, section 2 discusses the features of embedded software development
projects based on the results of a survey we conducted covering about 290 embedded
software development project profiles in Japan. Following this discussion, section 3
summarizes problems concerning source code review process. In section 4, we
propose a way to improve source code review process by Selective Review

48 M. Hirayama et al.

Tech-nique(SRT). We have been developing SRT in order to solve problems
concerning code review process and also in order to improve source code quality.
Section 5 briefly introduces an experimental trial and its results.

2 Feature for Embedded Software

In this section, we confirm the factors which deeply impact on source code quality for
embedded software, and discuss the problems concerning embedded software
development based on the results of the survey.

2.1 Outline of the Survey

We conducted survey of embedded software development projects. The survey was
conducted by corporation between Information technology Promotion Agency
Japan and Ministry of Economy, Trade and Industry (METI). The survey was aimed
at making clear the current status of embedded software development and their
features. Target area of the survey was ranged about 15 domain segments from
embedded software in home appliances to industrial control system (Table 1). In
the survey, we distributed questionnaire sheets to about 400 organizations in above
domain areas via mail-survey style, and got 290 valid responses. In the survey, we
mainly focused on software engineering viewpoint in embedded software
development. The questionnaire sheet include following four main topics – project
overview, quality perspective, process perspective and project management
perspective. There are about fifty questions in the questionnaire sheet. In this paper,
we mainly discuss the quality perspective of embedded software development by
using the survey results.

Table 1. Target domain area of the survey

1 Audio Visual system 9 Transportation system
2 Home appliances 10 Factory automation
3 Personal information system 11 Business facirities
4 Education systems 12 Medical system
5 Office automation system 13 Mesearment facirities
6 Business system 14 Other application system
7 Communication systems 15 Software development environment
8 Communication infrastructure system

2.2 Quality for Embedded Software

Figure1 and Figure2 show analysis results of embedded software trouble based on the
results of our survey. Figure 1 indicates that about 50 % of embedded software
trouble is related to the software implementation phase. Though the trouble related to
upper phase – requirements or design phase –accounts for about 40% trouble in the
implementation phase is notable. As for a poor quality of the implementation phase of
embedded software development, following two factors can be considered.

 An Effective Source Code Review Process for Embedded Software 49

Software Design 27.6%
Software Implementation
47.3%

Software Testing
8.1 % System Design 6.4%

Specification 5.2%

Requirement
1.1%System Testing

4.3%

Software Design 27.6%
Software Implementation
47.3%

Software Testing
8.1 % System Design 6.4%

Specification 5.2%

Requirement
1.1%System Testing

4.3%

Fig. 1. Problem Occurring phase

0% 20% 40% 60%

Avoid HW trouble by SW mechanism

Adjust software according to HW specification

Insufficient HW specification

Instability of HW behavior

Lack of executing environment

Inaccuracy of HW specification

Start software development without fixed HW specification

Shortage of engineer who understand software development

Define HW specification without considering SW requirement

Insufficient Test and Debug environment

Error of HW which was prepared for SW development

others

Problems

Number of projects(%)

0% 20% 40% 60%

Avoid HW trouble by SW mechanism

Adjust software according to HW specification

Insufficient HW specification

Instability of HW behavior

Lack of executing environment

Inaccuracy of HW specification

Start software development without fixed HW specification

Shortage of engineer who understand software development

Define HW specification without considering SW requirement

Insufficient Test and Debug environment

Error of HW which was prepared for SW development

others

Problems

Number of projects(%)

Fig. 2. Cause of trouble

(a) Programming Language effects and engineer’s skill
From our survey, we confirmed that the most popular language for embedded
software development is C language. That is, about 70 % of the projects are
developed by using C language in the survey. C++ or Java, for which plenty of
software components or libraries are prepared, is not always used sufficiently in
embedded software development. C language has a powerful ability for expressing
memory accesses which is a typical feature of embedded software. According to this
feature, in many embedded software development, C language is widely used as
usual. However, C language has considerable ambiguity of expression and tends to

50 M. Hirayama et al.

reflect the engineer’s skill or experience concerning source code. So, source code in C
language is often of uneven quality. As a result, relatively large number of troubles is
occurred in implementation phase.

(b) Hardware constraints’ effects
On the other hand, Figure 2 shows that most trouble in embedded software
development is related to hardware effects. Typically, embedded software runs on
microcomputers[2]. Therefore most embedded software is subject to various
constraints such as memory size, CPU clock speed, or other execution timing, which
are mainly depended on hardware constraints. Accordingly, severe system
performance such as hard real-time response tends to required, and in the
implementation phase, performance turning is inevitable. However, excessive
performance turning causes complexity explosion in source code. As a result, various
constraints related to hardware devices become major obstacles in the implementation
of embedded software, causing various kinds of trouble in source code of embedded
software. So the above mentioned survey results suggest that there are some pitfalls
of quality perspective in the implementation phase of embedded software
development.

3 Problems in Source Code Review

Conventionally, as for the quality perspective in embedded software implementation,
precisely source code review process is said to be an effective solution for
improvement of source code quality.

In enterprise system development, various code review or code inspection
techniques and their processes have been proposed [3] [4][5][6]. However, since
embedded software is subject to various constraints, it is not suitable to apply these
conventional techniques to the source code review process of embedded software. In
this section, problems concerning source code review process for embedded software
are discussed.

3.1 Problems Concerning Code Size

In line with the explosive growth in the functionality of embedded software, source
code has been increasing in size. Figure 3 shows the trend of source code size (LOC)
for cellular phone control software developed by a certain company. As this figure
shows, code size has been increasing rapidly. On the other hand, in actual
development fields, the time available for software development (doted line) has
been shortening. As a result, time for source code review has been limited. So,
efficiency of source code review is an important issue.

3.2 Variety of Code Check Items

Generally, before conducting source code review, viewpoints and review check items
for code review should be arranged. For example, in automotive control software,
the MISRA-C coding standard has been proposed and review to check that the code

 An Effective Source Code Review Process for Embedded Software 51

D
ev

el
op

m
en

t
pe

ri
od

1989 19991996

500 K

1M

2M
2.2 M

4 bit

S
of

tw
ar

e
S

iz
e

(L
O

C
)

1M

2M

1.5 M

700 K

8 bit 16 bit

D
ev

el
op

m
en

t
pe

ri
od

1989 19991996

500 K

1M

2M
2.2 M

4 bit

S
of

tw
ar

e
S

iz
e

(L
O

C
)

1M

2M

1.5 M

700 K

8 bit 16 bit

Fig. 3. Trend of software size in cellular phone

conforms to MISRA-C is recommended [7]. About 150 rules are defined in the
MISRA-C standard. If we review the correctness of the code using MISRA-C, a large
number of review check items are required. However, in an actual development
project, it is difficult to conduct the code review by referring to the large number of
review check items, because this type of rigorous review process requires a great
effort and much time. Although the customization approach is also proposed in
MISRA-C, the idea or standard for rule selection is largely depended on the
reviewers’ experiences.

3.3 Viewpoint for Source Code Review

Conventionally, most coding rules or standards are summarized according to the
programming language’s grammar or notations. However, coding rules of this type
make it difficult to clarify the effects on software quality. As a result, engineers are
sometimes insufficiently motivated to preserve the rules. Or, without suitable
selection or consideration of the rules, engineers sometimes continue to utilize
inefficient review processes by using unsuitable review items, with the result that the
code review process is ineffective. So one of the most important factors in source
code review processes are selection of review viewpoints.

4 Selective Review Process

4.1 Overview

In order to improve source code quality for embedded software, we have been
discussing a more efficient source code review process. In our discussion, we
concluded that the following two key requirements are essential for high efficient
source code review process for embedded software.

52 M. Hirayama et al.

1. Taking into consideration the target software’s characteristics, viewpoints of
the code review and target portion of the code review should be selected.

2. Moreover, effective review check items should also be selected from the pre-
established review check items

In order to satisfy the above requirements for effective review process for
embedded software, by applying Selective Review Technique, we work out an
improved review process, SRP (Selective Review Process). Figure 4 shows an
overview of the process. SRP consists of the following three steps, and the main
features of the SRP are selection of the review target portion and selection of the
review check items.

Developed
Source Code

Review Target
Source code
(Review Fragment)

Select Reliability Efficiency
Maintainability Portability

Selective
Code review

Review check list
for each target code

Code Quality
Standard

Select

Select review items
in consideration of FR’s
features

Ex.
Selection Index: Reliability Level-2

From System Requirement viewpoint

From development process viewpoint

Maturity Complexity
Design confident

Developed
Source Code

Review Target
Source code
(Review Fragment)

Select Reliability Efficiency
Maintainability Portability

Selective
Code review

Review check list
for each target code

Code Quality
Standard

Select

Select review items
in consideration of FR’s
features

Ex.
Selection Index: Reliability Level-2

From System Requirement viewpoint

From development process viewpoint

Maturity Complexity
Design confident

Fig. 4. Overview of the proposed process (SRP)

Step-1: Selection of the review target portion
 Regarding a source code review in embedded software, problems related to the

increase in source code size should be resolved. So, in order to solve this problem,
the target source code is divided into small fragments taking into consideration the
source code structures. Here, we call these fragments review fragments (RF)”. For
example, a typical RF in source code in C language is a programming module in C
language. In our revised source code process, the necessity of code review for each
RF is evaluated, and then RFs for which source code review is strongly required are
selected. Taking the system quality requirement viewpoint and development
process viewpoint into consideration, the characteristics of the RFs constituting the
target software, are clearly identified and selected. We named this revised process
“SRP (Selective Review Process)”.

Step-2: Selection of review check items
 In selection of review check items, the characteristic of the RFs are taken into

consideration. That is, we select suitable review check items which matches the

 An Effective Source Code Review Process for Embedded Software 53

RF’s feature. In SRP, referring to the various coding rules already proposed or
defined, a database for coding rules is prepared. And SRP also propose a selection
strategy for review check items from this database. Using this strategy, suitable
review check items matching RF characteristics are selected.

Step-3: Conducting source code review
 According to the above steps, suitable RFs are selected and reviewed in accordance

with suitable review check items reflecting RF’s characteristics. Execution of this
procedure within the framework of SRP ensures code reviews are conducted
rigorously and efficiently. This approach to source code review is quite different
from the conventional review process based on the engineer’s experience.

4.2 Selection of the Review Target Fragment

Table 2 and Table 3 show strategies for RF selection. In order to select RFs, two
viewpoints are considered: system quality requirement and system development
process.

(a) System Quality Requirement Viewpoint
Conventionally, the ISO/IEC 9126 standard defines the software quality viewpoint as
consisting of functionality, reliability, efficiency, maintainability, portability and
usability[1]. These characteristics are mainly concern features of the software
product’s quality. On the contrary, as Figure 6 shows, from the source code
implementation viewpoint, the following four characteristics are particularly
importance: reliability, maintainability, portability and efficiency. Figure 6 shows
review viewpoints which, according to the results of our survey, are significant in the
review process of actual projects. In the development of actual products, these four
viewpoints are considered to have the direct relations to the source code qualities.
That is, if we intensively check or review source code by using these viewpoints,
quality of the target source code can be improved. On the other hand, other
viewpoints, usability and functionality, should mainly be considered in earlier phase –
such as requirement or design phase. So, as for source code quality perspective,
quality requirements for RFs are evaluated from these four viewpoints in SRP.

For example, if we want to evaluate the reliability viewpoint of a particular RF, the
reliability level of the RF is evaluated according to a 4-level scale (Level 0 to Level 3)
to determine whether the behavior of the overall system would be effected by trouble
concerning the RF. In the evaluation, sub-characteristics of each characteristic in
ISO/IEC9126 are taking into consideration and also hardware dependent affections
are also evaluated.

(b) Development Process Viewpoint
At the same time, during the development of the target RFs, whether a suitable
process is conducted is another important selection viewpoint for RFs. From the
development process viewpoint, maturity, complexity and design confidence are
important factors. Here, maturity represents the skill of the engineer who developed
the fragment, and complexity means the extent of complexity in software design or
implementation of the fragment. Design confidence represents whether a suitable
design confirmation has been conducted. Regarding engineer’s skill, whether an

54 M. Hirayama et al.

engineer has hardware related skill is evaluated. In addition, as for complexity, we
also evaluate the complexity of interfaces between hardware and software.
Generally, if the fragment is developed by an engineer with low skill or is
developed without suitable design confirmation, the risk of quality troubles in
software implementation is much greater. Thus, in SRP, development process
factors are also evaluated in RF selection and RFs with poor development process
are added to portions for review.

Fig. 5. Viewpoint in software review

Table 2. RF selection category

Selection Index

Reliability

Efficiency

Maintainability

Portability

For the target portion of the software

Does the trouble of the portion gives large
effects on overall system’s behavior ?

Is the portion deeply related to the system
efficiency?

-system behavior timing viewpoint
-system’s real time viewpoint
-hardware resource efficiency viewpoint

Does the portion have any plan for reuse?
From the system evolution viewpoint

Is the portion candidate of the system
core asset ?

Does the portion have any plan to execute
on another execution environment?

L-3: Largely Yes

L-2: Partially Yes

L-1: No

L-0: Not adapted

L-3: Largely Yes

L-2: Partially Yes

L-1: No

L-0: Not adapted

L-3: Largely Yes

L-2: Partially Yes

L-1: No

L-0: Not adapted

L-3: Largely Yes

L-2: Partially Yes

L-1: No

L-0: Not adapted

Selection Index

Reliability

Efficiency

Maintainability

Portability

For the target portion of the software

Does the trouble of the portion gives large
effects on overall system’s behavior ?

Is the portion deeply related to the system
efficiency?

-system behavior timing viewpoint
-system’s real time viewpoint
-hardware resource efficiency viewpoint

Does the portion have any plan for reuse?
From the system evolution viewpoint

Is the portion candidate of the system
core asset ?

Does the portion have any plan to execute
on another execution environment?

L-3: Largely Yes

L-2: Partially Yes

L-1: No

L-0: Not adapted

L-3: Largely Yes

L-2: Partially Yes

L-1: No

L-0: Not adapted

L-3: Largely Yes

L-2: Partially Yes

L-1: No

L-0: Not adapted

L-3: Largely Yes

L-2: Partially Yes

L-1: No

L-0: Not adapted

Functionality

Reliability

Usability

Effic
iency

Maintainability

Portability

Others

Viewpoints n
ot re

lated

to softw
are quality

Requirement
Specification

System Design
Software Design

Software Implementation
Software Testing

System Testing

0%

10%

20%

30%

L
ev

el
 o

f
im

po
rt

an
ce

Viewpoint in software review

SW development
phase

Functionality

Reliability

Usability

Effic
iency

Maintainability

Portability

Others

Viewpoints n
ot re

lated

to softw
are quality

Requirement
Specification

System Design
Software Design

Software Implementation
Software Testing

System Testing

0%

10%

20%

30%

L
ev

el
 o

f
im

po
rt

an
ce

Viewpoint in software review

SW development
phase

 An Effective Source Code Review Process for Embedded Software 55

Table 3. RF selection category (Process view)

Selection Index (Process view)

Maturity

Complexity

Design
confident

For the target portion of the software

Does the portion developed by low skill
engineers ?

Does the portion have large complexity
in design or source code ?

Have the suitable review process for the
target Portion been executed
in design phase

L-3: Largely Yes

L-2: Partially Yes

L-1: No

L-0: Not adapted

L-3: Largely Yes

L-2: Partially Yes

L-1: No

L-0: Not adapted

L-3: Largely Yes

L-2: Partially Yes

L-1: No

L-0: Not adapted

Selection Index (Process view)

Maturity

Complexity

Design
confident

For the target portion of the software

Does the portion developed by low skill
engineers ?

Does the portion have large complexity
in design or source code ?

Have the suitable review process for the
target Portion been executed
in design phase

L-3: Largely Yes

L-2: Partially Yes

L-1: No

L-0: Not adapted

L-3: Largely Yes

L-2: Partially Yes

L-1: No

L-0: Not adapted

L-3: Largely Yes

L-2: Partially Yes

L-1: No

L-0: Not adapted

4.3 Review Check Item Selection

In SRP, considering the features of embedded source code, check items for code
review are collected in the coding rule database. In the database, MISRA-C rules[7],
Indian Hill coding rules[8][9], GNU coding style rules[10]and various other coding
rules are used as references. In the coding rule database in SRP, as Figure 5 shows,
four characteristics(reliability, efficiency, maintainability and portability) closely
related to source code implementation are used as a framework for categorize rules.
Moreover, in each characteristic category, a three-tire structure -rule/ instruction/
directive, is used. This three-tire structure makes it easy to select rules as review
check items. For example, as Figure 6 shows, the maintainability category has the rule
“1. Be conscious for reading by another engineer”. Three instructions are associated
with this rule: “Don’t describe meaningless commands, sentences or calculation
operations”, ”Remove any unused description”, and “Avoid ambiguous declaration”.
Moreover, two directives are associated with the instruction “Avoid ambiguous
declarations”: “1.4 Declare one variable in one declaration description” and “Prepare
one variable for one purpose”. These directives for coding convention may be
checked by source code grammatical check tools. The compliance level of each
directive is clearly expressed: mandatory, recommend or informative. The meanings
of the compliance level are as follows.

Mandatory :Check items with high priorities,
irrespective of the RF features

Recommend: Check item with medium priorities
Informal : Check item with low priorities

If the target RF requires high quality level, it is preferable for check items of this
level to be adopted as review check items For the evaluation for each directive’s level,
real-time perspectives and reactive perspectives for embedded software are also taken
into consideration.

56 M. Hirayama et al.

Maintainability

Rule Instruction Directive Level
1.
Be conscious for reading
by another engineers

Do not describe meaningless
commands, sentences
or calculation operations

1.1 Describe sentences which
have suitable meanings.

1.2 Do not declare modules,
variables, and argument which
will not be used in the system

Remove any the unused
description

1.3 Do not comment out for the
source code description

1.4 Declare one variable in one
declaration description

2.
Describe source code
with consolidated manner

Define the description items
and their order in the source
files

2.1 Define the description item
in the header files

2.2 Define the items (declaration,
definition etc.) in the source code

2.3 Don’t declare external variables
or modules in the header files

Set the coding style 2.5 Define indentation, space,
Blanc and other rules for code
description

R

M

R

R

M

M

M

Avoid ambiguous declarations

1.5 Prepare one variable for one
purpose

Maintainability

Rule Instruction Directive Level
1.
Be conscious for reading
by another engineers

Do not describe meaningless
commands, sentences
or calculation operations

1.1 Describe sentences which
have suitable meanings.

1.2 Do not declare modules,
variables, and argument which
will not be used in the system

Remove any the unused
description

1.3 Do not comment out for the
source code description

1.4 Declare one variable in one
declaration description

2.
Describe source code
with consolidated manner

Define the description items
and their order in the source
files

2.1 Define the description item
in the header files

2.2 Define the items (declaration,
definition etc.) in the source code

2.3 Don’t declare external variables
or modules in the header files

Set the coding style 2.5 Define indentation, space,
Blanc and other rules for code
description

R

M

R

R

M

M

M

Avoid ambiguous declarations

1.5 Prepare one variable for one
purpose

Fig. 6. Coding Rule example in SRP

Table 4. Number of Coding rules in SRP

Catregory Instructions
Num. of
Directives

1. Initialization for data areas – pay attention to their size and lifetime 9
2. Pay attention to the data’s scope, size and inner expression 18
3. Pay attention to the illegal value of the data 11

Efficiency 4. Pay attention to timing, hardware resources 3
5. Be conscious for reading by the other engineers 28
6. Describe code by the correct manner – without simple negligence 2
7. Describe simple source code 6
8. Describe source code with consolidated manner style 19
9. Consider testability in source code 4
10. Do not use compiler dependent instruction set 15
11. Localize the instruction set which have some problems in their portability 3

Reliability

Maintainab

Portability

As shown in Figure 6, if the system requirement of a target RF requires Level 3
maintainability, all check directives categorized in mandatory, recommend and
informative levels should be selected as the check items for this RF. On the other
hand, if a target RF requires Level 1 maintainability, only check directives at the
mandatory level should be selected. In the SRP database, about 120 rules are prepared
as shown in Table 4. In SRP, since we can select suitable review check items from the
database by referring to the system quality requirements, we can conduct a more
efficient review of embedded software source code.

 An Effective Source Code Review Process for Embedded Software 57

5 Case study

5.1 Target System of the Case Study

This section introduces an example of application case study of the SRP method for
an actual embedded software development project. The target of the case study is a
line tracer system which autonomously traces lines on the ground. Using a sensor, the
system checks a line drawn on the ground and autonomously operates forward
movement or backward movement with automatic handling according to the line’s
condition. The system contains the following typical features of embedded software.

1. Reactive perspective: the system should respond to outer contexts of the system
2. Real-time perspective: Running speed and handling times require rigid real-time

behavior.
3. Hardware constraints perspective: this is closely related to embedded
 microcomputer characteristics.

5.2 Approaches

The purpose of the case study is to get an impression of adaptability of the SRP
method. In the trial, which was conducted during the system development, source
code the development team had finished developing was submitted to the SRP trial
team. Then, the SRP trial team conducted a review of the submitted source code by
using the SRP method, and comments and findings were summarized and analyzed.
After that, the result of the review and its comments were fed back to the engineering
team, and the effectiveness or adaptability of the method was confirmed. In addition,
in this case study, each reviewer has a certain amount of experience of software
development. However they do not have little experience for developing the target
system.

5.3 Results

(a) Review fragment selection
The SRP trial team firstly divides a source code into fragments and evaluates each
fragment’s features and selects suitable RFs. Table 5 shows the results of RF
selection. Since the source code of the target system is described in C language, we
defined the program module in C language source code as a fragment for the code
review. In the case study, we evaluate each fragment by referring to two viewpoints,
namely, system quality requirements and development process, as shown in Table 2
and Table 3. The evaluation results are summarized in Table 5.

In this trial, as indicated in the Table 5, the quality requirements for fragments
differ only slightly. On the other hand, since development team is relatively small,
engineer’s skill levels differ little. So, from the development process viewpoint,
evaluation results related to maturity and design confidence are the same value for all
fragments. From this fact, selection of RFs is mainly conducted from the system
quality viewpoint in this trial (see Table 5). Some examples of RF selection are shown
below.

58 M. Hirayama et al.

Module “main” : Since high level are required for reliability
 and maintainability, we selected review check items which
 mainly focused on these characteristics.
Module “RunIniy” : Since this module is essential portion for
 the system behavior and high reliability is required, we select all
 review check items which belong in all classes (mandatory,
 recommend, informative) for this viewpoint. As for a
 maintainability and portability, since requirements for these
 viewpoints are slight, we select check items which are
 categorized in recommend level directives.

Table 5. RF selection result

Relaibility Efficiency
Maintaina
bility

Portability Maturity
Complexit
y

Design
confident

main 3 1 3 1 1 1 2
RunInit 3 1 2 2 1 2 2
Run 3 3 2 1 1 3 2
RunStopRecover 3 3 3 1 1 3 2
RunWarp 3 3 1 1 1 3 2
DecideDrivePattern_OutEdg 3 3 3 2 1 3 2
DecideDrivePattern_InEdge 3 3 3 2 1 3 2
DetectSteeringDirection 3 2 3 1 1 1 2
MoveForward 3 1 2 1 1 1 2
MoveBack 3 1 2 1 1 1 2
MoveBrake 3 2 2 2 1 1 2
LS_InitSensor 3 1 1 2 1 1 2
Steer 3 2 2 1 1 1 2
SteerStop 3 1 2 1 1 1 2
GetColor 3 2 2 2 1 1 2
CheckLineCenter 2 1 3 2 1 2 2
CheckStop 3 3 2 1 1 3 2

Mean value 2.65 1.81 1.88 1.27 1.00 1.62 2.00

Modeule name
Requirement viewpoint Development Process viewpoint

Module “LS IniSensor” : This module is closely related to hardware devices. For
reliability viewpoint, all check items are selected. And for the portability viewpoint,
only recommend check items are selected. On the other hand, since this fragment
requires relatively low maintainability or efficiency, so basic check items classified
at the mandatory level are adopted.

(b) Discussion of the result
As the number o RFs is relatively small in the target system of the case study, here,
we discuss the overall trends for all RFs. In this case study, evaluated mean values
for the reliability, efficiency, maintainability, and portability characteristics are
2.65,1.81,1.88 and 1.27, respectively. From these values, review viewpoints in this
case study are selected mainly by focusing on reliability and maintainability. In Table
6, review comments are summarized according to the review viewpoint categories.
From this table there are found to be about 10 maintainability problems, which
account for about 80% of all the problems pointed out in the SRP review process.
The conventional review process tends to focus on detecting illegal descriptions

which may have serious impacts on system behavior. Consequently, the conventional

 An Effective Source Code Review Process for Embedded Software 59

review process tends to emphasize system reliability while neglecting other features
of source code. On the other hand, in this case study, we focused on maintainability as
well as reliability for the review check items. As a result, a relatively large number of
items are pointed out in the source code concerning maintainability.

So the result of the case study clearly shows that the proposed review process can
be improve source code review efficiency and it has an ability to improve source code
quality in embedded software. By selecting code review viewpoints that take the
target software’s features into consideration, a code review matching the required
quality level can be performed.

(c) Problems of dependencies and interrelations among the RFs
On the other hand, in the proposed review process, target source code is decomposed
into small RFs and reviewer reviews these RFs. In the case study, some reviewers
pointed out the difficulty for reviewing the dependencies and interrelations of each
RFs. In order to review these perspectives, relation diagrams or relations maps for
each RFs should be prepared.

Table 6. Number of directive violation detected in code review

Catregory Instructions
Num. of
directive
violation

1. Initialization for data areas – pay attention to their size and lifetime 0
2. Pay attention to the data’s scope, size and inner expression 1
3. Pay attention to the illegal value of the data 0

Efficiency 4. Pay attention to timing, hardware resources 0
5. Be conscious for reading by the other engineers 4
6. Describe code by the correct manner – without simple negligence 2
7. Describe simple source code 0
8. Describe source code with consolidated manner style 3
9. Consider testability in source code 1
10. Do not use compiler dependent instruction set 0
11. Localize the instruction set which have some problems in their portability 1

Reliability

Maintainabili

Portability

6 Conclusion

This paper introduces the SRP method which can improve source code quality for
embedded software. SRP is a method for reviewing source code efficiently and use of
SRP in the review process can resolve the problems posed by the increasing size of
source code.

In SRP, referring to the quality characteristics in ISO/IEC9126, four characteristics
are adopted as evaluation viewpoints for source code fragments: reliability,
efficiency, maintainability and portability. By using these four viewpoints, fragments
in the target software are characterized. Then, review rules are selected based on a
consideration of the required quality level for the system. Thus, by selecting review
targets (review fragments or RFs) and review check items, a highly efficient source
code review is realized. In the application trial of the SRP method for a line tracer
system, we detected several pitfalls concerning maintainability by conducting a
source code review focusing on maintainability.

60 M. Hirayama et al.

In our future work, by applying our method to various system development
projects, we intend to analyze more precise evaluation data for software features and
set more precise criteria for check item selection. Additionally, through these
activities, we will collect know-how concerning code review and reflect it in our
method. Especially, we would like to establish a review method for dependency or
interrelation among the Review Fragments.

References

1. ISO/IEC 9126-1,”Product Quality –Quality Model”, http://www.iso.org/
2. Lee,E.A.:Embedded Software,Advances in computers, Vol.56,Academia Press(2002)
3. Poter,A..,H.Sity,C.A.Toman,”An experiment to assess the cost-benefits of code inspections

in Large Scale software decelopment”,Proc. Third ACM SIFSOFT Symposium on the
Foundations of Software Engineering, 1996, ACM Press,pp.

4. Wheeler D.A., Brykczynski B.,Alexandria V.,”Software Peer Reviews,” pp454-469 in
R.Thayer, Software Engineering Project Management,IEEE Computer Society Press,1997

5. Tor Stalhane et.al, “Teaching the Process of Code Review”,pp271-278,Proc, of
ASWEC’04, 2004,IEEE.

6. Jason Remillard, “Source Code Review Systems”, IEEE Software, vol.22, No.1,pp 74-77,
January 2005.

7. MISRA-C:2004-Guidelines for the use of the C language in critical systems, http://
www.misra.org.uk

8. L.W.Cannon et.al,”Recommend C style and coding standards”,1990,http://www.csl.
cornell.edu/courses/ece314/tutorials/cstyle.pdf

9. L.W. Cannon at. al. Recommended C Style and Coding Standards. Pocket reference guide.
Specialized Systems Consultants, 1991. Updated version of ATT's Indian Hill coding
guidelines R.Stallman et.al, GNU coding standards,2005,http://www.gnu.org/prep/standards

J. Münch and M. Vierimaa (Eds.): PROFES 2006, LNCS 4034, pp. 61 – 78, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Troubleshooting Large-Scale New Product Development
Embedded Software Projects

Petri Kettunen

Nokia Corporation
P.O. Box 301, 00045 NOKIA GROUP, Finland

petri.kettunen@nokia.com

Abstract. Many modern new product development (NPD) embedded software
projects are required to be run under turbulent conditions. Both the business and
the technological environments are often volatile. Uncertainty is then an inher-
ent part of the project management. In such cases, traditional detailed up-front
planning with supporting risk management is often inadequate, and more adap-
tive project management tools are needed. This industrial paper investigates the
typical problem space of those embedded software projects. Based on a litera-
ture survey coupled with our practical experiences, we compose an extensive
structured matrix of different potential project problem factors, and propose a
method for assessing the project’s problem profile with the matrix. The project
manager can then utilize that information for problem-conscious project man-
agement. Some industrial case examples of telecommunications products em-
bedded software development are illustrated.

1 Introduction

Most new electronic products contain embedded software in particular to enable more
intelligent features and flexibility [1]. Thus, there will be more and more software
projects developing embedded software for such new product development (NPD)
markets.

Managing those modern industrial NPD projects successfully requires situation-
aware control with the possible and oncoming troubles, taking the anticipated and
even unexpected situational conditions into account [2]. Uncertainty is inherent [3, 4].
Project risk management is a traditional way of handling the obstacles, which may af-
fect the project success adversely [5-7].

In this paper our premise is that in turbulent industrial business environments the
product development projects must typically work under imperfect conditions. For
example, it is hardly ever possible to avoid all external schedule pressures. In other
words, the project management faces some problems all the time, and the project may
be in some trouble even from the very beginning. This is sometimes referred to as
project issue management [8]. In practice both proactive risk management as well as
reactive problem (issue) management are needed [9].

The first step of problem-aware project management is to be able to recognize the
current project problem factors. Project problems and uncertainties should be actively
searched [10, 11]. There are no standard solutions, since the actual unique project
context has to be taken into account.

62 P. Kettunen

The purpose of this paper is to propose focused aids for identifying and evaluating
the typical problem factors of large-scale NPD embedded software projects (such as
telecommunications equipment). The rest of the paper is organized as follows. Chap-
ter 2 explores the background and related work, and sets the exact research questions.
Chapter 3 then describes our solution ideas, while Chapter 4 evaluates them. Finally,
Chapter 5 makes some concluding remarks, and outlines further research ideas.

2 NPD Embedded Software Project Problems

2.1 Typical Software Project Problem Factors

Over the years, there have been numerous investigations about typical software pro-
ject problems and failure factors. Table 1 lists some of the known ones (ordered by
the year of publication). For more, see for example [6, 8, 12-19].

Table 1. A survey of software project problems, risks, and failure factors

Investigation Distillation
Brooks [20] Fundamental problems of software engineering management
Curtis, et al.
[21]

Human and organizational factors affecting productivity and
quality of large projects (including embedded systems)

Boehm [5] Top 10 general software project risk items
McConnell [22] 36 “classic” software project mistakes; Common schedule risks
McConnell [23] Software project “survival test”; Checklists
Royce [24] Top 10 risks of “conventional” process
Brown [25] Typical software project management malpractices and pitfalls
Ropponen, et al.
[26]

Categories of software project risks and their influencing fac-
tors

Schmidt, et al.
[27]

Systematic classification of empirically observed project risk
factors

Smith [28] 40 root causes of software project failure
May, et al. [29] Common characteristics of dysfunctional software projects
Fairley, et al.
[30]

10 common software project problem areas and some antidotes

It is possible to categorize different project problem factors from various different
points of view. For example the classic SEI taxonomy defines one way of categoriz-
ing common risk factors under project environment, product engineering, and pro-
gram constraints [31]. Other alternatives are for example in [22, 26, 27, 32].

It is in addition important to understand that in complex (multi)project environ-
ments the project problems do not usually manifest themselves in isolation, but there
are often multiple overlapping problems at the same time. Furthermore, there are of-
ten complex cause-effect relationships of the different problem factors, i.e., a single
problem may have adverse additional consequences [32/Ch. 5, 33/Ch. 3].

 Troubleshooting Large-Scale NPD Embedded Software Projects 63

2.2 Embedded Software Project Concerns

Compared to traditional software projects, embedded systems introduce certain addi-
tional intrinsic software development problems. There are both software engineering
technical and management challenges [1, 21].

Figure 1 illustrates those many potential sources of problems. Notably many prob-
lems really stem from the software project external reasons and dependencies.

Embedded
Software
Engineering

Software
Release(s)

Software
Requirements

Systems/
Requirements
Engineering

Special-purpose
Hardware

Project
Management
Control

Resources
(people)

late

deficient

inaccurate,
incomplete,
untimely

misdirecting,
vague,
untimely

fluctuating,
pressurizing

lacking,
incompetent

incomplete,
volatile

limited, immature,
incompletely
documented

invisible,
unpredictable,
unproductive

uncertain,
conflicting

Technology

Hardware
Engineering immature,

volatile

Fig. 1. Some embedded software project problem sources

Those special problem factors of embedded software projects have not been inves-
tigated especially widely in the literature. For some related studies, see for example
[34-36]. Many embedded software project problems originate fundamentally from
knowledge management issues [37].

2.3 NPD Software Project Characteristics

The development of new market-driven commercial products creates additional spe-
cial characteristics of the software project environment. Figure 2 illustrates a typical
NPD environment: The embedded software project team is an element of it. The
NPD environment is not fundamentally different from other software development
contexts. However, the emphasis on business drivers and product innovation man-
agement put considerable weight on certain problem areas in particular in large
organizations.

The embedded software project teams working in such environments often face
many sources of turbulence [4, 38]. The company, responding to emerging and fluc-
tuating market needs, has to manage its product development portfolio (aggregate

64 P. Kettunen

Embedded
Software
Team

Hardware
Engineering

External turbulence

Product Systems
Engineering

Product Program

Product/Project Portfolio Management

Business Environment
(customers, competitors, technology)

NPD COMPANY

Internal turbulence

Program X Program Y

Fig. 2. Embedded software project team NPD context

project plan) accordingly [39/Ch. 2]. This may consecutively introduce various
changes to the embedded software project teams (e.g., product features, releases
schedules, project resource allocation). In addition, the other internal parts of the
product development program (e.g., concurrent hardware engineering) may cause
changes to the software part. It is important to understand the true nature of the pro-
ject and the success criteria, and to incorporate the embedded software development
as an integral part of the overall product system development [35, 40].

The problems of NPD projects have gained increasing research interests due to the
current major transitions in many product development areas (e.g., telecommunica-
tions industry). A seminal survey of NPD literature is presented in [25]. An integra-
tive model of different contributing product development project success factors is
constructed. Ernst makes a critical summary of the NPD success factors empirical re-
search results [41]. Notably there is no universal definition of “success”. Recently for
example Cooper, Edgett and Kleinschmidt survey the general success/failure factors
[42]. In general, software new product development can be seen as a series of ques-
tions and problems to be solved [11].

2.4 Research Questions

Based on the background presented in Ch. 2.1-2.3, we now set the following specific
research questions:

1. How to recognize the typical problems of large-scale NPD embedded software
projects?

2. How to assess the feasibility and achievability (“health”) of such projects?

Answering the former question brings insight to the latter one. By recognizing the
particular alerting problem areas, the project manager can conduct and steer the pro-
ject rationally, even under considerable trouble conditions.

The rest of this paper proposes pragmatic aids for answering those questions in a
systematic way. The research method is constructive, based on the literature surveys

 Troubleshooting Large-Scale NPD Embedded Software Projects 65

coupled with our own practical experiences with large-scale embedded software
development for new telecommunications products. Our primary scope is in break-
through development projects, creating entirely new market-driven products for the
organization. Note that project financial issues (such as budgeting, rewarding) are
excluded.

3 Troubleshooting NPD Embedded Software Projects

3.1 Project Problem Profiler

Our proposition for recognizing and evaluating the project problem issues is a matrix
of typical problem factors and their likely impacts. Table 2 illustrates the overall
structure of the matrix (see Appendix for the complete table).

Table 2. Project problem profiler (Appendix) structure

Characteristic Pro-
ject Problems, Risk
Factors

Categori-
zation
(Nominal)

Typical
NPD
Embedded
SW

Typical
IMPACT

Project
STATUS

Pro-
ject
index

Program/Project
Management

Ineffective project
management

Company - Critical! x1 y1

Inadequate planning
and task identifica-
tion

Project - Moderate x2 y2

Inter-component or
inter-group
dependencies

Project NPD
special
concern!

Major x3 y3

Personnel Manage-
ment

…

The matrix has two main sections. The static part is basically a directory of typical
software project problem factors, with a special emphasis on NPD embedded software
projects. It comprises the following read-only fields (see Appendix):

• Characteristic Project Problems, Risk Factors:
This column is a list of potential problem factors. They are grouped under the main
sections of Program/project Management, Personnel Management, Scheduling and
Timing, Requirements Management, System Functionality, Resource Usage and
Performance, and Subcontracting. Under these main headings there are two levels
of subgroups (only level 1 shown in Table 2).

66 P. Kettunen

• Categorization (Nominal)
The problem items are further categorized according to the scope (Business Milieu /
Company / Project / Team / Individual), class (Development Environment / Product
Engineering / Program Constraints), type (Business / Technical / Process / People /
Organizational), and the project phase of most likely concern (Project Initialization /
Scoping / Planning / Execution / Completion).

• Typical NPD Embedded SW
This highlights those problem areas, which are typically of special significance in
embedded software projects (see “NPD special concern!” in Table 2).

• Typical IMPACT
This value indicates the typical seriousness (Critical-Major-Moderate) of the prob-
lem for the project success.

The latter part of the matrix is dynamic, intended to be filled in by the user (more
about that in Ch. 3.2). It consists of the following two fields:

• Project STATUS
This value is the current evaluation of the project status with respect to the problem
items (No problem / Minor issue / Concern / Serious!).

• Project INDEX
The project’s profile is indicated as a numeric value for each problem item. It is
calculated based on the fields Typical IMPACT and Project STATUS as defined be-
low (Formula 1). This index can further be used to plot graphical profiles of the
current project situation (Ch. 3.2).

The matrix has in principle been composed as follows. The reasoning is discussed fur-
ther in Ch. 4.

We have distilled a wide range of typical project problem factors (Characteristic
Project Problems, Risk Factors) based on the literature survey (Ch. 2), coupled with
our own real-life product development project experiences, with a special focus on
NPD embedded software project concerns. Currently our matrix contains some 500
problem items organized in three levels (23 / 121 / 334 items, respectively). For ex-
ample the following references have been used as the sources: [4-6, 12-19, 22, 27, 29-
32, 34-36, 39, 42-48].

Most of the problem items are straightforward statements (e.g., “Poor communica-
tion”), but some of them are in a form of questions (like “Does management work to
ensure that all customer factions are represented in decisions regarding functionality
and operation?”). We have normally used the exact wording of the respective sources,
with only some minor editorial changes.

The main grouping of the problem items is initially based on the seminal Boehm’s
risk list, refined by Ropponen and Lyytinen [5, 26]. We have in addition augmented it
with one more main group: program/project management (comprising overall plan-
ning and coordination).

The problem item categorization (Categorization (Nominal)) is only suggestive.
The Scope field is based on [21] and the Class field follows [31].

We have then estimated the relevance and typical impact of each problem item for
NPD embedded software projects (Typical NPD Embedded SW, Typical IMPACT).

 Troubleshooting Large-Scale NPD Embedded Software Projects 67

This evaluation is based partially on the ranking of the respective sources (if any
given), and partially on our own experiences.

Finally, the Project INDEX is calculated according to the following formula:

Project INDEXi = Weight * Typical IMPACTi * Project STATUSi

where the scales are currently defined as follows:

Weight: 1 (constant)
Typical IMPACT: 0-3 (Critical = 3)
Project STATUS: 0-3 (Serious = 3)
Project INDEX: 0-9

(1)

This formula is influenced by the commonly used calculation rule of risk exposure
(more in Ch. 4.3).

3.2 Using the Profiler

The profiler matrix (Appendix) is in principle intended to be used as follows:

• For each problem item (level 1, 23 items altogether):
• Answer the following question:

− Is this currently a problem in our case?
− If so, how serious is it (Minor issue / Concern / Serious)?

• Write your rating down to the corresponding cell of the matrix (xi in Table 2).
• The corresponding Project INDEX value can then be calculated (yi in Table 2).

• Finally, the Project INDEX values can be plotted graphically like illustrated in Ap-
pendix (Profile Chart). This gives a visual profile of the project’s problem situa-
tion. The results can now be utilized in various ways during the course of the pro-
ject (see Ch. 3.3).

For helping the evaluation of each main level (1) problem items, the lower-level
(2, 3) items of the matrix can be used as guidance of thinking. For example, under the
problem heading “New market with uncertain needs”, there are more detailed items as
illustrated in Appendix (Problem Sheet). The user can first ponder these lower-level
items (at least part of them), and then give the aggregate rating of the level 1 item ac-
cordingly.

Naturally one can utilize the matrix also partially for example in case some sec-
tions are irrelevant (e.g., Subcontracting). On the other hand, it is of course also pos-
sible to extend the matrix with new problem items.

We have implemented the matrix as a computerized spreadsheet, which makes it
easy to browse the different levels of the problem items, and automate the Project
INDEX calculations and plottings. The Search functions of the spreadsheet can be
used for example to find all problem items with certain keywords (e.g., “NPD”).

3.3 Application Possibilities

The profiler matrix (Appendix) is a versatile tool. There is no one right way of using
it. However, our key idea is to utilize it as follows:

68 P. Kettunen

• The project manager can use the matrix to self-assess her project (even privately).
This assessment can be done while preparing the initial project plan as well as pe-
riodically during the course of the project:
• The initial evaluation gives early insight and warning.
• During the course of the project, the project manager can use the problem pro-

file to focus the management activities on the alarming areas and trends.
• The problem matrix can also be used as a tool in project (or iteration) post-

mortem reviews. What were the biggest problems? The profile data could then
be utilized for future projects (or iterations) for reference purposes.

• The assessments can also be done as group exercises together with the project
team. The project manager and the project team could compare their evaluations.

• A more objective assessment (“health check”) could be done by an outsider expert
(such as a Quality Manager). The program and even corporate management could
further utilize such information for ranking the individual projects. This kind of a
ranking of risky projects have been investigated in [49]. This may be sensitive.

Naturally it is not enough to just recognize the problems. The project manager has
to use other means to link the current identified problems to consequent improvement
actions. In some cases no immediate action may be needed, while in other areas
alarming trends (e.g., constant flow of unreasonable requirements changes) may re-
quire improvements even external to the current project. Combined results of individ-
ual project assessments could also be used for larger-scale company process im-
provement purposes (e.g., portfolio management).

4 Evaluation and Discussion

4.1 Empirical Experiments

We have conducted some empirical experiments with the problem profiler matrix
(Appendix) in certain industrial NPD project environments at a large company devel-
oping telecommunications products containing embedded software. The method was
to let the project managers to assess their project status with the matrix. Based on the
responses, we expected to be able to draw conclusions about how well the profiler
captures real project problem situations.

The following project background information was first recorded:

• product type: terminal / network element / etc.
• project nature: new features / completely new product / platform development
• project size, length (order of magnitude)
• major dependencies (e.g., hardware development, system integration)
• current state: launch / active / ending / completed / canceled

The project managers were then asked to fill in the problem matrix like instructed
in Ch. 3.2. The survey was conducted by e-mail.

Table 3 shows a quantitative summary of the responses provided by the project
manager (or the project quality manager). For confidentiality reasons the actual prob-
lem profile values cannot be shown here. In these project cases 5 common problem
items (out of 23, level 1) were identified. All respondents provided additional narra-
tive description of their project’s main issues. This data was not codified, however.

 Troubleshooting Large-Scale NPD Embedded Software Projects 69

Table 3. NPD project case studies

 Project Case # of Problem
Items flagged
(out of 23)

of Problem
Items assessed
as ‘Serious!’

of ‘NPD spe-
cial concern’
items (out of 6)

1 Terminal software
platform subsystem,
new features;
Project ending.

8 2 2

2 Network element
software, completely
new product;
Project completed.

17 5 6

We can see that the profiler matrix captured critical problem areas of the case study
NPD projects. None of the project cases identified any such significant problems that
were not covered by the matrix. It is not possible to say, if the matrix approach high-
lighted such problem areas which had not yet been seen by the project manager.

4.2 Answering the Research Questions

We have composed a structured directory of typical problems encountered in NPD
embedded software projects. This matrix (Appendix) helps identifying the project
problems by pointing out such key concern areas (Question 1 in Ch. 2.4). The matrix
is certainly not an all-encompassing database of all possible problem items, but the
idea is to guide the thinking like a checklist and a structured interview technique. The
user is encouraged to consider further problem items.

There are many ways of using the matrix, as described in Ch. 3.3. It can thus be
used to check the “health” of the embedded software projects either internally or in-
dependently by an outsider assessor (Question 2 in Ch. 2.4). Naturally such checking
can only give partial suggestions of the status of the project, but if this assessment in-
dicates even some problems, further focused investigations should be considered. On
the other hand, if there seem to be only very few problems (even none at all), one
should become equally suspicious.

The matrix (Appendix) is composed with a generic viewpoint of NPD projects.
While utilizing it in actual projects, it is important to understand the overall position-
ing and the nature of the project. Two such major issues are the front-end activities
done prior to starting the actual software development project, and the level of new
technology development involved. In NPD projects it is equally important to consider
both commercial as well as technical risks [42, 46/Ch. 12, 50].

4.3 Limitations

We acknowledge the following limiting factors and constraints of our propositions
presented in Ch. 3:

70 P. Kettunen

• The prescribed problems items scoping and categorization of the problem matrix
(Appendix) are inherent bias factors. That could possibly skew the project’s prob-
lem space exploration (even subconsciously). In some cases the assessor has to
make a subjective mental mapping between her actual problems and the ones writ-
ten in the matrix – unless there is an exact match. Consequently, different projects
could show somehow different profiles, although the underlying problems would
really be the same. These are typical pitfalls with checklist-based approaches [7].

• It is not reasonable to attempt to compose a complete list of absolutely all the pos-
sible project problems. Our matrix (Appendix) should therefore not be taken as a
universal answer to all questions but merely a framework of thought. The useful-
ness of the matrix depends much on the creativity, experience, and competence of
the project manager.

• There are many ways of categorizing and grouping different problem items, and
currently our matrix shows only one way of doing it. Some of the lowest-level
problem items could have been consolidated, but we have chosen to keep them
separate for reference purposes. However, it is important to realize, that many
problem items could be grouped under multiple categories, and there are different
levels of problems and cause-effect dependencies. Notably the computerized
spreadsheet of the matrix (Appendix) makes it possible to reorganize the problem
items and groupings quite easily.

• We have highlighted those problem areas, which are usually pivotal in industrial
NPD environments (Typical NPD Embedded SW). However, this is to some extent
relative to the actual project circumstances, and in some cases certain other areas
could still be key concerns. There is no guarantee, that following the matrix will
always reveal the most important project problems.

• We have given suggestive default values of the typical impacts of the different
problems (Typical IMPACT). However, the actual severity may vary depending on
the project situations. What is typically a “showstopper” in most cases may still be
manageable in some projects – with extreme measures. In addition, the sum effect
of different problem factors may amplify (or lessen) the actual impact. The Typical
IMPACT values should thus – if necessary – be adjusted (calibrated) to ensure the
fidelity of the calculated Project INDEX.

• The Project INDEX value is not an absolute measure of the project’s status. It is
merely a gauge of potential warning signals. In particular, it should not be used to
rank different projects unless the same person has done the underlying evaluation
according to equal criteria. The ultimate project success/failure cannot be deter-
mined based on this assessment alone (for example because of business factors).

• The suggested self-assessment method is obviously subjective. Healthy self-
criticism is necessary in order to avoid delusion. Cross-checking with multiple as-
sessors is therefore recommended like described in Ch. 3.3.

4.4 Discussion

The underlying theoretical foundation of our approach is in conventional project issue
and risk management. What is said about risk identification is in general applicable
here, too. However, we have taken a specific viewpoint of product development pro-
jects with embedded software concerns. While there is much related work published

 Troubleshooting Large-Scale NPD Embedded Software Projects 71

about typical software project risks and failure factors in general (see Ch. 2.1), not
many investigations focus on embedded software projects, and only very few take the
NPD context into account. We see problem-awareness an inherent part of intelligent
project management practice in turbulent NPD environments.

Our problem matrix (Appendix) is in addition a survey of the related literature,
showing what different problem areas have been acknowledged by different investi-
gations over the years. Some common areas are identified by many studies, while
some problems are less frequently advocated, depending on the scope and viewpoints
of the investigations. Our special focus of NPD embedded software projects is not of-
ten published.

The question of how to group the project problem factor space has been addressed
by many investigations over the years. Clearly, there is no one absolutely right uni-
versal categorization, but it depends on the selected viewpoints. A notably rigorous
approach is presented in [27]. Traditional general-purpose categorizations are avail-
able in standards and other project management guides (e.g., PMBOK, ISO/IEC
15504). We have selectively adopted them. One newer alternative has been proposed
in [51]. A life-cycle process area categorization aimed specifically for embedded
products development is proposed in [34]. Product integration is one typical key prob-
lem area. Note, however, that with a computerized tool it is not necessarily binding to
fix any one particular grouping, but the user could basically reorganize the problem
item space from different points of views.

There is a profound underlying difference of our project problem assessments and
those ones done following general-purpose frameworks, such as CMMI. While such
generic models suggest a set of key activities expected to be performed for good
software engineering and management, our problem matrix (Appendix) does not pre-
scribe any particular activities. For example, while requirements management is one
of the level 2 key process areas in the CMMI model, we simply ask the project man-
ager to evaluate, whether it is a problem or not in her case. Such situational problem
diagnosis has been applied to embedded software projects in [52].

A high-level project risk factor matrix is shown in [53]. It includes some basic
technology, product acceptance, and project execution risks. A weighting scale is
suggested for each risk area. This is basically similar to our problem matrix.

One recent, similar to our questionnaire-based approach of recognizing ‘risky’
software projects is proposed in [54]. Likewise, they compose their questionnaire
(having the main categories of requirements, estimations, planning, team organiza-
tion, and project management) following a literature survey and some industrial ex-
periences of embedded software projects. However, more detailed embedded software
and NPD problem items are not covered.

A general-purpose (not limited to IT) project risk rating method has been presented
in [49]. It is similar to our method in the sense that the project manager rates a set of
project risk factors (risk drivers, e.g., novelty), and the overall project risk level is
then calculated accordingly.

A project uncertainty profile is proposed in [55]. Overall business, product, project,
and organizational risk factors are rated according to their level of uncertainty. This is
in principle similar to our problem profiling technique.

A project assessment method in terms of overall complexity and uncertainty is
proposed in [56]. Both complexity and uncertainty are rated based on a few

72 P. Kettunen

prescribed attributes (e.g., domain knowledge gaps, dependencies, project duration).
Project complexity and uncertainty indices are then calculated. This is essentially a
subset of our problem profile. However, in our case it is up to the project manager to
evaluate whether the increased uncertainty caused for example by a long project dura-
tion is really a problem.

Some publicly available / commercial risk management software tools provide
similar functionalities to our problem matrix. However, the purpose of our matrix is
not to replace such tools.

5 Conclusions

We have constructed some pragmatic aids for understanding the various trouble spots
of NPD embedded software projects. The outcome is not any particular solution for
managing such projects, but it provides a holistic view over the problem space. A
wise project manager can utilize this view for managing her particular project suc-
cessfully even under unfavorable circumstances. After all, such cases are not so un-
usual in modern turbulent product development environments [48].

The problem matrix (Appendix) is certainly not a silver-bullet troubleshooter of
every possible project problem case. However, the idea is to illuminate the overall
picture of the project’s problem space so that the major areas are revealed. Based on
this guidance, the project manager can then focus on analyzing the problem indicators
in more detail according to the project’s actual contextual information. The usefulness
of the matrix thus depends much on the experience of the project manager. For less
experienced managers it shows the major areas to be considered to begin with. For a
more experienced user, it serves merely as a structured checklist, giving hints and re-
minders of the typical trouble spots.

This paper leaves room for further study:

1. More empirical validation: At the time of the writing we are able to present only
limited empirical case data about our propositions. More data should be collected
by experimenting the matrix (Appendix) like described in Ch. 4.1. The empirical
validation could follow the principles used in [54]. In particular, are there any sig-
nificant problem areas that are currently not addressed in the matrix? How much
does the prescribed categorization bias the problem assessments?

2. More rigorous categorization of the problem space.
3. As defined now, the calculated Project INDEX value is a simple measure with cer-

tain bias limitations (see Ch. 4.3). More advanced measures could possibly be de-
veloped for example by taking into account the basic nature of the project (e.g.,
high market uncertainty vs. high technological uncertainty). Can the overall pro-
ject uncertainty and complexity be measured? Does the project type change it?

4. What can we say about projects based on their problem profiles (Appendix: Profile
Chart)? Can we identify particularly risky (or “unhealthy”) projects [49]? When
should we cancel or not even start the project? How does the problem profile
change over the project’s life-cycle? A reference database of problem profiles of
both successful and failed projects could be collected.

 Troubleshooting Large-Scale NPD Embedded Software Projects 73

5. Problem-conscious project management: The problem matrix could be extended
with suggestions of potential maneuvers for each problem item. We have already
investigated elsewhere, how different software process models tackle certain pro-
ject problems [57, 58]. Those results could be linked to the problem matrix.

Acknowledgements

The author would like to thank Maarit Laanti (Nokia Corporation) for her influence
and critique. We are also grateful to the anonymous case study project managers.

References

1. Farbman White, S., Melhart, B.E., Lawson, H.W.: Engineering Computer-Based Systems:
Meeting the Challenge. IEEE Computer 34(11) (2001) 39-43

2. Iansiti, M.: Shooting the Rapids: Managing Product Development in Turbulent Environ-
ments. California Management Review 38(1) (1995) 37-58

3. MacCormack, A., Verganti, R., Iansiti, M.: Developing Products on “Internet Time”: The
Anatomy of a Flexible Development Process. Management Science 47(1) (2001) 133-150

4. Mullins, J.W., Sutherland, D.J. New Product Development in Rapidly Changing Markets:
An Exploratory Study. Journal of Product Innovation Management 15 (1998) 224-236

5. Boehm, B.W.: Software Risk Management: Principles and Practices. IEEE Software 8(1)
(1991) 32-41

6. DeMarco, T., Lister, T.: Walzing with Bears: Managing Risks On Software Projects. Dor-
set House Publishing, New York (2003)

7. Kontio, J.: Software engineering risk management: a method, improvement framework,
and empirical evaluation. Helsinki University of Technology (2001)

8. Glass, R.L.: Software Runaways. Prentice-Hall, Upper Saddle River (1998)
9. Pavlak, A.: Project Troubleshooting: Tiger Teams for Reactive Risk Management. Project

Management Journal 35(4) (2004) 5-14
10. Kwak, Y.H., Stoddard, J.: Project risk management: lessons learned from software devel-

opment environment. Technovation 24 (2004) 915-920
11. Sheremata, W.A.: Finding and solving problems in software new product development.

Journal of Product Innovation Management 19 (2002) 144-158
12. Conrow, E.H., Shishido, P.S.: Implementing Risk Management on Software Intensive Pro-

jects. IEEE Software 14(3) (1997) 83-89
13. Evans, M.W., Abela, A.M., Belz, T. Seven Characteristics of Dysfunctional Software Pro-

jects. CrossTalk 15(4) (2002) 16-20
14. Houston, D.: Results of Survey on Potential Effects of Major Software Development Risk

Factors. http://www.eas.asu.edu/~sdm/dhouston/risksrvy.htm (1999) (accessed February
2005)

15. Jones, C.: Patterns of Software System Failure and Success. International Thompson
Computer Press, Boston (1996)

16. May, L.J.: Major Causes of Software Project Failures. CrossTalk 11(7) (1998) 9-12
17. Reel, J.S.: Critical Success Factors In Software Projects. IEEE Software 16(3) (1999) 18-23
18. Reifer, D.: Ten Deadly Risks in Internet and Intranet Software Development. IEEE Soft-

ware 19(2) (2002) 12-14

74 P. Kettunen

19. Wiegers, K.E.: Know Your Enemy: Software Risk Management.
http://www.processimpact.com/articles/risk_mgmt.pdf (1998) (accessed February 2005).

20. Brooks, F.P. Jr.: The Mythical Man-Month: Essays on Software Engineering (20th Anni-
versary Edition). Addison-Wesley (1995)

21. Curtis, B., Krasner, H., Iscoe, N.: A Field Study of the Software Design Process for Large
Systems. Communications of the ACM 31(11) (1988) 1268-1287

22. McConnell, S.: Rapid Development: Taming Wild Software Schedules. Microsoft Press,
Redmond (1996)

23. McConnell, S.: Software Project Survival Guide. Microsoft Press, Redmond (1998)
24. Royce, W.: Software Project Management. Addison-Wesley (1998)
25. Brown, S.L., Eisenhardt, K.M.: Product Development: Past Research, Present Findings,

and Future Directions. Academy of Management Review 20(2) (1995) 343-378
26. Ropponen, J., Lyytinen, K.: Components of Software Development Risk: How to Address

Them? A Project Manager Survey. IEEE Trans. Software Engineering 26(2) (2000) 98-111
27. Schmidt, R., Lyytinen, K., Keil, M., Cule, P.: Identifying Software Project Risks: An In-

ternational Delphi Study. Journal of Management Information Systems 17(4) (2001)
(Spring) 5-36

28. Smith, J.M.: Troubled IT Projects – prevention and turnaround. IEE (2001)
29. May, G., Ould, M.: Software project casualty. IEE Engineering Management Journal 12(2)

(2002) 83-90
30. Fairley, R.E., Willshire, M.J.: Why the Vasa Sank: 10 Problems and Some Antidotes for

Software Projects. IEEE Software 20(2) (2003) 18-25
31. Carr, M., Kondra, S., Monarch, I., Ulrich, F., Walker, C.: Taxonomy-Based Risk Identifi-

cation (Technical Report CMU/SEI-93-TR-6). SEI (1993)
32. Brown, W.J., McCormick H.W. III, Thomas, S.W.: AntiPatterns in Project Management.

John Wiley & Sons, New York (2000)
33. Ould, M.A.: Managing Software Quality and Business Risk. John Wiley & Sons, Chiches-

ter (1999)
34. Kuvaja, P., Maansaari, J., Seppänen, V., Taramaa, J.: Specific Requirements for Assessing

Embedded Product Development. In: Proc. International Conference on Product Focused
Software Process Improvement (PROFES) (1999) 68-85

35. Rauscher, T.G., Smith, P.G.: Time-Driven Development of Software in Manufactured
Goods. Journal of Product Innovation Management 12 (1995) 186-199

36. Ronkainen, J., Abrahamsson, P.: Software development under stringent hardware con-
straints: Do agile methods have a chance? In: Proc. 4th Int’l Conf. Extreme Programming
and Agile Processes in Software Engineering (2003) 73-79

37. Kettunen, P.: Managing embedded software project team knowledge. IEE Proc. – Software
150(6) (2003) 359-366

38. Riek, R.F.: From experience: Capturing hard-won NPD lessons in checklists. Journal of
Product Innovation Management 18 (2001) 301-313

39. Wheelwright, S.C., Clark, K.B.: Revolutionizing Product Development: Quantum Leaps in
Speed, Efficiency, and Quality. The Free Press, New York (1992)

40. Song, X.M., Montoya-Weiss, M.M.: Critical Development Activities for Really New ver-
sus Incremental Products. Journal of Product Innovation Management 15 (1998) 124-135

41. Ernst, H.: Success factors of new product development: a review of the empirical litera-
ture. International Journal of Management Reviews 4(1) (2002) 1-40

42. Cooper, R.G., Edgett, S.J., Kleinschmidt, E.J., Benchmarking Best NPD Practices – III.
Research • Technology Management 47(6) (2004) 43-55

 Troubleshooting Large-Scale NPD Embedded Software Projects 75

43. Jones, C.: Minimizing the Risks of Software Development. Cutter IT Journal 11(6) (1998)
13-21

44. Jones, C.: Software Assessments, Benchmarks, and Best Practices. Addison-Wesley
(2000)

45. Rautiainen, K., Lassenius, C., Nihtilä, J., Sulonen, R.: Key Issues in New Product Devel-
opment Controllability Improvement – Lessons Learned from European High-tech Indus-
tries. In: Proc. Portland Int’l Conf. Management of Engineering and Technology
(PICMET) (1999)

46. Smith, P.G., Reinertsen, D.G.: Developing Products in Half the Time: New Rules, New
Tools. John Wiley & Sons, New York (1998)

47. Ulrich, K.T., Eppinger, S.D.: Product Design and Development. McGraw-Hill, New York
(2000)

48. Yourdon, E.: Death March – The Complete Software Developer’s Guide to Surviving
“Mission Impossible” Projects. Prentice-Hall, Upper Saddle River (1999)

49. Baccarini, D., Archer, R.: The risk ranking of projects: a methodology. International Jour-
nal of Project Management 19 (2001) 139-145

50. Holmes, M.F., Campbell R.B. Jr.: Product Development Processes: Three Vectors of Im-
provement. Research • Technology Management 47(4) (2004) 47-55

51. Keil, M., Cule, P.E., Lyytinen, K., Schmidt, R.C.: A Framework for Identifying Software
Project Risks. Communications of the ACM 41(11) (1998) 76-83

52. Iversen, J., Nielsen, P.A., Nørbjerg, J.: Situated Assessment of Problems in Software De-
velopment. The DATA BASE for Advances in Information Systems 30(2) (1999) (Spring)
66-81

53. Fitzgerald, D.: Principle-Centered Agile Project Portfolio Management. Agile Project
Management Advisory Service Executive Report 6(5), http://www.cutter.com/
project/fulltext/reports/2005/05/index.html (2005) (accessed June 2005)

54. Takagi, Y., Mizuno, O., Kikuno, T.: An Empirical Approach to Characterizing Risky
Software Projects Based on Logistic Regression Analysis. Empirical Software Engineering
10 (2005) 495-515

55. DeCarlo, D.: Leading Extreme Projects to Success. Agile Project Management Advisory
Service Executive Report 5(8), http://www.cutter.com/project/fulltext/
reports/2004/08/index.html (2004) (accessed June 2005)

56. Little, T., Greene, F., Phillips, T., Pilger, R., Poldervaart, R.: Adaptive Agility. In: Proc.
Agile Development Conference (ADC) (2004) 63-70

57. Kettunen, P., Laanti, M.: How to steer an embedded software project: tactics for selecting
the software process model. Information and Software Technology 47(9) (2005) 587-608

58. Kettunen, P., Laanti, M.: How to Steer an Embedded Software Project: Tactics for Select-
ing Agile Software Process Models. In: Proc. International Conference on Agility (ICAM)
(2005) 241-257

76 P. Kettunen

A
pp

en
di

x.
 P

ro
je

ct
 P

ro
bl

em
 P

ro
fi

le
r

M
at

ri
x

P
ro

bl
em

 S
he

et
:

T
he

 f
ol

lo
w

in
g

sh
ow

s
th

e
co

m
pl

et
e

le
ve

l 1
 ta

bl
e.

 T
he

 P
ro

je
ct

 S
T

A
T

U
S

va
lu

es
 p

ut
 h

er
e

do
 n

ot
 r

ep
re

se
nt

 a
ny

 p
ar

tic
ul

ar

pr
oj

ec
t c

as
e,

 b
ut

 in
 o

ur
 e

xp
er

ie
nc

e
th

is
 k

in
d

of
 r

at
in

gs
 c

ou
ld

 w
el

l b
e

ob
se

rv
ed

 in
 ty

pi
ca

l N
PD

 e
m

be
dd

ed
 s

of
tw

ar
e

pr
oj

ec
ts

.

 Troubleshooting Large-Scale NPD Embedded Software Projects 77

P
ro

bl
em

 S
he

et
:

T
he

 f
ol

lo
w

in
g

sh
ow

s
a

se
ct

io
n

of
 th

e
ex

pa
nd

ed
 le

ve
l 2

-3
 ta

bl
e

(c
.f

.,
ab

ov
e)

.

78 P. Kettunen

Pr
of

ile
 C

ha
rt

: T
he

 fo
llo

w
in

g
sh

ow
s a

n
ex

am
pl

e
pl

ot
 o

f t
he

 p
ro

bl
em

 p
ro

fil
e

ch
ar

t b
as

ed
 o

n
th

e
sa

m
pl

e
Pr

ob
le

m
 S

he
et

 v
al

ue
s a

bo
ve

.

AL
L

AR
EA

S
Sc

al
e:

 [0
-9

],
0

=
N

o
pr

ob
le

m

0
3

6

P
R

O
G

R
A

M
/P

R
O

JE
C

T
M

A
N

AG
E

M
E

N
T

In
ef

fe
ct

iv
e

pr
oj

ec
t m

an
ag

em
en

t (
m

ul
tip

le
 le

ve
ls

 p
os

si
bl

e)

In
ad

eq
ua

te
 p

la
nn

in
g

an
d

ta
sk

 id
en

tif
ic

at
io

n

In
te

r-c
om

po
ne

nt
 o

r i
nt

er
-g

ro
up

 d
ep

en
de

nc
ie

s

==
==

==
==

==
==

==
==

==
==

==
==

==
==

=

P
E

R
S

O
N

N
E

L
M

A
N

A
G

E
M

E
N

T

P
er

so
nn

el
 s

ho
rtf

al
ls

 (l
ac

k
of

 q
ua

lif
ie

d
pe

rs
on

ne
l a

nd
 th

ei
r c

ha
ng

e)

In
ab

ili
ty

 to
 a

cq
ui

re
 re

so
ur

ce
s

w
ith

 c
rit

ic
al

 s
ki

lls

In
st

ab
ili

ty
 a

nd
 la

ck
 o

f c
on

tin
ui

ty
 in

 p
ro

je
ct

 s
ta

ffi
ng

La
ck

 o
f s

ta
ff

co
m

m
itm

en
t,

lo
w

 m
or

al
e

==
==

==
==

==
==

==
==

==
==

==
==

==
==

=

S
C

H
E

D
U

LI
N

G
 A

N
D

 T
IM

IN
G

U
nr

ea
lis

tic
 s

ch
ed

ul
es

, b
ud

ge
ts

 (t
im

e
an

d
bu

dg
et

 e
st

im
at

ed
 in

co
rre

ct
ly

)

In
he

re
nt

 s
ch

ed
ul

e
fla

w

In
ac

cu
ra

te
 c

os
t e

st
im

at
in

g

P
oo

r p
ro

du
ct

iv
ity

==
==

==
==

==
==

==
==

==
==

==
==

==
==

=

R
E

Q
U

IR
E

M
E

N
TS

 M
A

N
A

G
E

M
E

N
T

N
ew

 m
ar

ke
t w

ith
 u

nc
er

ta
in

 n
ee

ds

G
ol

d
pl

at
in

g
(a

dd
in

g
un

ne
ce

ss
ar

y
fe

at
ur

es
)

C
on

tin
ui

ng
 s

tre
am

 o
f r

eq
ui

re
m

en
ts

 c
ha

ng
es

 (u
nc

on
tro

lle
d

an
d

un
pr

ed
ic

ta
bl

e
ch

an
ge

 o
f s

ys
te

m
 fe

at
ur

es
)

==
==

==
==

==
==

==
==

==
==

==
==

==
==

=

S
Y

S
TE

M
 F

U
N

C
TI

O
N

A
LI

TY

C
om

pl
ex

 a
pp

lic
at

io
n

D
ev

el
op

in
g

w
ro

ng
 s

of
tw

ar
e

fu
nc

tio
ns

 (f
un

ct
io

ns
 th

at
 a

re
 n

ot
 n

ee
de

d
or

 a
re

 w
ro

ng
ly

 s
pe

ci
fie

d)

Sp
ec

ifi
ca

tio
n

br
ea

kd
ow

n

D
ev

el
op

in
g

w
ro

ng
 u

se
r i

nt
er

fa
ce

 (i
na

de
qu

at
e

or
 d

iff
ic

ul
t)

==
==

==
==

==
==

==
==

==
==

==
==

==
==

=

R
E

S
O

U
R

C
E

 U
S

A
G

E
 A

N
D

 P
E

R
FO

R
M

A
N

C
E

R
ea

l-t
im

e
pe

rfo
rm

an
ce

 s
ho

rtf
al

ls

In
ef

fe
ct

iv
e

de
ve

lo
pm

en
t t

ec
hn

ol
og

ie
s

S
tra

in
in

g
co

m
pu

te
r s

ci
en

ce
 c

ap
ab

ilit
ie

s
(la

ck
in

g
te

ch
ni

ca
l s

ol
ut

io
ns

 a
nd

 c
om

pu
tin

g
po

w
er

)

==
==

==
==

==
==

==
==

==
==

==
==

==
==

=

S
U

B
C

O
N

TR
A

C
TI

N
G

S
ho

rtf
al

ls
 o

f e
xt

er
na

lly
 fu

rn
is

he
d

co
m

po
ne

nt
s

(p
oo

r q
ua

lit
y)

S
ho

rtf
al

ls
 o

f e
xt

er
na

lly
 p

er
fo

rm
ed

 ta
sk

s
(p

oo
r q

ua
lit

y
or

 u
np

re
di

ct
ab

le
 a

cc
om

pl
is

hm
en

t)

Pr
oj

ec
t I

N
D

EX

Software Process Improvement with Agile Practices in a
Large Telecom Company

Jussi Auvinen1, Rasmus Back1, Jeanette Heidenberg1,
Piia Hirkman2,3, and Luka Milovanov2,4

1 Oy L M Ericsson Ab, Telecom R&D
Lemminkäisenkatu 14-18C, FIN-20520 Turku, Finland

Name.Surname@ericsson.com
2 Turku Centre for Computer Science – TUCS, Åbo Akademi University

Lemminkäisenkatu 14 A, FIN-20520 Turku, Finland
Name.Surname@abo.fi

3 Institute for Advanced Management Systems Research
4 Department of Computer Science

Abstract. Besides the promise of rapid and efficient software development, ag-
ile methods are well-appreciated for boosting communication and motivation of
development teams. However, they are not practical “as such” in large organiza-
tions, especially because of the well-established, rigid processes in the organi-
zations. In this paper, we present a case study where a few agile practices were
injected into the software process of a large organization in order to pilot pair pro-
gramming and improve the motivation and competence build-up. The selected
agile practices were pair programming, the planning game and collective code
ownership. We show how we adjust these practices in order to integrate them into
the existing software process of the company in the context of a real software
project.

1 Introduction

Agile methods hold the promise of rapid and efficient software development. Reports
from industry [1, 2, 3, 4], research [5, 6, 7] and educational [8, 9, 10] settings describe
positive experiences of agile practices. While agile software development responds to
the challenge of change, people is often stated to be one of its main focal points [11].
Also, issues related to individual agile practices, such as knowledge building [12], have
been found alluring.

However, agile approaches also have their limitations and recommended application
areas, as software development methods usually do. One of these issues is that many
agile methods are best suited for small and medium projects [13]. For example, Extreme
Programming does not easily scale for large projects [14]: all of the developers simply
cannot work together in one big room.

Regardless of project size, the interest towards agile approaches rises to a great extent
from the same needs, but the actual implementation is different. It requires much more
tailoring in large companies than in smaller ones [15]. The challenge lies in fitting
agile methods in existing processes where software development is only a small part

J. Münch and M. Vierimaa (Eds.): PROFES 2006, LNCS 4034, pp. 79–93, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

80 J. Auvinen et al.

of the product development process. The question is whether corporations with well
established and rigid processes can use just a few agile methods and still see significant
benefits. Beck’s discussion of the 80/20 rule would suggest not, as implementing all of
the principles and practices creates synergy benefits [14], but experiences in practice
have tried to prove otherwise [15, 16]. This paper presents an account of how agile
methods were assessed in a case study for a large organization.

The pilot project was conducted at Ericsson, the largest supplier of mobile systems
in the world. Ericsson’s customers include the world’s 10 largest mobile operators and
some 40% of all mobile calls are made through its systems. This international telecom-
munications company has been active worldwide since 1876 and is currently present
in more than 140 countries. The pilot project was conducted at a design department at
Ericsson Finland.

This paper proceeds as follows: Section 2 presents the background and drivers for
the pilot. Section 3 states the goals for the pilot and describes the means to achieve these
goals. In Section 4 we describe the agile practices selected for and implemented during
the pilot, while in Section 5 we present the results of the pilot in the context of the goals
stated in Section 3. We discuss open issues in Section 6 and present our conclusions in
Section 7.

2 Background

In early spring 2004, the design department in question arranged a workshop where dif-
ferent improvement areas for the software design process were identified. This work-
shop was a part of the continuous Software Process Improvement (SPI) [17] activity
performed at the company. One of the identified areas was the motivation of the employ-
ees, and an SPI team was assigned to come up with innovative improvement proposals
for this area. The results of a survey conducted within the company indicated that job
satisfaction could be enhanced by changing the way the work was assigned, arranged
and carried out. The organization would benefit from increasing the employees’ moti-
vation by promoting shared responsibilities among the designers, and increasing their
competence in different areas of the large software systems they are working with.

An investigation of potentially suitable methods was conducted. The SPI team found
that pair programming, an agile software development practice, could promote learning
and shared responsibility, and hence increase motivation. The SPI team also noted that
the chosen methods would need to be easy to implement within the existing process
and easy to learn. Furthermore, such methods should be flexible enough in order to be
changed and adapted to the standard process of the company to keep its integrity and
strict deadlines. The SPI team considered an agile approach to be well-suited for the
purpose.

The SPI team presented its ideas and results to the management in the summer of
2004. Based on this proposal, the management decided to pilot pair programming to-
gether with a number of other agile practices at the design department. The pilot was
to be done in a real, live project so that the experiences from the pilot would be di-
rectly applicable in the organization. Since agile practices were new to the department

Software Process Improvement with Agile Practices 81

in question, the management team decided to cooperate with the Department of Com-
puter Science at Åbo Akademi University where agile practices had been tried out and
developed further in the Gaudí Software Factory for the last four years [5].

3 Goals and Settings

The pilot started in January 2005 with planning and start-up activities and the actual
implementation was done from February to mid-April. The following sections describe
the goals of the pilot, and the implementation settings, such as the team composition.

3.1 Goals

The pilot set out to investigate the possibility of using pair programming and an as-
sortment of other agile practices in the analysis, design and early testing of the project.
More specifically, the question was whether it would be possible to introduce pair pro-
gramming into the standard way of working of a designer, and what changes should
be made to the pair programming recommendations for them to suit the surrounding
environment, including premises, IT infrastructure and project process.

The second goal, competence build-up, was set during the pilot preparation. When
a new designer comes to work in a design team, he or she has at least basic skills in
methods and tools, but lacks the knowledge about the specific parts of the system the
team is working with. The newcomer is assigned a mentor and is assumed to be up
to 70% less productive than a designer familiar with the subsystem. In this situation,
the mentor’s productivity is also assumed to drop by up to 20%. At the beginning of the
pilot it was speculated that the mentoring of a newcomer could be effectively substituted
with pair programming.

One of the most important goals of the pilot was to study the impact of pair work
on the motivation of the designers. But while piloting pair programming as a means
to improve the motivation of the designers and build up their competence, we wanted
to keep up the efficiency of the existing way of working. Even though boosting the
employee’s motivation was the primary goal, the deadlines and the quality could not be
sacrificed for increased motivation.

3.2 Project Scope and Selected Practices

The pilot was implemented in only two subsystems of a product called the Ericsson Me-
dia Gateway for Mobile Networks (M-MGw) [18]. The whole M-MGw application sys-
tem consists of eight subsystems. The application runs on the CPP (Connectivity Packet
Platform), Ericsson’s 3G platform. The Media Gateway itself is a part of Ericssons’
Mobile Core Network, a much larger system. The Media Gateway has an interface to
several of the other nodes on the Core Network. Because of the hierarchical structure
of the system, the testing of the M-MGw application is performed on many levels: from
unit and subsystem tests up to call cases covering the whole network and interoperabil-
ity tests with other telephony networks. The multitude of required test phases puts strict
constraints on the delivery process. As a consequence, it is very difficult to have a truly
agile process when developing the system. Consequently, a set of agile practices was
selected for the pilot instead of trying to implement a completely agile process.

82 J. Auvinen et al.

Pair programming was the first selected practice. It is supposed to be a “fun” way
of doing implementation [14] and could therefore be expected to improve motivation.
Furthermore, it offers a way of ensuring quality in an early phase, by having an extra
pair of eyes checking the code as it is being written. In order for pair programming to
be easily introduced in the company and to be efficient, a few supportive agile practices
were considered necessary. The practices chosen to support pair programming were
collective code ownership and the planning game. These practices are presented and
discussed in more detail in Section 4. Originally, we also introduced a customer repre-
sentative [19] to the pilot, but during the pilot it became clear that there was no need for
this role in this project [20].

3.3 The Pilot Team and Room Arrangement

The design department where the pilot was conducted is one of the departments in-
volved in creating the M-MGw product. More on M-MGw design projects can be found
in [20]. There are two main roles in the design department, the designer and the subsys-
tem tester. The designer mainly does design, implementation and unit testing, while the
subsystem tester is responsible for testing on the subsystem level. The pilot was orga-
nized in such a way that only four designers involved in the actual implementation faced
the pilot-induced changes in their work. In other words, the subsystem testers were only
affected by the output produced by the designers. The system work was unaffected by
the pilot.

Usually, each subsystem has its own team to handle all the implementation. However,
the pilot team worked on two neighboring subsystems. This meant that the competence
of the designers varied, allowing us to study the effect of pair programming on compe-
tence build-up. The features implemented during the pilot mostly impacted one of the
subsystems, and only one of the designers had previous experience in that subsystem.
Of the three other designers, two had worked with the other, less impacted subsystem.
One of the designers was new to both of the subsystems. All designers were competent
in the tools used as well as in the overall system principles and basic functionalities.

The room arrangements for the pilot required some attention. Since four designers
were to participate in the pilot, two dedicated places for pair programming were needed.
All the designers had responsibilities that required them to work alone as well, so they
also needed personal work places. Furthermore, the needs for obstacle free communi-
cation and for work peace needed to be balanced. The detailled plan of the pilot’s room
can be found in [20]. Each of the designers had his own corner for solo work while the
pair programming work places were located in the center of the room. A divider was
placed between the pair programming places to give some work peace for the pairs,
without completely isolating them from each other.

3.4 Pilot Steering

In addition to the actual pilot team, the project also had a management sponsor and
a steering group. The pilot steering group was formed in order to follow the progress
of the pilot and to make necessary adjustments to the pilot whenever refinement was
necessary. The group included a researcher who was experienced in coaching and man-
aging agile software projects in an academic setting and had participated in developing

Software Process Improvement with Agile Practices 83

the process used in these projects. The task of the steering group was to monitor the
adaptation of the selected agile practices into the existing process, propose changes in
the practices based on this monitoring, and to collect the data needed to evaluate the
achievement of the goals in the end of the pilot.

The pilot steering group and the designers held one hour long pilot steering meetings
every Monday during the pilot project. The first part of each meeting was a regular team
progress follow-up: what had been done, what features were currently under work and
was the schedule kept. The team leader would later summarize this to the project man-
ager. Before the pilot, this follow-up had been based on informal estimations, expressed
as the designers’ gut feelings, such as“60% of the coding is done”. This did not really
provide a good sense of project progress to the managers.

During the second part of each meeting, the pilot steering group presented the re-
sults of the pilot monitoring. Typical data shown here included the distribution of the
designers pair-solo work, and the accuracy of the designers’ time estimation, to mention
a few. The meetings proceeded with a discussion of the pilot practices both in the con-
text of this data and the subjective opinions of the designers. These discussions aimed
at finding any need for improvement and adapting the practices better into the existing
process. The designers were also expected to give feedback at the end of the project.
This feedback was provided in the form of questionnaires and interviews, but they also
could propose ways to improve the process and the adaptation of the selected practices.

4 Agile Practices in Action

In this section, we go in detail through the agile practices selected for the pilot. We
proceed with the practices one by one, first introducing the original definition of the
practice and explaining the reason for selecting it. We then discuss how the practice
was changed in order to be adapted to the existing process. Additionally, the sections
embody some comments made by the designers during the pilot steering meetings.

4.1 Pair Programming

Pair programming is a programming technique in which two persons work together on
one computer, one keyboard and one mouse [21]. Pair programming is broadly stud-
ied [22, 23, 24, 25, 26], and it is well appreciated for good quality of the code [22],
promotion of communication and learning as well as for being a “fun” way of working.
The productivity in pair programming follows Nosek’s principle [27]: two programmers
will implement two tasks in pair 60% slower than two programmers implementing the
same tasks in parallel with solo programming.

According to the experiences with pair programming in the Gaudí Software Fac-
tory [28], pair programming should be enforced by the coach in order for it to dominate
significantly over solo programming. When the choice between doing pair or solo work
is left to the students working in the Gaudí Factory, they tend to distribute pair and solo
work equally, though they all agreed that they enjoyed working in pairs more. In this
pilot, it was considered that pair programming should be recommended instead of en-
forced. A recommendation gives room for the designers’ own experience and rhythm,
and allows for them to truly opt for pair programming.

84 J. Auvinen et al.

4.2 The Planning Game

The planning game is the XP planning process. There are two types of planning in XP:
planning by scope and planning by time [14]. The planning game practice was chosen
in order to facilitate pair switching. We wanted the pairs to be switched approximately
weekly, but the requirements analysis documents did not as such provide suitable slots
for pair switching. Moving people around when they are in the middle of working on
specific parts of the system would disturb the designers, would have negative influence
on productivity and quality, and would not necessarily promote competence build-up.
We needed to split the features into small (one week) units supporting the desired pair
dynamics. The planning game seemed to be the answer.

In the pilot, the planning game was not directly based on user stories written by
the customer as in XP. The XP approach is to split the user stories to tasks [29, 30].
The stories describe the required functionality from a user’s point of view, whereas
the tasks are written by the programmers and contain a lot of technical details [14]. The
pilot planning game followed the principle of splitting requirements chunks into smaller
entities. But in the pilot, the chunks corresponding to XP stories were derived from the
requirements analysis document and they were called features. A task was defined as
something which requires one to three days to implement, while a feature was composed
of few tasks and was estimated as a week or maximum two weeks of work.

The features and tasks were identified during the planning game, which was held
twice for this pilot: on the first day and in the middle of the pilot. During the first
planning game, the designers selected the main pieces of the functionality from the re-
quirements analysis document. Each of these features was then split into detailed tasks
and the tasks were estimated. These estimations were in ideal programming hours and
did not consider that the implementation would be done in pairs, thus no additional
time for pair programming was reserved. The new estimations confirmed the original
deadlines for the project. It was, however, unclear whether the pilot could follow the
original deadlines since pair programming is considered to be less productive then solo
programming. In a live project the deliveries have to be on schedule and if pair pro-
gramming caused the schedule to slip the pilot would be cancelled.

The designers did not sign up for the tasks during the planning game. They formed
pairs as needed during the development. Initially, the idea was that in order to promote
competence build-up, a pair should consist of a person who is highly competent for the
task, while his partner has little or no knowledge about the part of the system the task
concerned. But by the time the second planning game was held, it had become clear
that when defining the tasks, also the difficulty of the task should be specified and that
should be used as one criterion when forming pairs and assigning tasks. Consequently,
besides selecting features and splitting them to tasks, the tasks were assigned complex-
ity (High, Medium, Low) and ordered during the second planning game. The division
into categories was done from the most experienced designers’ point of view.

After the second planning game, the distribution of tasks among pairs took both
competence build-up and deadlines into consideration by using some guidelines where
the level of difficulty of the task played a central role. These guidelines generally say
that the simple tasks should be implemented as solo programming or in pairs where both
of the designers are less familiar with the task at hand. Tasks of medium complexity

Software Process Improvement with Agile Practices 85

should be done in pairs where the driver has less competence than the navigator. The
most difficult tasks should be done in pairs where at least one of the designers has a
good level of competence. These complex tasks should not be left to the end of an
iteration. Additionally, both designers should be equally good when debugging in pairs.

In summary, the planning game used in the pilot was a customization of the origi-
nal XP planning game. It was targeted towards the most efficient competence build-up
while respecting the deadlines of the project. When implementing a task in pair, the
more experienced designer taught his skills to his programming partner. This practice
was highly appreciated by the designers and also by the testers. Furthermore, the design-
ers found this type of planning game “perhaps the most valuable practice introduced
in this pilot”. They even recommended this practice to higher management before the
pilot steering group started working on the final evaluation of the pilot.

4.3 Collective Code Ownership

Collective code ownership in XP means that no one person owns the code and may be-
come a bottleneck for changes. Instead, every team member is encouraged to contribute
to all parts of the project. Every programmer improves any code anywhere in the system
at any time if they see the opportunity [14, 31].

We chose to enforce collective code ownership in order to empower the pairs to
change and update any part of the code when necessary. This concept of sharing the re-
sponsibility for the code was also necessary due to the competence build-up. By the end
of the pilot, every designer should ideally have the same level of system competence.
The different pairs were working with all parts of the system, designers with high com-
petence in a particular part of the code were not the bottlenecks for changes and did not
have more responsibility for these parts of the system than the rest of the design team.

Surprisingly, the design team commented this practice as “something we already
have been using, just did not know the right name for this practice”. Nevertheless, the
testers found positive changes with the introduction of shared code ownership: “When-
ever we had a question concerning some part of the code, any designer could answer
us – this is something we have not seen before the pilot”.

5 Results

Based on Nosek’s principle [27], we expected pair programming to be less efficient
than solo programming. Furthermore, other factors such as competence build-up and
the overhead of introducing a new methodology led us to assume a best case scenario
of a 100% increase in lead time. Nevertheless, the deliveries were made on schedule
without deviations from the original man-hour estimates. This came as somewhat of a
surprise, since the other teams not involved in the pilot had to work overtime to achieve
their corresponding objectives on time.

Within the pilot, more than half of the work was done in pairs: 51% pair vs. 37%
solo. The pair programming practice was not enforced in the pilot, it was only rec-
ommended. The designers decided on whether to work alone or in pair based on the
estimated complexity of the task as described in Section 4.2. There were 37 tasks de-
fined during the planning games and implemented during the pilot. Some of the tasks

86 J. Auvinen et al.

required upfront design, while others were straightforward programming tasks. Four
tasks were implemented completely in pairs and five completely solo. For the rest of
the tasks the average share of the pair work was dominating: 68% pair vs. 32% solo.

Due to the space limitation, we cannot present the metrics collected during the pi-
lot project in this paper. The data concernig various activities of the designers and the
detailled information about pair-solo work distribution can be found in [20]. In the fol-
lowing sections we present the results concerning software quality, competence build-
up and motivation.

5.1 Software Quality

When the designers make the official release of the code, any faults found result in a
trouble report (TR) being written. A TR describes the problem, the test which finds the
fault and so forth. These TR’s are the principal measure of code quality at the company.
To assess the impact of the pilot on the code quality we compared the TR count from the
pilot to the TR count from a previous delivery which is similar in size and complexity.
The analysis showed a 5.5% decrease in TR’s. In addition to the quantitative measure,
a formal code review was conducted at the end of the pilot. The review found that the
code produced during the pilot was of the same quality as code produced previously.

To assess the impact of the introduced agile practices on the subsystem testers, each
of the testers was interviewed. The feedback provided by the testers was mainly posi-
tive. The first advantage of the pilot from the testers’ point of view was that the planning
game and the division of the system requirements into tasks. Usually, the testers start
their work when the code is almost complete, but in the pilot, writing the tests could be
started much earlier. This was mainly because the tasks produced by the designers in the
planning game had enough information for the testers to start their work. Consequently,
this evened out the testers workload.

Another positive impact of the pilot noticed by the testers was improved communi-
cation. Getting answers to questions about the code was easier: all the designers were
sitting in the same room and thanks to pair programming there were always at least
two designers who were familiar with the particular piece of code a tester was asking
about. As for the non-positive impact, the testers found that the number of faults found
remained on the same level as before. One could argue here that this was due to the test-
ing which was more efficient in the pilot. Another observation concerned an increase
in basic (beginner’s) mistakes. This could be attributed to the learning process taking
place at the same time.

5.2 Competence

A very important aspect of the pilot was to measure how pair programming can improve
the competence level and knowledge sharing of the designers. The designers were asked
to rate their competence improvement subjectively in a questionnaire (see Section 5.5
for more details). They also answered a short quiz on both subsystems before and after
the pilot. The quiz was the same on both occasions and it contained questions covering
both subsystems completely. The results of the quiz before the pilot and the quiz after
the pilot were compared in an effort to assess any change in competence.

Software Process Improvement with Agile Practices 87

The result from the first quiz was subtracted from the maximum available points.
This number represented how much room for improvement the designer had. The result
from the first quiz was then subtracted from the results of the second quiz. This number
showed how much the score had changed after the pilot. An improvement percentage
was calculated from these two numbers according to the formula shown below:

Improvement% =
t2 − t1

max − t1
·100%

where t1 is the score from the first quiz, t2 the score from the second quiz and max is
the maximum score of the quiz.

If a designer received 40 points out of 50 available on the first quiz, the designer’s
room for improvement was 10 points. If the designer then scored 45 points on the sec-
ond test, the actual improvement was 5 points. Dividing 5 by 10 gives a competence
improvement percentage of 50. Table 1 shows the competence improvement of each
designer during the pilot. The results show a clear improvement in competence – the

Table 1. Percentage of competence improvement

Subsystem 1 Subsystem 2 Total
Designer 1 42 31 37
Designer 2 59 67 63
Designer 3 100 33 67
Designer 4 30 7 19
Team 58 35 47

whole team gained 47%. The largest overall competence improvement was 67%, while
the smallest was 19%.

5.3 Motivation

The results concerning motivation and job satisfaction are based on semi-structured
interviews conducted before and after the pilot with each designer. At the beginning of
each interview, the designers also answered a questionnaire, which included statements
to be rated on a 5-point scale (agree – disagree) and some open-ended questions. As the
sample was small, the results of the questionnaires were not analyzed using statistical
methods; they were used as an additional basis for discussion. Each interview session
was recorded and took approximately an hour.

The pre-pilot interviews and questionnaires concerned general issues in job satisfac-
tion and motivation: work content, the results of work, management, communication
and social environment. Before the change in work arrangements, the questionnaires
and interviews indicated that the designers liked their jobs, were well aware of the
goals and expectations of their work, and had a sense of responsibility of the results.
They were also committed to their work and rather content with the social environment,
besides some communication aspects between teams/projects. Overall, they were rather
content with their jobs. When explicitly asked about their work motivation, the design-
ers considered their motivation to be rather good; on a school grade scale from 4 to

88 J. Auvinen et al.

10, most designers gave an eight. Things that they found motivating in work included
salary, challenging problems, good team, varying assignments, and learning. That is, the
designers seemed to have a pragmatic view on work and job satisfaction. This down-
to-earth stance reflected also on their expectations concerning the pilot. They had a
somewhat positive attitude, but they did not expect any miracles. One can also note that
answering motivation-related questions had become somewhat of a routine.

The nature of the post-pilot interviews was slightly less general in nature, excluding
issues which were in no way affected by the pilot, such as management. On the other
hand, the post-pilot questions concerned also how the designers found specific features
of the pilot, such as pair programming, and how they affected their work. Concerning
motivation, the results of the analysis on general and pilot-specific issues differ from
each other to some extent. Regarding general issues in job satisfaction, no significant
changes could be seen compared to pre-pilot results. The designers did not explicitly
acknowledge any change in the motivation level. The same general ingredients were
still present: a pragmatic view on work, liking the job, the environment, and awareness
and sense of responsibility over results. However, the pilot-specific answers reflected
the actual changes in work in more detail.

The most noticeable pilot feature was pair programming. The designers found that it
increases the sense of team work, slightly increases the sense of responsibility, smoothes
out fluctuations in alertness, and facilitates learning. Pair programming also increases
feedback from peers as discussions and answers immediately follow action. The most
notable issue in pair programming was learning. The challenge of new things was re-
garded as motivating from the beginning and learning always motivating. At the same
time, learning and enlarging one’s area of experience also increases the meaningfulness
of work. In addition to the positive effects, the designers also discussed the downsides
of pair programming: shared pair programming schedule competes with other duties
and pair work requires patience and humility. Additionally, some mentioned that pair
programming was strenuous; the other side of keeping alert.

Another important pilot feature was the planning game. The designers liked the fact
that the work was divided into smaller entities making it more systematic. But a men-
tioned drawback was that the pair wanted to get tasks done as fast as possible, a sense of
completion frenzy. In summary, pair programming and planning game (task planning)
induced a sense of learning, feedback, problem solving, responsibility, alertness, and
improved structure of work.

Looking at the effects of the pilot practices from a job enrichment perspective, the
detailed effects are also connected with motivation. According to Hackman and Old-
ham, as presented in [32], five core job characteristics form the basis for job outcomes.
These characteristics include skill variety, task identity, task significance, autonomy,
and feedback. Comparing these with the findings in the pilot, it can be seen that all
of these characteristics were affected by the changes in work during the pilot. New
challenges and learning give skill variety and possibility for variation at work. Better
structured work content improves task identity. Task significance is increased as the
knowledge on related tasks grows. Ongoing interaction with peers increased feedback.
The autonomy of work is to some extent decreased by pair programming, but the ef-
fect on felt responsibility on the other hand compensated by the increase in alertness.

Software Process Improvement with Agile Practices 89

The core job characteristics, in turn, influence how work is experienced with regard to
three aspects: meaningfulness of work (derives from skill variety, task identity, and task
significance), knowledge of actual results (feedback), and responsibility for outcomes
(autonomy). These three aspects, together with an individual’s need for growth, lead to
job outcomes, one of which is a high level of motivation and satisfaction.

6 Discussion

As we showed in the previous section, the piloted implementation process was a suc-
cess. The selected agile practices were modified to suit the existing environment and
three of them were followed throughout the pilot. In spite of the new arrangements, the
deliveries were made on time. However, regarding the three main goals, the outcome
of the pilot was slightly different than we had expected. While the focus before the pi-
lot was mainly on motivation and software quality, the main benefit of the pilot seems
to be competence build-up. This implies that this method of working should be used
specifically when there is a need for efficient competence build-up. The next two sec-
tions present possible explanations for the goal-specific results and the experiences and
improvements concerning the selected agile practices. The discussion continues with
directions for future work.

6.1 Goal-Related Issues

The fact that the designers did not explicitly acknowledge any change in motivation
level after the pilot can relate to three things. First, the pilot had both positive and
negative effects, which were found to balance out each other. Second, the pilot was
known to last only for a certain time and many aspects of work remained the same even
during the pilot. The third possible reason is related to the already stated impression of a
pragmatic attitude towards work, motivation, and also measuring motivation. The pilot
was possibly regarded as a refreshing interlude which broke the daily routines, but the
designers were aware of the provisional nature of the pilot arrangements. In addition,
a number of factors which in theory have an influence on the motivation level were
not affected by the pilot. A more long-running and stable work arrangement can weigh
more than temporary changes.

The question of quality, in turn, is also open for discussion. The design team was
not a representative sample of a normal design team at the company, mainly due to
the focus on competence build-up, which was chosen as a goal. The competence areas
concerned especially the application domain and the existing base implementation of
the subsystems. This fact might be the one most dominant factor to give uncertainty
if the work at hand can be carried out with good enough quality and in timely fash-
ion. Nevertheless, the outcome of the implementation was working code delivered on
time.

With regard to schedule, we saw that the lead time and used man hours did not grow
because of the introduction of pair programming. There is no clear reason why this is
the case. This might relate to the way the process was monitored. Usually the work
hours are not monitored with half-an-hour precision, and the coffee breaks and lunches

90 J. Auvinen et al.

are just reported to effective hours. Since it now was possible to calculate the truly
effective hours, the used effective man hours might have grown, but it is impossible
to tell exactly how much. Also, the increased attention to the designers’ work and the
more accurate monitoring of work hours was likely to increase the efficiency.

6.2 Experiences on Agile Practices

The pilot provided useful experiences considering the selected agile practices. The first
improvement of the pilot was project monitoring. When originally stating the goals,
transparency was not an issue. However, this was the first thing mentioned at the first
steering meeting of the pilot. Previously, the data about the status of the project was
vague, but during the pilot the managers and the testers could get tangible deliverables,
thanks to the planning game and smaller tasks.

From the four selected practices we saw that the planning game was the most ben-
eficial. It gave clarity to the implementation work itself, and furthermore helped in
tracking the timeliness of a process. On the other hand, the customer on site was not
used at all as there was no need for that. The existing organization already gives the
support needed for implementation phase. Furthermore, collective code ownership was
implemented so that a pair does all the needed changes for a feature (or a task) in two
subsystems. Normally there would be two different teams, one making changes only
to one subsystem. This new approach seemed to help in work allocation and overall
function understanding, for example.

A couple of improvements were made to the piloted process already while executing
the pilot. Use case realizations in the form of sequence diagrams were seen as good
documents to implement in pairs. Tasks that are easy to implement should not be done
in pairs. The team also noticed that some functionality is easily left out of the original
tasks as the task definitions were too specific. On the other hand, it was not always easy
to see what should be done for a task. Thus, the designers chose to combine some of
the tasks.

6.3 Future Work

One of the suggestions for future study that was identified after the pilot was task allo-
cation and how it could be formalized to optimize different factors, such as competence
build-up or lead time. The basic idea is that each task should be assigned a complexity
level (High, Medium, Low) and an estimated completion time. Competence areas should
be defined. Those areas can be based on functionality of the system or on architectural
elements. Each task should belong to one competence area. Each designer should be as-
signed a competence level for every competence area (High, Medium, Low). The tasks
should then be assigned based on the sum of the competence of the pair. E.g., a pair of
Low + Low competence with respect to the competence area that the task belongs to,
should only implement tasks of Low complexity, while a pair of Low + High compe-
tence should do tasks of Medium complexity or higher.

Using these classifications on tasks and designers, the tasks may be allocated to
people in order to optimize different aspects of the development. For example, if the
lead-time or more precisely the total amount of used man-hours, would be the object
function, an optimization function could be of the form:

Software Process Improvement with Agile Practices 91

n

∑
i=0

[
te
i tc

i

a
(2 − cx

i + cy
i

2
)+ te

i]

where te
i is the estimated amount of man-hours needed to implement the task i; tc

i ∈
[0..2] is the complexity of a task i; cx

i ∈ [1..3] are competence factors for a task i for
designer x, and finally a is a parameter for adjusting competence impact on implemen-
tation time. We discuss more on this optimization function and give some examples of
its application in [20].

This type of a task allocation can also affect job satisfaction. More time is left
for learning whenever it is possible. By taking time, competence and complexity into
consideration, we can decrease some of the downsides of pair programming, such as
competence build-up at a time when project deadline is approaching fast. Another mod-
ification which can facilitate the use of agile practices as methods for job enrichment is
having a limited, specific goal, such as job rotation, training new team members or task
planning.

7 Conclusions

In this paper we presented a case study where a number of agile practices were intro-
duced in the design department of a large company in the context of a real software
project. We showed how we adjusted these practices in order to integrate them into the
existing software process. The paper presented the background and goals for the pilot,
the measures for the outcome of the pilot, and the actual results. The pilot concerned a
small number of designers during a limited period of time.

The pilot plan originally included four agile practices, three of which were finally fol-
lowed: collective code ownership, pair programming, and the planning game. While the
first two provided a good experience by being helpful in overall function understanding
and building competence, we found the planning game to be the most beneficial prac-
tice. The planning game with its tasks gives structure and clarity to the implementation
work itself as well as increases the transparency of following the schedule. The plan-
ning game should be made an integral part of the design work as a method for work
planning and progress status follow-up.

The goals of the case study were to pilot pair programming, improve the motiva-
tion and build up the competence of the designers. While two of the stated goals were
reached clearly, pair programming was introduced and the increased competence was
both felt and measured, the results concerning the original focus area, the motivation
of employees, remained somewhat oblique and requires further study. This suggests
that pair programming should be used specifically when there is a need for efficient
competence build-up. The effects of learning on job satisfaction, again, can be argued
for.

The value of this pilot lies ahead: the pilot gave guidelines on how to proceed with
the development of the implementation process practices. Also, it seems to be benefi-
cial to test the ideas on a wider scale, e.g. within system design or testing, and to take
competence build-up and lead time into account in task allocation. On the whole we
concluded that the pilot was a success. It demonstrated that is worthwhile to use pair

92 J. Auvinen et al.

programming, the planning game and collective code ownership in the design and im-
plementation. Agile methods could be refined to suite the existing settings of a large
company.

References

1. Ilieva, S., Ivanov, P., Stefanova, E.: Analyses of an Agile Methodology Implementation. In:
Proceedings of the 30th EUROMICRO Conference, IEEE Computer Society (2004) 326–333

2. Jedlitschka, A., Hamann, D., Göhlert, T., Schröder, A.: Adapting PROFES for Use in an
Agile Process: An Industry Experience Report. In: Proceedings of 6th International Confer-
ence on Product Focused Software Process Improvement – PROFES 2005. Lecture Notes in
Computer Science, Springer (2005)

3. Murru, O., Deias, R., Mugheddu, G.: Assessing XP at a European Internet Company. IEEE
Softw. 20 (2003) 37–43

4. Rumpe, B., Schröder, A.: Quantitative Survey on Extreme Programming Projects. In: Third
International Conference on Extreme Programming and Flexible Processes in Software En-
gineering – XP2002, Alghero, Italy (2002) 95–100

5. Back, R.J., Milovanov, L., Porres, I.: Software Development and Experimentation in an
Academic Environment: The Gaudi Experience. In: Proceedings of 6th International Con-
ference on Product Focused Software Process Improvement – PROFES 2005. Lecture Notes
in Computer Science, Oulu, Finland, Springer (2005)

6. Reifer, D.J.: How Good are Agile Methods? IEEE Software 19 (2002) 16–18
7. Salo, O., Abrahamsson, P.: Evaluation of Agile Software Development: The Controlled Case

Study approach. In: Proceedings of the 5th International Conference on Product Focused
Software Process Improvement PROFES 2004. Lecture Notes in Computer Science, Springer
(2004)

8. Hedin, G., Bendix, L., Magnusson, B.: Teaching Extreme Programming to Large Groups of
Students. J. Syst. Softw. 74 (2005) 133–146

9. Melnik, G., Maurer, F.: Introducing Agile Methods: Three Years of Experience. In: EU-
ROMICRO, IEEE Computer Society (2004) 334–341

10. Melnik, G., Maurer, F.: A Cross-Program Investigation of Students’ Perceptions of Agile
Methods. In: 27th International Conference on Software Engineering, St. Louis, Missouri,
USA, ACM (2005) 481–488

11. Highsmith, J., Cockburn, A.: Agile Software Development: The Business of Innovation.
IEEE Computer 34 (2001) 120–122

12. Canfora, G., Cimitile, A., Visaggio, C.A.: Working in Pairs as a Means for Design Knowl-
edge Building: An Empirical Study. In: Proceedings of the 12th International Workshop on
Program Comprehension (IWPC2004), Bari, Italy (2004) 62–69

13. Boehm, B.: Get Ready for Agile Methods, with Care. IEEE Computer 35 (2002) 64–69
14. Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley (1999)
15. Lindvall, M., Muthig, D., Dagnino, A., Wallin, C., Stupperich, M., Kiefer, D., May, J.,

Kähkönen, T.: Agile Software Development in Large Organizations. IEEE Computer 37
(2004) 26–33

16. Spayd, M.K.: Evolving Agile in the Enterprise: Implementing XP on a Grand Scale. In:
Agile Development Conference, Salt Lake City, UT, USA, IEEE Computer Society (2003)
60–70

17. Zahran, S.: Software Process Improvement: Practical Guidelines for Business Success.
Addison-Wesley (1998)

Software Process Improvement with Agile Practices 93

18. : Softswitch in Mobile Networks. Ericsson AB. 284 23-3025 UEN Rev A (2005) White
Paper.

19. Hirkman, P., Milovanov, L.: Introducing a Customer Representative to High Requirement
Uncertainties. A Case Study. In: Proceedings of the International Conference on Agility –
ICAM 2005, Otaniemi, Finland (2005)

20. Auvinen, J., Back, R., Heidenberg, J., Hirkman, P., Milovanov, L.: Improving the Engineer-
ing Process Area at Ericsson with Agile Practices. A Case Study. Technical Report 716,
TUCS (2005)

21. Williams, L., Kessler, R.: Pair Programming Illuminated. Addison-Wesley Longman Pub-
lishing Co., Inc. (2002)

22. Cockburn, A., Williams, L.: The Costs and Benefits of Pair Programming. In: Proceedings of
eXtreme Programming and Flexible Processes in Software Engineering – XP2000, Cagliari,
Italy (2000)

23. Constantine, L.L.: Constantine on Peopleware. Englewood Cliffs: Prentice Hall (1995)
24. Johnson, D.H., Caristi, J.: Extreme Programming and the Software Design Course. In:

Proceedings of XP Universe, Raleigh, NC, USA (2001)
25. Müller, M.M., Tichy, W.F.: Case Study: Extreme Programming in a University Environment.

In: Proceedings of the 23rd International Conference on Software Engineering, Toronto, On-
tario, Canada, IEEE Computer Society (2001) 537–544

26. Williams, L.A., Kessler, R.R.: Experimenting with Industry’s Pair-Programming Model in
the Computer Science Classroom. Journal on Software Engineering Education 10 (2000)

27. Nosek, J.: The Case for Collaborative Programming. Communications of the ACM 41 (1998)
105–108

28. Back, R.J., Milovanov, L., Porres, I.: Software Development and Experimentation in an
Academic Environment: The Gaudi Experience. Technical Report 641, TUCS (2004)

29. Wells, D.: Extreme Programming: A gentle introduction website. (Online at:
http://www.extremeprogramming.org/)

30. Jeffries, R., Anderson, A., Hendrickson, C.: Extreme Programming Installed. Addison-
Wesley (2001)

31. Beck, K., Fowler, M.: Planning Extreme Programming. Addison-Wesley Longman Publish-
ing Co., Inc., Boston, MA, USA (2000)

32. Mitchell, T.R., Jr., J.R.L.: People in Organizations: An Introduction to Organizational Be-
havior. McGraw-Hill (1987)

J. Münch and M. Vierimaa (Eds.): PROFES 2006, LNCS 4034, pp. 94 – 111, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Assessing Software Product Maintainability Based on
Class-Level Structural Measures

Hans Christian Benestad, Bente Anda, and Erik Arisholm

Simula Research Laboratory, P.O. Box 134, NO-1325 Lysaker, Norway
{benestad, bentea, erika}@simula.no

http://www.simula.no

Abstract. A number of structural measures have been suggested to support the
assessment and prediction of software quality attributes. The aim of our study is
to investigate how class-level measures of structural properties can be used to
assess the maintainability of a software product as a whole. We survey,
structure and discuss current practices on this topic, and apply alternative
strategies on four functionally equivalent systems that were constructed as part
of a multi-case study. In the absence of historical data needed to build
statistically based prediction models, we apply elements of judgment in the
assessment. We show how triangulation of alternative strategies as well as
sensitivity analysis may increase the confidence in assessments that contain
elements of judgment. This paper contributes to more systematic practices in
the application of structural measures. Further research is needed to evaluate
and improve the accuracy and precision of judgment-based strategies.

1 Introduction

Software engineering is a complex problem solving activity with conflicting quality
goals [1]. Quality attributes that are difficult to measure may therefore receive little
attention. A prime example of this is the quality attribute known as maintainability,
defined as the capability of the software product to be modified [2]. Researchers have
proposed a number of structural measures as indicators of maintainability. For
example, the CBO (Coupling Between Objects) measure is defined as the count of
classes to which a class is coupled. Two classes are coupled if one class uses methods
or instance variables of the other. An increased CBO measure is hypothesized to
indicate more difficult testing, maintenance and reuse [3]. Existing research on the
application of structural measures have focused on analyzing historical data to build
product specific prediction models that can identify error-prone classes or classes that
will be difficult to maintain [4].

In some situations, the required focus of an assessment is on the software product
as a whole, as opposed to on individual classes. For example, a software acquirer may
want to assess the maintainability of a software system prior to acquisition, or a
software provider may want to monitor the maintainability of a system during its
construction. In this paper, we investigate the use of structural measures as indicators
of quality attributes at the system level, focusing on maintainability in particular.

Assessing Software Product Maintainability Based on Class-Level Structural Measures 95

Based on current practices reported in literature, alternative strategies for conducting
system level maintainability assessment from structural measurements are identified
and discussed. We explore possible strategies by applying them on four functionally
equivalent software systems that were developed as part of a multi-case study
conducted by our research group. In this study, we needed to rank the four systems
with respect to likely future maintenance effort. The historical data required to build
statistically based prediction models was not available; hence we had to use elements
of judgment in our assessment. To increase the confidence in the assessment we cross
examined results from applying alternative strategies, and from altering judgment
based parameters. These techniques, called triangulation and sensitivity analysis are
intuitive and straightforward; however our survey indicates that they are rarely put to
use in practice. A possible explanation is that few guidelines exist for identifying and
selecting alternative assessment strategies. The main contribution of this paper is to
identify and structure possible assessment strategies, in order to support future
measurement initiatives in their selection and combination of alternative strategies.

The remainder of this paper is structured as follows: Section 2 describes related
work. Section 3 discusses alternative strategies for selecting and interpreting
structural measures for system-level assessment of maintainability. Section 4 applies
alternative strategies to our systems under study. Section 5 concludes.

2 Related Work

This section outlines related work, focusing on research that has used structural
measures to assess software maintainability.

The Goal/Question/Metric paradigm [5] prescribes development of measurement
models that links measurement goals to operational questions that can be answered by
measuring aspects of products, processes or resources. The method is useful in order
to ensure goal-driven and purposeful measurements, but must be combined with
domain knowledge specific to the quality focus in question.

Hierarchical quality models, [2, 6, 7], relate external quality attributes (such as
maintainability) to internal attributes and measures of internal attributes. These
models provide a useful framework for designing measurement programs related to
software quality, but still provide limited guidance in the specifics of selecting and
interpreting structural measures.

Structural measures of software. Early structural measures included lines of code
(LOC) and complexity measures by McCabe [8] and Halstead [9]. These measures are
commonly adapted and used for object-oriented systems, with class-level
interpretations such as “LOC per class”. The Maintainability Index (denoted MI) is a
polynomial based on these measures that was suggested and validated as an indicator
of maintainability by Oman [10]. With the advent of object-orientation, additional
measures for size, complexity, inheritance, coupling and cohesion were suggested.
The set of measures by Chidamber & Kemerer [3] (denoted CK) is among the most
popular. The CK measures were hypothesized to be indicators of maintainability
aspects, such as analyzability and testability, and have been empirically validated and
used in a number of contexts [11].

96 H.C. Benestad, B. Anda, and E. Arisholm

Application of structural measures. A number of studies have applied structural
measures to assess system-level design properties. We conducted a survey with the
goal of characterizing assessment strategies that were employed in the studies [3, 6,
12-22]. These strategies are discussed further in the next section, and we summarize
to what extent the different strategies are used in the surveyed studies1.

3 Strategies for System Assessment Based on Structural Measures

In order to facilitate the investigation of assessment strategies, we choose to subdivide
an overall strategy into the categories of selection, combination, aggregation and
interpretation. Selection is the process of selecting the structural measures that best fit
the purpose of the measurement initiative. Combination is the process of providing a
combined view of the values for the selected structural measures, at a given
granularity level. Aggregation is the creation of a derived measure at the system level,
based on class-level measures. Interpretation is the assignment of a meaning to the
measurement values with respect to the quality attributes of interest. Table 1
summarizes options that were identified for each sub-strategy. The options are not
mutually exclusive. Furthermore, sub-strategies can in principle be applied in any
order. In particular, an important decision to be made is the order in which
aggregation and combination are performed: Measures may be combined at the class
level before this combined class-level measure is aggregated to the system level.
Alternatively, each class-level measure may be aggregated to the system level before
the system-level measures are combined.

Table 1. Sub-strategies and options for creating a system level assessment strategy

Selection Aggregation Combination Interpretation
1. Tool-driven

selection
2. Pre-defined set of

measures
3. Evidence-based
4. Statistical analysis

of structural
measures

5. Univariate
regression analysis

1. Summary
statistics

2. Distribution
analysis

3. Outlier
analysis

4. Visualization:
Histograms,
box plots, pie
charts, scatter
plots

1. Inspection of
measures related to
common quality
attribute.

2. Multi criteria
decision aid
techniques

3. Multivariate
regression analysis

4. Visualization: Kiviat
charts, Chernoff
faces

1. Relative
2. Thresholds
3. Trend

analysis
4. Prediction

models
5. Visualization

; Pie charts,
line charts

If n measures are collected for each of k classes, aggregation, combinations and
interpretation can be expressed by:

1 Details from the survey can be found at: http://www.simula.no/departments/engineering/

projects/ooad/StudyData/StudyDataProfes2006/surveytable

Assessing Software Product Maintainability Based on Class-Level Structural Measures 97

mij Measure value for measure i, class j.
Cj=fc(m1j..mnj) Combined view of a class j.
Ai=fa(mi1..fmik) Aggregated view for a measure i to a

higher level of granularity
M1=fm1(C1..Ck) Aggregation of combined views to the system level
M2=fm2(A1..An) Combination of aggregated views at the system

level
I=fI(mij ∨ Cj ∨ Ai ∨ M1 ∨ M2) Interpretation of one or more measures or views

The following sections discuss the options summarized in Table 1 in further detail.

3.1 Selection

Tool-driven selection is probably a common practice when structural measures are
selected. For example, we believe that part of the popularity of the LOC measure can
be contributed to the wide availability of tools that can count lines in text files. More
advanced tools, such as Borland Together [23], collect a wide selection of structural
measures. The selected measures should support the goals and questions of the
specific measurement initiative, regardless of the sophistication of the tools
employed.

A number of pre-defined sets of measures have been suggested by researchers.
These sets are hypothesized to be indicators of aspects of maintainability, and they
have to a varying degree been empirically validated. Popular sets include the CK
measures and the MOOD measures [24]. Most of the studies in our survey used a pre-
defined set of measures.

With evidence-based selection practitioners search for empirical evidence on
questions that are similar to their own, using the principles of evidence-based
software engineering [25]. For example, the survey by Briand & Wüst [4] provides
concrete recommendations on types of measures to consider as indicators of different
quality attributes. Although the infrastructure and extent of empirical knowledge is
not yet sufficient for wide adaptation of the evidence-based selection strategy [26],
mature organizations may still gain from an evidence-based strategy because it better
supports changing goals and questions, than do the use of a pre-defined set of
measures.

Selection based on statistical analysis of structural measures, addresses the
weakness of the former strategies where the selections are not based on the
particularities of the systems under study. Such analysis can address the
discriminating power and orthogonality of structural measures: If the interpretation of
measure values is based on comparison with other versions or systems, we consider it
advantageous to select measures that can discriminate between the designs in
question. For example, if coupling by data abstraction (attribute has class as type) is a
rare construct in the analyzed systems, this measure would be a non-optimal choice
for measuring coupling. Simple summary statistics can be used to identify measures
with low variance or with few non-zero observations. Interpretation is simplified if
orthogonal measures are selected, meaning that the same design aspects are not
measured more than once. Principal component analysis (PCA) [27] is a statistical
method that addresses both the discriminating power and orthogonality.

If it is possible to collect historical data that are direct or indirect measures of
the quality attribute of interest, a univariate regression analysis can be conducted.

98 H.C. Benestad, B. Anda, and E. Arisholm

The purpose of the analysis is to obtain historically based evidence on a relationship
between a specific structural measure and a given quality attribute. This strategy is
used in studies surveyed by Briand and Wüst [4].

In practice, a specific strategy for selecting structural measures may contain
elements of several of the above described options. Availability of tools may impose
limitations on which structural measures can be considered. The availability of tools
may be limited e.g. due to lack of support for a given technological platform.
Furthermore, a combined strategy is to use statistical analysis of structural measures
to adjust a predefined set of measures to better be able to discriminate between
systems. An example of a combined strategy is provided in Section 4.1.

3.2 Combination

Structural measures should ideally measure one and only one aspect of design. The
complex concept of maintainability can be expected to be influenced by several
aspects of design. For example, the effort required to comprehend a class may be
influenced by size, complexity and coupling. A combined view must be created for
these measures to support the assessment of the required comprehension effort. It is
inherently difficult to merge largely unrelated measures into a derived measure that
can serve as an indicator of a quality attribute of interest. However, some formal or
informal combination is required if several structural measures influence on the
quality attribute.

Some of the surveyed studies perform combination by inspecting measures that are
believed to influence a common quality attribute, c.f., [15, 21]. If there is a consistent
pattern of more desirable measure values for System A than for System B, the
interpretation is that System A is more desirable than System B with respect to the
chosen quality attribute (see Section 3.4 regarding interpretation).

Using the weighted sum of several structural measures is an alternative strategy. A
weight is assigned to each measure to account for differences in measurement units
and importance. Then the sum of the products of the weight and each measure value
is computed. The complicating aspect of different measurement units are frequently
resolved by converting the measure values to a common, ordinal scale with scores
from e.g. 1 to 6. There are two main problems with this strategy: First, from a
measurement theoretical point of view it can be questioned whether weighing and
summing are legal operations. Second, the derived measure is difficult to interpret as
a standalone measure. Third, the weighted sum method is compensating, meaning that
low scores are compensated by high scores, making relative comparison between
software artifacts difficult. Bansiya and Davis [6] use a weighted sum strategy as part
of establishing a hierarchical quality model that links internal design properties to
external quality attributes. Stamelos et al. [22] reports from the use of the tool Tau
Logiscope [28], which uses a similar strategy to produce combined measures meant as
indicators of maintainability. The Maintainability Index [10] combines three (or four,
in one version) traditional code measures into a polynomial to produce a single valued
indicator of maintainability.

The weighted sum strategy is well known, and even used in every day situations.
The technique belongs to the larger class of multi criteria decision aid (MCDA)
techniques. Morisio et al. [29] have proposed the use of another MCDA technique,

Assessing Software Product Maintainability Based on Class-Level Structural Measures 99

known as Profile comparison, in the context of software artifact evaluation. Profile
vectors are constructed from threshold values for a set of structural measures. For
example, if Very High values for measures m1, m2 and m3 are judged to start at 20, 30
and 100, respectively, the profile vector is:

Very High =[m1>=20, m2>=30, m3>=100]

The performance vector, i.e., the actual measures for a software artifact is
iteratively compared to each profile vector, testing whether a “sufficient” majority
supports the classification, and classification is not “strongly” opposed by a minority.
For example, the performance vector

ClassA =[m1=22, m2=20, m3=150]

is classified as Very High using the simple rule that the majority of the measures
should support the classification. Weights can be assigned to reflect relative
importance between the measures, and specific veto-rules can be specified. The use of
this technique is illustrated in Section 4.3.

With multivariate regression analysis, historical data can be used to construct
models that predict, e.g., error-prone classes or classes that will be difficult to
maintain. A common strategy is to first use Principal Component Analysis (PCA) and
univariate regression to identify candidate measures to be included in the model.
Employing various variable selection heuristics, a multivariate prediction model is
built for predicting the quality attribute of interest. The technique is described and
used in [30].

Visualization. Kiviat charts are frequently used to support combinations that aim at
comparing systems or comparing against threshold values. Drake used the shape of
Kiviat charts to identify the “Albatross syndrome”, which was a recurring pattern of
undesirable values [14]. With simple goals, such as “Check that all aggregated values
are below a threshold” or “Does Product A have consistent lower scores than Product
B” this technique can be effective. Chernoff faces is an alternative technique that can
be used for visualizing multi-dimensional data: Each dimension is represented by a
facial feature, in order to take advantage of the capability of the human brain to
recognize human faces.

If it is possible to collect historical data that we consider valid measures of the
maintainability of the system, the regression-based methods are likely to produce the
most trustworthy results. This is the strategy of most of the studies in the quality
model survey by Briand&Wüst [4]. Since these models usually operate on the class
level, combined measures must still be aggregated according to some of the
techniques discussed in Section 3.3 to produce a system level measure. However, as
already pointed out, historical data may not be available if the goal is to assess a
system for aspects of maintainability while the system is still under development.
Techniques that include elements of judgment must be used in these situations.

3.3 Aggregation

Summary statistics are simple and standard techniques to describe a larger data set
using one or a few numbers, see for example [3, 15, 21, 22]. However, there are many
choices to be made when calculating the summary statistics, as discussed below.

100 H.C. Benestad, B. Anda, and E. Arisholm

Sum values vs. central tendency. In the study by Sharble and Cohen [21], the sum
of the measure values was used as a main aggregation method to compare the
maintainability of two systems developed using two alternative design methods. This
approach may be inappropriate. The relationship between the structural measures and
maintainability may be nonlinear, but using the sum assumes a linear relationship.
Furthermore, by using the sum, the measures are confounded with size, because larger
systems will have higher measure values simply due to size. Obviously, size (e.g. the
number of classes) is not unimportant, and can be a candidate as a separate measure,
c.f., [6]. We thus believe that measures of central tendency (i.e., the mean and
median) are more appropriate aggregation operators than sum, at least in the context
of maintainability assessments.

Mean values vs. median values. Mean value tends to be the most frequently used
measure of central tendency in the surveyed studies. In some cases, the median value
would have been a preferred choice: Distributions of structural measures tend to be
skewed to the left; hence the median is typically lower than the mean. When
complementing the analysis with a specific analysis of the rightmost part of the
distribution (high values and outliers) very high values will not be accounted for twice
if the median is used instead of the mean. However, mean value remains the preferred
choice when aggregation into one single number is necessary, because the important
information resident in very high measures is hidden by median values.

Dispersion and distribution analysis. With increasing variance of complexity
measures, a greater part of the classes have higher or lower complexity. Using the
same reasoning as above, the penalty of analyzing a very complex class may more
than outweigh the gain of analyzing the very simple class. Measures of dispersion are
therefore important to consider. Low variance indicates a balanced design, with
functionality and complexity distributed along a broad set of classes. One option is to
calculate the variance or standard deviation of each measure. However, more
information is retained from the original data set by creating frequency tables: A set
of intervals are defined and the number of classes within each interval is counted. In
the surveyed studies, this is the predominant method for analyzing the nature of the
distributions, see e.g. [3, 15].

Outlier analysis. Outliers in measure values can be identified by using scatter plots,
or with statistical methods. They may contain important information about the nature
of design. There may be good reasons for a few classes in a system to have very high
measures for individual structural attributes. For example, the use of some widely
accepted design patterns can result in high measures of attributes, methods, or
coupling. To be able to conclude whether the existence of an outlier can be defended,
one may resort to the costly procedure of manual code inspection. Classes that are
outliers with respect to several independent measures can more immediately be
assumed to be an undesirable aspect of system design, even without manual
inspection. Principal component analysis, discussed in Section 3.1, can be helpful in
identifying the dimensions that should be included in such analysis. An example of
detection of two-dimensional outliers using scatter plots is provided in Fig. 2.

Visualization: Histograms are frequently used for illustrating tabulated frequency of
values of structural measures. Box plots provide a more compact technique to visually
compare dispersions of systems. An example of the use of box plots is provided in Fig. 1.

Assessing Software Product Maintainability Based on Class-Level Structural Measures 101

In summary, using the sum or the mean values of structural measures at the class
level provide very approximate measures of the overall design of a system. Unless
linear relationships exist between the measures and the external quality attributes of
interest, the sum or mean values may even be misleading. The median combined with
measures of the variance and outliers might thus be a better choice in many situations.
By using frequency analysis, more information from the original dataset is retained,
and it is possible to take different kinds of non-linear relationships into account.
However, retaining more information in the aggregation step will increase the
complexity of the interpretation, discussed in the next section.

3.4 Interpretation

Interpretation is the assignment of a meaning to the measurement values with respect
to the quality attribute of interest. Interpretation can occur as a final step after the
combination and aggregation of measurement values, in which case the aim is to
answers the questions related to some quality attribute. It can also occur at the class
level, for example if the profile comparison technique discussed in Section 3.2 is
employed. The relationships between the internal measures and the external quality
attributes can only be established to a certain extent. The tolerated level of uncertainty
is dependent on the intended use of the measures. For example, the uncertainty should
be low if the goal is to test some contractually specified requirement to maintainability,
hence assessment strategies that include elements of judgment may not be appropriate
in this situation. However, if the goal is to support a development team in making
reengineering decisions, judgment based strategies may provide considerable value.

Relative interpretation is the most basic principle for establishing relationships
between internal and external characteristics of a software artifact. By assuming, say,
that lower values are more desirable than high values with respect to maintainability,
it is possible to rank software artifacts regarding maintainability. The assumption of a
purely increasing or decreasing function may not hold in all cases: A system with
deep inheritance trees may be difficult to maintain, while a system with no use of
inheritance may not exploit useful features of object-oriented languages. Also, with a
purely relative interpretation, the magnitude of observed differences cannot be
determined. Finally, if individual measures show inconsistent patterns for a given
software artifact, it can be difficult to conclude.

With thresholds values, the range of possible measurement values is sub-divided
into intervals that are given specific interpretations. For example, intervals in a
frequency table can be assigned names such as Good, Acceptable, Suspicious and
Unacceptable. This type of interpretation is used in tools, such as Tau Logiscope [28].
The overall assessment can pay specific attention to the relative and absolute number
of Suspicious and Unacceptable classes. The main problem with the method is to
decide on interval thresholds. A similar strategy can be part of the profile comparison
technique, described in Section 3.2. Outlier detection can be considered a special
case, in which attention to extreme values are paid. Some tools, such as Borland
Together [23], support the detection of outliers by highlighting classes or packages
that exceed a predefined or user configured threshold value.

If measures from earlier versions of the product are available, trend analyses can
provide useful insights. A system can be expected to be more resilient to change if
measure values are stable between releases.

102 H.C. Benestad, B. Anda, and E. Arisholm

If prediction models based on historical data are built, the maintainability can be
more precisely quantified. For example, based on historical data it may be predicted
that the probability of a fault in a class doubles, if a measure of complexity increases
by 50 %. Attempts have been made, most notably with the Maintainability Index [10],
to create a model that is more generally applicable than local prediction models. It is
difficult to argue in favor of the general validity of such a formula. However, adapted
and used in local context, considerable value has been reported from using it [19, 31].

Visualization: Pie charts are frequently used to illustrate the relative number of
classes receiving a specific classification when using threshold values. Line charts can
be used to illustrate trends in measurement values. An example of the use of pie
charts is provided in Fig. 3.

All studies in our survey use relative interpretation as an underlying principle,
while a majority of the studies use threshold values as part of their interpretation
[12, 14, 15, 18-20, 22]

3.5 Confidence Assessment

The discussion above shows that there are many uncertainties related to an assessment
that is based on structural measures. This is not surprising, since the attempt is to
draw conclusions on complex external quality attributes. General methods exist for
assessing the confidence in methods or models that include sources of uncertainty.

The idea behind triangulation is that one can be more confident with a result if
different methods lead to the same result. The options described in Table 1 can
support the creation of alternative assessment strategies, the results of which can be
cross examined to increase the confidence in the conclusions. With inconsistent
results, it may not be possible to draw firm conclusions. In Section 4.2 and Section
4.3, an assessment is conducted with an aggregation-first and combination-first
strategy, respectively.

Sensitivity analysis is a procedure to determine the sensitivity of the outcomes of a
model to changes in its parameters. If a small change in a parameter results in
relatively large changes in the outcomes, the outcomes are said to be sensitive to that
parameter. The judgment based strategies that have been discussed in Section 3 can
be regarded as models in where parameter settings are subject to uncertainty. For
example, threshold values that are set by judgment during interpretation of
measurement values can be varied within a range of reasonable values. If conclusions
are insensitive to the threshold values used, more confidence can be put in the results.
The number of alternative assessments will grow quickly when combinations of
parameters with wide ranges of reasonable parameter values must be tested. However,
this cost can be significantly reduced by automating the execution of the models.

The surveyed studies do not report the use of triangulation or sensitivity analysis. If
model evaluation does not occur, it is difficult to put trust in the results. We provide
examples of triangulation and sensitivity analysis in the next section.

4 Assessment of the DES Systems

The overall goal of the Database of Empirical Studies (DES) multi-case study was to
investigate differences in development style of software providers, and their effects

Assessing Software Product Maintainability Based on Class-Level Structural Measures 103

on software projects and products. In the study, we contracted four Norwegian
software houses to independently construct a software system, based on the same
requirement specification. Based on incoming proposals and company descriptions,
we selected contractors that were likely to represent four dissimilar development
cultures. Agreements and interaction between the client (us) and the contractors
adhered to regular commercial and professional standards. The systems manage
information about empirical studies conducted by our group, and emphasize is on
storage and retrieval of such information. Each of the contractors spent between 431
and 943 man-hours on the project.

Our strategy for assessing and comparing the DES systems is based on the
discussions in the previous section. The goal for the assessment is to rank the four
systems with respect to future maintenance effort, and to explore the strategies
described in Section 3. Since we do not yet possess rich empirical data from the
maintenance phase, options involving regression analysis are not used; instead parts of
the assessment are qualitative and judgment-based. We apply triangulation and simple
sensitivity analysis as described in Section 3.5 to increase confidence in the results.

4.1 Selection of Measures

For tool support, we surveyed commercial tools, open source tools and tools from
academia, and chose two tools that in sum covered a total of 71 measures. The tools
selected were M-System from Fraunhofer IESE and JHawk from VirtualMachinery.
This set of measures included most measures of size, complexity, coupling, cohesion
and inheritance proposed in research literature. Due to differences in interpretation of
measures, we chose to limit the number of different tools used, and ensured that
related measures (i.e., measures that depend on common underlying information)
were collected by the same tool.

Based on the discussions in Section 3.1 we investigated four alternative strategies
for reducing the initial set of measures collected by the tools. An appropriate set of
measures for our goal would be a minimal set that measures the dimensions of design
that influence maintainability.

1. Predefined set of measures. The CK set is probably the most popular predefined set of
measures. One problem with this set is that it includes only one measure for the
concept of coupling, while it is known that fan-out (import) coupling has different
effects than fan-in (export) coupling. Also, the LCOM measure has been shown to
confound with size, and is not necessarily an appropriate measure of the concept of
cohesion. The measures included in the CK set are shown in column “CK” in Table 2.

2. Evidence-based. We adjust the CK set of metrics to overcome the problems that were
indicated above. We substitute the CBO coupling measures with separate measures
for export coupling and import coupling (PIM, PIM_EC). LCOM is substituted by
TCC, which is a normalized cohesion measure that has more discriminating power
and is less influenced by size [32]. Also, we add the LOC measure as a
straightforward measure of size, which is not included in the CK metrics. The selected
measures with this strategy are shown in column “EV” in Table 2.

3. Principal component analysis. With the two above strategies it is uncertain whether
the selected measures are orthogonal and have the discriminating power desired for
the systems under study. We performed a principal component analysis to support
the identification of such measures, and select the measure with highest loading for

104 H.C. Benestad, B. Anda, and E. Arisholm

each of the first eight principal components. We experienced that it was difficult to
interpret some of the resulting principal components as distinct dimensions of
design. Also, we found the analysis to be sensitive to the selection of input measures.
The selected measures with this strategy are shown in column “PCA” in Table 2.

4. Combination of the above. In the last approach we fine-tune the selection from the
CK and evidence-based strategy by making sure it does not contradict the PCA
analysis. The measures TCC, DIT, NOC and WMC1 had high loadings on
components that could be interpreted as “normalized cohesion”, “inheritance
height”, “inheritance width” and “size and complexity”, respectively. We therefore
retain these as selected measures. For coupling measures we replace PIM and
PIM_EC with OMMIC and OMMEC because the PCA indicated that the latter
import/export coupling pair measures more distinct aspects of design. The LOC and
WMC2 measures are removed, since they load moderately on the first principal
components, already represented by the WMC1 measure. Instead, we choose to
give double weight to the WMC1 measure in the following analysis. Since
inheritance is not a widely used mechanism in the systems under study, we choose
to halve the weight on each of the two inheritance measures. The selected measures,
which constitute our final selection, are shown in column “Final” in Table 2.

As a result of this procedure, class level measures of WMC1, OMMIC, OMMEC,
NOC, DIT and TCC were further analyzed2.

Table 2. Analysis of DES systems: Selection of measures using four alternative strategies

Measure Source Short description CK EV PCA Final
loc Trad. Lines of code X
wmc1 [3] Number of methods in class X X X X
wmc2 [3] Cyclomatic complexity. Number of

possible paths
X X

cbo [3] Coupling between objects X
ommic [33] Call to methods in unrelated class X X
ommec [33] Call from methods in unrelated class X
ih_icp [34] Information-flow based coupling X
dac_ [35] Data abstraction coupling X
pim [36] Polymorphically invoked methods X
pim_ec [36] Polymorphically invoked methods,

export version
 X

ocaec [33] Class used as attribute type in other
class

 X

noc [3] Number of children X X X
nod [37] Number of descendants X
dit [3] Depth of inheritance tree X X X
noa [38] Number of ancestors X
tcc [32] Tight class cohesion X X X
lcom [3] Lack of cohesion X

4.2 Aggregation First Strategy

We here present the results of a quantitative and qualitative assessment, using an
aggregation-first strategy. Summary statistics are provided in Table 3.

2 The raw measures and the PCA can be retrieved from http://www.simula.no/departments/

engineering/projects/ooad/StudyData/StudyDataProfes2006

Assessing Software Product Maintainability Based on Class-Level Structural Measures 105

Table 3. Analysis of DES systems, named A, B, C and D: Summary statistics. For Mean and
Standard deviation, values that deviate by more than 30% from Total values are in italics.

 Mean Median

 wmc1 om
mic

om
mic

dit Noc tcc wmc1 om
mic

om
mec

dit noc Tcc

A 6.9 7.7 7.7 0.46 0.46 0.26 3.0 2 0 0 0 0.05

B 7.8 5.3 5.3 0.75 0.59 0.17 6.0 0 0 1 0 0

C 11.4 8.6 8.6 0.0 0.0 0.20 8.0 0.5 3 0 0 0.12

D 4.9 4.7 4.7 0.83 0.76 0.11 4.0 2 1 0 1 0.0

Tot 7.1 5.8 5.8 0.67 0.57 0.17 4.0 1.0 0.0 1.0 0.0 0

 Standard deviation Sum

 wmc1 om
mic

om
mic

dit noc Tcc wmc1 om
mic

om
mec

dit noc Tcc

A 11.2 15.8 20.6 0.50 2.75 0.37 435 486 486 29 29 n.a.

B 10.3 11.8 15.6 0.81 2.37 0.31 1265 852 852 120 95 n.a.

C 12.5 25.0 16.0 0 0 0.23 273 206 206 0 0 n.a.

D 4.5 14.1 10.1 0.54 3.81 0.22 473 451 451 80 73 n.a.

Tot 9.6 14.4 15.6 0.69 2.83 0.30 2446 1995 1995 229 197 n.a.

Mean values: For mean values, the most distinct pattern can be observed for
System C, which has relatively high values for size and complexity (WMC1) and
coupling (OMMIC, OMMEC). Zero-value for the inheritance measures indicates that
inheritance is not used in this system. Despite of a cohesion value (TCC) around
average, this analysis is a first indication that the design of System C is non-optimal.
System D has a low measure for WMC1 (considered desirable), but relatively high
measures of inheritance, and low cohesion. System A has large coupling values
(considered undesirable) and relatively low inheritance depth and high cohesion
(considered desirable), while System B has no conspicuous mean values. This
analysis indicates that System D will be the most maintainable system, while System
C will be the least maintainable. It is difficult to rank System A and B, but since
coupling measures are more than 30% larger than average for System A, we would
rank B ahead of A.

Median values: We observe that due to the relatively large number of 0-values for
all measures but WMC1, the median values become difficult to interpret. For WMC1,
the pattern observed from the mean values recurs.

Standard deviation: System C has relatively large standard deviations for WMC1,
OMMIC and OMMEC. System D has a small standard deviation for WMC1. This
indicates that size and complexity is well distributed across the classes in System D,
but not for classes in System C. System A has a rather large standard deviation for
export coupling (OMMEC). There are no conspicuous values of standard deviation
for System B. The suggested ranking from above is thus further supported from this
analysis, however it is still difficult to distinguish between System A and System B.

Sum values: The sum values largely reflect the total size of the systems, measured
in number of classes. The systems A, B, C and D contain 63, 162, 24 and 96 java
classes, respectively. The low number of classes of System C introduces an

106 H.C. Benestad, B. Anda, and E. Arisholm

uncertainty regarding the firm conclusion about this system from above. System B
contains more than 2.5 times the classes than do System A. We interpret this as
significant, given the close evaluation of these systems above. System B contains
slightly more desirable code, but we rank it behind System A because 2.5 times the
amount of classes must be comprehended and maintained.

Outliers: The box plots in Fig. 1 show that System D and System C contain
extreme outliers for the OMMIC measure. The names of these classes, StudyDAO and
DB respectively, indicate that the first uses the data access object pattern, while the

Fig. 1. Analysis of DES systems: Box plots for two structural measures

System A

System B

System C

System D

Fig. 2. Analysis of DES systems: Scatter plots of WMC1 vs. OMMIC

Assessing Software Product Maintainability Based on Class-Level Structural Measures 107

latter is likely to be a convenience based grouping of database access. System B
contains one extreme outlier for the OMMEC measure, while System A contains one
extreme outlier for the WMC1 measure. The name of these classes, StudyForm and
ObjectStatementImpl respectively, indicates that these values are acceptable: A class
handling a complex GUI may have many conditional paths, while a class supporting
object persistence may be heavily used by other classes. Two-dimensional scatter
plots, as shown in Fig. 2, show that System B, C and D contain one class that can be
considered an outlier with respect to both size and complexity (WMC1) and import
coupling (OMMIC). It counts to the advantage of System A that the system contains
no such two-dimensional outliers.

4.3 Combination First Strategy

We conduct this analysis by combining measures at the class level, and then
aggregating the combined values using a frequency table. Finally, the frequency table
is interpreted by putting most weight on high measures.

Class-level combination: We use a simple version of the profile comparison
method described in Section 3.2, and create four profile vectors, labeled Low,
Average, High and Very High, see Table 4. The interval limits are calculated from the
0 to 50 percentile, 50 to 75 percentile, 75 to 95 percentile and above 95-percentile of
the concatenation of all classes. We then construct the 345 performance vectors from
the 345 classes in the systems.

Table 4. Analysis of DES systems: Profile vectors. Weight of measure in parentheses

 wmc1(2) ommic(1) ommec(1) dit (0.5) noc(0.5) tcc (1)
Low 0-4 0 0 0-1 0 0.33+ or 0
Average 5-8 1-4 1-4 n.a. n.a. 0.14-0.33
High 9-22 5-27 5-27 2 1-2 0.08-0.14
Very H. >23 >28 >28 >3 >3 <0.13

The 345 performance vectors are compared against the profile vectors. The
comparison criterion used is “The weighted sum of the criteria supporting the
classification should be larger than the weighted sum opposing the classification”.

To be able to interpret the results showed in Table 5, we assume that the
classifications can be read as Good, Acceptable, Suspicious and Undesirable. 91.7%
of the classes of System D are Good or Acceptable, while only 2% are Undesirable.
For System C, one third of the classes are Suspicious or Undesirable. These
observations support the conclusions for these systems from Section 4.2. System A
and B fall between these extremes, with System A having slightly more desirable
classifications than System B. The absolute numbers make the ranking clearer: 35
classes in System B are classified as Suspicious or Undesirable, while 10 classes in
System A receive this classification. This analysis indicates that the ranking of the
systems with respect to likely future maintenance effort is: D, A, B, C (least effort
mentioned first).

108 H.C. Benestad, B. Anda, and E. Arisholm

Table 5. Analysis of DES systems: Categorization of combined class level measures

 System A System B System C System D
Low 65.1% (41) 53.7% (87) 29.2% (7) 60.4% (58)
Acceptable 19.0% (12) 24.7% (40) 37.5% (9) 31.3% (30)
High 12.7% (8) 18.5% (30) 25.0% (6) 6.3% (6)
Very High 3.2% (2) 3.1% (5) 8.3% (2) 2.1% (2)

Sensitivity analysis: The classification procedure was automated using Microsoft
Excel and a Visual Basic macro. We could therefore easily re-conduct the analysis to
investigate the sensitivity for threshold values, weights and classification criteria.
Classification was expected to be sensitive to these variations, but we obtained
consistent results as far as ranking between the systems was concerned. The analysis
was most sensitive to the weighing factors: With equal weight for all measures, it was
difficult to differentiate between the systems A, B and D. However, we consider it fair
to put less weight on the two inheritance measures, since inheritance is not a widely
used mechanism in the systems under study.

L

A

H

VH

L

A

H

VH

H

A

VH L

L

A

H

VH

Fig. 3. Analysis of DES systems: Pie charts. Distributions of Low (L), Acceptable (A), High
(H) and Very High (VH) classes, for system A, B, C and D respectively.

4.4 Summary of DES Analysis

Two parallel strategies were used for the DES analysis. The first strategy combined
measures at the system level, while the second strategy created a derived measure at
the class level. The latter strategy may be more intuitive for a developer who
perceives the class as the main unit of analysis, change and testing during
maintenance.

Systems C and D were consistently ranked lowest and highest, respectively.
However, the significance of the small size of System C, measured in number of
classes, leaves us with an uncertainty: It is quite possible that for some maintenance
tasks, the effort involved in changing System C will not exceed that of the other
systems. With the first strategy it was difficult to judge between System A and B, but
we ended up with ranking A before B due to smaller overall size, and the absence of
multi-dimensional outliers in System A. This ranking between System A and B was
supported by the second strategy, which indicated a less desirable classification of
classes in System B than in System A. The difference between the two systems was
more evident when absolute number of classes was considered in place of relative
number of classes.

Assessing Software Product Maintainability Based on Class-Level Structural Measures 109

The accuracy of the described predictions of maintainability will not become
evident until empirical data is collected from the maintenance phase. However, we
asked an experienced consultant, who had not been involved in neither the
development projects nor the research, to assess the code with respect to
maintainability using his own experience from maintaining object oriented code. The
results were consistent regarding System C and D. The expert ranked A before B,
largely because of the difference in size.

5 Conclusion and Further Work

We have investigated strategies for collecting structural measures at the class level to
perform system level assessment of expected maintainability. A survey of reports
from research and industry indicates that little emphasis is given on identifying the
strategy that best fits specific measurement purposes. Although the specific purposes
are special to every measurement initiative, this paper shows which decisions must be
made while creating such a strategy, and suggests and discusses alternatives for each
decision. The goal of the resulting strategy is to construct derived measures or views
(through aggregation and combination) that can be interpreted so that specific
questions can be answered with a certain level of confidence. In many cases and for
many reasons, the historical data needed to create statistically based models are not
available. Consequently, the interpretation of the derived measures needs to be partly
based on judgments. This work promotes a systematic approach to the identification
of alternative strategies for conducting system level assessment of maintainability.
More empirical work is required to evaluate and improve the accuracy and precision
of judgment-based strategies. A future scenario is to establish baselines of
measurement values for specific software industry sectors, which could be used by
software acquirers and providers as a basis for setting measurable goals on quality
attributes that have previously been difficult to measure.

References

1. B. Boehm and H. In, "Identifying Quality-Requirement Conflicts," IEEE Software, vol.
13, pp. 25-35, 1996.

2. ISO/IEC, "Software engineering — Product quality — Part 1: Quality model," 2001.
3. S. R. Chidamber and C. F. Kemerer, "A Metrics Suite for Object Oriented Design," IEEE

Transactions on Software Engineering, vol. 20, pp. 476-493, 1994.
4. L. Briand and J. Wuest, "Empirical Studies of Quality Models in Object-Oriented

Systems," Advances in Computers, vol. 59, pp. 97-166, 2002.
5. V. R. Basili, G. Caldiera, and H. D. Rombach, "Goal Question Metrics Paradigm,"

Encyclopedia of Software Engineering, vol. 1, pp. 528-532, 1994.
6. J. Bansiya and C. G. Davis, "A Hierarchical Model for Object-Oriented Design Quality

Assessment," IEEE Transactions on Software Engineering, vol. 28, pp. 4-17, 2002.
7. J. McCall, P. Richards, and G. Walters, "Factors in Software Quality," General Electric

Command & Information Systems Technical Report 77CIS02 to Rome Air Development
Center, Sunnyvale, CA 1977.

8. McCabe, "A complexity measure," IEEE Transactions on Software Engineering, vol. SE-
2, pp. 308-320, 1976.

110 H.C. Benestad, B. Anda, and E. Arisholm

9. M. H. Halstead, "Elements of Software Science, Operating, and Programming Systems
Series," vol. 7, 1977.

10. P. Oman and J. Hagemeister, "Construction and Testing of Polynomials Predicting
Software Maintainability," Journal of Systems and Software, vol. 24, pp. 251-266, 1994.

11. D. Darcy and C. F. Kemerer, "OO Metrics in Practice," IEEE Software, vol. 22, pp. 17-19,
2005.

12. J. Barnard, "A new reusability metric for object-oriented software," Software Quality
Journal, vol. 7, pp. 35-50, 1998.

13. L. Briand and J. Wüst, "Integrating scenario-based and measurement-based software
product assessment," Journal of Systems and Software, vol. 59, pp. 3-22, 2001.

14. T. Drake, "Measuring Software Quality: A Case Study," Computer, vol. 29, pp. 78-87, 1996.
15. R. Ferenc, I. Siket, and T. Gyimothy, "Extracting Facts from Open Source Software," in

Proceedings of the 20th IEEE International Conference on Software Maintenance: IEEE
Computer Society, 2004.

16. R. Harrison, S. J. Counsell, and R. V. Nithi, "An Evaluation of the MOOD Set of Object-
Oriented Software Metrics," Software Engineering, IEEE Transactions on, vol. 24, pp.
491-496, 1998.

17. R. Harrison, L. G. Smaraweera, M. R. Dobie, and P. H. Lewis, "Comparing programming
paradigms: an evaluation of functional and object-oriented programs," Software
Engineering Journal, vol. 11, pp. 247-254, 1996.

18. J. Mayrand and F. Coallier, "System Acquisition Based on Software Product Assessment,"
presented at 18th International Conference on Software Engineering, Berlin, 1996.

19. M. Saboe, "The Use of Software Quality Metrics in the Materiel Release Process —
Experience Report," presented at Second Asia-Pacific Conference on Quality Software,
Hong Kong, 2001.

20. M. Schroeder, "A Practical Guide to Object-Oriented Metrics," IT Professional, vol. 1, pp.
30-36, 1999.

21. R. C. Sharble and S. S. Cohen, "The Object-Oriented Brewery: A Comparison of Two
Object-Oriented Development Methods," SIGSOFT Software Engineering Notes, vol. 18,
pp. 60-73, 1993.

22. I. Stamelos, L. Angelis, A. Oikonomou, and G. L. Bleris, "Code quality analysis in open
source software development," Information Systems Journal, vol. 12, pp. 43-60, 2002.

23. R. C. Gronback, "Software Remodeling: Improving Design and Implementation Quality,"
Borland 2003.

24. F. e. Abreu, "The MOOD Metrics Set," presented at ECOOP'95 Workshop Metrics, 1995.
25. T. Dybå, B. A. Kitchenham, and M. Jørgensen, "Evidence-based software engineering for

practitioners," IEEE Software, vol. 22, pp. 58-65, 2005.
26. B. A. Kitchenham, T. Dybå, and M. Jørgensen, "Evidence-based Software Engineering,"

presented at Proceedings of the 26th International Conference on Software Engineering
(ICSE), Edinburgh, Scotland, 2004.

27. I. T. Jolliffe, Principal Component Analysis, 2nd ed. New York: Springer-Verlag, 2002.
28. "Telelogic Tau Logiscope 6.1 Audit – Basic Concepts." Malmö, Sweden: Telelogic AB,

2004.
29. M. Morisio, I. Stamelos, and A. Tsoukias, "A New Method to Evaluate Software Artifacts

Against Predefined Profiles," in Proceedings of the 14th international conference on
Software engineering and knowledge engineering. Ischia, Italy: ACM Press, 2002.

30. L. Briand, C., J. Wüst, J. W. Daly, and D. V. Porter, "Exploring the Relationship between
Design Measures and Software Quality in Object-Oriented Systems," Journal of Systems
and Software, vol. 51, pp. 245-273, 2000.

Assessing Software Product Maintainability Based on Class-Level Structural Measures 111

31. K. D. Welker, P. W. Oman, and G. G. Atkinson, "Development and Application of an
Automated Source Code Maintainability Index," Journal of Software Maintenance:
Research and Practice, vol. 9, pp. 127-159, 1997.

32. J. Bieman, M. and B.-K. Kang, "Cohesion and Reuse in an Object-Oriented System," in
Proceedings of the 1995 Symposium on Software reusability. Seattle, Washington, United
States: ACM Press, 1995.

33. L. Briand, P. Devanbu, and W. Melo, "An Investigation into Coupling Measures for
C++," in Proceedings of the 19th international conference on Software engineering.
Boston, Massachusetts, United States: ACM Press, 1997.

34. Y. S. Lee, B. S. Liang, S. F. Wu, and F. J. Wang, "Measuring the Coupling and Cohesion
of an Object-Oriented Program Based on Information Flow," presented at Conference on
Software Quality, Maribor, Slovenia, 1995.

35. W. Li and S. Henry, "Object-Oriented Metrics that Predict Maintainability," Journal of
Systems and Software, vol. 23, pp. 111-122, 1993.

36. L. C. Briand and J. Wüst, "The Impact of Design Properties on Development Cost in
Object-Oriented Systems," presented at Software Metrics Symposium, London, UK, 2001.

37. A. Lake and C. Cook, "Use of Factor Analysis to Develop OOP Software Complexity
Metrics," presented at 6th Annual Oregon Workshop on Software Metrics, Silver Falls,
Oregon, 1994.

38. D. Tegarden, P., S. Sheetz, D., and D. Monarchi, E., "A software complexity model of
object-oriented systems," Decision Support Systems, vol. 13, pp. 241-262, 1995.

J. Münch and M. Vierimaa (Eds.): PROFES 2006, LNCS 4034, pp. 112 – 126, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Integrating Reuse Measurement Practices into the
ERP Requirements Engineering Process

Maya Daneva

Department of Computer Science, University of Twente
P.O. Box 217, 7500 AE Enschede, The Netherlands

m.daneva@utwente.nl

Abstract. The management and deployment of reuse-driven and architecture-
centric requirements engineering processes have become common in many
organizations adopting Enterprise Resource Planning solutions. Yet, little is
known about the variety of reusability aspects in ERP projects at the level of
requirements. Neither, we know enough how exactly ERP adopters benefit from
reuse as part of the requirements engineering process. This paper sheds some
light into these questions and suggests a practical approach to applied ERP
requirements reuse measurement by incorporating reuse metrics planning as
part of the implementation of metrics on an ERP project. Relevant process
integration challenges are resolved in the context of SAP R/3 implementation
projects in which the author participated while being employed at the second
largest telecommunication company in Canada.

1 Introduction

The business requirements for an Enterprise Resource Planning (ERP) solution in
intra- or inter-organizational settings are the documents about the ERP adopter’s
organizational unit set-up, their business processes, data needs, and communication
channels that are covered in the scope of the ERP implementation project.
Requirements Engineering (RE) for ERP is the process concerned with all aspects of
the reuse, the analysis, the adaptation, and the management of a large number of these
descriptions. Its ultimate objective is to enhance the fit between the ERP adopting
organization and its ERP system. The process begins ones a business case for the ERP
implementation project is finalized and business drivers are identified and it continues
throughout the entire implementation cycle in the form of tracking of the life history
of any particular requirement and business issue. The better the resulting business
requirements are conceptualized, the faster the progress in subsequent phases, because
the necessary decisions concerning the future ERP solution have been made and
agreed upon [4,5,24].

To streamline the RE process and to assure high quality results, the ERP vendors
and their consulting partners have invented and marketed systematic requirements
reuse approaches, infrastructures of processes, people and tools for ERP adopters to
reuse, and, since 2000, industry-specific solution maps that are descriptions of the
most important business processes within an industry sector, the technologies (ERP
elements and add-ons), and services needed to support the processes. These can be

 Integrating Reuse Measurement Practices into the ERP RE Process 113

seen as domain-specific frameworks [17] with three major features: an architecture
defining the structure of integrated information systems within the business problem
domain, a set of business application components engineered to fit the architecture,
and a set of tools that assist the consultant in building component-based solutions
using the domain knowledge within the architecture.

Nine years after the official launch of the first standardized ERP RE process by
SAP, despite the increased attention to ERP requirements reuse, very few approaches
have emerged to quantitatively measure the results from requirement reuse the
customers have achieved [3]. As leading software metrics practitioners recognized
earlier, we ‘can not do effective reuse without proper measurement and planning’ [19].

To obviate this issue, the present paper takes a measurement planning perspective
[10]. We propose a practical solution that rests on a Goal-Question-Metrics-compliant
process [1] of defining a requirements reuse measurement plan that links the reuse
measurement needs to the ERP reuse goals and action items to be taken in the RE
process. Our key objective is to provide a sound and consistent basis for incorporating
reuse metrics planning as part of the implementation of metrics on an ERP project.
We applied a case-study-driven research method [25] that was focused on the
requirements reuse measurement activities in the context of implementing the SAP
R/3 System, a leading product in the ERP software market [2,15,24]. However, our
approach is generic enough and could easily be applied to any other ERP project
implementation.

The layout of the paper is as follows: in the next section we motivate our approach.
Section 3 is designed to answer some fundamental questions about the building
blocks of our reuse measurement plan. Section 4 discusses how measurements are
useful. Section 5 generalizes our experience. Section 6 concludes the paper.

2 Motivation

An ERP requirements reuse measurement process is a systematic method of (i)
adopting or adapting standard reuse counting practices in ERP RE, (ii) measuring the
ERP reuse goals, and (iii) indicating reuse levels targeted at the beginning and
achieved at the end of each stage of the ERP implementation cycle. The main
purpose of this process for ERP-adopters is to learn about their own business,
technological and environment opportunities by learning how much reuse their ERP-
supported business processes could practice. The motivation behind the integration
of the reuse measurement process in the RE process is to achieve the following five
goals:

• To enable the reuse process to be planned and reuse planning to be done as part
of the RE process.

• To reduce the probability of errors and accidental omissions in the business
process requirements.

• To spot requirements problems and conflict by identifying anomalous reuse
measurements.

• To collect reuse data to serve as an input to an effort estimation model.

114 M. Daneva

• To provide a foundation for (i) re-prioritizing the business requirements, (ii)
communicating the value of ERP-reuse, (iii) increasing ERP users’
understanding of the ERP functionality, and (iv) building and reinforcing
partnerships,

3 The ERP Requirements Reuse Measurement Plan

Like any software development organization, an ERP adopter should document its
requirements reuse measurement process in the form of a reuse measurement plan
[6,10]. Its purpose is to establish a reuse measurement practice as part of a larger
organizational process, namely, the ERP RE process. Moreover, it represents a
communication vehicle to ensure that all the team members agree on the approach as
well as serves as the on-going reference model to manage the implementation of reuse
metrics. The plan defines the measurement process with exact information on
stakeholders involved, measurement frequency, sources of metrics data, counting
rules, metrics data interpretation rules, tools support, reports to be produces, and
action items that can be taken based on the metrics data (Fig.1.).

Fig. 1. The components of the SAP reuse plan

Stakeholders and their objectives define what is to be achieved by running a reuse
measurement process. Next, as per the recommendations provided by software
metrics researchers and practitioners [19,20], a model of the RE process is needed to
capture the ERP reuse activities and to understand where measurements fit in. It
should provide sufficient knowledge of (i) how to map reuse measures to RE

Organizational
Objectives

Stakeholders

RE Process
Model

Reuse
Measurement
Process Model

RE Process
Deliverables

Data Store

Reports Tools

StandardsAction Items

 Integrating Reuse Measurement Practices into the ERP RE Process 115

activities, (ii) where and when in the RE process measurements could be taken, and
(iii) how measurement activities could be integrated into the larger process. Given this
context, a reuse measurement process model is required to specify what to count as
requirements reuse, what units of measure to use, and how to count it. Furthermore,
tools, data stores and standards for data collection, processing and packaging are to be
selected to ensure the quality of the reuse metrics data. Finally, the plan concludes
with strategies for using the reuse data. These are presented in terms of metrics data
reports to be created and action items that can be formulated based on the reported
data. The components of our ERP reuse measurement plan are discussed in detail in
the next sections.

3.1 Understanding Stakeholders and Their Roles

Adequate and timely consultation of the ERP project stakeholders arties is a must to
the planning of reuse metrics. It helped us (i) make sure that the definitions of our
metrics are based on our SAP team members’ goals, (ii) eliminate misunderstandings
about how metrics data is expected to be used, and (iii) define relevant procedures for
packaging, cataloguing, publishing and reporting reuse metrics data.

To identify the stakeholders, we applied the approach developed by Sharp et all in
[23]. Based on early SAP project documentation, we developed stakeholder
interaction diagrams that captured three important aspects of our team working
environment: relationships between stakeholders, the relationships of each
stakeholder to the system, and the priority to be given to each stakeholder’s view. The
organizational knowledge represented in the diagrams is needed to manage, interpret,
balance and process stakeholders’ input into the SAP requirements reuse
measurement process. It was used to structure the SAP project team members in four
groups: (i) business decision makers, who are corporate executives from the steering
committee responsible for the optimization, standardization and harmonization of the
business processes across multiple locations, and define the concept of ownership
over the SAP R/3 system and are most interested in learning about the business
benefits from SAP reuse, (ii) business process owners, who are department managers
responsible for the project in specific business areas, and contribute the necessary line
know-how, design new processes and procedures to be supported by the R/3 business
application components and provide the project with the appropriate authority and
resources, (iii) technical decision makers, who are SAP project managers responsible
for planning, organizing, coordinating and controlling the implementation project,
and (iv) configurators, who are both internal IT team members and external
consultants involved in various work packages, e.g. process and data analysts,
configuration specialists, ABAP programmers, system testers, documentation
specialists. Each stakeholder had its own questions that should be answered by using
the metrics data. Business decision makers wanted to know:

• What level of standardization could be achieved by reusing ERP software
assets?

• What competitive advantages does the team get from ERP reuse?

116 M. Daneva

• What are the implications of reusing ERP processes in a constantly changing
business environment?

• How to align business processes across locations so that ERP reuse can yield
significant cost reductions and enterprise-wide benefits?

Business process owners asked:
• How ERP reuse works with volatile process requirements?
• How much customization effort is required to implement minor/major changes

in the business application components?
• What processes have the greatest potential for practicing reuse?
• What activities in our processes prevent us from reusing more?

Technical decision-makers needed to know:
• How much effort is required to produce the user and training documentation

associated to the customized components?
• How much reuse the team did?

Configurators asked:
• Are there any rejected requirements that should be re-analyzed because of reuse

concerns?
• What implementation alternative fits best?
• Which segments of the requirements are likely to cause difficulties later in the

implementation process?

The questions relevant to each group have been documented and attached to the
stakeholder interaction diagrams.

3.2 The RE Process in Point

The standard methodology for rapid R/3 implementation, called AcceleratedSAP
(ASAP), provides a disciplined reuse-driven, architecture-centric process for
coordination, controlling, configuring and managing changes of the R/3 business
application components [2,15]. To investigate the ASAP RE process, we modelled it
as a spiral (Fig. 2.). Its the radial arms represent the increasing collection of
information by three types of activities: (i) requirements elicitation activities which
deliver the foundation for the business blueprint and are concerned with finding,
communication and validation of facts and rules about the business, (ii) enterprise
modelling activities which are concerned with the business processes and data
analysis and representation, and (iii) requirements negotiation activities which are
concerned with the resolution of business process and data issues, the validation of
process and data architectures and the prioritization of the requirements. The ASAP
methodology suggests four iterations of the spiral. Level 0 iteration aims at
developing a clear picture of the company’s organizational structure based on the pre-
defined organization units in the R/3 System. Next, the main objective of level 1
iteration is to define aims and scope for business process standardization based on the
R/3 application components. Level 2 iteration aims at deriving company-specific
business process architecture based on scenarios from the standard SAP process and
data architecture components. Finally, level 3 iteration refers to the specification of
data conversion, reporting and interfaces requirements. The major actors in these

 Integrating Reuse Measurement Practices into the ERP RE Process 117

activities are business process owners who are actively supported by the SAP
consultants and the internal SAP process and data architects. Next, the ASAP RE
process is supported by the following tools: (i) the ASAP Implementation Assistant
[15] which provides reusable questionnaires, project plans, cost estimates, blueprint
presentations, blueprint templates, project reports and checklists, as well as manages
the documentation base; (ii) the SAP Business Engineer, a platform including a wide
range of business engineering tools fully integrated into the R/3 System [1]; (iii)
enterprise modelling tools (ARIS-Toolset, LiveModel and Visio) which have rich
model management capabilities and assist in analyzing, building and validating
customer-specific process and data architectures based on the reusable reference
process and data models.

Fig. 2. The SAP requirements engineering process

The ASAP RE begins with reuse, ends with reuse and includes reuse in all the
tasks in-between. It is based on proven reuse practices and techniques and it ensures
that the requirements are correct, consistent, complete, realistic, well prioritized,
verifiable, traceable and testable. This is achieved by using the R/3 Reference Model,
a comprehensive architectural description of the R/3 System including four views:
business process view, function view, data view and organizational view.
Specifically, the R/3 Reference Process Models represent integrated and function-
spanning collections of business processes that occur often in practice and can be
handled to the greatest extend possible automatically if a corporation implements the
complete R/3 System [15]. Instead of building an integrated information system from

Elicitation

Modelling

Negotiation

QuestionnairesBusiness Scenario
and Data Models

Business Blueprint

Elicitation

Modelling

Negotiation

QuestionnairesBusiness Scenario
and Data Models

Business Blueprint

Elicitation

Modelling

Negotiation

QuestionnairesBusiness Scenario
and Data Models

Business Blueprint

Elicitation

Modelling

Negotiation

QuestionnairesBusiness Scenario
and Data Models

Business Blueprint

R/3
Reference

Model

Reuse Techniques

Tools

Requirements
Elicitation

Requirements
Modelling

Requirements
Negotiation

Requirements
Management

Standards

Questionnaires

Business
Process Models/

Data Models

Business
Blueprint

Level 0

Level 1

Level 2

Level 3

118 M. Daneva

scratch, with the R/3 Reference Model we build a solution from reusable process and
data architectures based on SAP’s business experience collected on a large scale. Our
analysis indicates that the R/3 Reference Model [2] supports the RE process in
multiple ways: (i) in requirements elicitation, it provides a way for process owners
and consultants to agree on what the SAP business application components are to do,
(ii) in requirements modelling, it applies common requirements models [16] and
serves two separate but related purposes: to quickly develop a requirement definition
that shows to the business owners the process flow the solution is expected to support,
and, then, to view it as a design specification document that restates the business
specification in terms of R/3 transactions to be implemented, and (iii) in requirements
negotiation, the R/3 Reference Model serves as a validation tool. It makes sure that
the solution will meet the owners’ needs, it is technically implementable and it is
maintainable in future releases.

Reusing architectural components in the RE process is saving both time and
money. As the business process requirement analysis is the most expensive consulting
service in a business engineering exercise, the reuse of the R/3 Reference Model
definitely provides the greatest savings.

3.3 Process Integration Model

This section presents how reuse measurement was integrated with the RE activities
and where in the RE process reuse measurement data was taken (Fig. 3).

Fig. 3. Integration of requirements reuse measurement in RE

We adopted the following assumptions:

• reuse data are extracted by an SAP process analyst on the basis of two major RE
deliverables: business scenario models and business object models [2];

• reuse metrics data analysis is based on quantitative indicators;
• reuse metrics data is used to support stakeholders’ decision during the

requirements negotiation and elicitation;
• reuse metrics data is reused at a later stage to support decision making in

planning for future releases, upgrades and major enhancements.

Requirements
Elicitation

Requirements
Modelling

Requirements
Negotiation

Requirements
Reuse

Measurement

Process
Models/
Object
Models

Reuse data reportsReuse data reports

Requirements Management

Identify reuse constraints
Clarify motivation for customization
Analyze options for process
standardization
Collect input to modify models

Make reuse recommendations
Set reuse goals and expectations
Define scope for practicing reuse
Rethink rejected requirements
Prioritize requirements

 Integrating Reuse Measurement Practices into the ERP RE Process 119

We suggest reuse measurement be applied once the modelling activities of level 2
iteration are completed and the customer-specific process and data architectures are
built (Fig.3). Given the reuse metrics data, the SAP process analyst may decide what
negotiation / elicitation activities to take place next. The use of the metrics data is
discussed in more detail in Section 4.

Our integration model implies that reuse measurement activities support the RE
process in five areas: (i) definition of measurable reuse goals and expectations, (ii)
quantitative analysis of process and data architecture reuse prior to solution design;
(iii) assessment of the requirements specification, (iv) better understanding of the
technical risks early in the ERP implementation cycle, (v) definition of the scope of
ERP reuse and how it fits into the business environment.

3.4 The Measurement Process

As Pfleeger [14] recommends, we have to choose reuse metrics based on what is
visible for the SAP project team in the requirements modelling process of level 2
iteration. Our approach uses the results of our previous research on the derivation of
reuse indicators from SAP scenario process models and business object models [3]. It
is based on the notion of “reuse percents” [20] and suggests a reuse indicator that
includes reused requirements as a percentage of total requirements delivered [2]:

SAP_Reuse = (RR / TR) * 100%

where RR represents reused requirements, and TR represents total requirements
delivered. In this paper, requirement borrowed from the R/3 Reference Model are
classified as reusable if it does not require modification. If a borrowed requirement
does require minor or major enhancement before use, we term it ‘customized
requirement’.

To build well-defined and valid metrics [10], we selected a consistent and reliable
means for structuring and collecting data to make up metrics. A standard functional
size measurement methodology, namely Function Point Analysis (FPA) [11] was
applied to size the total and the reused requirements in the project. It was chosen
because of its appropriateness to the software artifact being measured [11,22] and its
proven usage and applicability in software reuse studies [14,20]. However, we needed
to adapt FPA the SAP requirements. This has been achieved in [3] by defining rules for
mapping SAP business process models and data object models to the FPA counting
components: we mapped SAP data entities to FPA data types, and SAP process
components to FPA transaction types. As a result, the size of a scenario process model
is assumed to be a function of the process components included in the model and the
data objects defining the data that support the process. The step-by-step procedure for
counting Function Points (FP) from scenario process models and business object
models is described in [3] in terms of inputs, outputs and deliverables. Generally, it
involves three stages: analysis of the process and data components, assignment of
complexity values to the components and calculation of the final FP value.

Based on the analysis of the changes [15] that could be applied to the R/3
Reference Model throughout the reuse-based process modelling exercise, the
measurement data collected throughout the FP sizing procedure [3], and the modes of
component reuse investigated by Karllson [14], we have defined three levels of
requirements reuse:

120 M. Daneva

• Level 3: It refers to process and data components that were reused without any
changes. This category of reuse would bring the greatest benefits to the SAP
customer’s organization. Scenarios with higher reuse rate at this level have
greater potential of practicing reuse.

• Level 2: It refers to minor enhancements applied to reference processes and
data components. A minor enhancement is defined as a change of certain
parameter of a business process or a data component that does not result in a
change of the process logic. This category of reuse refers to those processes and
data components of the R/3 Reference Model that logically match the business
requirements but their parameters need to be changed at code level to achieve
their business purpose. Level 2 reuse is as desirable as level 3 reuse.

• Level 1: It refers to major enhancements applied to reference processes and
data components. A major enhancement is any considerable modification in the
definition of a process or a data component that affects the process logic from
business user’s point of view. This category of reuse refers to those processes
and data components that do not match the business requirements and require
changes at conceptual level, as well as at design and code level to achieve their
business purpose. Level 1 reuse is at least desirable.

In these definitions, the term process (component) refers to the functional units of
any SAP scenario process models and the term data component means a data entity, a
relationship or an attribute from the data model describing the SAP business data
requirements. Furthermore, we introduce a level of new requirements, No_Reuse, to
acknowledge the fact that reuse is not practiced at all. It refers to newly introduced
processes and data components. This does not mean a reuse category; it just helps us
to partition the overall requirements and to get understanding of how much
requirements are not covered by the standard scenario processes and business objects.

Given our definition of what to count as reuse and how to count it, we have derived
three reuse indicators [3]:

Level i SAP_Reuse = (RR i / TR)*100%

where i = {1, 2, 3}, RR i represents reused requirements at Level i , and TR represents
total requirements delivered. The indicator

No_Reuse = (NR / TR)*100% ,

where NR represents the new requirements, and TR has the above meaning, reports
the percentage of requirements that can not be met by the R/3 application package
unless some customer-specific extensions are not developed. Currently, case studies
are being carried out to validate empirically our counting model and its application
procedure. This exercise is being done on the basis of Jacqet’s framework [13] for
investigating measure validation issues and is carried out with the collaborators from
Concordia University, Canada. It is part of a research project on building size and cost
estimation models for inter-company ERP systems [5].

3.5 Assembling a Toolset for Data Collection

To assure the quality of the reuse data, we found that at least three tools were needed:
(i) a form for recording all the counting details; (ii) a reuse metrics database, and (iii)

 Integrating Reuse Measurement Practices into the ERP RE Process 121

a process knowledge repository. We extended the FP counting form suggested in [8]
by including information needed for calculating the reuse indicators. Based on our FP
counting model [3], we devised a counting form usage procedure that indicates at
exactly what point each piece of data should be collected. information has been stored
and processed in Excel spreadsheet software. Summarized and detailed reports have
been extracted from Excel tables. For example, Table 2 reports on size numbers for
six SAP business scenarios and Table 3 presents the summarized results from
measuring reuse. Since reuse metrics provided knowledge about the business
processes, reports on metrics data were treated as part of the SAP process
documentation. can be We stored, packaged, catalogued and published reuse data by
using a corporate intranet repository as well as standard process modelling tools and
the ASAP Implementation Assistant. In this way, data was made available for review
and analysis to all interested parties. Users of SAP documentation could easily
navigate from scenario models to functional size and reuse metrics data.

Table 2. Functional size measurements in FP for six SAP scenarios

Business Scenarios Level 3

FP
Level 2

FP
Level

1 FP
New
FP

Recruiting 170 87 88 92
Business Trip Processing 120 41 20 25
Payroll Processing 236 26 16 32
Benefit Administration 195 87 102 91
Employee Relocation 165 21 10 16
Employee Numbers Processing 22 8 0 38

Table 3. Reuse levels for six SAP scenarios

Business Scenarios Level 3

Reuse
Level 2

Reuse
Level

1 Reuse
No

Reuse
Recruiting 39% 20% 20% 21%
Business Trip Processing 58% 20% 10% 12%
Payroll Processing 76% 8.5% 5% 10.5%
Benefit Administration 41% 18% 22% 20%
Employee Relocation 78% 10% 5% 7%
Employee Numbers Processing 32% 12% 0% 56%

3.6 How to Link Reuse Data to Action Items

Measurements are considered useful if they help stakeholders (i) understand what is
happening during the ERP RE process, and (ii) control what is happening on the ERP
project [10]. Typically, two types of reuse profiles could be derived from a
requirements reuse measurement table (Table 3): scenario-specific profiles which
present the levels of reuse pertinent to a given scenario, and level-specific profiles
which show how the requirements are reused at a specific level within a project.
Business decision-makers can use both types of profiles in at least three ways: (i)
multiple reuse profiles of two or more different ERP products (SAP, Oracle,
PeopleSoft) can be compared to determine which package best serves the needs of the
company and offers the greatest opportunity for reuse; (ii) multiple reuse profiles of

122 M. Daneva

different releases (SAP R/3 4.0B, 4.5, 4.6) of one ERP package could be compared to
determine which release brings biggest benefits to the company; (iii) multiple reuse
profiles of a single ERP package (e.g. SAP R/3) can build an assessment of the overall
level of standardization of the ERP solution in the organization. Reuse profiles of a
single ERP package (e.g. SAP R/3) can be used by technical decision-makers to plan
and control the reuse levels in the later phases of the ASAP implementation process.
Business process owners and configurators can track requirements reuse levels over
time to control the changes in overall reuse during the iterations of the RE process.

Furthermore, the specific use of each profile was systematically documented by
using a Reuse Data Usage Table. We built it to characterize four aspects of a reuse
profile: who needs to read the profile data, what the profile can help us understand,
what the profile can help us control and what action items are likely to be taken based
on the reuse profile. Tables 4 and Table 5 report on the current usage of the scenario-
specific and level-specific profiles, respectively. (BDM, PO, TDM and C stand for
business decision-makers, process owners, technical decision-makers and
configurators, respectively.)

Table 4. Reuse data usage table for scenario-specific profiles

Usage BDM PO TDM C Action items

Understand the
customization risk
for upgrade
projects.

x x x x 1. Assess the difficulty in the migration of
processes with low reuse rates.

2. Reengineer the business requirements.
3. Budget and plan resources for extra

gap analysis for the processes with low
reuse rates.

Understand how
much reuse the
team did.

 x x x 1. Set reuse expectations for later stages.
2. Define scope for practicing reuse.
3. Make process reuse recommendations.

Understand reuse
constraints / Assess
the level of
standardization.

x x x 1. Elaborate alternative process flows to
eliminate the need for customization.

2. Re-assess reuse levels.
3. Compare processes to select the best

alternative.

Table 5. Reuse data usage table for level-specific profiles

Usage BDM PO TDM C Action items

Define focus for
negotiation
meetings.

 x x 1. Review scenarios on a function-by-
function basis to justify why
customization is necessary.

2. Structure requirements in three
categories: must-to-have, nice-to-have
and possible-but-could-be-eliminated.

Select an
implementation
strategy.

x x x 1. Consider a step-by-step approach to a
sequenced implementation, if Level 1
reuse dominates.

2. Consider a big-bang approach, if
Level 3 reuse dominates.

 Integrating Reuse Measurement Practices into the ERP RE Process 123

4 Discussion on the Reuse Data Usage

Table 2 and 3 show example scenarios referring to the SAP Human Resource
Management component. The Level 1 Reuse and No_Reuse ratings of the Recruiting,
and Benefits Administration processes as well as the No_Reuse rating of the Employee
Number Processing scenario are relatively high due to significant customization and
numerous external interfaces required by the process owner. Next, the scenarios of
Payroll Processing and Employee Relocation are the ones, which practice most Level 3
reuse.

The scenario-specific data usage table suggests what benefits the reuse
measurements bring to those stakeholders who are responsible for planning for reuse
and assigning target reuse levels to each scenario to be achieved throughout the R/3
implementation project. Some examples of how these profiles were helpful include
the following:

• The data was used in level 3 requirements elicitation to understand what
prevented some teams from reusing more. In the Recruiting and Employee
Number Processing scenarios, the low level of reuse was due to three reasons:
(i) the standard R/3 functionality did not offer enough support to the business
practices specific to a non-unionized mobile telecommunication services
operator, (ii) many external interfaces to legacy systems had to be built, and (iii)
hiring processes have not been standardized across locations in three Canadian
provinces. We attempted to achieve requirements reuse trough re-engineering
[12] of the major legacy systems.

• The data were useful in planning for both new implementations and upgrades. In
the first case, unforeseen process modeling risks appeared for processes with
high Level 1 Reuse or No_Reuse rates. They were likely to need additional
resources (e.g. business process owners, internal training specialists, and
documentation analysts) to get documented. In case of upgrades, reuse profiles
helped the team assess the degree of difficulty involved in the migration to the
new release. For example, Table 2 suggests that the process of Employee
Number Processing needs to be migrated with extra caution.

Next, the level-specific usage table was important to requirements negotiation
activities. Two illustrative examples of our experiences refer to the activities of (i)
requirements prioritization and (ii) selection of an implementation strategy:

• The reuse data were used to decide what to focus the negotiation efforts on. As
the process owners got a better understanding of the SAP reuse, and recognized
customization options as one of the riskiest matters, they become more
conscious to the avoidance of unnecessary adaptation and were willing to re-
prioretize the requirements.

• The level-specific profiles helped both business and technical decision-makers
determine what SAP implementation strategy fitted best with the organizational
objectives. If Level 1 reuse dominates and much customization efforts are
anticipated, the team is likely to adopt a step-by-step approach to a sequenced
implementation of the SAP components. If Level 3 reuse rates are the highest
ones, the customization risks are reduced and a big-bang approach to
implementing multiple components seems to be reasonable.

124 M. Daneva

5 Evaluating Experiences

SAP requirements sizing and reuse counting has been practiced in 13 SAP projects
[4]. Each project was broken down in subprojects based on the number of SAP
components to be implemented. For example, if a project implemented three
components, it was broken done in three subprojects. The total number of all
subprojects was 65. These varied in size and included new implementations,
upgrades, and consolidations of system instances due to organizations’ mergers and
acquisitions. While applying the process, we collected and documented some facts
and observations about the context of reuse measurement. Thus, we obtained a set of
experience packages that suggested explanations of how and why the measurement
process worked as part of the RE cycle [7]. We used these facts and observations to
evaluate how the measurement process worked. Each package includes characteristics
of the project context, a logical conclusion about specific aspects of the measurement
process, and a set of facts and observations that support this conclusion. The
conclusions represent either lessons learnt that tell us what and how worked in the
process or critical success factors that suggest why it worked.

A summary of our lessons learnt is given in Table 6. It lists observations about what
worked and how, and the number of subproject in which the observations occurred.

Table 6. Lessons learnt

Lessons learnt Number of
observations

Requirements reuse measurement helps understand in both qualitative and
quantitative terms the role of the pre-defined process models in ERP RE.

60

The measurement process must be focused on defining action items based on the
reuse data metrics, not on collecting and reporting data.

65

The process leads to consistent traceability information being maintained for all
the business processes.

56

It increases the probability of finding poorly prioritized requirements. 48
Reuse data is a central record of all the process specific reuse information. 65
Reuse data helps to focus the validation process. 59
Reuse measurement should not be practiced as a short-term process that would be
dropped at the end of the SAP implementation cycle.

53

Moreover, we identified 10 critical success factors:

• Apply a stakeholder identification method to the SAP project organization. This
made sure that all important stakeholders have been captured, and yet that
irrelevant actors have not been included.

• Use the ERP vendor’s standard processes, deliverables, and tools. This
significantly shortened the time needed to model the RE process and to spot
where in this process measurements could be taken, analyzed, and used.

• Adopt (if possible) or adapt a standard methodology for sizing the business
requirements. FPA proved its usefulness and applicability in ERP RE.

• Integrate the reuse measurement process incrementally. Pilot it by applying it to
the business scenarios pertinent to a selected ERP component.

• Consider the metrics data reports as a supplement to the business blueprint. The
business process owners should review reuse data as the other RE deliverables.

 Integrating Reuse Measurement Practices into the ERP RE Process 125

• Take extra efforts to experiment with the reuse measurement process and to
collect and document the series of action items the team members suggest
based on the metrics data.

• Understand the role of the reusable components and the reuse techniques in the
ERP RE process.

• Maintain a limited number of requirements reuse measurement process
documents: it is sufficient to start with a reuse measurement plan, a FP form
and a customizable report template for presenting the results.

• Think out a strategy of how to maximize the benefits of the business
engineering tools the team uses in the course of the ERP implementation. These
can be of great support to the measurement process.

• Use the data for planning action items.

6 Conclusions

ERP requirements size and reuse measurement starts receiving the attention it
deserves as a contributing factor in the success of ERP RE. This paper addresses both
planning and technical aspects of making reuse indicators work in ERP project
settings. We blended stakeholder interaction analysis with a process integration model
to ensure the visibility of both reuse measurement and RE activities. This resulted in a
practical requirements reuse measurement plan that one can apply incrementally to
selected portion of the business requirements as well as to the entire project. The plan
documents the components of a consistent measurement process: relevant
stakeholders, a RE process model, a process integration model, counting rules, tools
and reuse data usage tables. The process is reasonably simple so that RE teams can
concentrate on their requirements elicitation and negotiation activities while
functional size and reuse counting and data report generation playing a supporting
role. Experiences of practicing the reuse measurement process have been packaged in
13 projects to derive lesson learnt and critical success factors for an on-going ERP
reuse measurement initiative. We found that reuse requirements measurements were
particularly valuable for highlighting anomalous customization requirements that may
be unnecessary. ERP scenarios were then analyzed, then, in more detail.

We consider the work reported in this article as only the beginning of an ongoing
effort to develop better requirements reuse measurement practices. In our future
efforts, we plan to focus on answering the following research questions: How ERP
requirements reuse relates to project cost? Does the claim that reuse decreases efforts
[18,20,21,] remain valid in ERP settings? Which level of reuse dominates in each of
the three project types, new implementation, upgrades, and instance consolidation?
How to apply real options thinking [8] to ERP reuse as part of the RE process? What
represents a good model for estimating the costs of keeping requirements reusable and
estimating the future options [9] that this investment offers?

References

1. Basili, V.R., Caldiera, G. Rombach, H.D. The Goal Question Metric Approach,
Encyclopedia of Software Engineering. Wiley (1994)

2. Curran, T., A. Ladd, SAP R/3 Business Blueprint, Understanding Enterprise Supply Chain
Management, 2nd. Edition, Prentice Hall, Upper Saddle River, NJ (1999)

126 M. Daneva

3. Daneva M.: Mesuring Reuse of SAP Requirements: a Model-based Approach, Proc. Of 5th
Symposium on Software Reuse, ACM Press, New York (1999)

4. Daneva, M., ERP Requirements Engineering Practice: Lessons Learnt, IEEE Software,
(2004) 21:26-33

5. Daneva, M., Wieringa, R.J., A Conceptual Framework for Research in Cross-
organizational ERP Cost Estimation. Workshop on Requirements Engineering and Project
Management in Software Projects (PROMan), in conjunction with the 13th IEEE
Requirements Engineering Conference (RE’05), Paris (2005)

6. Desharnais, J.-M., A. Abran, How to Successfully Implement a Measurement Program:
From Theory to Practice. In: Müllerburg, M., Abran A. (eds.): Metrics in Software
Evolution, R. Oldenbourg Verlag, Oldenburg (1995), 11-38.

7. ESPRIT Project PROFES, URL: http://www.ele.vtt.fi/profes.
8. Erdogmus, H., A Real Options Perspective of Software Reuse, International Workshop on

Reuse Economics “Redirecting Reuse Economics” Tuesday, April 16, 2002, Austin,
Texas, USA

9. Favaro, J.M., K. R. Favaro, P.F. Favaro: Value Based Software Reuse Investment. Ann.
Software Eng. 5: 5-52 (1998)

10. Fenton, N., Pfleeger, S.L.: Software Metrics: Rigorous and Practical Approach, PWS
Publishing, Boston Massachusetts (1997)

11. Garmus D., D. Herron, Function Point Analysis: Measurement Practices for Successful
Software Projects, Addison-Wesley (2001)

12. Guo J., Software Reuse through Re-engineering the Legacy Systems, Information and
Software Technology, 45(9), pp. 597-609 (2003)

13. Jacquet, J.-P., Abran, A.: Metrics Validation Proposals: a Structured Analysis. In: Dumke,
R., Abran, A. (eds.): Software Measurement, Gabler, Wiesbaden (1999), 43-60.

14. Karlsson, E.-A. (ed.): Software Reuse, John Wiley & Sons, Chichester (1998)
15. Keller, G., Teufel, T.: SAP R/3 Process Oriented Implementation, Addison-Wesley

Longman, Harlow (1998)
16. Laguna, M.A., O. López, Y. Crespo, Reuse, Standardization, and Transformation of

Requirements, Proc. of 8th Int. Conference on Software Reuse, LNCS, Springer, Berlin (2004)
17. McClure, C.: Reuse Engineering: Adding Reuse to the Software Development Process,

Prentice-Hall, Upper Saddle River, NJ (1997)
18. Mili, H., Mili, A.: Reuse-Based Software Engineering, John Wiley & Sons, NY (2002).
19. Pfleeger, S.L.: Measuring Reuse: a Cautionary Tale, IEEE Software, June (1997)
20. Poulin, J. Measuring Software Reuse: Principles, Practices, and Economic Models,

Addison-Wesley, Reading, MA (1997)
21. Rine D. C., N. Nada, An Empirical Study of a Software Reuse Reference

Model, Information and Software Technology, 42(1), pp 47-65 (2000)
22. Robinson, S., J. Robinson, Mastering the Requirements Process, Addison-Wesley,

Readings, MA (1999)
23. Sharp, H., A. Finkelstein, G. Galal, Shakeholder Identification in the Requirements

Engineering Process, Proceeding of the 1st Intl. Workshop on RE Processes/ 10th Intl
Conf. on DEXA, 1-3 Sept., 1999, Florence, Italy.

24. Welti, N., Sussessful R/3 Implementation, Practical Management of ERP Projects,
Addison-Wesley, Harlow, England (1999).

25. Yin, R. K. Case Study Research, Design and Methods, 3rd ed. Newbury Park, Sage
Publications, 2002.

J. Münch and M. Vierimaa (Eds.): PROFES 2006, LNCS 4034, pp. 127 – 141, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Process Definition and Project Tracking in Model Driven
Engineering

Ivan Porres1 and María C. Valiente2

1 Department of Computer Science, Åbo Akademi University
Lemminkäisenkatu 14, FIN-20520 Turku, Finland

ivan.porres@abo.fi
2 Department of Computer Science, Carlos III University of Madrid,

Avda. Universidad 30, 28911 Leganés (Madrid), Spain
mcvalien@inf.uc3m.es

Abstract. This paper presents a software process definition language that is tar-
geted towards the development of software and systems using Model Driven
Engineering methods. The dynamics of a process model are based on Petri
Nets. This allows us to use a process definition model to plan and track the exe-
cution of actual projects. This new language can be integrated with existing ap-
proaches for software process modeling such as Software Process Engineering
Metamodel.

1 Introduction

Model Driven Engineering (MDE) is a software and system construction approach
based on high-level abstract modeling. All the relevant information in a project is
stored in models based on well-defined languages and development is then carried out
as a sequence of model transformations. The MDE term was first proposed by Kent in
[8] but it is derived from the OMG’s Model Driven Architecture (MDA) initiative [13].

MDE is the result of recent developments on computer languages, awareness of the
need of software and system development methodologies and the constant need to
tackle larger and more complex system development projects. The two key elements
in MDE are modeling languages and modeling tools to create and transform models.
A modeling language is defined using standardized metamodeling languages such as
MOF [11] or the UML 2.0 Infrastructure [16].

Automated model transformation is sometimes seen as the next silver bullet in
software and system engineering. However, we consider that this is not the main ad-
vantage of MDE, since any non trivial development process will contain many devel-
opment steps that cannot be automated. As a consequence, any MDE development
step involves model transformations, but these transformations should be often per-
formed by a skilled designer and not by a CASE tool.

On the other hand, we consider that the fact that we represent in MDE our software
and system artifacts as models and that these models are based on a common meta-
modeling languages brings us many advantages to system development that have not
been fully exploited. A uniform metamodeling approach enables us to build tools to
manage complex relationships between the artifacts that form a complex project such
as refinement [1] or retrenchment [2].

128 I. Porres and M.C. Valiente

In this paper, we study how recent advances in the area of software modeling lan-
guages and model transformations can be used in the context of software process
modeling.

Different process modeling techniques have been used during decades. Software
process modeling studies how to capture and describe a software process. A software
process model is often a simplified representation of an actual process. However, this
is one of its main advantages: a software process model should be easy to understand
and follow by all the developers involved in a given project.

Approaches already exist to process definition that are integrated with modeling
languages such as Software Process Engineering Metamodel (SPEM) [15] or the
Rational Unified Process (RUP) [9]. However, these approaches do not address the
definition of actual project tasks or development steps and tracking or execution of a
project based on a process. This is a consequence of the fact that SPEM and RUP are
generic process definition approaches that can be used in any development approach.

In this article, we propose a simple process definition modeling language that com-
bines concepts from process definition languages such as SPEM with concepts from
Model Driven Engineering such as model mappings and transformations. We define the
execution semantics of the process models in terms of Petri nets. The result is a lan-
guage that can be used to define a model-based development process in detail and,
thanks to its behavioral semantics, to track the execution of projects based on a process.

We should note that our proposal is not a replacement to existing process definition
approaches such as SPEM but a complement to them. Our approach focuses on the
definition of process steps, but ignores other important aspects such as resource and
role definitions since we consider that they are well supported in existing approaches
such as SPEM.

We proceed as follows: In Section 2 we review the main concepts of Model Driven
Engineering and how can be applied to software process modeling. We describe our
new language for process modeling in Section 3 and we describe its dynamics in
Section 4 using a practical example. Finally, we conclude in Section 5 with some final
remarks and related work.

2 Definition of Software Development Processes in MDE

The execution of any complex software development process will include many differ-
ent development steps that will produce internal and deliverable artifacts. A software
development process contains the definition of each one of these steps and artifacts.
Many organizations with complex projects have realized the need of better techniques
and tools to support the management of software development process [4] and continue
to demand more progress in the development process with acceptable results.

In short, software development process produces one tangible “thing” that is the
software system. If we study the characteristics of software process to produce the
“thing”, we can conclude that there is a close relationship between software develop-
ment process and business process. A software development process may be consid-
ered, and therefore managed as a business process. Like in business processes [21], in
the software process there are cases (i.e., projects) that involve a process (i.e.,
software process that defines the life cycle of a project), conditions, tasks, work items,
activities and resources that perform specific tasks in the process.

 Process Definition and Project Tracking in Model Driven Engineering 129

The development process used in a project should be well-defined and documented
so it can be understood by all developers and its application can be monitored and
evaluated. Software development processes can be described using natural language,
but also modeling languages that are specific to the task such as the SPEM. Since
models are supposed to raise the abstraction level of information processing, bring it
near it to human understanding, and be less ambiguous than natural language [3], we
prefer the last approach to describe a software development process. Furthermore, the
development of a model of the software process facilitates reuse of the process by
instantiation and execution of the model into multiple projects. Then, we consider that
a modeling language for defining development processes should meet the following
requirements [21]:

1. The structure of the software development process should be clearly docu-
mented. This makes the process recognizable to the user and reduces the
chances of errors occurring both during the software development process defi-
nition and during the execution of a specific project (i.e., the instantiation and
tracking of a process definition instance).

2. There should be an integrated approach, which also encompasses non-
computerized tasks.

3. A process definition model must be set up so that the structure of the software
development process can be modified easily. This enables organizations to re-
spond flexibly to their changing environment and to restructure their software
development processes accordingly.

4. It is important that the execution of the software development process can be
tracked properly so that any problems can be discovered at an early stage. Inter-
ventions should also be straightforward and possible at the moment when some-
thing goes wrong. To this end, the execution of the software process should be
easy to measure, and it should be possible to refine that execution.

5. The allocation of work to resources is a point of particular interest. Good work-
load management is crucial to achieving effective and efficient software devel-
opment process.

However, we consider that SPEM does not address two important aspects: the defini-
tion of the actual development steps and the tracking or execution of a project based
on a process defined using SPEM. However, if we consider a software development
process as another business process, it is very important to separate process definition
and process execution [21]. Therefore, we consider that in a software development
process we always need to consider two aspects: process definition model that deals
with the definition management of the software development process, and project
execution model that deals with actual software development process definition in-
stance, i.e. actual projects.

One of the reasons why SPEM cannot be used to define the execution of a project
is that is a generic process engineering language that can be used to model any kind of
process. This flexibility implies that a SPEM model cannot be specific on the exact
nature of the artifacts and steps in a process. Therefore it cannot provide guidelines on
the execution and tracking of a project.

These limitations can be lifted if we use SPEM to define a MDE process. In this
case, most of the artifacts in a project will be models and the development steps

130 I. Porres and M.C. Valiente

model mappings. As a consequence, a step can be defined precisely as a mapping
between a number of input models and a number of output models. All the input
models should satisfy a given precondition and the output models a given post condi-
tion. A model mapping can be implemented using an executable transformation.
However, many steps cannot be automated.

The OMG modeling standards already provide most of the technologies necessary
to define a process as described above. The Meta Object Facility (MOF) and the UML
Infrastructure are metamodeling languages that can be used to define other modeling
languages, including the UML 2.0 or Domain Specific Languages (DSL) [22]. As
such, we will distinguish between two kinds of artifacts: model artifacts that are based
on a modeling language defined using MOF or the UML 2.0 Infrastructure, and unin-
terpreted artifacts that are defined using natural language or programming languages.
Since we can consider, for instance, a Java program as a Java model, the uninterpreted
artifacts can be considered as another kind of model as well. The Object Constraint
Language (OCL) is another OMG standard that provides a language to define con-
straints over a model. OCL can be used to define the precondition or postcondition of
a step. Finally, the OMG QVT [12] provides a language to define model mappings
and executable model transformations.

The last element necessary to complete the specification of a process is a mechanism
to combine and sequence the development steps as a business process. Again, we con-
sider the solution is to reuse an existing OMG standard. The latest revision of UML 2.0
[17] offers a variety of notations modeling behavior, including workflow and business
processes. Specially, the UML 2.0 Activity diagrams have been completely redefined
and they are intended to be adopted as a standard for business process modeling.

UML 2.0 Activity diagrams may be applied to describe both computational processes
and organizational modeling for business process engineering and workflow. Activity
diagrams can show an entire business process from beginning to end. It can show a busi-
ness process at any level, from a very high view down to one showing each individual
task [20]. Besides, UML 2.0 Activity diagrams are redesigned to use a Petri net seman-
tics instead of state machine semantics. The use of Petri nets as a formal concept has a
number of mayor advantages since it enables the precise definition of behavioral models
avoiding ambiguities, uncertainties, and contradictions. Besides, the formalism can be
used to make strong statements about the properties of the process being modeled [21].

Based on this discussion, we consider that a software process engineering approach
such as SPEM should be extended to embrace the main concepts of Model Driven
Engineering. The result is an approach to software process definition that allows the
precise definition of development steps using modeling languages to define artifacts,
model mappings to define steps and activity models to define complex activities as a
composition of simple steps.

3 Model-Based Software Development Process Definition and
Execution

In this section we present a new approach to software process modeling that serves as
a complement to SPEM. The proposed diagram considers MDA approach, UML 2.0
Activity Model, SPEM metamodel, and Petri nets semantics.

 Process Definition and Project Tracking in Model Driven Engineering 131

Like a business process (workflow), this diagram can be defined as the flow of in-
formation and control in a definition and execution of software development process.
Therefore, the process definition model should depict the three Rs [20]: Roles (i.e., the
resources who participate in the software development process), Responsibilities (i.e.,
the individual tasks that each resource is responsible for) and Routes (i.e., the control
flow that connects the tasks together, and therefore defines the path that an individual
task will take through the software development process).

On the other hand, since it is much easier to work with software development proc-
esses if there is an agreement on the things the process needs information about, a
glossary with the definitions is very useful. Different interpretations could have a
significant impact on the scope of some processes. Thus, a vocabulary or glossary
should be always included in the process definition model.

A specification of software development process (i.e., life cycle process) definition
in our diagram consists of the next model elements: Work definitions (Activity, Step,
Initial step and Final step), Models, Ancillary nodes (Comment, Constraint and Link),
Resources, and Edges (Flow).

 An Activity is a work definition that represents a composite task, i.e., the specifica-
tion of parameterized behavior consisting of other work definitions, models, ancillary
nodes, resources and directed edges. An activity is identified by a Name and is per-
formed by a Resource.

A Resource is the actor which is responsible of the performance of a task. This
does not always mean to say that the resource necessarily carries out the task inde-
pendently, but that it is responsible for it. We have considered two types of resources:
Role when the task is performed by human beings and Transformation tool when the
task consists in model transformation that is performed by a specific tool. A different
notation is used for each resource. Figure 1 depicts these two notations.

Fig. 1. Human role (left) and transformation tool (right)

An activity has alternative Parameter sets and may have associated a Precondition
and a Postcondition.

A Parameter set is a model element that provides alternative sets of input data (pa-
rameters in the left box in the parameter set) and output data (parameters in the right
box in the parameter set) that a task may use. A parameter set acts as a complete set of
inputs and outputs to a task, exclusive of other parameter sets on the task. When one
set parameter or another has a complete set of input parameters, the task may begin.

A Precondition in a task is a constraint that must be satisfied when the execution of
the task is started. A Postcondition in a task is the constraint that must be satisfied
when the execution is complete.

An activity can be represented with two different notations: a) shorthand notation
(hierarchical structure), or b) expanded notation. Figure 2 depicts these two notations.

132 I. Porres and M.C. Valiente

Fig. 2. Shorthand (left) and expanded (right) notation of an Activity

Since Stakeholders are the people who have a vested interest in the success of the
project, or are involved in the implementation of the project, or even with the power
to abolish the project, a list with the stakeholders is very useful. Stakeholders are
associated with the full life cycle process. Therefore, an activity classified as a Lifecy-
cle will keep this list.

Deliverable and Milestone are other key elements in a software development
project. A Deliverable is a tangible event output from a task or a project (e.g.,
logical model, project agreement, database design or application). A Milestone is a
tangible event used to measure the status of the project (i.e., markers during the
execution of a project that shows the movement of a project in the right direction).
Then, in this respect, we classify an activity as a Phase to indicate the grouping
of tasks that lead to a major project deliverable or milestone. The output(s) of
the Parameter set(s) in a Phase represent the corresponding deliverable(s) or
milestone(s).

Figure 3 depicts the different specializations of an activity.

Fig. 3. Activity classified as a Lifecycle (left) or as a Phase (right)

A Step is a work definition that represents a single task to be performed by a re-
source. This is the fundamental unit of executable functionality. The execution of a
step represents some transformation of processing in the modeled life cycle. A step is
identified by a Name and is performed by a Resource, but in this case the resource is
optional (if the resource is not indicated, it is assumed that the responsible of the step
is the same responsible of the activity which the step is part of). Like an activity, a
step has alternative Parameter sets and may have associated a Precondition and a
Postcondition. The Figure 4 depicts this model element.

 Process Definition and Project Tracking in Model Driven Engineering 133

Fig. 4. Single step

Initial step and Final step are work definitions that represent control atomic tasks
with specific functionality. An initial step provides the data that starts the life cycle.
However, a final step stops all flows in the life cycle. This is the end of the life cycle.
A life cycle may have more than one initial step and final step. Figure 5 depicts these
two model elements.

Fig. 5. Initial step (left) and Final step (right)

A Model represents any artifact in a life cycle. We consider two types of models:
MOF-compliant models and Uninterpreted models. The main difference between
these two kinds of models is that we can easily define constrains over models based
on MOF languages. These constraints are used as a model invariant, that tell us when
a model is valid, but also as preconditions for an activity/step, so it is possible to
know when an activity/step is enabled and can be carried out. We represent a model
in a process definition diagram simply as a rectangle. The actual contents of the mod-
els are represented using the particular notation of the modeling languages used to
create that model, and the type of model is indicated by a specific icon. Figure 6 de-
picts the notation for this model element.

Fig. 6. MOF-compliant model (left) and Uninterpreted model (right)

A Flow is a directed edge that connects a Work definition with a Model or a Model
with a Work definition. A flow may have associated the literal {stream} that indicates
that there is a collection of models passing along the edge. More than one Model
representation with the same name is not permitted, but in order to avoid complex and
unreadable diagrams (e.g., crossing edges), the directed edge can be located inside the
input and/or output parameters in a Parameter set next to the identification of the
Model (without the rectangle). Figure 7 depicts this model element.

134 I. Porres and M.C. Valiente

Fig. 7. Normal Flow notation (left) and the equivalent shorthand Flow notation (right)

Figure 8 illustrates an example of the notation. The diagram shows an overview of
the Implementation phase in a specific software development process. Then, the activ-
ity Implementation classified as a Phase is performed by a Hardware Designer and is
composed of two alternative parameter sets: (inputs: {stream} Stream diagram; out-
puts: Detail Domain Model), (inputs: Defect list; outputs: Detailed Domain Model);
and three steps: Model transformation and Generate code performed by specific
transformation tools, and Defect removal performed by Hardware Designer.

The Model transformation step takes as input a stream of MOF Stream Diagram
and generates as a result a MOF Detail Domain Model.

The Generate code step takes as input a MOF Detail Domain Model and generates
as a result a stream of uninterpreted Code.

The Defect Removal step takes as input an uninterpreted Defect List and generates
as a result a MOF Detail Domain Model without defects.

Fig. 8. An example of a diagram for process definition model

Finally, Comment, Constraint and Link are the ancillary nodes in our notation. A
Comment is the textual annotation that provides additional information to the devel-
oper and can be attached to a set of model elements. A Constraint is the semantic

 Process Definition and Project Tracking in Model Driven Engineering 135

condition of a model element that is expressed in natural language, formal notation, or
in OCL. A Link indicates where the diagram continues by a numeric identification. It
does not affect the underlying model. It is used for clarity. Figure 9 depicts this set of
ancillary nodes.

Fig. 9. Ancillary nodes: Comment, Constraint and Link, respectively

Metamodel
Based on the above diagram, we propose the model illustrated in Figure 10 as our
metamodel for software development process definition and execution models. Proc-
ess definition models are the templates in which the project execution models are
based on.

Fig. 10. UML class diagram representing the metamodel of the diagram for software develop-
ment process definition and execution

The metamodel is at a higher level of abstraction than the models, and depicts the
concepts considered in these models and the relationships between these concepts.
Process definition models and project execution models will be instances of the

136 I. Porres and M.C. Valiente

concepts included in the metamodel. Therefore, these models have to conform to this
metamodel in order to be valid.

Since information is provided by separate parts of the metamodel, it contributes to
a clear separation of the different diagram concerns explained in the previous section.
This separation of concerns makes modularity and reusability much easier.

Furthermore, the metamodel provides a repository of software development proc-
ess definition and execution models. The repository stores agreed-on concepts and
rules of the metamodel, so that users of the repository use common terminology for
key terms in software development process definition and execution. The repository
prevents model misinterpretation due to sketchy understanding of the true meaning
and use of these models. Therefore, specific tools based on this metamodel could use
the repository to specify and manipulate the process definition models and execute
them into project execution models. By the automated creation of a project execution
model based on a selected process definition model, and the use of the repository,
tools can carry out project tracking.

4 Project Tracking

A project execution model is a model based on a process definition model template
that represents the performance of a project. For a specific project, a project execution
model provides a complete overview of the tasks that have to be performed, the re-
sponsible resources of the performance of each task, and the artifacts generated (in
this case, models). Furthermore, when executing a project execution model, develop-
ers can keep track of what is the current state of the project, what has been done and
what it is left.

Due to a recognized executable nature of Petri nets and their well-defined seman-
tics allowing formal analysis, we define the execution semantics of the process
models by establishing a mapping from our language to Petri nets. This behavioral
semantics let us track the execution of projects based on a process. Petri nets are a
formal approach based upon an established formalism for the modeling and analysis
of processes. Petri nets have a strong mathematical basis and there are many analyti-
cal techniques and tools available for them. The use of Petri nets as a formal concept
has a number of mayor advantages since it enables the precise definition of behavioral
models avoiding ambiguities, uncertainties, and contradictions. Besides, the formal-
ism can be used to make strong statements about the properties of the process being
modeled [21].

A Petri net is a directed bipartite graph with two node types called places and tran-
sitions [6]. Places and transitions in a Petri net can be linked by means of a directed
edge which is called Arc. Each arc connects a place with a transition or a transition
with a place, but never two nodes of the same kind.

Places represent a control state or another condition in a Petri net. Places may con-
tain zero or more tokens, and the number of tokens may change during the execution
of the Petri net. The state of a Petri net is indicated by the distribution of tokens
amongst its places.

Transitions are the active components in a Petri net. By firing a transition, the proc-
ess being modeled shifts from one state to another. Therefore, a transition often repre-
sents an event, an operation or some kind of transformation. Transitions have input

 Process Definition and Project Tracking in Model Driven Engineering 137

places and output places. An input place of a transition is any directed arc from a
place to the transition. An output place of a transition is any directed arc from the
transition to a place. A transition may only fire if it is enabled. A transition in a Petri
net is said to be enabled (i.e., ready to fire) iff each input place of the transition con-
tains at least one token. The firing of a transition will remove tokens from the input
places, and will add completely new tokens to the output places.

Using Hierarchical Petri nets we can construct large models by combining a num-
ber of small Petri nets into a larger net (i.e., in a hierarchical Petri net, elements of the
Petri nets contain Petri nets).

In our context, mapping the concepts of a specification of software development
process onto Petri nets, transitions are described by Work definitions (Activity, Step,
Initial step and Final step). Activities and Steps may have associated a Precondition and
a Postcondition. Activity would be part of the hierarchical extension of a classic Petri net
where compositionality, hierarchical structure is provided. Control steps (Initial step
and Final step) are special tasks with specific functionality. The Initial step starts the net
(i.e., the project) and the Final step removes all tokens in the net. The Final step repre-
sents the exit of the net (i.e., the firing of a Final step completes the project).

Models in our diagram represent variables that are used in a Petri net. When a
Model has been initialized (i.e., the Model has a valid value), then the Model is con-
sidered alive. This property let developers know what Models have been already gen-
erated during the execution of the project.

Flows connect a Work definition with a Model or a Model with a Work definition.
The firing of a Work definition will change the state to active of each model con-
nected to an output parameter in the involved Parameter set. This operation is equiva-
lent to add tokens to the output places of the transition. In short, each active Model
indicates that there is a token in the corresponding place.

Only input parameters connected to active Models are considered valid inputs to
the Activity/Step. Then, an Activity/Step is only enabled once there is an active Model
connected at each input in an alternative Parameter set and the preconditions have
been met. Therefore, active Models in a diagram determine the routing of a project
(i.e., the tasks that may be performed and in which order).

In order to represent the above states in project execution models, we use several
icons that are summarized in Table 1.

Table 1. Icons representing states in a Work definition and in a Model

Work definition
Notation State Description

Enabled A member of the team project could select the task

Not enabled Selection is forbidden (i.e., invalid routing)

Model
Notation State Description

Active The Model represents a valid input for an Activity/Step

Alive The Model has been initialized with a valid value

138 I. Porres and M.C. Valiente

4.1 Example

We will use as a running example the definition of a development process for mobile
phones peripherals called MICAS [10]. MICAS is a model-based development proc-
ess based on a domain-specific modeling language. Many of the development steps
are assisted by automatic model transformations. The complete definition of MICAS
is out of the scope of this article.

Figure 11 exemplifies a project execution model with the MICAS case study. The
diagram illustrates the model elements that are part of the MICAS life cycle and con-
forms to the metamodel described in the previous section.

Fig. 11. Example of project tracking

The project execution model provides a well understanding of the applied process.
The diagram provides an overview of the tasks that have to be performed, the respon-
sible resources of the performance of each task, and the models that are part of the
project. Besides, the diagram shows the current state of the project, what tasks have
been done and what tasks are left. The MICAS Project Model was created and the
Domain Analysis Phase has started.

The diagram shows that since the Domain Overview Model is active, the activities
Domain Analysis and Domain Design (both classified as a Phase) and the step Review
job are enabled. This model completes a set of inputs in one of their alternative Pa-
rameter sets and, in this case, there is not a precondition to meet. The developer could

 Process Definition and Project Tracking in Model Driven Engineering 139

select either of them to continue with the project. If the user selects an activity, then
the corresponding expanded diagram of the activity will be displayed until the user
select a specific step to perform.

Since the rest of the work definitions do not have enough active models to begin,
the selection is not permitted. Finally, models List of requirements and MICAS Pro-
ject Model indicate that they are not active, but they are alive (i.e., they were initial-
ized with a valid value).

5 Conclusions and Related Work

Software process modeling facilitates reuse of the process by instantiation and execu-
tion of the model into multiple projects. In this paper, we have proposed a software
development process definition approach for Model Driven Engineering projects that
improves the software process. Process models can be instantiated into specific pro-
jects. Our approach can be seen as a complement or extension to SPEM, but it can
also be used independently.

The benefits of our approach are twofold: first we can introduce more detail in the
software development process definition, allowing software development process
precise and understandable with least effort. Also, a process model provides a com-
plete overview of the tasks that have to be performed during a project, the responsible
resources of the performance of each task, and the models generated. Furthermore,
when executing a diagram, developers can keep track of what is the current state of
the project, what has been done and what it is left.

Due to the executable nature of Petri nets and their well-defined semantics allow-
ing formal analysis, we use Petri net as a foundation to provide project tracking fea-
tures. The use of Petri nets as a formal concept has a number of mayor advantages
since it enables the precise definition of behavioral models avoiding ambiguities,
uncertainties, and contradictions. Besides, the formalism can be used to make strong
statements about the properties of the process being modeled. We plan to extend our
approach in this direction in the future and to build the corresponding tool that sup-
ports the proposed language.

UML 2.0 is a large modeling language that contains different mechanisms to or-
ganize and structure large projects. Some of the elements present in UML could be
used to create process definition and model management diagrams as proposed in this
article.

However, we consider that it is not a good idea to use UML 2.0, or any other exist-
ing language, for model management. Model management artifacts should be inde-
pendent of the modeling language and be based on metamodeling approaches such as
MOF and the UML infrastructure.

Data Flow Diagrams (DFDs) can identify, classify, and refine the data flows in-
volved in a software process. However, DFDs only provide the functional view of the
process (i.e., they describe only what is being done and what data is flowing). The
diagrams do not describe the routing of a project neither the responsible resources of
the performance of the process tasks.

Approaches already exist to process definitions that are integrated with modeling
languages such as SPEM. SPEM is a known OMG’s initiative that already supports

140 I. Porres and M.C. Valiente

the definition of the software development process specifically including those proc-
esses that involve the use of UML.

However, SPEM does not consider the execution of a project using a process defi-
nition described with SPEM. It neither tackles the definition of an actual task nor the
actual tracking of a project that is what tasks should be performed at a given moment,
what tasks have been done and what tasks are left.

Another modeling approach, Statemate by I-Logix, Inc. [5] seems to be a good al-
ternative as representation formalism for software processes [7]. This system supports
a unique methodology which was originally developed to aid in the design of real-
time reactive systems (e.g., avionics software).

This system uses three types of diagrams to represent the specification of a process
definition. Activity charts detail the functional viewpoint of a process. The first type,
activity charts are basically DFDs with the addition of control activities and flows of
information used for control purposes. The second type, statecharts provide the be-
havioral viewpoint (i.e., when and how). Statecharts extend conventional state-
transition diagrams to deal with hierarchy, concurrency and communication. The third
type, module charts provide the structural description of the models (i.e., they de-
scribe who performs tasks and where they are performed). Comparing to our proposed
diagram, we offer a complete overview of the three diagrams (except timing issues) in
a single diagram providing the useful information that developers need in order to
understand the software development process. Besides, Statemate diagrams do not
provide guidance in executing the process based upon its definition.

The Programming Process Architecture [19] is a related approach intended to de-
fine a homogeneous software development process across IBM’s products. However,
product development is not MDE-based and the architecture is not devised to contain
specific tools or methodologies.

Finally, Protégé [18] is a tool that allows for the creation and manipulation of on-
tologies. Protegé uses a metamodel that can be used to model software processes
involved in the creation of software products. However, the metamodel does not deal
with hierarchy and for complex process definitions we could obtain unreadable dia-
grams. Furthermore, this metamodel does not provide project tracking.

Acknowledgments

The authors would like to thank Ian Oliver at Nokia Research Center, Helsinki for the
enlighten discussions about the topics presented in this paper.

References

1. Ralph Back and Joakim von Wright, Refinement Calculus: A Systematic Introduction,
Springer-Verlag, 1998.

2. Richard Banach and Mike Poppleton, Retrenchment, In Proceedings of Formal Methods,
volume 1709 of LNCS, Springer,-Verlag 1999.

3. Gonzalo Genova, Maria C. Valiente, Jaime Nubiola. A Semiotic Approach to UML Mod-
els. In Proceedings of the 1st International Workshop on Philosophical Foundations of In-
formation Systems Engineering (PHISE’05). June 13, 2005. Porto, Portugal. Esperanza
Marcos, Roel Wieringa (eds.), 547-557.

 Process Definition and Project Tracking in Model Driven Engineering 141

4. Watts S. Humphrey. Managing the Software Process. Addison Wesley, 1989.
5. I-Logix Statemate. http://www.ilogix.com/
6. Kurt Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use.

Volume 1. Second Edition. Springer-Verlag, 1996.
7. Marc I. Kellner, Gregory A. Hansen. Software Process Modeling. Software Engineering

Institute, Carnegie Mellon University. Technical report, available at
http://www.sei.cmu.edu/publications/documents/88.reports/88.tr.009.html, 1988.

8. Stuart Kent. Model Driven Engineering. In Proceedings of International Formal Methods
2002, volume 2335 of LNCS. Springer-Verlag, 2002.

9. Philippe Kruchten. Rational Unified Process. Addison-Wesley, 1998.
10. Johan Lilius, Tomas Lillqvist, Torbjörn Lundkvist, Ian Oliver, Ivan Porres, Kim Sand-

ström, Glenn Sveholm, Asim P. Zaka. The MICAS Tool. In Proceedings of the
NWUML'2005: The 3rd Nordic Workshop on UML and Software Modeling, pp. 180-192.
Tampere, Finland, August, 2005.

11. OMG. Meta Object Facility (MOF) 2.0 Core Specification, version 2.0. Document ptc/04-
10-15, available at http://www.omg.org/, October, 2004.

12. OMG. Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification. Docu-
ment ptc/05-11-1, available at http://www.omg.org/, November, 2005.

13. OMG. Model Driven Architecture. Document ormsc/2001-07-01, available at
http://www.omg.org/, July, 2001.

14. OMG. Model Driven Architecture, MDA Guide, version 1.0.1. Document omg/2003-06-
01, available at http://www.omg.org/, June, 2003.

15. OMG. Software Process Engineering Metamodel (SPEM) Specification, version 1.1.
Document formal/05-01-06, available at http://www.omg.org/, January, 2005.

16. OMG. UML 2.0 Infrastructure Specification. Document ptc/04-10-14, available at
http://www.omg.org/, November, 2004.

17. OMG. UML 2.0 Superstructure Specification. Document ptc/04-10-02, available at
http://www.omg.org/, October, 2004.

18. Protégé. http://www.ics.uci.edu/~jgeorgas/ics225/index.htm
19. R. A. Radice, et al. A programming process architecture. IBM Systems Journal, v. 24, n.

2, pp. 79-90, 1985.
20. Alec Sharp, Patrick McDermott. Workflow Modeling. Tools for Process Improvement and

Application Development. Artech House, 2001.
21. Wil van der Aalst, Kees van Hee. Workflow Management. Models, Methods, and Sys-

tems. The MIT Press, 2002.
22. Ariel van Deursen, Paul Klint, Joost Visser. Domain Specific Languages: An Annotated

Bibliography. ACM SIGPLAN Notice, v. 35, n. 6, pp. 26-36. June 2000.

Difficulties in Establishing a Defect Management
Process: A Case Study

Marko Jäntti, Tanja Toroi, and Anne Eerola

University of Kuopio, Department of Computer Science,
PL 1627, 70211 Kuopio, Finland

mjantti@cs.uku.fi

Abstract. A well-organized defect management process is one of the
success factors for implementing software projects in time and in budget.
The defect management process includes defect prevention, defect discov-
ery and resolution, defect causal analysis, and the process improvement.
However, establishing an organization-wide defect management process
is a complicated task. The main research question in this paper is what
kind of difficulties organizations have regarding the defect management
process. Our findings show that problems are related to defect resolu-
tion reports, limited project resources for fixing defects, and challenges
in creating a test environment. Results are based on our observations
from four case organizations. The main contribution of this study is to
help organizations to identify and avoid typical problems with defect
management.

1 Introduction

Establishing a defect management process is an attractive way to improve the soft-
ware quality. Early detection of defects provides cost and time savings for software
projects because developers need to produce less new product versions and bug
fixes. Moreover, reduced number of defects in applications increases the level of
customer satisfaction, and reliable software is easy to sell to new customers.

Several studies have explored defect management activities. For example, dif-
ferent types of defect management models have been described by the Software
Engineering Institute (SEI) [1], [2], IBM [3], the IT Infrastructure Library [4],
and the Quality Assurance Institute (QAI) [4]. According to the QAI, the de-
fect management process consists of six elements: defect prevention, deliverable
baselining, defect discovery, defect resolution, process improvement, and man-
agement reporting. The Defect Prevention Model of IBM [3] is focused solely on
defect prevention techniques, for example, Defect Causal Analysis method. The
causal analysis is used to identify the root cause of the defect [5].

Additionally, there are a number of recent studies that have presented different
defect classification schemes [6],[5]. Too detailed reporting and complex classi-
fication schemes might increase defect processing costs remarkably [7]. Defect
management activities are also supported by various quality standards. CMM
at Level 5 considers defect management as a key process area with the following

J. Münch and M. Vierimaa (Eds.): PROFES 2006, LNCS 4034, pp. 142–150, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Difficulties in Establishing a Defect Management Process 143

goals: defect prevention activities are planned, common causes of defects are
sought and identified, and common causes of defects are prioritized and system-
atically eliminated [8].

Currently, many organizations are adopting the Problem Management model
described by the IT Infrastructure Library (ITIL) because ITIL has become a
de facto standard for IT service management [4]. However, the ITIL model does
not define how to perform testing and defect management activities as a part
of IT service management. In fact, it seems to be that there is a need for both
a problem management model used by the service support staff and a defect
management model used by the application developers and testers. This might
cause a communication gap if both counterparts use different data repositories
for problems and defects.

However, few studies have examined the problems that organizations have
with defect management. This study continues the work reported in our previous
study [9], where we identified the advantages and problems of using an UML-
based test model for creating test cases based on UML diagrams [10].

In this paper the research question is, what kind of problems do organizations
have regarding defect management? First, we explore four case organizations’
goals for defect management and defect management processes. After that, we
will investigate what are their problem areas in defect management. Most of
the previous research of defect management has focused solely on software com-
panies, although customers are active participants in the defect management
process. In our study we are going to examine defect management problems also
from the IT customers’ viewpoint.

As main findings we will show that instead of tool-related difficulties major
problem areas in defect management are, for example, dealing with defect reso-
lution reports, creating a test environment and a lack of commonly agreed defect
management methods.

The rest of the paper is organized as follows. In Section 2 we describe the
research methods of this study. In Section 3 findings of the case study are pre-
sented. Section 4 is the analysis of findings. The discussion and the conclusions
are given in Section 5.

2 Research Methods

This case study is a part of the work of the research project SOSE (Service
Oriented Software Engineering) at the University of Kuopio, Finland. SOSE is
funded by the National Technology Agency TEKES, the European Regional
Development Fund (ERDF), and four partner companies. The study was car-
ried out partly with the research project PlugIT (2001-2004), which focused on
research into application integration methods in the healthcare domain.

The main research purpose of this study was to explore the problems that or-
ganizations have in defect management. A case study method was used because
it is well suited for the study of information systems in organizations. Yin [11]
defines a case study as "an empirical inquiry that investigates a contemporary

144 M. Jäntti, T. Toroi, and A. Eerola

phenomenon within its real-life context, especially when the boundaries between
phenomenon and context are not clearly evident". Both IT customers and soft-
ware companies were selected for this study because our objective was to compare
the difficulties in defect management between these two groups.

2.1 Data Collection Methods

Case A is a large IT service company with over 15 000 employees. It supplies
information systems to various industries, such as banking and insurance, energy,
telecom and media, and healthcare. The data collection methods in this case
included personal interviews with a product manager and a customer support
manager.

Case B is a project-oriented software company. Its core business is focused on
implementing solutions for mobile communication: for example, solutions that
enable operators to charge for GSM calls. The company employs 53 people.
Their strategic partner is one of the leading GSM operators in Finland. The
data collection methods included an interview with an IT manager.

Case C is an energy company group consisting of 1) the parent company, which
is responsible for the network business and group administration; 2) a company
specializing in selling electricity; and 3) the district heating company. They have
430 employees. The data collection methods included personal interviews with
an IS manager and a risk manager.

Case D is an IS department of a hospital offering specialized services, including
specialized nursing services, to the healthcare district. It is also a teaching hos-
pital with medical, nursing science and healthcare students. The data collection
methods included interviews with a system tester and a system designer. The in-
terviews with the tester were conducted in the course of the UML-based testing ex-
periment in the PlugIT project [9]. The purpose of the experiment was to explore
how UML-based testing [12] helps in finding defects in a healthcare application.

Interviews were performed by the first author and were based on the ques-
tionnaire that was based on the research framework developed by the Quality
Assurance Institute [13] containing the following questions:
1. Do you have a software quality program, a formal software development

lifecycle model, a defect classification method or definition of defects?
2. What kind of defect information is collected?
3. Who collects defect data?
4. What are the sources of defect data?

2.2 Data Analysis Methods

A cross-case analysis technique [14] was used in this study to analyze data from
interviews and to compare cases. In the data analysis, we tabulated the data on
cases into four categories: existing defect management methods, type of defect in-
formation, defect data sources, units responsible for collecting defect data. Then
we compared the results, looking for similarities and differences in defect man-
agement processes and problems. Finally, we analyzed how organizations could
improve their defect management processes based on the results of this study.

Difficulties in Establishing a Defect Management Process 145

3 Empirical Findings

This section presents our empirical findings from four cases. In this study, we
explored the organizations’ goals in defect management, their defect management
processes, and problems related to the activities in defect management.

3.1 Defect Management Processes

Table 1 shows our findings regarding the four cases’ defect management pro-
cesses. Notes: N = no, Y = yes, - = missing data and P = partially.

Table 1. Defect Management processes in four case organizations

Question A B C D

The case organization has
Software Quality Program P N N N
Formal software development lifecycle Y Y N N
Company-wide method of gathering defect information Y Y Y P
Method of classifying defects/problems Y Y Y Y
Definitions of defects and failures Y N Y Y
The case organization collects information on
Development/Production failures Y Y Y Y
Development phase where a defect originated Y Y - Y
Activity which originated the defect/problem N Y Y -
Type of the defect/problem Y Y Y Y
Cause of the defect/problem Y N Y Y
Time to resolve the defect /problem Y Y Y N
Defect/problem resolution costs N N Y N
Sources of defect data are
Change Request Form Y N Y Y
Problem Reports Y N Y Y
Reviews Y Y Y Y
Inspection measurements Y Y Y N
Operations/production reports N Y Y N
Change Management function Y Y N -
Defect data is collected by
HelpDesk Y N Y N
Quality Assurance Y Y Y -
Project teams Y Y Y Y

Our case organization’s goals in defect management were to 1) improve cus-
tomer satisfaction and decrease costs, 2) to increase software quality, 3) to ensure
that customers will get services with as few failures as possible, and 4) to ensure
that purchased software works correctly in the system environment.

3.2 Problems Regarding the Defect Management Process

Personal interviews with the case organizations identified following problem ar-
eas, bottlenecks and challenges in defect management processes:

146 M. Jäntti, T. Toroi, and A. Eerola

1. Defining good metrics for IT service problem management and Service Level
Management is a challenge.

2. Creating a large amount of test data for testing is difficult.
3. Load testing and performance testing tools cannot test the whole system.
4. Informing customers of new defects is a challenge because not all customers

use the function that containing the defects.
5. Limited resources for fixing defects.
6. Establishing a defect management framework takes a lot of time.
7. Teams use different methods: the challenge is how to combine methods.
8. IT companies often consider the bugs found by the customer as typical prop-

erties of the application.
9. IT companies do not send defect resolution reports to customers.

10. Establishing a test environment is always a challenge.
11. Some software vendors do not provide defect reporting services to customers.
12. No training in using a new defect management tool for reporting defects.
13. Negative attitudes towards defect reporting tools: long report forms.
14. Software vendors deliver applications containing many bugs that should have

been found by the developer-side testing.

4 Analysis

4.1 The Analysis of Defect Management Processes

As expected, both customers reported that they do not have software quality
programs or a formal software development lifecycle model. Case A stated that
some units in their organization have quality programs. All cases had a company
wide method for gathering defect data. Case D’s answer was partially yes because
they used defect reporting services provided by software vendors. They told that
for some vendors defects must be reported by phone or by email.

All cases had a method for classifying defects. Case C also used a domain-
specific problem classification (low voltage, medium voltage, high voltage faults).
Similarly, all cases collected information on development / production failures
and the type of defect. Surprisingly, only one of the cases systematically col-
lected information on problem resolution costs, and even this was not related to
software problems but to energy faults. Regarding the sources of defect data, on
the basis of the interviews it seems that all the cases had used some informal
reviews, and three cases had used inspections. Three cases mentioned problem
reports. Defect data were collected by project teams in all cases. Cases A and
C had a help desk function that was responsible for collecting incidents. Case
D emphasized the importance of testers in collecting defects. Testers test each
product version, and if the purchased product contains severe defects it will not
be installed into the operation environment.

In the course of this study an interesting observation was made that Case A
and Case D actually use the same defect reporting tool, but in different roles
(A as an IT service provider and D as an IT customer). According to Case
A, the advantages of the tool were an affordable price, a direct web interface
for the customer, and good customization possibilities. The system designer of

Difficulties in Establishing a Defect Management Process 147

Case D reported that the defect reporting tool is easy to use, and wished that
other vendors offered similar tools. Another interesting finding was that while
the customers reported that they use defect reporting tools provided by software
vendors, the software company B used defect reporting tools provided by their
customers.

4.2 The Analysis of the Identified Problems

Regarding the identified problem areas and challenges in defect management,
probably the most interesting challenge was reported by an IT service provider
that was looking for good metrics for IT service problem management and service
level management because they were changing old processes to the processes that
are compliant with the IT Service Management standard (ITIL). This was an
interesting issue because when the company has a leading position in providing
IT services in Scandinavia it can require that their partners and subcontractors
must also use ITIL-based processes including problem management.

Most of the problems identified in our interviews were not surprising. Two
case organizations stated clearly that it is difficult and expensive to create a test
environment matching to the real production environment. A big problem is,
for example, creating large amounts of suitable test data for testing. It is more
expensive and difficult to create 100 Gb test data than only 1 Mb. Secondly,
load testing and performance testing tools are often able to test only a part of
the system. One of the software companies also stated that IT customers could
use the review or inspection methods for the system specification phase in order
to point out the issues that are unclear or that include problems. That would
probably increase the customer’s degree of involvement in project issues. One of
the companies told that they have not had any problems with defect management
tools but the major problem is that their project teams use different methods in
managing defects.

Customers reported as a big problem that IT companies consider the bugs
found by the customer often as typical properties of the application. "It is not a
bug" has often been a statement from Help Desks of IT providers. An interesting
question is why software companies do not admit that their application might
have problems and state that problems will be carefully examined and possible
improvements are implemented in the next product release. They also stated
that IT providers should inform how the defects, reported by a customer, were
handled or fixed. Often, customers do not understand defect resolution reports
that they have received. Lack of resolution reports does not motivate customers
to send problem reports to the IT provider in further projects.

One of our cases considered as a major problem that all the software vendors
do not provide defect reporting systems to customers. In one case, a software
vendor had offered a tool for reporting defects but a customer did not use the tool
because they had not received any training. Additionally, IT companies reported
some other problems, such as high prices of test tools. Especially, load testing
is expensive with a large number of virtual users. Limited project resources also
affect the use of dynamic and static techniques.

148 M. Jäntti, T. Toroi, and A. Eerola

4.3 Lessons Learned

Based on our case study results, we emphasize that organizations should pay
more attention to the following issues in performing defect management
activities:

– The defect management process must be an organization-wide process, al-
though Ahonen et al. have argued that it is practically impossible to ensure
that all teams use good practices [15]. Henninger [16] has proposed that orga-
nizations should build an organizational repository of experiences. Learning
from defects is a very good example of experience-based learning. There has
to be clear rules and guides that define who are responsible for recording
defect data, how to change a status of the defect, or how to classify a defect.
Project teams should be motivated to share information on defects between
different projects.

– The support staff of the IT organization must pay more attention to the
service quality in the problem situation avoiding this is not a bug service.
All problems reported by customers must first be recorded by the service desk
that is usually capable to resolve most of the simple problems. Therefore,
programmers will not be disturbed and they have more time to focus on
serious problems.

– The defect/problem resolution reports, that an IT organization sends to
customers, must be clear and consistent avoiding difficult IT terms.

– The organization’s management has to allocate sufficient resources to defect
management and testing teams, and motivate them to use diverse methods
for preventing and finding defects, for example, UML-based testing [17], soft-
ware inspections [18], and defect causal analysis [19]. In the long run, the
defect management must be more proactive than reactive. Focusing on pre-
venting defects and problems before they occur is more useful than correcting
a large number of repetitive errors.

– Customers and end users must be trained to use automated defect reporting
tools, FAQ sites and known error databases, if available. These tools will
remarkably decrease the amount of work spent on processing defects.

– The defect management model must have clear connections to the neighbor
processes such as service desk, change management, testing, and application
development. Most of the current models (e.g. IBM, QAI) have ignored this
issue. The major drawback of the ITIL problem management model is a
poorly documented testing process. One possible method to test the con-
nections between processes is to review the defect life cycle with ten sample
defects and identify how they were processed in different units of the orga-
nization.

– Suitable metrics should be produced for both the defect management (e.g.
defect removal efficiency, mean time to failure) [13] and monitoring service
levels (e.g. a number of breached service level agreements, the resolution
time for a problem) [20].

Difficulties in Establishing a Defect Management Process 149

5 Discussion and Conclusions

This study aimed to explore problems regarding defect management. Our find-
ings show that different stakeholders have different problems. A large part of
the identified problems were not surprising. A lot of traditional problems were
revealed in interviews. IT customers have problems getting defect resolution re-
ports from IT companies, or interpreting them. They dislike being told by IT
companies that the bugs they find are typical features of the application. More-
over, the software they purchase contains defects that should have been found
by IT companies’ testers.

IT companies’ problems are related to decisions about whether to send de-
fect resolution reports and bug fixes to customers or not. One major problem
is the fact that project teams do not have commonly agreed methods of defect
management. The developer side often has limited resources to fix defects. Cre-
ating a test environment seems to be a common problem for both IT customers
and IT companies. Contrary to expectations, problems related to the usability
of defect reporting tools were relatively unimportant to the participants in this
study. Similarly, static methods for finding defects were used more often than
expected. The IT service provider reported a new interesting challenge: how to
create suitable metrics for IT service problem management and Service Level
Management. This requires further investigation.

As with all case studies, there are threats to the validity of this study. First,
construct validity is problematic in case study research. Data for the case study
should be collected from several sources. We tried to avoid problems with con-
struct validity by using multiple sources of evidence, such as conducting personal
interviews with at leasttwo persons per case organization. One potential weak-
ness is the fact that most of the interviewees in our study were managers. In
order to get a richer view of the problems in defect management, we need to
interview more ordinary programmers and testers. Second, there is the threat
to external validity, i.e. to the generalizability of the results. The results of this
study might not be generalizable to other organizations, since there were only
four cases in this study, and all the cases were in different industries.

The main contribution of this study lies in helping IT companies and IT cus-
tomers to identify and avoid typical problems in defect management. Future
studies should explore more deeply the problems organizations face with regard
to defect resolution reports. In future studies we intend to improve our research
framework by exploring how our current defect management model and the prob-
lem management framework of the IT Infrastructure Library can be combined,
and how service level agreements can be utilized in defect management.

References

1. Florac, W.: Software quality measurement a framework for counting problems and
defects. Technical Report CMU/SEI-92-TR-22 (1992)

2. Hirmanpour, I., Schofield, J.: Defect management through the personal software
process. Crosstalk, The Journal of Defense Software Engineering (2003)

150 M. Jäntti, T. Toroi, and A. Eerola

3. Mays, R.G., Jones, C.L., Holloway, G.J., Studinski, D.P.: Experiences with defect
prevention. IBM Syst. J. 29(1) (1990) 4–32

4. Office of Government Commerce: ITIL Service Support. The Stationary Office,
UK (2002)

5. Leszak, M., Perry, D.E., Stoll, D.: A case study in root cause defect analysis. In:
ICSE ’00: Proceedings of the 22nd international conference on Software engineer-
ing, New York, NY, USA, ACM Press (2000) 428–437

6. El-Emam, K., Wieczorek, I.: The repeatability of code defect classifications. Tech-
nical Report. International Software Engineering Research Network, ISERN-98-09.
(1998)

7. Humphrey, W.S.: A personal commitment to software quality. In: ESEC. (1995)
5–7

8. Jalote, P.: CMM in Practise, Processes for Executing Software Projects at Infosys.
Addison-Wesley (2000)

9. Jäntti, M., Toroi, T.: Uml-based testing: A case study. In: Proceedings of
NWUML’2004. 2nd Nordic Workshop on the Unified Modeling Language, Turku:
Turku Centre for Computer Science (2004) 33–44

10. Kruchten, P.: The Rational Unified Process: An Introduction. Addison-Wesley
(2001)

11. Yin, R.: Case Study Research : Design and Methods. Beverly Hills, CA: Sage
Publishing (1994)

12. Binder, R.: Testing Object-Oriented Systems: Models, Patterns, and Tools.
Addison-Wesley (2000)

13. Quality Assurance Institute: A software defect management process. Research
Report number 8 (1995)

14. Eisenhardt, K.: Building theories from case study research. Academy of Manage-
ment Review 14 (1989) 532–550

15. Ahonen, J.J., Junttila, T., Sakkinen, M.: Impacts of the organizational model on
testing: Three industrial cases. Empirical Softw. Engg. 9(4) (2004) 275–296

16. Henninger, S.: Using software process to support learning software organizations.
In: 1st International Workshop on Learning Software Organizations, Kaiserlautern
(1999)

17. Hartmann, J., Imoberdorf, C., Meisinger, M.: Uml-based integration testing. In:
ISSTA ’00: Proceedings of the 2000 ACM SIGSOFT international symposium on
Software testing and analysis, New York, NY, USA, ACM Press (2000) 60–70

18. Gilb, T., Graham, D.: Software Inspection. Addison-Wesley (1993)
19. Card, D.N.: Learning from our mistakes with defect causal analysis. IEEE Software

15(1) (1998) 56–63
20. Office of Government Commerce: ITIL Service Delivery. The Stationary Office,

UK (2002)

A Case Study on the Success of Introducing General
Non-construction Activities for Project Management

and Planning Improvement

Topi Haapio1 and Jarmo J. Ahonen2

1 TietoEnator Telecom & Media
P.O. Box 1779, FI-70601 Kuopio, Finland
topi.haapio@tietoenator.com

2 Department of Computer Science
University of Kuopio

P.O. Box 1627, FI-70211 Kuopio, Finland
jarmo.ahonen@uku.fi

Abstract. The creation of a proper work breakdown structure (WBS) is essential
in performing successful project effort estimation and project management. The
use of WBS is required on the level 1 of CMMI. There is, however, no standard
WBS available. In this paper, the results of a pilot project in which new activi-
ties were introduced into the TietoEnator’s WBS are reported. The activities were
non-construction activities which are necessary but not directly related to the ac-
tual software construction. The study shows that the success of the introduction
of such activities very much depends on the naming of the activities and how they
are introduced to the employees. Additionally, it turned out that the pre-thought
set of non-construction activities included activities that should not have been in
the set at all as individual activities.

1 Introduction

Since the beginning of software projects and their effort estimations, work has been bro-
ken down into smaller entities, i.e. project activities and phases to manage and estimate
work easier. The work breakdown structure (WBS), a particular defined tree-structure
the project work is broken into [1], was applied even in the early effort estimation
models, e.g. the Wolverton Model [2] and COCOMO [3]. WBS is also required by the
currently employed capability maturity models, e.g. the staged presentation of CMMI
[4] requires WBS on its lowest maturity level 1. However, no standardized way of cre-
ating the WBS exists, thus the applied activity sets in software projects are either very
general or project-specific. To benefit effort management in the project, the activities
should be broken down into suitable granularity level, which in turn leads to activity
sets that differ from each other from project to project.

This paper examines the adoption of general project activities to increase the re-
liability of registered effort and uniformity of the work breakdown structure. In the
case study presented in this paper, a two-phased questionnaire survey was conducted
to explore the adoption of a new set of project activities, namely the non-construction

J. Münch and M. Vierimaa (Eds.): PROFES 2006, LNCS 4034, pp. 151–165, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

152 T. Haapio and J.J. Ahonen

activities [5], i.e. the activities which are not directly related to software construction or
project management. These activities include various management and support activ-
ities such as orientation, planning activities, quality assurance, configuration manage-
ment, customer support, and documentation, each carried out by several members of the
project. Neglecting the non-construction activities in project planning and effort estima-
tion may result in significant effort proportion deviation between projects. Furthermore,
regardless of the effort estimation method employed, even the best estimate cannot be
accurate if the method neglects or undervalues the non-construction activities that are
involved in the project. Effort estimation research has focused on software construction
because the majority of the total effort is software construction effort [6], and because
the customers are willing to pay for the construction work. However, the rest of the
project effort is just as important when a higher estimation accuracy is pursued, and —
in large projects — that effort can represent a significant amount of money. Considering
the non-construction activities is useful also while comparing the efficiency of different
projects.

This study is a part of a larger project aiming to improve effort estimation and effort
management by focusing on activities other than the actual software construction or
project management, and making the effort distribution proportions more stabile, thus
more predictable and controllable, from project to project [5]. The larger project is a
part of a company-wide CMMI effort at TietoEnator.

This paper is structured as follows. Section 2 describes the research methodology
and the theoretical background, Sect. 3 outlines the effort management process with the
adoption of new project activities. The case study is presented in Sect. 4. The analysis
of the study is presented in Sect. 5, followed with a discussion in Sect. 6. Section 7
gives a brief conclusion and suggestions for future research.

2 Theoretical Background and Research Methodology

In many cases, the activities and lifecycle phases of software projects have served as
the basis for the different factors used for effort-counting. However, no standardized
way to divide different project lifecycle activities has been established: different effort
estimation methods emphasize different activities and factors in their effort-counting by
identifying and using the most important ones. For instance, the COCOMO models use
activity breakdown. In the original COCOMO model, the activities were divided into
eight major categories, namely requirement analysis, product design, programming, test
planning, verification and validation, project office functions, configuration manage-
ment and quality assurance, and manuals, each having specific activities in the four
project lifecycle phases [3].

COCOMO was enhanced to COCOMO II in the mid-1990s in order to develop the
model to address the new needs of evolving software engineering such as distributed
software and component techniques. COCOMO II categorization is not, however, suit-
able for all project situations, and should be adjusted via context and judgment to fit
individual projects [7]. In COCOMO II, software activity work was divided into five
major categories: management, system engineering, programming, test and evaluation,
and data [7]. This breakdown was adapted from COCOMO’s eight categories, which

A Case Study on the Success of Introducing General Non-construction Activities 153

were partly reorganized and renamed. The factors, used in COCOMO counting, com-
prise activities that correspond with the non-construction activities presented in this
paper. These activities comprise project office functions, configuration management
and quality assurance, and manuals. However, important factors such as the amount
of documentation, management quality, and personnel continuity were excluded from
COCOMO [3][8].

Although effort can be distributed in a project between project activities or project
phases in many different ways, effort distribution is a less-investigated effort estimation
area. Indeed, it has been disputed whether it is useful to distribute effort in the first place
[6][9]. However, rightly modeled effort distribution could be used for effort estimation:
for example, for predicting the effort needed for the latter phases using the effort in-
formation of the previous phases. Moreover, effort distribution can be used to compare
different projects with each other.

The project activities, their estimated and realized effort and the success of the break-
down are analyzed in an effort analysis. Effort analyses are usually conducted as a part
of project’s post-mortem review, which is customary — or should be — in the software
industry. The method used for post-project analysis is normally company proprietary
[10]. A post-project analysis, also called the project closure or the post-mortem analysis
[10][11][12] is a process of considering the project carefully in detail after the project
has been completed in order to understand and explain it to learn from the experience,
and improve the process based on learning.

Gathering data on project’s actual effort and progress and comparing these with the
estimates is essential for several reasons. As the effort estimating inputs and techniques
are imperfect, the completed project data are needed to improve them. Moreover, not
every project fits into the estimating model. Furthermore, as software engineering is
constantly evolving and all estimating techniques are calibrated on previous projects,
it is important to identify the differences due to the trends and incorporate them into
improved effort estimates and techniques [3]. Besides the effort estimation methods,
these differences may also affect estimation and software engineering processes, and
vice versa. An evolved software engineering process may affect the effort estimation
method, as in the case where the original COCOMO model was developed into the
COCOMO II model.

The effort estimation models employed by companies normally require a follow-up
system. This system both supports effective project management and benefits the long-
range effort estimation capabilities. The data collected via control activities over several
projects can be analyzed to determine how the realized effort distribution differs from
the estimates. The differences are fed back to calibrate the model, e.g. the COCOMO
models. For a new project, data collection should be considered at project start, at the
end of major proper phases, and at the end of the development, as Boehm et al. [7] point
out for the COCOMO II model. Projects can use the data to benchmark their progress,
develop business cases and calibrate their estimating models [7]. A post-project effort
analysis provides effort calibration information as a result to populate the effort reposi-
tory from which the effort estimation method’s factor weights can be derived.

Effort management can also be the focus of the software process improvement ac-
tivity. The activity initiative can arise from employing a capability maturity model. The

154 T. Haapio and J.J. Ahonen

maturity models are used to improve the related processes. Software process improve-
ment (SPI) means understanding the existing processes and improving them to achieve
improved product quality and to reduce costs and development time, and it is usually
an activity that is specific to an organization [13]. SPI has its origins in the Total Qual-
ity Management (TQM). The principles of statistical quality control in product quality
management from the 1930’s were further developed in the 1980’s with a premise that
real process improvement must follow a sequence of steps, i.e. make the process con-
crete, repeatable and measurable. The premise for improvement is that it is managed
which in turn require that it is measurable [14].

SPI and the capability maturity model employment are under enormous interest of
research. A number of studies have been conducted applying above mentioned models
in software industry (e.g. [15][16][17][18][19]). However, studies describing improve-
ment activity in software project effort management context, and adopting new project
activities in particular, are not very common or their results applicable in the case an-
alyzed in this paper. It is also argued that maturity models provide a good basis for
SPI, but also an excessive overhead if deployed in full, and on the other hand, do not
take enough in consideration that different businesses and situations require different
processes [17]. Furthermore, it is argued that maturity models may not be the best mod-
els to measure maturity in management processes such as project management effort
management included, as opposed to the technical processes of developing the soft-
ware, since models have an underlying process model that view software development
activities in an industrial production-like fashion, focusing attention on the flow of work
from one process to another [18].

CMMI requires elements of the effort management. Mostly, the effort management
relates to the project management process area in CMMI. Like CMM, CMMI requires
an organization’s measurement repository, which is used to collect and make available
measurement data on processes, e.g. effort and cost estimates, and the realized actual
effort and costs, to analyze the measurement data [20]. Moreover, the staged presenta-
tion requires work to be arranged as work elements and their relationship to each other
and to the end product, i.e. into a work breakdown structure to estimate the scope of the
project (at maturity level 1), and to plan the project resources and to manage configura-
tions (at level 2) [4].

The primary research methodology for this paper is case study. Moreover, the re-
search includes characteristics of action research: collaboration, implication and situa-
tion between the research and the project under examination. The research was carried
out as a part of organization’s SPI activity. Action research can be considered as a part
of constructive research where both building and evaluating subprocesses closely be-
long to the same process [21]. Constructive research [21][22], also referred to as design
science [23][24], consists of two basic activities: building products (constructs, models,
methods, and instantiations) and evaluating them. The evaluation of the built product
is based on user value or utility, i.e. feasibility is demonstrated when the created arti-
fact serves human purposes [21][23]. Case studies can be used for evaluation [25][26].
Furthermore, as the research interest lies in the comprehension of the meaning of ac-
tion, case studies can be used to interpret it [21]. This research employed structured
questionnaires as the data gathering technique.

A Case Study on the Success of Introducing General Non-construction Activities 155

3 New Activities Adoption in Effort Management Process

The total project lifecycle can be divided into three main phases: pre-project, project,
and post-project (Fig. 1) in which effort is first estimated, then collected, monitored and
re-estimated, and finally analyzed. Besides several effort related activities and subac-
tivities, these three phases also include phases related to project activities, and different
information flows between them.

Fig. 1. The adoption of new project activities in the effort management process

During the pre-project phase, the project is planned and setup. Project planning in-
cludes project activity planning and effort estimation subactivities. Effort is initially es-
timated with the method in use with project information supplied by the customer, for
example. At this point, the different activities concerning the projects are also planned.
These activities include the activities related to actual software construction, the ones
related to project management, and other activities. The planned activities are created,
usually by the project manager, during the project setup into the work time registry
system as registration entities for effort registrations during the project execution.

The adoption of new project activities steps in during effort collecting in project
execution, the actual project phase. During project execution the project group registers
effort on the activity entities that were created for the project in the work time registry
system. The effort registration on old, familiar activity entities begins immediately, and
effort is usually registered on the correct activity entity. The new project activities and
new sets of activities, however, require an adoption period before effort can be registered

156 T. Haapio and J.J. Ahonen

on the new entities. At worst this period can last whole project execution which results
in skewed effort data as effort is registered on wrong activities or is not registered at
all. The correct registration of effort is essential for effort monitoring and effort re-
estimations, since from this point on the project’s own registered effort is the primary
data for re-estimations.

During project closure, the post-project phase, the delivered project is analyzed, and
a project final report is drawn. The delivery usually requires an acceptance from the cus-
tomer after which the project is considered as executed. As a subactivity, effort analysis
is conducted to produce input for a thorough, usually qualitative, project post-mortem
analysis. In effort analysis the realized effort of specific project activities are compared
with the estimated, and the reasons for accuracy or inaccuracy are analyzed and ex-
plained. Effort analysis can produce effort information for improving and calibrating
the estimation method, thus improving the software engineering process. Moreover, if
new significant project activities are identified, they are recorded for activity planning
of future projects. The adoption of a particular new project activity set (the gray box
in Fig. 1), namely non-construction activities, is analyzed in the reported case study
(Sect. 4).

4 The Study

The study investigated the adoption of a set of project activities, namely the non-
construction activities, within a project group at TietoEnator Telecom & Media, the
largest business area within TietoEnator Corporation. TietoEnator Corporation is the
largest IT services company in the Nordic countries with activity in more than 20 coun-
tries worldwide, and close to 15 000 employees. TietoEnator is building a common
business system with reference models EFQM (ISO 9000:2000) and CMMI. Earlier,
due to company diversity and acquisitions, TietoEnator applied both CMM and SPICE
(ISO/IEC 15504). There are several internal research development projects on-going as
a part of software process improvement including studies to improve effort management
in the software engineering process.

The case study is on one enhancement project of custom client/server software sys-
tem supplied by TietoEnator. The system’s client/server technology is based on trans-
action management, and involves several programs with Windows GUIs and relational
databases. The project, which took place in the beginning of 2005, was delivered to
a Nordic customer operating in the telecommunication business domain. The duration
of the project was six months. The project, which was carried out by one department,
required 19 man-months of effort and consisted of five subprojects and an administra-
tive umbrella project. The size of the total project group was 33 persons, all of which
had experience of previous projects of similar kind. Since two of the subprojects were
maintenance projects with separate effort accounting, they were excluded from the re-
search. The umbrella project included activities concerning the whole project, e.g. man-
agement. The subprojects included software construction, subproject management and
other activities related to the particular subproject.

The project constituted of 625 entries on 114 registration entities, i.e. project activi-
ties, in the work time registry system (Table 1). The registration entities and their corre-
sponding titles were created in the work time registry system based on the identification

A Case Study on the Success of Introducing General Non-construction Activities 157

of different project’s activities during the pre-project planning. The registration entity
titles (having a form of “AB_CDE_EFGH”) consisted of eleven alfa digits which com-
posed three parts. The work time registry system, however, would have allowed using
maximum eighteen digits. The two first digits described the subproject in which the ac-
tivity belonged (the umbrella project or one of the three subprojects). The three middle
digits described the activity group the activity belonged to. For example, these activity
group codes started with letter N (Non-Construction Activities), and, in the case of re-
view activity the two latter letters were QA (for Quality Assurance activity group). This
code was primarily for the project manager to sort the activities for reporting. The four
last digits described the activity. The idea was to use as self-explanatory abbreviation
as possible.

Table 1. The number of created registration entities

Activity set Umbrella Subproject A Subproject B Subproject C Total
project

Software Construction 4 13 24 16 57
Project Management 2 1 1 1 5
Non-Construction Activities 13 13 13 13 52
Total 19 27 38 30 114

In this study, the registration entities in focus are the non-construction activities
(NCA), i.e. the activities which are not directly related to software construction or
project management [5]. Software construction involves the effort needed for the actual
software construction in the project’s lifecycle frame, such as analysis, design, imple-
mentation, and testing. Without this effort, the software cannot be constructed. Project
management involves activities that are conducted solely by the project group’s project
manager, such as project planning and monitoring, administrative tasks, and steering
group meetings. All the activities in the project’s lifecycle frame that do not belong to
the other two main categories are non-construction activities. These activities include
various management and support activities such as orientation, planning activities, qual-
ity assurance, configuration management, customer support, and documentation, which
are carried out by several members of the project. Hypothetically, these activities can
be eliminated from a software project and the software can still be constructed. In prac-
tice, however, a project would be more or less uncontrolled and unsupported without
the non-construction activities. This increases both the software construction effort and
project management effort needed to get the project accomplished.

The particular project was chosen for this study since the project organization, the
concept of non-construction activities, and the activities were new to the project group
and had not yet been established although the project is one in a continuing series of
software enhancement projects. Neither were the project activities (registration entities)
established for the project group because project managers emphasized and emphasize
particular activities.

In project start-up, the first phase (initiation), the new project activities were intro-
duced and the adoption process begun. The organization lacks a formal procedure to
introduce the project activities to the project group. Hence, the prevailing introduction

158 T. Haapio and J.J. Ahonen

strategy depends on the project manager. In this case, the project manager send an
initiative e-mail regarding the project activities to the prevailing project group. In the
e-mail, both unfamiliar and familiar activities were listed, i.e. titles, work time registry
system titles (codes), and a one-sentence description and example of the activity. The
three-phased course of events for the project and the research is described in Table 2.
The questionnaires were sent to whole project group totaling 33 persons. The response
ratios for questionnaires 1 and 2 were 36.4% and 39.4%, respectively.

Table 2. The course of events

Project Study
Phase I —
Initiation – A set of project activities (non-

construction activities) planned
and created in the work time
registry system

– New project activities introduced
and adopted

– The research strategy and proce-
dure planned

– Open-ended questionnaire 1 ini-
tially planned

Phase II —
Active – Effort registration on project ac-

tivities into the work time registry
system

– The adoption of the activities ob-
served

– The open-ended questionnaire 1
modified

Phase III —
Closure – Project post-mortem analysis in-

cluding effort analysis and re-
search survey

– The open-ended questionnaire 1 fi-
nalized

– Questionnaire 1 survey carried out
– The results of survey 1 analyzed

for questionnaire 2 input
– The closed-ended questionnaire 2

planned
– Questionnaire 2 survey carried out
– Quantitative data of effort registra-

tions collected
– Analysis
– Reporting

The first section and its two first open-ended questions in the first questionnaire
(QA1) solve whether the project group had comprehended the new activity set (what
activities are grouped to a set: QA1.1: “By which common name would you call the fol-
lowing activities?”) and its purpose (why this set and these activities were included as
effort registration entities for the project: QA1.2: “Assess why these registration entities
were included for the project.”). From responses, only one was absolutely correct (ac-
tivities that are not directly related into software construction or project management,

A Case Study on the Success of Introducing General Non-construction Activities 159

i.e. non-construction activities). On the other hand, only one third of answers were com-
pletely wrong. Nine different reasons came up for why this set and these activities were
included for the project, and only one respondent could not find any explanation. The
most common reason was presumed to be a more detailed breakdown of hours these
activities consumed (33.3% of given answers). The answers related to the actual reason
(to find out how much these activities consume effort in a project) represented a clear
majority (71.4%). Likewise, a great majority interpreted the digit codes in the begin-
ning, in the middle, and in the end of the registration entity title correctly, which was
explored in three open-ended questions in QA1 (Table 3).

Table 3. The comprehension of the registry entity compound

Correct Misunderstood Do not know

QA1.3 (the first two digits) 66.7 % 8.3 % 25.0 %
QA1.4 (the three middle digits) 75.0 % 8.3 % 16.7 %
QA1.5 (the last four digits) 75.0 % 25.0 % 0.0 %

Two first questions in the latter questionnaire (QB1) sought answers for the relation
of effort registrations in the project and the perceptions of and the attitudes to the new
project activities (non-construction activities). In this paper we concentrate on the suc-
cess of the adoption of the general non-constructive activities, which are intended to
form a part of the general WBS for future projects. The results of the close-ended ques-
tions QB1.1: “Which of the following activities existed in the project?” and QB1.2: “Are
the following activities useful or useless as individual activities?” are shown in Table 4.

Table 4. Perceptions on the non-constructive activities

Activity QB1.1 QB1.2
Useful Useless Cannot answer

Configuration and Version Management 15.4 % 46.2 % 30.8 % 23.1 %
Customer Queries 53.8 % 23.1 % 23.1 % 53.8 %
Customer Support 0.0 % 69.2 % 23.1 % 23.1 %
Customer Training 0.0 % 46.2 % 38.5 % 15.4 %
Documentation 53.8 % 92.3 % 0.0 % 7.7 %
Orientation 38.5 % 92.3 % 15.4 % 0.0 %
Project Events 84.6 % 61.5 % 15.4 % 23.1 %
Project Group Working 61.5 % 46.2 % 23.1 % 23.1 %
Project Start-Up 15.4 % 30.8 % 30.8 % 30.8 %
Quality Assurance 23.1 % 76.9 % 7.7 % 15.4 %
Reviews 61.5 % 84.6 % 15.4 % 0.0 %
Technical Environment Maintenance 0.0 % 61.5 % 30.8 % 7.7 %
Technical Environment Setup 0.0 % 53.8 % 38.5 % 7.7 %

The three answers (“useful”, “useless”, “cannot answer”) can be divided into three
categories of expressed attitude: a positive (“useful”), a negative (“useless”) or a puz-
zled (“cannot answer”) attitude. The means to promote activity towards positivism are

160 T. Haapio and J.J. Ahonen

motivation (if negative attitude), and argumentation and motivation (if puzzled attitude).
By argumentation we mean that the reasons for including new activities are shared with
whole project group.

The amount of activities still unfamiliar at the end of the project was, however, of
concern. The most confusing activities were Customer Queries and Project Start-Up,
53.8% and 30.8%, respectively. Also four other activities, namely Configuration and
Version Management, Customer Support, Project Events, and Project Group Working
remained unfamiliar (23.1%). These figures can, however, be partially explained. Cus-
tomer Queries and Customer Support were probably confused with each other. The
Project Start-Up, for one, concerned only some members of the project group. The most
surprising results were the unfamiliarity of the activities related to project work: Project
Events and Project Group Working. These activities were common in the project, i.e. the
respondents attended on those activities. It is likely that by replying “Cannot Answer”
the respondents replied that they cannot determine whether the activity is useful or not.

Table 5. Wherefrom the information on new activities was received

Activity QB2.1 (%) QB2.2 (%)
Good Poor Neither

Information by an e-mail:
Initiative information e-mail on project activities 84.6 92.3 0.0 7.7
Another e-mail send by the Project Manager 30.8 69.2 0.0 23.1
E-mail send by a Subproject Manager 46.2 76.9 0.0 15.4
E-mail send by a project group member 15.4 23.1 23.1 38.5
Case-specific, along with the prescription of work task 30.8 84.6 0.0 15.4
Information in the project’s internal kick-off event:
Told by the Project Manager 61.5 84.6 0.0 7.7
By asking from the Project Manager 30.8 46.2 7.7 23.1
Information in the project’s info meeting:
Told by the Project Manager 61.5 84.6 0.0 7.7
By asking from the Project Manager 30.8 46.2 0.0 30.8
Information in a subproject’s meeting:
Told by a Subproject Manager 46.2 76.9 0.0 15.4
By asking from the Subproject Manager 30.8 46.2 0.0 30.8
Information in the project manager’s meeting:
Told by the Project Manager 15.4 53.8 0.0 23.1
By asking from the Project Manager 15.4 30.8 0.0 38.5
Personally:
Told by the Project Manager 23.1 84.6 0.0 7.7
By asking from the Project Manager 46.2 61.5 0.0 23.1
Told by a Subproject Manager 38.5 76.9 0.0 15.4
By asking from the Subproject Manager 38.5 61.5 0.0 23.1
Told by a project group member 23.1 46.2 15.4 23.1
By asking from a project group member 30.8 53.8 7.7 30.8
Documented guide:
A documented guide located in the network project folder 23.1 69.2 7.7 15.4
A shared project folder on project group member’s work
stations

— 7.7 — —

A Case Study on the Success of Introducing General Non-construction Activities 161

The second section in the two questionnaires (QA2 and QB2) studied the exchange
of information, i.e. how the project group was informed on new project activities. In
general, in the open-ended questionnaire (QA2.1 and QA2.2) eight means of successful
information exchange in this project were found against five different elements that
failed. Information given by e-mail was mentioned as one of the successful elements
in more than one response whereas other successful and failed elements all represented
single opinions.

The detailed query on the different information sources in close-ended question-
naire (QB2.1) revealed that every respondent had gotten a project activity information
e-mail at some stage of the project in some form or another. Other information sources
were project’s internal kick-off event (69.2%), project’s info meetings (69.2%), subpro-
ject’s meetings (53.8%), project manager’s meetings (23.1%), and personal encounters
(69.2%). A more detailed list of sources from the responses to the given alternatives in
close-ended questionnaire (QB2.1) is presented in Table 5.

In conclusion, from the various ways to inform project group on project activities
(QB2.2) e-mails seem to be the best (Table 5). The different ways to inform by e-mail
collected a high respond for being a good method whereas an email send by a project
group member was regarded as negative. However, in general, there were no absolute
misjudgements in the ways of informing the personnel. Instead, the different informa-
tion alternatives received good ratings, the attitude being either positive (“Good”) or
neutral (“Neither good or poor”). The most negative ratings came either from being
forced to ask from the project manager (initiator is the member and not the manager
of the project) or from the source from a lower organizational level (the information
source is a project group member). Hence, the results indicate that the higher in the
organization the information comes, the better.

5 Analysis

This research provided valuable lessons for TietoEnator regarding WBS. Furthermore,
we believe that the results are extendable to software industry in general. The main
findings concerning the recommendations for efficient new project activity adoptions
include: versatile and frequent information on activities, both new and old, and by sev-
eral sources, emphasized in the beginning of the project. Recommended sources of
information include written guidelines sent by e-mails and verbal information given by
management. It is notable that only five out of twenty choices for information sources
were considered somewhat “poor”, and these opinions were given by single respon-
dents. Peer information, or self-initiated questions were considered as “poor” sources.

Emphasis on the consideration of an optimal number of activities for a project is
beneficial. This consideration involves the funneling of effort on correct activity, since
leaving project activities out increases the probability of misregistration. i.e. effort is
registered on a wrong registration entity or left unregistered, which skews the effort
data. From a project group member’s view, the project should contain as a small num-
ber of different project activities (registration entities) as possible. Moreover, project
activity (registration entities) views should preferably be customized by the project
group member, i.e. only those entry alternatives are shown in the work time registry sys-

162 T. Haapio and J.J. Ahonen

tem’s user interface that are necessary for a particular person. The registration entities
(activities) should be titled clearly and consistently between projects. Therefore, the use
of mandatory and optional project activity set templates is advantageous.

The main findings concerning the WBS and the non-construction activities in par-
ticular include: every project should contain a set of mandatory non-construction ac-
tivities as registration entities for effort monitoring, post-mortem analyzing, and esti-
mation purposes. The non-construction activities considered useful by the majority of
the project group to be used as individual registration entities include customer support
(69.2%), documentation (92.3%), orientation (92.3%), project events (61.5%), reviews
(84.6%), quality assurance (76.9%), technical environment maintenance (61.5%), and
technical environment setup (53.8%). Although none of the non-construction activities
included for this project was considered useless by the majority of the project group,
or more useless than useful, the following non-construction activities received rather
high proportions for being useless as individual activities: configuration and version
management (30.8%), customer queries (23.1%), customer training (38.5%), project
group working (23.1%), and project start-up (30.8%). It seems that a suitable set of non-
constructive activities would be: customer support (including customer support, queries,
and training), documentation (non-related to software construction, e.g. user guides),
orientation, project group working (including project start-up, events and project-related
tasks), quality assurance, reviews, and configuration management (including setup and
maintenance of technical environment, configuration and version management).

From the project aspect, the greatest difficulties were caused by naming the project
activities as the registration entities in the work time registration system in project start-
up. To benefit effort monitoring and analysis, the entities were named with somewhat
cryptic coded titles instead of using longer and clear titles, which would have ensured
better adoption and understanding. From the information point of view, the new project
activities were introduced with an initiative e-mail from the project manager regarding
the project activities and with an internal project kick-off event where these activities
were also explained. Although these informative actions were appropriate and can be
recommended, a more detailed prescription and examples of the activities and the regis-
tration of effort on them would have been necessary. Moreover, a documented guideline
(e.g. the content of the e-mail) should be included in the project network folder in the
future projects.

Getting the project group on auto-pilot with new project activities is a challenge.
Although the information sources promoting self-steering were favored (e.g. a docu-
mented guide located in the network project folder and the initiative information e-mail
on project activities (69.2% and 92.3% of “Good” ratings, respectively), the high ratios
in active information both as favored information sources and the motivating and assist-
ing factors give a clear statement. Furthermore, the project case study results revealed
that without a strong commitment on promoting the adoption leaves the project group
puzzled about the activities and registrations.

6 Discussion

This study complements the existing research on software process improvement and ca-
pability maturity models in particular by focusing on a special case of software project

A Case Study on the Success of Introducing General Non-construction Activities 163

effort management improvement, especially the adoption of new project activities. Al-
though there has been a vast interest in the concepts of software process improvement
and effort in software projects within both information system and software engineer-
ing, researchers have, by and large, overlooked a total framework of effort management,
as well as ignored the adoption mechanisms of new project activities. While the analysis
of adopting new project activities presented in this paper is grounded to the particular
case and project at TietoEnator Telecom & Media, we believe that the basic elements of
our analysis can be generalized to other cases of adopting new project activities within
the software industry. The responses are obviously case specific, but the tendencies for
factors that promote or discourage the adoption are clear, although they lack statisti-
cal significance. Also, the framework of effort management is independent from the
organization and is relatively general and likely applicable to similar situations, i.e. in
software development. The practitioners, most likely the project or quality managers,
can apply the results of this research to derive an organizational adoption plan to adopt
project activities, in which we believe this study gives a good input. Also, a more com-
plete view on the software project effort in the form of effort management framework
combines the traditionally separate elements of managing the project effort to a single
entity where every element influences the other.

From the research point of view, the survey suffered from both low sample and low
response ratio. In software companies, these studies take time from actual business,
which in many cases may reduce the willingness to respond to the surveys. In the fu-
ture, the corporate management should motivate the project personnel, and the ques-
tionnaires should be more compact. As surveys like this are conducted among project
groups and these groups are seldom large enough the results may not be statistically
significant. On the other hand, expanding the study to larger population to satisfy statis-
tical requirements would mean expanding the study from a project group to a larger unit
of organization, e.g. a department or division, and this would extort the research results
as analyzed cases are organization specific, i.e. a case study limits itself to one project.

7 Conclusion and Future Work

This paper explored the adoption of new project activities and proposed several factors
that both motivate and assists a more efficient adoption of the activities, and factors that
discourage the adoption. In addition to exploring the adoption mechanism, this research
supplements also into the research of effort distribution by introducing a coherent set of
project activities, namely non-construction activities, which is frequently ignored both
in research and the effort management in software industry.

The reported study revealed that three issues should be avoided when building the
general WBS: work assignments should not span over several projects or activities; the
number of activities in WBS should be fairly limited and easy to understand; and the
names of the activities should be self-evident.

Further, a replicated follow-up study on a project taking the measures to promote
the adoption is recommended. Also, a higher response ratio might give statistically sig-
nificant results. However, we believe that our findings can in fact be applied elsewhere
in the software. Furthermore, research on non-construction activities effort is needed.

164 T. Haapio and J.J. Ahonen

A deeper investigation into non-construction activities and their optimal effort propor-
tions is currently being carried out. Moreover, research is needed to show how the
project activities divided into the three categories proposed in this study bring stability
into effort proportions and thus better predictability to effort estimation.

References

1. Wilson, D.N., Sifer, M.J.: Structured planning—project views. Software Engineering Journal
3 (1988) 134–140

2. Wolverton, R.W.: The cost of developing large-scale software. IEEE Transactions on Com-
puters 23 (1974) 615–636

3. Boehm, B.: Software Engineering Economics. Prentice Hall (1981)
4. SEI: Capability maturity model integration (CMMI), version 1.1, staged representation.

Technical Report CMU/SEI-2002-TE-029, ESC-TR-2002-029, CMU/SEI (2002)
5. Haapio, T.: The effects of non-construction activities on effort estimation. In: Proceedings

of the 27th Information Systems Research in Scandinavia (IRIS’27). (2004) Available at
http://w3.msi.vxu.se/users/per/IRIS27/iris27-1021.pdf.

6. MacDonell, S.G., Shepperd, M.J.: Using Prior-Phase Effort Records for Re-estimation Dur-
ing Software Projects, In: Proceedings of the Ninth International Software Metrics Sympo-
sium (METRICS’03), IEEE Computer Society (2003) 1–13

7. Boehm, B., Horowitz, E., Madachy, R., Reifer, D., Clark, B., Steece, B., Brown, A., Chulani,
S., Abts, C.: Software Cost Estimation with COCOMO II. Prentice Hall (2000)

8. Hale, J., Parrish, A., Dixon, B., Smith, R.K.: Enhancing the cocomo estimation models.
IEEE Software 17 (2000) 45–49

9. Blackburn, J.D., Scudder, G.D., Van Wassenhove, L.N.: Improving speed and productivity
of software development: A global survey of software developers. IEEE Transactions on
Software Engineering 22 (1996) 875–885

10. Collier, B., DeMarco, T., Fearey, P.A.: Defined process for project post-mortem review. IEEE
Software 13 (1996) 65–72

11. Brady, S., DeMarco, T.: Management-aided software engineering. IEEE Software 11 (1994)
25–32

12. Jalote, P.: CMM In Practice: Processes for Executing Software Projects at Infosys. Addison-
Wesley, Reading, MA (2000)

13. Sommerville, I.: Software Engineering. 6th edn. Pearson Education, Harlow, UK (2001)
14. Zahran, S.: Software Process Improvement. Addison-Wesley, London (1998)
15. Lee, H.Y., Jung, H.W., Chung, C.S., Lee, J., Lee, K., Jeong, H.: Analysis of interrater agree-

ment in iso/iec 15504-based software process assessment. In: APAQS ’01: Proceedings of the
Second Asia-Pacific Conference on Quality Software, Washington, DC, USA, IEEE Com-
puter Society (2001) 341

16. Damian, D., Zowghi, D., Vaidyanathasamy, L., Pal, Y.: An industrial experience in process
improvement: An early assessment at the australian center for unisys software. In: Proceed-
ings of the 2002 International Symposium on Empirical Software Engineering, ISESE’02,
Washington, DC, USA, IEEE Computer Society (2002) 111–126

17. Rautianen, K., Lassenius, C., Vähäniitty, J., Pyhäjärvi, M., Vanhanen, J.: A tentative
framework for managing software product development in small companies. In: HICSS
’02: Proceedings of the 35th Annual Hawaii International Conference on System Sciences
(HICSS’02)-Volume 8, Washington, DC, USA, IEEE Computer Society (2002) 251

18. McBride, T., Henderson-Sellers, B., Zowghi, D.: Project management capability levels: An
empirical study. In: APSEC ’04: Proceedings of the 11th Asia-Pacific Software Engineering
Conference (APSEC’04), Washington, DC, USA, IEEE Computer Society (2004) 56–63

A Case Study on the Success of Introducing General Non-construction Activities 165

19. Yoo, C., Yoon, J., Lee, B., Lee, C., Lee, J., Hyun, S., Wu, C.: An integrated model of ISO
9001: 2000 and CMMI for ISO registered organizations. In: APSEC ’04: Proceedings of the
11th Asia-Pacific Software Engineering Conference (APSEC’04), Washington, DC, USA,
IEEE Computer Society (2004) 150–157

20. SEI: Capability maturity model integration (CMMI), version 1.1, continuous representation.
Technical Report CMU/SEI-2002-TR-028, ESC-TR-2002-028, CMU/SEI (2002)

21. Järvinen, P.: On Research Methods. Opinpajan Kirja, Tampere, Finland (2001)
22. Iivari, J.: A paradigmatic analysis of contemporary schools of is development. European

Journal of Information Systems 1 (1991) 249–272
23. March, S.T., Smith, G.F.: Design and natural science research on information technology.

Decision Support Systems 15 (1995) 251–266
24. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information systems research.

MIS Quarterly 28 (2004) 75–105
25. Kitchenham, B., Pickard, L., Pfleeger, S.L.: Case studies for method and tool evaluation.

IEEE Software 12 (1995) 52–62
26. Fenton, N.E., Pfleeger, S.L.: Software Metrics: A Rigorous and Practical Approach. 2nd edn.

PWS Publishing Company, Boston (1997)

J. Münch and M. Vierimaa (Eds.): PROFES 2006, LNCS 4034, pp. 166 – 176, 2006.
© Springer-Verlag Berlin Heidelberg 2006

The Concerns of Prototypers and Their Mitigating
Practices: An Industrial Case-Study

Steve Counsell1, Keith Phalp2, Emilia Mendes3, and Stella Geddes4

1 School of Computing, Information Systems and Mathematics,
Brunel University, Uxbridge, Middlesex, UK
steve.counsell@brunel.ac.uk

2 School of Computing and Engineering, Bournemouth University, UK
kphalp@bournemouth.ac.uk

3 Department of Computer Science, University of Auckland., NZ
emilia@cs.auckland.ac.nz

4 School of Crystallography, Birkbeck, University of London, UK
s.geddes@mail.cryst.bbk.ac.uk

Abstract. The use of formal models such as Role Activity Diagrams (RADs)
for analysing a process often hide what really happens during that process. In
this paper, we build on previous research on informal aspects of the prototyping
process and look at the key concerns that prototypers had during the prototyp-
ing process. We contrasted those concerns with an analysis of whether docu-
mented practice during prototyping was likely to exacerbate or lessen those
concerns. The basis of our analysis was a set of interviews with prototypers all
of whom were part of a team actively producing evolvable prototypes in an in-
dustrial setting. Grounded Theory was used to extract the relevant data (con-
cerns and mitigating practice) from the interview text. Interestingly, only a
small number of the concerns of prototypers seemed to be supported by any
supportive action, suggesting that there are factors that contribute to project
success or failure beyond the control of the prototyping team. However, time
and cost pressure seemed to figure largest in our analysis of prototyper con-
cerns. The research highlights the problems that prototypers face and the bene-
fits that an informal analysis can have on our understanding of the process. It
also complements our understanding of the formal analysis of process using
techniques such as RADs and the human factors therein.

1 Introduction

A commonly cited reason for systems being delivered late and over budget is inade-
quate requirements elicitation due to poor communication between developers and
users. Prototyping, as an information systems discipline, provides an opportunity for
free and unhindered interaction between developers and users in an attempt to over-
come this problem [1, 2, 3, 5, 7, 20]. In theory, prototyping also offers the potential
for requirements to be elicited more clearly through constant interaction with, and
feedback from, the user. The prototyping process itself can be modelled formally
using a technique such as Role Activity Diagrams (RADs) [13, 17] where actions and
interactions between the different prototyping staff in the form of roles can be illus-
trated by lines joining, and internal to, the set of roles. What techniques such as RADs

 The Concerns of Prototypers and Their Mitigating Practices 167

cannot show however, are the different concerns encountered during the process by
the prototypers themselves and the supportive action that is taken to alleviate those
concerns. Some of these concerns may be beyond the influence of the prototyper and
hence detract severely from the effectiveness of that process.

In this paper, we focus on those concerns experienced by prototypers in the proc-
esses of five organisations, all of which used prototyping as part of their IS develop-
ment strategy. Interview text with twenty different members (in ten interviews) of the
prototyping team across the five organisations was analysed using principles of
grounded theory [10] and their key concerns extracted. A number of centrally recur-
ring concerns emerged from our analysis, in particular those related to restrictions of
time and cost, the importance of experience and the effect of an overly bureaucratic
environment in which protototpying took place.

We then carried out a further analysis to determine what actions perceived by the
prototyper could lessen the threat that these factors posed in the prototyping process.
Our analysis thus provides an insight into the tangible reasons why prototyping may
not deliver the benefits it promises. It may also inform the manner in which future
prototyping projects can be viewed and finally, highlights the importance of carrying
out qualitative analysis as well as quantitative analysis of textual documents using
theoretical techniques such as grounded theory.

The paper is arranged as follows. In Section 2, we describe the motivation for the
research and related work. In Section 3 we describe the format of the interview text,
the organisations studied and the grounded theory approach adopted for text analysis.
In Section 4 we look at the extracted information and comment on the themes (i.e.,
concerns of the prototypers) and in Section 5 explore mitigating actions that prototyp-
ers perceived supported their practice. We then discuss some of the issues that arise as
a result of our analysis (Section 6) and finally draw some conclusions and point to
future work (Section 7).

2 Motivation and Related Work

The motivation for the work described in this study stems from a number of sources.
Firstly, the prototyping process is widely promoted for the benefits it may provide;
capturing user requirements accurately and pro-actively involving the user is bound to
provide advantages, in theory at least. Yet very little literature has been published on
some of the key human issues (i.e., qualitative issues) that may arise during this proc-
ess [4]. Such issues could have a profound effect on how prototyping is perceived and
carried out. In particular, our analysis highlights the dangers associated with any de-
velopment, and in particular through that of the prototyping process.

Secondly, it is our belief that the majority of problems in the IS world stem from
the process of IS development (we view the end product as only a function of that
process). Getting the process right must be a priority for development staff, as well as
addressing those problems related to the subtle influences during development. We
also believe that whatever the type of information system, whether web-based or more
traditional in nature, problems of an informal nature will always occur and therefore
need to be documented.

168 S. Counsell et al.

A third motivation arises from a previous study using the same data [9]. A person-
ality test carried out on prototyping development staff (including some of the staff
used herein) concluded that prototypers tended to be extrovert in nature, while project
managers tended to be less extrovert. Analysis of some of the problems during the
prototyping process may give us further insight into the personalities, how they cope
with the different pressures during development and what they do to alleviate those
pressures.

The work in this paper extends a previous analysis [10] where the informal aspects of
RADs were analysed. The study herein explores the chief concerns that prototyping
staff have during the prototyping process and factors which potentially lessen those
concerns. The work thus builds on the informal analysis in [10] by focusing specifically
on the prime concerns that protoypers have. While our research does not specifically
allude to the modelling of the prototyping process using RADs, the initial purpose of the
research was to formally model the prototyping process using RAD notation. It is from
that information about RADs however, that the research herein is founded.

In terms of related work, research by [19] used a RAD coupling metric based on
interaction and role behaviour to establish traits in prototyping roles. It was found that
the level of coupling in a RAD was highly correlated to the size of the prototyping
team and the number of participants. In [17], metrics were applied to the same set of
roles used for the analysis herein. Results showed that the project manager tended to
exert control over the prototyper far more in large organisations than in small organi-
sations. On the other hand, in small organisations, the project manager tended to in-
teract with the end-user far more frequently, perhaps reflecting the lack of formality
found in small organisations.

3 Grounded Theory

Grounded theory (GT) [11] was used as the mechanism for analyzing the interview
text because it offers a means by which a corpus of data (including interview data)
could be analysed in a rigorous way and the inter-relationships in that data uncovered
mechanistically. According to [11], theories are developed through observation; scru-
tiny of text as we have done falls squarely into this category. The idea behind GT is to
read and re-read text in order to reveal inter-relationships and categories. The motiva-
tion for analyzing the prototyping interview text in this case was to extract issues that
prototyping staff identified as concerns during the prototyping experiences and to use
that analysis as a basis for exploring what practice by prototypers addressed those
concerns.

GT itself has been used in a number of situations to analyze qualitative interview
text. It has also been applied to the analysis of organizational behaviour [16] as well
as the use of ICASE tools in organizations [14]. Analysis of the interview text in the
case of our research followed a series of four steps in accordance with GT principles.
These were as follows:

1. Coding: each sentence in the interview text was examined. The questions:
‘What is going on here?’ and ‘What is the situation?’ were repeatedly asked.
For the purposes of the analysis herein, each sentence in the ten interviews
would be either identification of a ‘concern’ or ‘mitigating action’ and allocated

 The Concerns of Prototypers and Their Mitigating Practices 169

to the relevant category. We are not interested in any other information in the
interview text. Coding is thus a process of filtering the text for the appropriate
themes.

2. Memoing: A memo is a note to oneself about an issue or concern that you are
interested in as part of the analysis. In other words, any point made by one of
the interviewees which fell into the category of ‘prototyping concern’ could be
used to pursue the analysis. This step should be completed in parallel with the
coding stage. The memoing stage thus allows a certain amount of reflection and
interpretation of the interview text as it is being read.

3. Sorting: a certain amount of analysis and arrangement of the collected data is
then necessary.

4. Writing-up: the results of the analysis are written-up in a coherent way and con-
clusions drawn.

The process of categorizing the interview text according to the above principles took
approximately one person week in total. In the next section, we describe the results of
our analysis of the interview text, pointing to specific recurring issues and areas of
concern.

4 Prototyping Concerns

Using GT, we categorized any such expression of concern by a member found in the
interview text. We could thus cast our GT investigation in the form of the following
two questions posed to the prototyper:

What most concerns (i.e., worries) you when you are carrying out prototyping?

and,

What is a key impediment to the success of the prototyping process?

Twenty-five different occurrences of a concern were extracted as a result of our GT
analysis. Table 1 shows the three most common themes running through that text in
ascending order of their ‘occurrence’. We remark that these three themes repeatedly
occurred across all the interview texts analyzed. We attach a ‘Ranking’ to each con-
cern for brevity of explanation.

Table 1. The three most common concerns of the prototypers

Ranking Concern
1.1 Time and Cost Constraints
1.2 Lack of Experience (in prototyping) and Lack

of Business Knowledge
1.3 A Bureaucratic Infrastructure

The most common concern amongst prototyping staff was that of the time and cost
imposition. Clearly, with the prototyping process, time and costs are, by definition, a
constraint on the process. Moreover, prototyping theory would dictate that time
should purposely be restricted to prevent ‘over-prototyping’, i.e., spending too long

170 S. Counsell et al.

developing a prototype with consequent diminishing returns on time. There will al-
ways be cost pressures, but perhaps for prototyping (which some organizations would
consider more of a luxury than a potentially cost-effective practice) the pressure is
that much greater. In previous work [18], it was suggested that in relatively large
organizations, pressure for project success falls much more heavily on the prototyping
process simply because it occurs early in the development lifecycle and the conse-
quences of getting a ‘large’ project wrong at the start are serious.

Clearly, it would seem that far from helping the prototyping process, the time and
cost constraints play a large part in the concerns of the prototyper during the prototyp-
ing process, irrespective of organisation size. In particular, the need to prioritise ac-
tivities and not waste the time of either customer or prototyper, came across strongly
through analysis of the interview text.

The second major concern of the prototypers interviewed was the lack of experi-
ence of prototyping by certain prototypers together with a general lack of business
knowledge of the prototypers. This feature suggests that there are a set of experience
skills which any developer has to acquire to be effective during the prototyping proc-
ess. Included in those skills is an awareness of business knowledge to inform the
prototyping process. Evidence from the interview texts and given in Table 1 thus
points to the need for experienced and well-rounded developers to do the prototyping
as of paramount importance. The choice of the right people for the task in hand with
the required skills thus emerged as a crucial aspect of prototyping, supported through-
out the interview text.

The third major concern relates to the bureaucratic infrastructure of the prototyping
process. This is an interesting concern since it supports our belief that rigid control
structures can impair the effectiveness of the prototyping process; a laissez-faire ap-
proach is favoured by prototypers. It also supports our other strong belief that per-
sonality of the prototyper is an important factor in how the process should work. In
previous work by three of the same authors [8], prototypers were found to be largely
extrovert in nature; we believe that imposing a rigid control structure does not fit well
with this personality profile. This result also helps to understand why in previous
tables, there is opposition to formal standards and formal change request procedures.

As well as the key recurring themes in the interview text, there were a number of
other concerns worth stating. Table 2 shows, in no particular order, these remaining
concerns on the part of prototypers which seem to contradict the whole ethos of proto-
typing and in certain cases conflict with that ethos.

Table 2. Other concerns of prototyping staff

Ranking Concern
2.1 The company is getting too big
2.2 Requirements overkill (customers getting angry)
2.3 The quick and dirty approach causes problems later on
2.4 Conventional development standards are an imposition
2.5 The existing life cycle is inappropriate for RAD
2.6 Getting it right for the user/user satisfaction
2.7 The ripple effect of changes
2.8 Time prioritization

 The Concerns of Prototypers and Their Mitigating Practices 171

The first contradiction relates to the fact that there is the inevitable desire by the
user to have changes made to prototypes (as a key part of prototyping). However, the
associated concern by prototypers of the ‘ripple effect’ that this causes at later stages
of the prototyping process seems to be a warning against making changes of certain
types (2.7); this contradiction is further compounded by the evidence from the inter-
view text that customers do not seem to like overbearing requirements gathering (they
‘get angry’ if too many questions are being asked by the prototyper).

Secondly, there is the conflict between autonomy of the prototyping process and
the need to meet organizational standards (2.4). Thirdly, there is the conflict between
the need for prioritizing functionality/features of the prototype under time and cost
pressures and user satisfaction (2.6). Keeping the user happy is a common theme that
comes across in the interview text analyzed, but this is obviously not an easily
achieved goal in the time available (time prioritization (2.8) seems to be one possible
solution to this problem).

Finally, there is the ‘quick and dirty’ concern (2.3) which would seem to conflict
with both standards adherence and user satisfaction. Since the prototype is evolution-
ary, then this approach may not yield the benefits later on. Perhaps this explains why
there is a need for prioritization of time (2.8) to extract the best use of the resources
available in the limited time available.

It is interesting that ‘the company is getting too big’ was stated as a concern (2.1).
This suggests that perhaps, in keeping with results in [17], that prototyping works best
in small companies (where there is relatively low bureaucracy). It is also interesting to
note that in one case it was felt that the ‘existing lifecycle was inappropriate for
RAD’. This could suggest that the prototyping phase is not an isolated, independent
activity, but like any stage of development, feeds into, and is dependent on, the larger
development process. For that to happen, there have to be appropriate interfacing
structures in place. More evidence would be needed before any concrete conclusions
could be drawn, however, for each of these two points.

Overall, the data analysed as part of these concerns highlight two key principles of
prototyping. Firstly, it is a far more complex process than it at first seems which in-
fluences, and is influenced by, a relatively few key factors. The strengths of prototyp-
ing are often the very cause of concern by prototypers (time and cost constraints).
Secondly, that extremely skilled IS staff are needed in the prototyping process to
manage and cope with the inherent complexity. Prototyping brings with it many risks,
both from a cost and time perspective and not least of these risks is the potential for
alienating the user. It is also interesting that of the concerns listed in Tables 1 and 2,
there are various factors outside the immediate control of the prototyping team and
are far more organization-centered. In particular, concerns 1.3, 2.1, 2.4 and 2.5.

5 Evidence of Mitigating Action

As well as extraction of data relating to the concerns of the prototyping team, we also
collected evidence from the same interview scripts concerning supportive action that
the prototypers believed important for mitigating their concerns during the prototyp-
ing process (and noted in the previous section). From a grounded theory perspective,
the question which drove this analysis was:

172 S. Counsell et al.

“What practices (whether formal or informal) are necessary during that process
for end-prototype success”.

This is a very different question to that asked in the previous section. Here, we are ana-
lysing the positive actions suggested by prototypers during the course of the process,
rather than the problems and concerns they perceive existing during the same process.
The first theme of the previous section addresses the issue of what the prototyper sees as
a problem during the prototyping process. The question now being posed is:

“What do you do to address and mitigate that concern?”

From our GT analysis, the answer to this question emerged on thirty-five occasions.
Table 3 shows the top three responses; ‘effective use of time’ is the most frequent
mitigating action that prototypers expressed as important to address during prototyp-
ing. It is also interesting that this result is in keeping with the most frequent ‘concern’
expressed by the same prototypers from Table 1.

Table 3. Actions deemed necessary for prototyping effectiveness

Ranking Mitigating action Occurrences
3.1 Effective use of time 6
3.2 Effective use of appropriate experience 5
3.3 Standards adherence 4
3.4 Estimation 3

Clearly, effective use of time is both a concern of the prototyping team and upper-
most in the minds of the prototyping team during the process. A sample of the de-
tailed responses within this category was:

• It is important to do just “enough” work during the process to show what the
system is capable of.

• Time-boxing: “…..first choose a relatively arbitrary time and then build what-
ever you can build in during that period”.

• Keeping the time with the user short (and the task small and manageable).
• Deliver “something” on time.
• The importance of placing time limits.

The second most frequent mitigating action during our analysis of the prototyping
process and again, in keeping with the data in Table 1 – is that of making effective use
of the experience of staff available. A sample of the responses in this category was:

• Application of appropriate mix of skills to the tasks. This response suggests
that for any one project there are a variety of different skills needed (both per-
sonal and technical).

• Selection of more experienced prototypers for the more important projects.
This would seem to make both practical ad economic sense.

 The Concerns of Prototypers and Their Mitigating Practices 173

• Movement of staff around the different projects should be done in order that
they obtain the required experience and the project has the right staff.

The third most frequent mitigating action found was adherence to standards. This
is interesting, since it suggests that while standards according to traditional devel-
opment are an ‘imposition’ (see concern 2.4), it is widely recognized that standards
related specifically to the prototyping process are of value. The fourth most frequent
response related to the importance of estimation. This was also interesting, since it
highlights one of the skills that is difficult to acquire without experience (itself a
concern during the prototyping process). A sample of the responses in this category
was:

• Estimation (time/cost) is done just after initial requirement gathering.
• Requests for cost estimation of projects from the customer to the prototyper.
• Requirements should be gathered in order to make an estimate of how impor-

tant the work is.

Table 4 shows the next most frequent actions extracted using our analysis and the two
occurrences of each action found. The importance of educating the customer (in terms
of what prototyping can do for them) was one mitigating action that emerged from
our analysis (4.1). Awareness of technology change was another important facet of
the prototyping process according to the prototypers (4.2). Surprisingly, talking to
users seemed to fare very badly on the list of mitigating actions that the prototyper
seems to believe important (4.3). One possible explanation for this may be that in
terms of prototyping effectiveness, talking too much to the users may be detrimental.
To support this view, there is evidence in the interview text and described in [10],
where the prototyper has deliberately hidden information from the user and a general
feeling that users expect too much from the prototyping process – they are thus best
kept away from the decision-making process.

Table 4. Other mitigating actions found

Ranking Mitigating action Occurrences
4.1 Educating the customer 2
4.2 Awareness of technology change 2
4.3 Talking to users 2
4.4 Review 2
4.5 Development of improvement plan 2

Finally, the instigation of a plan for improving the process of development featured
in two responses (4.5). The overall impression amongst those interviewed was that
planning was a good idea and permitted some level of control into the process without
being too over-bearing. Table 5 shows the remaining responses, each of which oc-
curred just once. The most remarkable feature from this table is the relatively low
importance attached to core prototyping activities.

174 S. Counsell et al.

Table 5. Isolated mitigating actions

Ranking Mitigating action
5.1 Trust between prototyper and customer
5.2 Informal discussion with users
5.3 Clarify requirements
5.4 Explore Feasibility
5.5 Proper Library management
5.6 Develop mock-ups
5.7 Controls

For example, we would expect informal discussion (5.2), clarification of require-
ments (5.3), exploration of feasibility (5.4) and develop mock-ups (5.6) to have fig-
ured more prominently in our analysis. This result highlights the point that the most
obvious features of the prototyping process are not necessarily those that concern the
prototyper unduly. Controls were also suggested as a useful mechanism during proto-
typing (5.7), but only in a limited sense. Most prototypers expressed dislike for exces-
sive controls being imposed.

To conclude, it is clear that prototypers engage in various actions to mitigate the
concerns they have during the prototyping process. However, it is worrying that the
user seems to play very little part in any of those actions and that only indirectly is the
purpose of prototyping served. In the next section, we discuss some of the issues
arising from our analysis.

6 Discussion

A number of issues are raised by the analysis. Firstly, the over-riding emphasis and
focus on cost and time as factors in the prototyping process was surprising. While we
would have expected time to be an important consideration, it also seemed to perme-
ate many of the other concerns. Furthermore, there is evidence that the same factors
influenced the way that prototypers worked and ultimately how they viewed the
user/customer. On some occasions, this had a negative effect on the way that proto-
typers treated and perceived the user.

A further issue to emerge from the analysis was the many conflicts that the proto-
typing process seems to engender. There is the need to satisfy the user, while at the
same time avoiding requirements overkill. There is the need for prototyping to fit in
with the overall system development approach of the organisation without too many
standards or controls. Finally, the balancing act required to ensure that time pressures
do not compromise the whole point of prototyping – the clear elicitation of require-
ments. The actions which we imagined would support this activity most, seem to have
been given a low priority.

Interestingly, the use of software tools does not figure prominently in the interview
text which we have studied (in common with the study in [10]). Only on two occa-
sions was the significance of development tools mentioned. A recent survey of tools
used for web development showed relatively simple tools such as Visio and Dream-
weaver to be the most commonly used tools [12] by developers.

 The Concerns of Prototypers and Their Mitigating Practices 175

Finally, we have to consider a number of threats to the validity of the study de-
scribed. Firstly, the interview text has been assumed to reflect accurately the prototyp-
ing as it existed in each organisation. We have to accept that the interviewees may
have lied and/or withheld information about the true situation in the organisation. In
defence of this threat, the investigator did return to clarify points with interviewees
which they had not been clear about and certain cross-checking would have been
inevitable (especially with multiple interviews in the same organisation). Secondly,
we have not yet any indication of what factors truly reflect good practice during pro-
totyping. Many of the factors we have suggested as highly important to the process
may in due course turn out to be as unimportant as the prototypers would have use
believe. This investigation is the subject of future work. Finally, we believe the inter-
view questions gave the prototyper carte blanche to say what they wanted, both good
and bad about the prototyping process. We also believe the questions allowed as
much freedom expression of with respect to what actions they thought mitigated the
problems they stated. Often, as would be expected, a prototyper would state a concern
and in the same response suggest action that they took to mitigate that concern. In the
next section, we draw some conclusions from the research and point to future work.

7 Conclusions and Future Work

In this paper, we have described an analysis of the concerns that prototypers have
during the prototyping process. Interestingly, time and cost pressures seemed to figure
prominently in both the concerns of the prototypers and in the actions they took to
mitigate the pressures that these two factors induced. A number of factors were found
to be outside the control of the prototyper, for example, the standards imposed by a
traditional systems development. This seemed to be a cause of annoyance and worry
by the prototyper. It also implies that the prototyping process is not an isolated activ-
ity that can be achieved unilaterally.

The chief conclusion we draw from our analysis is that investigation of the human
factors in the development of systems can tell us as much about development as a
formal model such as that embodied by Role Activity Diagrams (RADs). As such, the
informal analysis complements the RAD as a tool for exploring software development
issues. It is clear that any process involving IS staff is likely to be exceptionally com-
plex. In terms of future work, we intend to investigate how the corresponding RADs
could be modified in some way to accommodate the features we have uncovered
herein. We also intend assessing the impact of making such changes, from a perform-
ance point of view, using appropriate metrics.

The research suggests that in an ideal prototyping environment, there is no limit on
time or cost, every prototyper has a wide range of skills and experience and that stan-
dards and controls are limited, with no outside influence or interference. Obviously in
any organization, sadly, this scenario is unlikely.

Acknowledgements

We gratefully acknowledge the help given by Liguang Chen of the University of
Bournemouth for access to the interview script material [6].

176 S. Counsell et al.

References

1. Baskerville, R., and Pries-Heje, J. Short cycle time systems development, Information
Systems Journal (14:3), July 2004, pp. 237-264.

2. Baskerville, R., and Stage, J., Controlling Prototype Development through risk analysis,
MIS Quarterly, December 1996.

3. Beynon-Davies, P, Mackay, H. and Tudhope, D. It’s lots of bits of paper and ticks and
post-it notes and things …: a case study of a rapid application development project, In-
formation Systems Journal (10), 2000, pp. 195-216.

4. J. Brooks, People are our most important product, In E. Gibbs and R. Fairley, ed., Soft-
ware Engineering Education. Springer-Verlag, 1987.

5. D. Card, The RAD fad: is timing really everything? IEEE Software, pp. 19-22, Jan. 1995.
6. L. Chen, An Empirical Investigation into Management and Control of Software Prototyp-

ing, PhD. dissertation, Department of Computing, University of Bournemouth, 1997.
7. G. Coleman and R. Verbruggen. A quality software process for rapid application devel-

opment, Software Quality Journal, 7(2):107-122, 1998.
8. S. Counsell, K. Phalp and E. Mendes. The ‘P’ in Prototyping is for Personality. Proceed-

ings of International Conference on Software Systems Engineering and its Applications,
Paris, France, December 2004.

9. S. Counsell, K. Phalp and E. Mendes. The vagaries of the prototyping process: an empiri-
cal study of the industrial prototyping process, Proceedings of The International Confer-
ence on Software Systems Eng. and its Applications, Paris, France, December 2005.

10. S. Counsell, K. Phalp, Mendes, E. and Geddes, S. (2005). What formal models cannot
show us: people issues during the prototyping process, Proceedings of 6th International
Conference on Product Focused Software Process Improvement (PROFES 2005), Oulu,
Finland, June. Pages 3-15 (Springer Lecture Notes in Computer Science Series Volume
3547, Ed. Frank Bomarius, Seija Komi-Sirvio).

11. B. Glaser and A. Strauss. The Discovery of Grounded Theory. Strategies for Qualitative
Research. Aldine Publishers, 1967.

12. GUUUI survey. Results from a survey of web prototyping tools usage. The Interaction
Designer’s Coffee Break. Issue 3, July 2002. available from:
www.guuui.com/issues01_03_02.

13. C. Handy, On roles and Interactions. Understanding Organisations, Penguin.
14. C. Knapp. An investigation into the organisational and technological factors that contrib-

ute to the successful implementation of CASE technology. Doctoral Dissertation, City
University, New York, 1995.

15. H. Lichter, M. Schneider-Hufschmidt and H Zullighoven. Prototyping in industrial soft-
ware projects: Bridging the gap between theory and practice. IEEE Transactions on Soft-
ware Engineering, 20(11):825-832, 1994.

16. P. Martin and B. Turner. Grounded Theory and Organisational Research. Journal of ap-
plied Behavioural Science. 22(2), pages 141-157.

17. M. Ould. Business Processes: Modelling and Analysis for Re-engineering and Improve-
ment, Wiley, 1995.

18. K. Phalp and S. Counsell, Coupling Trends in Industrial Prototyping Roles: an Empirical
Investigation, The Software Quality Journal, Vol. 9, Issue 4, pages 223-240, 2002.

19. K. Phalp and M. Shepperd, Quantitative analysis of static models of processes, Journal of
Systems and Software, 52 (2000), pages 105-112.

20. J. Reilly. Does RAD live up to the hype? IEEE Software, pages 24-26, Jan. 1995.

J. Münch and M. Vierimaa (Eds.): PROFES 2006, LNCS 4034, pp. 177 – 191, 2006.
© Springer-Verlag Berlin Heidelberg 2006

An Industrial Case Study on the Choice Between
Language Customization Mechanisms

Miroslaw Staron1,2 and Claes Wohlin1

1 Department of Systems and Software Engineering
School of Engineering

Blekinge Institute of Technology
{miroslaw.staron, claes.wohlin}@bth.se

2 Department of Applied IT
IT University in Gothenburg

miroslaw.staron@ituniv.se

Abstract. Effective usage of a general purpose modeling language in software
engineering poses a need for language customization – adaptation of the
language for a specific purpose. In the context of the Unified Modeling
Language (UML) the customization could be done using two mechanisms:
developing profiles and extending the metamodel of UML. This paper presents
an industrial case study on the choice between metamodel extensions and
profiles as well as the influence of the choice on the quality of products based
on the extensions. The results consist of a set of nine prioritized industrial
criteria which complement six theoretical criteria previously identified in the
literature. The theoretical criteria are focused on the differences between the
extension mechanisms of UML while the industrial criteria are focused on
development of products based on these extensions. The case study reveals that
there are considerable differences in effort required to develop comparable
products using each mechanism and that the quality (measured as correctness of
a product) is different for these comparable products by an order of magnitude.

1 Introduction

Effective usage of a general-purpose modeling language (like the Unified Modeling
Language – UML, [1]) in the course of software development strives for a
customization of the language – i.e. its fine-tuning and adaptation for a specific
purpose. For example in the context of code generation, customizing the language
could be done by defining additional modeling constructs that would enable
generating a complete source code. The customized languages can be primary assets
of MDA (Model Driven Architecture [2]) frameworks for automating software
construction through model transformations – for example as presented in our
previous case study [3]. UML has two extension mechanisms which can be used for
its customization – profiles and metamodel extensions [4]. The option of creating a
metamodel extension (as opposed to creating profiles) was usually not supported in
UML modeling tools and thus not considered so far in the enterprises customizing
UML. The situation, however, changes as modern modeling tools expose mechanisms
for extending the metamodel of UML. Examples of this kind of tools are Telelogic

178 M. Staron and C. Wohlin

Tau G2 and Coral Modeling Framework [5]. These tools are modeling tools with
metamodeling capabilities – i.e. tools primarily dedicated for creating UML models
with possibility of altering the metamodel of UML. It should be noted that these tools
are dedicated for the modeling of software and not for the development of modeling
tools – which makes them representative for modeling tools used in software
development companies. As the new customization possibilities emerge in modeling
tools, companies willing to use the modeling language more effectively consider
customizing the language and hence need to choose the appropriate extension
mechanism.

The case study presented in this paper is performed at a UML modeling tool
vendor which regularly develops language extensions, with significant experience in
this area – Telelogic AB in Malmö, Sweden (referred to as Telelogic hereafter). The
extensions are the basis for some of the products developed by the company.
Examples of these products are domain specific modeling tool extensions for
modeling real-time software, full source code generation for embedded systems or
architecture frameworks. The products are based on the extensions of the modeling
language but they also require supporting software components to provide additional
functionality defined by the extension. These products are dedicated mostly for
companies developing software for the domains of real-time and embedded software.
The domains pose strict requirements, e.g. that the products should allow for early
verification based on models – thus the models created with Telelogic’s modeling tool
– Tau G2 – can be executable which in turn leads to strict requirements on the quality
of the customizations of the tool. The language customization endeavors at Telelogic
are conducted within a UML modeling tool which is a similar situation to companies
customizing the modeling language while not being tool vendors themselves. The
large number of developed extensions by Telelogic provided us with a unique
opportunity of studying products which are based on each of the extension
mechanisms thus allowing comparison of products which are very similar yet based
on different extension mechanisms. This unique opportunity provides an evidence of
influences of choosing the mechanisms in industrial context.

As a starting point in designing our case study we used the theoretical differences
between the extension mechanisms identified previously in the literature [4]. The
initial set of criteria based on these differences does not contain considerations on the
implications on the products based on the customized notation, for example in terms
of the quality. The products based on the customized language are adaptations of tools
used in software development as presented in Section 3. In addition to identifying the
industrial criteria focused on developing complete products based on the extensions,
studying comparable metamodel extensions and profiles provided us with differences
in quality (measured as correctness) of the products. In addition to the quality we also
studied effort required to develop the language extensions in order to investigate
whether there are differences between profiles and metamodel extensions in this
aspect. We discuss the relevance of the results of this case study in the context of the
results of our previous industrial case study at an enterprise working with customizing
UML in order to enable automating part of their software development process [3].

The paper starts with the presentation of the related work in the field in Section 2.
The two compared techniques and the differences between them are presented in
Section 3 followed by the description of the design of the case study performed and

 An Industrial Case Study on the Choice Between Language Customization 179

its operation in Section 4. The results of the study and their analysis are presented in
Section 5 with the evaluation of the validity of the study in Section 6. The conclusions
of the paper are presented in Section 7.

2 Related Work

Language customization is one of the core elements of MDA. The MDA related
literature often discusses the use of both profiles and metamodels for language
customization (for example [6, 7]), but does neither give guidelines when to use one
over the other nor criteria for choosing between the extension mechanisms. The
discussions presented in these papers are taken into account while considering the
differences between metamodels and profiles in Section 3. The authors of [8] in the
context of MDA conclude that profiles should always be used over metamodels due to
their simplicity. The suggestion, however, is based on an analytical evaluation of the
expressiveness of profiles and metamodel extensions without considering industrial
applications of profiles or products based on the customizations.

The issues of creating custom modeling notations are similar to problems studied
while creating Domain Specific Modeling Languages (DSLs). In particular, while
considering such initiatives as software factories or generative programming [9]. As
opposed to that work this paper considers creating DSLs based on a general-purpose
language, not creating DSLs from scratch.

In this paper we discuss the issues of choosing between metamodel extensions and
profiles in the context of language customization. The issues related to extending
metamodels, however, are a part of a bigger aspect – language engineering. Details on
language engineering – in particular creating a language from scratch – can be found
in [10]. Furthermore, it is not always the case that metamodels and profiles can both
be used for the same purpose. Considerations on this matter are discussed in [11]. The
authors classify metamodel extensions in a similar way as in [12] and draw
conclusions in the context of domain modeling and code generation. Despite the
similarity of the purpose of that study to ours, the context (specific domain of
extensions) does not allow drawing conclusions from the study in [11] in other cases
than code generation or domain modeling.

3 Language Customization

Usually using an off-the-shelf modeling language like UML is dictated by the tool
support and the knowledge base. Benefits from using a general-purpose language can
be increased if a company is willing to customize it for the specific needs. This means
that the language is adapted for a specific purpose and a tool that takes advantage of
the customization is created. In the context of code generation, customizing the
language could be done by defining dedicated constructs that would provide (along
with customizing the code generators) means for generating a complete source code
for the developed system.

Advanced industrial usage of UML (as studied at Volvo IT [3] and ABB Robotics
in Sweden) showed that creating the language customization can (and should) be

180 M. Staron and C. Wohlin

handled by modelers within the enterprise since they possess the necessary domain
knowledge. The motivation behind the research presented in this paper is that
practitioners improving the practice of modeling in their enterprises need support in
choosing between costly (but powerful) metamodel extensions and cheaper (but
limited) profiles since these practitioners are usually not language engineers. They
also need to be able to assess potential consequences of their decision in terms of
quality of the customization and the effort required to develop them. The scenario in
which a language is customized in a company using a modeling tool with
metamodeling capabilities for the development of models is presented in Figure 1.

Method engineers -
modelers

Customize UML

Customize
modeling tool

UML profile or metamodel
extension

Source code supporting
the customized UML

Developer
Create models

UML models

Are used in the process

Choose
customization
mechanism

Develop software
Software
products

Fig. 1. Language customization in companies – an abstract view

Method engineers (who are also modelers) are specialists possessing the necessary
skills to develop language extensions and to customize the appropriate tools. They
customize the modeling language by creating language extensions and they customize
the tools by developing add-ins extending the functionality of the tools. The add-ins
are required so that the developers (at the bottom of Figure 1) can use the extensions
in an effective way. In their work the method engineers need to choose the
appropriate customization mechanism for a particular task. It was found in this study
and it was observed in the study presented in [3] that there are usually a handful of
people (a dedicated small team with a designated architect) in a company who can
play this role. The results of the work of the method engineers are the customized
modeling language and the customized tool which is used by developers in the
company to create models.

In the case of Telelogic the products based on the customized language are add-ins
for the tool, which provide such functionality as, for example code generation for
C++, architecture modeling with DoDAF (US Department of Defense Architecture
Framework) or providing new diagrams for the tool. In the case of other companies,
the products are additional components which can take advantage of the extensions to
the base language. For example in the case of a company developing an MDA

 An Industrial Case Study on the Choice Between Language Customization 181

framework, the product was a framework for model driven software development,
including add-ins for software development and project management. This company
also regarded extensions of UML to be of primary importance in this kind of
products.

3.1 Theoretical Differences Between Profiles and Metamodel Extensions

As a starting point for elaborating criteria in our case study we adopted theoretical
differences based on the analysis of criteria for choosing techniques for building
language families [4]. The differences are numbered T1 – T6 (where the letter T
indicates that they arise from theoretical analysis). The differences are applicable to
the issue of language customization and as such are evaluated in this study.

T1: Profiles are easier to construct. Not as much knowledge is required to develop
a profile as to develop a metamodel extension.

T2: Profiles promote reusability. Profiles might be applied (thus reused) to
different metamodels provided the extended elements (and the mechanisms of
profiles) are presented in both metamodels.

T3: Profiles are better supported in tools. Metamodeling tools are not yet common
on the market (with the exception of [10]), which is quite the opposite to UML
modeling tools. Defining profiles is specified in the UML specification and thus
is supported in the growing number of UML tools, not requiring special tools.

T4: Profiles are better for smaller solutions. For a small language customization
(i.e. when the customization requires only making a single certain language
construct more precise in a given context), the profiles are possibly better since
they provide means of refining single existing constructs.

T5: Metamodels are more expressive. Profiles are a restricted way of
metamodeling, and as such are less expressive than metamodels. The mentioned
lack of ability of defining new associations between extended model elements is
only one of the restrictions of profiles, which makes them suitable only for some
of the purposes for which metamodels can be used.

T6: Metamodels are harder to integrate. Due to the strict metamodeling principle
[13] each element in the model can be an instance of only one element in the
language definition. While this limits the integration possibilities of metamodels,
it does not affect profiles since several stereotypes can be applied to the same
element in the model.

Evaluation of whether these differences are used in the choice between the two
language customization mechanisms is one of the goals of our case study.

4 Case Study Design

Telelogic is a vendor of multiple software development tools, among others a
modeling tool for UML – Tau G2. The tool is constructed in such a way that it
supports the mechanisms of profiles in the way defined in the UML 2.0 specification
and allows extending the metamodel in the tool. Creators of language extensions at
Telelogic often (several times per release, which is usually every other month) need to
make the decisions of which is the preferred extension mechanism in a certain

182 M. Staron and C. Wohlin

situation. The modelers perceive UML as a framework for language definition. Such a
perception is similar to the vision of UML as a family of languages as presented in [4]
and it is also known as the language product line, since the main – core – language
elements are reused by all languages. The existence of the common core allows using
both profiles and metamodels for language extension.

Three employees were interviewed in the case study: (i) chief architect of the tool
responsible for the decision process; (ii) two modelers responsible for development of
profiles and metamodel extensions. The chief architect and the two modelers are
actually the whole population of people involved in choosing between profiles and
metamodel extensions hence no sampling was conducted. The chief architect is the
person who makes the major decisions whether a given product is to be based on a
metamodel extension or a profile. His experience in the field of UML and tool
development allows us to regard his opinion as the expert.

We facilitated data source triangulation [14] to cross-validate the data from
different sources, which were:

• Comparable profiles and metamodel extensions – profiles for interaction overview
diagrams, component diagrams, and deployment diagrams; metamodel extensions
for activity diagrams and Java add-in. They were used to obtain data on their size
and to verify whether the products can be directly compared.

• The specification of requirements and the high level designs of the products which
(i) provided the necessary information to characterize the products, (ii) ensure
compatibility in the scope, purpose and size, and (iii) were used to explore
purposes of customizing UML at Telelogic.

• Fault database – to investigate the quality of the products. The faults were obtained
by querying the database. The data available in the fault database consists of the
faults found in the software, their severity and history of their fixes.

• Decision process – obtained during the interviews – was used to elaborate
industrial criteria considered while choosing between profiles and metamodel
extensions.

It should be noted that diagrams are treated uniformly with other modeling elements
in Tau G2, which allowed us to use the diagrams as objects of the study without any
threat to generality. In this study we studied metamodels and profiles which were
close to each other as they were: (i) developed by the same modelers in the same tool;
(ii) found to provide similar functionality; (iii) were of similar complexity. Due to the
above we were able to compare the quality of the different products in spite of the fact
that they are not created to provide identical functionality. With this respect we see
these products as sister projects [15] typical for the studied company and
representative for other companies.

In our study we pose the following research questions:

RQ1: What are the criteria used in choosing between profiles and metamodel extensions in
order to customize a modeling language in industry and how important is each criterion?

RQ2: Is there a difference in the quality of products based on profiles and metamodel
extensions?

We pose the first research question – RQ1 – in order to get insight into the decision
process from the software engineering perspective. The differences between

 An Industrial Case Study on the Choice Between Language Customization 183

metamodel extensions and profiles in the expressive power and the degree to which
they affect the other elements of the language – i.e. how deeply they alter the base
language (which is important for metamodel extensions) – can have implications on
the quality of the products based on these extensions. Therefore, the second question
– RQ2 – is posed. The quality was measured as the number of reported faults (along
with severity) in the behavior of the product as observed during the testing phase and
by users of the tool.

We used several methods for collecting the data, thus facilitating method
triangulation [14]. The methods are: (i) interviews with chief architect and modelers,
(ii) investigations of documents and fault database, and (iii) a prioritization technique
– one hundred dollar test [16]. The interviews were in the form of a structured
questionnaire (to verify the criteria) with additional open questions (to complement
the criteria). In particular the questions to the chief architect were about: the process
of choosing between profiles and metamodel extensions, resources required and
available for development of the extensions, and differences between processes of
developing profiles and metamodel extensions. The questions for the modelers
contain aspects related to products development: the purposes of customization of
UML at the company, the process of developing profiles and metamodel extensions,
quality assurance of the developed products, and development effort required to
develop profiles and metamodel extensions.

Data was collected sequentially during the case study during three months. The
interviews with the chief architect and one modeler as well as the fault database
investigation were conducted during a one day visit to the company headquarters. The
prioritization of the industrial criteria was done by the chief architect a week later via
e-mail. The interview with the second modeler was performed after one and a half
months (due to summer holidays). During the interviews, documentation of the
requirements for extensions and specification of the metamodel and profiles to be
developed were provided by the interviewees. The fault database was studied during
the first visit and it was later checked (during the last visit) that there were no
additional faults reported. After the study, the results were discussed during a half-day
workshop in order to verify whether the conclusions drawn and the obtained data
were valid. During that workshop we performed a simple experiment to check
whether the views on language customization are consistent among all subjects. The
results were positive – the subjects had uniform views.

5 Results

The results of the study are presented according to the research questions posed in the
case study. The results are analyzed in a qualitative way.

5.1 Criteria and Prioritization

In the course of the interviews and the subsequent data analysis it appeared that there
are two levels at which the criteria are considered: high level (business level) and low
level (technical level). The two levels of criteria introduced in the interview are
equally important while choosing between the two ways of customizing the language.

184 M. Staron and C. Wohlin

The business value, i.e. market related elements, are considered at the business level.
They relate to the following question – “Which way of customizing the language
would be more profitable?” The technical criteria are considered at the lower level
and they relate to the following question – “Can we do it in a certain way?”

The criteria presented in this section are numbered I1 to I9 (the letter I indicates
that they were identified in the course of the industrial case study). The process of
making the decision consists of two phases – first, the business level criteria are
considered and then the technical level criteria are considered.

I1: User expectations. The expectations can explicitly state that one of the
mechanisms should be used or implicitly require that a specific one should be
used. The expectations might be altered if other criteria point to the alternative
extension mechanism.

I2: Cost is virtually the most important from the perspective of profits that the
company provisions from the customization. The cost is measured in person-
hours. The considered aspect of cost is how much the development of the product
would cost if it was to be included in the next release.

I3: UML compliance is considered since it affects the level of compatibility with the
UML 2.0 language and other tools that implement it. The level of compatibility
with the UML standard is taken into considerations by customers of Telelogic1.

The set of technical criteria consists of criteria I4 – I9.
I4: Limitations of Tau are considered, although the company is itself the

manufacturer of Tau, since there is a constant non-functional requirement – the
tool’s extendable architecture. The decision taken should aim at increasing
extensibility of the architecture.

I5: Expression power of the approach (includes the limitations of the
approaches). This criterion corresponds to difference T5 which states that
metamodels are more expressive than profiles.

I6: Possibility of integration of a profile/metamodel with other
profiles/metamodels. This criterion corresponds directly to the difference T6.

I7: Versioning of the product to be developed – is considered since according to
the company’s configuration management practices metamodels’ versions need
to be controlled while the profiles required less strict control over versions.

I8: Effort required so that the product can be included in the next release – is
considered on this level although it is not strictly a technical criterion.
Nevertheless, since each product influences the components of the tool to a
different extent, the effort required to include the product (including the effort of
integration into the architecture) is considered. The question that is asked based
on this criterion is how much effort the product would require if it was to be
included in the next release and whether such resources are available. This
criterion is derived from difference T1 which states that profiles are easier to
construct, but it complements it with a software engineering perspective – the
effort required to include the product in the next release. It also relates to the
difference in reusability T2 as profiles reuse more than metamodels.

1 The metamodel of UML used in the tool differs at some places from the standard UML

metamodel which might be an effect of choosing different extension mechanisms in
particular situations.

 An Industrial Case Study on the Choice Between Language Customization 185

I9: Knowledge known by the persons who potentially can make the work. The
availability of staff that can actually develop each extension determines whether
it is feasible to include the product in the desired release (c.f. section 5.3).

As it can be observed in the criteria, they are focused on the complete product based
on the language customizations. The aspects of development effort, knowledge
required to develop the products, versioning and the business criteria have not been
identified previously in the literature.

Although it seems that T3 is similar to I4, there are differences between them.
While T3 relates to the way in which the metamodels are defined (and the lack of
support for it) I4 (limitations of Tau) relates to the fact that the architecture should be
extendable. The theoretical difference is very strict – either there is a support for
metamodel extensions or not. The criterion I4 is a “relaxed” version of criterion T3.
For companies adopting effective usage of models, however, it is a significant
criterion since one of the factors determining the success of the introduction of
customized way of modeling is the evolution in company’s way of working (c.f. [3,
Factors 13-14]) which can be seen as a limitation on the introduction of the extension
(or on the architecture of enterprise tools).

Criterion I7 is a new one and relates to configuration management, which is part of
software engineering, but it is not a theoretical difference between profiles and
metamodels. The last new criterion is the knowledge of the employees who
potentially can do the work (I9). Once again this criterion is important for software
development companies which usually do not possess extensive expertise in language
engineering. This criterion seems to be related to the overall quality of the products
developed based on the language extensions.

It should also be noted that the interviewee regarded some of the theoretical criteria
as not important. In particular the interviewee has not considered size of the
customization as one of the criteria in making the choice although it was identified in
literature (c.f. difference T4). The prioritizations at both levels (Table 1) were done
with the same technique. The prioritization was conducted by the chief architect as he
is the person making choices between metamodel extensions and profiles in most
cases. Modelers were consulted after the study whether the percentages reflect their
opinions.

Table 1. Prioritization results

Level Importance
[%]

Criterion

40 I1: User expectations
40 I2: Cost

Business

20 I3: UML compliance
25 I5: Expression power of the approach
25 I9: Knowledge known by the persons who potentially can perform the

work
20 I4: Limitations of Tau
20 I8: Effort required so that the product can be included in the next release
5 I6: Possibility of integration

Technical

5 I7: Versioning of the product to be developed

186 M. Staron and C. Wohlin

The low importance of the UML compliance indicates that in industry the UML
compliance is not as important as the business value. The low importance of the
criterion shows that it does not have a decisive influence on the decision although it is
considered due to the market-driven nature of software development at Telelogic. The
equal importance of user expectations and cost indicate a constant trade-off between
the expectations of the product and the cost that is required to implement it in the next
release. High expectations can be reconsidered if the cost of their fulfillment is
significant.

The technical criteria prioritization reflects the importance of technology related
issues. There is no single decisive factor whether to choose profiles or metamodels
but the most important criteria are the expressiveness of the approaches and the
knowledge required for development. These criteria are related to both the difference
between products and the software engineering perspective on the difference –
knowledge required to develop them. The issues of knowledge required to customize
the language are related to several factors determining successful adoption of
customized modeling language [3].

Slightly lower importance (20%) characterizes the limitations of Tau (I4) and the
effort required for development and integration of the product into the next release
(I8). The extensible architecture requirement limits to some extent the possibilities of
extending the metamodel. An equally important aspect is the effort required to
develop the product in a given time – since no delays are allowed. Any potential
delays of product development are compensated in decreasing the size of the product
– i.e. if there is not enough time, the time is not extended, but functionality is being
restricted or if it is not possible, the integration is postponed until a later release.
Issues related to the delivery of the product were also observed in the previous study –
in the course of the studied industrial MDA realization there was an internal deadline:
the profiles were to be finished before developing transformations.

The low priority of the criterion related to integration issues (I6, 5%) is in
contradiction to the theoretical analysis, in which the integration issues were indicated
as one of the main drawbacks of using different metamodels in the course of model
driven software development. From the practical perspective in the company the
integration issue is not as important as there is always only one metamodel used at a
time in the tool. So the only integration issue is how the new elements are
incorporated in the existing metamodel and what the effects of this activity are, which
are reflected in criteria I4 and I5 (together 45%).

The names of these industrial criteria seem to be specific for the studied company,
but they represent issues that are not specific for Telelogic. Three of the criteria need
generalization as presented in Table 2.

Table 2. Generalization of the names of the criteria

Criterion Telelogic specific name General name
I1 User expectations Requirements for customization
I4 Limitations of Tau Limitations of the tool to support each

mechanism
I8 Effort required so that the product is

included in the next release
Effort required so that the customization is
finished before it is needed

 An Industrial Case Study on the Choice Between Language Customization 187

Criterion I1 can be renamed as the requirements for the customization are
essentially the user expectations for the extension. Criterion I4 is renamed since it is
important to keep in mind that the customization is done in the context of modeling
tools (not metamodeling) and these – even though they can be metamodel driven –
have some limitations (c.f. [17]). Thus we advocate for making the criterion closer to
the original understanding stemming from theoretical difference T3. Criterion I8 can
be renamed as the given deadline for the customization of the language in a company
is defined by the time in which the customization is to be used in the course of
software development (c.f. [18]).

5.2 Quality

The quality of the products is measured as the number of faults reported in the fault
database, as presented in Table 3.

Table 3. Normalized number and severities of faults and sizes of the extensions

Severity Metamodels Profiles
 Activity Java Deployment Interaction overview Component

1 1 3 1 0 0
2 12 10 0 1 1
3 58 7 2 4 0
4 6 2 1 0 0
5 9 4 0 4 2
6 2 2 0 0 0

Non-classified 3 1 1 2 0
Total number of
faults

91 29 5 11 3

Avg. Severity 3.2 3 2.8 3.8 4
Size 21 37 11 7 13

The faults correspond to incompliance with user requirements and erroneous
behavior of the products based on the extensions which can be regarded as the
measure of quality as defined in [19]. The extensions included which are analyzed in
this section are comparable in terms of the implemented functionality (c.f. section 4.2)
and therefore analyzed in this paper. The normalized number of faults for the studied
extensions are presented in Table 3, grouped according to their severity (1 –
catastrophic, 2 – critical, 3 – non-critical, 4 – minor, 5 – suggestion, 6 – question).

In total it seems that the products based on profiles are of better quality (less faults
reported in the fault database). We found (and it was confirmed by the interviewees)
that the elements potentially contributing to the differences are: (i) high level of
reusability that is facilitated by profiles; (ii) technical differences in introducing
profiles and changes in the metamodel in the tool. The technical differences in the
way the extensions are introduce stem from the fact that when developing a profile
certain support is already provided (e.g. adding graphical icons to stereotypes).
In the case of metamodel extensions, these mechanisms are not present and
therefore, similar functionality (e.g. representing a model element on a diagram)
needs to be implemented in the final product. One of the main technical differences

188 M. Staron and C. Wohlin

seems to be the way in which the
extensions are integrated into
the tool. In the interview with the
modelers on the process of
developing profiles and metamodels
it appeared that there are minor
differences which do not have an
influence on the quality directly. It is
the fundamental integration issues
that potentially affect the quality.
However, the fault data in the fault
database does not allow
distinguishing whether the fault is
caused by the implementation
(integration) or by an extension to

the metamodel itself (i.e. a modeling error). Although it might be initially perceived
as a confounding factor in our study it is not since the additional implementation is
expected to be present while customizing a language (as it was the case of Volvo IT
[3]). The source code often supports the extensions.

The scatter graph for size and number of faults is shown in Figure 2. It seems that
the faults are not related to size (wide spread of the points), for example the largest
product – the Java add-in contains fewer faults than the smaller activity diagrams.
This in turn indicates that the quality of the product is not dependent on the size of the
extension measured as the number of elements in it. This might explain why the size
is not considered during the decision process.

Another important aspect in the analysis is the relationship between the size and
the average severity, which is shown in Figure 3. The small number of data points
(only five products) does not allow calculating the correlations coefficients. Although
it would be possible to include several more profiles or metamodel extensions, it was
our intention to include only the products which are directly comparable.

Furthermore, the lack of
visible relationship between
the size of the extension and
the quality of the products
could be caused by: (i)
measures of size which are not
done with stereotype and
metamodel specific metrics
(these are part of our current
work); (ii) implementation of
an additional functionality
specific for the product – e.g.
support for graphical
representation of new model
elements in case of metamodel

extensions. In order to minimize the threat of drawing conclusions based on
descriptive statistics while evaluating a very small set of profiles and metamodel

interaction
deployment

component

Java

activity

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40

Size of extension

F
au

lt
s

Fig. 2. Scatter plot of size and number of faults

interaction

deployment

component

activity Java

2

2,5

3

3,5

4

4,5

0 5 10 15 20 25 30 35 40

Size

A
ve

ra
g

e
se

ve
ri

ty

Fig. 3. Scatter plot of size and average severities

 An Industrial Case Study on the Choice Between Language Customization 189

extensions our respondents were consulted after the study. Our interpretation of the
results is consistent with their expert opinion.

5.3 Effort and Resources

The development effort for creating profiles and metamodel extensions determines
the cost of the product and has a potential influence on quality. In the course of the
interviews it was found that developing an extension to the metamodel takes
approximately three to four weeks depending on the size of the extension and usually
involves several engineers (one modeler creating the metamodel extension and
several developers integrating the extension with affected components of the tool).
The development of a profile takes approximately one week and usually is done by a
single modeler. According to the chief architect’s experience extending the
metamodel requires ten times more effort than developing a profile. This impacts the
development effort. In the project (or release) planning phase, the potential influences
of the metamodel extension on other components need to be considered.

Table 4. Development time and resources available for developing profiles and metamodel
extensions

 Metamodel extension Profile
Development time (calendar time) 3-4 weeks 1 week

Resources available – who can potentially do the work 2 modelers 5 modelers

There is a difference between the metamodels and profiles in terms of resources
available for their development. There are five modelers who have the knowledge and
expertise to develop profiles although only two of them have enough expertise to fully
develop metamodel extensions. The two modelers who develop both profiles and
metamodels were interviewed. The remaining three modelers develop very small
profiles on irregular basis and thus were not included in the study.

6 Validity Evaluation

In evaluating the validity of the presented study we follow the schema presented in
[20], describing four kinds of validity threats to empirical studies.

The main threat to the external validity is related to the fact that the company
might not be representative for the population of companies in which decisions on the
choice between profiles and metamodels are taken. The results can be transferred to
other companies customizing their modeling language (e.g. Volvo IT, ABB
Robotics); particularly as the case study was performed based on the needs identified
in these enterprises. The sizes of products studied in this paper were similar to the
sizes of products used in the previous case study (c.f. [3]) which indicates that the
objects of this case study are representative not only for Telelogic.

The main internal validity threat to the study is there is a risk that while measuring
the quality of products the metamodel and the profiles under study were specific and
the result is only due to chance factors. To minimize this threat, the most

190 M. Staron and C. Wohlin

representative sister profiles and metamodel extensions were chosen. All interviewees
provided the same estimations of differences in development effort between profiles
and metamodel extensions. This similarity increases the validity of their claims.

We have identified a construct validity threat. Measuring of the quality can be
confounded by the lack of distinction whether the problems reported arise from the
modeling issues or the code that accompanies the extensions. Nevertheless, we have
found that the accompanying code is often required to introduce changes into the
metamodel so the influence of the code on quality is expected to be similar for other
metamodel extensions and profiles (even in other companies).

As a conclusion validity threat we see the lack of inferential statistics used in the
analysis of results caused by a small number of data points even though we have
interviewed the whole population of modelers at Telelogic who develop profiles and
metamodels in their daily work. The conclusions are similar to observations in our
previous case study [3] which increases their validity. The small number of persons
involved in the decision process is a representative situation, which was also observed
in our previous case study.

7 Conclusions

In the case study presented in the paper we investigated a company with extensive
expertise on language customization. The case study was stimulated by the need
identified in our previous case studies on issues related to industrial adoption of
model-driven software development [3] in which the language customization is a
prerequisite for automation of software development. The customizations are the basis
for the development of products, which usually are customized modeling tools. In
choosing the appropriate mechanism, the criteria should consider the whole products
and not only the differences between the mechanisms, which was the case so far. In
this case study the identified set of nine criteria for choosing between these
mechanisms complement an existing set of theoretically elaborated criteria existing in
literature. The criteria allow making the decision in considering two different levels –
business and technical. Three industrial criteria at the business level relate to the
issues of profitability of using the language customization mechanism (which is
crucial in industrial software development). The remaining industrial criteria at the
technical level allow assessing whether the chosen extension is technically sound,
feasible, and can be the basis of a product.

In addition to identifying the criteria, in the case study the quality of a set of sister
products was investigated. The results show that the products based on metamodel
extensions usually have more faults and they require up to ten times more effort to
develop than profiles. Together with the criteria the quality investigations provide a
basis for taking informed decisions on the way in which the modeling practices in
enterprises can be improved based on language customization.

During the study we have also observed that the quality of profiles depends on the
quality of the base metamodel. If the metamodel is well-suited for the customization
at hand, then the profiles are easier to construct. This observation has not been
described in the paper, and its further investigation will be done in our upcoming
research.

 An Industrial Case Study on the Choice Between Language Customization 191

Acknowledgments

We would like to thank Telelogic AB, Sweden for letting us perform the study. We
would like to thank Dr. Ludwik Kuzniarz for his valuable comments on the paper.

References

1. Object Management Group: Unified Modeling Language Specification: Infrastructure
version 2.0, Object Management Group (2003).

2. Miller, J., Mukerji, J.: MDA Guide, Object Management Group (2003).
3. Staron, M., Kuzniarz, L., Wallin, L.: A Case Study on Industrial MDA Realization -

Determinants of Effectiveness, Nordic Journal of Computing 11 (2004) 254-278.
4. Evans, A., Maskeri, G., Sammut, P., Willians, J.S.: Building Families of Languages for

Model-Driven System Dev, Workshop in Sw. Model Eng., San Francisco, CA (2003).
5. Centre for Reliable Software Technology: Coral Modeling Framework, CREST (2004).
6. Kleppe, A.G., Warmer, J.B., Bast, W.: MDA explained: the model driven architecture:

practice and promise, Addison-Wesley, Boston (2003).
7. Mellor, S.J.: Make models be assets, Communications of the ACM 45 (2002) 76-78.
8. De Miguel, M., Jourdan, J., Salicki, S.: Practical Experiences in the Application of MDA.

In: Stevens, P., Whittle, J., Booch, G. (eds.): The 6th Int. Conf. on UML, Vol. 2460,
Springer-Verlag (2002) 128-139.

9. Greenfield, J., Short, K.: Software factories: assembling applications with patterns,
models, frameworks, and tools, Wiley, Indianapolis, IN, USA (2004).

10. Clark, T., Evans, A., Sammut, P., Willans, J.: Applied Metamodeling - A Foundation for
Language Driven Development, Xactium (2004).

11. Schleicher, A., Westfechtel, B.: Beyond stereotyping: metamodeling approaches for the
UML. Hawaii Int. Conf. on System Sc., IEEE Comp. Soc, Maui, HI, USA (2001) 10-17.

12. Berner, S., Glinz, M., Joos, S.: A classification of stereotypes for object-oriented
modeling languages, 2nd Int. Conf. on UML, Fort Collins, CO, USA (1999) 249-264.

13. Atkinson, C., Kühne, T.: Profiles in a strict metamodeling framework, Science of Comp.
Programming 44 (2002) 5-22.

14. Martella, R.C., Nelson, R., Marchand-Martella, N.E.: Research methods: learning to
become a critical research consumer, Allyn & Bacon, Boston (1999).

15. Fenton, N.E., Pfleeger, S.L.: Software metrics: a rigorous and practical approach,
International Thomson Computer Press, London (1996).

16. Leffingwell, D., Widrig, D.: Managing software requirements: a unified approach,
Addison-Wesley, Reading, MA (2000).

17. Alanen, M., Porres, I.: The Coral Modeling Framework, In: Koskimies, K., Kuzniarz, L.,
Lilius, J., Porres, I. (eds.): 2nd Nordic Workshop on UML, Turku (2004) 93-98.

18. Staron, M., Kuzniarz, L., Wallin, L.: Factors Determining Effective Realization of MDA
in Industry, In: Koskimies, K., Kuzniarz , L., Lilius, J., Porres, I. (eds.): 2nd Nordic
Workshop on UML, Turku, Finland (2004) 79-91.

19. IEEE: Standard glossary of sw. eng. terminology, Std 610.12-1990, New York (1990) 84.
20. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslèn, A.:

Experimentation in Sw. Eng.: An Introduction, Kluwer, Boston MA (2000).

J. Münch and M. Vierimaa (Eds.): PROFES 2006, LNCS 4034, pp. 192 – 207, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Preliminary Results from a Survey of Multimedia
Development Practices in Australia

Anne Hannington and Karl Reed

Department of Computer Science and Computer Engineering
La Trobe University, Victoria 3086, Australia

a.hannington@latrobe.edu.au, kreed@cs.latrobe.edu.au

Abstract. In this paper we present our preliminary findings from a survey
conducted during 2005 of Australian Multimedia Application Developers. Our
objective was to understand what development processes and techniques are
used and how these relate to practices cited in the literature. We were also
interested in what impact the presence of multimedia content has on the
process, as well as the differing skill sets it requires in relation to “traditional”
software development. In our findings we report on the process models used
and the process tasks most often performed, as a first step to determining what
is considered best practice in the industry. We found that developers appear to
have a much keener sense of their processes than previous studies have
suggested.

1 Introduction

The Australian Multimedia Industry is a major developer of “software-like” products,
ranging from multimedia CDs and DVDs, to online applications. A fundamental
characteristic that differentiates product creation from conventional software
development is the inclusion of various combinations of visual media and audio, often
providing an interactive experience for users. While these may include significant
amounts of “traditional” software the presence of media content requires additional
tasks and differing skills to those in conventional software development [1, 2]. To
gather information on multimedia development a survey of industrial multimedia
practice was undertaken. Our objective was to gain an understanding of the current
state of practice and its relationship to multimedia and “traditional” software
development practices cited in the literature.

Earlier surveys into multimedia application development have described the
approach to design, and as a result the development processes undertaken, as
inconsistent [3]. They have also commented on the apparent use of design techniques
based in software development being used to capture multimedia design, particularly
by those who are crossing over into the industry from “non-multimedia” software
development [4]. Further, they show that techniques from film and video production,
such as the use of storyboards, scripts and mock-ups are also being used, even when
these too can be ineffective in capturing critical aspects, such as interaction [4].

These observations have been attributed to factors such as the diversity of
developer backgrounds, the newness of the discipline, and the limited industrial

 Preliminary Results from a Survey of Multimedia Development Practices in Australia 193

take-up of specifically designed techniques from academia [3, 4]. However, the
impact of these factors on actual development processes and outcomes has yet to be
established.

The survey questionnaire was targeted at tying together the factors impacting
multimedia processes, to allow us to establish which parameters influenced
developers’ decisions to follow certain processes, employ particular techniques, and
use particular tools. By doing this we hope to identify “best practice”, and guide our
research in the direction of industry needs. Due to space limitations, we focus here on
respondents’ profiles, team skills, process models/methods and process tasks.

The following section describes our survey method and the profile of our resulting
sample. In Section 3 we discuss the preliminary results of our data analysis, in Section
4 we discuss implications for our work on a multimedia process framework, and in
Section 5 we discuss our findings and areas for further work.

2 Survey Instrument and Method

Based on our review of previous studies and processes described in the literature
[5-7], we constructed a list of survey goals and questions. We applied a GQM [8]
style approach to assess the fitness of our questions to the realisation of our goals.
Once we had mapped questions to goals, we assessed a question’s capability of
providing us with the data we required by looking at the statements we wished to
make using the data collected, i.e. technique x is being used to model y. The resulting
survey instrument was organised into the following sections: Company Profile, Team
Profile, Development Process, Treatment of Content, Design Techniques, Authoring
Tools, and Project Management. The pilot survey had a further section that asked for
feedback on the survey instrument, to try and identify likely problems before the
survey was distributed to a larger sample.

To facilitate responses and assist in keeping consistent terminology amongst
respondents, closed questions were used where possible. However, where applicable
the opportunity to give an alternate response by use of an “other” option was also
provided. In addition, open-ended questions were used to help elicit reasons for
particular responses.

2.1 Pilot Survey

During 2004 we conducted a pilot study to assess the suitability of our survey
instrument. The study involved three companies obtained using convenience sampling
[9]. To determine the applicability of our response options and terminology each
company represented one of our target domains: educational systems, business
communication systems, and games.

2.2 Survey Sample

Prospective participants for the survey were initially selected from company listings
publicly available via the VicIT Web Directory [10], and the Australian Interactive
Media Industry Association (AIMIA) member listing [11].

194 A. Hannington and K. Reed

The VicIT directory is a self-serve web site established by Multimedia Victoria, a
government body responsible for the maintenance and expansion of the information
and communications technology industry in Victoria [12].

AIMIA is a national industry body that represents the Interactive Media and
Digital Content sectors in Australia. It is focused on the commercial development of
its members, and the industry as a whole, through the provision of a wide range of
services and events [13].

To determine the target population for the survey, suitable inclusion and exclusion
criteria were established, as not all companies listed in these directories were involved
in the development of multimedia applications. A detailed discussion is beyond the
scope of this paper. Companies identified to be developing multimedia applications
based on the information they provided were included, as were companies/individuals
where it was unclear, to avoid biasing the sample.

Due to the well-known difficulty of obtaining appropriate response rates (to be
discussed in section 3) the survey was sent to all members of the target population. The
main reason for this was while the AIMIA sample was derived from a membership
listing where membership is renewed annually, the VicIT sample was derived from a
database that has been in operation since 2001. It was therefore not known how many
of the businesses listed had up-to-date profiles or were still in operation.

Four other individuals (two from the same team) working in the eLearning sector
were included, and two others requested the survey after seeing the publicity on the
AIMIA web site.

2.3 Survey Distribution

Table 1 shows details of the distribution of the survey to the two sample groups. In an
effort to improve the response rate an advance notice was sent via email.

Members of the VicIT sample were sent the survey in both an electronic format
(by email) and a paper-copy by regular mail. Members of the AIMIA sample were
sent the survey by email only. This was done as there was concern about people’s
preferred method of response.

Of the actual surveys sent 37 were returned “unknown at this address” from the
VicIT mail-out, and a number of the emailed surveys “bounced”. Further to this,
responses were also received indicating when the company was no longer in business,
did not develop multimedia, or was no longer developing multimedia. Some people
advised they were too busy to complete the survey; others simply declined participation.

Three reminders notices were sent, the first to all those who had not yet responded,
the next two to those who had indicated a willingness to respond.

Table 1. Target sample

Sample Group
AIMIA vicIT

Original target sample size 223 430
Badly formed or no email address 2 4
Number of advance notices sent 221 426
Number of advance notices undeliverable 8 80
Declined participation from advance notice 0 4
Actual surveys sent 213 342

 Preliminary Results from a Survey of Multimedia Development Practices in Australia 195

3 Results and Analysis

We received responses from 40 companies. Of these, 5 have been excluded from this
discussion as they either did not fit the multimedia application developer profile, or
did not provide enough information. The remaining 35 companies have their main
operations based in 4 states: Queensland (5.7%), New South Wales (22.9%),
Tasmania (2.9%) and Victoria (65.7%). One company’s main operations are split
between New South Wales and Victoria. 94.3% of these companies are 100%
Australian owned, while one is 50% Australian owned, and the other had no
Australian ownership.

Our low response rate is consistent with the experiences of others [4, 14], however
our number of respondents compares favourably to those used in other studies of the
multimedia industry [1, 3, 4, 15, 16]. In addition, the experience base of the respondents
is also encouraging with 90.6% of companies (n = 32) more than 5 years old.

3.1 Respondents’ Development Profile

To obtain a picture of the impact application domain has on processes and techniques
used by developers, we asked respondents to indicate the percentage of their total
production in each domain. Five broad domains were given, the first four adapted
from [17]: Multimedia Business Systems, Multimedia Education Systems,
Multimedia Entertainment Systems, Multimedia Communication Systems and
Multimedia Application Development Tools. While Multimedia Application
Development Tools are not strictly multimedia development, we were interested in
whether there were any tool developers in the sample. The option of specifying
additional categories through the use of other was also provided. Within the first four
domains sub-domains were listed. These are shown in Table 2.

The majority of respondents were involved to varying degrees in developing
applications within the Multimedia Business Systems or Multimedia Education
Systems categories, with Multimedia Communication Systems also well represented.
No respondents were primarily games producers. Given the detailed response
received from the games company included in our pilot this was unfortunate. Only
three companies were not involved solely in multimedia development.

Within the multimedia business domain those who used the other option cited non-
specific “applications” and “websites”. One respondent specified “ecommerce” web
sites with marketing/advertising - a hybrid of options offered.

Multimedia education developers reported producing custom packages for specific
sections of the market, “interactive learning objects”, “mobile learning”, and “online
learning” (which may be used for distance learning). In addition, utilities such as
“document database repositories” and “learning management systems” were also
developed. “New media art” was specified in other for Multimedia Communication
Systems, as was “instant messaging”, “broadcast television”, “public websites”,
“facilitating/managing weblogs”, and “e-Newsletters and e-Calenders”.

Other areas included “interactive documentaries”, “knowledge management
systems”, and “corporate” and “community” web sites.

Multimedia application development tools being produced included: “professional
development tools for accessibility and usability”, and tools to assist web site
development, content management, and authoring of online learning.

196 A. Hannington and K. Reed

Table 2. Percentage of respondents’ development within each domain/sub domain, n = 35

Percentage Level of Production in each Domain
0.5 - 20% Application

Development
Domain

0.5 -
10%

11 -
20%

21 -
40%

41 -
60%

61 -
80%

81 -
100%

Electronic Commerce 25.7% 2.9% 0.0% 0.0% 0.0% 2.9%
Online Shopping 20.0% 5.7% 0.0% 2.9% 0.0% 0.0%
Marketing/Advertising 5.7% 8.6% 8.6% 5.7% 5.7% 2.9%
Intranet 17.1% 5.7% 0.0% 0.0% 0.0% 0.0%

Multimedia
Business
Systems
(MBS)

Sub-
domain

MBS Other 2.9% 0.0% 5.7% 0.0% 0.0% 0.0%
Corporate Training 8.6% 8.6% 0.0% 5.7% 5.7% 0.0%
Automated
Assessment 14.3% 0.0% 0.0% 0.0% 0.0% 0.0%
Distance Learning 11.4% 0.0% 0.0% 0.0% 0.0% 0.0%
Instruction Manuals 8.6% 0.0% 0.0% 0.0% 0.0% 0.0%
Simulation Systems 8.6% 0.0% 2.9% 0.0% 0.0% 0.0%
Training Manuals 11.4% 2.9% 2.9% 0.0% 0.0% 0.0%
General Education
Packages 14.3% 5.7% 2.9% 0.0% 2.9% 5.7%

Multimedia
Education
Systems
(MEduS)

Sub-
domain

MEduS Other 2.9% 5.7% 5.7% 0.0% 2.9% 5.7%
Infotainment 0.0% 5.7% 2.9% 0.0% 2.9% 0.0%
Games 8.6% 5.7% 0.0% 0.0% 0.0% 0.0%

Multimedia
Entertainment
Systems

(MEntS)

Sub-
domain

MEntS Other 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Chat Systems 8.6% 0.0% 0.0% 0.0% 0.0% 0.0%
Bulletin Boards 17.1% 0.0% 0.0% 0.0% 0.0% 0.0%
Presentations 14.3% 2.9% 0.0% 0.0% 0.0% 0.0%
Teleservices 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Videoconferencing 2.9% 0.0% 0.0% 0.0% 2.9% 0.0%

Multimedia
Communication
Systems
(MCS)

Sub-
domain

MCS Other 5.7% 2.9% 0.0% 0.0% 2.9% 2.9%
Multimedia Application Development Tools 2.9% 2.9% 0.0% 0.0% 0.0% 5.7%
Other 0.0% 0.0% 2.9% 5.7% 0.0% 2.9%

Few developers specialised in one domain. This is not surprising as the domains
are not mutually exclusive, especially with regard to Communication Systems, where
applications such as Chat Systems and Bulletin Boards may also feature in education
applications. Another reason may be the need to meet changing markets.

Mediums and Platforms. Most companies used more than one delivery medium
for application distribution. The most common was the Internet (80.0% of
companies), followed by CD ROM (68.6%). Companies also used multiple delivery
platforms, the most common being the PC (97.1% of companies) and Macintosh
(60.0%). Interestingly 22.9% of companies were building applications for hand-held
devices.

For 68.6% of respondents, the development and delivery platforms were the same.
However, the use of Macintoshes in development (due to their graphics capability)
with final applications running on or accessed by PCs was also reported.

 Preliminary Results from a Survey of Multimedia Development Practices in Australia 197

Project Output. Table 3 shows the number of projects that were completed by
companies from 2002 – 2004 (n = 30, as two companies did not answer this question,
one responded for only one year of business, and the other two had not been in
business for the full three years and so were omitted to allow any trends to be
observed). This historical data indicates a consistent growth in the volume of
company output over the 3 years, as shown by decreases in the Less than 5 category
coupled with compensating increases across the remaining categories.

Table 3. Number of projects completed by companies 2002 - 2004, n = 30

Year
No. of projects 2004 2003 2002
Less than 5 26.7% 33.3% 43.3%
6 – 10 26.7% 30.0% 20.0%
11 – 15 13.3% 10.0% 13.3%
16 – 20 6.7% 6.7% 3.3%
21 – 25 6.7% 3.3% 3.3%
More than 25 20.0% 16.7% 16.7%

86.7% of companies reported 90% or more of their projects were adopted in 2004,
with 90% reporting in the same year that less than 10% were cancelled before
completion (note that we neglected to include a 0% option). This paints the picture of
a very successful sample. As one respondent put it, “I don’t build shelf-ware”.
However, given our small sample size we can not determine whether this is an
industry-wide characteristic. Companies may have been reluctant to report their
failures, as respondents who indicated projects had been cancelled were usually part
of a larger company where projects were initiated internally.

3.2 Team Profile

All respondents reported average team sizes of ten or less members, with 68.6%
having five or less. This is consistent with the findings of Britton [15].

Skills and Roles. We asked respondents about the skill background of their team
members, the roles they filled and the roles filled by temporary staff. To determine
the skill background we provided a list of skills, each skill with its own code, and
asked respondents to indicate which skills each member of their team possessed. The
number of skills of each staff member varied in the range of 1 – 20, with a median
of 1. Smaller project teams required members to utilise more of their skills. Some
respondents included temporary staff in describing the skills of their development
team while others did not. For a company to include the skills of a temporary staff
member in their response to this question we reasoned that this could be a skill they
require in most of their projects, and so hire someone to fill, though it may not always
be the same person. Therefore in our preliminary analysis we included these cases
when we looked at the number of companies who had at least one person with a
particular skill. This is shown in Figure 1.

198 A. Hannington and K. Reed

11.4

28.6

51.4

57.1

34.3

74.3

31.4

62.9

71.4

42.9

8.6

40.0

88.6
91.4

42.9

25.7 25.7

8.6

48.6
45.7

31.4

25.7
28.6

40.0 40.0

14.3

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

Acto
r

Ani
mato

r

Con
ten

t e
xp

er
t

Data
ba

se
 de

sig
ne

r

Edit
or

 (t
ex

t)

Grap
hic

 ar
tis

t

Ill
us

tra
tor

/ar
tis

t

In
ter

ac
tiv

e d
es

ig
ne

r

In
ter

fa
ce

 de
sig

ne
r

In
str

uc
tio

na
l d

es
ig

ne
r

M
us

ici
an

Pho
to

gr
ap

he
r

Pro
jec

t m
an

ag
er

Pro
gr

am
mer

Res
ea

rch
er

(co
nt

en
t)

Res
ea

rch
er

(m
ar

ke
tin

g)

Sou
nd

/au
dio

 en
gi

ne
er

Sou
nd

 de
sig

ne
r

Sys
tem

 ar
ch

ite
ct

Tes
ter

 (f
un

cti
on

/pe
rfo

rm
an

ce
/et

c)

Tes
ter

 (u
sa

bil
ity

)

3D
-M

od
ell

er

Vide
o d

ire
cto

r/p
ro

du
ce

r

Vid
eo

 ed
ito

r

W
rit

er
Othe

r

Skill Type

P
er

ce
nt

ag
e

of
 C

om
pa

ni
es

Fig. 1. Percentage of companies employing at least one person with a particular skill, n = 35

As can be seen from Figure 1 the five most common skills are those of
programmer, project manager, graphic artist, interface designer and interactive
designer. This ranking mapped to those skills considered by respondents as essential
to multimedia development teams with 68.6% of respondents considering
programming skills essential followed by project management and graphic artist
(62.9%), interface design (51.4%) and interactive design (37.1%). This shows an
increase in recognition of interface and interactive design skills when compared to
[15]. Instructional design was also listed by 37.1% reflecting the slightly higher
portion of respondents specialising in educational titles. Team skill composition may
of course vary depending on the requirements of each project. Further analysis will
look at the matching of skills to roles and vice-versa.

Temporary staff mainly filled the roles of Content Expert (25.7% of companies),
Usability Tester (25.7%), Actor (22.9%), Photographer (22.9%), Sound/Audio
Engineer (22.9%) and Functional and Performance Tester (22.9%). The bringing in of
testers from outside aligns with good practice recognised in “traditional” software
development [7]. Content experts may be expected to change from project to project
as the content changes. Actors, Photographers and Sound/Audio Engineers could also
be expected to be used on an as-needed basis, especially within this sample as audio
and video were reportedly less used (see section 3.3).

3.3 Development Process

Respondents were given a list of process models/methods and asked to select those
that best described their organization’s development approach on a typical project.

 Preliminary Results from a Survey of Multimedia Development Practices in Australia 199

Table 4 shows the percentage of respondents using the models listed either alone or in
combination. There were 33 (94.3%) valid responses to this question and two invalid.
One (2.9%) of these was not familiar with the concepts presented. This is to be
expected given the differing backgrounds of multimedia developers. However, this
outcome indicates a reasonable level of familiarity with these concepts. By way of
contrast a survey of “traditional” software developers [18] found 9.5% were not
familiar with the concept of software development methodologies. Our higher
perceived familiarity may, however, have been achieved by the provision of a list of
options.

Most companies include some kind of prototyping in their development process,
with many classifying their process as in-house proprietary. This is consistent with the
findings of Barry and Lang [4]. As commented by one respondent there is substantial
crossover in this area. While nearly 50% of respondents used only one model, the
other 50% used from 2 (12.1%) to 7 (6.1%). Combinations for two models included:
prototyping and iterative, iterative and component-based, and prototyping and in-
house. The first is fairly intuitive as prototyping by its nature may lead to iterative
development. The combination of prototyping and in-house gives some insight into
the nature of the proprietary method. Table 5 shows all the combinations cited.

The reports of combinations involving some form of Waterfall model and Agile
process appear contradictory, particularly with regard to the difference in the level of
documentation they prescribe. The pairing is less surprising from the view that
Royce’s original model included both prototyping and iteration [19]. However, as this
is not the common interpretation it could be due to the users’ associating it with a
clear delineation of phases, and therefore using it to assist project management [4].
Another view is that the responses may not all be for a typical project but instead
represent the range of processes used for different kinds of projects.

Amongst single method/model users (n = 16) an In-house Proprietary method was
most common (37.5%) followed by Prototyping (25.0%), Iterative (12.5%), Other
(12.5%), Agile – Feature Driven Development (6.25%) and Component Based

Table 4. Process models/methods used in multimedia development, n = 33

Process Model/Method Percentage of affirmative responses
Prototyping Model 45.5%
Iterative Model 39.4%
In-house Proprietary 39.4%
Component Based Model 27.3%
Concurrent Development Model 18.2%
Incremental Model 15.2%
Waterfall Model 12.1%
Agile Process (other than XP) 12.1%
Waterfall Model (with prototyping) 9.1%
Other 9.1%
RAD Model 6.1%
Unified Process Model 3.0%
Extreme Programming (XP) 3.0%
Spiral Model 0.0%

200 A. Hannington and K. Reed

(6.25%). Examination of the tasks performed by those using an in-house method (n =
6) shows that on most or all of their projects 83% build a structural prototype and
67% create a prototype to achieve an early visualisation. Whether these prototypes are
just throwaway (as may be expected in the case of the early visualisation) or evolve
into the final system is unclear.

One respondent commented that the client’s processes are often adopted. Another
noted that due to projects mainly being simple Internet sites extensive project
management was not required. Overall 93.9% of respondents tailored the
method(s)/model(s) used to meet individual project needs, however only 53.1% of
these stated that they kept a record of their tailored process.

Table 5. Process model/method combinations reported where two or more used, n = 17

C
om

pa
ny

W
at

er
fa

ll

W
at

er
fa

ll

(w
it

h
pr

ot
ot

yp
in

g)

Pr
ot

ot
yp

in
g

In
cr

em
en

ta
l

It
er

at
iv

e

R
A

D

U
nu

fu
ed

 P
ro

ce
ss

M

od
el

C
om

po
ne

t B
as

ed

C
on

cu
rr

en
t

E
xt

re
m

e
Pr

o g
ra

m
m

in
g

(X
P)

A
gi

le
 P

ro
ce

ss

(o
th

er
 th

an
 X

P)

In
-h

ou
se

 P
ro

pr
ie

ta
ry

O
th

er

c1
c2
c3
c4
c5
c6
c7
c8
c9
c10
c11
c12
c13
c14
c15
c16
c17

Process Tasks. Responses were sought on actual tasks performed to provide more
detail on processes used and inform our work on a multimedia process framework. In
addition, developers’ varying backgrounds may have meant they were not familiar
with the software engineering process models listed, so this provided a way of still
capturing process information. The list of tasks was derived from the multimedia and
software development literature [5-7]. We asked respondents to indicate whether they
performed these tasks in the development of every, most, half, few, or none of their
projects. The tasks were assigned to the following phases of development adapted
from [6]:

 Preliminary Results from a Survey of Multimedia Development Practices in Australia 201

1. Concept and Planning – determines the feasibility of the project, outlining
required product functionality and development resources

2. Design and Prototype – outlines the structural, behavioural and media design
3. Production – results in the production of all required media and their

integration
4. Application Testing – tests the application works correctly
5. Distribution – sees the product delivered to the client or end-users
6. Maintenance – deals with correcting post-delivery errors, and assessing/

maintaining the product’s performance/viability to provide feedback to new
versions until the product is retired

Table 6 shows the tasks performed by 75% or more companies, in order of ranking,
on at least half of their projects. As a comparison the far right column shows the
percentage of companies who perform these tasks on every project.

Tasks related to scoping a project ranked highest as a group. This may be because
these tasks are common across all projects regardless of domain or process model used,
as establishing a project’s purpose and delivery mechanisms are inherent in assessing
its feasibility. It may also be due to the high task granularity with which the “Approach
Exploration” activity was represented. The top two tasks performed on half or more of
projects, Determine software (functional) requirements (97% of companies) and
Function Testing (94%) compare to tasks considered good practice in Software
Engineering. Interestingly, 86% created a requirement specification document and 80%
had the client sign off on this document. User interface screens were also used to
“sign-off” requirements. Over 90% of respondents reported that determining content
and structuring content were tasks performed on half or more of their projects.

Graphics production appears highest of all media production, as, aside from text,
this is the most common media used by our sample. All companies that responded to
this question (n = 31) use text in their applications to varying degrees. 93.5% of
companies used graphics, with 41.9% using graphics in 21 – 30% of their
applications. 83.9% of companies had animation in applications they produced, with
45.2% of companies using it in 6 – 10% of their products. Audio and video were
included in applications developed by 74.2% and 77.4% of respondents respectively;
however the majority used these media in less than 10% of their total production.
While in a creative sense the choice of media used is based on its ability to convey or
support the idea presented, distribution medium also plays a large part. Reasons cited
for the limited use of video related to bandwidth - as noted earlier the majority of
distribution was online. Audio was mainly used by those developing musical
instrument instruction, or eLearning with full voice-over for the text.

We asked respondents if there were any tasks that they considered important to
development, yet rarely undertook and the reasons for this. Responses included:
application testing, due to limited resources; documentation and evaluation of the
project, due to being too busy seeking or undertaking the next project; archiving for
reuse; and prototyping, due to lack of time and budget. While the responses indicate
prototyping is incorporated into most development processes, knowledge of the extent
of its use and nature would be valuable. Fully rendering graphics etc. for an early
visualisation, for example, would be a waste of resources if the client changed their
mind. This will be further investigated when we incorporate our findings on the use of
design techniques (in this instance wire-frames).

202 A. Hannington and K. Reed

Table 6. Tasks performed on half or more projects by at least 75% of companies, n = 35. Also
shown is the percentage of companies that perform these tasks on all projects.

Task Phase Percentage
of

companies
performing
task on half

or more
projects

Percentage
of

companies
performing
task on all
projects

Determine software (functional) requirements Concept and Planning 97 77
Function testing Application Testing 94 66
Establish the project’s intended audience Concept and Planning 94 80
Determine delivery platform Concept and Planning 94 77
Determine content Concept and Planning 94 69
Function testing (Design and Prototype) Design and Prototype 94 66
Establish the project’s purpose in terms of its
resulting benefits

Concept and Planning 91 71

Establish the project’s themes and major
points

Concept and Planning 91 71

Determine delivery medium Concept and Planning 91 83
Determine level of interactivity Concept and Planning 91 60
Structure content Design and Prototype 91 60
Interface/Screen design Design and Prototype 91 74
Determine hardware requirements Concept and Planning 89 54
Determine content source Concept and Planning 89 63
Interactivity design Design and Prototype 89 63
Navigation design Design and Prototype 89 69
Test the delivery medium Design and Prototype 89 71
Determine development platform Concept and Planning 86 66
Determine non-functional system
requirements (security, accuracy, speed,
reliability…)

Concept and Planning 86 51

Create proposal Concept and Planning 86 54
Create requirement specification Concept and Planning 86 43
Establish legal (content ownership) issues Concept and Planning 83 57
Have client sign-off on proposal/requirement
specification

Concept and Planning 83 60

Maintenance Maintenance 83 29
Usability testing (interface and navigation) Application Testing 80 57
Content testing Application Testing 80 43
Graphics design Design and Prototype 80 51
Establish content (asset) naming conventions Design and Prototype 80 51
Have client sign-off on design document Design and Prototype 80 51
Final Sign-off Distribution 80 66
Support Maintenance 80 40
Establish naming conventions (Production) Production 80 51
Graphics production Production 80 60
Performance testing Application Testing 77 40
Create an early visualisation (prototype) Concept and Planning 77 31
Integrate working content with structural
design

Design and Prototype 77 46

Evaluate design with respect to objectives Design and Prototype 77 51
Archive budget and planning information Distribution 77 63

 Preliminary Results from a Survey of Multimedia Development Practices in Australia 203

The necessity and yet difficulty of establishing a project’s purpose and benefits
was noted by one respondent, as clients are at times unable or unwilling to justify a
business case. In one case it was reported that the graphic design was signed-off as
the design document. While the respondent noted it would be useful on occasion to
write-up the design rationale, they find that the client “rarely, if ever, reads the
documentation – particularly documentation that could be described as “optional””.

Respondents were also asked if they performed any tasks in phases other than in
those specified. Understandably, a few cited testing as occurring throughout
development rather than in a dedicated phase. One respondent reported a process
similar to that described in [20] for computer assisted learning, where their
instructional designers get the project first, specify the structure, content frame and
assessment strategies, then further refine with graphic designers and programmers.

Comparing the highly ranked tasks performed in all domains combined to those for
business and education showed little deviation from Table 6. Notable additions for
education included content archiving and text production, while the only addition for
business was the archiving of formal documents (requirements, design, test, code etc).

When asked what percentage of total development time was usually spent within
each development phase the most common responses were: 11 – 20% of their time on
Concept and Planning (55.9% of companies, n = 34); 11 – 20% on Design and
Prototype (38.2%); 41 – 50% on Production (32.4%); 6 – 10% on Application Testing
(52.9%); 1 – 5% on Distribution (47.1%); and 1 – 5% on Maintenance (44.1%). It is
not surprising that most time is spent in production given the fuzzy distinction
between it and design due to the role content plays in the need for an early
visualisation.

Impact of Content on the Development Process. As the presence of content makes
it important to provide the client with an example of the “look and feel” of the
application, especially when the client is new, we asked what was the earliest phase in
which media design would begin. 40.6% (n = 32) indicated media design could start
in the Concept and Planning phase, illustrating the overlap of tasks between the
phases, while 34.4% indicated it might not start until the Design and Prototype phase.
One respondent stated that while the media design didn’t begin until Design and
Prototype the design concepts were still referred to in Concept and Planning as
outlines or abstracts. Another stated that during planning they would draft ideas and
sketches, and depending on the bid, prototype a sample. Other respondents stated a
particular milestone as the trigger for media design such as: a complete specification
that allows the basic site structure to be implemented; approval of the interface design
concepts; and the provision of the basic content (instructional and information
architecture and basic flowcharts).

The majority of respondents indicated Design and Prototype as the earliest phase
in which media production would begin (41.9%, n = 31), with Production (25.8%)
and Concept and Planning (9.7%). Other responses included: “once everything
(content particularly) has been locked down”, “early in the project to give authors
visual feedback on ideas developed, [to] better evaluate the methods”, “after interface
design concepts have been approved”, and “after programming”. The need to

204 A. Hannington and K. Reed

prototype before production to get clients “excited” about what can be done for them,
as well as to assess technical risks (e.g. 3D animations running on minimum spec
PCs) was reported. The comment was also made that while “routine media production
will occur as required”, “look and feel (i.e. interface design) will be the first step in
the production phase, as all the rest must follow style and colour guides”.

4 Implications for a Multimedia Process Framework

Considering the majority of projects were delivered via the internet, we compared
multimedia specific tasks in Table 6 to those defined in the Web OPEN framework
[21], an extension of the OPEN framework [22].

Table 7. Compatibility of multimedia specific tasks identified as common practice in our
respondent sample with Web OPEN tasks

Multimedia Tasks
from Survey

Web OPEN Task/
[Fitness (0-3)]

Comments

Determine Content - [0] Requirements level. Web OPEN’s Create
Content (on website) appears more
design/production oriented.

Determine Level of
Interactivity

- [0] -

Create an early
visualisation
(prototype)

Build White Site [2] Our task focus is more visual than structural,
and may also be used in offline projects.

Structure Content Create Content (on
website) [2]

-

Interface/Screen
Design

Design User Interface
(OPEN Task) [3]

While not multimedia specific, this task is
extremely important to multimedia
development.

Interactivity Design - [0] -
Navigation Design Create Navigation Map

for Website[3]
While not multimedia specific, this task is
extremely important to multimedia
development.

Integrate working
content with
structural design

Prototype the Human
Interface / Build White
Site [2.5]

“Working” content refers to content that may
not yet be complete and is being used to assist
in a structural prototype

Graphics Design Create Content (on
website) [1]

The Web OPEN task is seemingly not granular
enough to capture the design of specific media.

Graphic Production As above As above for “production”

Based on our findings in Table 7, we suggest that a framework to support
multimedia development (online and offline) should also include the tasks: Determine
Content, Determine Level of Interactivity, Interactivity Design, Graphic Design and
Graphic Production. Individual design and production tasks should also exist for
media other than graphics, in order to provide an appropriate level of detail for
management of the differing technical considerations and resources.

The important Web OPEN task Integrate Content with User Interface [21] was
split between Integrate Using Programming Language and Integrate Using Authoring
Package in our study, hence these tasks did not appear in Table 6. Future work will

 Preliminary Results from a Survey of Multimedia Development Practices in Australia 205

ascertain which tasks can and are being performed at the expense of one another and
explore common task combinations.

5 Conclusion

This paper presents the preliminary analysis of the profile, skill and process data
collected on multimedia development practices in Australia. While the response was
small and therefore cannot be considered representative of a national industry, the
results do provide useful insights into the nature of current practices. As noted earlier,
small responses seem to be common in such studies [1, 3, 4, 15, 16].

Our responses suggest an industry were development occurs predominantly by
teams of less than 10 members, with relatively high success rates in terms of product
adoption compared to those traditionally cited for conventional software development
[23]. While, due to our response size, we cannot confidently generalise these findings
to the industry as a whole, our finding relating to team size is in line with the findings
in the AIMIA Survey relating to the number of staff employed by companies [24].
The high success rate reported by respondents may be due to them belonging to a
more successful cohort within the sample, and hence being more willing to respond.
However, there are suggestions that even within conventional software development
success rates may be better than is widely acknowledged [23].

A significant factor in terms of project success may be the relatively small size of
multimedia projects. These averaged about 560 person hours (about 0.3 person years),
with projects in the range 100 to 500 person hours predominating (n = 27).

With regard to the development process our analysis shows use of a variety of
models that are predominantly iterative and incremental in nature. Prototyping (both
of structure and visuals) plays a major role, as would be considered inherent in the
visual and interactive nature of the work.

The differing skills and tasks required for multimedia development compared to
conventional software development were recognised, and the implications for a
multimedia process framework introduced. Further investigation of the relationship
between skills, roles and specialisation will be particularly interesting, since the
specialist tasks from outside the “software” development domain require what might
be called “artistic” skills and illustrate the need to further explore the impact of
creative processes. These considerations will provide a basis for our future work on
design and project management techniques, and tools used, to determine how these
influence process. Coupled with the impact of multimedia domain this should identify
common development practices and lead to a tailorable multimedia process model.

Acknowledgements

The authors would like to thank AIMIA for endorsing the survey and kindly
promoting it in their newsletter and on their website. We would also like to thank
Neela Khan from the Faculty of Life and Social Sciences, Swinburne University, for
her assistance, and the reviewers for their comments. Most importantly, many thanks
go to all those who gave of their time to respond to the survey.

206 A. Hannington and K. Reed

References

1. MacDonell, S.G., Fletcher, T., and Wong, B.L.W.: Industry Practices in Project
Management for Multimedia Information Systems. In: International Journal of Software
Engineering and Knowledge Engineering, Vol. 9(6). World Scientific Publishing
Company (1999) 801-815

2. Hannington, A. and Reed, K.: Towards a Taxonomy for Guiding Multimedia Application
Development. In: Ninth Asia-Pacific Software Engineering Conference. IEEE (2002) 97-
106

3. Augusteyn, D., Gunn, K., and Leung, Y.K.: Formalised Approaches for Multimedia
Design - Are they being used by Australian Designers? In: 3rd Asia Pacific Computer
Human Interaction. IEEE (1998) 279-284

4. Barry, C. and Lang, M.: A Survey of Multimedia and Web Development Techniques and
Methodology Usage. In: IEEE Multimedia, Vol. 8(2). IEEE (2001) 52-60

5. England, E. and Finney, A.: Managing Multimedia - Project Management for Web and
Convergent Media, Book 1 - People and Processes. Addison-Wesley, London (2002)

6. Multimedia Demystified: A Guide to the World of Multimedia from Apple Computer,
Inc., Apple-new media series. Random House, New York (1994)

7. Pfleeger, S.L.: Software Engineering: Theory and Practice. Prentice-Hall, Inc., NJ (2001)
8. Basili, V.R. and Weiss, D.M.: A Methodology for Collecting Valid Software Engineering

Data. In: IEEE Transactions on Software Engineering, Vol. 10(6). IEEE (1984) 728-738
9. Fink, A.: How to Sample in Surveys. 2nd ed, The Survey Kit, Vol. 7. Sage Publications,

Inc. (2003)
10. Multimedia Victoria: Find - IT Companies. Accessed January 2005 from www.vicit.com.au
11. AIMIA: AIMIA - Member Listing. Accessed January 2005 from www.aimia.com.au
12. Multimedia Victoria: About Multimedia Victoria. Accessed 3 March 2005 from

www.mmv.vic.gov.au
13. AIMIA: AIMIA - About Us. Accessed 28 September 2005 from www.aimia.com.au
14. Ng, S.P., et al.: A Preliminary Survey on Software Testing Practices in Australia. In:

Australian Software Engineering Conference 2004. IEEE (2004) 116-127
15. Britton, C., et al.: A survey of current practice in the development of multimedia systems.

In: Information and Software Technology, Vol. 39. Elsevier (1997) 695-705
16. Bailey, B.P., Konstan, J.A., and Carlis, J.V.: DEMAIS: Designing Multimedia

Applications with Interactive Storyboards. In: Multimedia Modeling 2001. ACM (2001)
241-250

17. Gonzalez, R.: Disciplining Multimedia. In: IEEE Multimedia, Vol. 7(3). (2000) 72-78
18. Verner, J.M. and Cerpa, N.: Australian Software Development: What Software Project

Management Practices Lead to Success? In: Australian Software Engineering Conference
2005. IEEE (2005) 70-77

19. Royce, W.W.: Managing the Development of Large Software Systems. In: IEEE
WESCON. IEEE (1970) 1-9

20. Kopka, C. and Wellen, U.: Role-based Views to Approach Suitable Software Process
Models for the Development of Multimedia Systems. In: IEEE Fourth International
Symposium on Multimedia Software Engineering. IEEE (2002) 140-147

21. Haire, B., Henderson-Sellers, B., and Lowe, D.: Supporting Web Development in the
OPEN Process: Additional Tasks. In: Proceedings of the 25th Annual International
Computer Software and Applications Conference. IEEE (2001) 383-389

 Preliminary Results from a Survey of Multimedia Development Practices in Australia 207

22. Firesmith, D.G. and Henderson-Sellers, B.: The OPEN Process Framework - An
Introduction. Addison-Wesley (2002)

23. 23. Glass, R.L.: IT Failure Rates - 70% or 10-15%. In: IEEE Software, Vol. 22(3). IEEE
(2005) 112, 110-111

24. 24. AIMIA: AIMIA Digital Content Industry Survey. Accessed 23 February 2006 from
www.aimia.com.au/dcis

J. Münch and M. Vierimaa (Eds.): PROFES 2006, LNCS 4034, pp. 208 – 221, 2006.
© Springer-Verlag Berlin Heidelberg 2006

An ISO 9001:2000 Certificate and Quality Awards from
Outside – What’s Inside? – A Case Study

Darja Šmite1 and Nils Brede Moe2

1 Riga Information Technology Institute
Darja.Smite@riti.lv

2 SINTEF ICT
Nils.B.Moe@sintef.no

Abstract. In order to survive in a strong competition software houses need to
design high-quality software. To achieve this some companies try to certify
their software development processes in accordance with well-known industrial
standards. Through a case study we investigated what characterizes the use of a
quality system among developers and project managers in a large software
company that has successfully achieved an ISO 9001:2000 certification. We
found that certification not always indicates that the company successfully uses
the practices in accordance with quality standards. This caused serious
problems, such as projects that follow outdated practices, project managers
faking quality documentation before audits, resources wasted by producing
documents no one needs, problems created for new employees since they
cannot find descriptions of the processes people are working in accordance
with, and an expensive system no one uses.

1 Introduction

Along with global market expansion, competition among software development
organizations has been growing. Reduction of costs has for a long time been the
leading driver when selecting a subcontractor or outsourcing provider (subcontracting
parts or whole software development), but lately productivity and quality indicators
have become essential when choosing suppliers [9, 18]. Implementing a quality
system based on the ISO model [5] or a maturity model, is nowadays one of the most
common approaches in achieving the above mentioned objectives.

Quality certificates are meant to give buyers of goods and services an impression
of the quality of the suppliers. Therefore many companies are eager to obtain a quality
certificate because of market pressure. In Europe, the ISO 9001 set of quality
standards are widely used standards for quality management in software development,
and the Capability Maturity Model® Integration (CMMI) [17] is one of the common
standards in the USA.

Getting the certificate often means that a minimum set of procedures and quality
handbooks are developed in the company without a quality system really being
implemented or quality awareness being created among the employees. In such cases,
the possession of certificates does not guarantee the quality of the software production
process or a reasonable price performance ratio for the products delivered to the
client [21].

 An ISO 9001:2000 Certificate and Quality Awards 209

Moreover, even when a company maintains a quality system that meets the ISO
9001:2000 standards, the quality of the final product cannot be guaranteed. Worse
still, adhering to strict software quality standards can, in some circumstances, be
counterproductive[21].

1.1 ISO Quality Management Systems

The intention of an ISO 9001:2000 quality management system (QMS) is to provide
“an orderly and systematic way of providing quality services to the customers”[7].
The key advantages provided by an ISO Quality Management system are: “improve
your product and service quality; give your customers confidence that their needs will
be met; standardize your business by giving it a consistent approach to its operations;
improve work processes, efficiencies, morale and reduce waste” [5].

For useful implementation of the Quality Management systems they are often
introduced on the companies’ intranet, containing detailed descriptions of the
companies software life cycle processes, also known as an Electronic Process Guide
(EPG) [3, 11, 16]. Such process guides usually include activities (how things are
done), artifacts (descriptions of products created or modified by an activity), agents
(description of entities that can perform activities, roles (roles and agents involved in
performing the activities) and resources (tools and techniques used to support or
automate the performance of an activity) [6].

However, the potential of QMS/EPG’s can only be realized when key capabilities
are not only adopted, but also infused across the organization. There is also a growing
body of studies focusing on the determinants of technology acceptance and utilization
(e.g. [1, 3, 22]).

1.2 Research Question

The motivation for the work described in this paper is to understand how a quality
system is used in a company that successfully has achieved an ISO 9001:2000
certification and several quality distinctions. The core research question has been:

What characterizes the use of a quality system among developers and project
managers in a large software company that has successfully achieved an ISO
9001:2000 certification?

1.3 Related Research

Since software organizations have been pressured or required to conform to certain
standards, many researchers have been focusing on software process improvement
(SPI) and quality system implementation investigation and discussion (such as [4, 8,
13, 14, 20]). However, according to Emam and Madhavji [4] most of the empirical
case studies tend to show only success stories, as organizations that have not shown
process improvement or have even regressed over time is reluctant to publicize their
results.

In this paper we present a case study that investigates a quality certified and
awarded company that still faces problems with employee involvement and

210 D. Šmite and N.B. Moe

commitment to quality. By investigating the level of usage of a quality tool, we look
into the environmental and cultural aspects.

The rest of the paper is organized as follows: the next section describes the case
company where we investigate our research question as well as the case study design.
Section 3 describes the findings that emerged from the case study, followed by a
discussion in section 4. Finally, we conclude and state further work in section 5.

2 Method

This study is a single-case study [23] using semi-structured interviews with
employees as the data source. The data was analyzed according to principles in
grounded theory as described by Strauss and Corbin [19]. Grounded theory is a
research method that seeks to develop theory that is grounded by data that has been
systematically gathered and analyzed. It is a form of field-study that systematically
applies procedural steps to develop an exploration about a particular phenomenon.

In grounded theory, data collection, analysis, and eventually theory stand in close
relationship to one another. A researcher does not begin a project with a preconceived
theory in mind (unless his or her purpose is to elaborate and extend an existing
theory). Rather, the researcher begins with an area of study and allows the theory to
emerge from the data. Constant comparison is the heart of the process. In this study
the interviews were compared to other interviews. From comparing the interviews a
theory quickly emerged, and when it began to emerge, the data was compared with
the existing theory. A theory derived from data is more likely to resemble the "reality"
than a theory that is derived by putting together a series of concepts based on
experience or solely through speculation (how one expects things to work). Grounded
theories, because they are drawn from data, are likely to offer insight, enhance
understanding, and provide a meaningful guide to action. Although grounding
concepts by data is the main feature of this method, creativity of researchers when
explaining the data, is also an essential ingredient. How we used this method is
described in detail in Sections 2.3 and 2.4.

2.1 Case Overview - LatSoftware

The context for this research is the Latvian software development company
LatSoftware (the company name is changed due to confidentiality). The company was
established in the late 80s and was reshaped several times. It has been orientated
towards the international market, focusing on providing software development
outsourcing services for the public sector, telecommunications, insurance and
banking, as well as tourism and logistics. LatSoftware has successfully accomplished
more than 200 projects both in Latvia, Western Europe and Scandinavia. At the
present time the company has 345 employees, 260 of them have a software
engineering background and are directly involved in software development.

While LatSoftware extended its operation in global markets, quality certification
has been given a high priority. Therefore a quality management system (QMS) has
been developed and the company was certified in the late 90s according to ISO
9000:1994 and 3 years later according to ISO 9001:2000 standards in both cases using

 An ISO 9001:2000 Certificate and Quality Awards 211

the TickIT scheme. In addition, LatSoftware received several national quality awards
at the turn of the century.

The following section will provide more detail about the quality management
system and its implementation in LatSoftware.

2.2 LatSoftware’s Quality Management System

2.2.1 Development
The introduction of the quality management system (QMS) was motivated by the
owners desire to sell the company. Therefore, an implementation of a QMS to achieve
a future certification in compliance with internationally recognized standards was
given a high priority since 1994. At this time the company already employed about
300 employees. According to the Quality Director - who is responsible for the QMS,
only 1/3 of the employees supported the decision of implementing a QMS.
Nevertheless, the owners provided significant resources for implementing a QMS by
establishing a quality department.

The quality department was responsible for educating themselves in the ISO
9001:2000 practices, and collecting current LatSoftware best practices by means of
interviews with key specialists. The process descriptions, procedures and guidelines
were then developed over a short period of time, in accordance with the ISO standards
and real work practices.

The QMS consists of a wide variety of quality documents including a Quality
handbook, Software development lifecycle process descriptions and procedures,
Methodological guidelines, Templates and forms, Job instructions, Administrative
reports and audit summaries for limited access.

Today the quality system consists of more than 500 documents and around 100
process descriptions.

2.2.2 Implementing
The Quality Management System was introduced to the employees during seminars
and training. The system’s use was mandatory for all projects; however the Quality
Director reported that “many managers actually ignored it”.

Currently the quality management department employs 3 specialists who maintain
the quality system, perform internal audits and provide consulting on quality issues
for the company employees. Large projects also have their own quality managers who
are responsible for product and process quality.

In the beginning the company used a Windows directory-based quality document
storage called the “ISO Directory”, but during the last three years a web-based tool
“Skapis” (Latvian for Shelf), which is a MS Share Point based tool, has been
implemented. It structures the content of the QMS, provides searching opportunities
and access control. At the present time the tool is not being developed further due to a
possible transition to a different technological platform within the company.

The projects are being audited externally twice a year. In addition internal audits
are being conducted to check the consistency of project practices with the quality
system.

212 D. Šmite and N.B. Moe

2.2.3 Promoting Quality Issues
LatSoftware quality department has developed various activities to promote quality
issues among the employees, which include newsletters, annual conferences called
Quality Days, and quality seminars for new employees. Nevertheless, there has been a
slowdown in these activities since none of them were organized during the last two years.

In 2004 LatSoftware organized a Project Managers Symposium with social events
afterwards. The aim of the Symposium was to share quality management practices.
The results of the seminar were quite shocking – it showed a low level of knowledge
transfer within the company; e.g. there were two project managers who developed and
implemented traceability tools in parallel. This indicated an area of concern within
LatSoftware considering project managers’ poor awareness of existing practices,
which precludes the accumulation and reuse of organizational knowledge assets.
Although the seminar was seen as a good start of a good tradition, it has not been
repeated so far.

2.3 Data Sources

We gathered data through semi-structured interviews, using the following questions
as a starting point:

• What do you see as the main purpose of the quality system?
• What tasks do you use the quality system to help you with?
• Do you find „Skapis” as a good tool for quality management?
• Do you like using tools like the quality system?
• Have you used tools like the quality system previously?
• Who do you think benefits most from using the quality system?
• Do you think there are disadvantages with the quality system?
• What do you think should be improved about the quality system?
• How would you assess your use of „Skapis” considering the following content

(Never used; Used once; Used occasionally; Regularly used in most activities/
projects; Regularly used in all activities/ projects):

− Quality handbook;
− Software Life Cycle Procedures;
− Administrative procedures;
− Methodological guidelines;
− Templates and forms?

LatSoftware is divided into 6 Business Units (BU). We interviewed 9 persons –
five project managers and four developers to cover various kinds of roles within
LatSoftware (see Table 1). Although we only interviewed 9 Developers and Projects
Managers from 5 out of 6 BUs, we believe the interviewees reflect the major practices
within LatSoftware. All the interviewees had 2-5 years working experience in
LatSoftware. The representatives were involved in various roles, such as Systems
Analyst / Developer; Project Manager / Project Quality Manager.

In addition, we have conducted interviews with all three employees from the
Quality Department (QD) using the same questions, and several interviews with the
Quality Director. These interviews provided insight in the QMS maintaining body and
implementation history.

 An ISO 9001:2000 Certificate and Quality Awards 213

Table 1. Interviewed Employees

Roles

B
U

1

B
U

3

B
U

4

B
U

5

B
U

6

Q
D

 Number of
interviewees

Total
number of
employees

Project
Managers

 2 2 1 5 28

Developers 1 1 1 1 4 205
Quality
Specialists

 3 3 3

Total: 12 260

2.4 Data Analysis

The answers from the interviews were written down, translated into English, and then
imported into a tool for analysis of qualitative data, Nvivo1. In the data analysis we
first used open coding followed by axial coding, and then selective coding [19].
During open coding we read all interviews and coded interesting expressions of
opinions in the text by assigning the expression to a category with similar
expressions. Open coding is the analytic process through which concepts are
identified and their properties and dimensions are discovered in data. Events,
happenings, objects and actions/interactions that were found to be conceptually
similar in nature or related in meaning, were grouped under more abstract concepts
termed "categories". A category represents a phenomenon, that is, a problem, an
issue, or an event that is defined as being significant to the respondents. The product
of labeling and categorizing are the basic building blocks in grounded theory
construction.

An example of open coding are the expressions “there’s too many documents” and
“there’s too much of everything, and it’s hard to orient oneself,” that was coded into
“too big”.

After the open coding, where we created concepts and categories, we created
connections between categories and their sub-categories. The coded pieces of text
from the open coding were again categorized with other expressions, e.g. of
disadvantages of the QMS, such as “too detailed”, “too big” and “hard to find
documents and templates”. This is referred to as axial coding.

Finally, we tagged all interviews with information (attributes in Nvivo) about use
level, and interviewees’ roles. During the selective coding, where we integrated and
refined the theory, the matrices generated by NVivo were very important analytical
tools.

3 Results

We generated reports for 5 main groups of axial codes to get the results. These are
described next:

1 Nvivo is a tool for analyzing qualitative data available from QSR International,

www.qsrinternational.com.

214 D. Šmite and N.B. Moe

• Purpose of the Quality Management System;
• Use level of Skapis;
• What is used in Skapis?
• When is Skapis used?
• Why is Skapis not used?

We use quotes from the interviews in the following presentation of the results.

3.1 Purpose of the Quality Management System

When we asked about the purpose of the QMS we counted 18 different purposes in
total (table 2). The persons from the Quality department reported 10 difference
purposes reported by the persons from the Quality department. They specially
mentioned marketing, process performance, satisfied customers and getting the
certificate. One from the Quality Department said “… at the very beginning someone
had the opinion that we need the certificate for any price, even by telling lies to the
auditors … although it didn’t happen”.

The project managers also reported 10 purposes, and the most frequently reported
purposes were: improve product quality, guarantee for the customer, guarantee for a
minimal performance and satisfied customers. One said “Well, QMS implementation
costs, but it is more expensive to work without a quality system. It brings us even
more satisfied customers, more new customers”.

Table 2. Purpose reported by 4 developers, 5 project managers and 3 quality specialists

151410Sum
1001Do things correct
1100Guarantee for a least performance
1010Approve that there is a QA system
1100Things are done similar
1001Long term operation
1010Order manufacturing
1001Successful projects
2200Less to think about
2101Improve quality of products and doc
2110Support work
3210Guarantee for the customer
3021Getting the certificate
3111Improve the process quality
3111Flag waiving
3021Marketing
3021Process performance
4220Satisfied customers
4301Improve product quality

Total
all

Project
manager

QA
departmentDeveloperPurpose

151410Sum
1001Do things correct
1100Guarantee for a least performance
1010Approve that there is a QA system
1100Things are done similar
1001Long term operation
1010Order manufacturing
1001Successful projects
2200Less to think about
2101Improve quality of products and doc
2110Support work
3210Guarantee for the customer
3021Getting the certificate
3111Improve the process quality
3111Flag waiving
3021Marketing
3021Process performance
4220Satisfied customers
4301Improve product quality

Total
all

Project
manager

QA
departmentDeveloperPurpose

 An ISO 9001:2000 Certificate and Quality Awards 215

The developers also reported 10 different purposes. They were focused on process,
project and product quality. One reported that “The quality system’s main purpose is
to provide successful projects… “

It seems that the project managers and those from the Quality Department were
more focused on issues related to the market, customers and the certificate. The
developers saw the main purpose as improving their daily work.

3.2 Use Level of Skapis

While investigating the use level of Skapis, the storage of the QMS’s content, persons
from the quality department were not asked about that, since they are not involved in
software development projects and are not using the QMS in the projects. Among the
nine developers and project managers, only one of the project managers claimed she
used Skapis on a regularly basis. The rest claimed they did not use it at all. Three of
the project mangers and two of the developers said they did not know about Skapis.
One project manager said “An electronic one? I have never heard about that before.
So, I might say that I don’t use it”. Another project manager said “Unfortunately, I am
hearing about it for the first time today”.

When we asked about what they used instead when they needed information about
quality issues and software lifecycle processes, they all said they had local copies on
their computer. These local copies consisted either of documentation from earlier
projects, or templates and checklists from earlier versions of the quality system. One
developer said “We reuse testing documentation from the previous projects”.

Even though the use level of Skapis was very low, it was clear that the developers
and project managers used older parts of the Quality Management System.

3.3 What Is Used in Skapis?

Since almost no one seemed to use the system we were surprised that they still used
parts of the QMS content. Everyone used a local copy of their own quality
documentation, and in most cases this was inspired by earlier projects or older version
of the quality system. The local copies included templates, forms and checklists. One
said “Our project has its own processes. We made our own process descriptions. … In
the previous projects I have used checklists, examples for process descriptions”.

3.4 When Is Skapis Used?

Since the use level was so low, we received answers about the usage of the content of
the QMS. Three project managers and one developer said they accessed it only to get
ready for the audits. One project manger said “It disturbs me, when the audits come,
because I have to make all the documents. Otherwise, to tell the truth, I don’t use it”.
One developer said “Write something, so that I can show it to the auditor – that’s
what our project manager says, when he needs test plans and test cases”.

3.5 Why Is Skapis Not Used?

There were two main reasons for the system not being used. The main issue was the
system itself (Table 3), because it was seen as cumbersome to use and did not support
work. The other issues were related to organizational problems (Table 4).

216 D. Šmite and N.B. Moe

3.5.1 Tool and Content Related Issues
When the interviewed persons were asked about the problems with the tool or the
content of the QMS, they all listed similar problems. The persons form the Quality
department and the project mangers came up with most of the issues. This was
probably because they knew the tool and/or the content better. The most frequent
problems reported were:

• Too big;
• Too detailed;
• Hard to understand documents and templates;
• Does not make work easier;
• Hard to find documents and templates;
• Not tailored to small projects;
• Not reflecting real work practice.

One from the Quality department said “… there are too many documents in it, too
much of everything. Therefore it’s hard to orient oneself, for an ordinary worker”. A
project manager said “There are a lot of details. For big projects, it would be OK, but
for small ones nobody will read such a mountain of paper”, and another manager said
“Our quality system doesn’t correspond to the company’s current organizational
structure”. Also a developer stated “Software Life Cycle Procedures, I have used
once; they are too far from project reality”.

Table 3. Tool and content related issues reported by 4 developers, 5 project managers and 3
quality specialists

3120Too detailed
7331Too big

1010Hard to get an overview

2002Not reflecting real work practice

18194Sum

1010Not flexible
1100Updates are not spread
1010System not efficient
2200No knowledge base
2020Do not improve the tool any more
2020Does not coorespod to org structure
2020Not integrated with other tools
2110Not user friendly
2020Search not working
2200Not tailored to small projects

3201Hard to find documents and templates
3210Does not make work easier
3210Hard to understand documents and templates

Total
all

Project
manager

QA
departmentDeveloperTool and content related issues

3120Too detailed
7331Too big

1010Hard to get an overview

2002Not reflecting real work practice

18194Sum

1010Not flexible
1100Updates are not spread
1010System not efficient
2200No knowledge base
2020Do not improve the tool any more
2020Does not coorespod to org structure
2020Not integrated with other tools
2110Not user friendly
2020Search not working
2200Not tailored to small projects

3201Hard to find documents and templates
3210Does not make work easier
3210Hard to understand documents and templates

Total
all

Project
manager

QA
departmentDeveloperTool and content related issues

3.5.2 Organizational Issues
The interviewed persons also mentioned several problems within the organization that
could explain why the tool was not used. The most frequently reported issues were:

 An ISO 9001:2000 Certificate and Quality Awards 217

• Lack of training;
• Top management not involved;
• No motivation in the company;
• Low employee involvement;
• The quality system is only for the management.

One of the developers said “People have to be shown what is good, where are the
benefits. To give a try to work with it”, and one from the Quality department said
“There should be a common understanding why the system is necessary; every
manager should clarify that. It won’t work if the (company) president will say we
need that. It needs a culture”.

Table 4. Organizational issues reported by 4 developers, 5 project managers and 3 quality
specialists

3021Top management not involved
5212Lack of training

1001Quality manager’s attitude

657Sum
1100Don’t see the benefit from the QMS
1100Lack of quality in small projects
1100LCP internalized
1010No culture for using

1010The quality system is only for the management
2002Low employee involvement
2101No motivation in the company

Total
all

Project
manager

QA
departmentDeveloperOrganizational issues

3021Top management not involved
5212Lack of training

1001Quality manager’s attitude

657Sum
1100Don’t see the benefit from the QMS
1100Lack of quality in small projects
1100LCP internalized
1010No culture for using

1010The quality system is only for the management
2002Low employee involvement
2101No motivation in the company

Total
all

Project
manager

QA
departmentDeveloperOrganizational issues

4 Discussion

We have examined the use of a tool called Skapis through qualitative interviews.
Skapis was created to support the Quality Management System in LatSoftware, a
large software company in Latvia.

The results show that almost no one used the tool. We found however that the
Quality Management System, or parts of an earlier version, was used to some degree.

We also discovered that although the company was successfully certified, the
employees both lacked awareness about the tool and did not use the content of the
QMS when developing software. For most developers and project mangers, using the
QMS meant producing project documentation before audits.

4.1 Effect of Failure

We found several effects of the problem with the Quality Management System not
really implemented in this company:

• Everyone developed their own best practices and used own local copies from
earlier projects or former Quality Management System. No one knows how the
local copies corresponded with the QMS.

218 D. Šmite and N.B. Moe

• Employees did not see the benefits of following the QMS. They lacked
understanding of what and why they should follow.

• The majority of the projects produced documentation for auditing purpose only.
Faking the documentation retrospective, resulted in a lot of non-productive work
and particular dissatisfaction by employees.

• The Quality Management System did not correspond to real work practices. New
employees did not get support from the Skapis system when they joined the
company, because it was not possible to use the system to find out how project
work should be really done.

• Process improvement was very difficult since there was no any common process to
improve. Improving or changing a process within the QMS would not make much
sense since such processes were not followed.

• Since the use level of the tool was so low, the SW implementation of Skapis and
the effort used to develop the QMS has been a waste of money (except for auditing
purpose).

4.2 Reason of Failure

In our work we found the following reasons for why this certified company with
several national awards for quality management has problems with employees not
using or following the Quality Management System.

• Pitterman [13] warns that without high levels of senior management commitment
to a quality system, most quality improvement efforts are doomed to fail. In
LatSoftware there was a low top management involvement in motivating the
employees to work in accordance with the QMS practices. The motivation of the
QMS implementation was getting a certificate, and since the employees did not see
the benefits with the QMS, they had a strong resistance against it from the very
beginning.

• Lack of employee involvement in the early stages when implementing the QMS
caused low motivation to use the system. In [10] and [12] we found that
involvement resulted in a high usage levels of such systems in small and medium
sized companies. We assume that involvement also is important for large
companies like LatSoftware.

• The potential users of Skapis have not been trained in using it. Such training is
presumably important for making the users understand the system and its benefits.

• Despite the huge amount of effort expended by the quality department, the system
was disregarded, because it was too big, too heavy and didn’t reflect real work
practices. Besides, Skapis as the quality system tool didn’t support the work of
software developers and project managers. Those few persons who actually used the
tool reported that it contained faulty functionality and had poor usability. We cannot
expect infusion of a system that is not perceived as useful or easy to use in daily
practice, as well as consistent with the existing values, past experiences, and needs
of the software developers. Employees tend to ignore any activities if the perceived
desirable benefits do not outweigh the perceived undesirable effects. Rogers [15]
and Dybå [3]) found that perceived usefulness is a fundamental driver of both usage
and use intentions and thus the prospects for successfully infusing such systems will
be severely undermined if they are not regarded as useful by the developers.

 An ISO 9001:2000 Certificate and Quality Awards 219

4.3 Limitations

The first limitation of this study is the number of interviewees. We interviewed only
nine software developers and project managers because of limited resources. We
interviewed the whole Quality Department, and the findings these confirmed the
results we got from the developers and project leaders. We also presented the results
to the Quality Director and he confirmed the results that we found. Since we didn’t
record the interviews, we sent the interviews back to the interviewees to make sure we
didn’t miss anything.

Secondly, we expected that the role of the interviewed person would affect the
reported use level of the tool. Skapis is seen as a project manager’s support tool (it is
also mandatory for them to use). The tendency is the same for the developers and the
project managers.

5 Conclusion and Further Work

In this study we conclude that even though a company might be certified in
accordance with e.g ISO standards; it doesn’t prove successful implementation and
usage of the company’s quality system. You really need to look inside a company to
find out what is happening.

Investigation on the usage of the Quality Management System and Skapis, the tool
for storing the system’s content, confirmed our anticipation about the problems faced
by the company. We discovered that although quality management was set as a
mandatory activity for all projects within the company, most of the users were not
aware about the tool that supports quality documentation; they accessed only parts of
an older version of the Quality Management System and quality documentation from
their previous projects. This caused serious problems for the company, such as
projects that followed outdated practices, project managers faking quality
documentation before audits, wasted resources producing documents no one needed,
problems created for new employees since they couldn’t find descriptions of the
processes people are working in accordance with, and an expensive system no one
used.

The Quality Director really appreciated the outcome of the study although he was
disappointed and surprised by some of the results. Most of all he was concerned about
the fact that there are employees who fake documentation before audits.

The company needs to exert a lot of effort in order to solve these problems. The
first step should focus on developing a culture and environment that would lead to
convincing the company’s employees to focus on software process improvement, and
demonstrate upper management commitment to quality. We recommend involving the
users when the quality system is being improved by establishing a joint responsibility
between the Quality Department and the project teams for maintaining the quality
system. Involvement can be achieved by using the process workshop approach [2]. A
set of workshops with project managers and developers could fill the gap between the
existing Quality Management System and the common work practices. This should
also be accompanied by regular employee seminars and training on quality issues, to
minimize the lack of awareness within the company. We also recommend improving

220 D. Šmite and N.B. Moe

the Skapis user interface, as well as the usability and accessibility of the content and a
possibility to share feedback by the users.

Although the given recommendations might refer to well-known knowledge areas
as senior management commitment [13], attitudes and motivation [20], resistance to
change [8], etc., the results from this case study can be seen as a useful checklist of
which pitfalls to avoid when implementing a quality system in your organization.

Because of the results, the Quality Director will plan further improvements in this
area. He plans to include the same set of questions used in this study, in the
company’s annual anonymous employee survey in order to observe this situation in
the long term. We are planning to continue studying the Quality Management System
usage in LatSoftware over time, including additional data sources for further
evaluation such as annual survey results, tool usage logs, quantitative surveys and
inspection of project documents.

Acknowledgement

We appreciate valuable discussions with the Quality Director, and research input
received from the Quality Department personnel, developers and project managers
from the studied company. We would also like to thank Tore Dybå, Torgeir Dingsøyr,
Karlis Rumpe and Fergal McCaffery for helpful comments.

This research was partly supported by the Research Council of Norway under
Grant 156701/220, European Social Fund and the Latvian Council of Science project
Nr. 02.2002 “Latvian Informatics Production Unit Support Program in the Area of
Engineering, Computer Networks and Signal Processing”.

References

1. Davis, F. D., "Perceived Usefulness, Perceived Ease of Use, and User Acceptance of
Information Technology," Mis Quarterly, vol. 13, (1989) 319-340

2. Dingsøyr, T. and Moe, N. B., "The Process Workshop - A Tool to Define Electronic
Process Guides in Small Companies," presented at Proceedings of the Australian Software
Engineering Conference (ASWEC), Melbourne, Australia, (2004) 350 - 357

3. Dybå, T., Moe, N. B., and Mikkelsen, E. M., "An Empirical Investigation on Factors
Affecting Software Developer Acceptance and Utilization of Electronic Process Guides,"
presented at Proceedings of the International Software Metrics Symposium (METRICS),
Chicago, Illinois, USA, (2004) 220-231

4. ElEmam, K. and Madhavji, N. H., "Does organizational maturity improve quality?," IEEE
Software, vol. 13, (1996) 109-110

5. ISO, "ISO 9001:2000 Quality management systems -- Requirements," 2000.
6. Kellner, M. I., Becker-Kornstaedt, U., Riddle, W. E., Tomal, J., and M, V., "Process

Guides: Effective Guidance for Process Participants," presented at Proceedings of the
Fifth International Conference on the Software Process: Computer Supported
Organizational Work, Lisle, Illinois, USA, (1998) 11-25

7. Mariun, N., "Assuring Quality in Engineering Education via Implementation of ISO
9000," Department of Electrical and Electronic Engineering, Faculty of Engineering,
University Putra Malaysia, Publications by Simply Quality 2005.

8. Markus, M. L., "Power, Politics, and Mis Implementation," Communications of the ACM,
vol. 26, (1983) 430-444

 An ISO 9001:2000 Certificate and Quality Awards 221

9. McCaffery, F., Šmite, D., Wilkie, F. G., and McFall, D., "How European Software
Industries Can Prepare For Growth Within The Global Marketplace - Northern Irish
Strategies," presented at Industry Proceedings of the European Software Process
Improvement Conference (EuroSPI 2005), Budapest, Hungary, (2005) 3.23-3.32.

10. Moe, N. B. and Dingsøyr, T., "The Impact of Process Workshop Involvement on the Use
of an Electronic Process Guide: A Case Study," presented at EuroMicro, Porto, Portugal,
(2005) IEEE: 188-195

11. Moe, N. B., Dingsøyr, T., Dybå, T., and Johansen, T., "Process Guides as Software Process
Improvement in a Small Company," presented at Proceedings of the European Software
Process Improvement Conference (EuroSPI), Nürnberg, Germany, (2002) 177-188

12. Moe, N. B. and Dybå, T., "The Adoption of an Electronic Process Guide in a Company
with Voluntary Use," presented at Proceedings of the European Software Process
Improvement Conference (EuroSPI), Trondheim, Norway, (2004) 114-125

13. Pitterman, B., "Telcordia technologies: The journey to high maturity," IEEE Software,
vol. 17, (2000) 89-96

14. Pyzdek, T., "To Improve Your Process - Keep It Simple," IEEE Software, vol. 9, (1992)
112-113

15. Rogers, E. M., Diffusion of Innovations, vol. Fourth Edition. New York: The Free Press,
2003.

16. Scott, L., Carvalho, L., Jeffery, R., D'Ambra, J., and Becker-Kornstaedt, U.,
"Understanding the use of an electronic process guide," Information and Software
Technology, vol. 44, (2002) 601-616

17. SEI, "Capability Maturity Model ® Integration (CMMISM), Version 1.1," 2002.
18. Smite, D., "A Case Study: Coordination Practices in Global Software Development,"

presented at Proceedings of the 6th International Conference on Product Focused
Software Process Improvement (PROFES 2005), Oulu, Finland, (2005) Springer-Verlag:
234-244

19. Strauss, A. and Corbin, J., Basics of Qualitative Research: Techniques and Procedures for
Developing Grounded Theory. Thousand Oaks, CA: Sage Publications, 1998.

20. Thomas, S. A., Hurley, S. F., and Barnes, D. J., "Looking for the human factors in
software quality management," presented at International Conference on Software
Engineering: Education and Practice (SE:EP '96), Dunedin, New Zealand, (1996) 474-480

21. van der Pijl, G. J., Swinkels, G. J. P., and Verrijdt, J. G., "ISO 9000 versus CMM:
Standardization and certification of IS development," Information & Management, vol.
32, (1997) 267-274

22. Venkatesh, V. and Davis, F. D., "A theoretical extension of the Technology Acceptance
Model: Four longitudinal field studies," Management Science, vol. 46, (2000) 186-204

23. Yin, R. K., Case Study Research: design and methods, vol. vol. 5, 2 ed. Newbury Park,
CA: Sage Publications, 1994.

J. Münch and M. Vierimaa (Eds.): PROFES 2006, LNCS 4034, pp. 222 – 233, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Implementing Software Process Improvement Initiatives:
An Empirical Study

Mahmood Niazi1, David Wilson2, and Didar Zowghi2

1 School of Computing and Mathematics, Keele University, ST5 5BG, UK
mkniazi@cs.keele.ac.uk

2 Faculty of Information Technology, University of Technology Sydney, NSW 2007,
Australia

{davidw, didar}@it.uts.edu.au

Abstract. In this paper we present findings from our empirical study of
software process improvement (SPI) implementation. We aim to provide SPI
practitioners with insight into designing appropriate SPI implementation
initiatives in order to achieve better results. Thirty-four interviews were
conducted with Australian practitioners. Three SPI implementation issues were
investigated: reasons for embarking on SPI initiatives, SPI benefits to the
management, and factors that play a positive role in SPI implementation.

We have found that most common reasons for embarking on SPI initiatives
are to: improve the quality of software developed, reduce software development
cost, and increase productivity. Our results show that 71% of the practitioners
said that SPI initiatives provided clear benefits to the management. We have
also found that most frequently cited SPI implementation factors are: SPI
awareness, defined SPI implementation methodology, experienced staff, staff
time and resources, senior management commitment and training.

Our aim of conducting this study is to provide a SPI implementation
framework for the design of effective SPI implementation initiatives.

1 Introduction

Information Technology failure has been a common topic in the literature over the last
25 or more years with the annual CHAOS Report [1] perhaps being the most cited
regular report. These failures are often seen as being due to issues of software quality,
which has accordingly received much attention in both academia and industry.
Software quality problems are widely acknowledged to affect the development cost
and time [1; 2]. A recent study, conducted by a group of Fellows of the Royal
Academy of Engineering and British Computer Society, shows that despite spending
22.6 billions pounds on IT projects in UK during 2003/2004, significant numbers of
projects still fail to deliver key benefits on time and to target cost and specification
[3]. In addition to such disappointing performance, some software projects result in
operational failure (e.g. Airbus A320 [4], the London Ambulance Service [5], and the
explosion of the Ariane 5 [6]) or even the demise of organisations (e.g. Greyhound's
TRIPS System [7], FoxMeyer's ERP project [8], Oxford Health's 'computer glitch' [9]
and One.Tel billing system [10]).

 Implementing Software Process Improvement Initiatives: An Empirical Study 223

There have been increasing calls for the software industry to find solutions to
software quality problems [11]. Software developing organizations are realizing that
one of their fundamental challenges is to effectively manage the software
development process [12; 13]. In order to address the effective management of
software process different methods have been developed, of which Software Process
Improvement (SPI) is the one mostly used.

Different advances have been made in the development of SPI standards and
models, e.g. CMM, CMMI, and ISO's SPICE. Despite the significant development of
standards and models for SPI, the failure rate for SPI programmes is high. The recent
report from the Software Engineering Institute puts the rate of failure at around 70%
[14]. This may be due to the fact that not enough attention has been paid to SPI
implementation issues.

In this paper we present empirical findings of a study into SPI implementation that
points to the issues that have to be addressed when developing SPI implementation
initiatives. Our study uses data from interviews of 34 Australian practitioners in 29
Australian companies. The objective of this paper is to provide insight to SPI
practitioners into designing appropriate SPI implementation initiatives in order to
achieve better results. Our overall aim of this study is to develop a SPI
implementation framework in order to guide practitioners in designing effective SPI
implementation strategies.

There are four research questions that have motivated our work:

RQ1. Why different companies embark on SPI initiatives?
RQ2. Have SPI initiatives provided clear and expected benefits to the management?
RQ3. What factors, as identified by mature companies, have a positive impact on SPI

implementation?
RQ4. What factors, as identified by immature companies, have a positive impact on

SPI implementation?

This paper is organised as follows. Section 2 describes the background. Section 3
describes the research design. In Section 4 findings are presented and analysed.
Discussion is provided in Section 5. Section 6 provides the conclusion.

2 Background

McDermid and Bennet [15] have argued that the human factors in SPI have been
largely ignored and this has damaged the effectiveness of SPI implementation
programmes. Hall and Wilson [16; 17] have also suggested that the experiences,
opinions and perceptions of software practitioners impact indirectly on the quality of
software produced. This also implies that such attributes influence how software
practitioners behave towards SPI implementation approaches. It is, therefore, very
important to identify the views and perceptions of different practitioners about factors
that play a positive role in the implementation of SPI initiative. These views,
experiences and perceptions collectively may provide practitioners with sufficient
knowledge about the nature of issues that play a positive role in the implementation of
SPI programmes in order to assist them in effectively planning SPI implementation
strategies.

224 M. Niazi, D. Wilson, and D. Zowghi

Since the introduction of Capability Maturity Model, a number of related studies
have been conducted to identify SPI factors [18-22]. Following is a summary of some
of the well known studies.

• A survey of 138 individuals in 56 software organizations [18] identified the
factors necessary for implementing a successful SPI programme. The authors
have identified a number of factors associated with successful SPI
programmes. In this study factors associated with unsuccessful SPI
programmes are also identified [18].

• A review of 56 software organizations that have either implemented an ISO
9000 quality system or that have conducted a CMM-based process
improvement initiative, determined ten factors that affect organizational
change in SPI [19].

• El Emam et al. [20] have investigated some of the important success factors
and barriers for SPI. This study is a follow-up study to [18]. They have used
data from 14 companies involved in the SPICE trials in order to identify which
of the factors are most strongly related to the success of SPI efforts and which
factors have no impact.

• A questionnaire survey of 85 UK companies [21] identified the key success
factors that can impact SPI implementation. The results show that the four
factors that practitioners considered had a major impact on successfully
implementing SPI. These factors are: reviews, standards and procedures,
training and mentoring and experienced staff. The authors have also identified
four further factors (internal leadership, inspections, executive support and
internal process ownership) that more mature companies considered had a
major impact on successfully implementing SPI.

Many of the studies mentioned above have adopted the questionnaire survey
method for the identification of factors. A disadvantage of the questionnaire survey
method is that respondents are provided with a list of possible factors and asked to
select from that list. This tends to pre-empt the factors investigated and to limit them
to those reported in existing studies - respondents only focus on the factors provided
in the list. In order to provide more confidence in the study it is important that
practitioners' experiences and perceptions should be explored independently and
without any suggestion from the researcher. So this motivated us to use interviews for
data collection in this study.

The work reported in some of the other studies is based on single case study. This
type of work has been assessed for being company-specific and therefore potentially
unrepresentative [23]. In our study, we not only conducted 34 interviews, but data
was collected as an impartial third party.

3 Study Design

In order to address research questions, we collected and analysed empirical data using
a combination of qualitative and quantitative methods. Qualitative and quantitative
methods are complementary [24]. Qualitative data can be converted through coding to
become frequency data, and hence quantitative [25; 26]. Seaman [26] adds that
although this process of coding transforms qualitative data into quantitative data, it

 Implementing Software Process Improvement Initiatives: An Empirical Study 225

does not affect its subjectivity or objectivity. Bryman [27] noted that reverse can also
occur. One of the examples in which quantitative research can facilitate qualitative
research is by the selection of case studies for further research.

This overview of methods indicates that empirical methods help researchers move
towards well-founded decisions [28]. In line with recommendations, this research uses
a combination of qualitative and quantitative methods for data collection and analysis.

3.1 Sample Profile

From November 2002 to August 2003 we visited 29 software companies and
conducted 34 interviews. The sample profile is shown in Appendix A. All of the 29
companies responded to a request for participants which was posted via the email.
The target population in this research was those software-producing companies that
have initiated SPI programmes. Although we do not claim this is a statistically
representative sample, appendix A does show that companies in the study range from
a very small software house to very large multinational companies and cover a wide
range of application areas. It is further important to acknowledge that the data was
collected from companies who were tackling real issues on a daily basis; therefore we
have high confidence in the accuracy and validity of data [29].

It is important to acknowledge that the practitioners sampled within companies are
representative of practitioners in organisations as a whole. A truly representative
sample is impossible to attain and the researcher should try to remove as much of the
sample bias as possible [30]. The sample of practitioners researched includes
developers, business analysts, methodology analyst, technical directors, project
managers and senior management.

3.2 Data Collection Method

Interviews were conducted with three groups of practitioners: developers, project
managers and senior managers. Questioning was both open and close-ended with
frequent probing to elaborate and clarify meaning. The negotiated interview duration
was half an hour, however, the researcher and interviewee would determine the pace
of the interview. Before the interview the researcher arranged the time and place with
which the interviewees were comfortable. Most of the interviews took place in the
interviewee’s offices.

3.3 Data Analysis Method

This research seeks to identify perceptions and experiences of practitioners about SPI
implementation. In order to identify common themes for the implementation of SPI
programmes, the following process has been adapted in this research [25; 29]:

• Identifying themes for SPI implementation from transcripts: All the interview
transcripts were read to identify the major themes for SPI implementation.
These themes were noted down and compared to the notes made during the
interviews in order to reassure that the transcripts being analysed are indeed a
true reflection of the discussion in the interviews. These two process steps also
verify that the transcription process has not changed the original data
generated in the interviews.

226 M. Niazi, D. Wilson, and D. Zowghi

• Generate categories: All the interview transcripts were read again to generate
categories for responses. Different themes were grouped together under
different categories. For example, budget, funds etc were grouped together
under critical success factor (CSF) category “resources”. Each category
represents a CSF for the implementation of SPI programme.

In order to reduce researcher’s bias we conducted inter-rater reliability in this
process. Three interview recordings were selected at random and a colleague, who
was not familiar with the issues being discussed, was asked to identify CSFs that
appeared in the interviews. The results were compared with our previous results and
no disagreements were found.

4 Findings

In this section we discuss the results relating to RQ1 to RQ5.

4.1 Reasons for Embarking on an SPI Initiative

In order to answer RQ1, Table 1 shows a list of reasons for embarking on SPI initiatives.
The percentage shows the proportion of practitioners that cited a particular reason.

It shows that most of the practitioners want to improve the quality of software.
Nearly half of the practitioners embark on SPI initiative to reduce the development
cost and to increase productivity. It shows that practitioners are interested to reduce
time-to-market and to shorten software development cycle times. Table 1 also shows
that few companies introduced SPI initiatives because of marketing purpose.

Table 1. Embarking reasons

Occurrence in
interviews n=34

Reasons for embarking on SPI initiatives

Freq %
To improve the quality of the software developed 26 77
To reduce software development cost 17 50
To increase productivity 16 47
To reduce time-to-market 12 35
To shorten software development cycle times 9 27
To improve management visibility 8 24
For public relations/ marketing purposes 6 18
To automate the production of relevant development
documentation

4 12

To meet vendor/supplier qualification 3 9
To make procedures and processes optimal 3 9
CEO directive 2 6
Industry requirements 2 6
To bring discipline to the company 2 6
Desire to change 1 3
To reduce maintenance 1 3
To reduce risks 1 3

 Implementing Software Process Improvement Initiatives: An Empirical Study 227

4.2 Clear and Expected Benefits of an SPI Initiative

Table 2 shows that 71% of the practitioners say that SPI initiatives provided clear and
expected benefits to the management. Only 6% of the practitioners say SPI initiatives
did not provide any benefits to the management. Our results are in line with other
studies that showed that the effort put into SPI can assist in producing high quality
software, reducing cost and time, and increasing productivity [12; 13; 31-33].

Table 2. Expected SPI benefits

Occurrence in interviews
n=34

Clear and expected benefits to the
management

Freq %

Yes 24 71

No 2 6

Do not know 8 23

Total 34 100

4.3 Mature Versus Immature Companies

We partitioned the 29 companies according to their appraisal status. Each company
was either formally appraised, informally appraised (self rated) or no appraisal. In this
research, the companies that have been assessed (formally or informally) to be in
CMM level-2 or above are considered mature companies. Similarly, the companies
with ISO 9001 certification are also considered to be mature companies. We have
collapsed a sample of companies with CMM level-2 and above with a sample of
companies with ISO 9001 certification.

The companies that did not achieve CMM level-2 or ISO 9001 certification are
considered to be immature companies. Similarly, the companies that are using some
internal methodologies for software development but they did not provide any
appraisal information are considered to be immature companies.

In order to answer RQ3, Table 3 shows the list of critical success factors (CSFs)
cited in the empirical study. The most frequently cited factor by mature companies is
training and mentoring, i.e. 79%. This suggests that in practitioners’ opinion training
can play a vital role in the implementation of SPI programs. Other frequently cited
factors by mature companies are senior management commitment (71%) and SPI
awareness (64%). It shows that practitioners of mature companies consider
management commitment and awareness of the benefits of SPI programs imperative
for the successful implementation of SPI initiatives. The results also show that
defined SPI implementation methodology, experience staff and staff time and
resources are also important factors.

In order to answer RQ4, Table 3 shows the list of CSFs cited in the empirical
study. Table 3 shows that the most frequently cited factor by immature companies is
senior management commitment, 65%. The factor training and mentoring is cited by
60% of practitioners. The results show that most of the practitioners of immature

228 M. Niazi, D. Wilson, and D. Zowghi

companies consider SPI awareness and resources critical for the implementation of
SPI. The results also suggest that practitioners want their involvement in SPI
initiatives. They also want experience staff and an SPI implementation methodology.
The practitioners of immature companies also require facilitation during SPI
implementation process.

Table 3. Mature and immature companies

Mature
companies
(n=14)

Immature
companies
(n=20)

Success Factors

Freq % Freq %

Company culture 2 14 0 0
Creating process action teams/external agents 1 7 1 5
Customer satisfaction 1 7 1 5
Defined SPI implementation methodology 6 43 6 30
Encouraging communication and
collaboration

4 29 1 5

Experienced staff 6 43 7 35
Facilitation 2 14 7 35
Formal documentation 1 7 2 10
Formalised relationship between development
team

0 0 1 5

Higher staff moral 1 7 0 0
Logical sequence/order of SPI implementation 1 7 1 5
Managing the SPI project 2 14 3 15
Measurement 2 14 0 0
Quality assurance 2 14 3 15
Reviews 1 7 2 10
Senior management commitment 10 71 13 65
SPI Awareness 9 64 11 55
Staff involvement 3 21 8 40
Staff time and resources 5 36 11 55
Tailoring improvement initiatives 2 14 0 0
Training and mentoring 11 79 12 60
Tools/packages 0 0 2 10

5 Discussion

Table 4 shows that SPI approach is strongly established in many companies. Only a
6% of companies say SPI is less than one year old and 56% say it has been in
operation for more than five years. These results show that companies have been
using SPI approach over a relatively long period of time. Despite this, less companies
in this study report high software process maturity (i.e. 14 out of 29). Companies in
our sample seem to be accelerating SPI as slow as has been reported in SEI [34]:

 Implementing Software Process Improvement Initiatives: An Empirical Study 229

• Maturity level 1 to 2 is 22 months
• Maturity level 2 to 3 is 19 months
• Maturity level 3 to 4 is 25 months
• Maturity level 4 to 5 is 13 months

Our results suggest that the most frequently cited reasons for embarking on SPI
initiatives are to: improve quality of product, reduce cost, increase productivity and
reduce time-to-market.

Our results also suggest that the most frequently cited factors by mature and
immature companies are: training, senior management commitment and SPI
awareness. However, comparison of the CSFs in the two data sets provides evidence
that there are more similarities than differences between the findings of two sets (as
shown in Table 3).

CSFs represent few key areas where management should focus their attention in
order to successfully achieve the desire results [35]. In order to decide criticality of a
factor, we have used the following criteria:

• If a factor is cited by the respondents in the interviews with a frequency
percentage of >=30%) then we treat that factor as a critical factor in this
empirical study

A similar approach has been used by other researchers [21]. However, instead of
having 50% limit in this criteria, which is the more common approach, we have reduced
this limit to 30%. This is because we wanted to have a sufficient number of
implementation factors and with a 50% limit the identified implementation factors were
not sufficient for the required research project. Our ultimate aim was to utilize these
common factors in the development of the SPI implementation framework [36; 37].

Using this criterion, six factors from mature companies have been identified that
are generally considered critical for successfully implementing SPI. These factors are:
training and mentoring, higher management support, SPI awareness, defined SPI
implementation methodology, experienced staff and staff time and resources.

Using this criterion, eight factors from immature companies have been identified.
These factors are: higher management support, training and mentoring, SPI
awareness, staff time and resources, staff involvement, experienced staff, facilitation
and defined SPI implementation methodology.

Table 4. SPI life

Occurrence in interviews n=34 How long has your process improvement
programme been in operation?

Freq %

Less than 1 year 2 6

1 - 2 years 6 18

3 - 5 years 7 20

More than 5 years 19 56

Total 34 100.0

230 M. Niazi, D. Wilson, and D. Zowghi

Six factors are common between two data sets. The results suggest that companies
should focus on these common CSFs in order to successfully implement SPI
programs because we have more confidence that a factor does indeed have an impact
on SPI implementation if it is critical in both data sets.

6 Conclusion

We report on findings from our recent empirical study of SPI implementation with
thirty-four Australian practitioners. We aim to provide SPI practitioners with some
insight into designing appropriate SPI implementation initiatives in order to achieve
better results. Our ultimate aim of conducting this empirical study is to develop a SPI

Table 5. Summary of results

Research Question Answer

RQ1. Why different
companies embark on SPI
initiatives?

Our results suggest that the most
frequently cited reasons for embarking on
SPI initiatives are to:
• improve quality of product
• reduce cost
• increase productivity
• reduce time-to-market

RQ2. Have SPI initiatives
provided clear and expected
benefits to the management?

Our results show that 71% of the
practitioners say that SPI initiatives
provided clear and expected benefits to the
management. Only 6% of the practitioners
say SPI initiatives did not provide any
benefits to the management

RQ3. What factors, as
identified by mature
companies, have a
positive impact on
implementing SPI?

Factors are:
• Training and mentoring
• Senior management commitment
• SPI Awareness
• Defined SPI implementation

methodology
• Experienced staff
• Staff time and resources

RQ4. What factors, as
identified by immature
companies, have a
positive impact on
implementing SPI?

Factors are:
• Senior management commitment
• Training and mentoring
• SPI Awareness
• Staff time and resources
• Staff involvement
• Experienced staff
• Facilitation
• Defined SPI implementation

methodology

 Implementing Software Process Improvement Initiatives: An Empirical Study 231

implementation framework in order to assist practitioners in the design of effective SPI
implementation strategies. We analysed the experiences, opinions and views of
practitioners in order to identify issues that have some impact on the implementation of
a SPI programs. We identified the important reasons for embarking on SPI initiatives.
We also identified factors that are critical for successful implementation of SPI efforts.
Our results provide advice to SPI practitioners on what needs to be addressed when
developing SPI implementation initiatives. We have summarised our results in Table 5.

Our findings generally indicate that SPI is progressing in the Australian software
industry. It shows that more than half of the companies said that SPI has been in
operation for more than five years. However, companies in our sample are not
maturing at a reasonable speed. Overall, mature and immature companies showed a
good understanding of factors that can play a positive role in the implementation of
SPI initiatives. There are more similarities than differences in CSFs identified by two
types of companies. It shows that these companies are aware of what is imperative for
successful implementation of SPI initiatives.

References

1 Standish-Group: Chaos - the state of the software industry. (2003).
2 Standish-Group: Chaos - the state of the software industry. Standish group international

technical report, 1-11. (1995).
3 The-Royal-Academy-of-Engineering: The Challenges of Complex IT Projects, The report

of a working group from The Royal Academy of Engineering and The British Computer
Society. ISBN 1-903496-15-2 (2004).

4 Randell, B.: Airbus A320, The Risks Digest: Forum on Risks to the Public in Computers
and Related Systems 8 (57). (1989)

5 Finkelstein, A.: Report of the Inquiry Into The London Ambulance Service. International
Workshop on Software Specification and Design Case Study Electronic:
http://www.cs.ucl.ac.uk/staff/A.Finkelstein/las/lascase0.9.pdf: Site visited 4-3-2003,
1993. (1993)

6 Lions, J. L.: http://www.ima.umn.edu/~arnold/disasters/ariane5rep.html, Site visited 4-3-
2003. (1997).

7 Tomsho, R.: Real Dog: How Greyhound Lines Re-Engineered Itself Right Into A Deep
Hole, Wall Street Journal 20 (October). (1994) A1-A6.

8 Scott, J., E: The FoxMeyer Drugs' Bankruptcy: Was it a Failure of ERP? In Proc. of the
Association for Information Systems 5th Americas Conference on IS, Milwaukee, WI,
August. (1999) 223-225.

9 Khasru, B., Z: Former Oxford Health Directors Settle Lawsuit, Fairfield County Business
Journal, Stamford. (2nd July). (2001) 5.

10 Paul, B.: On for young and old as James and Kerry began to fret. The Sydney Morning
Herald. http://www.smh.com.au/articles/2002/03/20/Pbonetel.htm: Site visited 12-9-2003
(2002).

11 Crosby, P.: Philip Crosby's reflections on quality. McGraw-Hill.(1996).
12 Pitterman, B.: Telcordia Technologies: The journey to high maturity, IEEE Software

(July/August). (2000) 89-96.
13 Yamamura, G.: Software process satisfied employees, IEEE Software

(September/October). (1999) 83-85.
14 SEI: Process maturity profile of the software community. Software Engineering Institute,

Carnegie Mellon University, (2002).
15 McDermid, J. and Bennet, K.: Software Engineering research: A critical appraisal, IEE

Proceedings on software engineering 146 (4). (1999) 179-186.

232 M. Niazi, D. Wilson, and D. Zowghi

16 Hall, T. and Wilson, D.: Views of software quality: a field report, IEEE Proceedings on
Software Engineering 144 (2). (1997)

17 Hall, T. and Wilson, D.: Perceptions of software quality: a pilot study, Software quality
journal (7). (1998) 67-75.

18 Goldenson, D. R. and Herbsleb, J. D.: After the appraisal: A systematic survey of Process
Improvement, Its benefits, And Factors That Influence Success. SEI, CMU/SEI-95-TR-
009 (1995).

19 Stelzer, D. and Werner, M.: Success factors of organizational change in software process
improvement, Software process improvement and practice 4 (4). (1999)

20 El-Emam, K., Fusaro, P. and Smith, B.: Success factors and barriers for software process
improvement. Better software practice for business benefit: Principles and experience,
IEEE Computer Society (1999)

21 Rainer, A. and Hall, T.: Key success factors for implementing software process
improvement: a maturity-based analysis, Journal of Systems & Software (62). (2002) 71-84.

22 Rainer, A. and Hall, T.: A quantitative and qualitative analysis of factors affecting
software processes, Journal of Systems & Software, Accepted awaiting publication (2002)

23 Herbsleb, J. D. and Goldenson, D. R.: A systematic survey of CMM experience and
results. 18th international conference on software engineering (ICSE-18). Germany
(1996) 323-330.

24 Walker, R., Briand, L., Noktin, D., Seaman, C. and Tichy, W.: Panel: Empirical validation
- what, why, when, and how. Proceedings of the 25th International Conference on
Software Engineering (ICSE '03). (2003)

25 Burnard, P.: A method of analysing interview transcripts in qualitative research, Nurse
education today (11). (1991) 461-466.

26 Seaman, C.: Qualitative methods in empirical studies of software engineering, IEEE
Transactions on Software Engineering 25 (4). (1999) 557-572.

27 Bryman, A.: Quantity and quality in social research. London, Routledge.(1996).
28 Perry, D., Porter, A. and Votta, L.: Empirical studies of software engineering: a roadmap.

Proceedings of the Twenty-second Conference on Software Engineering. Ireland (2000)
347-355.

29 Baddoo, N. and Hall, T.: Motivators of software process improvement: An analysis of
practitioner's views, Journal of Systems and Software (62). (2002) 85-96.

30 Coolican, H.: Research Methods and Statistics in Psychology. Hodder and Stoughton,
London.(1999).

31 Butler, K.: The economics benefits of software process improvement, CrossTalk (July).
(1995) 14-17.

32 Ashrafi, N.: The impact of software process improvement on quality: in theory and
practice, Information & Management 40 (7). (2003) 677-690.

33 Jiang, J., Klein, G., Hwang, H.-G., Huang, J. and Hung, S.-y.: An exploration of the
relationship between software development process maturity and project performance,
Information & Management (41). (2004) 279-288.

34 SEI: Process Maturity Profile. Software Engineering Institute Carnegie Mellon
University, (2004).

35 Rockart, J. F.: Chief executives define their own data needs, Harvard Business Review
(2). (1979) 81-93.

36 Niazi, M., Wilson, D. and Zowghi, D.: A Framework for Assisting the Design of
Effective Software Process Improvement Implementation Strategies, Journal of Systems
and Software Vol 78 (2). (2005) 204-222.

37 Niazi, M., Wilson, D. and Zowghi, D.: A Maturity Model for the Implementation of
Software Process Improvement: An empirical study, Journal of Systems and Software 74
(2). (2005) 155-172.

 Implementing Software Process Improvement Initiatives: An Empirical Study 233

Appendix A. Participant Company Information

Company Scope Age (yrs) Size Software
size

SPI in
operation
(yrs)

1 Australian 3 38 14 < 1
2 Multi-national 21-50 >2000 DK > 5
3 Multi-national >50 >2000 101-500 > 5
4 Multi-national 11-20 >2000 501-2000 1-2
5 Australian 6-10 <10 <10 > 5
6 Australian 21-50 11-100 30 3-5
7 Multi-national 21-50 >2000 DK > 5
8 Multi-national >50 501-2000 26-100 > 5
9 Multi-national >50 >2000 >2000 >5
10 Australian >50 101-500 11-25 3-5
11 Multi-national >50 >2000 >2000 3-5
12 Australian <5 <10 <10 1-2
13 Multi-national >50 >2000 DK >5
14 Multi-national 11-20 >2000 >2000 3-5
15 Australian 21-50 >2000 101-500 1-2
16 Multi-national 21-50 >2000 >2000 >5
17 Multi-national 11-20 >2000 11-25 >5
18 Multi-national >50 >2000 101-500 >5
19 Australian 11-20 11-100 11-25 1-2
20 Australian 21-50 >2000 DK >5
21 Multi-national <5 11-100 11-25 1-2
22 Australian 11-20 11-100 11-25 3-5
23 Multi-national 6-10 101-500 26-100 3-5
24 Australian <5 <10 <10 3-5
25 Australian 6-10 >2000 101-500 >5
26 Australian 6-10 11-100 26-100 >5
27 Australian >50 101-500 <10 1-2
28 Multi-national >50 >2000 11-25 >5
29 Multi-national >50 >2000 501-2000 >5

Using Linear Regression Models to Analyse the
Effect of Software Process Improvement

Joost Schalken1, Sjaak Brinkkemper2, and Hans van Vliet1

1 Vrije Universiteit, Amsterdam, Department of Computer Science
{jjp.schalken, jc.van.vliet}@few.vu.nl

2 Utrecht University, Institute of Information and Computing Sciences
s.brinkkemper@cs.uu.nl

Abstract. In this paper we publish the results of a thorough empirical
evaluation of a CMM-based software process improvement program that
took place at the IT department of a large Dutch financial institution.
Data of 410 projects collected over a period of four years are analysed
and a productivity improvement of about 20% is found. In addition to
these results we explain how the use of linear regression models and
hierarchical linear models greatly enhances the sensitivity of analysis of
empirical data on software improvement programs.

1 Introduction

To improve the management and work processes in software development, the
software process improvement field has proposed improvement models (such as
the Capability Maturity Model [1], ISO-SPICE [2], and the Capability Maturity
Model Integrated [3]) that are based on best practices and guidelines for soft-
ware developing organisations. As each of these models focuses on a wide range
of interacting practices, the benefits of an improvement model are not always
intuitive. Therefore empirical data about the benefits of SPI is needed.

There is a lack of empirical studies on the effects of SPI in industry. Even for
the most widely used improvement model, the Capability Maturity Model [1],
little empirical data is available. In a recent meta analysis on the effects of the
CMM, Galin and Avrahami [4] were only able to identify three studies that give
details on productivity gains when an organisation progresses to CMM level
2 and only twelve studies that provide details on productivity gains when an
organisation progresses to CMM level 3.

In this study we investigate the success of a software process improvement
program at a large, Dutch financial institution. In this program the Capabil-
ity Maturity Model has been used as the reference model for software process
improvement and the Dynamic Systems Development Method (DSDM) [5] as
the new project management methodology. We analysed the productivity of 410
projects during a period of four years and found a productivity increase of 20%.

If is often claimed that extensive measurement programs are ineffective in an
immature organisation. We however believe that in immature organisations the

J. Münch and M. Vierimaa (Eds.): PROFES 2006, LNCS 4034, pp. 234–248, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Using Linear Regression Models to Analyse the Effect of SPI 235

effects of SPI are invisible because the data is too noisy to be analysed with sim-
ple statistical techniques. In this paper we explain how regression models [6] and
hierarchical linear models [7] help interpreting the productivity data. Regression
models offer an improved sensitivity to changes in productivity and hierarchical
linear models allow researchers to study SPI programs that take place in hetero-
geneous organisations. Heterogeneous organisations consist of departments that
use different technologies and work on different products.

Using these statistical techniques results in an explained variance of over 60%
for our data, as opposed to a mere 2% when a straight-forward productivity
index is used.

This paper provides an answer to the following two questions:

1. What is the impact of a project’s CMM level on its productivity?
2. To what extent do the outcomes of a CMM study depend on the choice of

proper statistical techniques?

2 Related Work

Related work for this study consists of two bodies of literature: studies of the
empirical results of software process improvement and literature of statistical
techniques used in empirical software engineering.

In [8, 9, 10, 11] studies of software process improvement are described. The
studies report the (solely positive) changes in productivity of software developing
organisations, expressed in ratios of lines of code delivered per unit of effort
(usually man months).

In their paper “Do SQA Programs Work” [4] Galin and Avrahami provide
an overview of the above mentioned case studies and others that contain em-
pirical evidence on the effects of software process improvement. They identified
22 studies relating to the effects of Capability Maturity Model based software
process improvement. Of these 22 studies, only 19 contained sufficiently detailed
quantitative data to allow a meta analysis of the SPI effects. The meta analy-
sis examines the effects of CMM on error density, productivity, rework schedule
time, conformance to schedule and the effectiveness of error detection.

The authors were able to locate three studies that examine the change in
productivity when a software development organisation increases its maturity
from CMM level 1 to CMM level 2 and ten studies that examine the change in
productivity when an organisation increases its maturity from CMM level 2 to
CMM level 3. On average an organisation increases its productivity by 42.3%
when it matures to CMM level 2. And an organisation that increases its maturity
to CMM level 3 improves its productivity by an additional 44.4%.

Related work on the analysis of productivity data is hard to find in soft-
ware process improvement papers, however research in cost-estimation provides
instructions on how to apply regression models to relate effort to size [12,
chap. 5] [13, chap. 12] and therefore how to analyse productivity. Unfortunately
the statistical techniques used for cost-estimation models are not used to eluci-
date changes in productivity caused by software process improvement. Related

236 J. Schalken, S. Brinkkemper, and H. van Vliet

work on hierarchical linear models applied to software process improvement has
not been found1.

A subset of the data that we examined in this study, has also been analysed
using different statistical techniques in [14], where a method is demonstrated to
validate size measurements made by the organisation and time series are used
to analyse the changes of productivity over time (irrespective of CMM level).

3 Research Methodology

3.1 Research Design

To answer our research questions, we use the experimental design of a cohort
study [15, p. 126]. We collected data on 410 software development projects and
compared the productivity of projects that were executed in an CMM level 2
or 3 environment with projects that were executed in an environment that did
not already fulfil the CMM requirements. For this comparison we used three
different statistical techniques.

The cohort study design has some weaknesses that create threats to the valid-
ity of the study, of which the maturation effect poses the biggest threat. Changes
in the organisation occur over time that are unrelated to CMM, but that do have
an effect on the productivity of the projects (c.f. [16]). We found similar results
in the different organisational departments that implemented SPI at different
moments in time, which improves our confidence in the results.

3.2 Research Context

This study has been performed within an internal Information Technology de-
partment of a large financial institution. In this department over 1500 people
were employed during the course of study. The organisation primarily builds
and maintains large, custom-built, mainframe transaction processing systems,
most of which are built in COBOL and TELON (an application-generator for
COBOL). Besides these mainframe systems, a large variety of other systems are
implemented, constructed and maintained by the organisation. These systems
are implemented in a large variety of different programming languages (such as
Java and COOL:Gen), run under various operating systems (such as Microsoft
Windows and UNIX) and are distributed over different platforms (batch, block-
based, GUI-based and browser-based).

The organisation has undertaken a major software process improvement pro-
gram (SPI) to improve the internal IT processes and cooperation with the busi-
ness in the period of 1999 until 2004. The SPI program included the introduction
1 We did not find any relevant results in ACM’s Portal, Springer-Verlag’s Springer-

Link, Elsevier’s ScienceDirect or in IEEE Computer Society’s Digital Library that
contained both a relevant statistical term (“hierarchical linear model”, “multi-level
linear model”, “mixed-effects model”, “random-effects model”, “random-coefficient
regression model”, or “covariance components model”) and a relevant application
domain term (“spi”, “cmm”, or “software process improvement”).

Using Linear Regression Models to Analyse the Effect of SPI 237

of a software metrics program, the introduction of the Dynamic Systems Develop-
ment Method (DSDM) [5] as the iterative development and project management
method, the introduction of a tailor-made quality system consisting of two levels
that comply with the requirements of CMM [1] level 2 and 3 respectively, and a
culture change program to support the above mentioned changes.

To successfully implement the changes required for the software process
improvement, a program with a dedicated senior vice-president was initiated.
Through the SPI program the individual departments of the line organisation
received assistance and coaching by dedicated internal and external consultants;
IT staff received the required training and certification in CMM, DSDM and
company-specific procedures; and improvement goals were set to maintain the
commitment of upper management.

In the process the organisation designed an on-line knowledge base containing
reference information about the DSDM method and the supporting management
and quality processes, templates for documentation and review check-lists and
background information about development tools. The on-line knowledge base
was a replacement of an existing on-line knowledge base, that was based on the
prior (linear) development method.

3.3 Data Collection

To perform the evaluation of the software process improvement program, two
sources of data were used: the project database and a log of the assessment re-
sults. The project database contains generic information on all projects executed
in the organisation and the assessment log contains information on which do-
mains have been assessed and what the outcomes of the CMM assessment were.
From the database, data about 410 closed projects has been extracted.

From the project database the size in function points, the effort, the end date
and the department in which the project was executed has been extracted for
each project. To obtain the maturity of the organisation in which the project
has been executed, the end date of a project was compared with the assessment
date of its domain. If the project has been executed before the assessment, the
project has been considered to have been executed in an organisation with CMM
maturity level 1. The decision rule to determine the maturity of the department
in which the project has been executed leads to a conservative estimate of the
effects of SPI.

Please note that before we analysed the data, we have multiplied the effort
data with a random constant (0.75 < α < 1.5) for the sake of confidentiality of
the actual productivity figures. This linear scaling of the data does not in any
way affect the improvement ratios that are provided in this paper.

3.4 Analysis Methods

We examined three distinct ways of comparing the productivity of an organisa-
tion before and after a software process improvement program. The methods of
comparing productivity increase in sophistication and complexity.

238 J. Schalken, S. Brinkkemper, and H. van Vliet

Classical Approach. In most studies, productivity is defined as size divided
by effort. Conte, Dunsmore and Shen [12, chap. 5] define productivity as “the
number of lines of source code produced per programmer-month (person-month)
of effort”. This leads to the following formula to estimate the productivity of an
organisation (1):

L̂ =
1
n

n∑

i=1

li =
1
n

n∑

i=1

si

ei
where

L̂ is estimated organisational productivity,

li is productivity of project i, and

si is size of the software i, and

ei is effort of project i, and

n is the number of projects executed

in the organisation

(1)

Size measurements of a project can also be expressed in function points [17] or
other size metrics and effort can also be expressed in other measures without loss
of generality. Although function points have certain desirable properties, such as
technological independence [18], Galin and Avrahami [4] observe that “most of
the reporting organisations applied the classic lines of code (LOC) measure for
productivity”. In our study a productivity index consisting of function points
(Sfp) per hour of effort of IT personnel (Ehr) is used. The effort of IT per-
sonnel includes not only programmer effort, but also the effort of requirements
engineers, technical designers, architects and project management.

Productivity indices (L) can be used to determine whether the productivity
has changed. To estimate the productivity index (L̂) of an organisation the
productivity indices of projects carried out in that organisation are averaged (1).
To determine the effect of software process improvement, the productivity index
of the organisation before the software process improvement initiative (L¬spi) is
compared with that of the organisation after the software process improvement
initiative (Lspi). A t-test [19] can be used to test whether the productivity of
the organisation has changed significantly (2):

H0 : L¬spi = Lspi

H1 : L¬spi �= Lspi
(2)

Cost-Model Comparison Approach. In studies of productivity, changes in
productivity are often measured in lines of code per man month [4] or in another
ratio of size divided by effort. We believe however that better comparisons of
productivity changes can be made based on the same data.

Instead of describing the productivity with a single productivity index L, the
productivity also can be described by a regression equation that models effort as
a function of size. The parameters of the regression model β1...n now function as
a measure for productivity. The simplest regression model is a linear regression
model (3):

ehri = β0 + β1 · sfpi + ri where

ehri is effort of a project in hours,

sfpi is size of effort in function points, and

ri is unexplained, residual variance

(R ∼ N(0, σ2))

(3)

Using Linear Regression Models to Analyse the Effect of SPI 239

In order to build a valid regression model, the relation must satisfy the as-
sumptions of linear regression: (a) linearity of the relation, (b) independence
of residuals, (c) residuals have constant variance and (d) residuals follow the
normal distribution [6].

Unfortunately, in most organisations productivity data does not satisfy the
assumptions of linear regression. In most organisations larger projects are less
predictable and more prone to overrun their budget and schedules. This is an
indication that the residuals (difference between observations and the regression
model) are related to the size of a project, which is a violation of assumption (c)
and can lead to invalid conclusions.

If the relation between effort and size violates one of the assumptions of the
linear regression model, it is possible to scale the dependent (Ehr) and or inde-
pendent (Sfp) variables before they are used in the regression equation. Although
in principle every transformation is allowed, involution, extraction of roots and
taking a logarithm are often used transformations. Based on diagnostic infor-
mation, one can choose an appropriate transformation. This leads to the more
general regression model (4):

ehr
′
i = β0 + β1 · sfp

′
i + ri where

ehr
′
i is scaled effort of a project in hours,

sfp
′
i is scaled size of effort in function points,

ri is unexplained, residual variance

(R ∼ N(0, σ2))

(4)

Regression equations that model effort as a function of size are usually em-
ployed to build cost prediction models (such as COCOMO-II [20]). Their use
however is not limited to cost estimation, as regression models are also useful
to compare the productivity of organisations or to determine the productivity
effects of a software process improvement initiative. Productivity of organisa-
tions can then be compared by comparing the parameters β1...n of the regression
models.

To determine the effects of software process improvement, the process matu-
rity (C) of the organisation can be factored into the equation (5) to determine
the influence of software process improvement. If software process improvement
has no effect, the regression parameters β2 and β3 should be equal to zero (6),
which can be tested with ANOVA [19]. By examining the parameters β2 and β3
we obtain an estimate of the effect of software process improvement.

ehr
′
i = β0 + β1 · sfp

′
i+

β2 · ci+
β3 · sfp

′
i · ci + ri

where

ehr
′
i is scaled effort of a project in hours,

sfp
′
i is scaled size of effort in function points,

ci is the maturity level of the organisation

in which the project is executed,

ri is unexplained, residual variance

(R ∼ N(0, σ2))

(5)

H0 : β2 = 0 and β3 = 0

H1 : β2 �= 0 or β3 �= 0
(6)

240 J. Schalken, S. Brinkkemper, and H. van Vliet

The advantage of the regression model approach is that regression models
take the effect of project size on the productivity of a project into account. After
all, projects can have startup costs and projects can experience (dis-)economy
of scale. Ignoring the effect of project size on project productivity increases the
residual, unexplained variability in the data. This increased residual variance
means that larger sample sizes are needed to obtain significant results. In certain
situations it is even possible that, by ignoring the effect of size on productivity,
invalid conclusions are drawn (e.g. if the size of projects before and after the
software process improvement changes significantly).

Hierarchical Model Approach. Large organisations structure their work ac-
cording to the principle of division of labour. These large organisations consist of
different departments that perform different projects. These departments either
specialise on the group of products they work on or specialise on the technology
or skills that the department uses. We call these organisations with specialised
departments heterogeneous organisations. In this section we explain why data
from heterogeneous organisations cannot be adequately analysed using classi-
cal linear regression models and how hierarchical models [21, 7] can be used to
analyse this data.

Linear regression models are based on the assumption that residuals in a model
are independent, and therefore the observations need to be drawn from a single
homogeneous pool of subjects. The characteristics of such a homogeneous pool
from which the observations are drawn should have the same statistical distribu-
tion. Because the characteristics of departments in a heterogeneous organisation
differ, the assumption of independent residuals does not hold.

We illustrate the problems sketched above with a hypothetical example. If we
want to understand the effects of a type of fertiliser on the growth-rate of fruit,
an experiment could be set up with eight plots of apples and eight plots of pears,
four plots of bananas and two plots of pineapples. Half the plots are assigned with
the new fertiliser (the treatment group) and half the plots are assigned with no
fertiliser (the control group). At the moment the plants bear fruit, the yield of
each of the plots is weighed. To determine the effect of the fertiliser (a) the yields
of all plots with fertiliser could be compared with the yields of all plots without
the fertiliser or (b) for each type of fruit the average yields of plots with fertiliser
could be compared with the plots grown without fertiliser. In the first approach,
we literally compare apples with pears, which severely increases error variance and
therefore reduces the chance we detect the effect of the fertiliser. If we on the other
hand take the second approach to gauge the effect of the fertiliser, we have to make
four comparisons, which increases the chance of making an error by fourfold.

When determining the effect of software process improvement on produc-
tivity, the productivity of projects that took place before and after the soft-
ware process improvement initiative are compared. Unfortunately the number
of projects that take place within a single department of a company is usu-
ally too small to find significant results of software process improvement. If the
productivity of projects that took place in different departments is compared,
effectively ‘apples’ are compared with ‘pears’. Hierarchical linear models can

Using Linear Regression Models to Analyse the Effect of SPI 241

be used to make a single comparison of the overall effects of changes in soft-
ware process (or fertiliser) and at the same time take into account that we are
comparing ‘apples’ with ‘pears’. Multi-level linear models, mixed-effects mod-
els, random-effects models, random-coefficient regression modes, and covariance
components models are other names for hierarchical level models. To measure
the overall effects of software process improvement, hierarchical linear models
should be used to take the differences of the departments into account.

Hierarchical linear models are an extension of ordinary linear regression mod-
els. In a hierarchical linear model, the regression model is split up in two compo-
nents: a level 1 model and a level 2 model. Hierarchical linear models extend lin-
ear regression models by fitting a new set of regression parameters for each group
of data, the department in which the project took place. For each group a dif-
ferent set of regression parameters β0 j . . . βn j is found. The level 2 model brings
structure in the regression parameters; an overall γn 0 value for a group of para-
meters βn j is determined, from which each group j is allowed to deviate by un j .

The level 1 model (7) for effort looks similar to the regression model from the
previous section. Note however that the observations i are grouped according to
the department j in which they were made. Also note that the parameters in
the level 1 regression model also have a subscript for their group j.

ehr
′
i j = β0 j + β1 j · sfp

′
i j+

β2 j · ci j+
β3 j · sfp

′
i j · ci j+

ri j

where

ehr
′
i j is scaled effort of a project in hours,

sfp
′
i j is scaled size of effort in function points,

ci j is the maturity level of the organisation

in which the project is executed,

ri j is unexplained, residual variance

(R ∼ N(0, σ2))

(7)

We also have a level 2 model (8) for productivity, which breaks up each βn j

in the level 1 model into an organisation wide parameter γn j and a deviation
un j from that organisation average for each department j.

β0 j = γ0 0 + u0 j u0 j ∼ N(0, τ0 0)
β1 j = γ1 0 + u1 j u1 j ∼ N(0, τ1 1)
β2 j = γ2 0 + u2 j u2 j ∼ N(0, τ2 2)
β3 j = γ3 0 + u3 j u3 j ∼ N(0, τ3 3)

(8)

Bryk and Raudenbush [7, chap. 3] provide a conceptual explanation of how these
models can be fitted and a more thorough mathematical description of how values
for these parameters can be found is provided by Pinheiro and Bates [22, chap. 2].

To determine whether software process improvement has an effect, the para-
meters γ2 0 and γ3 0 should be tested for equality with zero (9). The parameters
γ2 0 and γ3 0 are related with the maturity of the organisation (ci) and if the
parameters are equal to zero that would indicate that SPI has no effect.

H0 : γ2 0 = 0 and γ3 0 = 0

H1 : γ2 0 �= 0 or γ3 0 �= 0
(9)

242 J. Schalken, S. Brinkkemper, and H. van Vliet

The advantage of using hierarchical linear models in determining the effects
of SPI in heterogeneous organisation is that by taking the department into ac-
count, the residual variance of the data is reduced, which reduces the amount of
data required to make an analysis. Furthermore the usage of hierarchical linear
models can guard against making erroneous conclusions. Such erroneous conclu-
sions could be made if workload of departments that perform easy assignments
increases at the expense of the workload of departments that perform difficult
assignments. In such cases the productivity of the organisation would seem to
have increased, whereas in reality the work has changed and no real performance
increase has occurred.

4 Results

4.1 Classical Approach

In this section we use the classical approach to determine the effects of software
process improvement. Table 1 shows the average productivity of projects that
are executed in a CMM Level 1, 2 and 3 organisation.

Table 1. Productivity Indices per Maturity Level

Maturity CMM Level Productivity Lhr/fp

low 1 14.46

medium 2 12.08
3 8.50

2 & 3 11.54

From Table 1 we can conclude that projects executed in a CMM level 2
or level 3 organisation are on average 20.19% more productive than projects
that are executed in a CMM level 1 organisation. When we use a t-test to test
hypothesis (2), which states that Lspi

hr/fp �= L¬spi
hr/fp, we find that have to reject

H0 with p = 0.002 (t = 3.13, df = 267). We can therefore conclude that there is
a significant productivity increase after the implementation of SPI.

Although we do find statistically significant results with the classical approach,
the results are not satisfactory if we look at the amount of explained variance.
When we fit productivity as a function of process maturity (level 1 vs. level 2
and 3), we obtain R2 = 0.02. This means that only 2% of the differences in
productivity can be explained by process maturity.

4.2 Cost-Model Comparison Approach

We use linear regression models to determine the effect of software process im-
provement on productivity. As explained in Sect. 3.4, we first need to find a
suitable linear regression model between effort and size.

Using Linear Regression Models to Analyse the Effect of SPI 243

In Table 2 we tabulated diagnostic information on six different combinations
of transformations on both the dependent (effort) and the independent variable
(size). The Shapiro-Wilk test [23] is used to test for normality and the Breusch-
Pagan test [6, p. 115] is to test the constance of variance of the residuals. The
residuals of the linear model and the log-transformed model (log(E) = β0 +
β1log(S)+R) are shown in Fig. 1. From Fig. 1 we can see that the residuals from
the linear model are correlated with the fitted values (show heteroscedascity)
and that the residuals from the logistic model are uncorrelated with the fitted
values (homoscedastic). Homoscedasticity, or constance of variance, is assumed in
linear regression models and therefore the logistic model is superior to the simple
linear model. For goodness of fit we used the unadjusted multiple coefficient of
determination R2, which tells us how much of the variation in effort can be
explained by size.

Table 2. Diagnostic Information on Effort Regression Models

Residuals

Goodness of fit Constance of Variance Normality

Formula R2 X2
bp

a p W b p

E = β0 + β1S + R 0.493 86.07 ¡ 0.001 0.798 ¡ 0.001
E = β0 + β1S

2 + R 0.315 87.29 ¡ 0.001 0.748 ¡ 0.001
E = β0 + β1log(S) + R 0.407 33.14 ¡ 0.001 0.830 ¡ 0.001
log(E) = β0 + β1S + R 0.436 27.26 ¡ 0.001 0.981 ¡ 0.001
log(E) = β0 + β1S

2 + R 0.202 54.24 ¡ 0.001 0.988 0.002
log(E) = β0 + β1log(S) + R 0.576 4.43 0.035 0.995 0.283

a Breusch-Pagan X2 to test for dependence between predictors and residuals.
b Shapiro-Wilk W to test deviation of residuals from the normal distribution.

Fig. 1. Residuals of Linear Models plotted against the Fitted Values

244 J. Schalken, S. Brinkkemper, and H. van Vliet

If we examine the diagnostic information in Table 2, we see that the log-
transformed model (log(E) = β0 + β1log(S) + R) has the best characteristics;
58% of the variance is explained and its residuals are normally distributed and
the variance of the residuals only has negligible relation with size.

We can transform the model for log-transformed effort to a model for effort by
raising both sides of the equation to the power e, which leads to equation (10). It
turns out that we effectively arrive at an exponential effort estimation model [12,
p. 281] of the form effort i = β0 ∗ sizeβ1

i ∗ eεi . To determine if the maturity of
an organisation has an effect on the productivity, we effectively are comparing
cost-estimation models.

ehri = exp(β0) · sfpi
β1 · exp(ri) where

ehri is effort of a project in hours,

sfpi is size of effort in function points

ri is unexplained, residual variance

(R ∼ N(0, σ2))

(10)

Having selected an appropriate regression model, we continue by testing the
hypothesis (6) that process maturity influences on productivity with ANOVA,
the results of which can be seen in Table 3.

Table 3. ANOVA on Linear Regression Model (log(Ehr) = β0 + β1 log(Sfp) + β2 C +
β3 log(Sfp) C + R)

df SSE MSE F p

log(Sfp) 1 199.725 199.725 580.082 ¡ 0.001
C 2 6.937 3.469 10.075 ¡ 0.001
log(Sfp):C 2 0.966 0.483 1.403 0.2471
residuals 404 139.099 0.344

From the ANOVA we can see that both size (log(Sfp)) and process maturity
(C) have a significant effect on the effort (log(Ehr). Furthermore we can observe
that there is no interaction between size and process maturity, which means
that software process improvement has a similar (positive) effect on both large
and small projects. If we examine the regression coefficients, we arrive at the
following relations between effort and size, which overall is a 20.86% improvement
of productivity for CMM level 2 & 3 projects over CMM level 1 projects.

CMM level 1: Ehr = 31.68 · Sfp
0.80

CMM level 2: Ehr = 26.35 · Sfp
0.80

CMM level 3: Ehr = 18.93 · Sfp
0.80

(11)

If we look at the explained variance, we see an R2 = 0.60. This means that
60% of the variation in effort can be explained by process maturity and size.
This leave less chance that the results can be explained in an alternative way.

Using Linear Regression Models to Analyse the Effect of SPI 245

4.3 Hierarchical Model Approach

In this section we examine the effects of software process improvement with
hierarchical linear models. In the previous section we established that that the
log-scaled model best fits the data (log(E) = β0 + β1log(S) + β2C + R). In a
similar manner we examine the influence of domain on the regression coefficients
(β1...3) in Table 4. This table contains the Akaike Information Criterion (AIC)
and the Bayesian Information Criterion (BIC) [22] and the log-likelihood of each
model.

From Table 4 we see that model log(E) = β0 j + β1log(S) + β2C + R has
the lowest AIC and therefore is the best balance between goodness-of-fit and
number of parameters. If we compare the likelihoods with the optimal regression
model from the previous section, we obtain that the hierarchical linear model is
significantly better (log-likelihood ratio=22.27645, p < .0001). Although some
other hierarchical linear models have an even lower log-likelihood, this difference
is not significant.

Table 4. Diagnostic Information on Hierarchical Linear Models

Formula AIC BIC Log-likelihood

log(E) = β0 + β1log(S) + β2C + R 733.17 753.25 -361.58
log(E) = β0 j + β1log(S) + β2C + R 712.89 736.90 -350.45
log(E) = β0 j + β1 j log(S) + β2C + R 715.94 748.07 -349.97
log(E) = β0 j + β1log(S) + β2 jC + R 718.60 762.77 -348.30
log(E) = β0 j + β1 j log(S) + β2 jC + R 725.92 786.16 -347.96

When we obtain an ANOVA on model log(E) = β0 j +β1log(S)+β2C +R to
test whether process maturity has an influence on productivity, hypothesis (9),
we obtain the results as shown in Table 5:

Table 5. ANOVA on Hierarchical Linear Model (log(E) = β0 j +β1 log(S)+β2 C +R)

num df den df F p

log(Sfp) 1 369 630.06 ¡ 0.001
C 2 369 8.06 ¡ 0.001

So, significant effects of process maturity on productivity are not only found
if we analyse the data with linear regression models, but also if we analyse
the data using hierarchical linear models. As hierarchical linear models take the
impact of both size and organisation into account, we rejected that these obvious
alternative explanations explain the change in productivity instead of software
process improvement. Taking organisation into account when analysing the data
increases the explained variance from 60% to 67% (R2 = 0.67). This increases
the confidence in our results.

If we examine the regression coefficients, we obtain an 23.42% overall produc-
tivity increase for CMM level 2 & 3 organisation when compared with a CMM

246 J. Schalken, S. Brinkkemper, and H. van Vliet

level 1 organisation. Examining the regression coefficients leads to the following,
organisation-wide models for productivity:

CMM level 1: Ehr = 33.09 · Sfp
0.82

CMM level 2: Ehr = 26.68 · Sfp
0.82

CMM level 3: Ehr = 20.40 · Sfp
0.82

(12)

5 Conclusions

From the study we have found clear evidence that CMM does increase the pro-
ductivity of an organisation. We found a productivity increase of 20%. More
planning and more attention to management and work processes do seem to
have a positive effect on the productivity of the organisation. The improvements
made in this study are smaller than found in certain similar studies, but we
believe that this can might be explained because in some studies small conve-
nience samples are analysed instead of the productivity data on all projects in
that organisation.

In addition we found that the classical method of comparing productivity
indices has a lot of disadvantages, as only a tiny part of the variance can be ex-
plained by the maturity level. By using more sophisticated statistical techniques,
linear regression models and hierarchical linear models, we gain confidence in the
results of the analysis as the underlying assumptions of the analytical techniques
are met and the influence of alternative explanations for the change in produc-
tivity are excluded. Linear regression models allow us to exclude the impact of
project size on changing productivity and hierarchical linear models allow us
to exclude the impact of the department or organisational unit in which the
project takes place. It gives confidence in the results that the increases found in
productivity using both statistical methods are approximately equal.

Acknowledgements

We would like to than Jean Kleijnen, Marcel Uleman, Ton Groen for their in-
sights into the SPI program and their help in obtaining the required data. Frank
Harmsen’s guidance and supervision at the beginning of the project is greatly
appreciated, as is Geurt Jongbloed’s helpful statistical advice.

References

1. Paulk, M.C., Curtis, B., Chrissis, M.B., Weber, C.V.: Capability maturity
model for software, version 1.1. Technical Report CMU/SEI-93-TR-24, DTIC
ADA263403, Software Engineering Institute, Carnegie Mellon University, Pitts-
burgh, PA, USA (1993) Available from: http://www.sei.cmu.edu/.

2. ISO/IEC: Information technology - software process assessment. Technical Report
ISO/IEC TR 15504:1998, International Organization for Standardization/ Inter-
national Electrotechnical Commission (1998)

Using Linear Regression Models to Analyse the Effect of SPI 247

3. CMMI Product Development Team: CMMI for systems engineering/software engi-
neering/integrated product and process development/supplier sourcing, version 1.1
continuous representation. Technical Report CMU/SEI-2002-TR-011, ESC-TR-
2002-011, Software Engineering Institute, Carnegie Mellon University, Pittsburgh,
PA, USA (2000) Available from: http://www.sei.cmu.edu/.

4. Galin, D., Avrahami, M.: Do SQA programs work – CMM works. A meta analysis.
In Amir Tomer, R., Schach, S.R., eds.: Proceedings of the International Conference
on Software - Science, Technology & Engineering (SwSTE’05), Washington, DC,
USA, IEEE Computer Society Press (2005) 95–100

5. Stapleton, J.: Framework for Business Centred Development: DSDM Manual ver-
sion 4.1. DSDM Consortium, Ltd., Kent, United Kingdom. (2002)

6. Peter, J., Kutner, M.H., Nachtsheim, C.J., Wasserman, W.: Applied Linear Sta-
tistical Models. 4 edn. WCB/McGraw-Hill, Boston, MA, USA (1996)

7. Bryk, A.S., Raudenbush, S.W.: Hierarchical Linear Models: Applications and Data
Analysis methods. 1st edn. Volume 1 of Advanced Quantitative Techniques in the
Social Sciences. Sage Publications, Newbury Park, CA, USA (1992)

8. Diaz, M., King, J.: How CMM impacts quality, productivity, rework, and the
bottom line. CrossTalk: The Journal of Defense Software Engineering 15(3) (2002)
9–14

9. Diaz, M., Sligo, J.: How software process improvement helped Motorola. IEEE
Software 14(5) (1997) 75–81

10. Wohlwend, H., Rosenbaum, S.: Software improvements in an international com-
pany. In: Proceedings of the 15th International Conference on Software Engi-
neering (ICSE-93), Washington, DC, USA, IEEE Computer Society Press (1993)
212–220

11. Oldham, L.G., Putman, D.B., Peterson, M., Rudd, B., Tjoland, K.: Benefits real-
ized from climbing the CMM ladder. CrossTalk: The Journal of Defense Software
Engineering 12(9) (1999) 7–10

12. Conte, S.D., Dunsmore, H.E., Shen, V.Y.: Software Engineering Metrics and Mod-
els. Benjamin/Cummings Publishing, Menlo Park, CA, USA (1986)

13. Fenton, N.E., Pfleeger, S.L.: Software Metrics: A Rigorous and Practical Approach.
2nd edn. International Thomson Computer Press, London, UK (1998)

14. Verhoef, C.: Quantifying software process improvement. Technical report, Vrije
Universiteit Amsterdam, Amsterdam, NL (2005) Available from:
http://www.cs.vu.nl/∼x [Accessed: 05/12/2005].

15. Cook, T.D., Campbell, D.T.: Quasi-Experimentation: Design & Analysis Issues
for Field Settings. Rand McNally College Publishing Company, Chicago, IL, USA
(1979)

16. McGarry, F., Decker, B.: Attaining level 5 in cmm process maturity. IEEE Software
22(6) (2002) 87–96

17. Albrecht, A.J.: Measuring application development productivity. In: Proceedings
of the Joint SHARE/GUIDE/IBM Applications Development Symposium. (1979)
83–92

18. Furey, S.: Point: Why we should use function points. IEEE Software 14(2) (1997)
28–30

19. Bhattacharyya, G.K., Johnson, R.A.: Statistical Concepts and Methods. Wi-
ley Series in Probability and Statistics. Wiley-Interscience, New York, NY, USA
(1977)

20. Boehm, B.W., Abts, C., Brown, A.W., Chulani, S., Clark, B.K., Horowitz, E.,
Madachy, R., Reifer, D.J., Steec, B.: Software Cost Estimation with Cocomo II.
Prentice-Hall PTR, Upper Daddle River, NJ, USA (2000)

248 J. Schalken, S. Brinkkemper, and H. van Vliet

21. Lindley, D.V., Smith, A.F.M.: Bayes estimates for the linear model. Journal of the
Royal Statistical Society 34(1) (1972) 1–41

22. Pinheiro, J.C., Bates, D.M.: Mixed Effects Models in S and S-Plus. 1st edn. Sta-
tistics and Computing. Springer-Verlag, Berlin, D (2000)

23. Shapiro, S.S., Wilk, M.B.: An analysis of variance test for normality (complete
samples). Biometrika 52(3 & 4) (1965) 591–611

J. Münch and M. Vierimaa (Eds.): PROFES 2006, LNCS 4034, pp. 249 – 262, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Taba Workstation: Supporting Software Process
Deployment Based on CMMI and MR-MPS.BR

Mariano Montoni, Gleison Santos, Ana Regina Rocha, Sávio Figueiredo,
Reinaldo Cabral, Rafael Barcellos, Ahilton Barreto, Andréa Soares,

Cristina Cerdeiral, and Peter Lupo

COPPE/UFRJ - Federal University of Rio de Janeiro
POBOX 68511 – ZIP 21945-970 – Rio de Janeiro, Brazil
{mmontoni, gleison, darocha}@cos.ufrj.br

Abstract. Deployment of software processes based on reference models is a
knowledge-intensive task, i.e., a great amount of technical knowledge must be
applied in order to guarantee conformance and adherence of processes deployed
to the reference models adopted. Moreover, software process deployers have to
deal with organizational and individual cultural problems on a regular basis, for
instance, resistances to organizational changes. Therefore, the success of soft-
ware process deployment within an organization or organizational unit depends
on both technical and social aspects of the software process deployment strategy
definition and execution. This paper presents the Taba Workstation, an enter-
prise-oriented Process-centered Software Engineering Environment (PSEE) con-
stituted of an integrated set of tools to support software process deployment
based on the Capability Maturity Model Integration (CMMI) and the Reference
Model for Brazilian Software Process Improvement (MR-MPS.BR). Software
process appraisals demonstrated that the Taba Workstation constitutes one of
the most important organizational assets to facilitate the success of software
process deployment initiatives and to overcome the inherent difficulties.

1 Introduction

Deployment of software processes based on reference models is a knowledge-
intensive task, i.e., a great amount of technical knowledge must be applied in order to
guarantee conformance and adherence of processes deployed to the reference models
adopted. Moreover, software process deployers have to deal with organizational and
individual cultural problems on a regular basis, for instance, resistances to organiza-
tional changes [1, 2]. Therefore, the success of software process deployment within an
organization or organizational unit depends on both technical and social aspects of the
software process deployment strategy definition and execution.

One important characteristic of a software process deployment initiative is the se-
lection of an appropriate reference model to base the definition of the software proc-
esses and evaluation of the organization. International standards like ISO 12207 [3]
and ISO 15504 [4] and software process quality models like CMMI (Capability Ma-
turity Model Integration) [5] were developed aiming to define the requirements of an
ideal organization, i.e., a reference model to be used in order to assess the maturity of

250 M. Montoni et al.

the organization and their capability to develop software. Based on these standards
and models, Brazilian industry and research institutions have worked together during
the last two years aiming to define the Reference Model for Brazilian Software Proc-
ess Improvement (MR-MPS.BR) [6, 8, 9]. This model has been deployed in many
companies in Brazil and official appraisals were already conducted.

This paper presents the Taba Workstation, an enterprise-oriented Process-centered
Software Engineering Environment (PSEE) constituted of an integrated set of tools to
support software process deployment based on the Capability Maturity Model Inte-
gration (CMMI) and the Reference Model for Brazilian Software Process Improve-
ment (MR-MPS.BR).

Section 2 presents the Reference Model for Brazilian Software Process Improve-
ment and the appraisal method developed. Section 3 presents the main characteristics
of PSEE approaches to support software process definition, deployment and enact-
ment. Section 4 describes the main objectives of the Taba Workstation, and how it
supports software process deployers during the deployment of processes according to
reference models. Section 5 presents the conclusions and points out future directions
for the presented work.

2 The Reference Model for Brazilian Software Process
Improvement

The Reference Model for Brazilian Software Process Improvement (MR-MPS.BR)
was created with the objective to provide an adequate model to Brazilian public and
private organizations with different characteristics and sizes based on the most impor-
tant reference models for software process definition and improvement (ISO/IEC
12207 [19], ISO/IEC 15504 [20], and CMMI [21]).

The reference standard for the software processes of MR-MPS.BR is the ISO/IEC
12207, i.e., this standard is the framework for the definition of the processes that
constitute the MR-MPS.BR. Similarly to the ISO/IEC 12207 standard, the MR-
MPS.BR defines fundamental processes, supporting processes and an adaptation
process. Each company interested in deploying the MR-MPS.BR should select the
pertinent processes from that set according to the adaptation process. The expected
results for the deployment of the MR-MPS.BR processes are an adaptation of the
expected results of the ISO/IEC 12207 processes and activities.

Seven maturity levels were established in the MR-MPS.BR: Level A (Optimiza-
tion), Level B (Quantitatively Managed), Level C (Defined), Level D (Largely De-
fined), Level E (Partially Defined), Level F (Managed), and Level G (Partially Man-
aged). For each of these maturity levels, processes were assigned based on the
ISO/IEC 12207 standard and on the process areas of levels 2, 3, 4 and 5 of CMMI
staged representation. This division has a different graduation of the CMMI staged
representation aiming to enable a more gradual and adequate deployment in small and
medium size Brazilian companies. The possibility of rating companies maturity con-
sidering more levels, not only diminishes the cost and effort of achieving a certain
maturity level, but also allows the visibility of the results of the software process
improvement within the company and across the country in a shorter time when com-
pared to other models, such as CMMI. The criteria used to divide the processes across

 Taba Workstation: Supporting Software Process Deployment 251

the maturity levels G-C were the importance of the process to the company, the facil-
ity to implement it and the dependency of the process to the others.

The MR-MPS.BR Appraisal Method for Process Improvement was defined based
on the ISO/IEC 15504 standard. The level of deployment of the expected results re-
lated to a specific process is evaluated based on indicators that evidence such deploy-
ment. These indicators are defined for each company, related to the expected results of
a process, and can be one of the following types: (i) Direct, (ii) Indirect, or (iii) Affir-
mations. Direct indicators are intermediate work products that result from an activity.
Indirect indicators are generally documents that indicate that an activity was executed.
Affirmations are results of interviews with the project teams of the evaluated projects.
The implementation of an expected result is evaluated according to four levels: (i) TI –
Totally Implemented; (ii) LI – Largely Implemented; (iii) PI – Partially Implemented,
and (iv) NI – Not Implemented. The appraisal method adheres completely the ISO/IEC
15504 standard appraisal method defined to the staged representation.

A company is considered MR-MPS.BR level A, B, C, D, E, F or G if and only if
all of its units, divisions or sectors had been rated as such level. Since one or more
appraisals can be executed in a company, it is possible that parts of a company are
rated with different levels. No matter the appraisal context, the evidential document of
the appraisal must explicitly state the objective of the appraisal (appraisal scope), and
the maturity level ratings.

3 PSEE Approaches to Support Software Process Definition,
Deployment and Enactment

A great variety of PSEE approaches have been defined, designed and implemented
over the past years. Many of these approaches have been developed to cope with the
software engineering dynamic environments, such as software process evolution,
decentralization of software process modeling and enactment, and support of coopera-
tive activities. In the following, some of the most significant approaches to process
model definition, deployment and enactment will be discussed.

EPOS (Expert System for Program and ("og") System Development) is a SEE
(Software Engineering Environment) with emphasis on Process Modeling, Software
Configuration Management and support to cooperative work [13]. EPOS supports a
reflexive, object-oriented software process modeling language called SPELL. EPOS
facilitates basic mechanisms for incremental (re)planning and enactment of the proc-
ess models by process tools like Planner and Process Engine. An evolution of EPOS
is EPOSDB built to store versioned software products, as well as their related process
models. EPOS also supports cooperative transactions. EPOS is constituted of a meta-
process for managing model evolution, and mechanisms for managing process evolu-
tion: retrieval of project experience, recording of project experience and manipulation
of task-network layout. Although EPOS efficiently supports process modeling, evolu-
tion and enactment, there are not knowledge management mechanisms to provide
knowledge to process executants during process enactment. Moreover, EPOS pro-
vides a meta-model only to software process domain. The connection between this
domain and other areas of Software Engineering is not allowed.

252 M. Montoni et al.

Oz is a Process-centered Software Engineering Environment (PSEE) that imple-
ments the requirements for a decentralized PSEE based on a design for decentraliza-
tion of process modeling and enactment [14]. The Oz environment supports process
modeling using two popular families of Process Modeling Languages (PMLs), rules
and Petri-Nets. Although the Oz environment implements a decentralized Process
Centered Environment architecture, there is no integration of the process models to
other software engineering tools. Moreover, the formalisms for process modeling
sometimes become a burden for process modeler due to lack of intuition. This creates
significant barriers to entry and, consequently, limits the possibility for the PMLs to
be adopted in practice [2].

SPADE is a research project with the goal of developing an environment for Soft-
ware Process Analysis, Design and Enactment [15]. SPADE is centered on a process
modeling language called SLANG, an extension of a high-level Petri nets. SPADE-1
evolved to support cooperation in software development. Although SPADE-1 has
demonstrated to be efficient to deal with synchronous and asynchronous activities
among distributed, there is no evidence of applicability of such approach in the indus-
try in large scale.

MILOS (Minimally Invasive Long Term Organizational Support) aims at offering
support for agile processes by providing collaboration and coordination technology
for distributed software development [16]. It also supports project planning and
knowledge management. MILOS is constituted of the following components: a work-
flow engine, an experience base, and a resource pool. MILOS also supports agile
software development with the use of some Extreme Programming (XP) practices.
The MILOS PSEE does not provide support to important knowledge management
tasks, such as consultation of organizational members’ skills and knowledge that
fulfill projects specific needs. Moreover, the MILOS PSEE does not model a compre-
hensive set of the Software Engineering Domain. Therefore, efficient integration of
MILOS tools to other tools that support different areas of Software Engineering is not
to be guaranteed.

Artemis 7 is a Web-based software developed to support business processes and
roles associated, and to enable deployment of multiple solutions on a common plat-
form [17]. Artemis 7 allows configurable access levels based on role and rights
granted that allow users to access the various modules and features of the solution
based on their individual needs. This approach ensures that each user need only see
the functionality and information necessary to perform their responsibilities, thereby
making the application easier to use for all stakeholders. Since Artemis 7 were devel-
oped to be used in general domains, the definition, design, implementation and inte-
gration of tools to support specific needs in the Software Engineering area are not
feasible.

4 The Taba Workstation

The Taba Workstation is an enterprise-oriented Process-centered Software Engineer-
ing Environment (PSEE) that supports individual and group activities, project man-
agement activities, enhancement of software products quality, and increase of the
productivity, providing the means for the software engineers to control the project and

 Taba Workstation: Supporting Software Process Deployment 253

measure the activities evolution based on information gathered across the develop-
ment. It also integrates knowledge management activities within software processes
aiming to preserve organizational knowledge, and to foster the institutionalization of a
learning software organization. The workstation also provides the infrastructure to the
development and integration of tools to support the execution of software processes.
Moreover, this infrastructure maintains a useful repository containing software project
information gathered across its life cycle [7, 10, 11, 12].

In order to support the definition, deployment, and improvement of software proc-
esses, the Taba Workstation supports the definition of organizational standard proc-
esses and tailoring of these processes to specific projects aiming to increase the con-
trol and improve the quality of software products. Therefore, the Taba Workstation
not only supports software engineers in the execution of software development proc-
esses activities, but also provides the means to execute these processes according to
organizational software development processes.

During the last years, the Taba Workstation evolved to comply with the different
levels of capability maturity models of software organizations. Therefore, the main
objectives of Taba Workstation are:

− to support the configuration of process-centered software engineering environ-
ments for different organizations (Configured PSEE);

− to support the automatic generation (i.e., instantiation) of software engineering
environments for specific projects (Enterprise-Oriented PSEE);

− to support software development using the instantiated environment; and
− to support the management of organizational knowledge related to software

processes.

The Taba Workstation has been used by the Brazilian software industry since
2003. The Taba Workstation was identified during three official SCAMPI appraisals
for CMMI Level 2 as one of the greatest organizational strengths to facilitate the
success of software process deployment initiatives and to overcome the inherent diffi-
culties. Moreover, the Taba Workstation was also identified as an important organ-
izational asset to guarantee the quality of software process and product quality in
other three official MR-MPS.BR appraisals.

The Taba Workstation is constituted of integrated tools to support software proc-
esses definition, deployment and enactment. These tools are adherent to the practices
of the CMMI levels 2 and 3 process areas. The functionalities of other tools to support
Knowledge Management activities are integrated into the environment to facilitate the
preservation of organizational knowledge and support activities execution.

The next section presents the software process definition approach adopted in the
Taba Workstation. The functionalities of specific tools to support software process
deployment and enactment are presented in section 4.2. Section 4.3 presents the main
characteristics of the Taba Workstation that helps organizations to obtain success in
their software process deployment initiatives based on CMMI and MR-MPS.BR.

4.1 Software Process Definition Approach

The Software Processes definition approach adopted in the Taba Workstation estab-
lishes phases and intermediary products using the ISO/IEC 12207 [3] as a basis for

254 M. Montoni et al.

defining standard software processes from the Taba Workstation. Figure 1 depicts
the presented approach.

- Life cycle processes

- Capability maturity models

- Organizational software development characteristics

- Development paradigms

- Development methods

- Organizational software development characteristics

- Life cycle models

- Project characteristics

- Team characteristics

- Resources availability

- Product quality requirements

Fig. 1. Software processes definition approach

The standard processes and the specialized processes are considered to be organ-
izational level processes. The instantiated processes are project level processes. This
approach guarantees some practices of CMMI level 3 process areas, for instance, the
establishment of defined processes for each process area.

4.1.1 Defining Organizational Software Process
During the Standard Process definition phase we not only consider the ISO/IEC
12207, but organizational software development characteristics related to the work
environment, knowledge and experiences of the teams involved and the organiza-
tional software development experience and culture are also considered.

From the Standard Process, different software processes can be specialized accord-
ing to different software types produced by the organization, (for instance, specialists
systems and information systems) and to development paradigms adopted (for in-
stance, object oriented or structured). During this phase, new activities can be defined
and inserted into the specialized processes and the activities execution description can
be adapted. Nevertheless, all the basic elements defined in the Standard Process must
always be presented in the specialized processes.

The definition of organizational standard process for a specific organization is
done during the configuration of a specific environment for the organization. The tool
responsible for supporting this configuration is named Config. This tool supports the
following activities:

Definition

Standard Process

Specialization

Specialized Process #1

Instantiation

Instantiated Process
#1

 Taba Workstation: Supporting Software Process Deployment 255

− Configuration contextualization;
− Definition of environment configuration proposal;
− Definition of standard process;
− Definition of specialized processes;
− Definition of domain theory and tasks descriptions;
− Generation of configured environment

The configured environment for the organization contains not only the standard
process and the specialized processes, but also specific knowledge related to software
development and maintenance. By using this environment, the software engineers are
enabled to generate instantiated environments to each of the projects to be developed.

4.1.2 Instantiating Software Process to Specific Project
In order to be used in a specific project, the most adequate specialized process to a
specific project must be instantiated to satisfy the characteristics of the project (for
instance, size and complexity of the product and relevant quality characteristics),
development team characteristics, etc. In this phase, the life cycle model, methods and
tools are selected.

The figure 2 presents a screenshot of a tool named AdaptPro that supports the insti-
tutionalization of the organizational processes since it facilitates the adoption of these
processes in all the projects of the organization. By using the AdaptPro tool, the

Fig. 2. AdaptPro tool to support instantiation of software process to specific project

256 M. Montoni et al.

software engineer can execute the following activities: (i) characterize the project; (ii)
plan the process that will guide the project through the adaptation of the organiza-
tional standard process considering the project characteristics; and (iii) instantiate a
PSEE to support the execution of the planned process.

On the left side of figure 2, the system presents the activities that guide the execu-
tion of the tool. On the right side of the figure, the system presents another screen to
support the execution of the selected activity; in this case, it is presented the screen
that supports the definition of a life cycle model to a specific project as part of the
process planning activity. A list of life cycle models and the respective level of
adequability to the project considering its characteristics are presented on the right
side of the screen. Besides that, the user can consult the justification of the automatic
identification of the adequability level and can consult the software processes defined
for similar projects that used the same specialized process and life cycle model facili-
tating the selection of an adequate project life cycle model by the user.

The next sections present specific Taba Workstation tools to support software
process deployment and enactment.

4.2 Supporting Software Process Deployment and Enactment

Once the software process for a specific project has been defined and a Software
Engineering Environment has been instantiated, the basic means for software process
deployment and enactment are established. Software process enactment involves
coordination of relevant team members to enact various tasks, i.e., the enactment of a
software process is the procedure of enacting various partially-ordered tasks to
achieve the process objectives [18]. Therefore, the PSEE supports software process
enactment by guaranteeing that software process information and resources are ap-
propriately organized for their effective use, and as a consequence, the process can
easily be put into action. Figure 3 presents the picture of the main interface of a Soft-
ware Engineering Environment instantiated to a specific project.

On the left of the picture, it is presented the instantiated software process organized
in terms of project phases, activities and sub-activities. By selecting a phase or activ-
ity, the system presents to the user on the right of the picture important information
related to the element selected, for instance, associated tools, artifacts produced and
consumed, and information related to the execution of the activities (for instance, time
and effort estimates).

From the PSEE, the process’s executers can execute tools associated to perform a
specific activity. The executer can also download controlled versions of artifacts to be
consumed in order to perform the activity. Once the activity has been initiated or
concluded, the executer can upload to the system all the artifacts produced during that
activity. From the main interface, the user can also directly consult knowledge related
to the process activities, for instance, programming patterns and detailed software
inspection procedures and techniques.

The process enactment is supported through the control of information related to
activities entry and exit criteria, activities responsibilities, processes sequences de-
rived from decision making situations, concurrency of activities, etc. The system also
provides the means to identify process critical paths in order to support the monitoring
and controlling of processes execution.

 Taba Workstation: Supporting Software Process Deployment 257

Fig. 3. Software Engineering Environment to support specific project software process de-
ployment and enactment

4.3 Using the Taba Workstation to Guarantee the Success of Software Process
Deployment Based on CMMI and MR-MPS.BR

In the context of software process deployment, we executed a survey with the objec-
tive to identify success factors and difficulties related to software process deployment
experiences. The participants of the survey were members of COPPE/UFRJ, an insti-
tution of the Federal University of Rio de Janeiro with vast experience in software
process research and deployment [7, 8, 10, 11, 12]. The success factors and difficul-
ties identified through this survey were grouped according to the category of the find-
ings. 12 categories were identified related to success factors and 16 categories related
to difficulties in software process deployment experiences based on CMMI and MR-
MPS.BR. From a comparative analysis of these findings, we identified important
factors that contribute significantly to the success of software process improvement
programs in small, medium and large organizations.

The consideration of such factors during software deployment initiatives can sig-
nificantly increase the success of software process improvement programs, because
they can help organizations to tailor their process deployment strategies considering
particularities of the software development organizations and available resources.
Figure 4 depicts the distribution of those factors according to categories of the
findings.

258 M. Montoni et al.

The Taba Workstation provides the means to assure that most of those factors are
strongly present during software process deployment initiatives based on CMMI and
MR-MPS.BR. Moreover, it facilitates the endurance of software processes deployed
over time.

The most relevant success factor in software process deployment is related to the
commitment obtained from organization members and high management. Our experi-
ence demonstrated that the results are often satisfactory when the organization
members are committed with the deployment process and the high management con-
tinuously supports the execution of the activities. The lack of commitment of the high
management with the deployment process, and the lack of involvement of the organi-
zation members were also considered to be great difficulties in deploying software
processes. Since, the Taba Workstation efficiently supports the enactment of soft-
ware process and provides accurate project status reports to high level managers, the
probability of lack of high management commitment is significantly reduced, because
high management strategic decisions are based on the data extracted from the Taba
Workstation. In order to provide such data, the organization members must be com-
mitted to the processes definition and the procedures deployed through the Taba
Workstation.

Fig. 4. Important factors that contribute significantly to the success of software process de-
ployment based on the CMMI and the MR-MPS.BR

 Taba Workstation: Supporting Software Process Deployment 259

Another difficulty found in software process deployment is related to organiza-
tional culture change. In our deployment experiences, we found great difficulty in
customizing the standards process according to organizational needs when a not com-
pletely correct culture about Software Engineering procedures (system analysis, test-
ing, documentation, etc) were already disseminated within the organization. More-
over, we noticed great resistance from software project developers during the de-
ployment of process activities that were traditionally executed ad hoc.

One of the main characteristics of the Taba Workstation is to guarantee the insti-
tutionalization of the organization processes through automated support of important
software engineering tasks, such as project process definition, and collection of pro-
ject measures. Therefore, most of the culture change impact can be minimized by
reducing the effort of software process activities deployed. Moreover, since all Taba
Workstation tools are process driven and integrated to a knowledge base, most of the
difficulties of executing a new process demonstrated to be easily overcome by provid-
ing important knowledge related to the current process activity in the exact moment
that the executer needs it, such as organizational directives and lessons learned from
past project experiences.

The organization members’ motivation was also a very important factor in soft-
ware process deployment. This motivation occurred in various levels. The high man-
agement was motivated to deploy software process, because their main objective was
to successfully achieve an official certification/appraisal of the software process refer-
ence models due to clients’ pressure and market competitive needs. The motivation of
other organization members was related to the need to learn and improve the execu-
tion of their activities. The Taba Workstation could satisfy both needs, because the
institutionalization of the PSEE speeded the execution of the processes deployment
and enactment, and provided the means for deployment of new and competitive tech-
nologies, i.e., organizational competitive advantages and members satisfaction in-
creased due to the fact that organizational members were able to not only learn about
new technologies, but also to apply them in real projects in a reduced time.

Since the delivery of software engineering trainings was considered essential to
deal with the lack of organization members deficiencies in software engineering and
to guarantee and adequate execution of the software process, the Taba Workstation
tools integrated to knowledge management applications were also identify as an im-
portant factor, because it helped to diminish the training effort necessary to execute
the process.

Many difficulties were related to the deployment strategy adopted by the software
process deployment team. For instance, deployment strategies that required approval
of many organization members in order to deploy a specific practice usually took a
great amount of time since many conflicting needs had to be dealt with. In order to
deal with this difficulty, our software process deployment strategy supported by the
Taba Workstation defines that, no matter the level of the capability of the organiza-
tion, all processes of the projects will have to be based on an organizational standard
process defined by our consultants and a specific organization process group.

That aspect of our strategy requires less time to define organization processes, and
speeds the institutionalization of organizational processes. Adjustments of these proc-
esses are executed on-the-fly and new processes definitions are derived through the

260 M. Montoni et al.

Taba Workstation Software Process Modeling tool. This characteristic of our de-
ployment strategy also contributes to another important aspect: alignment of software
process with the organization business strategies to obtain software processes that
satisfy organizational development characteristics. This characteristic also helps to
diminish the impact of organizational culture changes.

The greatest difficulty found in our software process deployment experience is re-
lated to deficiency of organization members’ competences. The most relevant defi-
ciency was the little knowledge in Software Engineering. Once this difficulty was
found in an organization, most of the procedures, methods and techniques used to
support software development had to be taught, for instance, how to describe a use
case, classes’ diagrams and requirements specifications, etc. This difficulty is related
to the lack of organization members’ computer science background knowledge.

In order to overcome that difficulty, before deploying the software processes in the
organization, we fill the Taba Workstation Knowledge Base with important theoreti-
cal knowledge related to software engineering area and systems analysis methodolo-
gies. During the follow-up of the projects, our consultants are instructed to access the
knowledge stored in that base and to discuss it with the organization members. This
practice allows the organization members to learn about Software Engineering during
the execution of their daily activities.

Another important consideration to be stated is that the amount of time dedicated to
support software process deployment in the organization especially during pilot pro-
jects, and the dedication of the deployment team in the organization are key factors to
guarantee the success of the deployment. Technology and knowledge transference
demands a lot of involvement of the people related to the deployment process.

The results of the software process improvement program are not satisfactory when
the cost of deployment restricts the amount of time dedicated to support software
process deployment. This factor is directly related to the availability of financial re-
sources to spend on software process deployment activities. During these activities,
the organization must be able to provide sufficient financial resources in order to cope
with dynamic deployment necessities.

5 Conclusions

This work presented the Taba Workstation, an enterprise-oriented PSEE developed
to support software process deployment based on the CMMI and the MR-MPS.BR.
Characteristics of Taba Workstation that increases the efficiency and efficacy of
software process deployment initiatives and reduces the inherent difficulties were also
presented by comparing these characteristics to important factors that contribute sig-
nificantly to the success of software process deployment based on the CMMI and the
MR-MPS.BR.

Since the Taba Workstation is based on a Software Engineering Ontology, the in-
tegration of Taba Workstation tools to other tools that support different areas of
Software Engineering is facilitated. Moreover, the Taba Workstation software proc-
ess definition approach demonstrated to support process modeling and evolution in an
efficient and efficacy way. One of the mayor contributions of the Taba Workstation
is that its architecture and software development supporting tools were modified over

 Taba Workstation: Supporting Software Process Deployment 261

the past years to become more adequate to the necessities of software organizations
executing real projects in dynamic and evolving environments. Another important
aspect of Taba Workstation in this evolution is that it supports important knowledge
management tasks, such as consultation of organizational members’ skills and knowl-
edge that fulfill projects specific needs. These characteristics facilitate preservation of
organizational memory.

The Taba Workstation is continually evolving. The next steps is to evaluate the
adequacy of the tools that support CMMI Level 3 process areas, and to define and
integrate other tools to support CMMI Level 4 and 5 process areas and to facilitate the
elevation of organization software development maturity to higher levels.

References

1. Arent, J. and Norbjerg, J.: Software process improvement as organizational knowledge
creation: a multiple case analysis. In: Proceedings of the 33rd Annual Hawaii International
Conference on System Sciences, pp 1-11, Jan 4-7 (2000)

2. Fuggetta, A.: Software Process: A Roadmap. In: The Future of Software Engineering, Ed.
Anthony Finkelstein, 22nd Int. Conference on Software Engineering, pp. 27-34 (2000)

3. ISO/IEC 12207:2000 - Information technology – software process life cycle (2000)
4. ISO/IEC 15504 –1 Information Technology – Process Assessment, - Part 1: Concepts and

Vocabulary (2003)
5. Chrissis, M. B., Konrad, M, Shrum, S.: CMMI: Guidelines for Process Integration and

Product Improvement. Addison-Wesley (2003)
6. MPS.BR – Melhoria de Processo do Software Brasileiro, Guia Geral (v. 1.0) (2005)
7. Santos G., Montoni M., Rocha A. R., Figueiredo S., Mafra S., Albuquerque A., Paret B.

D., Amaral M.: Using a Software Development Environment with Knowledge Manage-
ment to Support Deploying Software Processes in Small and Medium Size Companies.
In.: Lecture Notes in Artificial Intelligence, ISBN 3-00-016020-5, pp 72-76, presented at
the 3rd Conference Professional Knowledge Management Experiences and Visions,
Kaiserslautern, Germany, April 10-13 (2005)

8. Rocha, A. R., Montoni, M., Santos, S., Mafra, S., Figueiredo, S., Albuquerque, A., Mian,
P.: Reference Model for Software Process Improvement: A Brazilian Experience. In.: Lec-
ture Notes of Computer Science (LNCS), ISBN 3-540-30286-7, pp. 130-141, presented at
the European Software Process Improvement and Innovation Conference (EuroSPI 2005),
Budapest, Hungary (2005)

9. Weber, K.C., Araujo, E.R., Rocha, A.R., Machado, C., Scalet, D., Salviano, C.: Brazilian
Software Process Reference Model and Assessment Method. In.: Computer and Informa-
tion Sciences – ISCIS 2005, LNCS 3733, pp 403-411 (2005)

10. Montoni M., Santos G., Villela K., Rocha A. R., Travassos G. H., Figueiredo S., Mafra S.,
Albuquerque A., Mian P.: Enterprise-Oriented Software Development Environments to
Support Software Products and Process Quality Improvement. In.: Lecture Notes of Com-
puter Science (LNCS), ISBN 3-540-26200-8, pp. 370-384, presented at the 6th Int. Con-
ference on Product Focused Software Process Improvement, Oulu, Finland, June (2005)

11. Montoni, M., Santos, G., Villela, K., Miranda, R., Rocha, A.R., Travassos, G.H., Fi-
gueiredo, S., Mafra, S.: Knowledge Management in an Enterprise-Oriented Software De-
velopment Environment. In.: Lecture Notes of Computer Science (LNCS), ISBN 3-540-
24088-8, pp. 117–128, presented at the 5th Int. Conf of Practical Aspects of Knowledge
Management, Vienna, Austria, (2004)

262 M. Montoni et al.

12. Montoni, M., Miranda, R., Rocha, A. R., Travassos, G. H.: Knowledge Acquisition and
Communities of Practice: an Approach to Convert Individual Knowledge into Multi-
Organizational Knowledge, In.: Lecture Notes in Computer Science (LNCS), ISBN 3-
540-22192-1, pp. 110-121, presented at the 6th International Workshop on Learning Soft-
ware Organizations (LSO'2004), Banff, Canada, June (2004)

13. Minh, N. N., Wang, A.I., Conradi, R.: Total Software Process Model Evolution in EPOS
Experience Report. In: Proc. of the 19th Int. Conf. on Software Engineering, pp: 390–399,
May 17-23 (1997)

14. Ben-Shaul, I.Z., Skopp, P.D., Heineman, G.T., Tong, A.Z., Popovich, S.S., Valetto, G.:
Integrating groupware and process technologies in the Oz environment. In:
Proc. of the 9th Int. Software Process Workshop, pp.: 114–116, 5-7 Oct. (1994)

15. S. Bandinelli, Di Nitto, E., Fuggetta, A.: Supporting Cooperation in the SPADE-1
Environment. IEEE Trans. on Software Engineering, Vol. 22, No. 12, pp. 841-865 (1996)

16. Bowen, S., Maurer, F.: Process support and knowledge management for virtual teams do-
ing agile software development. In.: Proc. of the 26th Annual Int. Computer Software and
Applications Conference (COMPSAC) pp:1118–1120, 26-29 Aug. (2002)

17. Artemis 7, http://www.aisc.com/Product/1 (2006)
18. Yan, J., Yang, Y., R., G. K.: Decentralized Coordination for Software Process Enactment,

F. Oquendo (Ed.): EWSPT 2003, LNCS 2786, pp. 164–172 (2003)
19. ISO/IEC 12207:2000 - Information technology –software process life cycle, (2000)
20. ISO/IEC 15504 –1 Information Technology – Process Assessment, - Part 1: Concepts and

Vocabulary, (2003)
21. Chrissis, M. B., Konrad, M, Shrum, S.: CMMI: Guidelines for Process Integration and

Product Improvement, Addison-Wesley, (2003)

J. Münch and M. Vierimaa (Eds.): PROFES 2006, LNCS 4034, pp. 263 – 277, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Analysis of an Artifact Oriented Test Process Model and
of Testing Aspects of CMMI*

Paulo M.S. Bueno1,**, Adalberto N. Crespo1, and Mario Jino2

1 Divisão de Melhoria de Processo de Software - CenPRA
Rodovia Dom Pedro I, km 143,6 - Campinas - São Paulo CEP 13069-901

2 Faculdade de Engenharia Elétrica e de Computação - Unicamp
{paulo.bueno, adalberto.crespo}@cenpra.gov.br,

jino@dca.fee.unicamp.br

Abstract. The CMMI model for Software Engineering provides guidance for
improving an organization’s processes and the ability to develop software sys-
tems. The CenPRA test process is a generic software testing model defined by
selecting software testing “best practices”; it evolved over the last years and has
been published in specific forums. The CenPRA test process, which defines a
set of partially ordered activities and test artifacts, has been validated and im-
proved based on the experience of its application at software development com-
panies in Brazil. In this work we carried out an evaluation of the CenPRA test
process under the perspective of CMMI. We evaluated essentially which as-
pects of CMMI are taken into account by the CenPRA test process. We also
evaluate how the CenPRA model can be used to supplement software testing re-
lated aspects of CMMI. Our results pointed to improvements in the CenPRA
test process, and also identify testing tasks and artifacts not considered by
CMMI, which can significantly improve an organization testing practices.

1 Introduction

Software testing is the process of executing a program in a controlled way aiming to
check if the program behaves as defined in its specification. It is an essential activity
to achieve a good quality level in software products. A testing process defines a set of
partially ordered activities, methods and practices used for testing software, as well as
the artifacts used and produced in these activities. Taking into account the fact that the
quality of the test process is directly related to the final quality of the developed prod-
uct, improving the test process is crucial for the success of software development
organizations. Improving testing practices may lead to a testing process which is more
efficient (within budget and schedule) and more effective (fewer bugs deployed to
users).

Software process assessment and improvement models define a set of best prac-
tices, methods for the assessment of processes capabilities, and provide a rational
guide for the process improvement. These models have been recognized as an
effective way for the controlled and stepwise improvement of the practices used for
software development [9, 10].

* Work partially supported by CNPq and HP-Brazil.

** Teacher at Faculdade Comunitária de Campinas (FAC), Anhanguera Educacional.

264 P.M.S. Bueno, A.N. Crespo, and M. Jino

This paper reports results of the analysis of a test process model under the perspec-
tive of a process improvement model and the opposite, that is, the analysis of a proc-
ess improvement model under the perspective of a test process model. More specifi-
cally, we evaluate the generic test process model defined at CenPRA (Centro de Pes-
quisas Renato Archer) [3] using as a reference the process improvement model
CMMI [11]; conversely, we use the test process model defined at CenPRA as a basis
for supplementing testing aspects of CMMI.

The evaluation reveals strong aspects in the CenPRA process and confirms our ex-
perience that development organizations can achieve significant improvements in
their testing practices by using the CenPRA testing process as a basis for the defini-
tion of the organization’s testing processes. Aspects in CMMI which are not consid-
ered in the CenPRA test process model point to improvements in this model. On the
other hand, important testing aspects not detailed in CMMI were identified and used
for the definition of a set of Supplementation Notes for the standard. In a previous
work we performed a similar analysis using the ISO/IEC 15504 model [1].

Section 2 of the paper presents concepts of software testing and of software proc-
ess improvement models; Section 3 describes succinctly the CMMI model; Section 4
presents the CenPRA testing methodology; Section 5 describes the assessment of the
CenPRA Test Process Model under the perspective of CMMI and discuss the analysis
results; Section 6 presents the analysis and supplementation of CMMI software test-
ing practices; Section 7 discuss briefly the results of our analysis and summarizes the
conclusions of this work.

2 Software Testing and Software Process Improvement Models

Testing is a fundamental activity for ensuring that the software meets the user re-
quirements, it is the final evaluation of the quality of the developed product. [7]. A
test process is a set of partially ordered steps composed of activities, methods and
practices used for testing a software product. Testing is usually performed through
levels which correspond to the different development phases and is based on tech-
niques that define how the test cases are selected and evaluated [3].

Process improvement is an approach for furthering an organization’s objectives
by improving the capability of the organization’s most important processes. The
capability of a process in an organization is the extent to which the process is exe-
cuted, explicitly managed, defined, measured, controlled, effective and continually
improved. Process improvement models have shown in practice to be a viable,
effective and efficient approach for the improvement of software development
organizations [10].

Process improvement approaches use as reference a process model that systema-
tizes and represents the best practices, defines a metric for the evaluation of processes
capabilities, and provides a rational roadmap for process improvement. Examples of
models are: the SW-CMM [8], the ISO/IEC 12207 standard, the ISO/IEC 15504
model [12] and the CMMI model [11]. In this paper we use the CMMI model as a
reference for the analysis.

 Analysis of an Artifact Oriented Test Process Model and of Testing Aspects of CMMI 265

3 The CMMI Model

The CMMI model provides guidance for improving an organization’s processes re-
flecting different bodies of knowledge or “disciplines” (e.g., systems engineering, and
software engineering). It can be used for setting process improvement objectives and
priorities and for improving the processes towards stable and capable processes.

Table 1. Verification process area - specific goals and practices related to software testing

Specific Practices (Capability Level) Description
Specific Goal VRSG 1 Prepare for Verification

VRSP 1.1-
1 Select
Products
for Verifi-
cation (1)

Work products are selected based on the contribution to meeting objec-
tives and requirements. Verification methods mentioned: path coverage
testing, load, stress and performance testing, decision-table-based-
testing, functional-decomposition-based-testing, test-case reuse and
acceptance tests. Work products: list of products for verification and
verification methods. Subpractices: Identify work products; Identify
requirements; Identify methods; Define methods; Integrate with project
plan.

VRSP 1.2-
2 Estab-
lish the
Verific.
Environ-
ment (2)

The environment is established based on the selected work products
and methods. It may require: simulators, scenario generators, data
tools, environmental controls and interfaces. Subpractices: Identify
environment requirements; Identify verification resources for reuse;
Identify verification equipment and tools; Acquire verification equip-
ment and tools.

VRSP 1.3-
3 Estab-
lish Veri-
fication
Proce-
dures and
Criteria
(3)

Verification criteria are defined. Examples of sources for verification
criteria: product requirements; standards; organization policies, test
parameters, parameters for the tradeoff between quality and cost of
testing, type of work products. Subpractices: Generate the set of veri-
fication procedures; Develop verification criteria, Identify expected
results; Identify environmental components.

Specific Goal VRSG 3 Verify Selected Work Products
VRSP 3.1-
1 Perform
Verifica-
tion (1)

Verify work products incrementally. Subpractices: Perform verifica-
tion of selected work products against specification; Record the results;
Identify actions resulting from verification; Document verification
method and deviations from the method.

VRSP 3.2-
2 Analyze
Verifica-
tion Re-
sults Iden-
tify cor-
rective
action (1)

Compare actual results to established verification criteria. Work Prod-
ucts: analysis reports, problem reports; change request for verification
methods; corrective actions to verification methods. Subpractices:
Compare actual results with expected results; Identify products that
have not met requirements and problems with methods, procedures,
and criteria; Analyze defects; Record all results; Use results to com-
pare measurements to performance parameters; Provide information on
how defects may be resolved.

266 P.M.S. Bueno, A.N. Crespo, and M. Jino

Table 2. Validation process area - specific goals and practices

Specific Practices (Capability
Level)

Description

Specific Goal VLSG 1 Prepare for Validation
VLSP
1.1-1
Select
Prod-
ucts for
Valida-
tion (1)

Product and components of products are selected for validation based on
their relationships and the user needs. Scope of validation should be de-
termined; validation methods should be selected early in the project.
Work products: Lists of products; validation methods; requirements and
constraints for validation. Subpractices: Identify key principles, features
and phases for product validation through the life of project; Determine
categories of user needs to be validated; Select the products; Select meth-
ods; Review selection constraints and methods with stakeholders.

VLSP
1.2-2
Estab-
lish the
Valida-
tion
Envi-
ronment
(2)

Requirements for the environment are driven by the product selected and
by method of validation. Elements in the environment include: test tools;
recording tools; simulated components; interface systems (real and
simulated); network. Subpractices: Identify environment requirements;
Identify customer-supplied products; Identify reuse items; Identify test
tools; Identify resources for reuse; Plan availability for resources

VLSP
1.3-3
Estab-
lish
Valida-
tion
Proce-
dures
and
Criteria
(3)

Validation procedures and criteria are defined. Examples of sources for
verification criteria: product requirements; standards; customer accep-
tance criteria; environmental performance; and thresholds of perform-
ance deviations. Subpractices: Review product requirements to ensure
the identification of issues affecting validation; Document the environ-
ment, scenario, procedures, inputs, outputs and criteria for validation;
Assess the design to identify validation issues.

Specific Goal VLSG 2 Validate Product or Product Components
VLSP
2.1-1
Perform
Valida-
tion
(1)

Perform validation activities and collect the resulting data according to
the established methods, procedures and criteria. The procedure should
be documented and deviations noted. Work products: validation reports;
results; cross-reference matrix; procedure log, operation demonstrations.

VLSP
2.2-1
Analyze
Valida-
tion
Results
(1)

Test data resulting from validation tests are analyzed against the defined
criteria. Subpractices: Compare actual results to expected results; Iden-
tify products that do not perform suitably in their intended operating
environments, problems with methods, criteria or environment; analyze
data for defects; record results of the analysis and identify issues; com-
pare actual measurements and performance to intended use.

 Analysis of an Artifact Oriented Test Process Model and of Testing Aspects of CMMI 267

As we aim to assess specific aspects in the software development related to
software testing, we selected the CMMI continuous representation of Software Engi-
neering Discipline. We analyzed the CMMI Process Areas that can more directly
influence software testing practices as a reference for assessing the software testing
practices and artifacts of the CenPRA testing process model. We also make the oppo-
site analysis, that is, we use the CenPRA testing process model for identifying soft-
ware testing aspects not mentioned anywhere in the CMMI model

The CMMI model components are: process areas, specific goals, specific practices,
typical work products, subpractices, notes, discipline amplifications, generic goals,
generic practice elaborations and references.

Table 3. Capability levels, generic goals and practices

Capability level 0: Incomplete process – not performed or partially performed
Generic Goals: – Generic practices: –

Capability level 1: Performed – process satisfies all specific goals of the process
area
Generic Goals: GG1 Achieve Specific Goals
Generic practices GP1.1 Perform Base Practices
Capability level 2: Managed – process is performed, planned and executed accord-
ing to a police, employ skilled people with adequate resources to produce con-
trolled outputs. Is monitored, controlled, reviewed, and is evaluated for adherence
to process description. Generic Goals: GG 2 Institutionalize a Managed Process
Generic practices: GP 2.1 Establish an Organizational Policy; GP 2.2 Plan the
Process; GP 2.3 Provide Resources; GP 2.4 Assign Responsibility; GP 2.5 Train
People; GP 2.6 Manage Configurations; GP 2.7 Identify and Involve Relevant
Stakeholders; GP 2.8 Monitor and Control the Process; GP 2.9 Objectively Evalu-
ate Adherence; GP 2.10 Review Status with Higher Level Management.

Capability level 3: Defined – a managed process tailored from organization’s
standards according to tailoring guidelines. Contribute with process-improvement
information.
Generic Goals: GG3 Institutionalize a Defined Process. Generic practices: GP
3.1 Establish a Defined Process; GP 3.2 Collect Improvement Information.
Capability level 4: Quantitatively Managed – a defined process that is controlled
using statistical and other quantitative techniques. Quantitative objectives for qual-
ity and performance are established and used in managing the process.
Generic Goals: GG4 Institutionalize a Quantitatively Managed Process.
Generic practices: GP 4.1 Establish Quantitative Objectives for the Process; GP
4.2 Stabilize Sub process Performance.
Capability level 5: Optimizing – process continually improve performance
through both incremental and innovative technological improvements. Generic
Goals: GG5 Institutionalize an Optimizing Process. Generic practices: GP 5.1
Ensure Continuous Process Improvement; GP 5.2 Correct Root Causes of Prob-
lems.

268 P.M.S. Bueno, A.N. Crespo, and M. Jino

In the CMMI structure each process area is assigned to a set of specific goals and a
set of generic goals. Specific goals organize specific practices, which apply to an
individual process area. The generic goals organize generic practices that apply to
multiple process areas. The generic goals and generic practices define a sequence of
capability levels representing improvements in the effectiveness of the processes.
Therefore a capability level associates specific and generic practices which, when
performed, achieve a set of goals that lead to improved process performance.

This structure allows to focus on the best practices the organization can use to im-
prove processes in the process areas it has chosen to address. It builds an organiza-
tion’s ability to pursue process improvements and to evaluate the progress on target
process area.

In the analysis presented in the next sections we focused on the specific goals and
practices related to software testing activities. Therefore the scope of our analysis
consists of the Verification and Validation Process Areas for identifying software
testing aspects, and the Project Management Process Area for identifying planning
issues that can be applied to planning software testing. The Product Integration Proc-
ess Area is also related to the integration testing activity, but for space reasons we did
not include this Process Area in our analysis.

Table 1 and Table 2 describe specific goals and practices of the, respectively, Veri-
fication and Validation Process Areas1. Table 3 describes capability levels and their
generic goals and practices.

4 The CenPRA Testing Methodology

A testing methodology is a set of steps and tasks used to implement or improve a
software testing process of a software development organization or company that
produces software. A testing methodology supports the selection of techniques and
the choice of tools. The methodology enables the organizations to develop testing
activities which result in good quality products. The CenPRA testing methodology
encompasses: i) a generic testing process; ii) a process for instantiation of the test
process; and, iii) training courses in testing.

The CenPRA methodology has been used for improving the testing process in
software development companies of the State of São Paulo, Brazil. These experiences
have contributed to the evaluation and continual improvement of the methodology.

4.1 The CenPRA Generic Testing Process

To characterize a testing process it is necessary to specify: the testing levels corre-
sponding to the development phases; the types of testing; the testing techniques and
criteria; and to detail the activities: test planning, design, execution and recording of
testing.

The CenPRA testing process is based on testing artifacts defined by the standard
IEEE Std 829-1998 [4] and its activities are defined and ordered aiming at an effec-

1 Note that Verification Process Area includes also SG2: Perform Peer Reviews, SG not de-

scribed in Table 2. The Project Management and Monitoring PAs are not described here to
save space, please refer to [11].

 Analysis of an Artifact Oriented Test Process Model and of Testing Aspects of CMMI 269

tive and efficient testing process. The CenPRA testing process is composed of testing
sub processes and associated artifacts. Figure 1 shows the testing activities and arti-
facts in CenPRA testing process. The sub processes Planning, Design, Execution and
Recording are described next.

 Software

Testing Plan

TEST EXECUTION

Test Recording

Test
Preparation

Test Design
Specification

Test Execution

Test Case
Specification

Test Procedure
Specification

Test
Log

Test Incident
Report

Test Summary
Report

Fig. 1. Testing Activities and Artifacts – adapted from [4]

Planning Sub Process: The product of this sub process is the document Software
Testing Plan, which describes the planning of all activities involved in testing a soft-
ware product. In addition to the activities the testing plan must contain the testing
scope, the approach used in testing, the needed resources, the schedule and the defini-
tion of the operational environment for test execution.

The testing plan identifies the software items to be tested and contains references
to the test items documentation and software project documentation (project plan,
policies, standards, item’s requirements, design, user guide, etc.), features to be tested
and features not to be tested, the level at which the items have to be tested, the overall
approach to be used for testing each item (for the identification of major tasks, estima-
tion of necessary time, and definition of minimum degree of comprehensiveness de-
sired – such as level of code coverage), the tasks involved in each testing activity, the
deliverables documents (test design specification, test case specification, etc), respon-
sibilities for managing, designing, preparing, executing, checking and resolving the
testing, staffing and training needs, testing schedule and risks an contingencies. The
Software Testing Plan can be a document for all testing activities of a given

270 P.M.S. Bueno, A.N. Crespo, and M. Jino

product – a complete software testing project, or can be a document related to one of
the testing levels, such as: Unit Testing Plan, Integration Testing Plan and System
Testing Plan.

The activities of this sub process are: define the testing context; characterize the
testing items; identify features; establish approaches and criteria; define deliverables;
define testing activities; establish environment requirements; establish responsibili-
ties; establish the team and the necessary training; construct the schedule; identify
risks and establish contingencies.

Design Sub Process: The goals of this sub process are: refine the software testing
approach defined in the planning step; define and specify the test cases; establish the
requirements of the testing environment; define and specify the testing procedures.
The product of this sub process can be a single document – Test Design Specification
containing all the information necessary for the test execution. Alternatively, this sub
process can generate three documents: a document – Test Design Specification, con-
taining basically the details about the testing approach and an initial description of test
cases and the associated testing procedures; a second document – Test Case Specifi-
cation, containing the specification of the test cases listed in the Test Design Specifi-
cation, the testing environment requirements, the requirements of special procedures,
and the dependencies among test cases; and a third document – Test Procedure Speci-
fication, containing the description of the test procedures steps listed in the Test De-
sign Specification.

The activities of this sub process are: refine the testing approaches and criteria;
specify the test cases; establish the test environment requirements; elaborate the pur-
pose of the testing procedures and identify the special requirements of the testing
procedures.

Execution Sub Process: The test execution corresponds to the execution of the steps
in a Testing Procedure. The activities are: set up (actions to prepare for execution of
the procedure); start of the test procedure; proceed (actions necessary during the exe-
cution of the procedure); measure; shut down (suspend testing because of unsched-
uled events); resuming testing; stopping testing (orderly halt); wrap up (restore the
environment) and contingency actions (deal with anomalous events).

Recording Sub Process: The goals of this sub process are: record chronologically in
a document named Test Log the relevant details related to the execution of tests de-
fined in a set of Test Procedures; record in a document named Test Incident Report
any event that occurs during the test execution and that requires analysis (software
failure or any anomaly in the environment - referred as Test Incidents); describe sum-
marily in a document named Test Summary Report the results of the testing activities
associated to the Test Project, as well as the evaluations based on these results.

The activities for the Test Log generation are: describe the test (items being tested,
attributes of the environment, hardware and software descriptions); describe the exe-
cution (identifier of the procedure being executed, personal present and their func-
tions); record procedure execution (test executions and visually observable results,
successful execution or fail); record environment information; record anomalous
events (what happened before and after unexpected events); record identifiers of each
test incident report generated.

 Analysis of an Artifact Oriented Test Process Model and of Testing Aspects of CMMI 271

The activities for the Test Incident Report generation are: incident description (in-
puts, expected results, actual results, anomalies, date and time, procedure step,
environment, attempts to repeat, testers and observers) and test incident impact
determination (impact on the test plan, test design, test procedure and test plan speci-
fications). The activities for the Test Summary Report generation are: summary de-
scription of the test items (with references to related test documents); report variances
of the test items from their specifications and variances from the test plan, test designs
and test procedures; evaluate comprehensiveness of the testing process against the
planed comprehensiveness; summarize the results of testing (resolved incidents with
their resolutions, and unresolved incidents); provide a overall evaluation of each test
item, including its limitations and estimates of failure risk; summarize data about
testing activities and about resource consumption.

4.2 Development Phases and Testing Phases

The CenPRA methodology proposes using the V model [7], one of the most usually
adopted for software testing. This model considers the main phases of software proc-
ess and assigns each phase to the corresponding software testing level.

Fig. 2. The V model

Figure 2 shows the V Model. The left branch in the model corresponds to the soft-
ware testing preparation, using as a reference the phases of software process. The
right branch in the model corresponds to testing execution and recording, using as
reference the software testing levels.

With this model the test planning starts with the User Requirements analysis and
proceeds being detailed along the software project and implementation phases. The

Functional and
non-functional
 Requirements

System
Architecture

Design

Require-
ments Speci-

fication

System
Specification

System
 Design

Unit
 Design

Coding

Unit
Testing

Integration
Testing

System
 Testing

Acceptance
Testing

User requirements

272 P.M.S. Bueno, A.N. Crespo, and M. Jino

Test Design comprises detailing the testing approach previously defined in the
Testing Plan. The details include the testing levels that will be performed; in this way,
for each testing level a corresponding Testing Project is elaborated.

On the right side of the V model we have the test execution at the several levels de-
fined in the Testing Plan (Unit, Integration, System and Acceptance). In the execution
of each testing level the corresponding Testing Designs are used to direct the testing
activity; in these activities the Test Cases and Test Procedures specifications are used.
Each testing level can be iterated in cycles of: fault detection, debugging and fault
correction, and re-application of test cases. The progress of the test execution activi-
ties is recorded in detail in the Test Log. The events that deserve special attention are
recorded in the Test Incident Report and a summary of the testing process is saved in
the Test Summary Report.

5 Assessing the CenPRA Testing Process Under the Perspective of
CMMI

The analysis consists in the evaluation of whether specific and generic goals and prac-
tices in the CMMI model are taken into account by the Subprocesses and artifacts in
the CenPRA generic testing process. The goals are: i) evaluate the potential capabil-
ity of testing activities reached by organizations adopting the generic testing process;
and ii) identify the aspects in the CenPRA process that can be improved.

Note that different customizations of the CenPRA generic testing process, for dif-
ferent organizations, may present variations that depend on the organization’s goals
and necessities. Therefore the evaluation shows the potential capacity of customized
processes. The capacity of an organization process naturally depends on decisions
made in the customization of the generic testing process.

Due to space reasons we restrict our analysis to Generic Goals 1 to 3. We
performed the analysis through the following procedures.

Procedure 1: Evaluating essential test aspects of the CenPRA testing model
Considering the Verification and Validation Process Areas:

For each CMMI Specific Goal, Specific Practice, Subpractices, Work Products and
For each CMMI Generic Goal, Generic Practice, Subpractices and Elaborations:

• Examine each testing Sub Process and the corresponding Artifacts in the Cen-
PRA testing process.

• Classify the Goal, Practice or Subpractice concerning the adherence of the
CenPRA testing Subprocesses-Artifacts to them:
i) It is unequivocally present: adherence = “Total”.
ii) It is present but not completely satisfied: adherence = “Partial”.
iii) It is not present: adherence = “Null” (see explanation below).

Procedure 2: Evaluating marginal test aspects of the CenPRA testing model
Considering the Process Areas: Project Planning and Project Monitoring and Control.

For each CMMI Specific Goal:
• Evaluate if it is applicable to software testing activity
• If it is applicable, examine the CenPRA testing Subprocesses-Artifacts and

Classify the Goal, Practice or Subpractice adherence as in Procedure 1.

 Analysis of an Artifact Oriented Test Process Model and of Testing Aspects of CMMI 273

To classify the “adherence levels” of Goals and Practices we evaluate if the infor-
mation in the CenPRA testing Subprocesses-Artifacts satisfy the Goals, Practices,
Subpractices and Elaborations described in the CMMI model. If the CenPRA testing
Subprocesses-Artifacts clearly and unequivocally satisfy CMMI requirements we set
adherence = “total”. If some aspects of CMMI requirements are not addressed in the
CenPRA testing Subprocesses-Artifacts we set adherence = “partial”. If CenPRA
testing Subprocesses-Artifacts do not address CMMI requirements we set adherence =
“Null”.

Table 4 summarizes the results from the application of Procedures 1 and 2. For
each CMMI Process Area it shows how each Subprocess in the CenPRA model deals
with CMMI Practices and Goals. Practices and goals are marked T, P or N indicating,
respectively, a practice or goal with Total, Partial or Null adherence. Table line “Ge-
neric Results” shows Generic Practices and Generic Goals adherence with respect to
all Process Areas and Practice or Goals with adherence = “Null”.

Table 4. Adherence to CMMI practices and goals of the CenPRA testing model

CMMI Process Area Subproc-
ess of

CenPRA
process

Verification and
Validation

Project Plan-
ning

Project Monitor-
ing and Control

Planning VRSP1.1-1(T), VRSP1.2-2(T),
VRSP1.3-3(T), VLSP1.1-1(T),
VLSP1.2-2(T), VLSP1.3-3(T).

SG1(T), SG2(P),
SG3(N).

SG1(N),
SG2(N).

Design VRSP1.1-1(T), VRSP1.2-2(T), VRSP1.3-3(T).
Execution VRSP 3.1-1(T), VLSP2.1-1(T).

Re-
cording

VRSP3.2-2(T), VLSP2.2-1(T).

Generic
Results

VRSG1(T), VRSG2(N), VRSG3(T), VLSG1(T), VLSG2(T),
VRSP2.1-1(N), VRSP2.2-1(N), VRSP2.3-2(N), GG1(T), GG2(P), GP2.1
up to GP2.5(T), GP2.6(P), GP2.7(T), GP2.8(P), GP2.9(N), 2.10(N),
GP3.1(P), GP3.2(N), GG3(P).

The main remarks on the analysis are:

• The Verification and Validation Specific Goals and Practices are satisfied by Cen-
PRA testing subprocesses. The exceptions are the Verification Specific Goal and
Practices related to Peer Review activity (VRSG2, VRSP2.1-1, VRSP2.2-1,
VRSP2.3-2). Peer review activities are not part of the CenPRA testing model.

• Project Planning SG1 (Establish Estimates) is totally satisfied: testing scope, work
products, task, testing life cycle and effort are estimated in the testing planning. For
SG2 (Develop a Project Plan) 5 out of 7 Specific Practices are satisfied: plan for
test data management and for stakeholder involvement are not part of CenPRA
planning subprocess. SG3 (Obtain Commitment to the Plan) is not addressed: Test-
ing Plan must be approved and signed by the designated persons; however, specific
activities for review and reconcile the plan are not defined.

274 P.M.S. Bueno, A.N. Crespo, and M. Jino

• Project Monitor and Control SG1 (Monitor Project Against Plan) and SG2 (Man-
age Corrective Actions) are not addressed. There is no mention in the Test Proce-
dure Specification, Incident Report and Summary Report of information or activi-
ties about monitoring testing and taking corrective actions. Summary reports elabo-
ration includes the activity “report variances from the plan” but does not explicitly
include testing monitoring.

• Generic practices not addressed or partially addressed are: Manage Configuration
(GP2.6); Monitor and control process (GP2.8); Evaluate Adherence (GP2.9); Re-
view Status (GP2.10); Establish a defined process (GP3.1); and Collect improve-
ment information (GP3.2).

6 Assessing and Supplementing CMMI Software Testing Practices

The analysis performed consists in evaluating the software testing practices and in-
formation embodied in the CMMI Specific Goals, Specific Practices, related Subprac-
tices and Typical Work Products; as well as in the Generic Goals, Generic Practices
and their Elaborations. We use as a reference a model specific for software testing –
the CenPRA generic testing process model, which defines outstanding practices and is
based on the IEEE Std. 829 testing documentation standard [4]. The goal is to identify
testing aspects missing in CMMI model or aspects that require further descriptions to
be applicable.

Note that, as a specific testing model, it is expected the CenPRA testing process to
provide more complete and detailed information related to software testing than
CMMI (a generic model) does. The idea is therefore, to take advantage of these dif-
ferent perspectives (specific and generic) to supplement the testing aspects of CMMI.
As a result we provide additional guidelines for organizations that adopt CMMI and
intend to pay special attention to improving their testing practices. We performed this
analysis through the following procedure.

Procedure 3: Evaluating the test aspects of CMMI
For each testing Sub Process and the corresponding Artifacts in the CenPRA testing
process we examined:

• The practices (or activities) defined for the CenPRA sub process (we call these
“CenPRA-practices”);

• The testing information used or produced in the practices (we call these “Cen-
PRA-information”);

• If the CenPRA-practices and CenPRA-information are present in the:
a) Verification Process Area.
b) Validation Process Area.
c) Project Management Process Area.
d) Product Integration Process Area.
Note: in all Process Areas above we examined: Specific Goal, Specific Prac-
tices, Subpractices, Work Products, Generic Goals, Generic Practices, Sub-
practices and Elaborations.

If the CenPRA-practices or CenPRA-information are not found in any process area or
If the CenPRA-practices or CenPRA-information are present in a Process Area, but
requires additional explanations to be applied, we create a “Supplementation Note”.

 Analysis of an Artifact Oriented Test Process Model and of Testing Aspects of CMMI 275

Results from application of Procedure 3 are presented in Table 5, which shows
Supplementation Notes related to each Subprocess in the CenPRA testing process
model.

Table 5. Testing Supplementation notes for CMMI

Planning Subprocess – Artifact: Testing Plan
When specifying test items mention versions and the testing level, supply refer-
ences for items documentation. Items that will not be tested should be identified
When defining features or methods, identify the Test Design that details this infor-
mation (different items may be tested with different methods).
Define features not to be tested and present reasons.
At this level define the technique to be used (Functional testing, structural testing,
etc.) for testing features or group of features. Specify the major activities and tolls
to be used. Consider the testing level (unit, integration, etc.) and the quality re-
quirements for the item.
Specify criteria to suspend the planned testing activity and actions that must be
repeated when testing is resumed.
Specify the minimum degree of comprehensiveness desired and how to measure it
(e.g., test all features or only main features, all program statements executed once).
Identify pass-fail criteria for test items (e.g., “low severity problems allowed,” or
“no failures accepted”). Note that test items and features can be prioritized for the
definition of adequate completion and pass-fail criteria.
When defining test environment care should be taken to specify all facilities, in-
cluding hardware, tools (testing evaluation, simulation, capture and playback, test
data generators, test data management and tracking), communication and system
software, and aspects of security
When identifying responsibilities include developers, testers, operations staff, us-
ers, technical support and quality support. Identify the roles for: managing, design-
ing, preparing, executing and checking tests.

Design Subprocess – Artifacts: Test Design Specification, Test Case
Specification, Test Procedure Specification

Test design can provide more detailed information on the testing approach and
about features to be tested. Several design specifications may be created for differ-
ent test items or for different features to be tested in a given test item.
For each test design describe the test items (components, aggregates of compo-
nents, or the entire system), features to be tested under the test design (e.g., func-
tions, performance) and provide references to the items specifications.
Refine the testing approach defined in the testing plan: detail techniques to be used,
methods for analyzing results and the error tolerance (how to distinguish valid from
invalid inputs). Testing criteria (such as equivalence partitioning, boundary values,
branch testing, condition testing, essential paths testing, data flow testing) can be
determined. Specific testing literature should be used for criteria definition.
Summarize common aspects for all test cases in the design specification (e.g., con-
straints for all test inputs or shared environmental needs).

276 P.M.S. Bueno, A.N. Crespo, and M. Jino

Table 5. (contitnued)

Test cases can be assigned to a test design specification and to a test procedure
specification. Test cases can be reused for different test items and be related to
different design specifications. Information on test cases must be useful for their
reuse.
For each test case assign an identifier and specify: inputs (specific values, tables
and file names, system parameters, database states) and outputs (values or features
– e.g., response time); specify environmental needs (hardware and system software
to execute the test case); special procedure requirements (set up, output checking);
inter-case dependencies.
Test procedure specifications can be used to describe the purpose, special require-
ments, and procedure steps. Information include: methods for logging results; set
up actions (prepare for execution); starting actions; measures to be made; actions
for stopping and resuming testing and to restore the environment; contingency
actions.

Execution Subprocess
Identify the testing procedure specification associated to the test items and execute
it.

Recording Subprocess – Artifacts: Test Log, Test Incident Report, Test
 Summary Report

Record in a testing log information about: test items; test environment; responsible
for test execution; testing results and testing incidents.’
Record in a test incident report each incident description and analysis of the impact
in the testing plan.
A test summary report present results of the testing activities and provide evalua-
tions. It can include: a summary evaluation of test items; variances of the test items
from their specifications; variances from the test plan, design, or procedures and
correspondent reasons; comprehensiveness assessment, summary of incidents and
solutions.

Process Model
Testing activities should start early in software life cycle. Each step in the software
development can provide information (development artifacts) to be used in testing
planning and design.

7 Conclusions

In this work we evaluate the CenPRA testing process under the perspective of the
process improvement model CMMI and, conversely, evaluate the testing practices of
CMMI using as a reference the CenPRA testing process.

Due to the fact that the Testing Process highlights the technical aspects of the test-
ing activity and the CMMI is a generic model for software process assessment and
improvement, we found complementary natures in the addressed aspects. This al-
lowed the identification of aspects of the testing process that can be improved by
taking into account the Generic Goals and Generic Practices of CMMI. Analogously,
the CenPRA testing process can be the basis for improving the testing technical

 Analysis of an Artifact Oriented Test Process Model and of Testing Aspects of CMMI 277

aspects in organizations that adopt the CMMI model and that wish to improve the
testing process.

The analysis in Section 5 clearly points to possible improvements in the CenPRA
testing process model: consider including specific practices of Peer Review; improve
the test planning activities using hints from CMMI Project Planning Process Area;
include Practices for project monitoring and control and for manage corrective actions.

We propose a set of “Supplementation Notes” which reflects important testing as-
pects not treated by CMMI and aspects of this model that can be refined under a soft-
ware testing perspective.
The main contributions of this work are:

• The application of a generic process improvement model for evaluating the capa-
bility of a testing process model;

• The identification of potential improvements to the CenPRA testing process;
• The proposition of a supplementary software testing content to be used in addition

to CMMI for improving software testing processes.

Future work can explore standards specific to software testing, such as SW-TMM
[2] and the TPI [6].

References

1. Bueno, P.M.S., Crespo, A., Jino, M., (2006), “Analysis of an artifact oriented test process
model and of testing aspects of ISO/IEC 15504”, Technical Report, CenPRA, 2006.

2. Burnstein, I. Suwanassart, T., Carlson, R., (1996), “Developing a Testing Maturity Model
for Software Test Process Evaluation and Improvement”. Proc. of Int. Test Conference.

3. Crespo, Adalberto .N., Jino, Mario, (2005), “Processo de Teste de Software”, Technical
Report CenPRA, (in Portuguese).

4. IEEE Std 829 (1998), “IEEE Standard for Software Test Documentation”, IEEE, New
York.

5. ISO/IEC 15504 (2004), “The International Organization for Standardization and the Inter-
national Electrotechnical Commission”, ISO/IEC 15504.

6. Koomen, T. and Pol M., (1999), “Test Process Improvement: A practical step-by step
guide to structured testing”. ACM Press, London, England.

7. Myers, G.J., (1979), “The Art of Software Testing”, Addison-Wesley, New York.
8. M. C. Paulk, Charles V. Weber, B. Curtis and M. Chrissis, (1994), “The Capability Matur-

ity Model - Guidelines for Improving the Software Process”, CMU-SEI, Addison-Wesley.
9. Ana R. C. Rocha, José C. Maldonado e Kival C. Weber (Editores), (2001), “Qualidade de

Software: Teoria e Prática”, Prentice Hall, (in Portuguese).
10. Salviano, Clênio F., (2004), “Introdução à melhoria de processo de software com ISO/IEC

15504 e CMMI”, Technical Report CenPRA - TRT1351, (in Portuguese).
11. SEI (2005), Web Site of the Software Engineering Institute – SEI, (CMMI documenta-

tion), http://www.sei.cmu.edu/cmmi/.
12. SPICE (2005), Web Site of the SPICE project, http://www.sqi.gu.edu.au/spice/.

The Impact of Pair Programming and
Test-Driven Development on Package

Dependencies in Object-Oriented
Design — An Experiment

Lech Madeyski

Institute of Applied Informatics, Wroclaw University of Technology,
Wyb.Wyspianskiego 27, 50370 Wroclaw, Poland

Lech.Madeyski@pwr.wroc.pl
http://madeyski.e-informatyka.pl/

Abstract. Background: Test-driven development (TDD) and pair pro-
gramming are software development practices popularized by eXtreme
Programming methodology. The aim of the practices is to improve soft-
ware quality.

Objective: Provide an empirical evidence of the impact of both prac-
tices on package dependencies playing a role of package level design qual-
ity indicators.

Method: An experiment with a hundred and eighty eight MSc stu-
dents from Wroclaw University of Technology, who developed finance-
accounting system in different ways (CS — classic solo, TS — TDD solo,
CP — classic pairs, TP — TDD pairs).

Results: It appeared that package level design quality indicators
(namely package dependencies in an object-oriented design) were not
significantly affected by development method.

Limitations: Generalization of the results is limited due to the fact
that MSc students participated in the study.

Conclusions: Previous research revealed that using test-driven devel-
opment instead of classic (test-last) testing approach had statistically
significant positive impact on some class level software quality indicators
(namely CBO and RFC metrics) in case of solo programmers as well as
pairs. Combined results suggest that the positive impact of test-driven
development on software quality may be limited to class level.

1 Introduction

Test-driven development (TDD) [1] and pair programming (PP) [2] have recently
gained a lot of attention as the key software development practices of eXtreme
Programming (XP) methodology [3]. The main idea of test-driven development
is that programmers write tests before production code. Pair programming is
software development practice where two programmers work together, collabo-
rating on the same development tasks. The basic aim of both practices, described

J. Münch and M. Vierimaa (Eds.): PROFES 2006, LNCS 4034, pp. 278–289, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

The Impact of PP and TDD on Package Dependencies 279

in section 3.5, is to improve software quality. The question is whether both prac-
tices (used separately or together) really improve software quality.

Researchers and practitioners have reported numerous, often anecdotal and
favourable studies of XP practices and methodology. Empirical studies on pair
programming often concern productivity [4, 5, 6, 7, 8]. A few studies have focused
on pair programming or test-driven development as practices to remove defects
[5, 6, 9, 10], influence external code quality (measured by the number of func-
tional, blackbox test cases passed) [11, 12, 13] or reliability of programs (a frac-
tion of the number of passed tests divided by the number of all tests) [14, 15, 16].
Janzen [17] has pointed out that there was no research on the broader efficacy
of test-driven development, nor on its effects on internal design quality outside a
small pilot study [18]. Recently, Madeyski [19] pointed out that using test-driven
development instead of classic (test-last) development had significant positive
impact on two Chidamber and Kemerer (CK) [20] class level software quality
indicators — Response For a Class (RFC) and Coupling Between Object classes
(CBO). Obtained results did not support similar, positive impact of pair pro-
gramming practice [19]. Hulkko and Abrahamsson [21] also suggested that pair
programming might not necessarily provide as extensive quality benefits as sug-
gested in literature. The key findings from empirical studies concerning software
quality are summarized below in table 1.

Table 1. Pair programming and test-driven development literature review

Study Environment Subjects Key findings
PP studies:
[5, 6] Academic 41(14P/13S) P had 15% less code defects than S
[15, 16] Academic 37(10P/17S) P did not produce more reliable code
[21] Acad./Ind. 4x(4–6) P did not provide extensive quality benefits
TDD studies:
[14] Academic 19(9CS/10TS) T did not produce more reliable code
[11, 12] Industrial 24(6CP/6TP) TP products passed 18% more tests than CP
[9, 10] Industrial 13(5CS/9TS) Minimal/no difference in LOC per person-month

T reduced defect rate by 40–50%
[18] Academic 8(1Cx4/1Tx4) No meaningful differences in package

dependencies between T and C project
Combined study:
[13, 19] Academic 188 TS passed significantly less acc. tests than CS

(28CS/28TS/ TP passed significantly less acc. tests than CP
31CP/35TP) No difference between CS and CP as well as TS

and TP in NATP (Number of Acc.Tests Passed)
T had significant positive impact on RFC and
CBO CK metrics in case of S and P

Abbreviations: S(Solo programmers), P(Pairs), x4(groups of four), T(TDD), C(Classic)

In spite of a wide range of empirical studies there is still limited evidence
concerning the impact of pair programming and test-driven development on
quality of an object-oriented design in terms of dependencies between packages

280 L. Madeyski

(collections of related classes), which in turn may have impact on external qual-
ities e.g. fault-proneness or maintainability. The aim of this paper is to fill in
this gap.

An experiment, performed in 2004 at Wroclaw University of Technology, was
aiming to investigate the impact of test-driven development and pair program-
ming practices on different aspects of software development. One of the inter-
esting results of the experiment is that using test-driven development instead
of classic testing approach has statistically significant positive impact on class
level software quality indicators (RFC and CBO) in case of solo as well as pair
programming [19]. The interesting research question, investigated in this paper,
is whether the positive impact of test-driven development on software quality is
limited to the class level. It is important question because test-driven develop-
ment practice (also known by names such as, test-first design and test driven
design) is considered not only one of the core programming practices of XP
but also one that we use instead of writing detailed design specifications [22].
Practitioners emphasize that test-driven development is primarily a method of
designing software, not just a method of testing [23] and that pair programming
tend to come up with higher quality designs [24].

The quality of an object-oriented design is strongly influenced by a system’s
package relationships. Loosely coupled and highly cohesive packages are qualities
of good design. Therefore to investigate the impact of test-driven development
and pair programming on object-oriented design we used Martin’s package level
dependency metrics [25, 26] that can be used to measure the quality of an object-
oriented design in terms of the interdependences between the packages of that
design. Designs which are highly interdependent tend to be rigid, unreusable and
hard to maintain [25].

Martin’s metrics, investigated in this study and measured by our tool [27],
are defined as follows [25]:

– Ca (Afferent Couplings) — The number of classes outside the package that
depend upon classes within the package.

– Ce (Efferent Couplings) — The number of classes inside the package that
depend upon classes outside the package.

– I (Instability) — The ratio (Ce/(Ca+Ce)) of efferent coupling (Ce) to total
coupling (Ce+Ca). This metric is an indicator of the package’s resilience to
change and has the range [0, 1]. I = 0 indicates a maximally stable package.
I = 1 indicates a maximally instable package.

– A (Abstractness) — The ratio of the number of abstract classes to the total
number of classes in package. This metric range is [0, 1]. 0 means concrete
package and 1 means completely abstract package.

– Dn (Normalized Distance from Main Sequence) — This is the normalized
perpendicular distance of the package from the idealized line A + I = 1.
This metric is an indicator of the package’s balance between abstractness
and stability. Dn metric’s results are within a range of [0, 1]. A value of zero
indicates perfect package design.

The Impact of PP and TDD on Package Dependencies 281

Underlying theory about a relationship between the object-oriented metrics and
fault-proneness as well as maintainability due to the effect on cognitive complex-
ity has been provided in [28] and [29].

2 Problem Statement

The following definition determines a foundation for the experiment [30]:

Object of study. The objects of study are software development products —
developed code.
Purpose. The purpose is to evaluate the impact of test-driven development and
pair programming practices on software development products.
Quality focus. The quality focus is the object-oriented design quality in terms
of the interdependences between packages of that design.
Perspective. The perspective is from the researcher’s point of view.
Context. The experiment is run using MSc students as subjects involved in
finance-accounting system development.

Summary: The analysis of the developed code for the purpose of evaluation
of the test-driven development and pair programming practices impact on the
developed code with respect to interdependences between packages from the point
of view of the researcher in the context of finance-accounting system development
performed by MSc students.

3 Experiment Planning

The planning phase of the experiment can be divided into seven steps [30]: con-
text selection, hypotheses formulation, variables selection, selection of subjects,
experiment design, instrumentation and validity evaluation.

3.1 Context Selection

The context of the experiment was the Programming in Java (PIJ) course, and
hence the experiment was run off-line [30]. Java was the programming language,
Eclipse 3.0 was the IDE (Integrated Development Environment). All subjects
had prior experience at least in C and C++ programming (using object-oriented
approach). The PIJ course consisted of seven lectures (90 minutes per each) and
fifteen laboratory sessions (also 90 minutes per each). The course introduced
Java programming language using test-driven development and pair program-
ming as the key XP practices. The subjects’ practical skills in programming in
Java using pair programming and test-driven development were evaluated dur-
ing the first seven laboratory sessions. The experiment took place during the last
eight laboratory sessions. The problem (development of the finance-accounting
system) was close to the real one (not toy-size). The requirements specification
consisted of 27 user stories. The subjects participating in the study were mainly
second and third-year (and few fourth and fifth-year) computer science MSc stu-
dents of Wroclaw University of Technology. In total 188 students were involved

282 L. Madeyski

in the experiment, see table 2. A few people were involved in the experiment
planning, operation and analysis.

3.2 Quantifiable Hypotheses Formulation

The crucial aspect of the experiment is to know and formally state what we
intend to evaluate in the experiment. This leads us to the formulation of the
following quantifiable hypotheses to be tested:

– H0 X, CS/TS/CP/TP — There is no difference in the mean value of X metric
(where X is Ca, Ce, I, A or Dn) between the software development projects
using any combination of classic (test-last) / TDD (test-first) testing ap-
proach and solo / pair programming development method (CS, TS, CP and
TP are used to denote development methods).

– HA X, CS/TS/CP/TP — There is a difference in the mean value of X metric
between the software development projects using any combination of classic
(test-last) / TDD (test-first) testing approach and solo / pair programming
development method.

If we reject null hypotheses H0 X, CS/TS/CP/TP (where X is Ca, Ce, I, A or
Dn) we can try to investigate more specific hypotheses concerning differences be-
tween development methods (CS vs. TS, CP vs. TP, CS vs. CP, and TS vs. TP).

3.3 Variables Selection

The independent variable is the software development method used (CS, TS, CP
or TP). The dependent (response) variables are mean values of Ca, Ce, I, A and
Dn (denoted as MX where X is Ca, Ce, I, A or Dn).

Table 2. The context of the experiment

Context factor ALL CS TS CP TP

Number of MSc students: 188 28 28 62 70
– on the 2nd year 108 13 16 40 39
– on the 3rd year 68 12 11 18 27
– on the 4th year 10 3 0 3 4
– on the 5th year 2 0 1 1 0
– with industry experience 33 4 6 8 15
Mean value of:
– Programming experience in years 3.8 4.1 3.7 3.6 3.9
– Java experience in months 3.9 7.1 2.8 3.4 3.5
– Another OO language experience in months 20.5 21.8 20.9 19.2 21.1

3.4 Selection of Subjects

The subjects are chosen based on convenience — the subjects are students taking
the PIJ course. Prior to the experiment, the students filled in a pre-test ques-
tionnaire. The aim of the questionnaire was to get a description of the students’

The Impact of PP and TDD on Package Dependencies 283

background, see table 2 for sample results. The ability to generalize from this
context is further elaborated when discussing threats to the experiment.

3.5 Design of the Experiment

The design is one factor (the software development method) with four treatments
(alternatives):

– Solo programming using classic testing approach — tests after implementa-
tion (CS).

– Solo programming using test-driven development (TS).
– Pair programming using classic testing approach — tests after implementa-

tion (CP).
– Pair programming using test-driven development (TP).

Pair programming is a practice in which two programmers (called the driver
and navigator) work together at one computer, collaborating on the same devel-
opment tasks (e.g. design, test, code). The driver, is typing at the computer or
writing down a design. The navigator observes the work of the driver, reviews
the code, proposes test cases and considers the implementations strategic impli-
cations [5, 31]. In case of solo programming all activities are performed by one
programmer.

Test-driven development is a practice based on specifying piece of functionality
as a low level test before writing production code, implementing the functionality
so that the test passes, refactoring (e.g. removing duplication) and iterating the
process. Tests are run frequently, while writing production code. In case of classic
(test-last) development tests are specified after writing production code and less
frequently [32].

The assignment of subjects to groups was performed first by stratifying the
subjects with respect to their skill level, measured by graders, and then assigning
them randomly to test-driven development or classic testing approach treatment
groups. However the assignment to solo or pair programming teams took into
account the people preferences (as it seemed to be more natural and close to
agile software development practice).

Students who did not complete the experiment were removed from the analy-
sis. Sixteen teams dropped out, did not check in the final version of their program
or did not fill in questionnaires. Therefore, we retained data from 122 teams.
The design resulted in an unbalanced design, with 28 solo programmers and 31
pairs using classic testing approach, 28 solo programmers and 35 pairs using
test-driven development practice.

3.6 Instrumentation

The instrumentation of the experiment consisted of requirements specification
(user stories), pre-test and post-test questionnaires, Eclipse project framework,
detailed description of software development methods (CS, TS, CP, TP) and
duties of subjects, instructions how to use the experiment infrastructure (e.g.
CVS Version Management System) and examples (e.g. sample source code of

284 L. Madeyski

applications developed using TDD approach and JUnit tests). Martin’s metrics
were collected using aopmetrics tool [27] developed and supported by members
of e-Informatyka development team at Wroclaw University of Technology.

3.7 Validity Evaluation

The fundamental question concerning results of each experiment is how valid the
results are. When conducting the experiment, there is always a set of threats to
the validity of the results. Shadish, Cook and Campbell [33] defined four types
of threats: statistical conclusion, internal, construct and external validity.

Threats to the statistical conclusion validity are concerned with issues that
affect the ability to draw the correct conclusion about relations between the
treatment and the outcome of the experiment. Threats to the statistical conclu-
sion validity are considered to be under control. Robust statistical techniques,
tools (e.g. Statistica) and large sample sizes to increase statistical power are
used. Measures and treatment implementation are considered reliable. However,
the risk in the treatment implementation is that the experiment was spread
across laboratory sessions. To avoid the risk, access to the CVS repository was
restricted to the specific laboratory sessions (access hours and IP addresses). Va-
lidity of the experiment is highly dependent on the reliability of the measures.
The basic principle is that when you measure a phenomenon twice, the outcome
should be the same. The measures used in the experiment are considered reliable
because they can be repeated with the same outcomes.

Threats to the internal validity are influences that can affect the independent
variable with respect to causality, without the researcher’s knowledge. Concern-
ing the internal validity, the risk of rivalry between groups must be considered.
The group using the traditional method may do their very best to show that
the old method is competitive. On the other hand, subjects receiving less de-
sirable treatments may not perform as well as they generally do. However, the
subjects were informed that the goal of the experiment was to measure different
development methods not the subjects’ skills. Possible diffusion or imitation of
treatments were under control of the graders.

Construct validity concerns generalizing the results of the experiment to the
concepts behind the experiment. Threats to the construct validity are not consid-
ered very harmful. Inadequate explication of constructs does not seem to be the
threat as the constructs were defined, before they were translated into measures
or treatments. The mono-operation bias is a threat as the experiment was con-
ducted on a single software development project; however, the size of the project
was not a toy-size. Using a single type of measure would be a mono-method bias
threat; however, different measures were used in the experiment.

Threats to external validity are conditions that limit our ability to generalize
the results of our experiment to industrial practice. The largest threat is that stu-
dents (who had short experience in pair programming and test-driven develop-
ment) were used as subjects. However, Kitchenham et al. [34] state that students
are the next generation of software professionals, so, are relatively close to the
population of interest. In summary, the threats are not regarded as being critical.

The Impact of PP and TDD on Package Dependencies 285

4 Experiment Operation

The experiment was run at Wroclaw University of Technology in 2004 during
eight laboratory sessions. The data was primarily collected by automated exper-
iment infrastructure. Additionally, the subjects filled in pre-test and post-test
questionnaires, primarily to evaluate their experience. The package for the ex-
periment was prepared in advance and is described in section 3.6.

5 Analysis of the Experiment

The experiment data are analysed with descriptive analysis and statistical tests.

5.1 Descriptive Statistics

Descriptive statistics of gathered Martin’s metrics are summarized in table 3.
Columns “Mean”, “StdDev”, “Max”, “Median” and “Min” state for each met-
ric and development method (“DevMeth”) the mean value, standard deviation,
maximum, median, minimum, respectively.

The first impression is that development methods performed similarly. Results
shown in table 3 also indicate imperfect package design (e.g. values of normal-
ized distance from main sequence are close to 1), no matter which development
method was used.

Table 3. Descriptive statistics of Martin’s metrics

Metric DevMeth Mean StdDev Max Median Min
Ca CS .46 1.12 4.50 0 0

TS .20 .72 2.75 0 0
CP .31 .98 3.60 0 0
TP .11 .50 2.80 0 0

Ce CS .24 .53 1.67 0 0
TS .17 .53 2.25 0 0
CP .15 .49 2.00 0 0
TP .07 .31 1.60 0 0

I CS .08 .17 .54 0 0
TS .07 .22 1.00 0 0
CP .03 .10 .34 0 0
TP .03 .12 .50 0 0

A CS .00 .02 .08 0 0
TS .01 .02 .08 0 0
CP .01 .03 .17 0 0
TP .00 .02 .09 0 0

Dn CS .92 .18 1.00 1.00 .42
TS .92 .22 1.00 1.00 0
CP .96 .10 1.00 1.00 .66
TP .97 .12 1.00 1.00 .50

286 L. Madeyski

5.2 Hypotheses Testing

Experimental data are analysed using models that relate the dependent vari-
able to the factor under consideration. The use of these models involves making
assumptions concerning the data that need to be validated. Therefore we run
some exploratory analysis on the collected data to check whether they follow the
assumptions of the parametric tests:

– Normal distribution — the collected data come from a population that has
a normal distribution.

– Interval or ratio scale — the collected data must be measured at an interval
or ratio level (since parametric tests work on the arithmetic mean).

– Homogeneity of variance — roughly the same variances between groups or
treatments (as we use different subjects).

We find that — according to the Kolmogorov-Smirnov and Shaprio-Wilk sta-
tistic (see table 4) — the data are not normally distributed. This finding alerts
us to the fact that a nonparametric test should be used.

Hypotheses H0 X, CS/TS/CP/TP (where X is Ca, Ce, I, A or Dn) are
evaluated using the Kruskal-Wallis one way analysis of variance by ranks. The

Table 4. Tests of Normality

Metric DevMeth Kolmogorov-Smirnov1 Shapiro-Wilk
Statistic df2 Significance Statistic df2 Significance

MCa CS .480 28 .000 .481 28 .000
TS .536 28 .000 .287 28 .000
CP .529 31 .000 .350 31 .000
TP .529 35 .000 .232 35 .000

MCe CS .494 28 .000 .495 28 .000
TS .519 28 .000 .370 28 .000
CP .527 31 .000 .353 31 .000
TP .536 35 .000 .254 35 .000

MI CS .496 28 .000 .494 28 .000
TS .517 28 .000 .366 28 .000
CP .529 31 .000 .348 31 .000
TP .539 35 .000 .251 35 .000

MA CS .509 28 .000 .342 28 .000
TS .535 28 .000 .295 28 .000
CP .539 31 .000 .176 31 .000
TP .539 35 .000 .161 35 .000

MDn CS .466 28 .000 .521 28 .000
TS .455 28 .000 .400 28 .000
CP .514 31 .000 .409 31 .000
TP .518 35 .000 .284 35 .000

1 Lilliefors Significance Correction.
2 Degrees of freedom.

The Impact of PP and TDD on Package Dependencies 287

Kruskal-Wallis test is used for testing differences between the four experimental
groups (CS, TS, CP, TP) when different subjects are used in each group. Table 5
shows test statistics and significances.

Table 5. Kruskal-Wallis Test Statistics — grouping variable: DevMeth

MCa MCe MI MA MDn

Chi-Square 2.917 2.323 2.402 2.039 2.420
Asymp. Significance .405 .508 .493 .564 .490

We can conclude that the software development method used by the subjects
do not significantly affected interdependencies between the packages.

6 Summary and Conclusions

It appeared that package level design quality indicators (namely package de-
pendencies in an object-oriented design) were not significantly affected by de-
velopment method. Using test-driven development instead of classic (test-last)
testing approach as well as pair programming instead of solo programming had
not significant impact on package dependencies. Previous research revealed that
using test-driven development instead of classic testing approach had statisti-
cally significant positive impact on some class level software quality indicators
(namely CBO and RFC) in case of solo as well as pair programming [19]. Com-
bined results suggest that the positive impact of test-driven development on
software quality may be limited to class level. Therefore software engineers and
academics may benefit from using test-driven development but they should take
care of package level design issues. Further research is needed to replicate the
study, to evaluate the impact in other contexts (e.g. in industry) as well as on
other package level software quality indicators and to establish evidence.

Acknowledgments

The author would like to thank the students for participating in the investigation,
the graders and the members of the e-Informatyka team (Micha�l Stochmia�lek,
Wojciech Gdela, Tomasz Poradowski, Jacek Owocki, Grzegorz Makosa, Mariusz
Sadal) for their help during development of the measurement infrastructure (e.g.
aopmetrics tool [27]). This work has been financially supported by the Ministry
of Education and Science as a research grant 3 T11C 061 30 (years 2006-2007).

References

1. Beck, K.: Test Driven Development: By Example. Addison-Wesley (2002)
2. Williams, L., Kessler, R.: Pair Programming Illuminated. Addison-Wesley (2002)

288 L. Madeyski

3. Beck, K.: Extreme Programming Explained: Embrace Change. 2nd edn. Addison-
Wesley (2004)

4. Nosek, J.T.: The case for collaborative programming. Communications of the
ACM 41(3) (1998) 105–108

5. Williams, L., Kessler, R.R., Cunningham, W., Jeffries, R.: Strengthening the case
for pair programming. IEEE Software 17(4) (2000) 19–25

6. Williams, L.: The Collaborative Software Process. PhD thesis, University of Utah
(2000)

7. Nawrocki, J.R., Wojciechowski, A.: Experimental evaluation of pair programming.
In: ESCOM ’01: European Software Control and Metrics. (2001) 269–276

8. Nawrocki, J.R., Jasiński, M., Olek, L., Lange, B.: Pair Programming vs. Side-
by-Side Programming. In Richardson, I., Abrahamsson, P., Messnarz, R., eds.:
EuroSPI. Volume 3792 of Lecture Notes in Computer Science., Springer (2005)
28–38

9. Williams, L., Maximilien, E.M., Vouk, M.: Test-Driven Development as a Defect-
Reduction Practice. In: ISSRE ’03: Proceedings of the 14th International Sympo-
sium on Software Reliability Engineering, Washington, DC, USA, IEEE Computer
Society (2003) 34–48

10. Maximilien, E.M., Williams, L.A.: Assessing Test-Driven Development at IBM.
In: ICSE ’03: Proceedings of the 25th International Conference on Software Engi-
neering, IEEE Computer Society (2003) 564–569

11. George, B., Williams, L.A.: An Initial Investigation of Test Driven Development
in Industry. In: SAC ’03: Proceedings of the 2003 ACM Symposium on Applied
Computing, ACM (2003) 1135–1139

12. George, B., Williams, L.A.: A structured experiment of test-driven development.
Information and Software Technology 46(5) (2004) 337–342

13. Madeyski, L.: Preliminary Analysis of the Effects of Pair Programming and Test-
Driven Development on the External Code Quality. In Zieliński, K., Szmuc, T.,
eds.: Software Engineering: Evolution and Emerging Technologies. Volume 130 of
Frontiers in Artificial Intelligence and Applications. IOS Press (2005) 113–123

14. Müller, M.M., Hagner, O.: Experiment about test-first programming. IEE Pro-
ceedings - Software 149(5) (2002) 131–136

15. Müller, M.M.: Are Reviews an Alternative to Pair Programming? In: EASE ’03:
Conference on Empirical Assessment In Software Engineering. (2003)

16. Müller, M.M.: Are Reviews an Alternative to Pair Programming? Empirical Soft-
ware Engineering 9(4) (2004) 335–351

17. Janzen, D.S.: Software Architecture Improvement through Test-Driven Develop-
ment. In: OOPSLA ’05: Companion to the 20th annual ACM SIGPLAN conference
on Object-oriented programming, systems, languages, and applications, New York,
NY, USA, ACM Press (2005) 222–223

18. Kaufmann, R., Janzen, D.: Implications of Test-Driven Development: A Pilot
Study. In: OOPSLA ’03: Companion of the 18th annual ACM SIGPLAN conference
on Object-oriented programming, systems, languages, and applications, New York,
NY, USA, ACM Press (2003) 298–299

19. Madeyski, L.: An empirical analysis of the impact of pair programming and test-
driven development on CK design complexity metrics. Technical Report PRE
I31/05/P-004, Institute of Applied Informatics, Wroclaw University of Technology
(2005)

20. Chidamber, S.R., Kemerer, C.F.: A Metrics Suite for Object Oriented Design.
IEEE Transactions on Software Engineering 20(6) (1994) 476–493

The Impact of PP and TDD on Package Dependencies 289

21. Hulkko, H., Abrahamsson, P.: A Multiple Case Study on the Impact of Pair Pro-
gramming on Product Quality. In: ICSE ’05: Proceedings of the 27th International
Conference on Software Engineering, New York, NY, USA, ACM Press (2005)
495–504

22. Object Mentor, Inc.: Test Driven Development (2005) http://www.objectmentor.
com/writeUps/TestDrivenDevelopment.

23. Wikipedia, the free encyclopedia: Test-driven development (2005)
http://en.wikipedia.org/wiki/Test driven development.

24. Wikipedia, the free encyclopedia: Pair programming (2005) http://en.wikipedia.
org/wiki/Pair programming.

25. Martin, R.C.: OO Design Quality Metrics, An Analysis of Dependencies (1994)
26. Martin, R.C.: Agile Software Development, Principles, Patterns, and Practices.

Prentice Hall (2004)
27. Wroclaw University of Technology, e-Informatyka and Tigris developers: aopmet-

rics project (2005) http://aopmetrics.tigris.org/.
28. Briand, L.C., Wüst, J., Ikonomovski, S.V., Lounis, H.: Investigating quality factors

in object-oriented designs: an industrial case study. In: ICSE ’99: Proceedings of the
21st International Conference on Software Engineering, Los Alamitos, CA, USA,
IEEE Computer Society Press (1999) 345–354

29. Emam, K.E., Melo, W.L., Machado, J.C.: The Prediction of Faulty Classes Using
Object-Oriented Design Metrics. Journal of Systems and Software 56(1) (2001)
63–75

30. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Experi-
mentation in Software Engineering: An Introduction. Kluwer Academic Publishers,
Norwell, MA, USA (2000)

31. Williams, L.A., Kessler, R.R.: All I really need to know about pair programming
I learned in kindergarten. Commun. ACM 43(5) (2000) 108–114

32. Erdogmus, H., Morisio, M., Torchiano, M.: On the Effectiveness of the Test-First
Approach to Programming. IEEE Transactions on Software Engineering 31(3)
(2005) 226–237

33. Shadish, W.R., Cook, T.D., Campbell, D.T.: Experimental and Quasi-
Experimental Designs for Generalized Causal Inference. Houghton Mifflin (2002)

34. Kitchenham, B., Pfleeger, S.L., Pickard, L., Jones, P., Hoaglin, D.C., Emam, K.E.,
Rosenberg, J.: Preliminary Guidelines for Empirical Research in Software Engi-
neering. IEEE Transactions on Software Engineering 28(8) (2002) 721–734

J. Münch and M. Vierimaa (Eds.): PROFES 2006, LNCS 4034, pp. 290 – 304, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Applying an Agility/Discipline Assessment for a Small
Software Organisation

Philip S. Taylor1, Des Greer1, Paul Sage1, Gerry Coleman2, Kevin McDaid2,
Ian Lawthers2, and Ronan Corr3

1 Queen's University Belfast, School of Computer Science,
Belfast BT7 1NN, Northern Ireland, UK

{p.taylor, des.greer, p.sage}@qub.ac.uk
2 Dundalk Institute of Technology, Department of Computing and Maths,

Dublin Road, Dundalk, Co. Louth, Ireland
{gerry.coleman, kevin.mcdaid, ian.lawthers)@dkit.ie

3 Servasport, 102 Lisburn Road, Belfast BT9 6AG,
Northern Ireland, UK

ronan.corr@servasport.com

Abstract. The adoption of agile software development methodologies may ap-
pear to be a rather straightforward process yielding instantly improved software
in less time and increasingly satisfied customers. This paper will show that such
a notion is a misunderstanding and can be harmful to small software develop-
ment organisations. A more reasonable approach involves a careful risk assess-
ment and framework for introducing agile practices to address specific risks. A
case study with a small software development organisation is provided to show
the assessment in practice and the resulting risk mitigation strategies for process
improvement.

1 Introduction

Readers of software process research papers and books may find it difficult to believe
that there are software development organisations with no discernable process to help
guide development. The authors of this paper have spent over six months observing
development meetings and interviewing software engineers and managers from a
range of companies varying in size and product domain. Some of the large organisa-
tions, particularly in the telecoms domain, have been using specific established proc-
esses for years. Some of the smaller organisations have developed their own process
and are very successful.

However, there is also a set of smaller organisations, typically with fewer than ten
employees, that are not using any defined process. This paper is concerned with such
organisations. They can still develop successful products and provide excellent sup-
port for their customers but they are at great risk from issues such as an increasing
number of new contracts, employee turnover, misunderstood requirements and so
forth. Such organisations, to be successful, often work at an unsustainable pace. This
situation is obviously detrimental for a small business and something which an agile
approach attempts to address. It is in such organisations that an agile approach to de-
velopment is often seen to be the quick and easy solution for preparing the business to
grow by building better products and satisfying more customers. A cursory glance at

 Applying an Agility/Discipline Assessment for a Small Software Organisation 291

some of the agile literature or hearing a short talk on the topic can give the mistaken
belief that an agile development approach will be straightforward to adopt and result
in instant success.

A better approach for adopting agile methods is to take the time to assess what an
organisation’s risks are and what it does to manage these risks. This understanding
can then be used to inform process improvement.

This paper aims to show how the authors adapted the assessment developed by
Boehm and Turner [1], [2], [3], [4] to help a small software development organisation
take a reasoned step towards process improvement and an Agile approach to satisfy-
ing their customers.

The paper is organised as follows. The second section provides a short historical
context for agile methods by discussing their evolution. The third section will discuss
approaches to adopting agile methods and the fourth section will introduce Boehm
and Turner’s Agility/Discipline assessment. Section five presents the case study with
the company Servasport and how the authors utilised Boehm and Turner’s Agil-
ity/Discipline assessment. Section six generalizes the risk mitigation process for in-
troducing agile methods. The seventh section concludes this paper, summarising the
key findings.

2 Agile Methods in Context

This section will briefly present a historical evolution of agile methods and thereby
counter some of the misunderstandings that software organisations may have regard-
ing their validity. For overviews of individual agile methods the reader can consult
Abrahamsson et al [5] and Highsmith [6].

Larman and Basili [7], [8] have carefully provided the context for current agile
methods. They argue convincingly that many of the practices which appear to be
novel in agile methods, most notably incremental and iterative development (IID),
have actually been practiced since software began to be developed in the 1950’s.

Figure 1 shows the context of agile methods. When software began to be devel-
oped there were two approaches, IID and ad hoc. The waterfall process [9] was de-
veloped to improve those ad hoc development efforts and not necessarily to replace
IID. At some point the waterfall process became the dominant approach, possibly due
to its conceptual simplicity, and was used on many projects which would have been
better suited to IID. This issue began to be addressed in the early to mid 1990’s result-
ing in what would later be known as Agile Methods.

Fig. 1. The historical context for agile methods

292 P.S. Taylor et al.

Agile methods have been derived from the failure of the plan-driven waterfall
processes to be successful with all varieties of software product and team and are now
in the IID family. Agile methods are not ad hoc and their empirical nature requires
discipline on the part of the team using them. All three streams of software develop-
ment are likely to continue into the future.

3 Adopting Agile Methods

This research has arisen from the Software Process Agility for Competitive Edge
(SPACE) project [10]. This project has the primary aim of promoting the merits of ag-
ile methods for smaller software development organisations and to enable the adop-
tion of these methods to increase efficiency and competitiveness.

As stated previously, adopting an agile development approach is not a simple solu-
tion to an organisation’s problems and may, in fact, lead to further problems. Turk et
al [11], [12] have discussed some of the problems they perceive with agile methods.
Their work is based primarily on examining the underlying assumptions of agile
methods and determining for which development scenarios the assumptions do not
hold. They arrive at two groups of limitations:

Personnel limitations
Limited support for distributed development environments
Limited support for subcontracting
Limited support for large teams

Product limitations
Limited support for building reusable artifacts
Limited support for developing safety-critical software
Limited support for developing large, complex software

There is a certain amount of truth in each of these perceived limitations and, obvi-
ously, if a development scenario involved any of the above situations then a careful
risk analysis would have to be completed. Agile method proponents are quick to state
that much work has yet to be done in each of these areas. Other studies by Keefer [13]
and McBreen [14] focus specifically on perceived weaknesses with Extreme Pro-
gramming (XP) [15]. They also note similar limitations to Turk et al [11], [12].

Given such perceived limitations it is clear that small software organisations require
a straightforward guide to adopting, or rejecting, an agile approach to development.

4 Boehm and Turner’s Agility/Discipline Assessment

As early as 2002 Boehm [1] had already produced an approach to assessing an or-
ganisation’s suitability for agile methods. Boehm and Turner [4] present the sets of
conditions under which agile and plan-driven methods are most likely to succeed:

Application characteristics – primary project goals, project size, and applica-
tion environment.
Management characteristics – customer relations, planning and control, and
project communications.

 Applying an Agility/Discipline Assessment for a Small Software Organisation 293

Technical characteristics – approaches to requirements definition, develop-
ment, and test.
Personnel characteristics – customer characteristics, developer characteris-
tics, and organisational culture.

For example, agile methods work best when the application environment has a
high amount of change and plan-driven methods are better suited to stable environ-
ments with low change. Five critical factors, as shown in Figure 2 and described in
Table 1, are summarised from Boehm and Turner’s [4] analysis of the strengths of ag-
ile and plan-driven methods.

Fig. 2. Five critical factors affecting method selection [4, p. 56]

Building upon the five critical factors Boehm and Turner [4] describe a five-step,
risk-based method. The risks are categorised as follows:

Environmental – risks resulting from the project’s general environment. An
example is technology uncertainties in the particular project domain.
Agile – risks specific to the use of agile methods. For example, agile methods
rely on tacit knowledge as the small number of team members communicate
on a daily basis, but if there is personnel turnover the tacit knowledge also
leaves.
Plan-driven – risks specific to the use of plan-driven methods. For example,
emerging requirements will cause strain for a plan-driven method as it is
structured for up-front requirements elicitation.

294 P.S. Taylor et al.

Table 1. Five critical factors described [4, p. 55]

Factor Agility Discriminators Plan-Driven Discriminators
Size Suited to small products and

teams. Not very scalable.
Methods suited to large products
and teams. Difficult to scale
down.

Criticality Little testing on safety-critical
products. Informal documenta-
tion and simple design may be
potentially difficult.

Methods suited to highly critical
products. Overkill for low-
criticality products.

Dynamism Simple design and continuous
refactoring good for dynamic
environments. Can be a source
of expensive rework in stable
environments.

Detailed plans and Big Design
Up Front excellent for highly
stable environments. Can be a
source of expensive rework in
dynamic environments.

Personnel Requires highly skilled soft-
ware engineering experts. Risky
to use inexperienced people.

Requires highly skilled software
engineering experts during pro-
ject definition. Later in project
can work with fewer experts and
more inexperienced people.

Culture Thrives on chaos. Thrives on order.

The assessment is based on a five step process:

Step 1. Rate the project’s environmental, agile, and plan-driven risks. If un-
certain about the ratings use prototyping, data collection, and analysis.
Step 2a. If agility risks dominate, use a risk-based plan-driven approach.
Step 2b. If plan-driven risks dominate, use a risk-based agile approach.
Step 3. If the risks are a mixture of 2a and 2b then architect to encapsulate
the agile parts. Use risk-based agile approach on the agile parts and risk-
based plan-driven elsewhere.
Step 4. Establish an overall project strategy by integrating individual risk
mitigation plans.
Step 5. Monitor project progress and risk/opportunities; readjust balance and
process as appropriate.

A further explanation of factors and how the authors adapted the Agility/Discipline
assessment as a tool to aid software process improvement in small organisations will
be given in Section Five.

5 Servasport Case Study

The SPACE project organises regular industrial events to discuss and inform regard-
ing agile methods. At these events, overviews of various agile methods are presented
and industrial speakers who are using agile methods describe their experiences.
Through such events the SPACE team promotes the Agility/Discipline assessment
primarily to small software development organisations.

 Applying an Agility/Discipline Assessment for a Small Software Organisation 295

Servasport is a specialist sports management company providing a range of inter-
net-based software solutions to meet the information management, administration,
communication, marketing and revenue generation needs of sports organisations and
their associated clubs. They have four software developers and a graphic designer and
are relatively successful in their product domain. On average a project will generally
take between ten and twelve weeks from initial requirements to customer handover.
The contract model used requires them to agree a price and time-scale before com-
mencing the development work. If the deadline is missed further work must be com-
pleted within the original budget. Servasport had previously been operating without
much specific process guidance. Such an approach worked well but their reputation in
the product domain continues to increase and hence they are getting further projects,
leading them to explore the benefits of agile methods.

This scenario is common and Servasport are not alone in wanting to be prepared
for increased project activity and the vital revenue it generates. They have sought
guidance on how to improve the management of parallel projects, prioritise changing
and emergent requirements, retain fast development cycles and so forth.

Given the nature of Servasport and the products they produce, it would seem inevi-
table that an agile approach to development would be particularly beneficial. How-
ever, small software organisations such as Servasport cannot risk losing contracts and
revenue due to the adoption of a new process that does not suit the team, product do-
main, or customer relationship.

5.1 Adapting the Assessment

Boehm and Turner’s intention is “to offer a way to plan your program and incorporate
both agility and discipline in proportion to your project’s needs.” [4, p. 99]. Although
this aim suggests that a software team leader or manager should be knowledgeable
and confident enough to make process improvements the Agility/Discipline assess-
ment can also prove useful for those small software organisations.

Boehm and Turner do not explicitly split their Agility/Discipline assessment into
stages but for the purposes of engaging software organisations with straightforward
process improvement strategies we have established two explicit stages.

The first stage was to use the five critical factors graph to reassure Servasport that
they are suited to an agile development approach. Before introducing Servasport to
the five factors, they were asked to describe their most crucial problems. Customer re-
lated issues were deemed most important and entailed most risk. As product providers
many small software organisations can be made to feel privileged that they are getting
the contract and revenue and the customer will give them initial requirements and re-
main practically uninvolved until the handover deadline. This scenario was also no-
ticeable in some large software development organisations. As a result, we added a
sixth factor, Client Involvement, to the graph as shown in Figure 3.

The sixth factor, Client Involvement, has the following categories:

On AB – Client is on-site and an agile believer. This is the ideal when a cli-
ent is fully persuaded of the agile approach and makes themselves available
on-site to work with the team.
Off AB – Client is off-site but an agile believer. Although off-site, the client
fully understands the nature of agile development and is open to frequent
communication.

296 P.S. Taylor et al.

Fig. 3. Six critical factors affecting method selection. This is an update of Figure 2 after survey-
ing industrial risks.

On AS – Client is on-site but is an agile skeptic. They may be on-site but
they are not convinced about the agile development approach.
Off AS – Same as On AS except the problem is compounded by the client be-
ing off-site.
Off Uninvolved – Not only is the client off-site but they want no involvement
between providing the initial requirements and getting the right product de-
livered.

Servasport then performed a self assessment, using the six critical factors graph
and accompanying instructions. The aim was to get the developers discussing proc-
ess improvement and forming opinions about how their process should be
improved.

Plotting the data on the graph is simple. If the project criticality is ‘comfort’ and
the team size is 3, draw a line from one to the other. The other factors require more
explanation. Personnel is an important part of the self assessment. Each team member
is required to give an accurate assessment of themselves and each other. The catego-
ries are described in Table 2.

 Applying an Agility/Discipline Assessment for a Small Software Organisation 297

Table 2. Personnel characteristics

Level Characteristics
3 Able to revise a method (break its rules) to fit an unprecedented situation.
2 Able to tailor a method to fit a precedented new situation. Can manage a

small, precedented agile or plan-driven project but would need level 3
guidance on complex, unprecedented projects.

1A With training, able to perform discretionary method steps (e.g. sizing tasks
for project timescales, composing patterns, architecture re-engineering).
With experience, can become level 2. 1A’s perform well in all teams with
guidance from level 2 people.

1B With training, able to perform procedural method steps (e.g. coding a
class method, using a CM tool, performing a build/installation/test, writ-
ing a test document). With experience, can master some level 1A skills.
May slow down an agile team but will perform well in a plan-driven team.

-1 May have technical skills, but unable or unwilling to collaborate or follow
shared methods. Not good on an agile or plan-driven team.

The Personnel axis requires more explanation. The outer solid line shows that ap-
proximately 15% of staff are level 2 or 3, approximately 40% are level 1B and the
remaining at level 1A. An agile approach will be better supported if there is a higher
percentage of level 2 or 3 staff as shown by the inner solid line and dashed line. The
agile related Personnel risk with the outer solid line is that most of the level 2 or 3
staff will be expending much time training and overseeing level 1B staff and therefore
contributing less directly to the product. As a team gains more practical knowledge
with an agile development approach the Personnel percentages should move towards
the centre indicating more level 1B staff becoming level 1A.

Dynamism can be an exact figure if metrics are kept or a notional estimate if
metrics do not exist. Requirements changes include all functional and non-functional
requirements. Culture is a notional estimate of how much your team or organisation
likes to work on the edge of chaos or with more planning and defined procedures.

The self assessment then outlines how a graph, such as that in Figure 3, can be in-
terpreted. The outermost solid line suggests a project that is suited to a plan-driven
approach and the innermost solid line indicates a project to be suited to an agile ap-
proach. The dashed line suggests that the project would be suited to an agile approach
but has a significant risk on the Criticality axis. When such a risk is encountered more
planning is required than an agile approach typically recommends.

The second stage of the self assessment involved using Boehm and Turner’s Agil-
ity/Discipline risk ratings. Each team member was asked to provide a rating for each
risk item. Once each team member had completed the self assessment we collated the
results and discussed with Servasport the issues arising from the exercise.

5.2 Primary Risks

As Figure 4 shows, the biggest risk from stage one of the assessment is the situation
where there are off-site uninvolved customers who have the potential to break the

298 P.S. Taylor et al.

agile development approach. The aim was to find a way to bring this risk down to the
dashed section of the line in Figure 4 resulting in customers who were off-site agile
believers (Off AB clients). Such customers work well with internet-based product de-
velopment due to the relatively straightforward nature of accessing working versions
of the product. Before reaching the Off AB category for Client Involvement the risk
needs to be more specifically defined and a workable plan implemented.

Servasport have experienced a customer who desired new functionality at the
product handover stage. In this circumstance, the contract arrangement meant that
Servasport did not obtain full payment until the customer was satisfied which lead to
further development having to be completed within the budget of the original time-
scale. For a small software team providing competitively priced work based on the
originally approved project such a scenario can leave them in a vulnerable position in
the working relationship. The subsequent work to satisfy the customer can lead to un-
planned and badly paced software development. There is also the danger that the cus-
tomer perceives an inability to meet their desires first time. Figure 4 also shows that
25% of the staff are at level 2 and the rest are level 1A.

Table 3 presents the risk ratings for Servasport from the second stage of the as-
sessment. Looking at the total risk ratings clearly shows that the company are rela-
tively unaffected by environmental risks. The technology they use, whilst changing
regularly, is not uncertain. Their systems are not overly complex and there are few
stakeholders. Using a plan-driven approach has greater risk when compared to using
an agile approach resulting in the decision to work towards adopting an agile
approach.

The primary risk with using the agile approach is personnel turnover. Many small
software organisations can lose employees to bigger organisations offering a more
stable future and better benefits packages. It is crucial for them to manage this risk as
best they can.

5.3 Risk Mitigation as a Framework for Adopting Agile Methods

Having used the adapted two stage Agility/Discipline assessment with the company
the following risks require careful management if using an agile development
approach:

Risk 1. Off-site uninvolved customers.
Risk 2. Personnel turnover.

The authors believe that highlighting the risks of a software organisation focuses
the need for process improvement and effectively acts as a framework for the intro-
duction of agile methods. Such an approach enables the organisation to see that the
new agile method is actually helping to mitigate real risk and hence reduces resistance
to the changes required. The risk mitigation strategies developed for the company are
described in the following paragraphs. These strategies introduced certain agile prac-
tices to Servasport and are a first step towards process improvement. Introducing the
agile practices in small stages enables the staff to feel confident using them and pro-
vides space to tailor them to the company’s specific context.

 Applying an Agility/Discipline Assessment for a Small Software Organisation 299

Fig. 4. Six critical factors affecting method selection for Servasport

5.3.1 Off-Site Uninvolved Customer Risk
Given an average development cycle of between ten and twelve weeks a risk mitiga-
tion strategy making use of incremental delivery was agreed.

• The company should have a weekly incremental delivery for at least the last
three weeks of any project. The rationale for this decision is to begin moving an
Off-Site Uninvolved customer to an Off AB (see Figure 4).

• The final increment shall typically result in the handover release.

This new approach should be made visible to the customer with the following re-
quirements:

• The customer should understand that involvement in the incremental releases is
contractually required. Contractual conditions with small software organisations
usually favour the customer. This type of clause ensures active participation by
the customer.

• User acceptance testing will be part of the incremental approach. User accep-
tance testing is the means by which customers can verify their requirements.
The tests should be developed with input from the company and the customer.
They should be written in the language of the customer, for example:

300 P.S. Taylor et al.

Test 1
“The user must be able to click the bike icon and receive new content.”

Test 1.1
“Receiving this new content must be in the following manner – a bulleted list
shown on the left side of the news window.”

The objective is not to have the product totally finished before the incremental
delivery phase begins. Rather, the company will have planned the work needs to
completed in each increment. The first attempt at this was based on previous experi-
ence with the time to complete certain types of requirement. The accuracy of planning
the amount of work for the increments will increase with each product.

Table 3. Risk ratings for Servasport

Risk Items Risk Rating
Environmental risks

Technology uncertainties 1
Many stakeholders 1
Complex system of systems 1

 total = 3
Risk of using agile methods

Scalability and criticality 1
Use of simple design 1
Personnel turnover 4
Not enough poeple skilled in agile methods 2

 total = 8
Risk of using plan-driven methods

Rapid change 4
Short development cycles 4
Emergent requirements 4
Not enough people skilled in plan-driven methods 3
 total = 15
1 – minimal risk, 2 – moderate risk, 3 – serious but manage-
able risk, 4 – very serious but manageable risk, 5 – showstop-
per risk

The company are aware that each incremental delivery will result in issues arising
from failed user acceptance tests or unspecified new requirements. In relation to this,
Servasport must discern between a user acceptance test failing because the customer
has implicitly changed their requirement or because the specified requirement has not
been implemented correctly. Unspecified new requirements must be prioritised with
previously specified requirements. In some instances the new requirement will replace
a specified requirement and in other instances the new requirement will be previously
unspecified. In either scenario the company must work with the customer to deter-
mine what can realistically be done in the next increment.

 Applying an Agility/Discipline Assessment for a Small Software Organisation 301

If new requirements arise at the last increment during final user acceptance tests
then the customer must provide reasons why they were not originally specified or dis-
covered in a previous increment. At this point it will be necessary to negotiate further
increments if the customer must have the new requirements. If all the user acceptance
tests pass at the final planned increment then discuss and agree a new costing for any
subsequent increments.

The above strategy has helped to mitigate the risk from off-site uninvolved cus-
tomers by bringing them closer to being off-site agile believers. It also makes the bal-
ance of power fairer in the working relationship as Servasport are seen to be driving
certain aspects of the product development. The customer was also given the opportu-
nity to be more involved in product development resulting in greater commitment to
the product. As the company prepares for larger projects running in parallel the care-
ful use and planning of increments will become essential if they are to continue to be
successful in satisfying their customers. When such development situations arise fur-
ther agile practices will be investigated for suitability.

5.3.2 Personnel Turnover Risk
The mitigation strategy for this risk has yet to be refined with Servasport but the fol-
lowing paragraphs outline the basic practices. The advantage of a small development
team often relates to the natural occurrence of face to face communication. It is gen-
erally accepted that small teams benefit from the ability to communicate frequently
about each other’s development problems and successes. However, the disadvantages
are that if a team member becomes ill or leaves for another employer the other team
members find it difficult to orient themselves with often undocumented work prac-
tices and development. This scenario is common for many small software develop-
ment organisations working at or near to their limits.

Contrary to the popular misunderstanding agile methods do use documentation but
the emphasis is on working software. Documentation may not be comprehensive but
it will relate to the essential aspects of a project. Ruping [16] suggests that agile
documentation should be governed by the following principles:

• Project documentation should be lightweight and only include what is neces-
sary.

• Necessary documents can only prove useful if they are high-quality.
• Tools and techniques for documentation are only useful if they aid the produc-

tion of high-quality documents and make their organisation and maintenance
easier.

• The documentation process must adapt to each specific project.

Regarding tools, Servasport use standard word processing software for the produc-
tion of formal documents for customers such as contractual agreements and user
manuals. They use the open source SugarCRM [17] tool as a version control system
for documents. SugarCRM can also be used to manage tasks but it is not possible to
produce burn-down statistics hence limiting its applicability to other agile practices. It
is recommended that Servasport use a standard spreadsheet to track all tasks and man-
age it with their chosen version control system.

Servasport follow a standard set of coding guidelines and code comment standard.
However, more important than this type of documentation is that related to the

302 P.S. Taylor et al.

product architecture. One of the developers is primarily responsible for deciding the
shape of the architecture and the tools used to implement it. It should be evident to all
members how to update such tools and integrate other tools within the architecture. In
order to keep such documentation lightweight and current it is advised that a wiki [18]
system be used which is accessible and editable by all team members. The wiki sys-
tem used in conjunction with periodic mentored role changing will help reduce the
risk accompanying personnel turnover. For example, the developer responsible for ar-
chitecture changes should change roles temporarily with the developer responsible for
interface design. This will at least highlight where the wiki documentation is incorrect
or unclear and at most lead to more than one developer who can adequately maintain
or change the architecture and interface.

The documentation could be more rigorous but, given the nature of Servasport and
the product domain, what has been described above is adequate to begin mitigating
the risk of personnel turnover and contribute to process improvement.

6 A Risk Based Process for Adopting Agile Methods

Figure 5 summarises the risk based process for adopting agile methods in small soft-
ware development organisations. Given that many such organisations work near or at
their limits, the process for adopting agile methods has to be minimally intrusive yet
effective enough to actually begin mitigating risks. The process begins with the two
stage self assessment. The results are collated by those skilled in agile methods and
process improvement and the risk strategies are developed in conjunction with the
software development organisation. Only at this point are agile practices introduced
which relate directly to the risks resulting in the overall risk mitigation framework.
Feedback and refinement is essential for continual process improvement and changing
product domains. This risk based process will also help to reduce the limitations men-
tioned in Section 3.

Fig. 5. Minimally intrusive risk assessment process for introducing agile methods

7 Conclusions

Many small software development organisations, seeking to improve the efficiency
and effectiveness of their development processes, are being drawn by the hype sur-
rounding agile methods.

 Applying an Agility/Discipline Assessment for a Small Software Organisation 303

The aim of this paper has been to present a method, with an accompanying case
study, to assess the risks that a small software organisation has and to introduce agile
practices to help mitigate these risks. Based on observation and numerous discussions
with small software development organisations the approach presented, derived from
Boehm and Turner’s Agility/Discipline assessment, is a more reasonable attempt to
introduce agile methods. The self assessment presented in Section 5.1 highlights the
primary risks which then function as a framework for the new agile practices. The
framework approach has the advantages of focusing the efforts of those responsible
for process improvement and of reducing resistance to the required changes.

The case study has helped to show how the self assessment can be used. It has been
effective at highlighting the risks and providing the framework for process improve-
ment with agile practices. For organisations like Servasport it is more likely that such
small improvements will need to be made and refined as the business grows rather
than a complete change to agile methods in one step. The potential for failure is sim-
ply too great to risk complete process change in one step.

Acknowledgements

The work described in this paper arises from the SPACE project, supported by the EU
Programme for Peace & Reconciliation, administered by Co-operation Ireland.

References

1. Boehm, B.: Get Ready for Agile Methods, with Care. IEEE Computer, Vol. 35(1), IEEE
Computer Society (2002) 64 – 69

2. Boehm, B., Turner, R.: Rebalancing Your Organization’s Discipline and Agility. In:
Maurer, F., Wells, D (eds.): XP/Agile Universe 2003. Springer-Verlag, Berlin Heidelberg
(2003) 1 – 8

3. Boehm, B., Turner, R.: Using Risk to Balance Agile and Plan-Driven Methods. IEEE
Computer, Vol. 36(6), IEEE Computer Society (2003) 57 – 66

4. Boehm, B., Turner, R.: Balancing Agility and Discipline – A Guide for the Perplexed. Ad-
dison-Wesley (2004)

5. Abrahamsson, P., Warsta, J., Siponen, M. T., Ronkainen, J.: New Directions On Agile
Methods: A Comparative Analysis. Proc. 25th Int. Conf. Software Engineering. IEEE
Computer Society (2003) 244 – 254

6. Highsmith, J.: Agile Software Development Ecosystems. Addison-Wesley (2002)
7. Larman, C., Basili, V. R.: Iterative and Incremental Development: A Brief History. IEEE

Computer, Vol. 36(6), IEEE Computer Society (2003) 47 – 56
8. Larman, C.: Agile & Iterative Development – A Manager’s Guide. Addison-Wesley

(2004)
9. Royce, W. W.: Managing the Development of Large Software Systems. Proc. WESCON.

IEEE Computer Society (1970) 1 – 9. Available for download at
http://www.cs.umd.edu/class/spring2003/cmsc838p/Process/waterfall.pdf (last visited
January 2006)

10. www.agileireland.com

304 P.S. Taylor et al.

11. Turk, D., France, R., Rumpe, B.: Limitations of Agile Software Processes. In: Wells, D.,
Williams, L. A. (eds): XP/Agile Universe 2002. Springer-Verlag, Berlin Heidelberg
(2002) 43 – 46

12. Turk, D., France, R., Rumpe, B.: Assumptions Underlying Agile Software Development
Processes. Journal of Database Management, Vol. 16(4), Idea Group Inc (2005) 62 – 87

13. Keefer, G.: Extreme Programming Considered Harmful for Reliable Software Develop-
ment 2.0. Available at http://www.avoca-vsm.com/Dateien-
Download/ExtremeProgramming.pdf (last visited January 2006). AVOCA GmbH 2003

14. McBreen, P.: Questioning Extreme Programming. Addison-Wesley (2003)
15. Kent, B., Andres, C.: Extreme Programming Explained: Embrace Change. 2nd Ed. Addi-

son-Wesley (2005)
16. Ruping, A.: Agile Documentation – A Pattern Guide to Producing Lightweight Documen-

tation for Software Projects. John Wiley & Sons (2003)
17. http://www.sugarcrm.com (last visited January 2006)
18. http://en.wikipedia.org/wiki/Wiki (last visited January 2006)

J. Münch and M. Vierimaa (Eds.): PROFES 2006, LNCS 4034, pp. 305 – 318, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Lessons Learned from an XP Experiment with Students:
Test-First Needs More Teachings

Thomas Flohr1 and Thorsten Schneider2

1 Software Engineering Group, University of Hannover,
Welfengarten 1, 30167 Hannover, Germany

Thomas.Flohr@Inf.Uni-Hannover.de
2 S²e (Secure Software Engineering),

Lange Strasse 33, 32051 Herford, Germany
Schneider@secure-software-engineering.com
http://www.secure-software-engineering.com

Abstract. For most XP techniques only a few experimental results on their
effects are available. In October 2004 we started a medium-term experiment to
investigate the impact of test-first compared to a classical-testing approach. We
carefully designed a controlled experiment and conducted it with 18 graduated
students randomly assigned to 9 pairs. Hypotheses dealt with development
speed, number of test-cases and the test-coverage when applying the testing
approaches. Results show differences however not significant ones. This paper
also addresses other observations we made during the experimental run. Two
major problems strongly affect the results of the experiment: the low number of
data points and the non-trivial question, whether students really applied test-
first all the time. Although we cannot provide any new results on testing to the
research community, this paper contains valuable information about further
experimental studies on this topic.

1 Introduction

The test-first approach is an XP technique [1] answering the question, when test-cases
should be written. When applying the test-first approach one normally traverses a
cycle similar to:

1. Write one single test-case.
2. Run this test-case. If it fails continue with step 3. If the test-case succeeds, continue

with step 1.
3. Implement the minimal code to run the test-case successfully.
4. Run the test-case again. If it fails again, continue with step 3. If the test-case

succeeds, continue with step 5.
5. Refactor the implementation to achieve the simplest design possible.
6. Run the test-case again, to verify that the refactored implementation still succeeds

the test-case. If it fails, continue with step 5. If the test-case succeeds, continue
with step 1, if there are still requirements left in the specification.

One claimed advantage of test-first is that one never writes more code than absolutely
necessary. It is also said, that test-first leads to greater confidence in code correctness
and when performing refactorings, etc.

306 T. Flohr and T. Schneider

Of course these are hypotheses, which must be proven through experimental runs
and depends on how good developers follow the process of test-first.

But what about the normal approach of testing? We called this approach classical-
testing. It can be defined by the following process:

1. Read the specification.
2. Design the program
3. Write a few lines of code, some method(s), class(es), package(s) or the whole

application.
4. Write some (new) or no test-suites, tests-sets, tests or test-cases gained from the

specification.
5. Run the tests. If they succeed, continue with step 1, 2, 3 or 4. If the tests fail,

continue with step 6. If there are no more further requirements and the code has
been tested enough (perspective of the developer), exit the classical-testing cycle.

6. Remove the errors in the implementation and continue with step 5.

The classical-testing approach is less specified and does not give a good answer when
to write a test-case. Our main research question concentrated on several aspects:

1. The difference between both testing approaches regarding the amount of time
needed to complete the same number of story-cards (development speed).

2. The difference between both testing approaches regarding the test-coverage.
3. The difference between both testing approaches regarding the number of test-

cases.

To verify (or falsify) our hypotheses, we conducted an experiment with students in
October 2004. We opted for a medium-term experiment of several weeks (altogether 40
hours) because short-term studies observing development processes are limited to use
small and artificial tasks. We had two groups: one applied test-first and the other one
was our control group applying the classical-testing approach. Each group contained
several pairs, so in fact the pairs were our subjects. The design of the experiment is
outlined in section 3 and a much more detailed description can be found in [2].

Overall, this paper is structured as follows: section 2 contains the hypotheses we
had using parts of the GQM approach as proposed by Basili [3, 4]. Section 4 contains
the threats to validity. Section 5 deals with the execution of the experiment. In section
6 we give an overview of the results we received from the experimental run. Section 7
contains the discussion of the observations we made and how we judge their
significance. A final conclusion follows in chapter 8.

1.1 Related Work

There is only small number of publications dealing with the observation of test-first in
controlled experiments. Most empirical studies about XP techniques report on pair
programming [5], XP or agile methods in general [6, 7].

Müller and Hagner observed 19 graduate students with some experience in XP [8].
In their experiment test-first was compared to traditional development separately. The
students were divided in two groups to apply one of the approaches each. Each group
had to implement the main class of a graph library which only contains declarations
of methods. The experiment included unit and acceptance tests. Objects of

 Lessons Learned from an XP Experiment with Students 307

investigation were programming speed, reliability of the final code and program
understanding (reuse of code). The authors conclude that test-first for a traditional
developer is not faster than traditional development.

Hulkko and Abrahamsson [9] report on the impact of pair programming in four
software projects. There is no clear answer, whether pair programming or solo
programming results in better product quality. Nevertheless, they give an answer in
which project phases or activities the application of pair programming is useful based
on their empirical findings.

2 Our Hypotheses

We apply the versatile GQM goal template [4] to express the purpose of our study
(the keywords of the GQM goal template are bold):

Conduct a study with the purpose to evaluate the object of study test-first with
a focus on (1) development speed, (2) test-coverage, (3) number of test-cases and
(4) attitude from the point of view of the researchers in the context of a
university computer laboratory and a simulated XP environment with Master’s
students as subjects.

Basically, we compared the results gained from the test-first approach with the data
gained from the control group, who applied the classical-testing approach. Our
alternative hypotheses and corresponding null hypotheses were:

Test-coverage (tc)

Ha_tc: tf ct
The test-coverage when applying test-first (tf) and classical-testing (ct) is
significantly different.
H0_tc: tf = ct
There is no difference in the test-coverage between the two testing
approaches.

Number of test-cases (nt)

Ha_nt: tf ct
The number of test-cases when applying test-first and classical-testing is
significantly different.
H0_nt: tf = ct
There is no difference in the number of test-cases between the two testing
approaches.

Development speed (ds)

Ha_ds: tf ct
The development speed when applying test-first and classical-testing is
significantly different.
H0_ds: tf = ct
There is no difference in the development time between the two testing
approaches.

308 T. Flohr and T. Schneider

3 Design of Experiment

We had a one factor (testing approach) with two treatments (test-first and classical-
testing) scenario and we opted for a completely randomized design [10]. Our
independent variable was the testing approach. The dependent variables were: the
development time for a fixed number of story-cards, the test-coverage and the number
of tests.

Chronologically, the experiment was limited to the length of the winter semester.
We had a total of 13 weeks and in each week the experiment session lasted 4
consecutive hours. The experiment took place in our computer lab. Some sessions
were dropped because of Christmas and New Year. Each student could get 6 credit
points (ECTS) for participation.

The experiment itself was divided into 3 phases: a training phase, a development
phase and an analysis phase. Table 1 shows the schedule of the experiment.

Table 1. Phases of Experiment and Schedule

20.10.2004

Introduction
 Eclipse
(all students)

Testing with
JUnit
(all students)

27.10.2004

Introduction
 Test-First
(10 students)

Classical-Testing
(8 students)

27.10.2004

Introduction
 Flow
(all students)

27.10.2004

Introduction
 Practical trail
(all students)

3.11.2004

10 weeks of
development

4 hours per week
= 40 hours total

26.1.2005

Release of
final version

2.2.2005

Announcement

of
empirical data

General Trail Special Trail Prog. Task Trail Practical Trail
Training Phase Development Phase Analysis

Phase

The main part of the experiment was the development phase of 10 weeks. In this
time the students should implement a library for our research project FLOW [11].
FLOW is concentrating on the graphical description of communication flows in
software processes, so these flows can be analyzed systematically. Each pair started
to develop their library from scratch by using the Eclipse tool platform and Java as
development language. The subjects should exactly follow the detailed steps of their
testing approach being explained in the introduction. Each group only received an
introduction to the testing approach they applied later in the experiment, to minimize
the impact the other approach could have on the group. Test-cases were written with
the help of the JUnit framework [12]. In the training phase students also got an
introduction to Eclipse and testing with the JUnit framework.

Instead of observing the two testing approaches in an isolated way, we integrated
three other XP techniques to simplify measurement, gain more data points and to
better control the experiment: (1) Pair Programming, (2) On-site Customer and (3)
User Stories. Both testing approaches were combined with these three techniques, but
the testing approaches were the only object of investigations. The story-cards (user
stories) were the project’s milestones and with each story-card at least one feature was
added to the library. Additionally, the milestones were our points of measurement. At
each milestone we checked in the project’s state together with its current set of test-
cases in our CVS system, so we could extract any project’s state for later evaluation.
A story-card was considered completed when all customer tests run successfully. The
story-cards were given in a fixed order, so there was no XP planning game included

 Lessons Learned from an XP Experiment with Students 309

in the experiment. The on-site customer was always available to answer question
regarding the library’s requirements and to hand out new story-cards. The students
worked in pairs at one single workstation all the time.

4 Threats to Validity

In experimental designs there are four validity key terms which always must be
considered [10]: conclusion, internal, construct, and external validity. Conclusion
validity concerns with the relationship between the treatment and the outcome.
Threats to internal validity concern issues that may indicate a causal relationship,
although there is none. Construct validity refers to the extent to which the experiment
setting actually reflects the construct under study. Finally, external validity addresses
the question how good the observed and analyzed results can be generalized beyond
the experimental setting.

4.1 Conclusion Validity

Many experiments in software engineering suffer from very poor conclusion validity,
because of a lack of enough data points. Especially medium- and long-term studies
with a complex design are affected, because their replication is complex and only a
few subjects want to attend an experiment for a very long time. Our computer lab
could only support 10 subjects at one time. Because of this low capacity and lack of
enough staff to handle a second session per week, our experiment had low conclusion
validity. In fact only 19 students (9 real pairs/subjects) attended our experiment. With
an alpha of 0.05 and an effect size of 0.8 the power of a two-sided t-test is only 0.18,
which is a very poor power. We used a two-sided Wilcoxon rank sum test for two
samples so we have approximately 95% of the power of the t-test: 0.17. This means
that we only have a probability of 0.17 to show a difference between the testing
approaches, if there is any. Normally, only experiments with a power of at least 0.8
are approved to show real effects. Other threats to conclusion validity are considered
to be low.

4.2 Internal Validity

We applied several methods to ensure the internal validity:

− Every team could only program in the four hours of every session. Homework was
not possible; otherwise diligent students will start to develop the program, while
others may not. Therefore we also forbid to transfer any of the source code to
another computer outside the laboratory environment.

− During the sessions every team had access to the same electronically library of
documents. Access to the Internet was disabled. Anyone had the same body of
knowledge.

− We asked the students not to talk about anything regarding the experiment to other
participants of the experiment (except the team mate), because discussion about the
experiment could influence the results. Overall, the imitation of other treatments is
hard to control in a multi-session design. We only appealed to student’s honour to
avoid this problem.

310 T. Flohr and T. Schneider

− Each group only got an introduction to the testing approach they also would use later
in the experiment. This minimized the danger to use the wrong testing approach.

A problem we could not handle is boredom in experiments lasting a longer time.
We tried to hand out an interesting programming task (with each story-card there was
a new challenge) to prevent this, but there was no guarantee. Boredom endangers the
process conformance i.e. bored subjects will not follow a detailed process very
consequently.

4.3 Construct Validity

Threats to construct validity must be considered, because the results can be influenced
by the other XP techniques we included in the design. Maybe pair programming, story-
cards or the on-site customer favoured one of the approaches. Other threats to construct
validity are considered to be low, especially social threats. We avoided mentioning any
results we observed in the experiment, because it could influence the students. None of
the participants knew any of our hypotheses. To avoid evaluation apprehension
students were not graded for their results, otherwise it is likely that students will try to
cheat in some way e.g. will ask for help. In fact the participants could receive a fix
amount of credit points as a reward regardless of their project’s code quality.

4.4 External Validity

Ensure external validity in experiments conducted with students as subject is always a
problem. Researchers often seek for results, which are also valid in an industrial
environment. Students and university are always different from the development in
reality which is driven by money- and time-pressure. We tried to establish an
environment as real as possible. We decided for a medium-term study and a not too
abstract programming task (a toy problem), because industrial projects are seldom
short and very abstract.

5 Experimental Run

In October 2004 we started to conduct the experiment with a total number of 19
students. The students were randomly paired resulting in 9 pairs and a one person
team. Since the observed results of the one person team can not be compared to the
pairs, we will neglect any results regarding this one student for the rest of this paper.
Five pairs applied the test-first approach and the other 4 pairs adopted the classical-
testing approach.

All students had attended a software engineering course and 12 of them had prior
knowledge of test-first. 16 students had knowledge of JUnit and understood how to
use it. One student even used it in a professional way.

14 students had average (average = conducted a medium-size Java project before)
or above average knowledge in Java, the remaining 5 students had at least some basic
knowledge in Java. Only 3 students never used Eclipse. 7 participants only had
experiences with software projects in university, 7 had an industrial project before (6
months maximum) and 5 designed software in a professional way in the industry for
many years. 12 students attended at least one meeting with a real customer before.

 Lessons Learned from an XP Experiment with Students 311

There were no major differences between the design and execution, so the
experiment was run according to schedule. Some minor problems are mentioned in
[2], including for example the exact location of the TFT screen, when pair
programming is applied.

6 Results and Analysis

This section presents an overview of the results we got. We also will give an analysis
of these results and information about how we gathered data. Since we have a
measure point after the completion of each story-card, we draw a curve of the
development over time for some of the focuses. All teams completed at least 10 story-
cards, so we will especially observe the project’s state immediately after the
completion of the 10th story-card. Some teams completed more than 10 story-cards,
but this section lays only one time attention on the state of the projects at story-card
11 or later. For statistical evaluation we used a two-sided Wilcoxon rank sum test for
two samples (equivalent to the Mann-Whitney test) requiring no assumptions on a
given distribution. We chose = 0.05 as significance level for the following statistical
tests. The last part of this section deals with other observations of the experimental
run being not included in any of the hypotheses.

We start with an observation of the development speed showing the most
intriguing result.

6.1 Development Speed

To obtain the development speed, we calculated the time needed to complete each
story-card. The time was measured from the time, when the customer handed out the
story-card to the pair until the time the customer’s acceptance tests run successfully.

Time needed to complete 10 Story-Cards

998
1141 1171

1291

1672

14411657

1258

1897

0

200

400

600

800

1000

1200

1400

1600

1800

2000

A B C D E F G H I

Pairs (Test-First: A-E, Classical-Testing: F-I)

T
im

e
in

 M
in

u
te

s

Fig. 1. Development Time

312 T. Flohr and T. Schneider

Figure 1 shows the total time needed to complete the first ten story-cards. Our
results show, that the test-first pairs needed less time than the classical-testing pairs
to complete the same amount of ten story-cards. The median time off all pairs is
1291 minutes and all classical-testing pairs needed more (or at least the same) time
than the median time. The Wilcoxon rank sum test delivers a p-value of 0.063, which
exceeds our chosen significance level. Therefore the null hypothesis H0_ds can not be
rejected.

6.2 Number of Test-Cases

After the test-cases had been checked in, we calculated the current number of test-
cases. In our scenario a test-case is a synonym for an assert-statement of the JUnit
framework.

Number of written Asserts (Test-First)

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10 11 12 13

Story-Card

N
u

m
b

er
 o

f
A

ss
er

ts

Pair A

Pair B

Pair C

Pair D

Pair E

Fig. 2. Number of Asserts Test-First Approach

The raw number of test-cases is of course no appropriate measure for the quality of
test-cases, but it can deliver an impression how much effort was spent on the creation
of test-cases. Figures 2 and 3 show the development of the number of tests-cases over
time (story-cards). The curves show no clear favor for one of the test-approaches
(with the exception of outliers of pair B). At most, we can see a slight favor for test-
first in the means measured after the check in of story-card 10: 79.6 (test-first) and
61.5 (classical-testing). The reason for this favor is the very high number of asserts of
pair B. A hypotheses test showed no difference between the two approaches (p = 1).
Therefore we can not reject the null hypothesis H0 nt.

 Lessons Learned from an XP Experiment with Students 313

Number of written Asserts (Classical-Testing)

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10 11 12 13

Story-Card

N
u

m
b

er
 o

f
A

ss
er

ts

Pair F

Pair G

Pair H

Pair I

Fig. 3. Number of Asserts Classical-Testing Approach

6.3 Test-Coverage

We determined different types of coverage with the code coverage tool Clover [13],
which can compute three different types: Method Coverage, Statement Coverage and
Conditional Coverage. Our special attention lied on the percentage of conditional
coverage, because method and statement coverage can easily produce very extreme
values depending on which conditional expressions or methods are evaluated and
which are not evaluated. When applying test-first, we could hypothesize that we
should get a conditional coverage very close to 100%, but our observations show that
the mean conditional coverage of 36.1% is far below this (story-card 10). Classical-
testing even provides a slightly better mean conditional coverage of 39.9%. Figures 4
and 5 give an overview of the development of the conditional coverage. With story-
card 11 we had a new design decision:

To run the customer’s acceptance tests the pairs were asked to provide a simple
command line based UI to use the library from beginning (story-card 1), but with each
story-card the UI became larger (even larger than the library code) and very hard to
test. Therefore, students did not write any test-cases to test the UI, but the UI was part
of the same project and measurements regarding the code coverage also included the
UI. Finally, it resulted in a quite low conditional coverage until we decided to exclude
the UI from any further measurement with story-card 11. After this conditional
coverage increases dramatically for nearly all pairs, but the effect was much stronger
for the test-first pairs.

We could not get a significant difference between the two approaches in the
percentage of conditional coverage after the check in of story-card 10 (p = 0.904,
library and UI were measured). Even at story-card 11 (after excluding the UI from
measurements) we could not get a significant difference (p = 0.786).

314 T. Flohr and T. Schneider

Some pairs improved their conditional coverage over time (mainly at project’s
early phases). So we can assume there was some learning effect. It is hard to discover
any major differences over time between both approaches.

Test-First Conditional Coverage

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Story-Card

%
 C

o
n

d
it

io
n

al
 C

o
ve

ra
g

e

Pair A

Pair B

Pair C

Pair D

Pair E

Fig. 4. Conditional Coverage Test-First Pairs

Classical-Conditional Coverage

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Story-Card

%
 C

o
n

d
it

io
n

al
 C

o
ve

ra
g

e

Pair F

Pair G

Pair H

Pair I

Fig. 5. Conditional Coverage Classical-Testing Pairs

 Lessons Learned from an XP Experiment with Students 315

We also analyzed the data from the two other coverages (story-card 10), but can
not get any significant difference. Table 2 summarizes the p-values we calculated for
each of the coverages. So in fact there is no statistical significant difference between
the testing approaches regarding the coverages.

Table 2. P-Values of Coverages

type of coverage p-value
method coverage

0,286

statement coverage

0,73

conditional coverage

0.904

6.4 Other Observations

We assumed that students’ acceptance for test-first can be mapped to the curve shown
in Figure 6 (black line). After a test-first training students have a slight rejection
towards test-first, because they suppose that it will slow down the development
process. Shortly after, they change their opinion, because they realize that test-first
can guide through the development process. Afterwards the acceptance steadily
increases until the hot spot (final hours of development) is reached. After the hot spot
the acceptance decreases rapidly, because time is short and will not be “wasted” for
testing.

10

 5

10

 5

 3.11. 24.11.

 15.12. 19.1.

hypothese

measured

project’s middle hot spot

time

project’s start

rejection

test-first training

popularity

acceptance

Fig. 6. Attitude of Students over Time

316 T. Flohr and T. Schneider

From questionnaires we obtained the students’ attitude towards test-first (dashed
line). We only asked the pairs following the test-first approach to fill out the
questionnaires. The questionnaires were handed out four times during the run of the
experiment. We had not enough data point to draw a complete line over the duration
of the experiment. But it is obvious, that the real attitude differs from our assumed
curve. The measured curve showed a clear trend: the attitude decreased over time.
Nevertheless, students never rejected test-first. Negative attitude could be a result of
boredom, which finally could results in low process conformance. A positive attitude
indicates that the students were not bored.

The questionnaires included questions regarding the attitude towards test-first.
With each questionnaire we also asked if the students support several statements
about test-first. Table 3 gives an overview of these statements and how many people
(measured in %) supported the statement.

Table 3. Supported Statements

statement: Test-first helps… mean percentage
not to write more code than necessary.

73%

to write code with less flaws.

63%

to understand the customer’s
requirements better.

38%

to write more structured code.

28%

To design the application.

18%

85% of the test-first subjects said, that test-first is not better or worse than the
programming style they used before. 70% were the opinion, that development with
test-first is not faster or slower than their preferred way of programming. 20% even
said test-first slows down their development.

Another interesting observation is that pair programming provoked the subjects to
program more concentrated and to follow their testing approach more consequently.
We assume this is because of one team member always had an eye on the other team
member, so no one could disregard the testing approach.

7 Discussion

Designing perfect software engineering experiments is a difficult task, because skilled
developers are needed and there is always a human factor that is hard to control.
There are also a large number of context variables an experiment’s designer has to
pay attention to. Therefore, there is always a tension between environments with
controlled variables (good internal validity) and environments, which should be real
(good external validity). We tried to fulfill both aspects, which is very hard. On the

 Lessons Learned from an XP Experiment with Students 317

one hand, we opted for a medium-term experiment with a programming task, which is
not too abstract. On the other hand, we had to include rules in our experiment, to
establish basic internal validity. Additionally, we suffered from a very low number of
data points resulting in a low statistical power. Another problem could be the
influence of further XP techniques included in the experiment on the dependent
variables.

Despite we provided a good setup, which addressed a lot of problems, we faced
two major problems:

Our experiment strongly suffered from a small amount of data points resulting in a
poor experiment’s power. Even if there are differences between the test approaches, it
is very unlikely, that our experiment was able to show them. So it was very likely that
none of the null hypotheses could be rejected.

The other major problem was the process conformance: It is very hard to control,
whether subjects follow a technique or not. From figure 4 we can conclude, that test-
first was not applied consequently and a large portion of code was left untested. We
suppose that students applied a testing-approach being neither test-first nor classical-
testing., but rather a combination of both approaches. This is rather likely for test-first
and testing novices.

Students might not have followed the process in our experiment:

− Because of the UI large parts of the code could not be tested very easily.
− The introduction to test-first and testing was not deep enough, so students were

not able to test the complex data structures needed for an appropriate
implementation of the FLOW library.

− The experiment was not taken seriously enough.

Nevertheless we think that pair programming helped to ensure a minimal process
conformance in our experimental setup, because students had one eye on each other.

8 Conclusion

Our experiment strongly suffered from a lack of data points resulting in a very low
power of 0.17, but with our limited resources there was no way to obtain a higher
power. The second major problem concerns process conformance.

In any case a further replication of our controlled experiment (strict replication [4])
is necessary to increase the conclusion validity. So the next logical step will be a
creation of an experimental package for strict replications or maybe variations of the
experiment.

From the small number of data points we could draw the following conclusions:

− There is no evidence that there is a significant difference in the development speed,
number of test-cases and code coverage.

− Conditional coverage became better over time, because of better understandings
towards testing.

− Students do not reject test-first after an introduction to test-first.
− Pair programming is a good way to ensure a minimal process conformance.
− Students consider test-first development neither faster (better) nor slower (worse)

than the programming style the used before.

318 T. Flohr and T. Schneider

We strongly suggest anyone wanting to replicate our experiment or at least
conducting an experiment dealing somehow with test-first and testing:

− Students need more lecture hours in testing and test-first. Two hours are not
enough, even if students had some experience with testing before. We suggest at
least a special testing course of one semester combined with practical sessions.
The experiment could be last one of the practical sessions, so everyone should
have enough prior knowledge and practical experience.

− Enough subjects are necessary to gain statistical power, whereas pair
programming reduces the number of subjects, but increasing process
conformance. Without pairs our experiment would have the double number of
subjects resulting in a power of 0.354. This is of course not good enough, but
much better. Maybe it would be better to conduct a short-time experiment
combined with pair programming and a much greater number of subjects.

References

[1] Beck, K.: Extreme Programming Explained. 2000: Addison-Wesley
[2] Flohr, T., Schneider, T.: An XP Experiment with Students - Setup and Problems. in

Profes 2005. 2005. Oulu, Finland: Springer-Verlag
[3] Basili, V., Caldiera, G., Rombach, H.: Goal question metric paradigm, in Encyclopedia

of Software Engineering, J.J. Marciniak, Editor. 1994, John Wiley & Sons: New York. p.
528-532

[4] Basili, V.R., Shull, F., Lanubile, F.: Building Knowledge through Families of
Experiments. IEEE Transactions on Software Engineering, 1999. Vol. 25

[5] Müller, M.M., Tichy, W.F.: Case Study: Extreme Programming in a University
Environment. in International Conference on Software Engineering. 2001. Toronto,
Ontario, Canada: IEEE Computer Society

[6] Noll, J., Atkinson, D.C.: Comparing Extreme Programming to Traditional Development
for Student Projects: A Case Study. in XP 2003. 2003. Genova, Italy

[7] Lindvall, M., et al.: Empirical Findings in Agile Methods. in Extreme Programming and
Agile Methods - XP/Agile Universe 2002. 2002: Springer-Verlag

[8] Müller, M.M., Hagner, O.: Experiment about Test-first programming. IEEE Proceedings
Software, 2002. 149(5)

[9] Hulkko, H., Abrahamsson:, P.: A multiple case study on the impact of pair programming
on product quality. in ICSE. 2005. St. Louis, Missouri, USA

[10] Wohlin, C., et al.: Experimentation In Software Engineering: An Introduction. Kluwer
Academic Publishers. 2000, USA

[11] Schneider, K., Lübke, D.: Systematic Tailoring of Quality Techniques. in 3rd World
Congress for Software Quality. 2005. Munich, Germany

[12] Gamma, E., Beck, K.: JUnit framework, http://www.junit.org/index.htm
[13] Clover Code Coverage for Java, http://www.cenqua.com/clover/

J. Münch and M. Vierimaa (Eds.): PROFES 2006, LNCS 4034, pp. 319 – 333, 2006.
© Springer-Verlag Berlin Heidelberg 2006

An Empirical Study on Design Quality Improvement
from Best-Practice Inspection and Pair Programming

Dietmar Winkler and Stefan Biffl

Vienna University of Technology, Institute of Software Technology
Karlsplatz 13, A-1040 Vienna, Austria

{Dietmar.Winkler, Stefan.Biffl}@qse.ifs.tuwien.ac.at

Abstract. The quality of the software design often has a major impact on the
quality of the final product and the effort for development and evolution. A
number of quality assurance (QA) approaches for inspection of early-life-cycle
documents have been empirically evaluated. An implicit assumption of these
studies was: an investment into early defect detection and removal saves higher
rework cost. The concept of pair programming combines software construction
with implicit QA in the development team. For planning QA activities, an
important research question is how effective inspectors can be expected to be at
detecting defects in software (design and code) documents compared to
programmers who find defects as by-product of their usual construction
activities.

In this paper we present an initial empirical study that compares the defect
detection effectiveness of a best-practice inspection technique with defect
detection as by-product of constructive software evolution tasks during pair
programming. Surprisingly, in the study context pair programmers were more
effective to find defects in design documents than inspectors. However, when
building a larger team for defect detection, a mix of inspection and pair
programming can be expected to work better than any single technique.

Keywords: Verification & Validation, Inspection, Pair-Programming, Nominal
Teams, Empirical Software Engineering.

1 Introduction

Traditional software development life cycle processes typically consist of five steps:
requirements definition, system design, implementation, integration, and operation.
Quality assurance (QA) activities embedded within the software development process
are a key to achieve a higher level of software quality. In industrial practice a low
number of defects in a software product are a measure for product quality. Product
improvement also leads to a reduction of repair effort due to defects in artifacts, e.g.,
specification documents, requirements definitions, or code. Rework effort for defect
repair can increase rapidly the later a defect is detected and removed [18]. Thus, early
removal of defects in design documents and the requirements specification is
expected to lead to better-quality products and to improve project performance, i.e.,
result in overall lower effort and cost.

320 D. Winkler and S. Biffl

Inspection and testing are common analytical methods for software product
improvement along the life cycle to minimize the number of remaining defects.
Obviously, both techniques can require considerable effort in the face of scarce
resources in a project. To reduce this effort, an option is to strengthen constructive
QA approaches in order to detect and remove defects shortly after they occur. Pair
Programming (PP) aims at supporting the construction of higher-quality software
products using a small-team approach that is expected to reduce rework effort.

An important parameter for planning QA activities is how effective a best-practice
analytical QA approach (inspection) is compared to just using a constructive approach
with implicit QA, such as PP. In this paper we report on an initial empirical study in
an academic environment [6] that compares the performance of a best-practice
constructive approach (PP) and a best-practice QA technique. We applied usage-
based reading (UBR), a well-investigated reading technique for software inspection,
as representative approach for best-practice defect detection. Further, we investigate
the impact of team size and team composition involving PP teams and UBR
individuals for improving software product quality, i.e., detecting defects. The
comparison of the effort of the different methods is more difficult because of the
different emphasis, proceedings, and outcomes of the two approaches. However, even
the comparison of quality measures provides an interesting initial baseline and deeper
understanding of the defect reduction characteristics of the investigated approaches.

The reminder of this paper is structured as follows. Section 2 describes related
work on pair programming, software inspection, and team composition. Section 3
summarizes the research hypotheses; Section 4 outlines the experiment setting.
Section 5 presents the results of the empirical study and Section 6 discusses these
results. Finally, Section 7 concludes and sketches directions for further research.

2 QA Aspects of Usage-Based Inspection and Pair Programming

Software processes structure development to systematically achieve higher-quality
software products. In this context we define software quality based on the number of
(important) defects in a software product. In most software processes reviews (or
inspections) are performed at milestones to check artifacts for quality compliance and
correctness. An important goal is to reduce the number of defects effectively.

Recently, agile programming practices have been introduced that foster rapid QA
feedback during software construction activities. A particularly promising approach is
pair programming, where two persons jointly conduct construction tasks; one team
member implicitly supports QA by questioning unclear work results of the other
partner and by pointing out defect candidates as they occur. However, there are very
few studies on the QA effect of PP in direct comparison to software inspections. In
this initial study we pay special attention to the benefits of usage-based inspection and
constructive software development approaches, as proposed in [6].

2.1 Defect Reduction with Usage-Based Reading During Design Inspection

Software inspection is a well-known, team-oriented, and empirically evaluated static
verification and validation approach for the improvement of software artifacts
[15][23]. The nature of inspection makes the method applicable to all types of

 An Empirical Study on Design Quality Improvement from Best-Practice Inspection 321

software documents, i.e., design documents and source code documents [9][10],
because inspection does not require executable code.

In industrial practice, inspection processes consist of four major steps: inspection
planning, defect detection, defect collection, and defect repair [23]. The inspection
process includes a defect detection task, where individual inspectors (within an
inspection team) traverse the document under inspection following a reading
technique for guidance. A reading technique is a structured process for defect
detection that uses predefined roles, scenarios, checklists, etc. Inspectors follow a set
of guidelines and/or checklists defined by the reading technique. Several reading
technique approaches have been discussed and investigated experimentally
[1][3][15][17].

Requirements and use cases are the units of interest for usage-based reading (UBR)
[15][16]. Use cases describe business cases on a defined level of detail to achieve full
coverage of requirements in design specification and source code.

In this paper we use UBR as baseline for an active approach for defect detection
[22] in design and code documents. UBR is a best-practice approach that focuses on
scenarios and a pre-defined order of use cases (ranked according to their business
value contribution) [2], which are understandable for customers and developers as
well, using graphical representation and additional textual information for scenario
and business case description. Experienced domain experts prioritize the use cases
according to their business importance. UBR inspectors apply prioritized uses cases
sequentially to the inspection artifacts starting with the most important use case and
report candidate defects. Candidate defects are subjectively raised issues, recognized
by the inspectors during the individual reading process. Note that inspectors do not fix
defects during defect detection. Defect candidates are labeled as real defects or false
positives after individual inspection by a group of experts in the project context. Use
case prioritization is part of the preliminary inspection preparation phase and not in
the scope of this paper. In the empirical study environment UBR inspectors perform
the following sequence of steps [23]:

1. Choose the use case with the highest priority.
2. Apply use case to the documents under inspection and record candidate defects.
3. Continue with the next use case until time is up or all use cases are covered.

The third step of the traditional software inspection process is defect collection.
Because of the team-oriented approach of inspection, a set of individual defect
detection lists exist after individual inspection. Team meetings are one option for
defect detection list aggregation. An alternative is a nominal team, i.e., a non-
communicating team for defect collection after independent individual inspection
[4][5]. The application of nominal teams ignores the impact of real team meetings and
real interaction between team members [3]. Some studies [4][5] doubt the net benefit
of team meetings. Nominal teams can be built from a permutation of the available
individual inspectors.

2.2 Defect Reduction with Pair Programming in Design Artifacts

Pair programming (PP) is a constructive development technique that includes QA
tasks for agile software development. Agile software processes [8] use smaller and

322 D. Winkler and S. Biffl

more frequent iterations for better cooperation between customers and developers and
to foster communication in the software engineering team. These smaller steps
support the project team in constructing software products that better meet the needs
of the customers, partly due to smaller entities for QA [8].

A PP team consists of two persons, sharing one keyboard and one monitor. While
the first person implements tasks according to pre-defined use cases and scenarios, the
other person looks over her shoulder to raise issues in the new work results or defect
candidates in the specification and code documents. The roles of team members can
change frequently. Due to the involvement of “two brains” [19][20], the team can
achieve a twofold benefit: (a) higher-quality development of the software product
because of the effective involvement of two persons who work together, and (b)
improvement of software quality within all parts of the project during software
construction. The latter benefit is also a twofold one: (a) increasing quality because of
a lower number of defects in the new software code due to continuous reviews [7] and
(b) increasing quality of existing software artifacts; thus defect reduction is a by-
product of PP. The key question of this paper focuses on the comparability of defect
detection capabilities of traditional inspection approaches and constructive
approaches, where defect detection is considered as a by-product.

In this paper we use a PP variant, proposed in [6], to accelerate agile processes by
adding QA tasks as part of the constructive phase. The pair programmers follow the
prioritized list of expert-ranked use cases and perform their construction tasks. In
these tasks, they have to use existing material (requirements specification, existing
code fragments, etc) to understand their working environment and also check the
plausibility and consistency (analytical tasks); then they evolve the existing source
code following the predefined order of use cases (constructive tasks).

While one part of the pair implements and completes open programming tasks,
defined within the work package, the other person looks over her shoulder to check
the code for correctness. In more detail, this process consists of four steps:

1. Select the use case with the highest priority.
2. Compare requirements and use cases to the design specification and already

implemented code fragments. Report candidate defects in case of deviations.
3. Work on requirements (including previous check for correctness).
4. Continue with the next use case until all use cases are covered or time is up.

To our knowledge, there is an increasing number of empirical studies on PP
[12][13][14][21], however, very few investigate the quality improvement effect on
existing software products [11]. Müller et al. [11] propose additional review and
testing phases after PP tasks to achieve internal validity in an experiment
environment. In the empirical study reported in this paper, we did not perform
additional QA tasks, but asked pair programmers to note defect candidates as by-
product of construction. PP’s primary task is the implementation of new software
code fragments and defect detection as a by-product with focus on software code
(using the usual development environment, i.e., computer, compiler, and tool
support).

 An Empirical Study on Design Quality Improvement from Best-Practice Inspection 323

3 Research Issues

The main focus of this paper is the comparison of the defect reduction effect as by-
product of a constructive software development to a focused defect detection
technique. To achieve comparability of defect detection rates, we focus on finding
defects in input documents to inspection and evolution, i.e., design and code.

3.1 Variable Definition

We define dependent and independent variables. The independent variable is the
technique applied: PP (with 2-person teams) and UBR (with individual inspectors).
We controlled the influence of participant capability by randomly assigning them to
techniques (PP and UBR) and PP teams.

Dependent variables capture the performance of the individual techniques applied
in the experiment. We focus on defect detection effectiveness, i.e., the share of
defects found in relation to all defects seeded, as performance measure to investigate
the influence of each approach on defect detection capability of existing software
artifacts. In addition to the overall number of defects we also apply defect severity
classes: critical defects (class A), major defects (class B), and minor defects (class C).
For evaluation purposes we focus on important defects, i.e., the summary of critical
and major defects (class A+B).

Furthermore we provide data on the effort of technique application for background
information. Because of a different focus of the individual approaches, a comparison
of effort would not seem useful. Note that we cover experiment participation duration,
not the duration of experiment setup and artifact preparation.

In addition to measuring the effectiveness of PP teams and individual inspectors
we measure the performance of teams with the parameters team size and team
composition (the techniques participants in a team used) to investigate the impact of
nominal teams on defect reduction.

3.2 Hypotheses

In the experiment we first observed effectiveness of techniques according to
important defects (classes A+B) for PP teams and UBR individuals. In a second round
we build nominal teams [4] from the performance of average experiment participants
to investigate the effectiveness contributions of the two techniques.

In this paper we investigate hypotheses: on the effectiveness of work units (H1); on
the effectiveness of 2 persons in a nominal UBR team or a PP team (H2); and on the
effectiveness of technique variations in nominal teams of different sizes (H3).

• H1.1: Effectiveness (PP) > Effectiveness (UBR) for source code documents. To
analyze the benefits of “natural work units” we compare PP teams with one UBR
inspector. Note that PP involves higher effort and more persons, but also has a
focus that is different from finding defects. PP focuses primary on implementation
including defect detection as a by-product. Therefore, we expect a higher
effectiveness of PP teams for source code documents.

• H1.2: Effectiveness (PP) < Effectiveness (UBR) for natural-language text
documents. In contrast, the main scope of UBR inspectors is defect detection with

324 D. Winkler and S. Biffl

focus on written text documents, e.g., design documents (DD). Therefore, we
expect a higher effectiveness of UBR regarding written text documents.

To improve comparability among the techniques according to team size, we build
nominal 2-person UBR teams (so-called minimal teams, MT) randomly (complete
permutation). The hypotheses are similar to H1.

• H2.1: Effectiveness (PP) > Effectiveness (UBR-MT) for source code documents
and minimal teams. The argument is similar to H1.1 because of the different main
focus of both approaches. Because of an additional UBR inspector we expect a
somewhat higher effectiveness.

• H2.2: Effectiveness (PP) < Effectiveness (UBR-MT) for natural-language text
documents and minimal teams. Because of an additional UBR inspector we expect
strengthened results similar to H1.2 with higher deviation of design document
effectiveness.

Because both approaches focus on different issues, we assume a team consisting of
members from both techniques to combine their benefits.

• H3.1: Effectiveness (PP+) > Effectiveness (UBR+) for source code documents and
nominal teams. We expect a higher effectiveness in a team from adding a PP team
(PP+) rather than compared to adding a similar number of UBR inspectors
(UBR+).

• H3.2: Effectiveness (PP+) < Effectiveness (UBR+) for design documents and
nominal teams. Additionally we expect a higher defect detection rate for written
text documents from additional UBR individuals (UBR+) in a team.

3.3 Experiment Description

The study material is based on a taxi management system, provided by Thelin et al.
[15][16], who investigated different reading technique approaches. We proposed an
empirical investigation of analytical QA activities (best-practice inspection) with
constructive approaches (PP) in [6]. First empirical results were published in [23].

The main task of UBR inspectors was defect detection in software documents. PP
teams used similar artifacts including a constructive task, i.e., extending the source
code according to prioritized use cases. The main purpose of this paper is the
investigation of the performance of defect detection, i.e., the number of found defects
in relation to the total number of seeded defects (effectiveness) for important defects
and depending on defect locations in documents (source code documents and written
text documents). All participants applied a pre-defined set of prioritized use cases, a
business case description, a requirements document, a design specification, and a set
of guidelines for method application. The design specification and the source code
documents contained seeded defects.

The experiment was conducted in three steps: (a) experiment preparation, (b)
experiment execution, and (c) data evaluation.

During experiment preparation experts prepared the software artifacts, i.e., the
requirements definition including use cases description and prioritization according to
business process importance. Selected parts of the software code were provided by the
experiment preparation team. The design document and source code documents were

 An Empirical Study on Design Quality Improvement from Best-Practice Inspection 325

seeded with a pre-defined set of defects. The other documents were improved in
extensive review cycles until they were found to be correct.

The execution phase consisted of 3 steps: (a) tutorials where participants got an
overview on the software system and the application domain (45 min) as well as
training on the application of their technique (45 min), (b) the individual application
of the technique (up to 300 min for inspection and up to 600 min for PP individuals),
and (c) data submission to a database. The participants were supported by experiment
supervisors, to clarify upcoming questions and to check the produced products for
accuracy and usability. Concerning team evaluation, we counted multiple matched
defects (within a team) only once. During individual application, the inspectors/pair
programmers found candidate defects in the software artifacts and submitted them to
the defect database.

Data evaluation: Members of the experiment team mapped defect candidates to
seeded defects (“real defects”). Candidate defects that matched to seeded defects were
classified as matched defects. Note that multiple candidate defects, which matched to
one specific seeded defect, were counted only once, i.e., at the first time of detection
and reporting. We built nominal teams from UBR individuals and PP teams by
applying full permutation of all available data for the desired team size. For UBR-
MT, the team size was 2 UBR persons. For statistical testing we applied the Mann-
Whitney test at alpha level 0.05.

3.4 Software Artifacts

The system describes a taxi management system, presented by Thelin et al. [17]. We
extended the experiment package to UML notation and included additional
constructive approaches, i.e., PP [6]. First empirical results on the replication part
(without constructive approaches) were published in [23].

The taxi management system consists of 2 parts, a central and a taxi. In our
evaluation context we investigated defect detection capability in both parts (view on
systems level).

Fig. 1. Taxi management system – overview according to [17]

The experiment setup consists of (a) a textual description of the requirements and
the use cases in users view, (b) the design document as well as the source code
containing seeded defects and (c) the guidelines for the techniques applied as well as
questionnaires for determining inspector capability and feedback.

• The textual requirements document consists of 8 pages including 2 UML2
component diagrams. The textual requirements document describes the basic
functionality of the system in a user-friendly way.

326 D. Winkler and S. Biffl

• The design document spans 8 pages (including about 2,400 words, 2 component
diagrams and 2 UML diagrams). We describe an overview of the software modules
as well as their context including internal (relationships between two or more
modules) and an external representation (relationships between the user and the
system). Furthermore, we provide prioritized use case descriptions containing 24
use cases from user point of view and an overall number of 23 sequence diagrams.
This artifact describes the technical dimension of the taxi management system.

• We provide source code fragments (some 1,500 lines of code) written in Java2,
seeded with defined defects, and a method description of about 9 pages. These
source code fragments were used in a twofold way: (a) to investigate the inspection
effectiveness for source code, and (b) to investigate the QA effectiveness of PP and
when extending the existing modules.

• The participants use guidelines for application of the assigned technique. Furthermore
we provide questionnaires to measure inspector/programmer experience, capability
indicators, and feedback on the individual techniques.

The design specification and the source code documents were seeded with a pre-
defined number of defects by highly experienced experts.

Table 1. Distribution of Seeded Defects

Defect class Design Source Sum
A (critical) 10 (17%) 19 (32%) 29 (49%)
B (major) 12 (20%) 12 (20%) 24 (40%)
C (minor) 5 (8%) 2 (3%) 7 (11%)
Sum 27 (45%) 33 (55%) 60 (100%)

Critical defects (class A) would have a severe and frequent impact on important
functionality. Class B (major) defects are rarely occurring important defects or less
important frequent defects (medium risk). Minor defects appear seldom and have little
influence on functionality and quality. The document package (design specification
and source code documents) contains overall 60 seeded defects according in three
defect severity classes and two defect locations. Table 1 presents the nominal
numbers of seeded defects according to defect severity classes and document types. In
this paper we focus on important, i.e., critical and major (classes A and B), defects.

3.5 Subjects

The subjects in this initial study were 41 graduate software engineering students. We
used a PP qualification test for candidate participants to ensure sufficient
implementation skills. All participants were assigned randomly to the techniques, PP
and UBR, to control the influence of inspector capability and to achieve better
external validity. The experiment was integrated in a practical part of a software
engineering and quality assurance workshop. We assigned 15 inspectors (54%) to
UBR and 26 persons (46%) to 13 PP teams.

 An Empirical Study on Design Quality Improvement from Best-Practice Inspection 327

3.6 Threats to Validity

We controlled the external validity by randomly assigning participants to UBR and
PP. Additionally, all candidates had to pass a PP qualification test to ensure their
sufficient programming skills. 41 subjects (of about 60 candidates) passed this test.
This qualification test was used to enable comparability to an industrial setting and to
minimize the influence of variance of inspector capability. We did not perform a
qualification test for inspectors; however, all participants had had classes on the skills
needed for inspection in their regular curriculum.

We seeded representative defects in the design specification and source code
documents according to different types of defects and defect locations. The seeded
defects were representative of defects found during the development of the documents
under study. For achieving higher external validity with defects in specific industry
setting, replicated studies would be appropriate that consider the typical range of
defects in the target context.

The correctness of the requirements document was achieved with extensive review
cycles. To achieve better internal validity the experiment preparation team set up the
experiment package under guidance of experienced researchers including several
reviews. To achieve comparability to previous studies [15][16], we used approved
material modified to fit the experiment context.

Note different focus of inspection and PP. Inspection focuses on defect detection as
primary task. PP focuses on the construction of software code and defect detection as
a by-product.

4 Experiment Results

In this section we present results of the initial empirical study concerning
effectiveness of work units, minimal teams, and some preliminary results of nominal
team composition to investigate the influence of mixtures of both approaches.

4.1 Effort

We report effort to illustrate the background of the study. In the study context, we
define effort as the overall session duration, including individual preparation (reading
the documents and getting familiar with the technique applied) and technique
application time. We do not consider experiment preparation time which was done by
experts as preliminary work packages before the experiment started.

PP teams needed 1,030 min (about 17 person-hours (ph)) on average and a
standard deviation of 120min (2ph). Inspectors required 273 min (about 4.5 ph) with a
standard deviation of 38 min (0.6 ph). Note that PP involves 2 persons and took much
longer than UBR because of the main focus on the implementation of additional
software code. Defect detection is considered as by-product of PP in this study.

4.2 Effectiveness of Work Units

Effectiveness is the number of defects found in relation to the number of seeded
defects according to defect class and defect location in a document (design document
and source code documents). The evaluation covers important defects (class A+B),
which should be supported by prioritized use cases.

328 D. Winkler and S. Biffl

1513 1513N =

Technique Applied

UBR-IndividualPP-Pair

E
ffe

ct
iv

en
es

s,
 C

la
ss

 A
+

B
 [%

]
100

80

60

40

20

0

Location

 Design Document

 Source Code

 Technique Applied (Minimal Teams)

UBR-MTPP-Pair

E
ffe

ct
iv

en
es

s,
 C

la
ss

 A
+B

 [%
]

100

80

60

40

20

0

Location

Design Document

Source Code

Fig. 2. Effectiveness of important defects
acc. to defect location

Fig. 3. Effectiveness of important defects
from minimal teams

Effectiveness of Work Units. We concern “work units” as the original configuration of
participants applying each technique: PP team and UBR inspector. The results
presented in Figure 2 show best effectiveness for important defects according to all
defect locations for PP teams. We observe a smaller difference (9 defects on average)
for design document effectiveness, but a higher difference (21 defects on average) for
source code effectiveness.

Table 2. Effectiveness, important defects

 Location PP-Pair UBR-Individuals P-value

DD+SC 56.3 40.3 0.013 (S)
DD 56.3 47.3 0.212 (-)

M
ea

n

SC 56.3 35.3 0.004 (S)
DD+SC 20.6 13.6 -

DD 26.7 20.6 -

S
td

.D
ev

SC 17.9 11.4 -

Nevertheless, PP outperforms UBR for all defect severity classes. Note also a
higher standard deviation for design defects found by UBR inspectors. Table 2
presents an overview of effectiveness according to technique applied and defect
location. Applying the Mann-Whitney-Test to investigate significant differences, we
observe significant differences for all documents (DD+SC) and source code (SC), but
no significant difference with respect to design documents (DD). Obviously, the
investigated implementation approach (PP) outperforms the individual inspection
approach (UBR) for SC documents.

A more detailed investigation of this defect type shows the benefits of the PP
approach more clearly. A subset of the seeded source code defects (4 defects) focus
on logic, dataflow, and visibility defects, e.g., private and public statements, which
may be found more easily applying an implementation approach rather than a paper-
based inspection approach. Additionally, PP uses a computer and a compiler to find
defects, which supports defect detection in source code documents. The results show

 An Empirical Study on Design Quality Improvement from Best-Practice Inspection 329

an effectiveness of about 79% according to these defect types for PP and 23% for
UBR a significant difference.

4.3 Effectiveness of Minimal Teams (MT)

To achieve comparability of team size, we compare the original work unit of PP
teams to a nominal team of 2 UBR inspectors. Figure 3 displays the results of
minimal team effectiveness for important defects according to defect locations. Table
3 depicts mean value and standard deviation of effectiveness according to important
defects (class A+B) with respect to minimal teams, i.e., PP team and randomly
assigned 2 person UBR nominal teams (UBR-MT).

Table 3. Effectiveness of Minimal Teams (MT)

 Defect PP-Pair UBR-MT p-value
DD+SC 56.3 57.8 0.292 (-)
DD 56.3 68.6 0.680 (-)

M
ea

n

SC 56.3 50.1 0.014 (S)
DD+SC 20.6 10.5 -
DD 26.7 15.8 -

S
td

.D
ev

SC 17.9 9.9 -

The UBR-MT approach achieves a notably, but not significantly, higher average
effectiveness with respect to the all documents and design documents, but there is a
difference for PP teams. Concerning defect detection regarding source code defects,
PP teams outperform UBR-MT significantly.

4.4 Effectiveness of Nominal Teams

Because the two techniques focus on different aspects of a software document, we
expect a higher defect detection effectiveness of teams, consisting of participants of
UBR and PP. Team composition can achieve a twofold benefit: (a) more efficient
handling of source code documents with tool support (naturally available for PP) and
(b) higher defect detection rate in written text documents due to the application of
reading techniques (in our study: UBR). Table 4 depicts the team composition
regarding PP-teams and UBR individuals to a team size up to 5 team members. Note
that PP teams consist of 2 persons and the table shows individual persons (we did not
split PP teams). The “team size” describes the overall number of participants
(persons) within a nominal team. The participants were assigned to a nominal team
randomly, performing full permutation. Regarding team notation, P defines the
integration of a number of PP-teams in the team, while R indicates the number of
UBR individuals included.

Figure 4 displays the mean of effectiveness according to the nominal teams with
respect to important defects (class A+B). Note that the figure includes also the overall
effectiveness according to all matched defects as control value for nominal team
evaluation. The analysis shows an increasing effectiveness, regarding defect detection
rates for design documents, independent of the technique applied. A closer view

330 D. Winkler and S. Biffl

shows somewhat smaller gain including another PP-Pair within the nominal team.
Concerning source code location, we observe an increasing effectiveness for PP-
teams and a constant value (team size 4) and decreasing value (team size 5) when
including UBR individuals.

Table 4. Nominal team composition (individuals)

Team-Members PP Ind. UBR Ind. Team Size (number of
individuals per team)

PR 2 1 3
PP 4 0 4
PRR 2 2 4
PPR 4 1 5 T

ea
m

s

PRRR 2 3 5

60,0%

65,0%

70,0%

75,0%

80,0%

85,0%

90,0%

PR PP PRR PPR PRRR

Team Composition

E
ff

ec
ti

ve
n

es
s,

 C
la

ss
 A

+B
 [

%
]

all matched, design Risk AB, design

all matched, source Risk AB, source

Fig. 4. Effectiveness of nominal teams

Table 5. Team effectiveness, class A+B

 A+B PR PP PRR PPR PRRR
Team Size 3 4 4 5 5

DD+SC 71.2 74.8 78.1 82.0 81.8
DD 74.6 76.2 83.6 85.1 88.2

M
ea

n

SC 68.7 73.7 74.2 79.7 77.4
DD+SC 12.6 13.3 9.1 8.6 7.2

DD 16.4 17.2 11.3 10.9 8.1

S
td

.D
ev

SC 11.8 11.6 9.6 8.5 8.5

We observe a similar trend for all matched defects and for important defects (class
A+B). Table 5 displays mean value and standard deviation for effectiveness of
important defects according to defect location.

 An Empirical Study on Design Quality Improvement from Best-Practice Inspection 331

5 Discussion

In Section 3.2 we presented hypotheses on the expected effectiveness of individuals,
real teams, and nominal teams regarding the defects in different documents. This
section discusses the hypotheses with the experiment results.

Effectiveness of Work Units (H1). Concerning the effectiveness of work units (PP
team and UBR individuals) according to defect location and important (classes A+B)
defects, we expected a higher effectiveness of PP for source code documents and a
higher effectiveness of UBR for text documents. The results show a higher
effectiveness of a PP team for both aspects. PP significantly outperforms UBR
concerning defect in the whole experiment package (DD+SC). We did not recognize a
significant difference for design documents. The results support hypothesis (H1.1),
that effectiveness of PP outperforms UBR according to source code documents.
Hypothesis (1.2) that UBR performs better than PP for design documents could not be
supported in the study context. We assume two possible reasons for this effect: (a) PP
requires additional effort for implementation and defect detection (therefore more
defects were found), and (b) implementation tasks support defect detection in design
specifications because of immediate observation of the corresponding impact of
defects. While implementing, defects in the design specifications might be detected
easier than during reading a document.

Effectiveness of Minimal Teams (H2). Because PP involves 2 persons and UBR is a
single person defect detection approach, we set up minimal nominal UBR teams to
compare effectiveness according to team size, defect location, and defect severity.
Again, we assume a better performance of PP for source code defects and a better
performance of UBR for defects in the design document.

Hypothesis (H2.1), PP outperforms UBR-MT for source code defects, was
confirmed. We observe a significant difference for SC defects. Again we assumed
that UBR-MTs perform better (H2.2) than PP teams for design documents. UBR-MTs
find more defects than PP. The Mann-Whitney test does not flag significant
differences. Therefore the results did not agree to our assumptions.

Effectiveness Team Composition (H3). The combination of PP and UBR approaches
promises to deliver better results, summarizing the benefits of PP for the detection of
source code defect and UBR for defect detection in written design documents. We
investigate teams up to a size of 5 persons, regarding PP and UBR. The results
describe an increasing effectiveness concerning an increasing team size. We also
record, that additional PP participants improve defect detection in source code
documents and additional participants of UBR inspectors support defect detection in
design documents. Therefore, both assumptions agree to the results.

Our expectations, that additional PP teams improve defect detection in source code
(H3.1) were confirmed by the observed results. Additionally, the expectations, that
additional UBR inspectors improve defect detection capability regarding design
specifications (H3.2), were also confirmed by the observed results. These
observations might be used in decision support processes for combining analytical
and constructive QA approaches in a given project context to achieve a certain level
of product quality, e.g., building a QA team to find 70% of important defects.

332 D. Winkler and S. Biffl

6 Conclusion and Further Work

Software product improvement is an important issue in software development. Defect
prevention, defect detection, and defect removal should be established as early as
possible during development. Software inspection is a defect detection approach
applicable to written text documents early in the development process. The main task
of inspection is defect detection, in best practice applying reading techniques, e.g.,
UBR based on expert-prioritized use cases. As inspections do not require executable
code, they may be performed in early software development phases.

Pair programming (PP) is a method, applicable to agile software processes and
focuses on implementation of code fragments, involving two persons. While one
person implements the software code, the other performs continuous reviews of code
documents and specification documents. Therefore, PP performs defect detection as a
by-product of software implementation, also rather early in low-level development.
Note that code implementation is still the main focus of PP.

The results of our initial empirical study showed that PP is a promising method for
both implementation and defect detection regarding the seeded defects in our study
context. However, PP requires higher effort because of the involvement of two
persons and the focus on software construction. Nevertheless, PP performed better
than best-practice inspection concerning defect detection in code documents, which
may partly be attributed to tool support for some defect detection tasks. UBR as a
paper-based defect detection approach performed better for design documents.
Regarding design documents, we do not recognize any significant difference between
PP and UBR. Combinations of both approaches lead to overall best results.

Further work is necessary to validate the results of this study, including more
participants to achieve a higher level of external validity. The replication and
extension of the initial study enabled a closer look on agile software development
methods, like pair programming, including quality assurance approaches. Further
work is necessary to investigate the impact of inspector capability on defect detection
effectiveness and on defect profiles for typical target contexts in practice.

References

[1] Basili V., Caldiera G., Lanubile F., Shull F.: "Studies on Reading Techniques", 21st
Annual Software Engineering Workshop, NASA/Goddard Software Engineering
Laboratory Series, SEL-96-002, pp 59-65, College Park, Maryland, 1997.

[2] Biffl S., Aurum A., Boehm B.: "Value-Based Software Engineering", Springer, 2005.
[3] Biffl S.: "Software Inspection Techniques to support Project and Quality Management",

Shaker Verlag, 2001.
[4] Biffl S., Halling M.: "Investigating the Defect Detection Effectiveness and Cost Benefit

of Nominal Inspection Teams", IEEE Transactions on Software Engineering 29 (5),
pp.385-397, 2003.

[5] Biffl S., Gutjahr W.: "Influence of Team Size and Defect Detection Methods on Inspection
Effectiveness", Proc. of IEEE Int. Software Metrics Symposium, London, 2001.

[6] Biffl S., Winkler D., Thelin T., Höst M., Russo B., Succi G., “Investigating the Effect of
V&V and Modern Construction Techniques on Improving Software Quality”, Poster
presented at ISERN 2004, Los Angeles.

 An Empirical Study on Design Quality Improvement from Best-Practice Inspection 333

[7] Cockburn A., Williams L.: “The Costs and Benefits of Pair Programming in Extreme
Programming Examined”, Addison Wesley, 2001.

[8] Cockburn A.: “Agile Software Development”, Addison Wesley, 2002.
[9] Fagan M.: “Design and Code Inspections To Reduce Errors In Program Development”,

IBM Systems J., vol. 15, no. 3, pp. 182-211, 1976.
[10] Gilb T., Graham D.: "Software Inspection", Addison-Wesley, 1993.
[11] Müller M.: "Are Reviews an Alternative to Pair Programming?", Conference on

Empirical Assessment In Software Engineering (EASE), pages 3- 12, UK, 2003.
[12] Nawrocki J., Wojciechowski A.: "Experimental Evaluation of Pair Programming",

Proceedings of the 12th European Software Control and Metrics Conference, pages
269-276, April 2001.

[13] Padberg F., Müller M.: "Analyzing the Cost and Benefit of Pair Programming",
International Symposium on Software Metrics METRICS 9, 2003.

[14] Parrish A., Smith R., Hale D., Hale J.: "A field study of developer pairs: Productivity
impacts and implications", IEEE Software, 21(2), Pages 76-79, 2004.

[15] Thelin T, Andersson C., Runeson P., Dzamashvili-Fogelström N.: „A Replicated
Experiment of Usage-Based and Checklist-Based Reading“, 10th IEEE International
Symposium on Software Metrics, pp. 246-256, 2004.

[16] Thelin T., Runeson, P., Regnell B.: “Usage-Based Reading - An Experiment to Guide
Reviewers with Use Cases,” Information and Software Technology, vol. 43, no. 15, pp.
925-938, 2001.

[17] Thelin T., Runeson, P., Wohlin, C.: “An Experimental Comparison of Usage-Based and
Checklist-Based Reading, IEEE Trans on Software Engineering, 29(8), pp. 687-704,
2003.

[18] Westland J. C.: “The cost of errors in software development: evidence from industry”,
Journal of Systems and Software 62, 1-9., 2002.

[19] Williams L., Kessler R., Cunningham W., Jeffies R.: "Strengthening the Case for Pair
Programming", IEEE Software 17(4):19-25, 2000.

[20] Williams L. Kessler, R.: “All I really need to know about pair programming I learned in
Kindergarten”, Communication of the ACM, Volume 43, Issue 5 (May 2000), ACM
Press, New York, pp. 108-114, 1999.

[21] Williams L., McDowell C., Nagappan N., Fernald J., Werner L.: “Building Pair
Programming Knowledge through a Family of Experiments”, IEEE, Proceeding of the
2003 International Symposium on Empirical Software Engineering, ISESE, 2003.

[22] Winkler D., Biffl S., Thurnher B.: “Investigating the Impact of Active Guidance on
Design Inspection”, Proc. of Profes 05, 2005.

[23] Winkler D., Biffl S., Riedl B.: „Improvement of Design Specifications with Inspection
and Testing”, Proc. Of Euromicro 05, 2005.

J. Münch and M. Vierimaa (Eds.): PROFES 2006, LNCS 4034, pp. 334 – 347, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Variability-Centric Approach to
Instantiating Core Assets in Product Line Engineering*

Soo Ho Chang, Soo Dong Kim, and Sung Yul Rhew

Department of Computer Science
Soongsil University, Seoul, Korea
shchang@otlab.ssu.ac.kr,

{sdkim, syrhew}@comp.ssu.ac.kr

Abstract. As a key activity in product line engineering (PLE), instantiation is a
task to generate target applications by resolving variability embedded in core
assets. However, instantiation is often conducted in manual and ad-hoc fashion,
largely replying on domain knowledge and experience. Hence, it can easily lead
to technical problems in precisely specifying decision model consisting of
product-specific variation points and variants, and in handling inter-variant
conflicts/dependency. To overcome this difficulty, it is desirable to develop a
systematic process which includes a set of systematic activities, detailed
instructions, and concrete specification of artifacts. In this paper, we first
propose a meta-model of a core asset to specify its key elements. Then, we
represent a comprehensive process that defines key instantiation activities,
representations of artifacts, and work instructions. With the proposed process,
one can instantiate core assets more effectively and systematically.

1 Introduction

Product line engineering (PLE) is one of the recent and effective reuse approaches,
and it consists of two processes; domain engineering and application engineering.
Domain engineering is to develop a core asset which captures common functionality
and quality attributes among family members in the domain. Application engineering
is to generate target applications by instantiating the core asset with a product-specific
decision resolution model (DRM)[1].

In PLE, modeling the variability among applications is a key activity because it
allows a number of potential applications to reuse the same core asset [2]. A harder
part of modeling variability is to identify the conflicts and dependencies among
variation points and variants. Once the variability model is constructed, it is further
refined and designed into a decision model (DM) which specifies concrete variation
points and their relevant variants.

Once a core asset with a DM is constructed as either a model or an implementation,
it is instantiated for each application. A key step of instantiation is to define a DRM
which specifies application-specific variants for the variation points, and to bind the
variants to relevant variation points of the core asset. However, this instantiation is

* This work was supported by grant No. (R01-2005-000-11215-0) from the Basic Research

Program of the Korea Science & Engineering Foundation.

 A Variability-Centric Approach to Instantiating Core Assets in PLE 335

carried out largely in manual and ad-hoc fashion, replying on domain knowledge and
experience. Moreover, current research works on core asset instantiation have not yet
identified the comprehensive instantiation process and detailed instructions.

In this paper, we define a process to instantiate core assets to application specific
assets. The process consists of activities which have detailed steps and instructions
and produces an instantiated core asset as the final deliverable. We first define a meta-
model of core assets, i.e. the key elements and their representation of core assets in
section 3. Then, we present an instantiation process and instructions in section 4.
Then, we assess our proposed framework with process evaluation criteria in section 5.

2 Related Works

PuLSE (Product Line Software Engineering) is a process for developing product line
developed by fraunhofer institute for experimental software engineering (IESE) [3]. It
consists of three sub-elements; Deployment Phases, Technical Components, and
Support Components. Deployment phases is to produce reusable assets and products
using related technical components of PuLSE–BC, PuLSE-Eco, PuLSE-CDA, PuLSE-
DSSA, PuLSE-I, and PuLSE-EM.

PuLSE-I is used to develop applications and it includes an activity of instantiating
product line model and reference architecture [4]. The product line model which is
essentially an object model and storyboards representing a core asset is hierarchically
resolved with a decision model and application specific characteristics. The reference
architecture is refined into an intermediate architecture which embeds an architectural
variability and it defines an architectural resolution decision. This identifies activities
for instantiating, however, step-wise and detailed instructions are not given.
Moreover, elements of each artifact are not defined.

KobrA is a component-based product line engineering method based on UML. It
consists of Framework Engineering and Application Engineering[1]. Framework
engineering defines a framework which is a set of reusable assets among family
members and Application engineering is to produce applications by instantiating the
framework with a decision model. During Instantiation activity, a generic Komponent
is translated into a specific Komponent by using DM. DM is tailored to a DRM for a
specific application. A process to instantiate core assets is also represented by
analyzing the overlap between a framework and application requirements and
tailoring a Komponent framework. This work defines a process of instantiation at
macro level. The instructions given here need to be further refined in order to
automate the instructions.

Deelstra’s work starts with motivation that deriving products from shared software
assets is a time-consuming and expensive activity contrary to the popular belief [5].
This work presents a product derivation framework which defines a number of
terminologies, product family classifications according to two dimensions of scope,
and generic software derivation process. It also presents a set of identified problems
and issues associated with product derivation based on a case study at two large
industrial organizations. Case studies conducted in this work show well application of
their proposed framework with appearance of well known company, explicit number
of components, variation points, LOC, etc.

336 S.H. Chang, S.D. Kim, and S.Y. Rhew

3 Meta Models of Core Assets

There are several kinds of abstraction levels for artifacts (e.g. requirement, analysis,
design, implementation, etc) in developing application. In accordance with the level,
several kinds of binding time (e.g. design, compile, and install time, etc) can be
applied. In this paper, we focus on the design level core assets in which level
variability is resolved because we assume that MDA approach is used to implement
development automation.

Most of definitions given in PLE research works specify that a core asset consists
of product line (PL) architecture, components and their interfaces, and a decision
model defining variability realization[1][6][7][8]. We now summarize and refine sub-
elements of each key element based on the works as in shown Figure 1.

Core Asset

Product LineProduct Line
ArchitectureArchitecture

ComponentComponent
ModelModel

InterfaceInterface

DecisionDecision
ModelModel

«r
ef
er

s
to

»

ProvidedProvided
InterfaceInterface

RequiredRequired
InterfaceInterface

ComponentComponent

InterInter--elementelement
RelationshipRelationship

ElementElement VariationVariation
PointPoint

VariantVariant

Attached Attached
TaskTask

EffectEffect

ObjectObject

InterInter--objectobject
RelationshipRelationship

«refers to»

«refers to»

0..*
1 Variation

Point Scope

Optional

Alternative

Open
0..*1

1

1..*

Architectural Architectural
StyleStyle

«refers to»

Fig. 1. Meta-model of Core Assets

Product Line Architecture (PLA): Software architecture realizes both functional
and non-functional requirements. Architecture design begins with choosing most
appropriate architectural styles which can realize the both types of requirements.
Element and inter-element relationships in PLA are derived from the requirements
and especially inter-element relationships are guided by styles. Hence, the style is not
a constituent of product line architecture, but an abstract element to which
architecture conforms.

PLA may be represented by a class diagram, package diagram, or others in
UML[9], and architectural variability may be represented in the model by defined
expressions such as stereo types in UML [10].

Component Model: The component model represents a design of component internal
which is represented with structural and behavioral model of objects, inter-object
relationships, and interfaces. Generally component-base development (CBD) is based
on object-oriented development (OOD) and in this section we assume that
functionality of core asset is realized by components in CBD. And the component
model is linked to elements in PLA.

Object-oriented model is generally represented by use case models, static models,
and dynamic models. Therefore, component models can be represented by use case
diagrams, class diagrams, and sequence diagrams in UML. Expression of variability
on the models has generally been proposed by using stereo types [1].

 A Variability-Centric Approach to Instantiating Core Assets in PLE 337

Decision Model (DM): Decision Model is a specification of variations in core assets
and includes variation points, variants, effects, and attached task [1]. We believe that
it is essential to precisely define the representations and semantics of the variation.

 A variation point is a place where slight differences among member may occur.
Depending on elements of core asset, variations can be distinguished such as
architecture and component internal as shown in Figure 2

Variation pointVariation point

ArchitectureArchitecture ComponentComponent

InterfaceInterfaceAttributeAttributeStyleStyle ComponentComponent LogicLogic WorkflowWorkflow
InterInter--

componentcomponent
RelationshipRelationship

Fig. 2. Specialization of Variation Point

In architecture design, some architectural styles may be not selected depending
on non-functional requirements of target application. Variable components and
their relationships may be optionally used in some applications or alternatively
used in some applications. Therefore component variability on DM may be
divided into alternative and optional. In components, several types of variation
points may be appeared as referred in [11].

 Variants are valid values which can appropriately fill in a variation point. As the
types of variation points and variability types such as optional and alternative, the
variants may be designed into various formats.

 Effect means a range of relationships among variations points and it is represented
with dependencies or conflicts among variability. That is, a variant for a variation
point should be selected with other variants for other variation points, but some
variants should not. The relationships are an essential problem which should be
specified and resolved in product line engineering [12].

 Attached Task is a set of activities to resolve a variation point for one selected
variant, that is, to instantiate. Through the attached tasks, post-conditions of an
instantiated variation point should satisfy specified effects for a variation point.
The tasks typically utilize to customization mechanisms. Since a variation point is
realized as one of different types [11], each type of variation points may require
different customization mechanisms.

We now refine DM[1] and variability range table in [13] into 3 types of decision
models to represent variations for each element of core assets. Table 1 shows a
possible specification of the variability, a Decision Model.

Table 1. Decision Model for Style Variability

Variation Point Scope Variant Effect Attached Task

VPi
Alternative|
Optional |

Open
Varianti

 Some varianta can not be
 selected.
 Some variantb should be

selected.
 …

 Remove some variantb.
 Add variant.
 Replace a variant which

will be defined.
 …

… … … … …

338 S.H. Chang, S.D. Kim, and S.Y. Rhew

The VPs is specialized to style, components, inter-component relationships, or
elements in a component. Scope means the relationship between a variation point and
its relevant variants and is classified with Alternative, Optional, and Open. To
describe dependency, we use two cases; can not be selected and should be selected.
Moreover, depending on the two cases, attached task can be classified into remove,
add, and modify.

4 Process and Instruction

Based on the meta-models and representations of core assets, we now present a
process and work instructions for instantiating core assets. It is assumed that a core
asset for a product line is available, so that the process takes a core asset as the
input.

Activity 2. Instantiate PL ArchitectureActivity 2. Instantiate PL ArchitectureActivity 2. Instantiate PL Architecture

Configure
Architectural Style

Configure
Architectural Style

Step 2-1

Resolve Style VariabilityResolve Style Variability

Step 2-2

Resolve
Component Variability

Resolve
Component Variability

Step 2-3

Activity 3. Instantiate ComponentActivity 3. Instantiate ComponentActivity 3. Instantiate Component

Create Intermediate
Component Model

Create Intermediate
Component Model

Step 3-1

Resolve Variability
in Structural Model
Resolve Variability
in Structural Model

Step 3-2

Resolve Variability
in Dynamic Model

Resolve Variability
in Dynamic Model

Step 3-3

Activity 4. Validate Instantiated Core AssetActivity 4. Validate Instantiated Core AssetActivity 4. Validate Instantiated Core Asset

Validate
Instantiated PL Architecture

Validate
Instantiated PL Architecture

Step 4-1

Validate
Instantiated Component

Validate
Instantiated Component

Step 4-2

Activity 1. Define Decision Resolution ModelActivity 1. Define Decision Resolution ModelActivity 1. Define Decision Resolution Model

Identify
Overlapped Features

Identify
Overlapped Features

Step 1-1

Select
Applicable Variation Points

Select
Applicable Variation Points

Step 1-2

Define VariantsDefine Variants
Step 1-3

Verify
Decision Resolution Model

Verify
Decision Resolution Model

Step 1-4

Fig. 3. Process to Instantiate Core Assets

The process consists of 4 activities where each activity has steps with input/output
artifacts and instructions and it produces an instantiated core asset as the final
deliverable.

4.1 Activity 1. Define Decision Resolution Model (DRM)

This activity is to define a DRM which refers to application requirement and indicates
variants for relevant variation points. Hence, DRM specifies applicable variation
points and their variants of a target application, and it is used for resolving variability
during activities 2 and 3. This activity has four steps as shown in Figure 4.

 A Variability-Centric Approach to Instantiating Core Assets in PLE 339

Step1-1.
Identify

Overlapped Feature

Step1-1.
Identify

Overlapped Feature

Step 1-2.
Select Applicable
Variation Points

Step 1-2.
Select Applicable
Variation Points

Step 1-3.
Define Variants

Step 1-3.
Define Variants

Overlapped Feature
Specification (OFS)

activityactivity artifactartifact

Decision Resolution
Model (DRM)

Application Specific
Requirement (ASR)

Decision Model

ASR *

Commonality and
Variability Model

Step 1-4.
Verify DRM
Step 1-4.

Verify DRM

Fig. 4. Steps for Activity 1

Step 1-1. Identify Overlapped Features
In PLE, a feature is a basic unit for designating common functional or non-functional
characteristics among applications. However, some applications may not need to use
all of the features in a core asset. This situation is shown as ‘Features Not Used by
Application’ in Figure 5. In contrast, a core asset may not provide all the features
required by an application. This situation is shown as ‘Features Not Covered by Core
Asset’ in the figure. These kinds of mismatches especially arise when a new
application is added to the product line after a core asset has been developed.

Features

N
ot C

overed

by

C
ore A

sset

Features
OverlappedFe

at
ur
es

N
ot
 U
se
d
by

A
pp
lic
at
io
n

Features Provided
by Core Asset

Features Required by
Application

Variation Point

Fig. 5. Mismatch between Core Asset and Application Requirement

Step 1-1 is to identify the features that are overlapped between a core asset and a
target application. Only the overlapped features need to be instantiated onto the target
application. The input is both commonality and variability(C&V) model of a product
line and an application specific requirement specification (ARS). C&V model
describes common and variable features where features in the model can be classified
to functional and non-functional features. This step produces a list of overlapped
features (LOF).

Instruction: This step is divided into two sub-steps. The first sub-step is to extract
non-functional overlapped features. The non-features can be represented into quality
attributes such as performance or security and each quality attribute may be specified
into detailed requirements. From the detailed requirements, we identify architecture-
relevant non-functional requirements as well as other non-functional requirements
related to fine-grained functionality.

The second sub-step is to identify functionally overlapped features. The
functionality may be generally itemized as subsystem units and use case units.
Figure 6 shows a classification of the overlapped features which are identified in this
step.

340 S.H. Chang, S.D. Kim, and S.Y. Rhew

OverlappedOverlapped
FeatureFeature

NonNon--FunctionalFunctional
FeatureFeature

FunctionalFunctional
FeatureFeature

ArchitectureArchitecture
IndependentIndependent

FeatureFeature

ArchitectureArchitecture
Relevant Relevant
FeatureFeature

Fig. 6. Classification of Overlapped Features

Step 1-2. Select Applicable Variation Points
This step is to identify the features which have variation point from the overlapped
features. Note that, since there are features which are not used by application as
shown in the Figure 6, not all variation points specified in a decision model are
applicable to each application. That is, an application may typically take a subset of
those variation points.

Input and Output: The inputs are LOF, DM, and ARS which specifies application
specific functionality in detail. Especially the representation of DM in the section 3 is
referred in this step. The output is an initial DRM which includes a list of variation
points but the VP is not filled yet.

Instruction: As inferred in section 3, variability can be appeared in architecture and
component internals. We first identify variation points on architecture and initialize
an architectural decision resolution model. The architectural variation points are
classified into those of styles and components. Style variability can be derived from
non-functional and architecture-relevant features, that is, style variability of DM. In
styles, some components may be discarded or replaced other component, that is,
component variability of DM.

Once architectural variation points are identified, variation points in components
should be selected. Since variability in components is relatively fine-grained, specific
requirements of ARS may be referred to find variation points.

Step 1-3: Define Variants
This step is to define appropriate variants for associated to variation points identified
in step1-2. The scope of variability can be either closed or open[13]. The scope of
closed variability is determined by a set of known valid values for a variation point,
where the scope of open variability includes currently unknown future variants.
Therefore the variants may be selected a decision model or defined as new variants
fitted into variation points, as shown in Figure 7.

Input and Output: The inputs in this step are the initial DRM from stpep1-2 and
ARS. Through this step, we output a DRM.

Instruction: this step is divided into sub-steps for closed variability and open
variability. First, in the closed case, we choose an appropriate variant for identified
variation points in DRM. And then associated effects and attached task can easily be
taken from the DM.

Next sub-step is to resolve open variability. In this step, a variant is newly defined
for an application by exploring application specific requirement. In this case, effects
and attached task should also be newly defined. That is possible because core assets
have already had an extension point in which the new variants can be plugged due to
an open scope expectation.

 A Variability-Centric Approach to Instantiating Core Assets in PLE 341

Effects

Attached Task

Decision Model (DM)

Variants

Variation Point

Effects

Variant

Variation Point

Decision Resolution
Model (DRM)

Effects

Attached TaskAttached Task

Closed VariabilityClosed Variability

Open VariabilityOpen VariabilityNewly Designed

Variants

Fig. 7. Defining Variants

As inferred section 3, the variation points may be classified to architectural styles,
components, component internals. To choose appropriate variants of style variability,
quality attributes are referred.

Step 1-4. Verify Decision Resolution Model
This step is to verify DRM by reviewing application requirement specification.
Followings are check list for verifying DRM

 Check whether the decision resolution specification includes all the necessary
variation points.

 Check the validity of variants for each variation point.
 For open variability, verify that the supplied variant satisfies the specification of

valid variants in DM.

4.2 Activity 2. Instantiate PL Architecture

This activity is to resolve architectural variability, including 3 steps as in Figure 8.

Step 2-1.
Create Intermediate

Architecture

Step 2-1.
Create Intermediate

Architecture

Step 2-2.
Resolve

Style Variability

Step 2-2.
Resolve

Style Variability

Step 2-3.
Resolve

Component Variability

Step 2-3.
Resolve

Component Variability

Intermediate
Architecture

Product Line
Architecture

DRM

Instantiated
Architecture

Fig. 8. Steps for Activity 2

Step 2-1. Create Intermediate architecture
To instantiate PL architecture, we first create an intermediate architecture which has
the same set of elements in PL architecture. Subsequent steps 2-2 and 2-3 modify this
intermediate architecture through resolving architectural variability.

Step 2-2. Resolve Style Variability
PLA consists of a set of architectural styles which include commonality and
variability. In this step, we realize a valid configuration of applicable styles by
referring DRM. Therefore this step requires DRM and outputs a refined intermediate
architecture in which style variability is resolved.

Instruction: This step should be guided by effects and attached tasks of style
variability of DM. We first trace the attached tasks. The tasks generally show which
elements should be removed and which should be not removed depending on
selection of a style. In the selected case, attached tasks of DM may be not proposed
because intermediate architecture already contains the selected style. After tracing,

342 S.H. Chang, S.D. Kim, and S.Y. Rhew

the post condition should be verified for effects of DM. Followings are observations
of resolving style variability.

 Extent of overlapped area between styles may be different. While one style may
be extent over architecture, other style may occupy limited portion of the
architecture. Therefore effect on removing styles may have different propagations.

 Since a style is realized by components and inter-component relationship,
removing style may be confused by removing components and their relationships.
However, some component may be removed, but some components may be just
changed their relationships in architecture since a style describes components'
configuration.

Step 2-2. Resolve Component Variability
Component variability may be occurred in both common and variable styles. In this
step, we resolve component variability by removing not selected variants. The input is
intermediate architecture from step 2-2 and the output is instantiated architecture.

Instruction: This step is also guided by effects and attached tasks in DM like style
variability in step 2-2. However, component are linked to other components, tasks are
slightly different from style variability in that the tasks should cover dependency
between variable components and linked components. Followings are observations of
resolving component variability.

 Variable components have links in PLA. Once an optional component is removed,
the relationships to other components should be traced and removed.

 When one of alternatives in component variability is selected, compatibility with
other components should be verified.

Figure 9 shows an example of instantiated PLA in a rental domain which include
tow members; book rental system and car rental system. Instantiation in this example
is for the book rental system. PLA has variability on four components; LggingMgr,
WebUI, AuthenticationMgr, and OnlinePaymentMgr. And the LogingMgr is selected
as only variant.

«mandatory»
CustomerMgr
««mandatorymandatory»»
CustomerMgrCustomerMgr

«mandatory»
ItemMgr

««mandatorymandatory»»
ItemMgrItemMgr Business LogicBusiness Logic

LayerLayer

UI LayerUI Layer

Data LayerData Layer

«mandatory»
SellMgr

««mandatorymandatory»»
SellMgrSellMgr

OnlineOrder
Mgr

OnlineOrderOnlineOrder
MgrMgr

«client-server»
User Interface
««clientclient--serverserver»»
User InterfaceUser Interface

«web»
«optional»

User Interface

««webweb»»
««optionaloptional»»

User InterfaceUser Interface

AccountMgrAccountMgrAccountMgr
«external»

Authentication
Mgr

««externalexternal»»
AuthenticationAuthentication

MgrMgr

«optional»
Online

PaymentMgr

««optionaloptional»»
OnlineOnline

PaymentMgrPaymentMgr

«client-server»
User Interface
««clientclient--serverserver»»
User InterfaceUser Interface

«mandatory»
Pay for
cashMgr

««mandatorymandatory»»
Pay for Pay for
cashMgrcashMgr

CustomerCustomerCustomer ItemItemItem SellSellSell OrderOrderOrder PaymentPaymentPayment

* mgr means manager
Database (of branch A) Database (of branch A)
for the Rental Domainfor the Rental Domain

«alternative»
LoggingMgr
««alternativealternative»»

LoggingMgrLoggingMgr

Fig. 9. An Example of Instantiated PLA of the Rental Domain

 A Variability-Centric Approach to Instantiating Core Assets in PLE 343

4.3 Activity 3. Instantiate Components

This activity is to resolve component variability designed in structural and dynamic
models.

Step 3-1.
Create Intermediate
Component Model

Step 3-1.
Create Intermediate
Component Model

Step 3-2.
Resolve

Structural Model

Step 3-2.
Resolve

Structural Model

Step 3-3.
Resolve

Dynamic Model

Step 3-3.
Resolve

Dynamic Model

Intermediate
Structural Model

Component
Model

DRM

Instantiated
Dynamic Model

Intermediate
Dynamic Model

Instantiated
Structural Model

Fig. 10. Steps for Activity 3

Step 3-1. Create Intermediate Component Model
In this step, we first create an intermediate component model like the intermediate
architecture. Contrary to the intermediate architecture, intermediate component model
is divided into structural model and dynamic model which will be used in step 3-2 and
3-3. The input is component models the output is intermediate structural and dynamic
component model.

Step 3-2. Resolve Structural Model
Structural models of a component are generally represented by class diagrams. In the
models, variability of component internal such as attributes, logic, and interface may
be designed. In this step, the variability is resolved and structural models for a target
application are established. The detailed steps to resolving structural model are
similar to step 2-2. However observations of resolving variability of component
internal structural model are as followings.

 Attributes variability may largely affect signature of many operations or interfaces
which use the variable attributes.

 In case of open variability, attributes, operations, and even objects may be newly
designed in the structural model.

 Logic variability is represented in specification of structural model rather than the
structural diagram since it needs detailed description.

Step 3-3. Resolve Dynamic Model
Dynamic models of a component are generally represented by collaboration diagrams.
In the models, workflow variability of component can be designed. In this step, the
variability is resolved, and then dynamic models for a target application are
established. The detailed steps to resolving structural model are same to step 2-2.
However, observations of resolving variability of component internal dynamic model
are different as followings.

 Some workflow variability may be limited to component internal, i.e. micro
workflow, whereas other workflow variability may affect component outside, i.e.
macro workflow.

 The macro workflow variability may affect architecture configuration since they
modify inter component relationship as inter-component dependency.

344 S.H. Chang, S.D. Kim, and S.Y. Rhew

4.4 Activity 4. Validate Instantiated Core Asset

Activity 4 is to validate instantiated core assets against application specific
requirement. The task of validating instantiated core assets is a lot more complicated
than validating assets for a single system. Hence, the steps and detailed instructions
for this activity are out of the paper scope. Instead, we give a few check items as
examples:

 All and only the variation points specified in DRM should have been resolved in
an instantiated core asset.

 All the variation points specified in the DRM must be resolved with the specified
variants.

 Pre-condition and inter-variation point relationships specified in the effect should
have been preserved in an instantiated core asset.

 Variants unselected by the DRM must have not presented in an instantiated core
asset.

5 Assessment

5.1 Evaluation Criteria

To assess the proposed process, we first define evaluation criteria. These criteria are
derived from the commonly referred process evaluation works found in systems and
software engineering area [14][15].

Criterion #1. Process Architecture: This criterion is to evaluate the overall
organization of processes. A process should have a hierarchical representation for
various granularities of work units [16]. For example, larger-grained work as phases,
medium-sized work as activities and small-grained work as steps. A logical
numbering system is desirable in practical processes and methodologies.

Criterion #2. Coverage of Key Activities: This criterion is to evaluate how
comprehensively a process provides the required key activities for the development
paradigm. In the case of PLE, they should include instantiation activities such as
selecting and setting variants, and handling inter-variability dependency with different
core asset elements. To apply this criterion, a set of key and common instantiation
activities must be identified from a survey of PLE methodologies. With the identified
activities, a generic set of instantiation activities can be defined as a consequence.
These generic instantiation activities are then compared to the proposed process under
evaluation.

Criterion #3. Comprehensiveness and Precision of Work Instructions: This
criterion is to evaluate how comprehensively and precisely the instructions are
provided. Activities specified in a process typically carry some degree of instructions
on how to carry out the activities. For the comprehensiveness, we evaluate the
coverage of process for its instructions. A process lacking instructions will be
difficulty to apply in practice. For the precision, we evaluate the level of details and
effectiveness for the given instructions. Some instructions can be stated at abstract
and vague level, while others can be quite specific and easy to follow in practice.

 A Variability-Centric Approach to Instantiating Core Assets in PLE 345

Criterion #4. Specification of Key Artifacts: This criterion is to evaluate how well
the key artifacts are defined in terms of key elements, template, example and related
artifacts/activities. A process with well-defined artifacts will provide a clear goal and
vision on what should be delivered.

Criterion #5. Seamlessness of Process: This criterion is to evaluate the how
cohesively activities and artifacts of a process are related and organized. In a process,
activities and artifacts should be seamlessly related to yield a high degree of
traceability among them. That is, one should be able to produce an artifact of an
activity using one or more preceding artifacts without putting excessive amount of
new information, creativity and effort.

5.2 Discussion

We now discuss how our proposed process framework satisfies the evaluation criteria.

Satisfying Criterion #1. Process Architecture: While current works on instantiation
methods and process only define coarse-grained units of work, we organize the
process with four activities where each activity includes several steps as shown in
Figure 3. That is, our process specifies all the fine-grained units of instantiation work.
We incorporated a numbering system to distinguish activities and steps, and to
arrange the tasks in order. A process with fine-grained work units tends to yield a
more systematic and effective application of the process.

Satisfying Criterion #2. Coverage of Key Activities: The key activities of core asset
instantiation are found in representative PLE works in [1][17]. They include
comparing core asset scope with the application scope to find the overlapped scope,
defining product-specific variants, binding variants to variation points, especially
resolving architectural variability, instantiating components required in the core asset,
and validating instantiated core assets. All of these key activities are found in the 12
steps of our process.

Satisfying Criterion #3. Comprehensiveness and Precision of Work Instructions:
The specification of the process in section 4 is structured with an overview, detailed
instructions, and artifacts. That is, some instructions are described with more detailed
sub-task such as the steps in activity 1, while others are listed for observations or
check-list such as steps in activity 3 and 4. Since these instructions are focused on a
step which is already in fine-grained and detailed level, the instructions are regard to
be comprehensively defined. And the process gives some examples so that it can be
followed in practice easier.

Satisfying Criterion #4. Specification of Key Artifacts: In PLE, the variability
model including DM is a key artifact, in that, it largely affects the reusability of core
assets and the efficiency of reusing them. And, in AE process, resolving the variability
is another key activity. The proposed process handles the variability around all
activities by utilizing DRM. There is its concrete template in section 3 and lots of steps
show the instructions managing the elements of DRM represented in the template.

Satisfying Criterion #5. Seamlessness of Process: We defined the process with a
great focus on traceability among tasks and artifacts. Hence, we are able to show a

346 S.H. Chang, S.D. Kim, and S.Y. Rhew

traceability map in Figure 11. This map focus on traceability of variability between
C&V model, application specific requirement, and a core asset, and instantiated model
including architecture, static, and dynamic model. The traceability shown in the map
implies that the process can be more consistently and correctly applied in practice.

Artifact Artifact
Item in prior Artifact Item in Next Artifact

(Number)

Step 1-1.
Overlapped Feature

Step 1-2,3, and 4.
Decision Resolution Model

Step 2-1
Intermediate Architecture

Step 2-2.
Instantiated Architecture

Step 3-1.
Intermediate Com. Model

Step 3-2
Instantiated Structural Model

Step 3-3.
Instantiated Dynamic Model

Variable feature VP, Variant

Hot Spot
Resolved VP

C&V Model
Application Specific

Requirement
Core Asset

Common feature
Overlapped feature

App. Req.
Overlapped feature

Selected Elements of DM
VP, Variant, Effect, Task

App. Req
variants

PLA

Component
Model

* Step 1-2,3, and 4.
Decision Resolution Model

Input to AE
Output

during AE

Style and components Variant
Architectural Element

Variant Structural Element

Variant
Dynamic Element

Hot Spot
Resolved VP

Fig. 11. Traceability Map

6 Concluding Remarks

As an effective reuse approach, PLE consists of two processes; core asset engineering
and application engineering. Though instantiation is a key activity of application
engineering, there is still a room for defining practical instantiation methods and
artifact representations that can be applied in commercial projects and tool
implementations. Moreover, it has not been clearly identified yet how to instantiate
variable features of core assets such as architectural variability, required components,
and component internals. Also, it should be dealt in a process to resolve inter-
variation point dependencies during instantiation.

In this paper, we first defined a meta-model to specify the key elements of core
assets and representation templates. And, we proposed a process containing
instructions of instantiating core assets. We also proposed mechanisms for a tool
implementation which support proposed process. Using the proposed process and a
tool utilizing proposed mechanisms, one can efficiently generate high-quality artifacts
for instantiation and the large portion of instantiation process can be automated.

References

[1] Atkinson, C., et al., Component-based Product Line Engineering with UML, Addison
Wesley, 2001.

[2] Geyer, L., Becker, M., “On the Influence of Variabilities on the Application-Engineering
Process of a Product Family,” Proceedings of SPLC2 2002, LNCS 2379, Springer, pp. 1-
14, 2002.

 A Variability-Centric Approach to Instantiating Core Assets in PLE 347

[3] Bayer, J., Flege, O., Knauber, P., Laqua, R., Muthig, D., Schmid, K., Widen, T., and
DeBaud, J., “PuLSE: A Methodology to Develop Software Product Lines,” Proceeding
of symposium for Software Reusability ’99, ACM, 1999.

[4] Bayer, J., Gacek, C., Muthig, D., and Widen, T., “PuLSE-I: Deriving Instances from a
Product Line Infrastructure,” Proceedings of 7th International Conference and Workshop
on the Engineering of Computer Based Systems, IEEE, 2000.

[5] Deelstra, S., Sinnema, M., and Bosch, J., "Product derivation in software product
families: a case study", The Journal of Systems and Software, Vol.74, No.2, p.174-194,
Jan. 2005.

[6] Clements, P. and Northrop, L., Software Product Lines: Practices and Patterns, Addison
Wesley, 2001.

[7] Bayer, J., Flege, O., Knauber, P., Laqua, R., Muthig, D., Schmid, K., Widen, T., and
DeBaud, J., “PuLSE: A Methodology to Develop Software Product Lines,” Proceeding
of symposium for Software Reusability ’99, ACM, 1999.

[8] Kyo C. Kang et. al., “FORM: A Feature-Oriented Reuse Method with Domain-Specific
Reference Architectures,” Annals of Software Engineering, 5, 1998, pp. 143-168.

[9] Clements, P., et al., Documenting Software Architectures Views and Beyond, Addison-
Wesley, 2003.

[10] Gomma, H., Designing Software Product Lines with UML from Use Cass to Pattern-
Based Software Architectures, Addsion-Wesley, 2004.

[11] Kim S., Her, J., and Chang, S. , "A Theoretical Foundation of Variability in Component-
Based Development ," Information and Software Technology(IST), Vol. 47, p.663-673,
2005.

[12] Sinnema, M., Deelstra, S., Nijhuis, J., and Bosch, J., “COVAMOF: A Framework for
Modeling Variability in Software Product Families,” Proceedings of the Third Software
Product Line Conference (SPLC 2004), Springer Verlag Lecture Notes on Computer
Science Vol. 3154 (LNCS 3154), August 2004.

[13] Choi, S., et al., “A Systematic Methodology for Developing Component Frameworks,”
Lecture Notes in Computer Science 2984, Proceedings of the 7th Fundamental
Approaches to Software Engineering Conference, 2004.

[14] IEEE, Guide to the Software Engineering Body of Knowledge, 2004.
[15] Pressman, R, Software Engineering: A Practitioner’s Approach 6th edition, McGraw-

Hill, 2005.
[16] ISO/IEC 12207 Standard for Information Technology-Software life cycle processes,

1995.
[17] Pohl, K, Bockel., G., and Linden, F., Software Product Line Engineering, Springer, 2005.

J. Münch and M. Vierimaa (Eds.): PROFES 2006, LNCS 4034, pp. 348 – 361, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Improving the Development of e-Business Systems
by Introducing

Process-Based Software Product Lines*

Joachim Bayer, Mathias Kose**, and Alexis Ocampo

Fraunhofer Institute for Experimental Software Engineering (IESE)
Fraunhofer-Platz 1, D- 67663 Kaiserslautern, Germany

{joachim.bayer, alexis.ocampo}@iese.fraunhofer.de
**ehotel AG

Greifswalder Strasse 207, D-10405 Berlin, Germany
mkose@ehotel.de

Abstract. In the e-Business domain, workflows are central artifacts that are
used to specify application systems. To realize reuse at a large scale for e-
Business application systems, therefore, workflows need to be reused system-
atically. To this end workflows must be classified, documented, and stored in a
way that enables their identification, evaluation, and adaptation in order to inte-
grate them in an application. Software product line engineering is an established
and approved software engineering approach that addresses these issues by
handling a number of similar software systems together, enabling large scale
reuse during the development and maintenance of the different systems covered
by the product line.

In this paper, we transfer the concepts of software product line engineering
to the domain of e-Business systems by applying the product line techniques to
workflows and present initial validation results.

1 Introduction

Survival in today’s highly dynamic business environments requires that organizations
continuously adapt their business processes. Success and growth rather than mere
survival require that this adaptation be rapid enough to realize the competitive advan-
tage offered by new business opportunities. The conduction of business in the internet
(e-business) including buying and selling but also services and collaboration can be
seen as one of these new important business opportunities. Mechanisms for rapid
description, implementation, and deployment of such business processes become
important. Currently, business processes are often represented by business process
models. Business processes models are partially implemented through workflows [9]
and deployed and executed in workflow environments, which show graphically the
different steps of a business process (i.e., the business logic). According to [16],

* This work has been partially funded by the PESOA project (Process Family Engineering in

Service-Oriented Applications) funded by the German federal ministry of education and re-
search (BMBF) (Förderkennzeichen: 01 ISC 34E).

 Improving the Development of e-Business Systems 349

business processes connect a set of business functions, where the connections are
controlled by business rules. Those business rules are specific for an enterprise and
specific at a certain point in time. However, changes in business rules and objectives
are an everyday issue that demands capabilities to be able to react and adapt to such
changes. Therefore, new rules and objectives can inevitably result in a large number
of processes that vary in relatively minor ways. One way to control this proliferation
and its attendant risks is to analyze commonalities and differences between the differ-
ent process models in order to identify process variants and justifications for them
[13], and to systematically integrate them in a software product line [6].

The following sections describe briefly the basic concepts of product line engineer-
ing and the mapping that we have done to process-based product lines, describe the
details of the approach we have developed, and provide a preliminary validation (in
terms of an example of its use).

2 Conceptual Foundation

2.1 Product Line Engineering Concepts

The underlying idea of product line engineering is to reuse common parts of related
software systems. To this end, varying aspects of software systems, that is, differ-
ences among them are explicitly documented. Product line engineering distinguishes
two development phases – domain and application engineering – as presented in
Figure 1. The initial activity, scoping, defines which systems are members of a prod-
uct line and which systems are outside the product line. Scoping is done by investigat-
ing a set of concrete products, be it already existing, planned, or envisioned products.
The result of scoping is a set of products that make up the product line along with the
features of the different product line members.

Based on a scope definition, domain engineering identifies the common features
(commonalities) and the variable features (variabilities) of the identified products.
Commonalities define the skeleton of the systems in the product line; variabilities
bound the space of required and anticipated variations of the products in the product
line. Each artifact produced during domain engineering contains the commonalities

Fig. 1. Product Line Engineering

350 J. Bayer, M. Kose, and A. Ocampo

and specially labeled variabilities. These so-called variant-rich artifacts are stored in
the product line infrastructure.

During application engineering, the product line infrastructure is instantiated to
create a concrete product; the commonalities are reused and the variabilities are re-
solved for the specific product.

2.2 Process Based-Oriented Product Lines

A number of approaches for software product line engineering have been proposed
[4],[7],[12]. Application domains that use processes, such as workflow or technical
processes, as driving software development artifacts are, however, neglected to a large
extent by product line research. The main problem in applying product line engineering
techniques in such domains is that processes describe flows of activities and, conse-
quently, variability covers different flows. The techniques traditionally proposed in
product line engineering, however, provide means for the modeling of static diagrams
rather than for dynamic ones. For example, the modeling of variability that results in
different sub-processes that are exchanged for different products is not well supported.
Another issue is that software generation traditionally also focuses on static models.

In this section, we present our approach for process-based product line engineer-
ing. The approach is based on PuLSE™ [2] (PuLSE™ is a registered trademark of
Fraunhofer IESE) that is an approach for product line engineering that is developed
and used in technology transfer projects since 1997. To adapt PuLSE™ for process-
based product line engineering, we combined it with variability mechanisms [14] and
software generation [8].

The core concepts of our approach to process-based product line engineering are
variant-rich workflows or processes, which are workflows or processes that contain
variabilities. To augment workflows used to model e-Business systems with the pos-
sibility to model variability in an explicit way, we use the approach proposed in [11].
This approach forms the basis for variability and decision modeling in PuLSE TM and
provides a systematic way to extend any given software engineering artifact to be
generic, that is, to enable the explicit modeling of variability in that artifact.

Fig. 2. Process-based Product Line Concepts

 Improving the Development of e-Business Systems 351

As presented in Figure 2, a product line infrastructure contains variant-rich proc-
esses and decision models. A variant-rich process contains variation points that repre-
sent its variability. A decision model contains the relationships among the variations of
a product line infrastructure. Such decision models contain decisions, which are varia-
tion points that constrain the resolution of other variation points. A variant-rich process
contains process elements, for instance activities, inputs, outputs, or roles. Those proc-
ess elements that contain variation points are called variant-rich process elements.

Figure 3 provides an example that illustrates these concepts. It shows the flow be-
tween the “Create Order”, “Pay Order”, and “Send Invoice” process elements of an
online shop. The “Pay Order” process element contains three alternatives (telephone,
credit card, and bank transfer). The process element has one interface that interacts
with the “Create Order” process element. At this point three alternatives split, and one
of them must be chosen in order to resolve this variation. The resolution of the varia-
tion determines the path taken by the flow. The three alternatives converge in another
interface that joins them. This interface is used to communicate the output of the “Pay
Order” process element. The same can be observed in the case of the “Invoice” proc-
ess element, an output that contains two alternatives (America or Europe), and two
interfaces. This means that depending on the continent of destination, the invoice to
be sent to the customer will have different fields of information (e.g., currency, ad-
dress). One optional variation point can be assigned to the “Email” output process
element. “Email” has only two alternatives i.e., yes or no. Therefore, once the varia-
tion points are resolved, the client has the possibility of receiving the invoice both as
printed document or email.

Create Order
Pay Order
via Credit

Card

Pay Order
via Bank
Transfer

Pay Order
via

Telephone
Alt 2.1

Alt 1.1: If payment method = Telephone

Alt 1.2 : If payment method = Credit card

Alt 1.3 : If payment method = Bank transfer

Alt 1.2

Alt 1.3

Variant Rich Process

Alternative
Variation

Point

Decision
model

Pay Order

Alt 2.2

Invoice

Alt 2.1: If continent = America

Alt 2.2 : If continent = Europe

Alt 1.1

Send Invoice

Alternative
Variation

Point

Opt 1

Opt 1: If email = Yes

Optional
Variation

Point

Email

Printed

Document

Interface Interfaces Interface

Fig. 3. Variant-rich Process Example

352 J. Bayer, M. Kose, and A. Ocampo

2.3 The Systematic Approach for Developing Process-Based Product Lines

Figure 4 shows our systematic approach for developing a process-based product line.
As mentioned above, the initial activity in product line engineering is scoping. The

underlying idea of scoping is on the premise that one shall obtain as much return on
investment as possible from the effort of establishing a process-based product line infra-
structure. Using as input an existing or a planned set of process-based products a subset
of such products is selected. Afterwards, the selected products are related to the features
that they should offer. This information is recorded in a domain scope definition.

The domain analysis begins by using the defined domain scope as input for identi-
fying relationships among features (e.g., consists-of, requires). Afterwards, in the
activity model features, such relationships are captured in a hierarchical structure [10]
or a tabular representation.

The resulting feature model can be used as basis for identifying and documenting
the requirements for those processes that will be part of the process-based product line
infrastructure. Such processes shall be conceived as building blocks that can be re-
used.

The domain design begins with the design processes activity. Here, using as input
the list of identified processes, a commonality analysis among processes is performed
in order to identify variant-rich process elements. At the moment there are not many
techniques or approaches on how to perform such a comparison. One idea can be
taken from [12], where a systematic comparison of a set of software process models is
illustrated. The commonalities and variabilities detected among variant-rich process
elements are then integrated into their respective variant-rich process.

Domain
Scoping

Domain
Scoping

S
co

p
in

g

Model
Features

Model
Features

Identify
Processes

Identify
Processes

Model
Features

Model
Features

Identify
Processes

Identify
Processes

D
o

m
ai

n
 A

n
al

ys
is

Design
Processes

Design
Processes

Model
Decisions

Model
Decisions

D
o

m
ai

n
 D

es
ig

n

Implement
DS Generator

Implement
DS Generator

Implement
DS

Components

Implement
DS

Components

Implement
DS Generator

Implement
DS Generator

Implement
DS

Components

Implement
DS

Components

D
o

m
ai

n
Im

p
le

m
en

ta
ti

o
n

Specify
Product

Specify
Product

Configure
Product

Configure
Product

Apply
DS Generator

Apply
DS Generator

Build,
Integrate, and

Test

Build,
Integrate, and

Test

Apply
DS Generator

Apply
DS Generator

Build,
Integrate, and

Test

Build,
Integrate, and

Test

A
p

p
lic

at
io

n
A

n
al

ys
is

A
p

p
lic

at
io

n
D

es
ig

n
A

p
p

lic
at

io
n

Im
p

le
m

en
ta

ti
on

Project Management

Fig. 4. Process-based Product Line Engineering

 Improving the Development of e-Business Systems 353

Relationships among variation points are identified and documented in the decision
model.

This way, a process-based product line infrastructure that contains variant-rich
processes elements, process elements, and a decision model has been produced.

The next step is domain implementation. It starts with the activity implement
domain-specific generator that consists of identifying the domain-specific functional-
ities to be covered by a generator based on the commonalities and variabilities
contained in the process-based product line. Code fragments implementing these
functionalities are defined. They are connected to the process’ variabilities, that is,
each variation point is annotated by one or more code fragments.

Once the domain-specific functionalities have been identified, DS components are
implemented as follows: First, functionalities that are to be implemented by generic
components are identified based on the commonalities present in the process-based
product line. Such components are referred to as runtime components. Then, compo-
nents that are needed to process the generator’s output are identified. They are re-
ferred to as infrastructure components. Once the DS components are implemented, a
process-based product line infrastructure can be used for automatically generating
new products according to new requirements.

The first step to derive a concrete product from the product line infrastructure is
application analysis. It starts by specifying the new product based on the scope defini-
tion of the existing process-based product line infrastructure, and the feature model.
Those features that are estimated to be realizable are mapped to the actual products
from the process-based product line infrastructure. Such mapping must be docu-
mented in a product feature model. Those features that are not yet planned in the
process-based product line shall be documented in a list of not covered features,
which will be later integrated in the scope of the process-based product line.

The next step is to configure the product, in which the decision model is used for
resolving the variation points based on the new product features. The resolution of the
variation points and their relationships are documented in the resolution model.

Finally, the appliance of the domain-specific generator starts with importing data
from a resolution model, followed by triggering the generation of target code. If there
are additional variabilities that are not part of the process-based product line, for ex-
ample technical ones specific for the target platform, they can be configured and re-
solved before triggering the code generation.

The generated target code is subject to further processing by the use of infrastruc-
ture components, including the domain-specific ones. The resulting executables have
to be built and integrated with the needed runtime components. Together they form
the product that might be tested in order to complete the implementation.

More details on the approach can be found in [3].

3 Validation

ehotel AG is a technology organization that specializes on developing software suit-
able for processing hotel reservations. It distinguishes because of its software devel-
opment experience and know-how in the traveling business but especially in the hotel
industry. ehotel AG develops and operates a software platform that supports hotel

354 J. Bayer, M. Kose, and A. Ocampo

booking operations. The platform can be accessed through a browser interface or
through a XML-/Web service interface. The XML-/Web service interface allows the
integration of the platform in external IT-Systems. The rationale behind having such
an interface was to integrate ehotel’s solution with as many different systems as pos-
sible such as traveling systems of large corporate groups, traveling services offered by
other web-Sites, or travel companies’ internal applications. It was found that those
systems supported a common hotel booking process. However, due to the different
needs and scenarios of such systems, different types of requirements applied for func-
tions such as search, select, reserve, or cancel. Each system type, therefore, needed a
customized version of ehotel’s product.

This is a classical situation where the product line approach can be used for better
reusability of software products. ehotel has followed this approach systematically in
the context of the PESOA project. The PESOA project’s main goal is the design and
prototype implementation of a platform for process family engineering and their ap-
plication in the e-business and automotive areas. This goal is addressed by enhancing
the approved technologies from the area of domain engineering, product line engi-
neering, and software generation with new methods from the area of workflow man-
agement.

The following sections present example of artifacts produced when process-based
product line engineering was applied at ehotel in the context of the PESOA project.
We focus in the case study on analysis and design, and thus leave out implementation.
More details on the case study can be found in [14].

3.1 Domain Scope Definition

The selection of a subset of e-hotel’s process-based software was driven by the cus-
tomer’s point of view. Use cases helped to sketch this point of view and to identify
the following set of sub-processes: “informing”, “booking”, “canceling”, and “charg-
ing”. Figure 5 shows the respective use case diagram for the “informing” sub-process
that identifies the different ways ehotel customers can retrieve information.

Fig. 5. Informing Use Case Diagram

 Improving the Development of e-Business Systems 355

3.2 Feature Model

A feature model captures and relates the characteristics of the different product
line members. Common and varying characteristics are distinguished in feature
models.

Figure 6 shows an excerpt of the feature model for ehotel’s booking engine. The
features for the “informing” and the “booking” sub-processes are modeled in detail.
For the booking engine, there are common characteristics (denoted by full circles),
like hotel details expressing that every booking system provides the possibility to
acquire information on hotels. There are also optional characteristics (denoted by
hollow circles). For example, pictures, description, and map in the hotel details ex-
press that these are the different possibilities for hotel details that are provided by the
different booking systems. The third type of characteristics shown in the figure is
alternative. Alternatives denote different ways to realize characteristics from which
one is chosen for a specific booking system. In the example, an alternative feature is
the map that can be realized either as static map or as dynamic map. The figure shows
that for the varying characteristics all possible values are captured.

Fig. 6. Feature Model (modeled with fmp [1])

3.3 List of Processes

The next step in process-based product line engineering is the elicitation of processes
that are needed to provide the features collected in the previous step. The list of proc-
esses mostly reflects the hierarchical organization of the feature model. The list of
processes that was elicited based on the feature model in Figure 6 is:

356 J. Bayer, M. Kose, and A. Ocampo

• Informing
o Search

 Standard
 Extended

o Parameter
 get countries
 get cities
 get Points-of-Interest (POIs)
 get hotel chain

o Hotel details
 get Pictures
 get Description
 get Map
 existing bookings

• get All Bookings
• get booking details

• Booking
o online booking

 guaranteed booking
 uncertain booking

o inquiry
• Canceling
• Charging

These are the (sub-) processes that have been identified for the ehotel booking en-
gine and that will be modeled as variant-rich processes in the next step.

3.4 Variant-Rich Processes

Variant-rich processes are the core artifact in a process-based product line. They de-
scribe the behavior of the different product line members and thus determine the
process-based product line. Variant-rich processes contain variation points to deter-
mine process elements that vary between different product line members. We use the
variability mechanisms described in [14] for modeling variation points. These vari-
ability mechanisms enable the expression of different types of variation using stereo-
types and other notation-specific modeling mechanisms.

Figure 7 shows the booking engine top-level process using the BPMN notation [4].
The top-level process contains “informing”, “booking”, “canceling”, and “charging”
as sub-processes. The process contains three types of variation points. The “charging”
and the “cancellation” sub-processes are optional, denoted by the Null stereotype that
expresses that the respective sub-processes are either present or not in a specific book-
ing engine. “Booking” has an abstract stereotype; this means that there are different
realizations possible for this sub-process.

The variable stereotype for the “informing” sub-process expresses that there are
variabilities within the sub-process. This is shown in Figure 8 that depicts the “inform-
ing” sub-process. Figure 9 refines the “search” sub-process and shows for the abstract
activity perform search two possible realizations, a standard and an extended search.

 Improving the Development of e-Business Systems 357

PE
SO

A
Ta

rg
et

<<Null>
Charging

<<Abstract>>
Booking

Br
ow

se
r

<<Variable>>
Informing

start
instance

Error page Error page

Error page

<<Null>
Cancelling

Error page

Fig. 7. Variant-rich Booking Engine Process

P
E

S
O

A
 T

ar
ge

t
B

ro
w

se
r

Fig. 8. Variant-rich Informing Process

3.5 Decision Model

The variation points in the variant-rich processes must be resolved in order to derive
specific processes that describe concrete booking engines. This resolution is sup-
ported by decision models that relate features to variation points and document how a

358 J. Bayer, M. Kose, and A. Ocampo

Fig. 9. Variant-rich Searching Process

Table 1. Decision Model Excerpt

ID Process Question process element Resolution Effect
yes Perform search =

extended search
Searching.1 searching Is extended

search required?
Perform search

no Perform search =
standard search

variation point must be resolved if a booking engine provides a given feature. Table 1
shows the decision model excerpt for the “searching” process shown in Figure 9.

The decision shown in Table 1 describes how the “searching” process is instanti-
ated for the two possible cases, standard and extended search. When the effect is
applied to the respective process, the abstract activity “perform search” in Figure 9 is
replaced by either a sub-process realizing the standard or the extended search, respec-
tively, depending on the decision taken.

The decision model is a collection of the decisions for all variation points in the
different variant-rich processes.

3.6 Product Feature Model

In the following, we describe the instantiation of the variant-rich processes for a hy-
pothetical ehotel customer that uses an instance of the ehotel booking engine derived
from the process-based product line infrastructure.

As a first step, the required features from the feature model (compare Figure 6) are
selected. The result is shown in Figure 10.

 Improving the Development of e-Business Systems 359

Fig. 10. Product Configuration (modeled with fmp [1])

3.7 Configured Product

Using the selected features, the decision model can be instantiated by answering the
different questions. The application of the appropriate effects on the variant-rich
processes resolves the processes leading to concrete processes for the product. In
Figure 11, the variant-rich search process in Figure 9 is instantiated using the features
selected in the product feature model in Figure 10. The result is a “search” process
providing extended search features.

Fig. 11. Search Process Instance

360 J. Bayer, M. Kose, and A. Ocampo

4 Summary and Outlook

The booking engine plays a dominant role in the software system of the ehotel AG. A
large variety of functionalities are implemented because of different requirements of
individual users as well specific requirements of corporate customers. The result of the
different market requirements is of high complexity for the ehotel-system. The proc-
ess-based product line engineering shows a practical way to handle this complexity.

Based on existing specific business processes a generic, variant-rich process is
derived. With feature diagrams and decision models this generic process can be con-
figured. By using software generators customer specific software instances can be
produced.

Process-based product line engineering forces a better structuring of the existing
ehotel software system and future developments. After the setup of the process-based
product line infrastructure, a faster and more reliable delivery of a customized version
of the booking engine to new customer requirements is possible. The quality of the
overall software system is improved and the time to market is reduced. This improved
agility helps the ehotel AG on the customer side for example, to offer products to
niche markets and has therefore a positive impact to the company. Overall the plan-
ning process of the development is improved; this results in higher delivery reliability.
At the end ehotel achieves a higher customer satisfaction.

Acknowledgements

We want to thank our colleagues in the PESOA project that supported us in the devel-
opment of the presented example, namely Paul Bouché (ehotel AG), Dennis Plötner
(ehotel AG), Thomas Hering (University of Leipzig), and Andrej Werner (University
of Leipzig). We especially want to thank Frank Puhlmann (Hasso-Plattner-Institut at
the University of Potsdam) for supporting the example development and for review-
ing an early version of the paper.

References

[1] M. Antkiewicz, K. Czarnecki.: FeaturePlugin: feature modeling plug-in for Eclipse, Pro-
ceedings of the 2004 OOPSLA workshop on eclipse technology eXchange, p.67-72, Oc-
tober 24-24, 2004.

[2] J. Bayer, O. Flege, P. Knauber, R. Laqua, D. Muthig, K. Schmid, T. Widen, and J. –M.
DeBaud. PuLSE: A Methodology to Develop Software Product Lines. In Proceedings of
the Fifth Symposium on Software Reusability (SSR’99), May 1999.

[3] J. Bayer, W. Buhl, C. Giese, T. Lehner, A. Ocampo, F. Puhlmann, E. Richter, A.
Schnieders, J. Weiland, M. Weske. Process Family Engineering: Modeling variant-rich
processes. PESOA-Report No. 18/2005, Juni 2005.

[4] G. J. Chastek (ed). Software Product Lines. Proceedings of the Second International Soft-
ware Product Lines Conference (SPLC2), San Diego, California, USA, August 2002.

[5] Business Process Management Initiative (BPMI): Business Process Modeling Notation
(BPMN), Version 1.0, www.bpmi.org, Mai 2004.

 Improving the Development of e-Business Systems 361

[6] P. Clements and L. Northrop. Software Product Lines. Practices and Patterns. Addison-
Wesley, 2002.

[7] P. Donohoe (ed.) .Software Product Lines - Experience and Research Directions. Pro-
ceedings of the First International Software Product Lines Conference (SPLC1), Denver,
Colorado, USA, August 2000.

[8] C. Giese, H. Overdick, W. Buhl. Realisierungsstrategien für Prozessfamilien: Werkzeuge
für Modellierung und Generierung. PESOA-Report No. 15/2005, Process Family Engi-
neering in Service-Oriented Applications, Juni 2005.

[9] D. Hollingsworth. The Workflow Reference Model. Technical report, Workflow Man-
agement Coalition, Hampshire, 1995.

[10] K. Kang, S. Cohen, J. A. Hess, W. E. Novak, A. S. Peterson; “Feature-Oriented Domain
Analysis (FODA) Feasibility Study”. Technical Report CMU/SEI-90-TR-21, 1990.

[11] D. Muthig: A Light-weight Approach Facilitating an Evolutionary Transition Towards
Software Product Lines. Stuttgart: Fraunhofer IRB Verlag, 2002 (PhD Theses in
Experimental Software Engineering Vol. 11). Kaiserslautern, Univ., Diss., 2002.

[12] R. Nord (ed.). Software Product Lines. Proceedings of the Third International Conference
(SPLC 2004), Boston, MA, USA, August - September, 2004.

[13] A. Ocampo, F. Bella, J. Münch. Software process commonality analysis. Software Proc-
ess: Improvement and Practice. Vol. 10(3), pp. 273-285, 2005.

[14] D. Plötner, M. Kose, T. Hering, A. Werner. Prozesse im E-Business am Beispiel
ausgewählter Geschäftsprozesse des Partners ehotel AG. PESOA-Report No. 20/2005,
Juni 2005.

[15] F. Puhlmann, A. Schnieders.: Process Family Engineering: Variability Mechanisms,
Technical Report PESOA-Report No. TR 17/2005, Process Family Engineering in Ser-
vice-Oriented Applications, Jun. 2005.

[16] G. van de Putte, T. Benedett, D. Gagic, P. Gersak, K. Krutzler, M. Perry. Intra-Enterprise
Business Process Management. IBM Corporation. IBM International Technical Support
Organization. IBM Reedbook. October 2001.

J. Münch and M. Vierimaa (Eds.): PROFES 2006, LNCS 4034, pp. 362 – 376, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Assessing Requirements Compliance Scenarios in System
Platform Subcontracting

Björn Regnell1,3, Hans O. Olsson1, and Staffan Mossberg2

1 Sony Ericsson, Lund, Sweden
http://www.sonyericsson.com

2 Ericsson, Lund, Sweden
http://www.ericsson.com

3 Lund University, Sweden
bjorn.regnell@telecom.lth.se
http://serg.telecom.lth.se

Abstract. In the mobile industry, system platforms are offered to device devel-
opers to enable rapid product development while sharing expensive technology
development investments. This paper presents a framework for assessment of
requirements engineering collaboration related to statements-of-compliance ne-
gotiation in platform subcontracting. The framework includes a classification of
platform compliance scenarios and results from analysis of interviews with en-
gineers at two collaborating companies, a device vendor and a platform vendor.
Case study findings particular to the compliance scenarios of the framework are
provided. The purpose of the framework is to provide a basis for process im-
provement in collaborative requirements engineering.

1 Introduction

Collaborative systems engineering and multi-partner development impose special
opportunities and challenges [6]. A strategic combination of a number of specialised
organisations, each with their specific expertise, can hopefully provide cheaper and
more advanced products. However, the collaborative mode adds extra complexity to
the development and special measures needs to be taken to address barriers of com-
munication [5]. This paper focuses on the assessment of a specific mode of collabora-
tion: subcontracting of technical platforms in embedded systems development. Em-
bedded systems are often based on a number of components such as real-time operat-
ing systems, special-purpose hardware, communication protocol software, and user
interface software. These components are included in a system architecture that en-
able separate development of each component that communicate with other compo-
nents through well-defined interfaces. Developments of specific components or archi-
tectural layers are often subcontracted, which impose the need for collaborative engi-
neering between the integrator and the subcontractor [1].

The presented work is based on a case study in the domain of mobile devices. The
mobile device industry is facing challenges of rapid technology development in com-
bination with increasing market demands on expanding product portfolios targeting a
wide scope of different capabilities and price ranges. Strategic alliances are formed
among companies providing technology that can be reused among products to

 Assessing Requirements Compliance Scenarios in System Platform Subcontracting 363

increase productivity. Collaborative product line engineering where platforms are
developed by subcontractors impose special challenges to requirements engineering
compared to in-house platform development. At each platform release a contractual
scheme needs to be set up, which often is based on statements of compliance repre-
senting agreed intentions by the subcontractor to deliver specific requirements in
specified releases. Further work on challenges in this context can be found in [10],
[11], 12].

This paper focuses on the assessment of the requirements negotiation outcome in
collaborative requirements engineering, and the results of the presented work is a
framework to be used in systematic analysis of compliance scenarios in order to find
improvements for the future advancements of a collaborative requirements engineer-
ing process.

The paper is structured as follows. Section 2 provides a description of the industrial
case under study, including an overview of the artefacts that are transferred in the
collaborative engineering process. Section 3 gives an account of the research method-
ology applied. Section 4 presents the main result packaged in a compliance scenario
framework. Section 5 concludes the paper.

2 The Industrial Case

This section provides an overview of the industrial case of the presented work. The
domain is mobile device development and the products include a range of features
related to communication, business applications and entertainment. The technological
content is complex and includes advanced system engineering areas such as radio
technology, memory technology, software design, communication protocols, security,
audio & video, digital rights management, gaming etc.

As the investment of keeping up with the fast technology development is high,
there is a market for providing mobile platforms that can be used by mobile handset
vendors as a basis for rapid device and application development. A mobile platform
typically offers ready-to-use capabilities of radio network access, communication
protocols, local connectivity, multimedia encoding and decoding, encryption and
decryption, and much more. These capabilities are implemented as an open-ended
system of both hardware and software and the mobile platform is delivered as a refer-
ence package design including application specific integrated circuit (ASIC) designs
and application programming interfaces (API), as well as documentation and test
procedures.

The presented research case study involves two collaborating companies: a mobile
device product company and a mobile platform product company. The collaboration
is strategic and involves requirements engineering of mobile devices and the technol-
ogy needed for future products. The two companies offer their respective products at
different positions in the mobile industry value chain and they have different competi-
tors and customers. Fig. 1 shows a simplified1 overview of the actors in the mobile
device domain with focus on the collaboration between the device product company
and the platform product company.

1 Many other actors such as network system providers, 3rd party application providers, stan-

dardization bodies, legislation authorities, manufacturing subcontracting, are not shown.

364 B. Regnell, H.O. Olsson, and S. Mossberg

The primary actors are the consumers that buy and use the mobile device. The key
players are operators that offer network capacity through subscription to consumers as
well as additional services. Often devices are subsidised by operators if the consumer
signs a subscription for a certain period. Devices and subscriptions are sold by opera-
tors directly or by independent retailers. Many mobile device vendors are competing
on the market, and many mobile platform companies are competing to offer technol-
ogy to device vendors.

Fig. 1. An overview of the case study domain

The two companies in the case study have a tight collaboration on requirements
engineering for mobile platforms. Both companies have very large requirements re-
positories at various abstraction levels [9]: roadmaps (~100), product level require-
ments (~1000) and system level requirements (~10 000). Roadmaps are strategic
plans for specific high-level technology areas, product requirements are high-level
product feature requirements from a market perspective, and system level require-
ments are detailed software and hardware requirements from a development perspec-
tive that are the basis for system design and testing. Requirements are continuously
managed to repeatedly initiate development projects delivering new product versions
to their respective markets at regular intervals (several times each year).

The alignment of the two companies' requirements repositories is not trivial as they
are formulated for different types of products; the product level requirement on mo-
bile devices is not the same as the product level requirement on mobile platforms, and
similarly for system requirements. Furthermore, both companies have their own inter-
nal product family approach with reusable code bases and internal product platforms

Consumers

Mobile Platform
Product Company

Platform
Req.

Change
Request

Statement
of

Compliance

Roadmaps

Professional users,
Home users,
…

Mobile Device
Product Company

Operator Retailer
Device

Competitor
Platform

Competitor

Legend

Requirements
database

Deliverable

External
stakeholder

Internal
organisational unit

Information flow

System
Req.

Product
Req.

Product
Management

Product
Development

Market Req.Mar
ke

t R
eq

.

System
Req.

Product
Req.

Product
Management

Product
Development

Consumers

Mobile Platform
Product Company

Platform
Req.

Platform
Req.

Change
Request
Change
Request

Statement
of

Compliance

Statement
of

Compliance

Roadmaps

Professional users,
Home users,
…

Mobile Device
Product Company

OperatorOperator Retailer
Device

Competitor
Device

Competitor
Platform

Competitor
Platform

Competitor

Legend

Requirements
database

Deliverable

External
stakeholder

Internal
organisational unit

Information flow

Legend

Requirements
database

Deliverable

External
stakeholder

Internal
organisational unit

Information flow

System
Req.

Product
Req.

Product
Management

Product
Development

Market Req.Mar
ke

t R
eq

.

System
Req.

Product
Req.

Product
Management

Product
Development

 Assessing Requirements Compliance Scenarios in System Platform Subcontracting 365

that are used to provide new versions of families of products [14]. Other platforms
and third party products are also integrated into the products such as operating sys-
tems and communication protocol components, making it even more complex. The
repeated task of release planning [3] is thus not trivial.

The collaboration process in fig. 2 is represented through an interface of exchanged
deliverables: roadmaps are continuously shared to align strategies; platform require-
ments are periodically transferred from the device product company and compliance
statements are transferred back from the platform product company answering which
requirements that is the intention to be supported by the platform; down-stream re-
quirements are handled as change requests.

3 Research Methodology

The presented work was conducted within an industrial case study on collaborative
requirements engineering process improvement. The presented framework is a result
of insights gained in retrospective analysis of previous projects and archival analysis
of platform requirements from a series of releases in the case study. The methodology
is thus qualitative, explorative and conducted in an action research mode where the
researchers also are involved in the actual change of the object of study. The proposed
framework is a result of an attempt to make a systematic classification of the particu-
lar phenomena that were encountered during the case study. The framework was not a
part of the originally planned research products, but was developed when needed and
found useful in assessing the process under study.

The research was conducted within these interrelated activities that were iterated
during the work: (1) collection of entities and relationships in the case study domain;
(2) interviews with selected roles across organisations; (3) analysis of interviews; (4)
framework construction; (5) initial framework validation.

The collection of entities and relationships in the case study was based on initial
problem formulations and process descriptions that preceded and constituted the case
study as well as results from analysis of interviews. The entities and relationships
were recorded as intermediate codes. Interviews were iterated with interview analysis
and the interviews were either unstructured or semi-structured. The interview analysis
was conducted based on interview notes and resulted in informal drawings and lists of
interesting concepts. Interview analysis was input to subsequent interviews and the
explorative information gathering was adapted to the findings as the understanding of
the problem increased. More than 15 interviews have been conducted with the general
aim of finding improvement opportunities and the interviews will continue as the
action research progresses. Persons from both the device product company and the
platform product company were interviewed. Interviewed roles include market re-
searchers, usability engineers, product managers, project managers, requirements
coordinators, researchers, developers, and supply chain managers.

Step 4 and 5 was not initially anticipated, but emerged as an opportunity for a sys-
tematic way of assessing the collaborative requirements engineering process. The
focus on decisions originated from the results of the interview analysis, and the use of
a decision tree as a basis for the proposed framework emerged when compliance deci-
sion types where analysed and structured.

366 B. Regnell, H.O. Olsson, and S. Mossberg

The first author contributed with the construction of the framework based on inter-
view analysis and the second and third authors contributed with the initial framework
validation by bringing their experience as requirements coordinators at the device and
platform companies respectively. The initial validation concentrated on determining
for each compliance scenario if it was (a) principally possible and (b) if it has oc-
curred at least once, (c) a subjective and relative assessment of its frequency (a de-
tailed frequency assessment is not reported here for reasons of confidentiality), and
(d) the potential reasons behind the scenario was analysed based on expert experience.

4 Requirements Compliance Scenario Framework

The framework resulting from interview analysis and structuring of decision alterna-
tives in the platform subcontracting case study is depicted in fig. 2. For each new
requirement a strategy is selected by the device product company to either implement
the requirement in its own internally developed application platform, or to require an
external platform solution by the subcontracted platform product company. In the
latter case, the timing of the requirement determines what happens in the collaborative
requirements engineering process enacted across organisational boundaries.

If the requirement is elicited before the requirements for the current release are put
in baseline, the requirement is incorporated in upstream requirements engineering [7]
where specification, prioritisation and compliance negotiation is invoked according to
the process described in Section 2. This process results in a declaration of intention by
the platform product company, called Statement of Compliance (SoC), resulting in
either the intention to make the platform compliant to the requirement or not.

If the requirement is (1) elicited after the point in time when the requirements for
the current release are put in baseline by the platform product company, and (2) the
requirement is not compliant with the current release plans, and (3) the device product
company finds that it is too late to wait until the upstream requirements engineering
for the next release, then it is forwarded to the change management procedures in
downstream requirements engineering [7] for the current release. The Change Control
Board (CCB) is responsible for initiating and judging the analysis of the change re-
quest and arrives at a decision to accept or reject the change request.

The leaf nodes of the platform requirements in fig. 2 are generated when the deci-
sion alternatives for two releases are combined including both what is actually deliv-
ered in the current release and the SoC decision for the next release.

If the decision by the device product company is to develop a proprietary solution,
the leaf node scenarios are generated depending on if flexibility still is needed in the
platform in the form of an enabler or not. An enabler can e.g. be an API extension or
an architectural change. The leaf level scenarios are generated depending on if the
platform product company has a competing solution to offer to competitors or not.

Subsequently each leaf node scenario is explained and the case study findings are
reported in terms of reasons behind the decision made that has been encountered in
the industrial case under study. The scenarios are also assessed in terms of the benefit
to each party in the collaborative requirements engineering process.

 Assessing Requirements Compliance Scenarios in System Platform Subcontracting 367

4.1 Upstream Compliance Scenarios

After the decision has been made that it is best to implement a certain requirement in
the subcontracted technical platform, the requirement is included in the collaborative
requirements engineering process between the device product organisation and the
platform product organisation.

If the requirement is elicited (invented or discovered) before the platform system
requirements are baselined, the normal statement-of-compliance negotiation process
is invoked upstream [7]. Depending of the outcome of the negotiation and the out-
come of the actual implementation, a number of scenarios may occur, as described
subsequently.

Inclusion. This is the normal case for a requirement that has been stated compliant
and delivered according to plan in the current release. The requirement is normally
continued to be compliant also in the next release.

Case study findings: This is a very common scenario that occurs when the device
developer and the platform subcontractor have similar objectives and strategies for a
given requirement. It is also the likely result of development going as planned, with
cost estimates for this requirement turning out as expected.

Assessment: This scenario is good for both the device developer and the platform
subcontractor, given that the requirement inclusion is in line with a good trade-off
between cost and value.

Transient inclusion. This is a special case where a requirement has been stated com-
pliant, delivered according to plan in the current release, but then been excluded in the
next release.

Case study findings: A typical reason behind transient inclusion is that a certain
feature has been excluded based on technology development or market considera-
tions, old technology may be replaced by new or a certain feature was never taken up
by the market. Another reason may be that there have been backward traceability
problems between architecture and requirements resulting in loss of legacy require-
ments in architectural evolution.

Assessment: Being responsive to technology and market changes is crucial. If the
device and platform developers are aligned in the views on technology this scenario is
good for both, and the sooner changes can be discovered the better. If the reason is
traceability problems, it is not good for any of the parties: the device developer misses
desired features and the platform developer loses goodwill.

De-scoped to next; De-scoped indefinite. These scenarios represent requirements
that were stated compliant but then not delivered as promised in the current release.
Some of them are delivered in the next release and some are delayed even further.

Case study findings: Several reasons were identified, including: (1) there may be
problems with the interpretation of a requirement resulting in a misunderstanding of
what was meant by the statement of compliance; (2) the customer has changed its
assessment of the requirement's priority and ceased to require it due to e.g. market
changes, and thus the platform development resources can be utilised more efficiently
by concentrating on other things; (3) the cost estimates were unrealistic and the re-
quirement was not possible to implement within the available resources.

368 B. Regnell, H.O. Olsson, and S. Mossberg

C
om

pliant

N
ot C

om
pliant

D
elivered

N
ot delivered

C
om

pliant

N
ot C

om
pliant

C
om

pliant

N
ot C

om
pliant

D
elivered

N
ot delivered

C
om

pliant

N
ot C

om
pliant

C
om

pliant

R
ejected

S
oC

R
elease n+

1

S
oC

R
elease n+

1

Delivery
Release n

S
oC

R
elease n+1

S
oC

R
elease n+

1

Delivery
Release n

C
om

pliant

N
ot C

om
pliant

D
elivered

N
ot delivered

C
om

pliant

N
ot C

om
pliant

C
om

pliant

N
ot C

om
pliant

N
ot delivered

C
om

pliant

N
ot C

om
pliant

Accepted

Proprietary Solution

S
oC

R
elease n+

1

S
oC

R
elease n+

1
Delivery

Release n

S
oC

R
elease n+

1

S
oC

R
elease n+

1

Up-Stream

Down-stream

CCB
Decision

Platform Subcontractor

Delivery
Release n

SoC
Release n

Point of
Elicitation

Developer Strategy
for Requirement X

N
ot C

om
pliant

D
elivered

E
nabler

N
ot needed

N
o

Y
es

Y
es

N
o

N
o

Y
esN

o

Y
es

Y
es

N
o

Y
es

Enabler

N
eeded

C
om

peting
S

olution

C
om

peting
S

olution

Enabler
Provided

C
om

peting
S

olution

C
om

peting
S

olution

Flexibility
Requirement

Enabler
Provided

N
o

In
clu

sio
n

T
ran

sien
t in

clu
sio

n
D

e-sco
p

ed
 to

 n
ext

D
e-sco

p
ed

 in
d

efin
ate

R
eco

n
sid

ered
T

ran
sien

t reco
n

sid
ered

P
o

stp
o

n
ed

 to
 n

ext
P

o
stp

o
n

ed
 in

d
efin

ite

C
h

an
g

e in
clu

sio
n

C
h

an
g

e tran
sien

t in
clu

sio
n

C
h

an
g

e d
e-sco

p
ed

 to
 n

ext
C

h
an

g
e d

e-sco
p

ed
 in

d
efin

ate
C

h
an

g
e reco

n
sid

ered
C

h
an

g
e tran

sien
t reco

n
sid

ered

C
h

an
g

e p
o

stp
o

n
ed

 to
 n

ext
C

h
an

g
e p

o
stp

o
n

ed
 in

d
efin

ite

N
eu

tral flexib
ility

C
o

m
p

etin
g

 flexib
ility

N
eu

tral in
h

ib
itio

n
C

o
m

p
etin

g
 in

h
ib

itio
n

N

eu
tral d

isab
ility

C
o

m
p

etin
g

 ab
ility

N
eu

tral u
n

d
esired

 flexib
ility

C
o

m
p

etin
g

 u
n

d
esired

 flexib
ility

C
om

pliant

N
ot C

om
pliant

D
elivered

N
ot delivered

C
om

pliant

N
ot C

om
pliant

C
om

pliant

N
ot C

om
pliant

D
elivered

N
ot delivered

C
om

pliant

N
ot C

om
pliant

C
om

pliant

R
ejected

S
oC

R
elease n+

1

S
oC

R
elease n+

1

Delivery
Release n

S
oC

R
elease n+1

S
oC

R
elease n+

1

Delivery
Release n

C
om

pliant

N
ot C

om
pliant

D
elivered

N
ot delivered

C
om

pliant

N
ot C

om
pliant

C
om

pliant

N
ot C

om
pliant

N
ot delivered

C
om

pliant

N
ot C

om
pliant

Accepted

Proprietary Solution

S
oC

R
elease n+

1

S
oC

R
elease n+

1
Delivery

Release n

S
oC

R
elease n+

1

S
oC

R
elease n+

1

Up-Stream

Down-stream

CCB
Decision

Platform Subcontractor

Delivery
Release n

SoC
Release n

Point of
Elicitation

Developer Strategy
for Requirement X

N
ot C

om
pliant

D
elivered

E
nabler

N
ot needed

N
o

Y
es

Y
es

N
o

N
o

Y
esN

o

Y
es

Y
es

N
o

Y
es

Enabler

N
eeded

C
om

peting
S

olution

C
om

peting
S

olution

Enabler
Provided

C
om

peting
S

olution

C
om

peting
S

olution

Flexibility
Requirement

Enabler
Provided

N
o

C
om

pliant

N
ot C

om
pliant

D
elivered

N
ot delivered

C
om

pliant

N
ot C

om
pliant

C
om

pliant

N
ot C

om
pliant

D
elivered

N
ot delivered

C
om

pliant

N
ot C

om
pliant

C
om

pliant

R
ejected

S
oC

R
elease n+

1

S
oC

R
elease n+

1

Delivery
Release n

S
oC

R
elease n+1

S
oC

R
elease n+

1

Delivery
Release n

C
om

pliant

N
ot C

om
pliant

D
elivered

N
ot delivered

C
om

pliant

N
ot C

om
pliant

C
om

pliant

N
ot C

om
pliant

N
ot delivered

C
om

pliant

N
ot C

om
pliant

Accepted

Proprietary Solution

S
oC

R
elease n+

1

S
oC

R
elease n+

1
Delivery

Release n

S
oC

R
elease n+

1

S
oC

R
elease n+

1

Up-Stream

Down-stream

CCB
Decision

Platform Subcontractor

Delivery
Release n

SoC
Release n

Point of
Elicitation

Developer Strategy
for Requirement X

N
ot C

om
pliant

D
elivered

E
nabler

N
ot needed

N
o

Y
es

Y
es

N
o

N
o

Y
esN

o

Y
es

Y
es

N
o

Y
es

Enabler

N
eeded

C
om

peting
S

olution

C
om

peting
S

olution

Enabler
Provided

C
om

peting
S

olution

C
om

peting
S

olution

Flexibility
Requirement

Enabler
Provided

N
o

In
clu

sio
n

T
ran

sien
t in

clu
sio

n
D

e-sco
p

ed
 to

 n
ext

D
e-sco

p
ed

 in
d

efin
ate

R
eco

n
sid

ered
T

ran
sien

t reco
n

sid
ered

P
o

stp
o

n
ed

 to
 n

ext
P

o
stp

o
n

ed
 in

d
efin

ite

C
h

an
g

e in
clu

sio
n

C
h

an
g

e tran
sien

t in
clu

sio
n

C
h

an
g

e d
e-sco

p
ed

 to
 n

ext
C

h
an

g
e d

e-sco
p

ed
 in

d
efin

ate
C

h
an

g
e reco

n
sid

ered
C

h
an

g
e tran

sien
t reco

n
sid

ered

C
h

an
g

e p
o

stp
o

n
ed

 to
 n

ext
C

h
an

g
e p

o
stp

o
n

ed
 in

d
efin

ite

N
eu

tral flexib
ility

C
o

m
p

etin
g

 flexib
ility

N
eu

tral in
h

ib
itio

n
C

o
m

p
etin

g
 in

h
ib

itio
n

N

eu
tral d

isab
ility

C
o

m
p

etin
g

 ab
ility

N
eu

tral u
n

d
esired

 flexib
ility

C
o

m
p

etin
g

 u
n

d
esired

 flexib
ility

Fig. 2. Requirements Compliance Scenario Framework. (CCB = Change Control Board; SoC =
Statement of Compliance).

Assessment: Reason (1) is bad for both parties and such instances should be mini-
mised through improved requirements specification quality; (2) and (3) occur more
frequently than desired due to the great uncertainties in market and cost estimation
and are bad for both parties, and may be minimised through improvements in estima-
tion techniques.

 Assessing Requirements Compliance Scenarios in System Platform Subcontracting 369

Reconsidered. This scenario represents the case where a requirement initially was
stated not compliant, however delivered anyway in the current release.

Case study findings: One identified reason for this rather uncommon scenario is
that several competing device developers also has declared firm interest in this re-
quirement and the platform product company has upgraded accordingly the priority of
the requirement based on platform market considerations.

Assessment: This scenario is generally beneficial to both parties, although less tur-
bulence may have been created if the requirement was stated compliant earlier in the
negotiation process.

Transient reconsidered. This is a special case of the previous scenario, where a
reconsidered requirement is stated not compliant in the next release.

Case study findings: One identified reason for this rare scenario is that a require-
ment is only partly implemented using a temporary work-a-round that subsequently in
the next release is excluded due to permanent architectural changes.

Assessment: If this scenario is a result of incomplete solutions and work-a-rounds it
may be a pragmatic outcome based on resource constraints and therefore acceptable
by both parties given the circumstances.

Postponed to next; Postponed indefinite. These scenarios represent the cases where
the statement of compliance for the current release is negative and the requirement is
accordingly not delivered. Some of the requirements are implemented in the next
release and some are postponed even further.

Case study findings: These scenarios are rather common and are a natural result of
the not surprising fact that the number of desired requirements is larger than what the
available platform development resources can cope with. Postponed to next may also
be a result of that the necessary technology is not part of the current release, but will
be incorporated in the next release as the platform architecture evolves. Postponed
indefinite may be a result of a strategic decision by the platform developer to not
support a certain technology or set of features. Another common reason behind post-
poned requirements is that the market value does not justify the anticipated develop-
ment costs. Or it may be unfeasible to reach a cost per device unit that is attractive to
the targeted market segment.

Assessment: These scenarios are in general not desirable to the device developer,
although it is of course necessary to prioritise among requirements that exceed avail-
able resources. It is crucial to the platform developer not to over-allocate development
resources as there otherwise is a risk that pressure results in sub-optimal decisions and
to late de-scoping, which generates further turbulence. There is a difficult trade-off
involved in the decision of postponing, as it in effect may mean balancing decreased
reliability versus lost market opportunities and disadvantageous competitor lead.

4.2 Downstream Compliance Scenarios

If the requirement is elicited (invented or discovered) after the platform system
requirements are put in baseline, the change control process is invoked and the re-
quirement may be incorporated in downstream requirements engineering as a change
request [4, 13]. This means that a formal decision procedure needs to be followed
involving the Change Control Board (CCB) which is set up by the platform company
specially for the collaborative requirements engineering with this particular device

370 B. Regnell, H.O. Olsson, and S. Mossberg

product company. The CCB is responsible for balancing the benefits of the change
with the effects of disturbing the ongoing development of the current platform release.
Estimates regarding impact and cost are needed and available developer competence
needs to be assessed. Depending on the outcome of the CCB decision a change re-
quest may be accepted or rejected, and depending on the actual implementation of the
change request, a number of scenarios may occur, as described subsequently.

Change inclusion. This is a typical scenario for a change request. It is the result of a
decision to accept a change request, and hence the requirement is allowed to change
the plans of the on-going development. This scenario also imply that the development
was successful, resulting in a satisfactory implementation of the requirement. Nor-
mally, a successful change is persistent in subsequent releases.

Case study findings: Change requests are an order of magnitude fewer than normal
requirements (~100 rather than ~1000), as only a few change requests can be handled
during on-going development. If too many change requests are accepted, the devel-
opment is trashed by disruptive rework (cf. [8]). The reasons behind change requests
(cf. [13]) that have been identified include: (1) late incoming requirements from op-
erators or incomplete elicitation in general, (2) late discovery of platform performance
problems, (3) spill-over of the most important de-scoped or postponed requirements
(cf. Section 4.1), and (4) late discovery of requirements specification quality problems
that has resulted in misaligned interpretation of what will be delivered. The decision
to include a change may be paired with an agreement to separately pay for a customer
specific project dedicated to this requirement in order to enable an increase in the
available resources, e.g. through additional personnel from consultancy firms.

Assessment: This scenario is positive to the device product company as desired re-
quests are fulfilled. It also gives the platform product company goodwill and if the
estimates and assessments underpinning the decision to accept the change are sound
and a budget for changes is planned in advance, it can be handled in an undisruptive
manner that does not excessively impact on-going construction.

Change transient inclusion. This scenario represents the acceptance of a change
request and the requirement is implemented and delivered in the ongoing release, but
then the requirement is not compliant in the subsequent release and its implementa-
tion is for some reason excluded, as opposed to the normal case of persistent changes.

Case study findings: This scenario is rare but less rare than for normal require-
ments, as change request implementations more often are of a work-around nature to
enable late inclusion in on-going development. If backward requirements traceability
in architectural evolution is incomplete, change requests may accidentally be lost in
later releases.

Assessment: This scenario may be reasonable to both parties, given that an agree-
ment on superseding a work-around with another more general solution that better
covers the needs is reached. Temporary changes lost in coming up-stream require-
ments engineering due to traceability problems is not beneficial to any party, in a
similar way as transient inclusion in Section 4.1.

Change de-scoped to next release; Change de-scoped indefinite. These scenarios
are resulting from decision changes during ongoing construction. First a change re-
quest is accepted and the implementation of the requirement is incorporated in the
plans, but then for various reasons, the change is excluded from the scope of the

 Assessing Requirements Compliance Scenarios in System Platform Subcontracting 371

current release. If this happens the change is normally included in the next release or
it may also be indefinitely delayed.

Case study findings: These scenarios are relatively rare in comparison to de-
scoping in up-stream requirements engineering, due to the fact that change requests
are very carefully scrutinised as changes often have large impact and dedicated re-
sources often need to be reallocated. If it happens it may be that the acceptance deci-
sion has come too late for it to be feasible to include in on-going construction or that
an even more important change request has emerged. Another reason may be that
unforeseen implementation problems need urgent re-allocation of resources resulting
in de-scoping.

Assessment: These scenarios are not desirable to any party as much time already
has been spent on change of plans and impact analysis. It may, however, be necessary
given the circumstances and the best choice given the market situation or the actual
outcome of construction efforts.

Change reconsidered; Change transient reconsidered. These scenarios result from
rejected changes that are then reconsidered during on-going construction. Depending
on if the implemented requirement is compliant or not in the next release, the recon-
sidered change may be persistent or transient.

Case study findings: These scenarios are very uncommon, especially change tran-
sient reconsidered. The reasons behind these scenarios resemble the reasons behind
upstream reconsidered requirements (see Section 4.2), and are based on reconsidered
estimations of e.g. the platform product market value. Incomplete or intermediate
solutions may be superseded causing transient compliance.

Assessment: These scenarios are, as the previous change de-scope scenarios, symp-
toms of a changing environment and uncertain predictions of future market and out-
come of implementation. When they occasionally occur, they are results of trying to
adapt to facts of reality, and they often have the consequence that value of previous
efforts are shredded and that rework is needed. The gains may include rectified com-
petitive advantage.

Change postponed to next release; Change postponed indefinite. These scenarios
are results of rejected change requests. This means that the current release is not com-
pliant with the requirement in the change request. Either the change is included as a
compliant requirement in the next release or it may be postponed even further.

Case study findings: These scenarios are common for change requests, especially
change postponed to next release. The later in down-stream development that a
change request comes, the more likely it is that it gets postponed as the impact and
cost of rework is increased as construction proceeds. Only really important change
requests are accepted. If the change is in line with the platform product company
strategy it may be included in the next release in the upstream requirements engineer-
ing as a compliant requirement. If the strategic fit is not perfect or if the architecture is
not ready for such features, it may be further delayed to an uncertain future. Some-
times changes are postponed due to lack of competent resources, and it may not even
be possible to find resources through additional personnel from consultancy firms.

Assessment: These scenarios are in general not beneficial to the device product
company. Change requests are most often made on really important requirements and
if not included, the market value of the device may be substantially reduced. It is also

372 B. Regnell, H.O. Olsson, and S. Mossberg

crucial that the CCB decision comes as soon as possible in order to give time for
potential development of proprietary solutions. This scenario may give serious bad-
will for the platform product company with regard to this particular device customer,
but it may very well be necessary given the global optimisation of resource utilisation
as seen by the platform product company.

4.3 Proprietary Solution Chosen

If the strategy chosen for a given requirement by the device product company is to
implement it in the device application platform that is developed internally by the
device developer, the requirement is not forwarded to the platform subcontractor.

Case study findings: One reason behind the choice to make a proprietary solution is
that this gives a competitive advantage in relation to other competing device vendors.
Even if the platform company offers a standard solution to, e.g., a certain communica-
tion technology, it may not be as advanced, production economical, or high perform-
ing as the device company wants it, and thereby a proprietary solution is selected.
Another reason may be that the device product company has the competence and the
necessary resources to implement the requirement and finds that the platform product
company's development resources and competences are better utilised on other re-
quirements. Yet another reason may be that the requirement is application specific
and is out of scope of the mobile platform, or the proprietary solution may be a spill-
over as a result of a previous decision by the platform company not to comply with a
certain requirement.

Often a requirement, although not to be implemented in the platform, needs an en-
abler in the platform in order to facilitate its implementation in the device application
platform or in the product-specific part of the design. This often manifests itself in the
need for opening up access to platform-internal entities through extensions to the
application programming interface (API) of the platform. Subsequently, this is called
a flexibility requirement.2

The flexibility requirement scenarios generated based on the proprietary solution
branch of fig. 2 are described below, firstly the four scenarios that come from the
need of an enabler, and secondly the four scenarios implied if no enabler is needed.

Neutral flexibility; Competing flexibility. These scenarios represent the case where
an enabler in the platform is needed. Two cases exist: either the platform company
offers only the enabler (through e.g. API extensions) or the platform company also
offers a complete solution to all device developers using the platform. This complete
solution is thus a competing alternative to the proprietary solution of the specific
device product company.

Case study findings: The neutral flexibility case is the normal case and is rather
common. The reason for providing neutral flexibility through enablers in the platform
is to support device developers in application development, which is in line with the
general goal of the platform company. Often the device company pays extra for the
effort needed to provide enablers not planned as part of the standard platform

2 There are other types of flexibility requirements not discussed here. For example, there may

be requirements to exclude certain capabilities in order to have reduced processor load and
thereby enable manufacturing of devices with cheaper hardware and thus lower cost per unit.

 Assessing Requirements Compliance Scenarios in System Platform Subcontracting 373

proposition. Competing flexibility is a special case, although not uncommon, and
occurs when a platform solution is offered to those device product companies that do
not want to, or would not be able to implement the application-level requirement
themselves if the competing solution would not be present.

Assessment: The neutral flexibility scenario is in general beneficial to the device
product company, although sometimes the result of an unfavourable non-compliance.
It is often no problem to provide an enabler and the platform company increases the
capabilities of the platform through the inclusion of an enabler. The competing flexibil-
ity scenario is in general a disadvantage to the device product company; whereas it is
beneficial to the platform company as the platform market opportunities are enhanced.

Neutral inhibition; Competing inhibition. These scenarios are based on the case
where the device product company needs an enabler but the platform product com-
pany does not offer one. This results in that the application implementation by the
device developer is inhibited to various degrees. A special case is when a solution in
the platform is offered that the device developer does not want to use and at the same
time there is no needed enabler available to support proprietary solutions.

Case study findings: The decision by the platform product company not to provide
an enabler may come from a choice that this is not in line with the architectural strat-
egy. There may also be a shortage of resources internally or the right competence may
not be available through additional personnel from consultancy firms, even if the
device vendor is prepared to pay extra for the enabler. Every customer-specific addi-
tion to the platform adds extra complexity in configuration management as variants in
the code base increases. We have not found examples of the competing inhibition
scenario in our interviews, but it is in principle possible as a result of, e.g., resource
constraints at the platform product company.

Assessment: Inhibition scenarios are not good for the device product company, as a
competitive advantage is spoiled. The competing inhibition is worse than the neutral
inhibition, if the device company is not satisfied with the standard platform solution
offered and cannot make its own proprietary solutions due to a lacking enabler. The
platform company may lose goodwill, but act according to a global assessment of the
platform market taking all device vendor customers into account.

Neutral disability; Competing ability. These scenarios are resulting from an ab-
sence of support to proprietary solutions, although different to the inhibition scenarios
in that the enabler is not needed. Thus, the platform support is not necessary for the
particular device product company. A special case is when the absence of an enabler
is paired with a competing solution in the platform to other device product companies
that may not want or be able to implement the application without this support.

Case study findings: The neutral disability scenario occurs rather frequently as the
internal application platform developed by the device company includes many fea-
tures outside the scope of the platform. It can be seen as the result of a beneficial
division of responsibilities between the device product company and the platform
product company. The competing ability scenario is a natural result of the platform
company striving to offer standard solutions for those device developers that refrain
from implementing proprietary variants.

Assessment: The neutral disability scenario is generally beneficial to the device
company, as competitors gain no advantage through the platform, while a proprietary

374 B. Regnell, H.O. Olsson, and S. Mossberg

solution is preferred and possible without an enabler in the platform. The competing
ability is most often tolerable to the specific device company although from its point
of view, the platform company resources could have been used better. For the plat-
form company, however, this may be a good strategy in the competition with other
platform product companies.

Neutral undesired flexibility; Competing undesired flexibility. These special case
scenarios of undesired flexibility occur if the device product company does not need
an enabler although provided by the platform company. This may occur e.g. if the
proprietary solution is replacing a significant part of the subcontracted platform with
internally developed application and platform technology. The platform company
may in this case offer not only an enabler for proprietary technology add-on to the
competing device companies, but also a competing solution supporting direct applica-
tion realisation.

Case study findings: These scenarios seem to occur rarely as the special relation-
ship between these particular companies ensures that the respective strategies are
mostly aligned. However, the business model of the platform company is based on
making propositions to competing device vendors, and undesired flexibility as seen
from a specific vendor's viewpoint, having proprietary solutions to platform features,
is happening at occasions.

Assessment: Neutral undesired flexibility is often acceptable to the device vendor,
as the competition situation is not often significantly impacted by an enabler. In some
cases competing undesired flexibility is also acceptable, as the device product com-
pany finds their own proprietary solution superior to what is available in the platform.

5 Conclusion

The presented results of the collaborative requirements engineering case study in-
cludes a framework for assessing compliance scenarios as outcomes of collaboration
in platform subcontracting. The framework is based on decisions in upstream and
downstream development as well as platform flexibility issues and the outcomes of
the development of subsequent releases are taken into account. The main findings of
the case study analysis is that the framework is useful as a basis of analysing compli-
ance issues in system platform subcontracting and that the scenarios are relevant in
the understanding of collaboration performance. Particular examples of compliance
scenarios are discussed and a qualitative assessment is given for each scenario or
scenario group.

The intention of the presented framework is to enable continuous assessment of an
ongoing subcontracting relationship, to complement the existing support for selecting
subcontractors such as MASS [1]. Process improvement based on prescriptive models
such as e.g. CMMI [2] can be complemented with retrospective analysis of past pro-
jects and the presented framework can be used to find both positive and negative
scenarios. By analysing the frequency of scenarios of the framework and focusing on
the reasons behind collaboration outcomes for particular classes of requirements, the
aim is to increase collaboration efficiency by focusing on improvements that yield
maximal impact.

 Assessing Requirements Compliance Scenarios in System Platform Subcontracting 375

Future work includes further investigation of how the framework can be utilised in
process improvement in subcontracting, through analysis of compliance scenario
frequencies and impacts. Analysis of reasons behind change requests similar to [13]
but specific for platform subcontracting, may complement this case study findings
with more understanding of downstream requirements engineering issues. Non-
functional requirements, especially performance and flexibility are of particular inter-
est based on the findings of this case study, and further investigation on how these
types of requirements are handled in the collaborative situation is interesting. It would
also be interesting to compare the case study findings in the telecom domain with
similar case studies in other domains where technology platforms for embedded sys-
tems are common, such as the automotive industry.

Acknowledgements. This work is supported by VINNOVA (Swedish Agency for
Innovation Systems) within the ITEA project MERLIN. We would like to give special
thanks to Lena Karlsson and Dr. Martin Höst for careful reviewing and valuable
comments. Special thanks to Niklas Rystedt for valuable input on change requests.

References

1. Assmann, D.; Punter, T. (2004) "Towards partnership in software subcontracting", Journal
of Computers in Industry, 54(2):137-150, Elsevier.

2. Chrissis M. B.; Konrad M.; Shrum S. (2003) CMMI: Guidelines for Process Integration
and Product Improvement, Addison-Wessley ISBN: 0-321-15496-7.

3. Carlshamre P., Regnell B. (2000) "Requirements Lifecycle Management and Release
Planning in Market-Driven Requirements Engineering Processes", Int. Workshop on the
Requirements Engineering Process: Innovative Techniques, Models, and Tools to support
the RE Process (REP’00), 11th IEEE Conference on Database and Expert Systems Appli-
cations (DEXA’00), September 6-8, Greenwich UK, pp. 961-965.

4. Damian, D., Chisan, J., Vaidyanathasamy, L., Pal, Y. (2005) "Requirements Engineering
and Downstream Software Development: Findings from a Case Study", Empirical Soft-
ware Engineering, 10(3): 255-283, Springer.

5. Damian, D. and Zowghi, D. (2003). Requirements Engineering challenges in multi-site
software development organizations. Requirements Engineering Journal, 8(3):149-160,
Springer.

6. Ebert, C. De Neve, P. (2001). "Surviving Global Software Development", IEEE Software
March/April 2001. pp. 62-69.

7. Ebert, C. (2005) "Requirements BEFORE the Requirements: Understanding the Upstream
Impact", Proc. 13th IEEE International Conference on Requirements Engineering, Paris,
France, pp. 117-124.

8. Fairley, R.E.; Willshire, M.J. (2005) "Iterative Rework: The Good, the Bad, and the
Ugly", IEEE Computer, 38(9):34-41.

9. Gorschek, T.; Wohlin, C. (2005) "Requirements Abstraction Model", Requirements Eng
Journal, 11:79–101.

10. Hietala, J.; Kontio, J.; Jokinen, J.-P.; Pyysiainen, J. "Challenges of software product com-
panies: results of a national survey in Finland", Proc. 10th International Symposium on
Software Metrics, pp. 232-243.

376 B. Regnell, H.O. Olsson, and S. Mossberg

11. Karlsson L., Dahlstedt Å. G., Natt och Dag J., Regnell B., Persson A., (2002) Challenges
in Market-Driven Requirements Engineering - an Industrial Interview Study, 8th Interna-
tional Workshop on Requirements Engineering: Foundation for Software Quality
(REFSQ’02), September 09-10th, Essen, Germany, pp. 37-49.

12. Lormans, M; van Dijk, H.; van Deursen, A.; Nöcker, E.; de Zeeuw, A. (2004) "Managing
Evolving Requirements in an Outsourcing Context: An Industrial Experience Report",
Proc. IEEE Int. Workshop on Principles of Software Evolution, Kyoto, Japan, pp. 149-158.

13. Nurmuliani, N.; Zowghi, D.; Powell, S. (2004) "Analysis of requirements volatility during
software development life cycle" Proc. IEEE Australian Software Engineering Confer-
ence, pp 28-37.

14. Svahnberg, M.; Bosch, J. (1999) "Evolution in software product lines: two cases", Journal
of Software Maintenance: Research and Practice, 11(6):391-422, Wiley.

J. Münch and M. Vierimaa (Eds.): PROFES 2006, LNCS 4034, pp. 377 – 382, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Software Inspections in Practice: Six Case Studies

Sami Kollanus1 and Jussi Koskinen2

Department of Computer Science and Information Systems
P.O. Box 35 (Agora), FI-40014 University of Jyväskylä, Finland
1sami.kollanus@jyu.fi, 2koskinen@cs.jyu.fi

Abstract. Software inspections have been acknowledged as an important
method in software engineering, but they are not well applied in practice. This
paper discusses the current practices and the related problems based on six case
studies in industrial settings. The analysis of inspection practices was organized
according to ICMM, which is a model for systematically assessing and
improving software inspection process maturity. The sample case organizations
used inspections relatively regularly. The involved units are compared and the
revealed practices, their characteristics, inspection problems and implications of
the study discussed. The main problem areas were non-existent inspection
training, limited formality of inspections and immaturity of inspection metrics.

1 Introduction

Since Michael Fagan published his original software inspection method [2] in 1976,
inspections have been acknowledged as an important method in software
development. Several researchers have reported great savings or improved
effectiveness when using inspections [7]. Unfortunately, regardless of the fact, that
inspection is known as a useful method within the software engineering research
community, it is not widely applied in practice. There also is very little systematic
research conducted, attempting to study the real state of the industrial practices. There
are, however, some relevant experience reports. Johnson [3] refers in his paper to an
informal survey, where 80% of the 90 respondents practiced inspections irregularly or
not at all in their organizations. Ciolkowski et al. [1] conducted a survey, which
aimed to study the practice of any kinds of software reviews. Based on 226 responses,
they also concluded that reviews are irregularly used in software industry.

This paper reports six case studies, which were conducted in organizations
producing commercial software. We will later sometimes refer to this set of studied
units simply as case units. The focus of the paper is to identify strengths and
weaknesses in inspection subpractices in the units by using Inspection Capability
Maturity Model (ICMM) [5]. Since it was necessary to understand the whole
organizational context of applying software inspections, data was gathered via
interviews. There is an earlier study [6], which provided preliminary problem analysis
based on data from two case studies. This paper extends that study by a larger set of
involved organizations, by providing information regarding the state of the covered
inspection processes, and by gathering discussion concerning the implications.

378 S. Kollanus and J. Koskinen

2 Inspection Capability Maturity Model

This section briefly introduces Inspection Capability Maturity Model (ICMM) [5],
which is used in this paper as a framework in analyzing existing inspection practices
in the involved organizations. ICMM supports: 1) inspection process maturity
assessment, and 2) inspection process improvements. It resembles the internationally
well known and well established CMM [9] model, but focuses on the assessment of
the maturity of inspection practices instead of the whole software development
process. Only the ICMM-levels 2-3 were used in this study, because the upper levels
were not currently relevant in the case units.

The second level is called ‘Practicing level’ in ICMM. It requires an organization
to practice inspections regularly. It includes the following specific process areas:

P1. Requirement Inspections. Requirements have to be inspected in organization's
every project. Inspections have to include preparation and reporting.

P2. Design Inspections. At least the system architecture description and some other
central design documents should be inspected.

P3. Training for Leaders. Training should be provided at least for inspection leaders.

The third, ‘Defined level’ requires an organization to have a well defined
inspection process and it has focus on inspection effectiveness. The required process
areas are the following:

P4. Test Case Inspections. This process area requires inspection of test cases.
P5. Code Inspections. The most important parts of the code must be inspected in

every project. In addition, project plan should define, which documents are
required to be inspected within the project.

P6. Defined Process. Inspection process must be defined and documented.
P7. Training for all. This includes training for all relevant stakeholders.
P8. Customized Material. Inspection support materials must be created and

customized for the organization. The material may include for example
standards, rules, checklists and scenarios.

P9. Data Collection and Use. Inspection data should be collected and used to
monitor, control and improve the inspection process.

P10. Organizational Policy. There must be clear organizational policy and
management’s commitment to the inspection practices.

P11. Assigned Responsibilities. This refers to the formal responsibilities which
concern the inspections.

P12. Allocated Resources. This refers to the formal allocation of resources for the
inspections.

3 Data Gathering

These case studies had two main goals related to the involved organizations: 1) to find
out how inspections (or less formal reviews [8]) are practiced, and 2) to find out what
are the faced inspection related problems. The case studies were conducted in six
software supplier units within five Finnish companies. These companies produce and

 Software Inspections in Practice: Six Case Studies 379

tailor software products for their customer organizations. The sample represented
different kind of units. All invited units participated to the study. Interviews, see e.g.
[4], were used as a means of data gathering in order to reveal the actual way of
practicing inspections and the possibly related problems. We did have the following
main assumptions: 1) there are some serious problems in the inspection processes,
since regardless of their theoretical importance, they are evidently relatively rarely
applied in software industry, 2) defects are caused by poor process maturity level in
terms of ICMM, 3) problems may concentrate on some process areas which need to
be identified within each case unit. The organizations were asked to find proper
interviewees on different organizational levels. The case studies included three
interviews in each involved unit. The total number of interviewees was 18. All
interviewees were experts (quality managers, project managers and software
developers) with average 11 years of SE-experience. In the beginning interviewees
were asked to estimate in scale from 1 to 5 (5 is the best), the quality of the applied
inspection practices. First main part of the interviews charted the currently applied
inspection practices. This part was mainly based on ICMM. Another main part
focused on the experienced inspection problems.

4 Results

This section presents the results. The six industrial units were compared based on
ICMM. The presented observations, characterizations of the process areas,
comparisons of the units, recommendations regarding SPI, and identification of the
implications for research regarding inspections are the main results of this study.
Results of the case unit comparisons are summarized in Table 1. It lists the required
process areas from ICMM and evaluation results from each of the units (U1…U6).
The process areas are evaluated as fully implemented (F), partially implemented (P)
or not implemented (-). Additionally, there is an average subjective score (scale 1-5,
where 5 is the best), which the interviewees gave to their current inspection practices.

The applied inspection practices and levels of satisfaction varied a lot in the case
units. In the best case, based on the coverage of the process areas, inspections were
well defined on general level and all documents were inspected in every project.
However, as can be seen from Table 1 even in the best cases only about half of the
listed requirements from ICMM levels 2 and 3 were fully satisfied. In two of the case
organizations there is still some work to do to get inspections run regularly. This
means that: 1) it appears to be relatively hard to fully achieve even the ICMM levels
2&3, and 2) there were real gaps in the maturity profile of the case units. Due to the
problems in the inspection processes, the performed inspections probably were less
effective than they should have been.

An interesting finding was that the subjective estimates about inspection
performance do not correlate at all with the ICMM profiles. For example interviewees
in units U1 and U2 gave the same average score, but they were opposites in the
comparison, achieved based on ICMM. Another example is that units U4 and U5 had
almost identical profiles, but interviewees in U4 were somewhat more satisfied to
their inspections. There may be several reasons for the different scores. For example,
some interviewees may have felt comfortable with the applied informal practices,

380 S. Kollanus and J. Koskinen

which however do not satisfy ICMM requirements. Also general knowledge about
inspections appeared to affect the scores. Higher knowledge usually caused more
critical attitude. Regardless of the different subjective estimates, all the case units saw
many improvement needs in their inspection practices.

Table 1. Level and comparison of the inspection process maturity as applied in the case units

Process areas \ Units U1 U2 U3 U4 U5 U6

Level 2
P1. Requirement inspections P F F F F P
P2. Design inspections P F P F F P
P3. Training for leaders - - - - - -

Level 3

P4. Test case inspections P F P F F P
P5. Code inspections - P - P P -
P6. Defined process - F F F P F
P7. Training all - - - - - -
P8. Customized material - P P - - -
P9. Data collection and use - - - - - -
P10. Organizational policy - F F F F -
P11. Assigned responsibilities P P P P P P
P12. Allocated resources - P - - - -

Levels 2-3: Subjective process
quality estimate (Avg., scale: 1-5)

2.8

2.8

3.3

3.0

2.7

2.0

Table legend: F means fully implemented and P partially implemented process area.

We also analyzed the qualitative data from the interviews to understand
organizations and possible trends in their inspection practices. We regarded the
following findings as the most interesting ones:

• All the case units review more or less formally and regularly requirements, but it is
quite rare in the units to review any parts of code. This trend was not so clear in the
survey by Ciolkowski et al. [1]. In their study 42% of the respondents reviewed
requirements and 28% code regularly.

• Surprisingly, there was not any kind of training concerning inspections in the case
organizations. In addition, motivating people to carefully read others’ work
products was one of the biggest challenges in all units regardless of their maturity
levels. So, training with primary goals to motivate and increase general knowledge
could be recommended for every case organization.

• Only one unit (U1) did not have any kind of process documentation about
inspections. However, the interviewees in the other units knew quite little about
their process. Many of them could only guess what the process definitions include.
This was one of the findings, which emphasize the need for training.

• Inspection support material was one of the really weak process areas in the case
organizations. Two units had some kind of checklists for inspections, but even they

 Software Inspections in Practice: Six Case Studies 381

did not apply those lists in practice and some interviewees did not know anything
about the checklists.

• None of the case organizations collected inspection data systematically. Inspection
report (in case that it was written) was a text document in all case units and it's
information was not further gathered or used within the units. Moreover, no one
appeared to be interested in that data.

• All case organizations have a quality manager or some similar kind of role,
responsible of quality, but they did very little to monitor and control inspection
practices. So, the control is left to the project managers. This often appeared to lead
to the situation, where inspections are properly practised only when it is a customer
requirement.

• Only one of the case organizations usually allocated distinct resources for
inspections and it was done only roughly and only on project level. If resources are
not allocated specifically for inspections, the employees may feel they have to do
something “productive” instead of inspections.

5 Discussion and Conclusions

This paper reported current inspection practices in six case units in software industry.
ICMM served as an organizing framework for systematically comparing the units and
evaluating inspection processes and process areas. It fulfilled that task quite well and
helped to identify the maturity levels and central problems of the inspection practices.
However, it should be noted that ICMM is still under development. The inspection
capability and focus of the analysis was on the 12 process areas of ICMM levels 2-3.
Sample case units are only starting their systematic improvements of software
inspections. Therefore the results should not be generalized beyond those levels.
Nevertheless, the observations received are useful in characterizing the pitfalls of
inspection process improvement on these levels in industrial settings.

The case organizations had weaknesses in their inspection practices, especially
related to the ways in which inspections are performed, their focus areas, training
related to inspections, and definition and gathering of proper metrics as a basis for
systematic and continued software inspection process improvements. The study
supported our main assumptions. Typical practical problems of applying inspections
appeared to be serious. Therefore, the quality of inspection processes should be
improved. However, especially the following problems make this harder. 1) The
general knowledge about inspections, defined processes and related organizational
policies was very low and there was no inspection training. 2) Formality of the
applied inspections was limited. 3) Inspection data was not collected and therefore
there were no control over inspections. All these findings suggest that the case units
might not have fully understood the benefits which inspections probably would
provide for their software development processes if they were organized effectively.

Lack of inspection training was the most common weakness in every case unit.
General knowledge about inspections appeared to be quite limited. Almost all
interviewees agreed on the need for more formal inspections. There are differences in
the inspection focus areas, coverage, and their effectiveness within the organizations.
One clear weakness was lack of metrics and process control. Metrics would at least

382 S. Kollanus and J. Koskinen

give guidance for how to achieve quality [10]. Objective inspection effectiveness
could not be formally studied because of that lack of proper metrics. In addition,
inspections do not seem to be an intuitively pleasant part of software engineers' work.
There also were some interesting similarities and differences between this study and
the survey by Ciolkowski et al. [1]. The case organizations of our study appeared to
review requirements and designs much more regularly. However, the respondents in
that earlier survey reviewed code more regularly. Another identified issue was that
customer interest on inspections correlates positively with the level of discipline of
conducting inspection practices by the software supplier organization. Nevertheless,
customers are rarely interested in very technical documentation.

The next SPI-step is to conduct inspections systematically and to improve the
effectiveness of the current inspection practices. ICMM and similar models can
support the SPI needed in these cases, but the identified problems need to be
identified and resolved casewise. This study has its rightful place among the empirical
case studies in this relatively scarcely studied area. Each conducted case study helps
in its part to form the "bigger picture" of the industrial practices, characteristics of the
needed processes, and problems of the software inspection area. Problems of
inspection practices in different kinds of organizations could be studied further.

References

1. Ciolkowski, M., Laitenberger, O., Biffl, S.: Software Reviews, the State of the Practice.
IEEE Software, Vol. 20, 6 (2003) 46-51.

2. Fagan, M.E.,: Design and Code Inspection to Reduce Errors in Program Development,
IBM Systems Journal, Vol. 15, 3 (1976) 182-211.

3. Johnson, P.M.: Reengineering Inspection. Comm. of the ACM, Vol. 41, 2 (1998) 49-52.
4. Kitchenham, B.A., Pfleeger, S.L., Pickard, L.M., Jones, P.W., Hoaglin, D.C., Emam,

K.E., Rosenberg, J.: Preliminary Guidelines for Empirical Research in Software
Engineering. IEEE Transactions on Software Engineering, Vol. 28, 8 (2002) 721-734.

5. Kollanus, S.: ICMM – Inspection Capability Maturity Model. Proc. of the 2nd IASTED
International Conference on Software Engineering (IASTED-SE’2005), ACTA Press,
Innsbruck, Austria (2005) 372-377.

6. Kollanus, S.: A Problem Based Approach to Inspection Improvement? Proc. of the 6th Int.
Conf. on Product Focused Software Process Improvement (PROFES’2005), Springer
LNCS Vol. 3547, Oulu, Finland, (2005), 429-442.

7. Laitenberger, O., DeBaud, J.-M.: An Encompassing Life-Cycle Centric Survey of
Software Inspection. Journal of Systems and Software, Vol. 50, 1 (2000) 5-31.

8. Sauer, C., Ross, J., Land, L., Yetton, P.: The Effectiveness of Software Development
Technical Reviews: A Behaviorally Motivated Program of Research. IEEE Transactions
on Software Engineering, Vol. 26, 1 (2000) 1-14.

9. SEI: Capability Maturity Model Integration, version 1.1. Software Engineering Institute
(2002) <URL: http://www.sei.cmu.edu/cmm/>

10. Voas, J.: Software Quality’s Eight Greatest Myths. IEEE Software, Vol. 16, 5 (1999)
118-120.

J. Münch and M. Vierimaa (Eds.): PROFES 2006, LNCS 4034, pp. 383 – 388, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Productivity of Test Driven Development: A Controlled
Experiment with Professionals

Gerardo Canfora1, Aniello Cimitile1, Felix Garcia2, Mario Piattini2,
and Corrado Aaron Visaggio1

1 RCOST- Research Centre on Software Technology
University of Sannio, Italy

{canfora, cimitile, visaggio}@unisannio.it
2 ALARCOS Research Group- Information Systems and Technologies Department

UCLM-Soluziona Research and Development Institute
University of Castilla-La Manch Paseo de la Universidad, 4 – 13071 Ciudad Real, Spain

{Felix.Garcia, Mario.Piattini}@uclm.es

Abstract. With the growing interest for Extreme Programming, test driven
development (TDD) has been increasingly investigated, and several
experiments have been executed with the aim of understanding if and when it is
preferable to the traditional practice of testing the code after having written it
(named TAC in the paper). However, the research concerning TDD is at its
beginning and the body of knowledge is largely immature. This paper discusses
an experiment carried out within a Spanish software company with the aim of
comparing productivity in TDD and TAC.

1 Introduction

Test driven development (TDD) belongs to the set of the extreme programming [1]
practices, even if it might be adopted in any kind of software development process.
According to TDD, unit testing results drive code development. As a first step, the
developer defines the classes of the system in terms of public interfaces. Then, the test
suite for each class is written: the suite must contain all the tests helpful for verifying
that each method in the class exposes the correct behavior. Finally, the body of each
method is completed throughout an iterative process, consisting of two activities: to
execute the tests and, when some of them fail, to change the code in order to remove
the bugs that potentially caused the failure. The process ends when all the tests
succeed. TDD is widely considered a practice of code development rather than code
testing, although the role of unit testing is relevant for defining the design strategy to
adopt. TDD might be considered also an alternative to the traditional approach of
testing the code after having written it, named ‘test after coding’ (TAC) in this paper.
Recently some researchers investigated TDD: some experiments [2], [4], [7], and [9]
produced evidence about the improvement of code quality achieved with TDD;
however, some authors [2], and [6] did not find particular differences between TDD
and TAC. There is not a wide consensus about the relationship between TDD and
productivity, despite several studies obtained evidence that TDD is able to increase
the productivity with respect to TAC [3], and [4]. Since both the practices involve

384 G. Canfora et al.

coding and testing in a tightly interleaved process, we aim at understanding
differences in the productivity in the two practices. We have carried out an
experiment with the collaboration of professionals working in a Spanish Software
Company, aiming at meeting the following research goal: Analyse Test Driven
Development and Test After Coding With the purpose of comparing them With
respect to productivity From the point of view of the developers In the context of a
group of professionals. The work comprises two research questions:

R.1 Is test driven development more productive than TAC from the viewpoint of
testing? In this case, productivity is intended as the time needed to write and
execute assertions.

R.2 How is the time employed in the two practices? In order to have a deep insight
of the two practices, we try to understand if the increasing of productivity
means reducing the time for developing or for coding.

The paper proceeds as follows: section 2 describes the experimental design; data
are analyzed in section 3; and, finally, section 4 draws the conclusions.

2 The Experiment Characterization

The experiment aimed at testing the following null hypotheses:

H01 : there is no difference in the productivity between test driven development and
test after coding (helps to answer the research question R.1).

H02 : there is no correlation between productivity and the number of assertions in
test driven development (helps to answer the research question R.2).

H03 : there is no correlation between the productivity and the number of assertions
in test after coding (helps to answer the research question R.2).

The experiment was carried out in the facilities of the company Soluziona Software
Factory located in Ciudad Real (Spain). The variables used in the data analysis are
described in Table 1.

Table 1. Variables used in the experiment

Variable Description

MeanTPA

Mean Time per Assertion. It is the time required to write and execute an
assertion in the test suite. In both the practices the time for executing the
assertion includes also the changing in the code, suggested by the failures of
the test. It is assumed as an indicator of the productivity.

AssertTot

Total Number of Assertions. It is the total amount of assertions in the project.
It is an indicator of the quality of test in the overall project. The greater is the
number of assertions the greater is the number of aspects of the code which
are tested.

MeanAPM

Mean Assertion per Method. It is the mean number of assertions written for a
method. It is an indicator of the accuracy of testing. A high value of this
metrics could indicate that all the methods of the classes received the same
attention in the test.

Productivity of Test Driven Development: A Controlled Experiment with Professionals 385

28 employees of the company took part to the experiment: they have a BsC in
Computer Science and a wide knowledge in software programming and modeling
(UML, databases, etc.). The subjects were required to implement two assignments in
two different runs, one assignment per run. The programming language was java,
while ECLIPSE [10] and JUnit [11] were chosen as development environments.
Subjects received a form for each run, which they had to fulfill with the information
about the time and the assertions written for each assignment.

The experiment consisted of two runs; each run lasted five hours. Every subject
implemented both the requirements and performed both the practices but in two
different runs. The experimental design is illustrated in Table 2.

Table 2. The Experimental Design

 RUN I RUN II

Subjects Treatment Assignment Treatment Assignment
S1 TDD A1 TAC A2
S2 TAC A1 TDD A2
Sj TDD A2 TAC A1
Sn TAC A2 TDD A1

3 Data Analysis

Figure 1 compares the performances of the subjects when using the two practices,
TAC and TDD.

Descriptive Statistics

0

2

4

6

8

10

12

14

16

18

MeamTPA MeanAPM AssertTot

Tac

Tdd

Fig. 1. Performances of the experimental samples

The data suggests that differences between the two practices exist. TAC reduces
the mean time spent for each assertion (MeanTPA) , thus it is more productive than
TDD; conversely, TDD increases the density of assertions per method (MeanAPM)
and the total number of assertions (AssertTot); thus, TDD might determine more
accuracy and quality in the testing than TAC. On one hand, the iterative approach of
TDD requires more time than TAC in order to deliver a method. On the other hand,
since the developer writes the tests before the code, greater attention is devoted to

386 G. Canfora et al.

testing and, consequently, the developer increases the number of assertions. Table 3
shows that the difference in productivity is statistically significant; Mann-Whitney
test was used and the p-level was fixed at 0.05. Analysis of correlation can help
answer the research question R.2, and understand more precisely how the additional
time in TDD is employed.

Table 3. Tests of Hypothesis H01

Testing Rank Sum
(a)

Rank Sum (b) p-level

MeanTPA (TDD)-MeanTPA (TAC) 846.0000 585.000 0.0037374

Fig.2 shows that in TDD the MeanAPM decreases when the MeanTPA increases;
this might be due to the iterative process of TDD which forces the developer to
modify recursively the code of a method until the correspondent tests do not succeed.
The tests are defined before the code and the additional time is mainly used to
improve the code rather than the tests.

Scatterplot (SpainResult 28v*114c)

Var25 = 5,0808-0,1024*x

2,
33

33
33

33

8,
26

04
39

56

13
,3

06
66

66
7

18
,8

51
85

18
5

23
,0

00
00

00
0

27
,8

57
14

28
6

35
,0

00
00

00
0

49
,8

75
00

00
0

Var24

1,00000000

2,33333333

3,66666667

5,50000000

7,00000000

8,16666667

12,00000000

V
ar

25

 TDD

MeanTPA

MeanAPM

Scatterplot (SpainResult 28v*114c)

Var10 = -2,3133+0,8838*x

0,90297619
10,84615385

MeanAssPerMethod

Var9

1,0000000

17,4501490

35,0758598

MeanTime

V
ar

10

MeanTPA

MeanAPM

 TAC

Fig. 2. Correlation between MeanTPA and MeanAPM in TDD and TAC

In TAC the opposite phenomenon appears: the time for writing assertions increases
with the number of assertions. This indicates that the additional time is used mainly to
improve the test cases for each method, by defining further assertions, rather than to
modify the code: as a matter of fact the developer writes the tests only after having
defined the code. Fig. 3 shows that in both the techniques the mean time for assertions
determines a decrement in the total number of assertions. This is explainable by
deriving the variables with respect to the MeanTPA variable.

If we consider that AssertTot= (number of Methods*MeanAPM), then:

d(AssertTot)/d(MeanTPA)=(MeanAPM)*d(number of Methods)/d(MeanTPA)
+ (number of Methods)*d(MeanAPM)/d(MeanTPA).

Productivity of Test Driven Development: A Controlled Experiment with Professionals 387

If d(AssertTot)/d(MeanTPA) < 0, then:

• in TAC d(MeanAPM)/d(MeanTPA) > 0, and consequently d(number of
Methods)/d(MeanTPA) should be negative. This means that to increase the time
spent for the assertions reduces the number of methods, which is an indicator of
modularity: the additional time is not used to increase the number of methods in
the code;

• in TDD d(MeanAPM)/d(MeanTPA) <0, thus it is not possible inferring the sign
of d(number of Methods)/d(MeanTPA). It is possible to deduce only that if it is
positive, it grows slower than the absolute value of d(MeanAPM)/d(MeanTPA).
In TDD, if the additional time is dedicated to increase modularity (number of
methods), this is smaller than the increasing of assertions density, anyway: TDD
advantages the testing aspect.

Table 4 shows that there is statistical evidence for the correlation of all the
discussed cases. Spearman’s method was applied for testing hypotheses because the
sample data set is not normally distributed and the p-level was fixed at 0.05.

Scatterplot (SpainResult 28v*114c)

Var27 = 24,3544-0,5526*x

2,33333333
8,26043956

13,30666667
18,85185185

23,00000000
27,85714286

35,00000000
49,87500000

Var24

2

7

12

17

22

29

46

V
ar

27

 TDD

AssertTot

MeanTPA

Scatterplot (SpainResult 28v*114c)

Var12 = 21,6112-0,8059*x

0,90297619
2,76111111

4,30000000
7,22222222

9,00000000
10,84615385

12,66666667
18,00000000

19,60000000

Var9

1

6

11

18

24

32

38

55

V
ar

12

 TAC

AssertTot

MeanTPA

Fig. 3. Correlation between MeanTPA and AssertTot in TDD and TAC

Table 4. Statistical Tests of Hypotheses H02 and H03

Correlation Valid
N

Spearman
R

T(N-2) p-level

MeanTPA-MeanAPM [TDD] 27 -0.442272 -2.46561 0.0208
MeanTPA-MeanAPM [TAC] 31 -0.387853 -2.26603 0.003108
MeanTPA-AssetTot [TDD] 27 0.549229 3.286153 0.00300
MeanTPA-AssetTot [TAC] 27 0.777829 6.188211 0.00002

4 Conclusions

This paper discusses the results of an experiment carried out in a Spanish Software
Company. The research aimed at comparing productivity in test driven development
and testing after coding. It emerged that: TAC reduces the time for writing assertions
and modifying the code, according to the feedback of the tests; TDD increases the

388 G. Canfora et al.

total number of assertions and the density of assertions per method, which could be
indicators of unit testing quality and accuracy; and, finally, the additional time while
testing is mainly exploited to improve code in TDD, whereas in TAC it is used to
improve the testing strategy. In both the practices, the additional time is never used to
increase the number of methods, which is indicator of modularity.

Acknowledgements

We would like to thank professionals of Soluziona Software Factory for their active
participation and collaboration. This research has been partially funded by the
projects: MAS (Dirección General de Investigación del Ministerio de Ciencia y
Tecnología, TIC 2003-02737-C02-02), MECENAS (Junta de Comunidades de
Castilla-La Mancha, Consejería de Educación y Ciencia, PAI06-0024-2494) and
FAMOSO (Ministerio de Industria, Turismo y Comercio, FIT-340000-2005-161).

Bibliography

[1] Beck K. Extreme Programming explained: Embrace change. Addison-Wesley: Reading,
Massachusetts, 1999.

[2] Edwards S. Using test-driven development in the classroom: Providing students with
automatic, concrete feedback on performance. Proc. of the Int’l Conference on Education
and Information Systems: Technologies and Applications, EISTA’03, Orlando, Florida,
USA, 2003.

[3] Erdogmus, H. and Morisio, M. On the effectiveness of test-first approach to
programming. IEEE Transactions on Software Engineering, 31(1), 2005, IEEE CS
Press), pp. 1-12.

[4] George B. and Williams L. A structured experiment of test-driven development,
Information and Software Technology, 46(5), 2004, Elsevier,pp.337–342.

[5] Geras A., Smith M. and Miller J. A Prototype Empirical Evaluation of Test Driven
Development. Proc. of the 10th Inter’l Symposium on Software Metrics (METRICS’04),
Sidney, Australia, 2004, IEEE CS.

[6] Muller M. and Hagner O. Experiment about Test-first programming, Proc. of Empirical
Assessment in Software Engineering, Keele, UK, 2002.

[7] Pankur M., Ciglaric M., Trampus M. and Vidmar T. Towards empirical evaluation of
test-driven development in a university environment. Proc. of EUROCON 2003.
Computer as a Tool. Ljublijana, Slovenia, 2003,IEEE CS Press.

[8] Sjoberg D., Anda B., Arisholm E., Dyba T., Jorgensen M., Karahasanovic A., Koren E.
and Vokác M. Conducting Realistic Experiments in Software Engineering. Proc. of the
2002 Int’l Symposium on Empirical Software Engineering (ISESE’02), Nara, Japan,
2002, IEEE CS Press.

[9] Williams L., Maximilien E., and Vouk M. Test-driven development as a defect-reduction
practice. Proc. of the 14th IEEE Int’l Symposium on Software Reliability Engineering,
Denver, Colorado, USA, 2003, IEEE CS Press.

[10] The ECLIPSE IDE. Available in http://www.eclipse.org/
[11] The JUnit Testing Framework. Available in http://www.junit.org

J. Münch and M. Vierimaa (Eds.): PROFES 2006, LNCS 4034, pp. 389 – 394, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Results and Experiences from an Empirical Study of
Fault Reports in Industrial Projects

Jon Arvid Børretzen and Reidar Conradi

Department of Computer and Information Science,
Norwegian University of Science and Technology (NTNU),

NO-7491 Trondheim, Norway
borretze@idi.ntnu.no, conradi@idi.ntnu.no

Abstract. Faults introduced into systems during development are costly to fix,
and especially so for business-critical systems. These systems are developed
using common development practices, but have high requirements for depend-
ability. This paper reports on an ongoing investigation of fault reports from
Norwegian IT companies, where the aim is to seek a better understanding on
faults that have been found during development and how this may affect the
quality of the system. Our objective in this paper is to investigate the fault pro-
files of four business-critical commercial projects to explore if there are differ-
ences in the way faults appear in different systems. We have conducted an em-
pirical study by collecting fault reports from several industrial projects,
comparing findings from projects where components and reuse have been core
strategies with more traditional development projects. Findings show that some
specific fault types are generally dominant across reports from all projects, and
that some fault types are rated as more severe than others.

1 Introduction

Producing high quality software is an important goal for most software developers.
The notion of software quality is not trivial, different stakeholders will have different
views on what software quality is. In the Business-Critical Software (BUCS) project
[1] we are seeking to develop a set of methods to improve support for analysis, devel-
opment, operation, and maintenance of business-critical systems. These are systems
that we expect and hope will run correctly because of the possibly severe effects of
failure, even if the consequences are mainly of an economic nature. In these systems,
software quality is important, and the main target for developers will be to make sys-
tems that operate correctly all the time [1]. One important issue in developing these
kinds of systems is to remove any possible causes for failure, which may lead to
wrong operation of the system.

The study presented here investigated fault reports from two software projects
using components and reuse strategies, and two projects using a more traditional
development process. It compares the fault profiles of the reuse-intensive projects
with the other two, in several dimensions; Fault type, fault severity and location of
fault.

390 J.A. Børretzen and R. Conradi

2 Previous Studies on Software Faults and Fault Implications

Software quality is a notion that encompasses a great number of attributes. When
speaking about business-critical systems, the critical quality attribute is often experi-
enced as the dependability of the system. According to Littlewood et al. [2], depend-
ability is a software quality attribute that encompasses several other attributes, the
most important are reliability, availability, safety and security.

Faults in the software lessen the software’s quality, and by reducing the number of
faults introduced during development you can improve the quality of software. Faults
are potential flaws in a software system, that later may be activated to produce an er-
ror. An error is the execution of a fault, leading to a failure. A failure results in erro-
neous external behaviour, system state or data state. Remedies known for errors and
failures are to limit the consequences of a failure, in order to resume service, but stud-
ies have shown that this kind of late protection is more expensive than removing the
faults before they are introduced into the code [3]. Faults are also known as defects or
bugs, and a more extensive concept is anomalies, which is used in the IEEE 1044
standard [4]. Orthogonal Defect Classification – ODC – is a way of studying defects
in software systems [5, 6, 7, 8]. ODC is a scheme to capture the semantics of each
software fault quickly.

It has been debated if faults can be tied to reliability in a cause-effect relationship.
Some papers like [6, 8] indicate that this is valid, while others like [9] are more criti-
cal. Still, reducing the number of faults will make the system less prone to failure, so
by removing faults without adding new ones, there is a good case for the system reli-
ability increasing. This is called “reliability-growth models”, and is discussed by
Hamlet in [9]. Avizienis et al. states [10] that fault prevention aim to provide the abil-
ity to deliver a service that can be trusted. Hence, preventing faults and reducing their
numbers and severity in a system, the quality of the system can be improved in the
area of dependability.

3 Research Design

Research questions. Initially we want to find which types of faults that are most fre-
quent, and if there are some parts of the systems that have more faults than others:

RQ1: Which types of faults are most typical for the different software parts?
When we know which types of faults dominate and where these faults appear in the
systems, we can choose to concentrate on the most serious ones in order to identify
the most important issues to target in improvement work:

RQ2: Are certain types of faults considered to be more severe than others by the
developers?

Research method. This study is based on data mining, where the data consists of
fault reports we have received from four commercial projects. The investigation has
mostly been a bottom-up process, because of the initial uncertainty about the available
data from potential participants. After establishing a dialogue with the projects, and
acquiring the fault reports, our initial research questions and goals were altered
accordingly.

Results and Experiences from an Empirical Study of Fault Reports in Industrial Projects 391

The metrics used. The metrics have been chosen based on what we wanted to inves-
tigate and on what data turned out to be available from the projects participating in the
study. The frequency number of detected faults is an indirect metric, attained by
counting the number of faults of a type or for a system part etc. The metrics used di-
rectly from the data in the reports are type, severity and location of the fault.

3.1 Fault Categories

There are several taxonomies for fault types, two examples are the ones used in the
IEEE 1044 standard [4] and in a variant of the Orthogonal Defect Classification
(ODC) scheme [6]. The fault types used in this study is shown in Table 1. They have
been derived by using the existing data material in the reports, combined with two
taxonomies found in literature, IEEE 1044 and ODC.

Categorization of faults in this investigation has been performed partly by the pro-
jects themselves and completed by us as a part of this investigation, based on the fault
reports’ textual description and partial categorization. Also, grading the faults’ conse-
quences upon the system and system environment enables fault severities to be de-
fined. All severity grading has been done by the fault reporters in the projects.

Table 1. Fault types used in this study

Fault types
Assignment fault Functional fault - logic Missing data
Checking fault Functional fault - state Missing functionality
Data fault GUI fault Missing value
Documentation fault I/O fault Performance fault
Environment fault Interface fault Wrong functionality called
Functional fault - computation Memory fault Wrong value used

3.2 Data Collection

The data sample. We contacted over 40 different companies that we believed had
relevant projects we could study. In the end four projects fit our criteria and were
willing to proceed with the study. The reasons for the low participation rate among
the contacted companies were most likely issues like skepticism towards releasing
sensitive information, lack of organized effort in fault handling and lack of resources.
Table 2 contains information about the participating projects.

Table 2. Information about the participating projects

Project A B C D
Project de-
scription

Financial sys-
tem.

Real-time embed-
ded system.

Public administra-
tion application.

Task management
system.

Domain Finance Security Publ. administration Publ. administra-
tion

Platform MVS, OS/2 VxWorks J2EE, EJB J2EE
reports 52 360 1684 379
Dev. effort ~27400 hours ~ 32000 hours ~17600 hours 2165 hours

392 J.A. Børretzen and R. Conradi

Note that projects C and D have been developed using modern practices, including
component-based development, while projects A and B have been developed using
more traditional development practices.

4 Research Results

RQ1 – Which types of faults are most typical?
To answer RQ1, we look at the distribution of the fault type categories for the pro-
jects, shown in Table 3. For projects C and D, we see that functional logic faults are
dominant, with 49% and 58% of the faults for those projects. Functional logic faults
are also a large part of the faults in projects A and B.

In the same manner, the distribution of faults with a severity rating of “high” is
shown in Table 4. Functional logic faults are still dominant in projects C and D, with
45% and 69% of the faults, respectively. Project A is a special case here, as only one
single fault was reported to be of high severity.

When looking at the distribution of faults, especially for the high severity faults,
we see that two categories of dominate the picture, “Functional logic” and “Func-
tional state”. We also see that for all faults, “GUI” faults have a large share (around
8% for projects B, C, D) of the reports, while for the high severity faults the share of
GUI faults are strongly reduced in projects C and D to 2% and 0% respectively.

RQ2 – Are certain types of faults considered to be more severe?
To answer RQ2, we need to look at the number of “high” severity rated faults for dif-
ferent fault categories. Figure 1 shows the percentage of high severity faults found in

Table 3. Distribution of all faults in fault
type categories

 Project
Fault type A B C D
Assignment 7 % 4 % 1 % 1 %
Checking 4 % 3 % 2 % 1 %
Data 4 % 6 % 5 % 4 %
Documenta-
tion 0 % 1 % 6 % 3 %
Environment 0 % 2 % 1 % 0 %
Funct. comp. 13 % 1 % 1 % 0 %
Funct. logic 20 % 29 % 49 % 58 %
Funct. state 0 % 25 % 3 % 5 %
GUI 2 % 8 % 8 % 7 %
I/O 0 % 2 % 1 % 0 %
Interface 0 % 4 % 0 % 0 %
Memory 0 % 1 % 0 % 0 %
Missing data 2 % 0 % 1 % 2 %
Missing funct. 13 % 8 % 8 % 3 %
Missing value 4 % 1 % 1 % 1 %
Performance 0 % 1 % 3 % 1 %
Wrong funct. 0 % 1 % 2 % 1 %

Table 4. Distribution of high severity
faults in fault type categories

 Project
Fault type A B C D
Assignment 100 % 1 % 0 % 0 %
Data 0 % 6 % 15 % 4 %
Documentation 0 % 0 % 2 % 0 %
Environment 0 % 4 % 5 % 0 %
Funct. logic 0 % 19 % 45 % 69 %
Funct. state 0 % 36 % 8 % 9 %
GUI 0 % 10 % 2 % 0 %
I/O 0 % 1 % 5 % 0 %
Interface 0 % 3 % 0 % 0 %
Memory 0 % 3 % 0 % 2 %
Missing data 0 % 0 % 2 % 4 %
Missing funct. 0 % 7 % 2 % 4 %
Missing value 0 % 1 % 2 % 0 %
Performance 0 % 3 % 9 % 0 %
Wrong funct. 0 % 0 % 0 % 2 %
Wrong value 0 % 6 % 6 % 4 %

Results and Experiences from an Empirical Study of Fault Reports in Industrial Projects 393

some fault categories for three of the projects. Project A is left out because of having
only one high severity fault reported.

From Figure 1, we see that some fault types seem to be judged as more severe than
others. In the projects that do report them, “Memory fault” stands out as a high sever-
ity type of fault. For Projects C and D, “GUI faults” are not judged to be very severe,
while Project B rates them in line with other fault types. We also see that Project B
has generally rated more of their faults as being highly severe than Projects C and D.

By comparing the two projects C and D, which had employed reuse strategies in
development, with the other two projects, there is no evidence that development with
reuse has had any significant effects on fault distribution or severity.

0,0 % 20,0 % 40,0 % 60,0 % 80,0 % 100,0 %

Assignment fault

Data fault

Environment fault

Function fault logic

Function fault state

GUI fault

I/O fault

Interface fault

M emory fault

M issing data

M issing functionality

M issing value

Performance fault

Wrong function called

Wrong value used

D

C

B

Fig. 1. Percentage of high severity faults in some fault categories

5 Discussion

A major issue when doing the analysis of the data collected was the heterogeneity of
the data. These are four different companies where data collection has not been coor-
dinated beforehand, and as each company used their own proprietary fault report sys-
tem, no standards for reporting was followed. Another issue was cases of missing data
in reports, e.g. missing information about fault location. Because the reports have
been used for development rather than for research purposes, the developers have not
always entered all data into the reports. A final issue was incompatibility between
fault reports for one of the projects and other information concerning the project. No
satisfactory link between the functional and structural modules was available in pro-
ject D. This prevented us from separating the reused parts from the rest of the system,
and hindered a valid study of comparing reused to non-reused system parts at this
time.

Concerning validity, the most serious threats to external validity are the small
number of projects under investigation and that the chosen projects may also not nec-
essarily be the most typical. As for conclusion validity, one possible threat is low re-
liability of measures, because of some missing data or parts of the data.

394 J.A. Børretzen and R. Conradi

6 Conclusion and Future Work

This paper has presented some preliminary results of an investigation on fault reports
in industrial projects. The results answer our two questions:

RQ1: Which types of faults are most typical for the different software parts? -
Looking at all faults in all projects, “functional logic” faults were the dominant fault
type. For high severity faults, “functional logic” and “functional state” faults were
dominant.

RQ2: Are certain types of faults considered to be more severe than others? -We have
seen that some fault types are rated more severe than others, for instance “Memory
fault”, while the fault type “GUI fault” was rated as less severe for the two projects
employing reuse in development.

Results from this study are preliminary, and the next step is to focus on the differ-
ences between reuse-based development projects and non-reuse projects. We will also
try to incorporate fault report data from 2-3 other projects into the investigation in or-
der to increase the validity of the study.

Later, the BUCS project wants to focus on the most typical and serious faults, and
describe how we can identify and prevent these at an earlier development stage. This
may be in the form of a checklist for some hazard analysis scheme.

References

1. J. A. Børretzen; T. Stålhane; T. Lauritsen; P. T. Myhrer, “Safety activities during early
software project phases”. Proceedings, Norwegian Informatics Conference, 2004

2. B. Littlewood; L. Strigini, “Software reliability and dependability: a roadmap”, Proceed-
ings of the Conference on The Future of Software Engineering, Limerick, Ireland, 2000,
Pages: 175 - 188

3. N. Leveson, Safeware: System safety and computers, Addison-Wesley, Boston, 1995
4. IEEE Standard Classification for Software Anomalies, IEEE Std 1044-1993, December 2,

1993
5. K. Bassin; P. Santhanam, “Managing the maintenance of ported, outsourced, and legacy

software via orthogonal defect classification”, Proceedings. IEEE International Confer-
ence on Software Maintenance, 2001, 7-9 Nov. 2001

6. K. El Emam; I. Wieczorek, “The repeatability of code defect classifications”, Proceed-
ings. The Ninth International Symposium on Software Reliability Engineering, 1998, 4-7
Nov. 1998 Page(s):322 – 333

7. R. Chillarege; I.S. Bhandari; J.K. Chaar; M.J. Halliday; D.S. Moebus; B.K. Ray; M.-Y.
Wong, “Orthogonal defect classification-a concept for in-process measurements”, IEEE
Transactions on Software Engineering, Volume 18, Issue 11, Nov. 1992 Page(s):943 - 956

8. R.R. Lutz; I.C. Mikulski, “Empirical analysis of safety-critical anomalies during opera-
tions”, IEEE Transactions on Software Engineering, 30(3):172-180, March 2004

9. D. Hamlet, “What is software reliability?”, Proceedings of the Ninth Annual Conference
on Computer Assurance, 1994. COMPASS '94 'Safety, Reliability, Fault Tolerance, Con-
currency and Real Time, Security', 27 June-1 July 1994 Page(s):169 - 170

10. A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr; Basic Concepts and Taxonomy
of Dependable and Secure Computing, IEEE Transactions on Dependable and Secure
Computing, vol. 1, no. 1, January-March 2004

J. Münch and M. Vierimaa (Eds.): PROFES 2006, LNCS 4034, pp. 395 – 401, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Software Process Improvement: A Road to Success

Mahmood Niazi

School of Computing and Mathematics, Keele University, ST5 5BG, UK
mkniazi@cs.keele.ac.uk

Abstract. Software process improvement (SPI) has received much attention in
both academia and industry. SPI aims to improve the effectiveness of the
software development process. Several different approaches have been
developed for SPI, including the SEI’s Capability Maturity Model (CMM),
more recently the Capability Maturity Model Integration (CMMI) and ISO's
SPICE. Research shows that the effort put into these approaches can assist in
producing high quality software.

This paper has a two-fold objectives: first to review and summarise the
empirical evidence thus far on the costs and benefits of SPI approaches; second
to establish a relationship between different approaches to SPI and to seek and
identify whether these approaches fulfil all the needs for an effective SPI
initiative. The aim of this review is to analyse material about SPI approach
and to set the scene for future research in the area of Software Process
Improvement.

1 Introduction

Problems associated with software quality are widely acknowledged to affect the
development cost and time [1]. The annual Standish Group report showed that on
average the percentage of software projects completed on-time and on-budget was only
34% in 2003 [2]. A recent study, conducted by a group of Fellows of the Royal
Academy of Engineering and British Computer Society, shows that despite spending
22.6 billions pounds on IT projects in UK during 2003/2004, significant numbers of
projects still fail to deliver key benefits on time and to target cost and specification [3].

There have been increasing calls for the software industry to find solutions to
software quality problems [4]. Software organizations are realizing that one of their
fundamental problems is to have an effective software development process [5; 6]. In
order to have an effective software development process different methods have been
developed, of which Software Process Improvement (SPI) is the one mostly used.

The objective of this paper is to discuss and analyse different approaches to SPI in
order to identify the issues that can undermine these approaches. The other objective
is to analyse empirical evidence on the costs and benefits of SPI approaches. The
overall aim is that SPI practitioners would utilise the results of this paper to support
the business case for initiating SPI initiatives. To focus this study, I investigated the
following research questions:

RQ1. Does SPI really impact on organizations’ capabilities?
RQ2. What is missing in current SPI approaches?

396 M. Niazi

The main purpose of addressing these research questions is to provide software
practitioners with some insight into initiating SPI programmes. To answer these
research questions, a literature review technique was adopted. Furthermore, results
of the previously conducted empirical study were also used to answer these two
research questions [7]. This two step process has given confidence that the findings
of this paper are indeed important to provide some insights into initiating SPI
initiatives.

2 Research Methodology

The SPI literature consists of case studies, experience reports and high-level software
process texts. Most of the studies describe real life experiences of SPI implementation
and provide specific guidelines and recommendations for SPI implementation. I have
analysed these published experience reports, case studies and articles in order to
answer research questions described in Section 1.

There were 3 categories of papers. Firstly, papers in which the authors have
summarised the impact of SPI initiative on quality factors (time, cost, productivity
and customer satisfaction). Secondly, papers in which SPI implementation was
discussed but authors did not provide any summary of SPI impact on the quality
factors. In this case, I have had to read each paper carefully to identify the SPI impact
on any quality factor. Thirdly, I have also analysed a few papers in which the results
of empirical studies were described.

In order to reduce researcher’s bias I have conducted inter-rater reliability test in
this process. Three research papers were selected at random and a colleague, who was
not familiar with the issues being discussed, was asked to identify SPI impact on
quality factors. In the end results were compared with previous results.

In this paper a literature review technique was adopted in order to analyse SPI
impact on cost, time, productivity and customer satisfaction. This means that a
secondary source was used to analyse SPI impact of quality factors. The primary data
used in the literature was not verified directly.

Because this study is limited to the software industry, the gathered data reflects the
perceptions of those individuals employed in this industry, and generalizations to
other industries should be undertaken with extreme caution.

3 Does SPI Really Impact on Organizations’ Capabilities?

In the previously conducted empirical study with 34 Australian practitioners [8], I
asked SPI practitioners “Have SPI initiatives provided clear and expected benefits
to the management?” Results show that 71% of the practitioners say that SPI
initiatives provided clear and expected benefits to the management. Only 6% of the
practitioners say SPI initiatives did not provide any benefits to the management.
Conducting previous research has convinced me that the SPI impact on
organizations capabilities would be best viewed in terms of cost, time, productivity
and customer satisfaction.

 Software Process Improvement: A Road to Success 397

3.1 Impact on Cost

There are several accounts that describe the impact of an SPI initiative on project cost.
A few of the key studies are described below:

• Prior to the CMM initiative at Raytheon in 1988 [9] the average rework costs was
about 41% of project costs. After CMM initiative, these costs dropped to about
20%. Fixing source code problems dropped by 80% and cost of retesting dropped
by 50%.

• The process improvement resulted Hughes annual savings about $2 million
annually [10].

• Diaz and Sligo [11] have computed return on investment for Motorola’s process
improvement initiatives, which is $611,200 for an $90,180 investment (i.e. total
return of 677%).

These results are very positive and show that efforts put into SPI can reduce overall
development cost.

3.2 Impact on Time

Many studies have described SPI impact on time.

• Dion [12] described that before SPI initiative at Raytheon most projects were
completed behind schedule and now most projects are finishing on schedule.

• Herbsleb et al [13] described the yearly reduction in time to market in the range of
15% to 23% (i.e. 19% Median).

• Herbsleb and Goldenson’s [14] found a correlation between higher maturity and
meeting schedules. For example, ability to meet schedule increased from 40%
(companies in CMM Level 1) to 80% (companies in CMM Level 3).

• These results show that the SPI is an effective approach that can help organizations
in reducing time to market.

3.3 Impact on Productivity

The following studies have highlighted SPI impact on productivity:

• Herbsleb and Goldenson’s [14] results showed development productivity of
companies has increased from 50% (companies in CMM Level 1) to 90%
(companies in CMM Level 3).

• Herbsleb et al [13] described the yearly gain in productivity in the range of 6% to
67% (i.e. 35% Median).

• SPI initiative at Raytheon obtained an average productivity increase of about 130%
from 1988 to 1992 [12].

• Butler [15] described a most recent development project 10 time more productive
than the baseline project.

The results show that organizations productivity has been increased with the passage
of time after adopting SPI initiatives.

398 M. Niazi

3.4 Impact on Customer Satisfaction

There are several studies that describe SPI impact on customer satisfaction. A few of
the key studies are described below:

• Yamamura [6] results showed a correlation of employee satisfaction to process
maturity, e.g. the average satisfaction was increased from 57% (before process
improvement activities) to 83% (after process improvement activities).

• Herbsleb and Goldensons [14] showed that customer satisfaction has increased
from 80% (companies in CMM Level 1) to 100% (companies in CMM Level 3).

• Pitterman [5] reported an overall customer satisfaction increased at Telcordia
Technologies from 60% in 1992 to above 95% in 2000.

The results show that increased organizations’ process maturity has also increased
customer satisfaction with the products.

3.5 Discussion

The analysis of the literature shows that large enterprises using processes based on
SPI models and standards can produce higher quality software, reduce development
cost and time, and increase development productivity. However, most research on the
impact and benefits of SPI approach has focused on large organizations [11; 16].
There is a world-wide academic and industrial interest in similar research on Small
and Medium-sized Enterprises (SMEs). Research shows that SPI models like CMMI
is difficult to apply to (SMEs), due to distinguishing characteristics of SMEs [17].
Due to these distinguishing characteristics, it is important to analyse the impact of SPI
approach on SMEs. This is because SMEs may need to know that SPI is proven
before they may be drawn to complex issues of SPI which require lot of funds,
expertise and management time.

4 What Is Missing in Current Approaches to SPI?

Different models and standards have been developed in order to improve software
processes. The CMM is developed by software engineering institute (SEI) in order to
improve organizations’ software processes. The Capability Maturity Model
Integration (CMMI) [18] is the latest SPI model from the SEI. SPICE is a set of
international standards for software process assessment [19]. SPICE is intended to
harmonize many different approaches to software process assessment and to provide
an approach that encourages self-assessment. The ISO 9000 series of standards [20]
were developed with the intent of creating a set of common standards for quality
management and quality assurance.

4.1 Discussion

In order to address the effective management of software process different approaches
have been developed, of which SPI is the one most often used. Research shows that
the effort put into these model and standards can assist in producing high quality
software [6; 21].

 Software Process Improvement: A Road to Success 399

Despite these documented benefits, SPI initiatives exhibit low levels of adoption
and limited success [22]. Deployment is often not only multi-project, but multi-site
and multi-customer type and the whole SPI initiative typically requires a long-term
approach. It takes significant time to fully implement an SPI initiative [23]. Such time
frames mean that the SPI approach is often considered an expensive approach for
many organizations [22] as they need to commit significant resources over an
extensive period of time. Even organizations willing to commit the resources and time
do not always achieve their desired results. The failure rate of SPI initiatives is very
high, estimated as 70% [24; 25]. The significant investment and limited success are
reasons for many organizations being reluctant to embark on a long path of systematic
process improvement.

Despite the importance of SPI implementation process, little empirical research has
been carried out on developing ways in which to effectively implement SPI
programmes [16; 22]. Much attention has been paid to developing standards and
models for SPI. This suggests that the current problems with SPI are not a lack of
standards or models, but rather a lack of an effective strategy to successfully
implement these standards or models. A thorough literature review [11; 14; 21; 26;
27] and previously conducted interviews with 34 Australian practitioners [7] revealed
that in general no standard approach has been adopted by practitioners for the
implementation of SPI initiatives. Organizations typically adopt ad hoc methods
instead of standard, systematic and rigorous methods in order to implement SPI
initiatives [28]. So far no approach has been identified that could assist specifically in
the design of effective SPI implementation initiatives. There is a great need to
develop some mechanism that could assist SPI practitioners in the design and
implementation of effective SPI initiatives. This has the potential to reduce SPI
implementation time, cost and failure risks.

In order to address some of the missing SPI issues a research project with SPI
practitioners is being carried out [7]. The objective of this project is to develop SPI
implementation framework to assist SPI practitioners in the design of effective
SPI implementation initiatives. The results will be published as soon as the evaluation
is completed.

5 Conclusion

This paper has examined the domain of SPI. I have set out to answer two research
questions in this paper:

• RQ1. Does SPI really impact on organizations’ capabilities?
SPI literature shows that the SPI approach can help organizations in reducing
development cost and in improving time-to-market, productivity, and customer
satisfaction. However, in order to support the business case for initiating SPI
initiatives in SMEs, it is important to analyse the impact of SPI approach on SMEs.

• RQ2. What is missing in current SPI approaches?
Thorough literature review revealed one topic of SPI missing, i.e. many standards and
models exist for SPI but little attention has been paid to their effective
implementation. Literature also shows that in real life different organizations adopted

400 M. Niazi

chaotic methods instead of standard methods in order to implement SPI initiatives. So
far no approach has been identified that could assist specifically in the design of
effective SPI implementation initiatives. Therefore, further research is needed in the
domain of SPI implementation in order to reduce SPI implementation time and cost,
higher SPI implementation quality and higher SPI practitioners’ satisfaction.

References

1. Sommerville, I.: Software Engineering Fifth Edition. Addison-Wesley.(1996).
2. Standish-Group: Chaos - the state of the software industry. (2003).
3. The-Royal-Academy-of-Engineering: The Challenges of Complex IT Projects, The report

of a working group from The Royal Academy of Engineering and The British Computer
Society. ISBN 1-903496-15-2 (2004).

4. Crosby, P.: Philip Crosby's reflections on quality. McGraw-Hill.(1996).
5. Pitterman, B.: Telcordia Technologies: The journey to high maturity, IEEE Software

(July/August). (2000) 89-96.
6. Yamamura, G.: Software process satisfied employees, IEEE Software

(September/October). (1999) 83-85.
7. Niazi, M., Wilson, D. and Zowghi, D.: A Framework for Assisting the Design of

Effective Software Process Improvement Implementation Strategies, Journal of Systems
and Software Vol 78 (2). (2005) 204-222.

8. Niazi, M., Wilson, D. and Zowghi, D.: A Maturity Model for the Implementation of
Software Process Improvement: An empirical study, Journal of Systems and Software 74
(2). (2005) 155-172.

9. Hally, T.: Software process improvement at Raytheon, IEEE Software November (1996)
10. Humphrey, W. S., Synder, T. R. and Willis, R. R.: Software process improvement at

Hughes Aircraft, IEEE Software 8 (4). (1991) 11-23.
11. Diaz, M. and Sligo, J.: How Software Process Improvement helped Motorola, IEEE

software 14 (5). (1997) 75-81.
12. Dion, R.: Process improvement and the corporate balance sheet, IEEE Software 10 (4).

(1993) 28-35.
13. Herbsleb, J., Caarleton, A., Rozum, J., Siegel, J. and Zubrow, D.: Benefits of CMM-based

software process improvement: Initial results. Technical report, CMU/SEI-94-TR-013
(1994).

14. Herbsleb, J. D. and Goldenson, D. R.: A systematic survey of CMM experience and
results. 18th international conference on software engineering (ICSE-18). Germany
(1996) 323-330.

15. Butler, K.: The economics benefits of software process improvement, CrossTalk (July).
(1995) 14-17.

16. Goldenson, D. R. and Herbsleb, J. D.: After the appraisal: A systematic survey of Process
Improvement, Its benefits, And Factors That Influence Success. SEI, CMU/SEI-95-TR-
009 (1995).

17. Cater-Steel, A.: Process Improvement in Four Small Software Companies. 13th
Australian Software Engineering Conference (ASWEC'01). (2001)

18. SEI: Capability Maturity Model® Integration (CMMISM), Version 1.1. SEI, CMU/SEI-
2002-TR-029 (2002).

19. ISO/IEC-15504: Information technology - Software process assessment. Technical report
- Type 2 (1998).

20. ISO-9000: Internation Standard Organization, http://www.iso.ch/iso/en/iso9000-
14000/iso9000/iso9000index.html, Site visited 23-02-2004. (2004).

 Software Process Improvement: A Road to Success 401

21. Ashrafi, N.: The impact of software process improvement on quality: in theory and
practice, Information & Management 40 (7). (2003) 677-690.

22. Leung, H.: Slow change of information system development practice, Software quality
journal 8 (3). (1999) 197-210.

23. SEI: Process Maturity Profile. Software Engineering Institute Carnegie Mellon
University, (2004).

24. SEI: Process maturity profile of the software community. Software Engineering Institute,
(2002).

25. Ngwenyama, O. and Nielsen, P., A.: Competing values in software process improvement:
An assumption analysis of CMM from an organizational culture perspective, IEEE
Transactions on Software Engineering 50 (2003) 100-112.

26. Butler, K.: Process lessons learned while reaching Level 4, CrossTalk (May). (1997) 1-4.
27. Dyba, T.: Factors of software process improvement success in small and large

organizations: an empirical study in the scandinavian context, ACM SIGSOFT Software
Engineering Notes 28 (5). (2003) 148-157.

28. Zahran, S.: Software process improvement - practical guidelines for business success.
Addison-Wesley.(1998).

Characterization of Runaway Software Projects
Using Association Rule Mining

Sousuke Amasaki, Yasuhiro Hamano, Osamu Mizuno, and Tohru Kikuno

Graduate School of Information Science and Technology
Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan

amasaki@computer.org,
{y-hamano, o-mizuno, kikuno}@ist.osaka-u.ac.jp

Abstract. In this paper, characteristics of a runaway project are revealed based
on combinations of risk factors which appear in the project. Concretely, an associ-
ation rule mining technique is applied with an actual questionnaire data to induce
rules that associate combinations of risk factors with runaway status of software
projects. Furthermore, the induced rules are integrated and reduced based on a
certain rule obtained from experts’ perception to simplify the representation of
characteristics of a runaway project. Then, for confirming the effectiveness of
this characterization, it is evaluated how many runaway projects in distinct data
set were identified by the reduced rules. The result of the experiment suggested
that the induced rules are effective to characterize runaway projects.

Keywords: association rule mining, risk factors, project characterization.

1 Introduction

Recently, software development projects have often been put in a very risky situation
because of increasing demand for high quality, short period, and low cost. Thus, detect-
ing signs of problems at an early stage of the software project is important. So, much
research has been carried out on the detection of problem signs of a software devel-
opment project [1, 2]. So far, we have proposed methods to predict runaway status of
projects using responses of questionnaire [3, 4].

During past works, the following question is recognized: “How can the runaway-
prone projects avoid the runaway status?” One answer to this question is a set of para-
meters in a logistic regression model. Although these parameters can indicate dominant
risk factors,the number of parameters included in a model is restricted by the property
of the regression analysis [5]. On the other hand, some risk factors are simultaneously
found in the same runaway project frequently. As the result, we consider that there exist
combinations of risk factors which significantly affect to the runaway status of projects.

In this paper, we propose an approach using a data-mining technique to induce com-
binations of risk factors related to runaway status of software projects significantly. The
proposed approach consists of the following two phases:

Phase 1: To characterize runaway projects by combinations of risk factors,
the association rule mining technique [6] was applied for response data of a
questionnaire checking potential risks, collected in a certain company.

J. Münch and M. Vierimaa (Eds.): PROFES 2006, LNCS 4034, pp. 402–407, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Characterization of Runaway Software Projects Using Association Rule Mining 403

Phase 2: To evaluate the effectiveness of the rules induced in Phase 1, the
rules were applied to distinct response data collected in the same company.

From the result of experiment, we can conclude that the induced combinations of
risk factors can characterize runaway projects.

2 Preliminaries

2.1 Definition of Runaway Projects

In the company cooperating with us, the Software Engineering Process Group (SEPG)
has tried to analyze characteristics of runaway projects. In this paper, a definition estab-
lished by the SEPG is used to judge a “runaway project”. The definition is as follows:
1) Cost and duration is out of a certain range, and, 2) A project fell into an uncontrol-
lable situation during development. The SEPG in the company judges whether these
conditions are satisfied.

Eval.
Q1.1 Ambiguous requirements.
Q1.2 Insufficient explanation of the requirements.
Q1.3 Misunderstanding of the requirements.
Q1.4 Lack of commitment regarding requirements between the customer and the project

members.
Q1.5 Frequent requirements or specification changes.

Eval.
Q2.1 Insufficient awareness of the importance of estimation.
Q2.2 Insufficient skills or knowledge of estimation methods.
Q2.3 Insufficient estimation for the implicit requirements.
Q2.4 Insufficient estimation for the technical issues.
Q2.5 Lack of stakeholders commitment for estimation.

Eval.
Q3.1 Lack of management review for the project plan.
Q3.2 Lack of assignment of responsibility.
Q3.3 Lack of breakdown of the work products.
Q3.4 Unspecified project review milestones.
Q3.5 Insufficient planning of project monitoring and controlling.
Q3.6 Lack of project members’ commitment for the project plan.

Eval.
Q4.1 Lack of skills and experience.
Q4.2 Insufficient allocation of the resources.
Q4.3 Low morale.

Eval.
Q5.1 Lack of resource management of project managers throughout a project.
Q5.2 Inadequate project monitoring and controlling.
Q5.3 Lack of data needed to keep track of a project objectively.

5. Project Management Activities

1. Requirements

For each item, please answer with one of "Strongly agree", "Agree", "Neither agree nor
disagree", and "Disagree".

2. Estimations

4. Team Organization

3. Planning

Fig. 1. Questionnaire for risk identification

2.2 Questionnaire to Identify Problems

For early identification of runaway status, a questionnaire was constructed that includes
possible risk factors in the software development projects. The questionnaire is dis-
tributed to and filled out by a project manager. All questions in the questionnaire and
applicable answer types are shown in Figure 1. The questionnaire consists of five view-
points: requirements, estimations, planning capability, team organization, and project
management activities. Each sub-item regarding risk factors in the questionnaire must
be filled in according to the Likert scale.

404 S. Amasaki et al.

2.3 Association Rule Mining

The association rule mining [6] is one of the data mining techniques. It finds interest-
ing associations among the database according to given criteria. The notion of rule is
explained as follows: Let the item set I be a set of n distinct items, and a set of transac-
tions D, where each transaction T is a set of items such that T ⊆ I. When a rule exists
between the subsets X and Y of item set I (X ⊆ I, Y ⊆ I, X ∩ Y = φ) in a database, the
rule is expressed as X ⇒ Y where X means antecedent and Y means consequent.

Confidence and support are two measures of rule interestingness. The confidence is
a percentage of transactions in the given database containing X that also contain Y. The
support is the percentage of transactions in the given database that contain both X and Y.
Typically, rules are considered interesting if they satisfy both a user-specified minimum
support and minimum confidence threshold.

3 Mining Rules (Phase 1)

3.1 Applied Data

In order to characterize runaway projects by using the association rule mining, re-
sponses of the questionnaire in Figure 1 of 40 projects was used. These projects was
carried out from 1996 to 1998 in the company cooperating with us. Each case in the
dataset is evaluated whether a project resulted in a runaway status or not by the SEPG
according to the definition shown in subsection 2.1.

For further analysis, the responses are classified into two classes: For the responses
with “Strongly agree” and “Agree”, we classified them into “H”, and for the responses
“Disagree”, “Neither agree nor disagree”, and no response,we classified as “L”.

3.2 Rule Mining Operation

The association rule mining is applied to 40 project data by using Weka [7]. Here, the
minimum confidence and the minimum support are set to 0.6 and 0.25, respectively.

As a result, 107487 rules are obtained. Because the aim is to induce the rules that
related conclusively whether a project becomes runaway status or not, we then selected
only rules that antecedent includes high risk factors and consequent is runaway. Finally,
we got the 11 rules shown in Table 1.

3.3 Rule Reduction

Actually, the preliminary investigations with a company providing the dataset con-
cluded that plural risks often emerged simultaneously in a runaway project while a
successful project often has only a single risk. Furthermore, it is observed from Table 1
that a longer antecedent in a rule tends to contain a shorter antecedent in the other rules.
Thus, to simplify a rule application in practical use, the induced rules in Table 1 is
reduced according to the following optimistic strategy:

1. From the induced rules, rules having the longest antecedent are extracted.
2. From remained induced rules, rules having antecedent which is contained in one of

antecedents of the extracted induced rules are removed.
3. Repeat Step 1 and Step 2 while induced rules remain.

Characterization of Runaway Software Projects Using Association Rule Mining 405

Table 2 shows the specific rule set obtained by using the optimistic strategy.

Table 1. Rules for characterizing runaway projects

Rule ID Antecedent Consequent Confidence
R1 Q1.4 = H Q2.3 = H Q3.3 = H S=Runaway 0.91
R2 Q2.3 = H Q3.3 = H S=Runaway 0.91
R3 Q1.4 = H Q1.5 = H Q2.3 = H S=Runaway 0.77
R4 Q1.4= H Q3.3 = H S=Runaway 0.77
R5 Q1.1 = H S=Runaway 0.71
R6 Q1.4= H Q2.3 = H S=Runaway 0.69
R7 Q1.2 = H Q1.4 = H Q2.3 = H S=Runaway 0.67
R8 Q1.5= H Q2.3 = H S=Runaway 0.67
R9 Q3.3 = H S=Runaway 0.65
R10 Q1.2= H Q2.3 = H S=Runaway 0.63
R11 Q1.2 = H Q1.5 = H S=Runaway 0.63

Table 2. Rules obtained in Phase 1 for characterizing runaway projects

Rule ID Antecedent Consequent
R1 Q1.4 = H Q2.3 = H Q3.3 = H S=Runaway
R3 Q1.4 = H Q1.5 = H Q2.3 = H S=Runaway
R5 Q1.1 = H S=Runaway
R7 Q1.2 = H Q1.4 = H Q2.3 = H S=Runaway
R11 Q1.2 = H Q1.5 = H S=Runaway

4 Rule Evaluation (Phase 2)

4.1 Applied Data

In this section, the effectiveness of the specific rule set is confirmed by applying the
specific rule set to distinct project data. In order to remove influences from difference in
software development environments, the project data used for evaluation was collected
in the same company.

The dataset is from 12 projects and these projects have been performed from 2003 to
2004. This dataset is distinct from the project data used for rule mining in two points:
1) all members in these projects must respond to the new questionnaire, and, 2) some
of questions were integrated or modified according to experts’ opinion. Note that we do
not apply cross-validation methods in this research since we prepare distinct test data
for evaluation.

Table 3 shows a part of the correspondence of questions between two questionnaires
and the instructions of questions in the new questionnaire. Because of page limitation,
only questions in antecedents of the rule set are shown in Table 3. By replacing ques-
tions in the rule set with those corresponded questions, we can produce new rule set
for the dataset used in this section. Finally, the new 2 rules shown in Table 4 is ob-
tained.

406 S. Amasaki et al.

Table 3. Correspondence between new questionnaire and Fig. 1

Questions used
in 12 projects

Instructions
Corresponded
questions in Fig.1

Remark

q1
Lack of clarity, sufficiency, or stability of
requirements.

Q1.1, Q1.5, Q2.3

q4
Lack of commitment regarding requirements
between the customer and the project members.

Q1.4

q23
Ambiguity of the organization of the project, the
roles, and authorities of its members, etc.

Q3.3
Lack of work breakdown usually causes
ambiguous organization and authorities.

q31 Lack of communication with customers Q1.2

Table 4. Rules used for an evaluation in Phase 2

Rule ID Antecedent Consequent
r1 q1 = H q4 = H q23 = H S=Runaway
r2 q1 = H q4 = H q31 = H S=Runaway

4.2 Rule Application Procedure

Using the new rule set shown in Table 4, the effectiveness of the rule set induced in
Phase 1 is verified. Here, in contrast to optimistic strategy taken for rule reduction in
subsection 3.3, pessimistic strategy is taken for dealing with responses of the question-
naire. Because members in a project have different roles, experience, and skill, and thus
they are able to notice different risks which the other members couldn’t notice.

By using Table 5, we show a pessimistic rule application procedure for responses of
the questionnaire. In Table 5, we assume that three members A, B, and C responded the
questionnaire with respect to an example project.

1. First, responses of all members in a project are evaluated with antecedents of rules
r1 and r2. For instance, Table 5 showed that member B responded q1 = H, q4 = H,
and q31 = H. Thus, antecedent of r1, which is q1 = H ∧ q4 = H ∧ q31 = H, is
obviously true. If antecedent of r1 or r2 is true, “T” is specified in r1 or r2 column
in Table 5, respectively; otherwise “F” is specified.

2. Next, for each of antecedent columns r1 and r2, OR logic (pessimistic decision) is
applied. If there is any “T” in r1 column, then “OR logic result” takes “T”. Similarly
if there is any “T” in r2 column, it takes “T”.

3. Finally, predicted result is calculated by applying OR logic to the “OR logic result”
row. That is, if there is any “T” in the row, then the project is predicted as a runaway
project. Thus, a project in Table 5 is predicted as a runaway project.

Table 5. Explanation of risk evaluation an example project

r1 r2

A q1 = H, q4 = H, q23 = L, q31 = H F T
B q1 = H, q4 = H, q23 = H, q31 = L T F
C q1 = H, q4 = H, q23 = H, q31 = H T T

OR logic result T T
Predicted result

Member Answer to the questions
Evaluation of antecedent

Runaway

Characterization of Runaway Software Projects Using Association Rule Mining 407

4.3 Result of Evaluation

The result of rule application is shown in Table 6. Table 6 shows that the accuracy of
prediction is relatively good (75%) and all projects predicted as “Runaway” are actually
“Runaway”. It seems that the first point means that the rules are effective for character-
izing runaway projects with a certain generality and that the second point is a result of
the optimistic strategy used for reducing rules.

Table 6. Result of experimental prediction

Successful Runaway
Successful 5 0
Runaway 3 4

Actual status

Predicted result

Accuracy: 0.75

5 Conclusions

In this paper, we proposed an approach to characterize runaway software projects using
the association rule mining technique. The result of experiment showed that the induced
rules can characterize runaway status of projects successfully.

By the way, our use of rule mining was not sufficient since induced rules were ob-
vious ones only. As a future work, evaluation with larger datasets to refine generality
of rules is considered. Our next step is to find unexpected rules which cause serious
situations in software development. To do so, reconstruction of questionnaire maybe
needed.

References

1. Boehm, B.W.: Software risk management: Principles and practice. IEEE Software 8(1) (1991)
32–41

2. Wohlin, C., Andrews, A.A.: Prioritizing and assessing software project success factors and
project characteristics using subjective data. Empirical Software Engineering 8 (2003) 285–
303

3. Takagi, Y., Mizuno, O., Kikuno, T.: An empirical approach to characterizing risky software
projects based on logistic regression analysis. Empirical Software Engineering 10(4) (2005)
495–515

4. Mizuno, O., Hamasaki, T., Takagi, Y., Kikuno, T.: An empirical evaluation of predicting run-
away software projects using bayesian classification. In: Proc. of 5th International Conference
on Product Focused Software Process Improvement (PROFES2004). (2004) 263–273

5. Kantardzic, M.: Data Mining: Concepts, Models, Methods, and Algorithms. IEEE Press
(2003)

6. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers
(2001)

7. Weka Machine Learning Project: Weka 3: Data mining software in java. (http://www.cs.
waikato.ac.nz/˜ml/weka/)

J. Münch and M. Vierimaa (Eds.): PROFES 2006, LNCS 4034, pp. 408 – 414, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Framework for Selecting Change Strategies
in IT Organizations

Jan Pries-Heje1 and Otto Vinter2

1 The IT University of Copenhagen, Denmark
jph@itu.dk

2 DELTA IT Processes, Denmark
otv@delta.dk

Abstract. In this paper we describe a framework which combines several mod-
els for organizational change. The framework enables an organization to decide
which strategies will be most successful when implementing a specific change
in its particular setting. The conditions for change is assessed in relation to each
of the strategies for organizational change and a list-of-fit is produced, which
reveals the degree to which each of the strategies fits the specific setting. The
framework was developed and evaluated within a field study involving four
companies in the financial sector. The IT organizations in two of these collabo-
rated with the researchers in providing promising evaluations of the framework.

1 Introduction

The Danish Talent@IT project [26] (www.talent-it.dk) studies parameters in organi-
zations which promote or impede changes in organizations. This has led to a model of
20 parameters in 4 categories, the ImprovAbility™ model [20] (see Fig. 1). The Im-
provAbility™ model and accompanying assessment method provides an organization
with a view of their strengths and weaknesses on each of these parameters.

In addition, the project studies different change approaches [25] and their relevance
for improving each of the parameters of the model. An ImprovAbility™ assessment
therefore also produces recommendations for change approaches that can be used in
the specific organizational setting to improve the success of its change efforts.

Our study of change approaches employed in practice by IT practitioners and their
management lead us to distinguish three types: Means (methods, techniques, and
tools), Approaches (principles, practices, or conducts), Strategies (overall rationale for
how changes are perceived by the organization).

Means and Approaches belong to the operational level. The selection of a change
strategy, however, belongs to the top level of the organization. It is heavily influ-
enced by the vision or goals for the change as well as by issues in the organizational
culture. These issues determine the conditions that make certain change strategies
successful and others a failure. In this paper, we are concerned with the design and
evaluation of a framework for change strategies and a tool, which enables organiza-
tions to select among those which will be most successful, and avoid those most
probable to fail.

 A Framework for Selecting Change Strategies in IT Organizations 409

Foundation
• Vision and strategy
• Organisational culture
• Expectation m anagement
• Know ledge m anagement
• Managem ent competence

In Use
• Product quality
• Deploym ent strategy
• Deploym ent means
• Roles and

responsibility
• Operations and

m aintenance• Project goal and
requirements

• Project team
• Project competence

and know ledge

• Project process
• Project prioritising
• Managem ent support
• Involvement of others

Initiation
• Sensing urgency
• Idea creation
• Idea processing

Projects

Foundation
• Vision and strategy
• Organisational culture
• Expectation m anagement
• Know ledge m anagement
• Managem ent competence

In Use
• Product quality
• Deploym ent strategy
• Deploym ent means
• Roles and

responsibility
• Operations and

m aintenance• Project goal and
requirements

• Project team
• Project competence

and know ledge

• Project process
• Project prioritising
• Managem ent support
• Involvement of others

Initiation
• Sensing urgency
• Idea creation
• Idea processing

Projects

Fig. 1. The ImprovAbility™ model

2 Theories and Models for Organizational Change

Since management became a discipline, the study of change has been important. Au-
thors have written about organizational change from different perspectives including
psychology, sociology and business. Academic and practitioner contributions to or-
ganizational change have been built on empirical work in many organizations. Exam-
ples of this include descriptive accounts of change, normative models to guide change
processes, theoretical models for understanding and analyzing change, typologies of
approaches to organizational change, and empirical studies of success and failure.

In terms of the descriptive accounts of change, three different schools of organiza-
tional thinking have provided metaphors for organizations. The first school (and old-
est) descends back to the end of the 19th century where Taylor, Fayol, and Weber
were key figures. Taylor invented “Scientific Management” including the key belief
that “it is possible and desirable to establish, through methodological study and the
application of scientific principles, the one best way of carrying out any job.” ([6], p.
28). The metaphor for this is an organization as a production system where it is possi-
ble to optimize its efficiency and effectiveness. Organizational change is about opti-
mizing planning through observation, experimentation, calculation and analysis.

In the 1930s and 1940s the second school challenged the classical view of organi-
zations to provide a new perspective. In relation to change this perspective is charac-
terized by [6][4] the belief that organizations are co-operative, social systems rather
than mechanical ones, where people seek to meet their emotional needs. So the meta-
phor for an organization is a (large) group of people with an organizational culture
and visible communication and interaction processes between them.

The 3rd school of thought has been called the political-emergent perspective [6][4].
It is characterized by the belief that organizations and change are shaped by the inter-
ests and commitments of individuals. It is also characterized by the belief that deci-
sions often arise from power-struggles between special-interest groups or coalitions.
“Organizations are not machines, even though some of those running them would
dearly like them to be so. They are communities of people, and therefore behave just

410 J. Pries-Heje and O. Vinter

like other communities. They compete amongst themselves for power and resources;
there are differences of opinion and of values, conflicts of priorities and goals” [11].

An interesting approach to combining change strategies is found in Huy [12], who
identifies four ideal types of interventions. He distinguishes between episodic and
continuous change. Changing formal structures is an episodic change involving some-
thing tangible. Thus the ideal type of change will be “commanding”. He suggests that
every ideal type is relatively more effective than the other ideal types. For example,
the “engineering” intervention is relatively best at changing work processes.

Organizational change management thought has now developed so many ap-
proaches to change that no one approach can claim that it is suitable for all organiza-
tional goals and settings. There is a need for analysis of available approaches in de-
veloping a particular organizational change strategy. However, few (if any) compre-
hensive analytical tools are available to support this analysis. The contingency ap-
proach exemplified by Huy [12] provides the right direction, but its two-by-two ana-
lytical structure is simplistic compared to the complexity of most practical settings.

3 A Framework for Selecting Organizational Change Strategies

How can an organization select the best change strategy from the abundance of differ-
ent foundational theories for organizational change? Each theory has its advocates and
adherents, and there is little comparative research to aid the selection. The theories are
so varied that comparisons are usually drawn between only a few alternatives [24].
Our research focuses on this selection issue, the lack of formulated tools to help or-
ganizational change managers to select from these change theories. Our intention is to
improve the ability for organizational change managers to rationally select the most
appropriate change strategies.

In connection with our survey of the organizational change literature, we con-
ducted a number of search conferences involving participants from the companies in
the Talent@IT consortium in order to assemble a catalogue of change approaches,
which have been used successfully in practice. From the search conferences we iden-
tified a number of high-level overall approaches. We analyzed them to determine their
distinguishing characteristics and related them to theories in literature. We focused on
the essential goals of each change strategy (the ends) and the essential processes (the
means), and refined them into ten prominent change strategies (Table 1).

4 Development of a Change Strategy Selection Tool

Following this analysis, we set out to create a tool to guide change managers in evalu-
ating and choosing which of the ten change strategies that would be most appropriate
in an actual organizational setting. For each of the ten organizational change strategies
in Table 1 we formulated a number of assertions that would reveal in a given organ-
izational setting to which degree the conditions were present. E.g. for the change
strategy called “Commanding,” we formulated the following assertions:

– Right now we need change to happen fast
– It is primarily organizational structures that need to be changed
– In the past we have had successes in requiring or dictating change

 A Framework for Selecting Change Strategies in IT Organizations 411

Table 1. An overview of the ten organizational change strategies

Strategy Definition Conditions Literature
Commanding Change is driven and

dictated by (top) man-
agement. Management
takes on the roles as
owner, sponsor and
change agents.

Where formal structures needs change.
Where change is needed fast

[12] the approach
called Command-
ing

Employee
driven

Change is driven from
the bottom of the
organizational hierarchy
when needs for change
arise among employees.

Where the need for change arises among the
employees.
Where the result is more important than the
process; there is no need for a standardized
approach.
Where an open management style allows
change to arise from the bottom.

[1] on a grassroots
approach.
[13], [14] on
participatory
design

Exploration Change is driven by the
need for flexibility,
agility, or a need to
explore new markets,
technology or customer
groups.

Where dynamic and complex surroundings
make it important to explore opportunities.

[3], [17]

Learning
driven

Change is driven by a
focus on organizational
learning, individual
learning and what
creates new attitudes and
behavior.

Where employees learn from the experience
of others.
Where there is a need for change in attitudes
and/or behavior.
Where relationships between means and goals
are unclear.

[12] the approach
called Teaching

Metrics driven Change is driven by
metrics and measure-
ments

Where there are relatively stable surroundings
so measurements from the past can be used to
decide the future.
Where the result of change is measurable

Total Quality
Management
thinking [18].
Six Sigma think-
ing [19]

Optionality Change is driven by the
motivation and need of
the individual or group.
It is to a large degree
optional whether the
individual takes the
innovation into use

Where target group is very diverse and has
large individual or contextual differences.
Where individuals that should (could) change
are highly educated, very knowledgeable and
self-aware.

[21] studies
groups that took
innovations into
use voluntarily.

Production
organized

Change is driven by the
need for optimization
and/or cost reduction

Where you have many homogeneous re-
sources and workflows.
Where you have relatively stable surround-
ings.

[3] Scientific
Management.
[12] the approach
called Engineering

Reengineering Change is driven by
fundamentally rethink-
ing and redesigning the
organization to achieve
dramatic improvements

Where a need exists for major change, e.g.
when the organization has ground to a halt.
Where nothing new happens.
Where decisions are made but not carried out.
Where a crisis is eminent.

[2],[5],[8],
[9],[10],
[15],[16],[27]

Socializing Change in organizational
capabilities is driven by
working through social
relationships. Diffusion
of innovations happens
through personal con-
tacts rather than through
plans and dictates.

Where organizational skills and capabilities
needs to be developed.
Where no unhealthy power struggles occur (so
people can talk).
Where employees that can be exemplars are
available.

[12] the approach
called Socializing

Specialist
driven

Change is driven by
specialists, either with
professional, technical,
or domain knowledge.

Where work has vast complexity and variety
so there really is a need for special knowl-
edge.
Where there is access to necessary specialists,
eventually by in-sourcing them.

[7],[17] especially
adhocracy,
[22],[23]

412 J. Pries-Heje and O. Vinter

And for the change approach called “Optionality,” we formulated the assertions:

– Our employees are self-aware and always have an opinion
– We have very knowledgeable employees that know their areas well
– There are vast differences between the tasks of different employee

All of the assertions were formulated in a number of statements which represent
expressions of the conditions for implementing change in relation to the organiza-
tional setting, the employees, the change ahead, and the current use of metrics. The
statements were assembled into a query form where managers on a five level scale
can express their degree of agreement or disagreement with the statements. When the
query form is filled in by the management of an organization, the conditions for
change in that organization can be compared to the conditions for each of the ten
change strategies (Table 1). The fit of each is measured by the degree (0-100%) to
which these conditions are present in the particular organization. A fit (score) calcu-
lated around 50% represents an indeterminate value. A fit calculated above 70%
means that the corresponding change strategy fits the organization well (will be suc-
cessful). On the other hand a score below 30% means that the corresponding change
strategy doesn’t fit the organization at all (should not be used).

5 Evaluation of the Framework and Tool

The framework for selecting change strategies was developed and evaluated within a
field research study by a consortium (Talent@IT) involving two research institutions
and four financial companies. When the parameters in the ImprovAbility™ model
(Fig. 1) that promote or impede change had been extracted from interviews with the
partners and literature, we were ready to evaluate the model and the ImprovAbility™
assessment method at the partner companies. The framework for selecting change
strategies presented in this paper was included in two of these evaluations.

We asked the management group in the IT Division of the companies to fill out the
query form. First they worked individually and afterwards we facilitated a discussion
of any major differences in the individual assessments. For example, if one manager
said “agree” to the assertion “In the past we have had successes in requiring or dictat-
ing change” while another manager said “partly disagree”, then we brought out the
difference in the discussion and facilitated the attainment of an agreement.

From the evaluations we obtained the following two list-of-fits (Table 2) detailing
the degree of fit for each of the ten change strategies to the two organizations’ vision
or goals for change and the organizational setting. The application of the framework
led in both companies to recommendations that combined the two best-fitting change
strategies and strong advice against the least-fitting change strategy.

In both companies the management of the IT Division found the results quite posi-
tive and considered them very useful. In Company A the CIO called the results a
major “Aha!” experience, and compared it to his wearisome exchanges with previous
consultants who asked him to “run around with a box of matches” to establish a
burning platform (“Reengineering”). The recommendations at Company B led to a
discussion about whether the “Optionality” and “Commanding” approaches can coex-
ist. The IT managers agreed that they would use the “Optionality” strategy on those

 A Framework for Selecting Change Strategies in IT Organizations 413

many change initiatives which are driven by the individual's or group's need and mo-
tivation. They would use the “Commanding” strategy on only few (2-3) initiatives
where they really needed to drive the change (e.g. because change was needed fast).

Table 2. The degree of fit for each of the ten change strategies in the evaluations

 Company A Company B

60% Socializing
60% Learning driven
56% Production organized
55% Employee driven
54% Optionality
42% Metrics driven
37.5% Specialist driven
35% Exploration
34,5% Commanding
31% Reengineering

71 % Optionality
65 % Commanding
59 % Socializing
58 % Production organized
56 % Specialist driven
40 % Metrics driven
34 % Learning driven
29 % Exploration
28 % Reengineering
18 % Employee driven

6 Conclusion

In this paper we presented a framework and a tool to support the selection of an or-
ganizational change strategy. We developed a framework that binds together ten well-
known organizational change strategies into a prescriptive recommendation for a
cohesive and suitable change strategy for a particular organization’s unique situation.
The change strategies to be prescribed develop from a list-of-fit that indicates the
relative suitability of each of the ten strategies to the organization’s vision and setting.

The framework and tool was evaluated in two IT organizations in the Talent@IT
consortium [26] (www.talent-it.dk). They considered the results quite positive and
very useful. The framework evidently leads to operational management decisions
about the selection of a suitable change strategy in a particular organizational setting.

References

1. Andersen, C.V., Krath, F., Krukow, L., Mathiasssen L., Pries-Heje, J.: The Grass Root Ef-
fort. In: Mathiassen et al. (eds.): Improving Software Organizations - From Principles to
Practice, Addison-Wesley (2001)

2. Bashein, B.J., Markus, M.L., Riley, P.: Preconditions for BPR Success: And How to Pre-
vent Failures. Information Systems Management (1994), 11(2), pp. 7-13

3. Benner, M., Tushman, M.: Exploitation, exploration, and process management: The pro-
ductivity dilemma revisited. Academy of Management Review (2003), Vol. 28, No. 2,
238-256

4. Borum, F.: Strategier for organisationsændring (Strategies for organizational change).
Handelshøjskolens Forlag, Copenhagen (1995)

5. Boudreau, M-C., Robey, D.: Coping with contradictions in business process re-
engineering. Information Technology & People (1996), Vol. 9 No. 4, pp. 40-57

6. Burnes, B.: Managing Change. 2nd Edition. Financial Times, Pitman Publishing (1996)

414 J. Pries-Heje and O. Vinter

7. Ciborra, C.U. and Associates: From Control to Drift. The dynamics of cooporate informa-
tion infrastructures. Oxford University Press, Oxford, UK (2000)

8. Davenport, T.H.: Process Innovation: Re-engineering Work through Information Tech-
nology. Harvard Business School Press (1993)

9. Hammer, M.: Reengineering Work: Don't Automate, Obliterate. Harvard Business Re-
view, July-August 1990, pp. 104-112

10. Hammer, M., Champy, J.: Reengineering the Corporation; A Manifesto For Business
Revolution. Harper Business (1993)

11. Handy, C.: Understanding Organizations. 4th Edition. Penguin Global (2005)
12. Huy, Q.N.: Time, temporal capability, and planned change. Academy of management Re-

view (2001), vol. 26, no. 4, 601-623
13. Kensing, F.: Methods and Practices in Participatory Design. ITU Press, Copenhagen (2003)
14. Kensing, F., Blomberg, J.: Participatory Design: Issues and Concerns. Computer Sup-

ported Cooperative Work (1998), 7(3-4), 167-185
15. King, W.R.: Process Reengineering: The Strategic Dimensions. Information Systems

Management (1994), 11(2), pp. 71-73
16. Malhotra, Y.: Business Process Redesign: An Overview. IEEE Engineering Management

Review (1998), vol. 26, no. 3
17. Mintzberg, H.: Structure in Fives - designing effective organizations, Prentice-Hall (1983)
18. Oakland, J.S.: TQM – Text with Cases. 3rd edition. Butterworth-Heinemann (2003)
19. Pande, P.S., Holpp, L.: What is Six Sigma? McGraw Hill (2000)
20. Pries-Heje, J., Johansen, J.: AIM – Ability Improvement Model. EuroSPI 2005, Springer

LNCS 3792 (2005)
21. Rogers, E.M.: Diffusion of Innovations. 5th Edition, Free Press (2003)
22. Simon, H.A.: The Structure of Ill Structured Problems. Artificial Intel. (1973), 4, 181-201
23. Simon, H.A.: Search and Reasoning in Problem Solving. Artificial Intel. (1983), 21, 7-29
24. Tingey, M.O.: Comparing ISO 9000, Malcolm Baldrige, and the SEI CMM for Software:

A Reference and Selection Guide. Upper Saddle River, NJ: Prentice Hall PTR (1997)
25. Vinter, O.: A Framework for Classification of Change Approaches Based on a Comparison

of Process Improvement Models. PROFES 2005, Springer LNCS 3547 (2005)
26. Vinter, O., Pries-Heje, J. (eds.): På vej mod at blive bedre til at blive bedre (On how to

improve the ability to improve). DELTA Report D-266, Hørsholm, Denmark (2004)
27. Willcocks, L., Feeny, D., Islei, G.: Managing IT as a Strategic Resource. McGraw-Hill

(1997). Chapter 10, pp. 238-273.

Building Software Process Line Architectures
from Bottom Up

Hironori Washizaki

National Institute of Informatics,
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

washizaki@nii.ac.jp

Abstract. In this paper, we propose a technique for establishing process
lines, which are sets of common processes in particular problem domains,
and process line architectures that incorporate commonality and variabil-
ity. Process line architectures are used as a basis for deriving process lines
from the perspective of overall optimization. The proposed technique in-
cludes some extensions to the Software Process Engineering Metamodel
for clearly expressing the commonality and variability in the process
workflows described as UML activity diagrams. As a result of applying
the proposed technique to hardware/software co-design processes in an
embedded system domain, it is found that the proposed technique is
useful for defining consistent and project-specific processes efficiently.

1 Introduction

Process tailoring is an approach for defining project-specific processes by adding,
removing or modifying the activities and the required inputs/outputs of a base
process model to develop high-quality system/software efficiently. Project-
specific processes are a collection of interrelated, concrete activities along the
time line of the project, which take into consideration the characteristics of the
specific project. Conventional tailoring approaches can be divided into two ma-
jor types[1]: component-based approaches and generator approaches. The former
tries to build a project-specific process based on existing process parts, but it
lacks a way to address the overall compatibility and consistency of the derived
processes. The latter tries to build a project-specific process by instantiating a
typical process architecture, but it lacks a way to reuse process fragments.

In this paper, we propose a new process-tailoring technique which solves the
problems with component-based and generator approaches by building a Process-
Line Architecture (hereafter PLA) and deriving project-specific processes from
the PLA. A process line is a set of similar processes within a particular domain,
and is an application of the idea of product lines to processes. Process lines
were proposed by Romback[2] and Jaufman[1], but parts of the definition and
technical system are still not well-defined, and not sufficient for creating a con-
crete framework. Other similar ideas have also been proposed, including process
libraries[3] and families[4]; however, these are not always oriented toward overall
optimization, and do not lead to generally-applicable process-model structures.

J. Münch and M. Vierimaa (Eds.): PROFES 2006, LNCS 4034, pp. 415–421, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

416 H. Washizaki

2 Process Line Architecture

We define a Process Line as “a set of processes in a particular domain or for a
particular purpose, having common characteristics and built based upon com-
mon, reusable process assets (such as PLAs, requirements)”. The relationship
between process lines and PLA is shown in Figure 1.

A PLA is “a process structure which reflects the commonality and variability
in a collection of processes that make up a process line from the perspective of
overall optimization”. We mean “overall optimization” as preparing a PLA with
general utility rather than defining separate but similar optimized processes.
By deriving individual process from the PLA, the fixed amount of additional
effort required in the future can be reduced, and timeliness of completion can be
improved. Commonality in a PLA is represented by the core process, which is
made up of the common parts of the set of processes. Variability is represented by
the variation points and process variants. Variation points are activities (or the
inputs/outputs or roles that effect activities) which can be changed according
to the characteristics of a specific project. Process variants are the concrete
candidate activities (or inputs/outputs, etc.) that are applied to the variation
points. Processes that are specialized for a particular but similar project can
be defined and applied effectively by combining, extending and reusing the core
process and variants in a particular problem domain.

Fig. 1. Process line framework and bottom-up building activities

It is difficult to adequately analyze commonality and variability in a domain
from scratch without missing anything; this is to say a “top-down” approach. So
we propose the following “bottom-up” technique (shown in Figure 1) for building
a PLA using existing knowledge on process definitions and applications in the
well-known problem domain. We define Process Line Engineering as “a system
of interrelated strategic and systematic approaches for building, applying and
managing process lines”. Based on this concept, the following activities (1)–(3)
are in the domain engineering, and (4) is in the application engineering.

Building Software Process Line Architectures from Bottom Up 417

(1) Several existing processes in the selected problem domain are gathered to-
gether. These processes, sharing common parts, can be combined to form
the process line P .

(2) Commonality of P (the gathered collection of process) is defined as the core
process including variation points. Variability is defined as a set of variants
defined for each variation point in the core process. In describing below how
the PLA is built by our technique, we use some new, original extensions to
the Software Process Engineering Metamodel (SPEM[5]) to clearly express
the commonality and variability in the process workflows. These cannot be
expressed with traditional SPEM. The procedure is described as follows:

(a) Make the smallest process in P a core process, pc. Then apply (b) to all
of the remaining processes in P (pi ∈ P − {pc}). We assume that pc’s
workflow is composed of a set of interrelated activities and conditional
branches along the time line, denoted as pc = ec1 → ... → eck → ... → ecm.
Similarly, we denote the pi’s workflow as pi = ei1 → ... → eij → ... → ein.

(b) All activities and conditional branches eij in the pi’s workflow are com-
pared with all elements in the pc workflow, eck. If these elements are
not the same, the following (c)–(g) are performed. The sameness, spe-
cialization and generalization relation between two process elements can
be identified by comparing the activity details, pre/post-conditions, in-
puts/outputs, roles, and environments including tools. In our technique,
the above-mentioned comparison is conducted manually. As our future
work, we will try to use tool-supported techniques such as a technique
proposed by Ocampo [6].

(c) If eij is a specialized element of eck, we create the generalization rela-
tionship denoted as eck � −eij , label eck with a �variationPoint	
stereotype, label eij with �variant	, and add eij to pc. Conversely, if
eck is a specialized element of eij , exchange eij for eck in pc and perform
the same way.

(d) If there is no element which specializes or generalizes eij , and the ele-
ment preceding eij (i.e. eij−1) on the pi’s workflow is equal to ecl in pc,
set a transition from ecl to eij . Label eij with an �optional	 stereo-
type, and add eij to pc. When actually defining a concrete process with
a selection of the above-mentioned optional element, we will proceed
the element ecl+1 after proceeding from ecl to eij . In other words, the
obtained process architecture with the optional element provides two
different workflow definitions: ecl → ecl+1 or ecl → eij → ecl+1.

(e) If there is no element which specializes or generalizes eij , and the element
preceding eij (i.e. eij−1) already have the �variant	 or �optional	
stereotype, set a transition from eij−1 to eij and add eij to pc.

(f) If a �variant	 or �optional	 element was added in (c) or (d), add
transitions to appropriate elements within pc for each of that element’s
original transitions. When doing this, if there are two or more outgoing
transitions for one element, not including conditional branch elements,
draw a dashed line over these transitions and annotate the line with a

418 H. Washizaki

constraint {xor} to show clearly that one transition must be selected
when the concrete process is defined.

(g) If a �variant	 or �optional	 element ex was added in (c) or (d),
and ex requires that other �variant	/ �optional	 elements (ey)
must be preceded, add a dependency relationship from ex to ey, denoted

as ex

�requires�· · · > ey. These dependency relationships and the exclusive
selection relationships described above are important for maintaining
process consistency.

(3) The project characteristics as predictable requirements for a process line are
defined corresponding to the commonality and variability built into the PLA.
Feature Diagram[7] can be used to define the requirements that accompany
the commonality and variability. Feature diagrams are a way of expressing
requirements having both variability/commonality and consistency, by al-
lowing substitution and selection of logical units called features, which are
functional or qualitative requirements.

(4) By reusing the PLA derived through the above procedure and the require-
ments including commonality/variability for the process line, project-specific
processes that maintain consistency can be defined efficiently. For example,
if the requirements on the process line are expressed by a feature diagram,
and the part of the PLA which handles each feature is recorded (i.e. there
is traceability between PLA and feature diagram), a customized consistent
process can be derived easily by selecting features. Moreover, the PLA can
be used as a basis for comparing similar processes.

3 Application to Hardware/Software Co-design

As an example, we consider building a process line for hardware/software co-
design process in embedded system development. When defining this process, it
is necessary to decide, on a per project basis, variations like when the hardware
architecture specification will be decided, and whether the division and mapping
of specifications will be iterated. As such, we tried building a PLA from the
bottom up as described in the previous section.

(1) As representative but partially different processes for hardware/software
co-design, we collected the Wolf process (denoted as pW [8]), the Axlesson
process (pA[9]), and the process from the Kassners (pK [10]). The workflow
of each process is shown with an activity diagram based on SPEM in Figure
2. Due to space limitation, roles and inputs/outputs have been omitted from
each diagram.

(2) ThePLAworkflowderived fromthe analysis for variability and commonality in
these three processes is shownon the left side ofFigure 3. Figure 3 clearly shows
the core process with variation points, variants, optional elements, and exclu-
sive transitions. For example, an activity ‘‘Specification definition’’
in the core process is labeled as a variation point, and can be substituted
with a variant ‘‘Executable behavior specification definition’’ that

Building Software Process Line Architectures from Bottom Up 419

Fig. 2. Collected process workflows

expresses more detail. In addition, there are several conditional branches
that implement iteration cycles in the process; these are optional elements.

(3) The project characteristics were analyzed as requirements corresponding to
the variability/commonality in the PLA. A feature diagram on the right side
in Figure 3 shows the result. We have related the optional and substitute
features to the optional elements and variants in the PLA.

(4) Using the resulting PLA and feature diagram, various processes including the
original three processes can be derived in a consistent and efficient way based
on the requirements. For example, for a short-term project where the decision
on hardware specifications is late, and performance and reliability might be
sacrificed due to an extremely short development period, we will simply se-
lect the ‘‘Late’’ feature on the feature diagram. This defines a process
where iteration cycles are excluded, and the ‘‘Hardware architecture
selection’’ activity is done after ‘‘Allocation’’. This newly defined
process is consistent; for example, ‘‘Functional partitioningn’’ will be
included and located before ‘‘Allocation’’ according to the dependence
relationship. Without using a PLA and feature diagram, it would not be
easy to quickly define a similar, new and consistent process based on various
project characteristics.

4 Conclusion and Future Work

In this paper, we have defined terminology and a framework for the develop-
ment of process lines, and shown a technique for building practical process-line

420 H. Washizaki

Fig. 3. Obtained co-design process line architecture and its feature diagram

architectures that allows consistent, project-specific processes in a given prob-
lem domain to be defined efficiently. Also, in order to express the common-
ality/variability in PLA workflows, we have proposed a notation which is an
extension to SPEM. Finally, by building a PLA and feature diagram for hard-
ware/software co-design process, we showed that consistent project-specific pro-
cesses can be derived easily based on the proposed technique. In the future, we
plan to explicitly handle factors such as resource limitations, inputs and outputs,
and pre- and post-conditions in the proposed technique.

References

1. O. Jaufman and J. Munch: Acquisition of a Project-Specific Process, Proc. 6th
International Conference on Product Focused Software Process Improvement, 2005.

2. D. Rombach: Integrated Software Process and Product Lines, Post-Proceedings of
the Software Process Workshop 2005, LNCS Vol.3840, 2005.

3. P. Mi et al.: A Knowledge-based Software Process Library for Process-Driven Soft-
ware Development, 7th Knowledge-Based Software Engineering Conference, 1992.

4. Y. Matsumoto: Japanese Software Factory, in Encyclopedia of Software Engineer-
ing, (ed.) J.J. Marciniak, John Wiley & Sons, 1994.

Building Software Process Line Architectures from Bottom Up 421

5. OMG: Software Process Engineering Metamodel Specification, Version 1.1, 2005.
6. A. Ocampo, R. Bella and J. Munch: Software Process Commonality Analysis, Soft-

ware Process Improvement and Practice, Vol.10, No.3, 2005.
7. J.C. Trigaux and P. Heymans: Modelling variability requirements in Software Prod-

uct Lines, Technical report PLENTY project, 2003.
8. W.H. Wolf: Computer as Components: Principles of Embedded Computing System

Design, Morgan Kaufmann, 2001.
9. J. Axelsson: Hardware/Software Partitioning of Real-Time Systems, IEE Collo-

quium on Partitioning in Hardware-Software Codesigns, 1995.
10. K.C. Kassner and K.G. Ricks: Hardware/Software Co-Design of Embedded Real-

Time Systems from an Undergraduate Perspective, Workshop on Computer Archi-
tecture Education, 2005.

J. Münch and M. Vierimaa (Eds.): PROFES 2006, LNCS 4034, pp. 422 – 428, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Refinement of Software Architectures by
Recursive Model Transformations∗

Ricardo J. Machado1, João M. Fernandes2,
Paula Monteiro1, and Helena Rodrigues1

1 Dept. of Information Systems
2 Dept. of Informatics

University of Minho, Portugal

Abstract. The main aim of this paper is to present how to refine software logi-
cal architectures by application of a recursive model-based transformation ap-
proach called 4SRS (four step rule set). It is essentially based on the mapping of
UML use case diagrams into UML object diagrams. The technique is based on
a sequence of steps that are inscribed in a tabular representation that is used to
derive the software architecture for a focused part of the global system.

1 Introduction

The most complex activity during development of software systems is probably the
transformation of a requirement specification into an architectural design [1]. The
other phases have also their challenges, but they are better understood and a variety of
methods, languages and tools are available to support the software engineer.

The process of designing software architectures is, by far, less formalised and often
is greatly an intuitive ad-hoc activity, poorly based on engineering principles. Since
the architecture of a software system constrains the space solution, the design deci-
sions taken during architectural design must be made with great care, since they typi-
cally have a large impact on the quality of the resulting system.

An architectural transformation approach, called 4SRS (four step rule set), is pre-
sented that employs successive transformations of the software architecture, in order
to satisfy the elicited user requirements. It is essentially based on the mapping of
UML use case diagrams into UML object diagrams. The iterative nature of the ap-
proach and the usage of graphical models are important issues to guarantee that the
final architecture reflects the user requirements.

Fig. 1 illustrates the recursive application of the 4SRS technique. This paper ad-
dresses the problem of deriving the logic architecture of a given platform service
(called service object diagram), from a functional refinement of the platform architec-
tural model (called platform object diagram), by adopting a recursive version of the
4SRS technique. The first 4SRS execution supports the platform requirements analy-
sis by generating one platform object diagram that corresponds to the logic architec-
ture of the system (this first 4SRS execution is described in detail in [2]). The second

∗ This work has been supported by projects STACOS (FCT/POSI/CHS/48875/2002) and

USE-ME.GOV (IST-2002-002294).

 Refinement of Software Architectures by Recursive Model Transformations 423

Fig. 1. Service specification with recursive 4SRS execution

4SRS execution supports the service requirements analysis by generating one service
object diagram that corresponds to the logic architecture of the service to be specified
(this second 4SRS execution is the aim of this paper).

The applicability of this technique is illustrated by presenting some results from a
mobile application. For mobile applications, the definition of the underlying service
oriented software architecture must consider as user requirements the services them-
selves, the mobile operators entry points and the final clients interfaces, and use them
to characterize the platform. Within the presented demonstration case, the specifica-
tion of one service of the mobile application was obtained by recursively applying the
4SRS technique.

2 Four Step Rule Set

4SRS is a technique proposed to transform users requirements into architectural mod-
els representing system requirements [3, 4]. It associates, to each object found during
the analysis phase, a given category: interface, data, control. Each one of these cate-
gories is related to one of the three orthogonal dimensions, in which the analysis
space can be divided (information, behaviour and presentation) [5].

For readability purposes, a brief description of the 4SRS technique is next pre-
sented. There is a complete description of its usage to obtain, in a non-recursive ap-
proach, the first logical architecture of the demonstration case used in this paper in
[2]. In [6], an alternative version of the 4SRS technique is described for deriving the
logical architecture for software product lines. This variant of the 4SRS technique

424 R.J. Machado et al.

deals with variability at functional and architectural levels; the IESE GoPhone dem-
onstration case [7] was adopted to experiment the approach.

The 4SRS technique is organized as four steps to transform use cases into objects:
(1) object creation, (2) object elimination, (3) object packaging & aggregation, and (4)
object association. After the execution of the 4 steps of the 4SRS technique, we obtain
the logic architecture for the system that captures all its functional and non-functional
requirements. An object model shows how significant properties of a system are dis-
tributed across its parts.

Fig. 2 shows the filtered object diagram that was obtained by using collapsing and
filtering techniques described in [2] by considering package {P5} as one sub-system
for design. This diagram was included here as an example of how raw object dia-
grams can be used during the development process to stress parts of the system and
allow sub-system specification and partition of sub-projects among various teams.

In this paper, we consider the refinement of package {P5} that has given origin to
the AVAccess service (the service object diagram depicted in fig. 1).

Fig. 2. Filtered object diagram for package {P5} service derivation

3 Recursive Architectural Refinement

{P5} can be considered as the system to be designed and apply, once more, the 4SRS
technique to support its architectural refinement (within fig. 2). The recursive ap-
proach of the 4SRS technique suggests the construction of a new use case diagram
(called service use case diagram, in fig. 1) that captures the users requirements of the
new (sub-)system to refine. From this use case diagram the corresponding raw object
diagram is derived (called service object diagram, in fig. 1). This proposed approach
contrasts with the dominant one that suggests the application of design patterns to
impose into the logical architecture a particular already proven reference architectural
model [8, 9]. Our proposal does not reject this pattern-oriented view, only defers it
into latter stages of development, allowing a previous functional refinement of
requirements at architectural level, taking into account the specific aspects of the
particular sub-system to be designed. The use case diagram depicted in fig. 3 was
constructed for supporting the architectural refinement of {P5} to obtain the raw object
diagram of the AVAccess service. This service constitutes the example considered in
this paper to show the recursive application of the 4SRS technique. All the external
entities (UML actors) existent in this diagram correspond to architectural elements
connected to package {P5} in fig. 2. Object {O0a.1.3.c} in fig. 2 did not give origin to

 Refinement of Software Architectures by Recursive Model Transformations 425

any actor in fig. 3, because the architectural refinement of package {P5} did not con-
sider the functionality that is associated with that object. The user actor is present in
fig. 3, since it was already connected to the use cases that gave origin to the objects
inside package {P5}, during the development process described in [2]. Actors in fig. 3
must be viewed as external sub-systems (components), from the point of view of the
AVAccess service. To attain a better actor semantics within the associations with the
obtained use cases, the actor {O0a.3.7.c} in fig. 3 was specialized into two different
actors: Application System Context Aggregation Service and Application System Service Re-
pository.

Fig. 3. Use case diagram for AVAccess service

4 Tabular Transformations

The execution of the 4SRS transformation steps can be supported in tabular represen-
tations. Moreover, the usage of tables permits a set of tools to be devised and built so
that the transformations can be partially automated. These tabular representations
constitute the main mechanism to automate a set of decision assisted model transfor-
mation steps. The 4SRS has been used both in academia and in industry [3, 4, 10] and
has demonstrated to be agile in helping software engineers to find and refine architec-
tural requirements, based on the elicited user requirements.

The table for the transformation steps is organized as follows: (1) each (micro-)step
gives origin to one column; (2) each object gives origin to one row.

The 1st column corresponds to the execution of step 1. The first row allows the in-
sertion of both the reference and the name of the use case. The next three rows allow
the insertion of one interface, one data, and one control objects for the corresponding
use case. For the demonstration case, there is no use case refinement, so step 1 is
applicable to all (10) use cases in fig. 3, which gave origin to 30 objects. Fig. 4 de-
picts 4 different rows for each of the two previously exemplified use cases.

The 2nd column corresponds to the execution of micro-step 2i. In this micro-step,
the software engineer classifies each use case as one of the 8 different combinations
or patterns (Ø, i, c, d, ic, di, cd, icd). The idea behind this classification is to help on
the transformation of each use case into objects. This classification would provide
hints on which object categories to use and how to connect those objects. For the
demonstration case, {U0.1} was classified as type “i”, which means that only the inter-
face object is kept (the control and data objects will be eliminated in micro-step 2ii),
and {U0.5} was classified as type “icd”, which means that all objects are kept.

426 R.J. Machado et al.

The 3rd column corresponds to the execution of micro-step 2ii. The aim of this mi-
cro-step is to answer if each object created in step 1 makes sense in the problem do-
main, since the creation of objects in step 1 was blindly executed, not considering the
system context for the object creation. Object that are to be eliminated are marked
with “x” and objects that are to be kept are marked with “-”. For the demonstration
case, {U0.1} got two of its originated objects eliminated, since they do not make sense
in the problem domain. {U0.1} is only responsible to send the new user information
from the user to other sub-systems and vice-versa, which means that data and control
dimensions are not within the scope of this use case.

Fig. 4. Table for 4SRS transformations

The 4th column corresponds to the execution of micro-step 2iii. In this micro-step,
objects that have not been eliminated from the previous micro-step must receive a
proper name that reflects both the use case from which it is originated and the specific
role of the object, taking into account its main component. For the demonstration
case, object {O0.1.i}, for instance, was named register user interface.

The 5th column corresponds to the execution of micro-step 2iv. Each named object
resulting from the previous micro-step must be described, so that the system require-
ments they represent become included in the object model. These descriptions must
be based on the original use case descriptions.

The 6th and 7th columns correspond to the execution of micro-step 2v. This is the
most critical micro-step of the 4SRS technique, since it supports the elimination of
redundancy in the user requirements elicitation, as well as the discovering of missing
requirements. The “is represented by” column stores the reference of the object that
will represent the object being analyzed. If the analyzed object will be represented by
itself, the corresponding “is represented by” column must refer to itself. The “repre-
sents” column stores the references of the objects that the object analyzed will repre-
sent. {O0.1.i} does not delegate in other objects its representation (i.e. it is represented
by itself) and it additionally represents a considerable list of other objects (each one of
these objects must refer to {O0.1.i} in their columns “is represented by”).

The 8th column corresponds to the execution of micro-step 2vi. This is a fully
“automatic” micro-step, since it is based on the results of the previous one. The ob-

 Refinement of Software Architectures by Recursive Model Transformations 427

jects that are represented by other ones must be eliminated, since its system require-
ments no longer belong to them.

The 9th column corresponds to the execution of micro-step 2vii. Its purpose is to
rename the objects that have not been eliminated in the previous micro-step and that
represent additional objects. The new names must reflect the plenitude of system
requirements. For the demonstration case, object {O0.1.i} was renamed users manage-
ment interface to reflect the list of other objects that it additionally represents.

The 10th column corresponds to the execution of step 3. For the demonstration
case, neither aggregations, nor packages were used, so column 10 remains unfilled.

The 11th column corresponds to the execution of step 4. For the demonstration case,
the associations were solely derived from the use case classification executed in step 1.
The classification of {U0.5} as type “icd” suggests the existence of three internal associa-
tions relative to the objects generated from the same use case. However, “id” association
(between the interface and the data objects) was not allowed. Additionally, the follow-
ing two tabular transformations imposed some constrictions to the object connectivity
exercise: (1) in step 2v, it was decided that {O0.5.i} is represented by {O0.1.i}; (2) in step
2vi, {O0.5.i} was eliminated. These two decisions imply the existence of the following
associations: (1) between {O0.5.c} and {O0.5.d}, suggested by the “icd” classification;
(2) between {O0.5.c} and {O0.1.i}, due to the transitivity of the suggested association be-
tween {O0.5.c} and {O0.5.i} through the delegation executed by {O0.5.i} in {O0.1.i}.

5 Service Specification

Fig. 5 depicts the raw object diagram for the AVAccess service, obtained from the
recursive application of the 4SRS technique.

The obtained raw object model (fig. 5) constitutes the canonical semantic reference
for the service to be designed, since it has emerged from the software logical
architecture of the platform by adopting a complementary functional refinement at
architectural level. This architectural refinement has been explicitly executed within a
component-based service development.

After obtaining this new architectural refined raw object model, the underlying ser-
vice can be described through a set of diagrams as a means to specify the corresponding
architectural component, namely, by designing a class diagram for the static characteri-
zation of the service component, a statechart for the life cycle characterization of the
service, a set of activity diagrams for methods specification and a set of sequence dia-
grams for interface and protocol specification. These additional perspectives of the same
service are not directly generated from the application of 4SRS technique, even though
they are easier constructed after obtaining the raw object diagram of the service (fig. 5).

Fig. 5. Raw object diagram of the AVAccess service

428 R.J. Machado et al.

6 Conclusions

The proposed recursive approach of the 4SRS technique suggests the construction of
a new use case diagram that captures the users requirements of the new (sub-)system
to refine a service. From this use case diagram the corresponding raw object diagram
can be derive. This approach complements the usage of design patterns by allowing a
previous functional refinement of requirements at architectural level, taking into ac-
count the specific aspects of the particular sub-system to be designed. This transfor-
mational approach shows that model continuity is a key issue and highlights the im-
portance of having a well defined process to relate, map and transform requirements
models. In the demonstration case, the 4SRS has allowed the specification of one
particular service, taking into account all the architectural decisions previously taken
to specify the platform where the service is intended to run, by assuring a continuous
mapping between the platform and the service models.

References

1. J. Bosch, P. Molin. Software Architecture Design: Evaluation and Transformation.
7th IEEE Int. Conf. on the Engineering of Computer-Based Systems (ECBS'99), Nash-
ville, Tennessee, U.S.A., pp. 4-10, IEEE CS Press, March, 1999.

2. R.J. Machado, J.M. Fernandes, P. Monteiro, H. Rodrigues. Transformation of UML Mod-
els for Service-Oriented Software Architectures. 12th IEEE Int. Conf. on the Engineering
of Computer-Based Systems (ECBS 2005), Greenbelt, Maryland, U.S.A., pp. 173-182,
IEEE CS Press, April, 2005.

3. J.M. Fernandes, R.J. Machado, H.D. Santos. Modeling Industrial Embedded Systems with
UML. 8th IEEE/IFIP/ACM Int. Workshop on Hardware/Software Co-Design (CODES
2000), San Diego, California, U.S.A., pp. 18-22, ACM Press, May, 2000.

4. J.M. Fernandes, R.J. Machado. From Use Cases to Objects: An Industrial Information Sys-
tems. 7th Int. Conf. on Object-Oriented Information Systems (OOIS 2001), Calgary, Can-
ada, pp. 319-328, Springer-Verlag, August, 2001.

5. I. Jacobson, M. Christerson, P. Jonsson, G. Övergaard. Object-Oriented Software Engi-
neering: A Use Case Driven Approach. Addison-Wesley, 1992.

6. A. Bragança, R.J. Machado. Deriving Software Product Line’s Architectural Requirements
from Use Cases: An Experimental Approach. 2nd Int. Workshop on Model-Based Meth-
odologies for Pervasive and Embedded Software (MOMPES 2005), Rennes, France,
pp. 77-91, June, 2005.

7. D. Muthig, I. John, M. Anastasopoulos, T. Forster, J. Dörr, K. Schmid. GoPhone: A Soft-
ware Product Line in the Mobile Phone Domain. IESE Technical Report no. 025.04/E,
2004.

8. F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal. Pattern-Oriented Software
Architecture: A System of Patterns. John Wiley & Sons, 1996.

9. 9 R. Ahlgren, J. Markkula. Design Patterns and Organisational Memory in Mobile Appli-
cation Development. 6th Int. Conf. on Product-Focused Software Process Improvement
(PROFES2005),Oulu,Finland,pp.143-156,Springer-Verlag,June, 2005.

10. J.M. Fernandes, R.J. Machado. System-Level Object-Orientation in the Specification and
Validation of Embedded Systems. 14th SBC/IFIP/ACM Symposium on Integrated Circuits
and System Design (SBCCI 2001), Pirenópolis, Brazil, pp. 8-13, IEEE Computer Society
Press, August, 2001.

J. Münch and M. Vierimaa (Eds.): PROFES 2006, LNCS 4034, pp. 429 – 434, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A UML-Based Process Meta-model Integrating
a Rigorous Process Patterns Definition

Hanh Nhi Tran1, Bernard Coulette1, and Bich Thuy Dong2

1 University of Toulouse 2 -GRIMM
5 allées A. Machado F-31058 Toulouse, France
{tran, coulette}@univ-tlse2.fr
2 University of Natural Sciences, VNUHCM

227 Nguyen Van Cu, Q5, HoChiMinh Ville, Vietnam
thuy@hcmuns.edu.vn

Abstract. Process Pattern is an emergent approach to reuse process knowledge.
However, in practice this concept still remains difficult to be exploited due to
the lack of formalization and supporting methodology. In this paper, we pro-
pose a way to formalize the process pattern concept by introducing it into a
process meta-model. We provide a general definition to cover various kinds of
process-related patterns in different domains. We define rigorously process
concepts and their relations to allow representing processes based on process
patterns and to facilitate the development of supporting tools. By distinguishing
process patterns at different abstraction levels, we aim to develop a systematic
approach to define and apply process patterns.

1 Introduction

Recently, process patterns approach has been adopted by process communities to
capture and reuse proven processes. The expected interests of reduced development
time and improved process quality make process patterns approach attractive.
However, up to now works on process pattern have not been enough developed to
permit applying this concept efficiently. Firstly, it lacks a definition that can cover the
diversity of process patterns (c.f. [8][9] for more detailed discussions on process
patterns definitions and taxonomy). Secondly, the representation of process patterns is
not adequately formal to be directly reused in process modeling. Finally, a process
patterns based methodology for developing processes is still needed to guide process
designers applying process patterns systematically.

To cope with these issues, we believe that the first step is to formalize process
patterns. This objective can be achieved by introducing the process pattern concept
into a process meta-model. We present in this paper a UML-based meta-model
integrating the concept of process pattern into the description of software processes.
Our meta-model provides rigorous concepts to describe process patterns and
processes based on process patterns. The meta-model will be presented in the
following section and exemplified in section 3. Related works and contributions are
summed up in the final section.

430 H.N. Tran, B. Coulette, and B.T. Dong

2 A Meta-model for Representing Process Patterns

Our objective is to define process patterns as patterns for modeling processes. Thus,
we provide a wide definition to cover all the related notions.

We introduce multi-abstraction levels1 into process representation to promote
process reuse. The relations between process models at different abstraction levels are
defined in order to clarify the way of defining process models (and then process
patterns which capture them). To allow process modeling based on patterns and
facilitate patterns organization, we also define explicitly the aspects of process pattern
concept as well as the relationships among patterns, between process patterns and
process models. To attaint the requirement on standardization, initially we aimed at
integrating the process pattern concept into the software process meta-model SPEM
1.1[4]. However, SPEM 1.1 has some deficiencies and is progressing towards a next
version [5]. So, we decided to develop a meta-model which is strongly inspired by
SPEM 1.1 for process description, but based directly on UML2.

To present our meta-model, we use UML class diagrams3 for the abstract syntax.
The semantics is expressed in natural language and reinforced by OCL expressions4.

2.1 ProcessModel

• This concept is used to describe (part of) a process. It is composed of process tasks
(Task), the required products (Product) and the participating roles (Role) of these
tasks (Figure 1a).

0..1

+responsiblerole

0..1

0..*

+parameter

1..* 0..*

0..*

+type 1

0..*

+task

0..* 1..*

+assistant

+performer

+participant 0..*
1

0..*

0..*

+product

0..*

TaskParameter

0..*

ProcessModel

Model

+performedtask

Classifier Classifier Parameter

Role

Task

Actor

+kind

0..*0..*

1 +kind

0..*

1

+refinedkind

0..*

Abstract
Product

General
Product

Concrete
Product

+component

0..*

GeneralizableElement ModelElement (1a) (1b)

1

Product

Product

Language ProductKind

Fig. 1. Meta-model for ProcessModel and Product

Product is an artifact created, consumed or modified during the development. A Task
is a unit of work realized to create or modify products. Necessary products for the
execution of a task are described explicitly as its parameters (TaskParameter). A Role

1 The abstraction level of a process model reflects how detailed its content is described.
2 In our meta-model, the part describing processes (which is inspired by SPEM 1.1) is defined

separately with the part introducing process patterns. Thus, in the future, we just need to
change the first part to conform our meta-model to the stable version of SPEM.

3 Light grayed classes represent ones from UML; white classes represent new defined concepts.
4 Due to the space constraint, we cannot present here the OCL well-formedness rules.

A UML-Based Process Meta-model Integrating a Rigorous Process Patterns Definition 431

is an abstract concept describing a set of competences of development using to realize
or assist a task.

• Typology of Products: Products help to specify the precise meaning of a task. An
AbstractProduct describes a certain product without any exact meaning. A
GeneralProduct is specified by a product kind (ProductKind) which can be
specialized further for more specific goals. A Concrete Product belongs to a
product kind and is represented by a concrete formalism (Language) (Figure 1b).

• Description of Tasks: Figure 2 shows the detailed description of a task with the
conditions to begin or finish (PreCondition and PostCondition) and sub-tasks.

+subTask

0..*

Constraint
0..*

0..*

0..1
ActionState

uses Classifier

PostCondition

PreCondition

AbstractTask ConcretTask GeneralTask

Resource

Dependency

Classifier

Task
Refinement

0..*

1 1
+origin

1

+refinedtask

Step

Task

State

Fig. 2. Meta-model for Task

We propose a categorization of tasks abstraction levels based on abstraction levels
of the products that they manipulate. An Abstract Task doesn’t have any associated
semantic action and is unexecutable. A General Task creates or modifies one or
several general products. It has an associated semantic action but is not ready to be
executed because the meaning of its actions depends on incompletely specified
products. A Concrete Task creates or modifies concrete products. It can be
decomposed into elementary actions (Step) that have a precise semantics. Actions of a
concrete task are described completely in terms of resources (Resource) used to
accomplish it. A concrete task is therefore ready to be executed.

If a task works on several products having different abstraction levels, the
abstraction level of the task is deduced from the highest abstraction level of its
products. The relation «has subTask» permits to decompose a task into sub-tasks
which have to be realized together to accomplish the parent task. We also highlight
the dependencies between tasks at different abstraction levels («TaskRefinement»).
This relation allows refining a task to obtain more specific tasks by specifying more
details on its semantic action and its manipulated products.

2.2 ProcessPattern

A Process Pattern captures a Process Model that can be reused to resolve a recurrent
process development Problem in a given Context (Figure 3). A Problem expresses the
intention of a pattern and can be associated to a development task through the relation
«is applied for». It is possible to have several process patterns addressing the same
problem. A Process Model represents the solution of a process pattern. A Context
characterizes conditions in which a process pattern can be applied (Initiation), results
that must be achieved after applying the pattern (Resulting) and situation recom-
mended for reusing it (Reuse Situation).

432 H.N. Tran, B. Coulette, and B.T. Dong

1 +solution

Package

+context

1..* 1

0..*

0..*

1+subProblem

0..*

+intention

+associatedtask

0..1 0..1

0..1 +appliedtask

0..*

0..*

0..*

1

Comment

Constraint

Initiation

+initialcontext

+resultingcontext

Resulting

Classifier

Context

Process ModelAbstract
ProcessPattern

General
ProcessPattern

Concrete
ProcessPattern

ProcessPattern

Reuse
Situation

Problem Task

Fig. 3. Meta-model for ProcessPattern

We distinguish several types of process patterns according to abstraction level of
their captured process model. An AbstractProcessPattern captures a recurrent
generic structure for modeling or organizing processes. A GeneralProcessPattern
captures a process model that can be applied to realize a general task and a
ConcreteProcessPattern captures a process model that can be applied to realize a
concrete task.

Our meta-model reflects four important relations between process patterns: Se-
quence, Use, PatternRefinement and PatternAlternative (Figure 4).

0..*

+component
1

0..*

+composite
1

0..*

+refinedpattern

1

0..*
+superpattern
1

0..*

+variant1
10..*

+variant2

1

0..*
+successor

1

+predecessor
1

Relationship Use Relationship

ProcessPattern
Pattern

Alternative
Pattern

Refinement

0..*

Sequence

Fig. 4. Process Patterns Relationships

A Sequence relationship links two patterns if the predecessor produces all products
required by the successor. A pattern “uses” another if the latter can be applied for one
(or more) task in the solution of the composite pattern. A process pattern is “refined”
from another if its associated task has the relation “TaskRefinement” with the associ-
ated task of the super pattern. Two process patterns are related by the relationship
PatternAlternative if they solve the same problem with different solutions.

3 Example of Process Patterns

In this example, we will show how a process pattern is represented and how it can be
applied in process modeling.

Fagan Inspection Process [1] is one of well-known processes used for detecting de-
fects of software products. This process can be applied on different types of products
(e.g. requirements, design, code test plans/cases and user documentation), therefore
we define the general pattern “FaganInspectionPattern” to capture it5 (Figure 5a).

5 For the sake of simplicity, here we just represent the principal elements of this process.

A UML-Based Process Meta-model Integrating a Rigorous Process Patterns Definition 433

«GeneralProcessPattern»
FaganInspectionPattern

«Problem»
Detect Product defects

«Context»
Inspection context

Initial context: Artifact is complete for review; inspection roles,
resources (standards, tools) are available.
Resulting context: Artifact is approved
Reuse Situation: when one needs to verify statically the correctness of
an artefact by using a formal group meeting based process and to get
feedback for improving process itself.

«ProcessModel»
FaganInspection

«GeneralTask»
Planning

«GeneralTask »
Rework

«GeneralTask»
Overview

«GeneralTask»
Preparation

«GeneralTask»
InspectionMeeting

«GeneralTask»
ProcessImprovement

«GeneralTask »
FollowUp

«GeneralProduct»
Artifact (modified)

«GeneralProduct»
Artifact (approved)

«GeneralProduct»
Artifact (draft)

[Artifact is
not approved]

«ProcessModel»
JavaCodeInspection

«ConcreteTask»
PlanningCodeIspection

«ConcreteTask »
ModifyJavaCode

«ConcreteTask»
ReadJavaCode

«ConcreteTask»
JavaInspectionMeeting

«ConcreteTask »
VerifyJavaCode

«ConcreteProduct»
JavaCode
(modified)

«ConcreteProduct»
JavaCode
(approved)

«ConcreteProduct»
JavaCode (draft)

[JavaCode is not approved]

«PatternRefinement»

(5b)(5a)

«is applied for»
«ConcreteTask »

Writing JavaCode
«ConcreteTask »

Reuse existing Java
components

«ConcreteTask »
Study DesignModel

«ConcreteTask »
Review JavaCode

(5d)

«Resource»
JavaCodeAnalyzer

«Resource»
JavaChecklist

«ConcreteProcessPattern»
JavaCodeInspectionPattern

«Problem»
Detect JavaCode defects

«Context»
Inspection context

Initial context: JavaCode is complete to be verified, and JavaProgrammers,
JavaChecklist and JavaCodeAnalyzer are available.
Resulting context: JavaCode is approved
Reuse Situation: when one needs to verify the correctness of a Java source code by
using a formal group meeting based process and some tools to facilitate the code
verification.

(5c)

Fig. 5. Patterns for software artifacts inspection and their applications

When a process designer wants to define a group meeting-based process to review
a Java source code, he can reuse the FaganInspection process by applying the pattern
in Figure 5. To do so, he instantiates the captured process model of the pattern, then
refines the general tasks by concrete tasks with their necessary resources (e.g. the
concrete task ReadJavaCode which is refined from the general task Preparation uses
the JavaChecklist and JavaCodeAnalyser as particular resources), and replaces gen-
eral products by concrete products (e.g. the general product Artifact is replaced by the
concrete product JavaCode). He can also modify the process model by choosing just
the pertinent tasks to be refined (e.g. the task Overview and ProcessImprovement are
omitted). Figure 5b shows the modified process model. After certain successfully
applications of process described in Figure 5b, the process designer can capture this
process model to define a new concrete process pattern “JavaCodeInspection” (Figure
5c). From now on, this concrete pattern can be applied over and over again in any
process having a task of JavaCode verification. For example, Figure 5d shows a proc-
ess for developing Java programs. In this process, the designer want to reuse exactly
the process model captured in “JavaCodeInspectionPattern”, thus he applies this con-
crete pattern directly for the task “ReviewJavaCode” by making a link from the task
to the pattern. This reference mechanism is permitted in process modeling thanks to
the relationship “is applied for” described in our meta-model (c.f. Figure 3).

434 H.N. Tran, B. Coulette, and B.T. Dong

4 Related Works and Conclusion

In regard to process patterns formalization, works are still modest. Gnatz et al.
proposed a process framework[2] to describe software processes and introduced the
notion of process pattern as a modular way for the documentation of development
knowledge. Hagen et al. developed a the UML-based language PROPEL[3] to
describe explicitly process patterns and their relationships. The process modeling
language PROMENADE[7] defines the process pattern concept as a parameterized
process template and proposes a set of high-operators for manipulating process
models. In the field of method engineering, Rolland et al.[6] have developed a meta-
model to capture “way of working” – a closed concept to process pattern. All of these
meta-models are not based on a standardized process meta-model and just concentrate
on general software process patterns, thus cannot cover other kinds and abstraction
levels of process patterns. Compared with the above works, our approach aims at
integrating process pattern to a widely accepted process meta-model, i.e. SPEM of
OMG. We introduced a more general definition which covers a large variety of
process patterns. Especially, our meta-model allows representing process models and
process patterns at different abstraction levels. Furthermore, besides a semi-formal
description, a set of OCL constraints are also defined to provide a more rigorous
semantics for the proposed meta-model. In the first draft submission for SPEM 2.0[5],
the process pattern concept is proposed as a Capability Pattern which describes
reusable clusters of activities in common process areas. However, the internal
structure of this concept as well as relationships between patterns is not defined.
Moreover, in contrast to our approach, SPEM 2.0 does not pay attention to the
different abstraction levels of patterns. Our work thus still will be useful on
integrating and adapting to SPEM 2.0 when it is stabilized.

References

1. Fagan, M.E.: Advances in Software Inspections. IEEE Transactions on Software
Engineering, Vol. SE-12, No. 7, Page 744-751(1986)

2. Gnatz, M. Marschall, F., Popp, G., Rausch, A., Schwerin, W.: The Living Software
Development Process. Journal Software Quality Professional, Volume 5, Issue 3 (2003)

3. Hagen, M., Gruhn, V.: Process Patterns - a Means to Describe Processes in a Flexible Way.
ProSim04, Edinburgh, United Kingdom (2004)

4. OMG: Software Process Engineering Metamodel (SPEM v1.1) Specification: OMG
Document formal/05-01-06 (2005)

5. OMG: SPEM 2.0 Draft Adopted Specification. http://www.omg.org/docs/ad/05-06-05.pdf
6. Ralyté J., Rolland C.: An Assembly Process Model for Method Engineering. CAISE’01,

Interlaken, Switzerland (2001)
7. Ribó J. M; Franch X.: Supporting Process Reuse in PROMENADE. Research Report

LSI-02-14-R, Dept. LSI, Politechnical University of Catalonia (2002)
8. Tran H.N., Coulette B., Dong T.B.T. Towards a better understanding of Process Patterns.

SERP 2005 (2005)
9. Tran H.N., Coulette B., Dong T.B.T. A Classification of Process Patterns. SWDC-REK

2005. Reykjavik, Island (2005)

J. Münch and M. Vierimaa (Eds.): PROFES 2006, LNCS 4034, pp. 435 – 440, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Ad Hoc Versus Systematic Planning of Software
Releases – A Three-Staged Experiment

Gengshen Du, Jim McElroy, and Guenther Ruhe

Laboratory for Software Engineering Decision Support, University of Calgary
2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
{dug, mcelroy, ruhe}@cpsc.ucalgary.ca

Abstract. Release planning addresses the process of deciding which require-
ment of an evolving software system should be assigned to which release. We
study two fundamentally different software release planning approaches: (i) ad
hoc planning and (ii) systematic planning. Ad hoc planning is mainly based on
human intuition, experience and communication. Systematic planning, based on
formalization, assumes a quantitative description of the problem, and applica-
tion of optimization algorithms for its solution.

We have performed a controlled experiment intended to investigate hypothe-
ses related to confidence, understanding, and trust related to the two ap-
proaches. The stated hypotheses were based on an explorative pre-study and
prior industrial release planning projects. Although limited in scope and size,
the experiment provided interesting insight into the performance of the stated
approaches. Overall, systematic planning based on tool support increased confi-
dence into the solutions and was trusted more than ad hoc planning.

Keywords: Release Planning Process, Controlled Experiment, Decision Sup-
port tool, Confidence, Understanding, Trust.

1 Introduction

Requirements engineering is a decision-rich problem-solving activity [2]. Software
release planning is an important part of that activity when incremental software de-
velopment is considered. In its simplest description, release planning is the process of
assigning features or requirements to releases of a product. The functionalities of the
product are additive, but it is important to offer the right features at the right time. The
overall goal of release planning is to find the most promising release plans such that
some stated objective, such as the degree of satisfaction for all the stakeholders or the
overall business value, is maximized and available resource constraints are met.

Release decisions are complex, especially when considering problems involving
several hundred features and a large number of widely diversified stakeholders. It
becomes an even harder problem when resource estimates, resource capacities, and
dependencies between features are taken into account. For a more detailed description
of the problems and existing solution algorithms, we refer to [11].

There is a lack of evidence in evaluation of technologies in general [8], and of re-
lease planning in particular [3]. Addressing trust in solutions generated by algorithms

436 G. Du, J. McElroy, and G. Ruhe

not easily understood by end-users, Lehtola et al. [7] conducted an empirical investi-
gation to compare two well known methods of prioritizing requirements. The first one
is based on pair-wise comparison of requirements, the other one is Wiegers’ method
[12] which is a cost-benefit method. One of the main findings was that participants
mistrusted results they got from Wieger’s method. So how can we achieve a higher
degree of understanding, confidence and trust into proposed solutions on the user
side?

We have performed a controlled experiment intended to investigate hypotheses re-
lated to confidence, understanding, and trust related to the two approaches. For that,
we compared the (i) informal voting, manual and ad hoc generation of a release plans
with (ii.1) the black box type of usage of an intelligent decision support (DSS-RP)
system for release planning called ReleasePlanner to perform computer-based voting
and generation of release plans. In addition, we have applied (ii.2) a white box usage
of DSS-RP where the users were provided with both the results generated from the
problem input and with further explanations and insights into the rationale of the
proposed solutions resulting from performing two re-planning scenarios.

2 Software Release Planning in a Nutshell

Release planning in an ad hoc fashion focuses on human intuition, communication
and human capabilities to decide which requirements should be selected to go into
which releases. Physical meetings with stakeholders have to be arranged to elicit their
priorities. Normally, this is hard to arrange. During the meetings, the expression of
priorities is influenced by the persons attending. Based on that, a more or less accu-
rate understanding of the real priorities is achieved. The actual planning using this
understanding occurs on a manual basis, eventually including rounds of negotiations.
This process can be supported by a list of the requirements to be released and/or story
cards for a description of the requirements or use cases.

The systematic approach for release planning generates plans based on a formaliza-
tion of the problem. This involves maximizing an objective function constituted from
stakeholder ranking of the requirements based on urgency and/or value where differ-
ent additional parameters for adaptation to the problem context are included. The
actual optimization is further defined by a family of technological, resource and/or
budget constraints. The result of this process is a set of five alternative solutions
where each solution is at least 95% optimal. In addition, the solutions are maximally
diversified among each other. For further details, we refer to [11].

ReleasePlanner is a decision support system (DSS-RP) that uses the above optimi-
zation approach as part of an evolutionary problem solving approach integrating hu-
man and computational intelligence. For industrial experience using the technology
we refer to [1], [5], and [9].

3 Experimental Setup

The experiment was carried out at the University of Calgary, Canada. Nine Master’s
and PhD students majoring in software engineering participated. Further details can
be found at http://sern.ucalgary.ca/~dug.

 Ad Hoc Versus Systematic Planning of Software Releases 437

Stage 1

Manual generation of
a release plan

Stage 2

Black box plan
generation

Stage 3

White box plan
generation

Survey 4 Survey 1 Survey 2 Survey 3

Hypothesis 2 studying understanding

Hypotheses 1, 3 studying confidence and trust

Fig. 1. Overview of the steps of the experiment

The individual steps of the experiment as shown in Figure 1 were performed in the
following order:

(1) Survey 1 (Initial Survey): Subjects’ background in software development and
project management was surveyed.

(2) Stage 1 (Manual Release Plan Generation): Subjects were asked to manually
generate one release plan.

(3) Survey 2 (Post Manual Plan Survey) focused on how long this task took, and
the confidence the subjects had in their manual plans.

(4) Stage 2 (Black Box Plan Generation): Subjects were asked to take the same
project data used in stage 1 to generate release plans using DSS-RP. Mini-
mum instructions on using the tool or interpreting its results were provided.

(5) Survey 3 (Post Black Box Plan Survey) focused on the subjects’ confidence in
the automatically generated release plans, and their understanding of the re-
sults generated by DSS-RP, and their trust in the tool.

(6) Stage 3 (Black Box Plan Generation): Subjects used DSS-RP not only as a
planning tool, but also performed prescribed re-planning steps. This was in-
tended to provide a deeper understanding on the impact of parameter changes.

(7) Survey 4 (Post Black Box Plan Survey), filled out after Stage 3, again focused
on the subjects’ confidence, understanding, and trust.

Based on the findings in [4] and [6], and an explorative pre-study done at
University of Sannio, we have stated three hypotheses to be investigated in this
experiment.

Hypothesis 1 (Confidence)
(a) Confidence (ad hoc) = Confidence (systematic, black box)
(b) Confidence (systematic, black box) < Confidence (systematic, white box)

Hypothesis 2 (Understanding)
Understanding(systematic, black box) < Understanding (systematic, white box)

438 G. Du, J. McElroy, and G. Ruhe

Hypothesis 3: (Trust)
(a) Trust (ad hoc) < Trust (systematic, black box)
(b) Trust (systematic, black box) < Trust (systematic, white box)

4 Experiment Results and Analysis

The confidence that each subject had in their manual, black box, and white box re-
lease plans was measured after each stage of experiment by surveys 2, 3, and 4 re-
spectively. The average tendency of change in confidence and understanding between
the three stages of the experiment was analyzed and is shown in Fig. 2. Seven out of
nine subjects reported a moderate to significant increase in confidence in the plans
that were generated by using DSS-RP in a black box mode, compared with that of
manual generation. The remaining two subjects had no increase in confidence.

In stage 3 of the experiment (white box plan generation), we examined the effect
of explaining the process of re-planning using DSS-RP on the understanding of re-
sults. As effective re-planning requires a thorough understanding of the original re-
lease plans, how these plans are generated, and how each element of release planning
affects plan generation and regeneration, the re-planning exercise served as an effec-
tive vehicle for providing a thorough explanation of both ReleasePlanner and the
plans it generates. Figure 2 shows that one subject actually reported a decrease in the
understanding of the DSS-RP and its results after the white box explanation. One
subject reported no increase in understanding, and seven subjects reported a moderate
to significant increase in understanding of the DSS-RP and its results.

Subjects' Confidence/ Understanding
in Release Plans

11.1%

22.2%

77.8%

0.0%

55.6%

44.4%

11.1%

0.0%

20.0%

40.0%

60.0%

80.0%

Decrease No Difference Increase

Trend of Change

%
 o

f
Su

bj
ec

ts

Confidence(Ad Hoc -> Black Box)

Confidence(Black Box -> White Box)

Understanding(Black Box -> White Box)

Fig. 2. Average degree’s of change in confidence and understanding between the three stages of
the experiment

The trust that each subject had in their black box and white box release plans was
measured after each stage of experiment by surveys 3 and 4 respectively. The results
are shown in Table 1.

 Ad Hoc Versus Systematic Planning of Software Releases 439

Table 1. Subjects’ trust on the method used

Method Trusted
Subject Stage 2: Comparison between

DSS-RP (Black box) and ad hoc
Stage 3: Comparison between

DSS-RP (Black box vs white box)
Preference Degree Preference Degree
1 DSS-RP (Black box) Strong DSS-RP (White box) Strong
2 DSS-RP (Black box) Strong DSS-RP (White box) Strong
3 No preference - DSS-RP (White box) Strong
4 DSS-RP (Black box) Strong DSS-RP (White box) Strong
5 DSS-RP (Black box) Strong No preference -
6 DSS-RP (Black box) Weak DSS-RP (White box) Strong
7 Ad hoc Weak DSS-RP (White box) Weak
8 No preference - No preference -
9 DSS-RP (Black box) Weak DSS-RP (White box) Weak

Because of the small sample size, we decided not apply any statistical tests. How-
ever, we formally analyzed the data of the experiment using rough set analysis [10].
Again, because of the small sample size, no clear patterns of behavior could be de-
tected. The detailed experimental data relating to the three hypotheses is available at
http://sern.ucalgary.ca/~dug.

5 Summary and Conclusions

In this paper, we have performed a three-staged experiment investigating research
questions to evaluate the impact of decision support for software release planning.
There are three kinds of results: (i) The actual findings of this experiment, (ii) lessons
learned and suggestions for performing replications of the experiment, and (iii) sug-
gestions how to further qualify decision support in software engineering.

For the actual findings, the experiment suggested that systematic planning based on
tool support increases confidence into the solutions and is trusted more than ad hoc
planning. White box usage of the used tool DSS-RP (ReleasePlanner) improved un-
derstanding and trust of the proposed solutions when compared to black box usage
scenario, but did not appear to increase confidence into the generated solutions. This
is the one potentially surprising finding, and warrants further investigation.

The results indicate the need for further research into providing explanation into
proposed solution alternatives as part of the functionality of a decision support system
[6]. The presentation of the computational results alone is often insufficient to estab-
lish enough confidence to actually implement the solution in the real-world. This is
even true if very powerful (but hard to understand) computational methods such as
specialized integer programming are applied.

There were some threats to the experiment. Specifically, these threats related to (1)
Subjectivity of Data: A large number of the questions in the different questionnaires
were asking for the subjects’ judgments with respect to their confidence and under-
standing of the solutions. (2) Sample Size: The sample size for all performed analysis

440 G. Du, J. McElroy, and G. Ruhe

was only 9 data points. (3) Subjects’ Experience: The subjects’ experience (or lack of
experience) in industry or academia related to release planning may have affected
their answers to the surveys.

To achieve more confidence into the stated results, further empirical studies are
necessary. To achieve higher confidence into the results, we plan two replications of
the experiment in 2006 at the University of Calgary.

Acknowledgements

The authors would like to thank the Alberta Informatics Circle of Research Excel-
lence (iCORE) for its financial support of this research. Many thanks are also due to
the participants of the experiment for their participation.

References

[1] Amandeep, A., Ruhe, G., Stanford, M.: Intelligent Support for Software Release Plan-
ning. 5th Int'l Conference on Product Focused Software Process Improvement , April 5-
8, Kansai Science City, Japan, LNCS Vol. 3009 (2004) 248-262

[2] Aurum, A., Wohlin, C.: The Fundamental Nature of Requirement Engineering Activities
as a Decision- making Process. Information and Software Technology 45 (14) (2003)
945-954

[3] Carlshamre, P.: Release planning in Market-Driven Software Product Development: Pro-
voking an Understanding. Requirements Engineering 7 (2002), 139-151

[4] Carlsson, C., Turban, E.: Decision Support Systems: Directions for the Next Decade. De-
cision Support Systems 33 (2002) 105-110

[5] Dantsigner, E.: Practical Release Planning and Management. University of Calgary,
Laboratory for Software Engineering Decision Support, TR 006/04 (2004) 29p.

[6] Du, G., Richter, M. M., Ruhe, G.: An Explanation Oriented Dialogue Approach and its
Application to Wicked Planning Problems. To appear in: Journal of Computing and In-
formatics (2006)

[7] Lethola, L., Kauppinen, M., Kujala, S.: Requirements Prioritization Challenges in Prac-
tice. Proceedings of 4th International Conference on Product Focused Software Process
Improvement, Lecture Notes on Computer Science, Vol. 3009 (2004) 497-508

[8] Glass, R.L.: Matching Methodology to Problem Domain. Communications of the ACM,
47 (5) (2004) 19-21

[9] Momoh, J, Ruhe, G.: Release Planning Process Improvement – An Industrial Case Study.
To appear in: Intl Journal of Software Process Improvement and Practice (2006)

[10] Pawlak, Z.: Rough Sets - Theoretical Aspects of Reasoning about Data. Kluwer Aca-
demic Publishers (1991)

[11] Saliu, O., Ruhe, G.: Supporting Software Release Planning Decisions for Evolving Sys-
tems. Proceedings of the 29th IEEE/NASA Software Engineering Workshop (2005)

[12] Wiegers, K.: Software Requirements. Microsoft Press, Redmont (1999)

J. Münch and M. Vierimaa (Eds.): PROFES 2006, LNCS 4034, pp. 441 – 446, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Software Process Tailoring System Focusing to
Quantitative Management Plans

Kazumasa Hikichi*, Kyohei Fushida, Hajimu Iida, and Ken’ichi Matsumoto

Graduate School of Information Science, Nara Institute of Science and Technology
8916-5 Takayama-cho, Ikoma-shi, Nara, 630-0192 Japan

{kazuma-h, kyohei-f, matumoto}@is.naist.jp, iida@itc.naist.jp

Abstract. This paper presents a survey about use of quantitative management
indicators in a Japanese software development organization. This survey is
conducted in order to investigate possible criteria for selecting and
customizing organizational standard indicators according to the context of
each project. Based on results of the survey, we propose a process tailoring
support system that is mainly focusing to quantitative management planning.
The system EPDG+ (Electronic Process Data Guidebook Plus) helps project
planners select / customize indicators to be employed in process control.
Derived software project plans including measurement and analysis activities
can be browsed in detail with this system.

1 Introduction

Quantitative management, i.e. the quantitative control in both of quality and schedule
management is a key factor of the software processes. The quantitative management
requires indicators based on quantitative data. Generally, we need to select indicators
according to the context of each project, and then we also need to plan the activities
for both of measurement and analysis of quantitative data that is required to derive the
indicators. Organizations in a certain level of capabilities (e.g. CMMI-staged[1] level
3) usually define their own set of the project management indicators. Thus project
planners must understand the purpose of each indicator, select/reject it according to
the context of each project, so that activities for measurement and analysis are
planned properly. This work is often very difficult for novice planners without
sufficient knowledge of quantitative management.

In this paper, we report the survey about the use of indicators in a Japanese
software development company (though we are not allowed to disclose the detail of
the company, including its name, in this paper). This survey was conducted in
questionnaire form in order to design the features of the process tailoring support
system EPDG+ (Electronic Process Data Guidebook Plus) that is being developed by
us. EPDG+ mainly focuses to the quantitative management, having features to expose
appropriate indicators according to the context of each project based on the master list
of organizationally standardized indicators. EPDG+ also supports to integrate the
measurement and analysis activities required for selected indicators into an
engineering process at project planning.

* Hitachi, Ltd. from April 2006.

442 K. Hikichi et al.

2 Related Work

Many studies and standards related to
quantitative management have been
done since it has direct influence to the
improvement of productivity and qua-
lity. ISO/IEC15939[2] shows the
framework for software measurement,
analysis, and construal to achieve
various information needs, such as
project management and quality
assurance. Information structure
handled in the measurement and analysis process is specified as a reference model as
shown in Fig.1.

This model shows the way which eases objective decision-making based on
quantitative information by associating well measurable attributes characteristic to
process or product in a project, such as development scale, effort, and number of
defects, with the indicator for decision making[3]. Thus, the primary data called base
measure is collected by quantifying various attributes which exist in a project
according to the defined measurement method. Then, the secondary data called
derived measure is derived by assigning some base measures to measurement
function. Finally, the indicator is obtained by analyzing these measures according to
the defined analysis model. A project manager makes decision according to the finally
derived information product with decision criteria. At the following discussions, we
use this concept and the terms based on ISO measurement information model.

Meanwhile, several EPG (Electronic software Process Guidebook) systems are
proposed in the past (e.g. [4]). Most of them mainly focus to support to understanding
of the prescribed software process. Our approach is also capable of this field. though
our current focus is how to utilize the information models, such as definition and flow
of quantitative data, required by quantitative management. The ISO information
models are useful and very important for the process tailoring.

3 Survey of the Current Status of Used Indicator

3.1 Background

In this study, we consider software development organizations, which perform fol-
lowing two practices, as targets of our approach to support quantitative management
planning.

− Every project is planned and performed based on the development process which
is defined as organizational standard, typically, in the form of WBS (Work
Breakdown Structure).

− The indicator set for quantitative process management is prepared as an
organization standard.

Fig. 1. Measurement information model in
ISO/IEC15939

 A Software Process Tailoring System Focusing to Quantitative Management Plans 443

When quantitative management is to be planned, selecting appropriate indicators
and integrating associated measurement and analysis activities into the project plans
are to be performed. However, the definitions of standard indicators are shortly
described in the natural language and almost none of formal explanation about an
analysis model, function definition (i.e. calculation method), or a measurement
method is provided in many organizations. Moreover, explicit tailoring guidelines are
not provided. Inexperienced managers have great difficulty in selecting appropriate
indicators for their project.

In order to develop the assistance system for novice managers to select and to
customize standard indicators to fit their projects, we have conducted a survey to 17
projects in a Japanese software development company to see actual status of
indicators selection and customization in industries at first.

3.2 Survey Outline

The survey was conducted by using the questionnaire for project managers who
applied quantitative management in a software development (enterprise software
system development section) with hundreds of employee. We sent the questionnaire
to project managers in the company mainly asking about actual use of their
organizational standard 45 management indicators. They are used for progress
management, review tracking, testing, process quality assurance (PQA), requirement
management, support process.

The first part of the questionnaire is questions about the profile of the project, such
as project size, business area, and the profile of manager, e.g. months of experience as
project manager and the number of project s/he ever managed.

The second part (main part) of the questionnaire is a list of indicators; for each
indicator, questionee is requested to specify the extent of use. The extent of use is at
first categorized into two answers, “Used” or “Unused”. Then each answer is divided
in to more detailed ones. “Used” is divided in 5 answers, and “Unused” is divided in 5
answers. The concrete reason why they used/unused the indicator is optionally
provided.

Fig. 2. Summary of the use ratio (used vs total) for each indicator

444 K. Hikichi et al.

3.3 Results and Analysis

At first, we summarized usage data simply in two categories, “Used” or “Unused”, to
get rough trends of the answers according to product size (either less or more than 1
million steps) as shown in Fig.2. Then we proceed to detailed analysis regarding
manager’s experience (either less or more than 4 years) and also detailed level of
indicator use. Since we had to exclude 4 samples without product scale information in
program steps, 13 project samples are used in following analysis. This analysis is
done because we assume novice managers of small projects would need systematic
assist to selection and adaptation of standard indicators to fit the project size,
meanwhile most indicators would be employed in large projects regardless of the
experience of the managers.

As analysis results, we currently have following observations:

− Indicators for progress management, testing, and requirement management are
used in most projects, except one indicator (#3 for tracking the delay of progress
report meetings). Indicator #3 is employed in the large project group, but not
employed in the small project group. We got a comment from a small project
manager that there is little possibility of delay of meeting in small projects.

− Indicators for review tracking, for PQA, for risk management, and for support
process showed low rate of use (reasons for these tendencies is not clear at this
point).

− In the small project group, we found that experienced managers use many modified
or alternative indicators, while novice managers seldom do such adaptation. We
got a comment that experienced manager often use alternative information that is
available with less cost, and omit some indicators according to their practical
situations.

− In both of the small and large project groups, indicators #22~24 for tracking the
effect of review are not employed by any projects. Furthermore, a few of
experienced managers answered that they don’t sufficiently understand the
definition and usage of those indicators.

These observations just show trends of the indicator use in one organization “as-
is”, and we need to be careful to generalize it. However, we found those observations
are actually valuable in considering systematic supports for selection and adaptation
of indicators. We actually had following insights in designing the features of EPDG+:
As we observed, contexts of the project influence the use pattern of the indicators. By

extracting influenced factors according to various project contexts, we will be able
to provide indicator candidates to be employed. In order to accomplish this, further
survey to more projects and more organizations are needed.

Alternation and modification made to standard indicators by experienced managers
may be exposed to inexperienced managers as supplemental information of
management planning. In order to accomplish this feature, functions to customize
the standard indicators, to store them for future reuse, and to expose inherited
indicator variations are needed.

Furthermore, by accumulating the such customization records, EPDG+ system

itself will make this kind of survey quite easily and inexpensive.

 A Software Process Tailoring System Focusing to Quantitative Management Plans 445

4 Designing and Prototyping EPDG+

The EPDG+ system is an extended version of EPDG (Electronic Process Data
Guidebook) system[5] which scopes to help to understand the process data definitions
for analysis and measurement. EPDG+ extends its scope to project planning. It
supports a tailoring in planning measurement and analysis activity depending on the
characteristics of the project based on quantitative management.

Tailoring support is typically provided according to the following scenario. In this
scenario, the work flow is assumed that the planner inputs a process description
without management plan, integrates management plan based on quantitative
management, and then outputs a process description with management plan.

1. A user inputs a process description, and specifies characteristics of the project to
the system.

2. A user refers to the indicators that the system has exposed, and selects indicators.
3. A user browses the plan provided by the system in a graphical way (see Fig.3), and

confirms excess and deficiency in the measurement and analysis activity.
4. If necessary, planner will return to step 2, and modifies indicator selections.
5. Once all indicators to be used were decided, project process with quantitative

management plan is generated.

There are two major features of EPDG+ as follows:
− Indicator recommendation: Organizational standard indicators are listed with

rating information based on various criteria. Rating based on records of indicator
employment in the past projects with similar profile may be one useful criteria.
Browser of process with measurement and analysis activities integrated: In
order to confirm measurement and analysis activities in the process while planning,
this feature enables to browse planned processes with integrated measurement and
analysis activities.

Fig. 3. A Screenshot of the EPDG+ prototype for WBS-style process descriptions

446 K. Hikichi et al.

Fig. 2 shows a screenshot of the prototype system. The system window consists of
three panes for process structure overview, zoomed detail of the process indicating
measurement and analysis activities, and indicator explanations and examples.

5 Conclusion

This paper mainly presented a survey of organizational indicator use for the
systematic support to process quantitative management. From the observations we
confirmed that quantitative management indicators are actually selected and tuned in
hand to fit to the characteristics of each project, and therefore systematic support to
indicator selection and modification will be great help to efficient project
management. Our EPDG+ is currently under development and it is planned to be
integrated to the guideline system for a software company’s managers.

Acknowledgements

We cordially thank the anonymous managers for their responses to our survey. We
thank Mr. Yasutaka Kamei at NAIST in his help to EPDG+ prototyping. This
research is partially supported by the Japan Ministry of Education, Culture, Sports,
Science and Technology, Grant-in-Aid for Scientific Research (C) 17500024, and
also by the EASE project[6] in Comprehensive Development of e-Society Foundation
Software program of the Japan Ministry of Education, Culture, Sports, Science and
Technology.

References

1. CMMI Product Team: Capability Maturity Model Integration for System Engineering /
Software Engineering / Integrated Product and Process Development, Version 1.1. Software
Engineering Institute, CMU/SEI-2002-TR-004 (2002).

2. ISO/IEC 15939:2002: Software engineering - Software measurement process (2002).
3. McGarry, J., et. al.: Practical Software Measurement: Objective Information for Decision

Makers. Addison-Wesley Pub (2001).
4. Becker-Kornstaedt, U. and Reinert, R.: A concept to support process model maintenance

through systematic experience capture. In Proceedings of the 14th International Conference
on Software Engineering and Knowledge Engineering (Ischia, Italy, July 15 - 19, 2002).
SEKE '02, vol. 27. ACM Press, New York, NY, 465-468.

5. Murakami, H., Iida, H., Matsumoto, K.: An Electronic Guidebook System for Support of
Software Process Management Data Collection and Utilization. Technical Report on IEICE,
SS2004-41 (2004) 43-48 in Japanese.

6. EASE Project, EASE Project homepage, http://www.empirical.jp/

J. Münch and M. Vierimaa (Eds.): PROFES 2006, LNCS 4034, pp. 447 – 452, 2006.
© Springer-Verlag Berlin Heidelberg 2006

An Extreme Approach to Automating Software
Development with CBD, PLE and MDA Integrated*

Soo Dong Kim, Hyun Gi Min, Jin Sun Her, and Soo Ho Chang

Department of Computer Science
Soongsil University

511 Sangdo-Dong, Dongjak-Ku, Seoul, Korea 156-743
sdkim@ssu.ac.kr, {hgmin, jsher, shchang}@otlab.ssu.ac.kr

Abstract. Component based development (CBD), product line engineering
(PLE), and model driven architecture (MDA) are representative approaches for
software reuse. CBD and PLE focus on reusable assets of components and core
assets, MDA focuses on transforming reusable models into implementation.
Although these approaches are orthogonal, they can be integrated into a
comprehensive and extremely effective framework for software development.
In this paper, we first present our strategies of integrating CBD, PLE and MDA,
and propose an integrated process that adopts reuse engineering and automation
paradigm. By applying the proposed approach, it becomes feasible to semi-
automatically develop a number of applications in a domain.

1 Introduction

Component based development (CBD), product line engineering (PLE), and model
driven architecture (MDA) are representative approaches for software reuse [1][2][3].
CBD emphasizes engineering and reusing independent and customizable components.
PLE focuses on modeling commonality and variability into a core asset and deriving
applications by instantiating the asset. MDA centers on specifying platform
independent model (PIM) and transforming the model into more concrete models and
implementations. Although these approaches are orthogonal, we observe that they
complement one another. Hence, they can be integrated into a single reuse framework
for developing applications efficiently.

In this paper, we first present strategies of integrating CBD, PLE, and MDA to
clarify rationales for the integration. Then, we propose an integrated methodology that
adopts the components of CBD, the key activities of PLE, and model transformation
feature of MDA. By applying the proposed methodology, it becomes feasible to semi-
automatically develop a number of applications in a domain. As the result, we can
achieve higher reusability and productivity for software development.

2 Strategies for Integrating CBD, PLE, and MDA

An ideal development methodology should have high levels of three quality criteria;
reusability, productivity, and standardization, as shown in Fig. 1 The figure also shows

* This work was supported by grant No.(R01-2005-000-11215-0) from Korea Science and

Engineering Foundation in Ministry of Science & Technology.

448 S.D. Kim et al.

what constructs/mechanisms of CBD, PLE and MDA potentially contribute to
achieving the quality criteria. Based on this observation, we now present how each
quality criterion can be achieved using the three technologies.

Key Criteria for
Integrated Methodology

ConstructsConstructs
provided by PLEprovided by PLE

ConstructsConstructs
provided by MDAprovided by MDA

Core AssetCore Asset

SupportingSupporting
Multiple PlatformsMultiple Platforms

InstantiationInstantiation MOF, ProfilesMOF, Profiles

ReusabilityReusability

ProductivityProductivity

StandardizationStandardization

Model TransformationModel Transformation

Domain ModelDomain Model

ComponentComponent

CustomizationCustomization

InterfaceInterface

ConstructsConstructs
provided by CBDprovided by CBD

Fig. 1. Key Criteria for Integrated Methodology

Strategy for High Reusability: PLE emphasizes the reusability of core assets, i.e.
domain level or architecture level reusability. However, current PLE processes do not
address how the core asset can be implemented for specific programming language
and platform. MDA can complement this with mechanisms to transform PIM to
Platform Specific Model (PSM) which is a detailed design model for a particular
platform such as Java, EJB, and .NET. By this, the scope of reusability is extended
over different platforms as well as family applications in a domain.

Strategy for High Productivity: Current PLE application engineering includes a
phase for core asset instantiation, but concrete instructions to instantiate the given
core asset are not provided. The model transformation mechanism of MDA can be
used to map core asset to instantiated core asset by specifying decision models and
decision resolution models in MOF. By this transformation/automation, the
productivity of development is greatly increased.

Strategy for High Standardization: PLE does not provide templates or standards for
representing core assets but it provides domain commonality. The PIM, PSM and
meta object facility (MOF) of MDA can be used to represent the generic architecture,
components, and their interactions of core assets. Hence, this integration enforces
standardization on the domain and artifact representations.

3 The Integrated Process

In this section, we present the overall process with instructions. Fig. 2 shows the 13
phases of the process, the associated artifacts in CBD and PLE, and representations in
MDA. The phases of application specific design and component customization can be
performed in parallel. If appropriate commercial-of-the-shelf (COTS) components are
available, component customization activity can be performed with core asset
instantiation.

 An Extreme Approach to Automating Software Development 449

C
ore A

sset E
ngin

eering
C

ore A
sset E

ngin
eering

A
pplication E

ngin
eering

A
pplication E

ngin
eering

Product Line ScopeProduct Line Scope

ArtifactsArtifacts
in PLEin PLE

PhasesPhases RepresentationRepresentation
in MDAin MDA

Domain Analysis
(by C&V Analysis)

Domain AnalysisDomain Analysis
(by C&V Analysis)

Core Asset Modeling
(by Designing Core Asset)
Core Asset ModelingCore Asset Modeling

(by Designing Core Asset)

Application Req. Analysis
(by Conventional OOA)

Application Req. AnalysisApplication Req. Analysis
(by Conventional OOA)

A
p

p
licatio

n
 S

p
ecific D

esig
n

(b
y E

xp
ressin

g
 O

O
D

 as P
IM

)
A

p
p

licatio
n

 S
p

ecific D
esig

n
A

p
p

licatio
n

 S
p

ecific D
esig

n
(b

y E
xp

ressin
g

 O
O

D
 as P

IM
)

Application Integration
(by Integrating Generated BC

with COTS)

Application IntegrationApplication Integration
(by Integrating Generated BC

with COTS)

Product Line Scoping
(by Developing Business Case)

Product Line ScopingProduct Line Scoping
(by Developing Business Case)

C&V SpecificationC&V Specification

Core AssetCore Asset

Application Analysis ModelApplication Analysis Model

Core Asset (model) Instantiation
(by Setting Variants)

Core Asset (model) InstantiationCore Asset (model) Instantiation
(by Setting Variants) Instantiated Core AssetInstantiated Core Asset

Application Specific DesignApplication Specific Design

Application Detailed Design
(by PIM to PSM Mapping)

Application Detailed DesignApplication Detailed Design
(by PIM to PSM Mapping)

Application Implementation
(by PSM to Code Mapping)

Application ImplementationApplication Implementation
(by PSM to Code Mapping)

Detailed Design ModelDetailed Design Model

Application CodeApplication Code

(Generic) PIM(Generic) PIM

Application BCApplication BC

(Instantiated) PIM(Instantiated) PIM

(Application Specific) PIM(Application Specific) PIM

(Application) PSM(Application) PSM

Application CodeApplication Code

Component Acquiring
(by Searching COTS Components)

Component AcquiringComponent Acquiring
(by Searching COTS Components)

(Generic) Component(Generic) Component
(Generic) PIM, PSM, (Generic) PIM, PSM,
Binary Code (BC)Binary Code (BC)

Model Integration
(by Integrating three PIMs)

Model IntegrationModel Integration
(by Integrating three PIMs) Integrated Integrated ApplAppl. Model. Model

C
o

m
p

o
n

en
t C

u
sto

m
izatio

n
(b

y A
d

ap
tin

g C
o

m
p

o
n

en
t)

C
o

m
p

o
n

en
t C

u
sto

m
izatio

n
C

o
m

p
o

n
en

t C
u

sto
m

izatio
n

(b
y A

d
ap

tin
g C

o
m

p
o

n
en

t)

Customized ComponentCustomized Component

(Application) PIM(Application) PIM

ArtifactsArtifacts
in CBDin CBD

Define Decision Resolution Model
(by selecting Variants)

Define Decision Resolution ModelDefine Decision Resolution Model
(by selecting Variants)

Decision Resolution ModelDecision Resolution Model

Binary Code (BC)Binary Code (BC)

Fig. 2. The Integrated Process with Artifacts

Domain Analysis is to understand features of various members in a domain and to
analyze their commonality and variability (C&V). Not only the commonality, but also
the variability among members should be well-defined since the degree of variability
modeling largely determines the applicability and customizability of reuse assets. A
good source for the instruction of this phase is found in [4]. The identified C&V can
be represented in any form like table and semi-formal. Variable features should be
specified with variation points, possible variants for each variation point, variation
type, scope of variation in terms of open or close, and default variant [5].

Product Line Scoping is to determine a set of potential products that can be
constructed from a business case analysis on the core assets. Various metrics can be
used to determine a product line scope which yields the most economical set. The
scope of a product line is specified with descriptions on potential applications,
features common, features uncommon, and functional/non-functional description of
the common features.

Component Acquisition is to acquire components needed for a core asset by
searching COTS components. First we locate a list of available COTS components,
and then we identify candidate COTS components by matching feature list with the
interfaces provided by COTS components and select the best one. When COTS
components are first acquired, they are represented in the level of binary. To make use
of the model transformation in generating applications, the acquired components
should be represented in the level of PIM and PSM. Therefore, we acquire PIM and
PSM representation of the interfaces provided by the COTS components through
reverse engineering [6].

450 S.D. Kim et al.

Core Asset Modeling is to realize the C&V into a core asset which consists of
product line architecture, software components, and a decision model. Software
components can be classified into two types; COTS and newly designed model. While
the former, COTS, is acquired in the previous activity, the latter is designed in this
activity. We first design the product line architecture, and then design components that
all together can realize the required features. Finally, we specify decision models that
describe the variability in terms of variation points, variants, related effects, and their
attached task [7]. The core asset is represented as a PIM to utilize the model
transformation scheme of MDA. Hence, the generic PIM should conform to the UML
and MOF specifications. To automate the core asset instantiation in the later phase,
the decision model should also be represented in a well structured form so that it can
be effectively interpreted by core asset instantiation tool.

Application Requirement Analysis is to analyze the requirement of an application
and to identify the application specific features which are not covered by core asset.
Conventional OO analysis technique can be used for this phase.

Application analysis model can be represented in any form as long as the semantics
of the model is well preserved. It is only an analysis model and so it is not represented
as a PIM yet.

Define Decision Resolution Model is to define Decision Resolution Model
(DRM) which contains the design decisions specific to the target application. Not all
variation points in the decision model are applicable to the target application [7].
Therefore, we start by identifying variation points applicable for the target
application. And then we select or define a variant for each variation point. Actual
bindings of variant to each variation point are done at Core Asset Instantiation and
Component Customization phases.

The representation of the DRM is same as the decision model except that only one
variant is specified for each variation point.

Application Specific Design is to design the application specific features to be
further developed and integrated. Note that we should refer parts of a core asset or
COTS which may be interacted with the application specific features so that there
wouldn’t occur any collisions or conflicts.

The representation of application specific design is in the level of preliminary
design model, i.e. PIM. This model should be consistent to instantiated PIM in terms
of abstraction level.

Core Asset Instantiation is to instantiate the core asset for an application. Using
the DRM, variants specific to the application are set into variation points. MDA
transformation mechanism can be used to map core asset to instantiated core asset if
decision models and application specific decisions are expressed in XMI. To automate
the instantiation process, mapping rules that map elements of core asset to elements of
instantiated core asset are required.

The representation of instantiated core asset will still be same as the core asset, i.e.
generic PIM. Only the variable part of generic PIM is tailored for given variants of a
specific application.

Model Integration is to integrate the interfaces of component, core asset model,
and the application specific model into a complete application. This phase is to inte-
grate these models and to produce a single coherent design model as shown in Fig. 3,
so that, in later phases, it can be effectively implemented for a specific platform. Note

 An Extreme Approach to Automating Software Development 451

that, it should be confirmed the application specific model can seamlessly interact
with the interfaces of COTS and core asset model. While MDD focuses on
transforming abstract model into more concrete model, model integration is not
directly supported in MDD. Hence, it may not be done automatically by tools, but
integrated by hand.

Integrated ModelIntegrated Model

Core Asset ModelCore Asset Model

Interface of COTS component

Core Asset Model

Application Specific Model

CA1

CA2

AS1 AS2

CA3

Application Specific ModelApplication Specific Model

CA1

CA2
CA3

AS1 AS2

Legend

Fig. 3. Integrated Models

The representation of the integrated model will still be a conventional PIM. The
scope of the integrated PIM is the entire application so that it can be transformed into
a PSM in the next phase.

Application Detailed Design is to refine the integrated application design model
for a specific implementation environment such as programming language,
middleware and component platform. A key difficulty in this phase is to define a set
of mapping rules that takes integrated model into detailed design model. Candidate
techniques can be marking, action semantics, UML profile and meta-model mapping.
The detailed design model can be represented as the conventional PSM which
includes platform specific decisions.

Component Customization is to adapt generic components to satisfy the
application requirements. COTS components have customization mechanisms [8] to
solve variation points. Therefore, the components are customized by using variants
via the customization strategy from the phase ‘define decision resolution model’.
Eventually, the components are specialized for the application. This phase delivers
customized components in a binary form.

Application Implementation is to take the application PSM and to produce
executable application code and other associated implementations. This can be done
by using the PSM to Code mapping facility of MDA. This phase delivers application
code and associated implementations.

Application Integration is to integrate customized components and application
binary code which are implemented from instantiated core assets and application
specific design. Since COTS interoperate with application code, it is needed
interoperability between COTS and application codes to be tested in this phase.

4 Concluding Remarks

CBD, PLE, and MDA are emerging as effective paradigms for building a family of
applications in cost effective way. CBD supports this by assembling reusable
components developed through component development process, PLE supports this

452 S.D. Kim et al.

by reusing common assets derived through core asset engineering, and MDA supports
this by generating applications on diverse platforms through model transformation.
These technologies can be integrated into a single reuse framework for developing
applications efficiently.

In this paper, we presented strategies for integrating CBD, PLE, and MDA. Then,
we proposed an integrated methodology that adopts the key activities of CBD and
PLE and model transformation feature of MDA. The process consists of 13 phases,
and each phase was specified with work instructions. We also specified how the
artifacts can be represented as PIM and PSM of MDA.

By applying the proposed methodology, it becomes possible to efficiently and
semi-automatically develop a large number of applications that vary on behavior and
implementation platform. We also believe that the reusability, productivity,
traceability, can be greatly increased.

References

1. Heineman, G. and Councill, W., Component-Based Software Engineering, Addison Wesley,
2001.

2. Clements, P., et al., Software Product Lines: Practices and Patterns, Addison-Wesley,
2002.

3. OMG, Model Driven Architecture (MDA) Specification, 2001.
4. Choi, S., et al., “A Systematic Methodology for Developing Component Core assets,”

Lecture Notes in Computer Science Vol.2984, Proceedings of the FASE 2004, 2004.
5. Kim, S., Her, J., and Chang, S., “A Formal View of Variability in Component-Based

Development,” Information and Software Technology, Vol.47, p.663-673, 2005.
6. Kang, K., Kim, M., Lee, J., and Kim, B., “Feature-Oriented Re-engineering of Legacy

Systems into Product Line Assets - a Case Study”, Lecture Notes in Computer Science
Vol.3714, Proceedings of the SPLC 2005, pp. 45–56, 2005.

7. Kim, S., Chang, S., and Chang, C., “A Systematic Method to Instantiate Core Assets in
Product Line Engineering,” Proceedings of APSEC 2004, pp.92-98, Nov. 2004.

8. Kim, S., Min, H., and Rhew, S., “Variability Design and Customization Mechanisms for
COTS Components,” Lecture Notes in Computer Science Vol.3480, Proceedings of the
ICCSA 2005, pp.57-66, May, 2005.

J. Münch and M. Vierimaa (Eds.): PROFES 2006, LNCS 4034, p. 453, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Experiences and Methods from Integrating
Evidence-Based Software Engineering into Education

Andreas Jedlitschka and Markus Ciolkowski

Fraunhofer Institute for Experimental Software Engineering
Fraunhofer Platz 1, 67663 Kaiserslautern

Germany
jedl@iese.fraunhofer.de, markus.ciolkowski@iese.fraunhofer.de

Abstract. In today’s software development organizations, methods and tools
are employed that frequently lack sufficient evidence regarding their suitability,
limits, qualities, costs, and associated risks. For example, in Communications of
the ACM (Communications of the ACM May 2004/Vol. 47, No. 5) Robert L.
Glass, taking the standpoint of practitioners, asks for help from research:
“Here’s a message from software practitioners to software researchers: We
(practitioners) need your help. We need some better advice on how and when to
use methodologies”. Therefore, he demands:

• a taxonomy of available methodologies, based upon their strengths and
weaknesses;

• a taxonomy of the spectrum of problem domains, in terms of what
practitioners need;

• a mapping of the first taxonomy to the second (or the second to the first).

The evidence-based Software Engineering Paradigm promises to solve parts of
these issues by providing a framework for goal-oriented research leading to a
common body of knowledge and, based on that, comprehensive problem-
oriented decision support regarding SE technology selection.

One issue that is becoming more and more important in the context of the
evidence-based SE Paradigm is the teaching of evidence-based Software
Engineering. A major discussion with regard to this issue revolves around the
question of how to “grow the seeds”; that is, how can we teach evidence-based
SE in a way that encourages students to practice paradigm in their professional
life.

The goal of this workshop is to discuss issues related to fostering the
evidence-based paradigm. The results from the workshop and especially from
the working groups will be published in the “Workshop Series on Empirical
Software Engineering”, Vol.3.

The workshop itself is the fourth one in the workshop series on Empirical
Software Engineering. The first one was held in conjunction with PROFES
2002 in Rovaniemi, the second one was held in conjunction with the Empirical
Software Engineering International Week 2003 in Rome, and the third one was
held in conjunction with PROFES 2005 in Oulu.

J. Münch and M. Vierimaa (Eds.): PROFES 2006, LNCS 4034, p. 454, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Workshop on Embedded Software Development
in Collaboration

Pasi Kuvaja

University of Oulu, Finland
Department of Information Processing Science

PL 3000
90014 University of Oulu
pasi.kuvaja@oulu.fi

Abstract. The embedded systems industry is growing and getting a more
dominant role in the markets. Due to tight time-to-market requirements and
complexity of the systems, companies hardly ever develop embedded products
on their own. In order to acquire the required expertise, efficiency and desired
lead-time, embedded systems need to be developed globally in collaboration
with subcontractors, third party developers and in-house development. Against
this background, the workshop on Embedded Software Development In
Collaboration addresses the increasing demand of the industry for finding and
discovering new and more efficient ways to support collaborative embedded
systems development. The short paper sessions provide an excellent forum and
opportunity for industrial experts, scholars, and Ph.D. students to discuss their
interests on collaborative (embedded) systems development.

J. Münch and M. Vierimaa (Eds.): PROFES 2006, LNCS 4034, pp. 455 – 457, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Software Product Metrics – Goal-Oriented Software
Product Measurement

Jürgen Münch and Dirk Hamann

Fraunhofer Institute For Experimental Software Engineering
Fraunhofer Platz 1, 67663 Kaiserslautern

Germany
muench@iese.fraunhofer.de,
hamann@iese.fraunhofer.de

Abstract. Quality is measurable – also in the case of software. Properly intro-
duced metrics are the basis for efficient project- and quality management. This
tutorial presents the basic concepts of measurement and gives guidelines on
how to apply measurement in practice. Numerous examples included in the tu-
torial help quality managers, developers, and project leaders to understand the
concepts presented and to select optimal metric sets for their specific organiza-
tional needs.

1 Introduction to Software Measurement

The tutorial starts with a short overview of measurement basics. It presents, for in-
stance, different metrics classifications, measurement scales and their limitations, as
well as quality models that use metrics as an input for the purpose of quality evalua-
tion. This part of the tutorial also presents a measurement process, which consists of
three major phases: definition, data collection, and data analysis. The structure of the
concepts presented in this part of the tutorial is as follows:

• What are reasons for applying measurement and quantitative analysis of soft-
ware processes und products?

• Basis of measurement and quantitative analysis
• Types of metrics, scale
• Measurement process
• Metrics, context factors, influence factors

• Fixed quality models compared to self-defined quality models
• The ISO 9126 quality model
• Goal-Question-Metric (GQM) paradigm

2 Basic Metrics

The second part of the tutorial presents basic (core) metrics that have proven, in prac-
tice, to be good predictors of various software qualities. The metrics presented include
example metrics of size, complexity, defect, and time. The structure of the concepts
presented in this part of the tutorial is as follows:

456 J. Münch and D. Hamann

Metrics

• Size (Lines of Code, Function Points)
• Complexity (coupling, inheritance)
• Defects (defect metrics, defect classification)
• Time

3 Derived and Complex Metrics

The third part of the tutorial presents complex metrics derived from the basic metrics.
Typical application scenarios of these metrics are also presented. The structure of
concepts presented in this part of the tutorial is as follows:

• Maintainability
• Indicators of maintainability (self-defined quality model)
• Maintainability index (complex metrics)

• Reliability
• Failures
• Fault-proneness
• Defect density

• Productivity

4 Data Analysis and Interpretation

The last part of the tutorial deals with the analysis of measurement. It presents an
overview of the most common data analysis and visualization techniques. It also pro-
vides guidelines on how to choose appropriate techniques. Finally, examples of analy-
sis and visualization tools are presented. The structure of concepts presented in this
part of the tutorial is as follows:

• Data collection tools
• Data analysis techniques
• Data preprocessing

• Data analysis (statistics, data mining)
• Presentation of data and analysis results

• Tool support (data analysis and visualization)

5 Presenters´ Background

Jürgen Münch is Department Head for Processes and Measurement at the Fraun-
hofer Institute for Experimental Software Engineering (IESE) in Kaiserslautern, Ger-
many. From November 2001 to December 2003, Dr. Münch was an executive board
member of the temporary research institute SFB 501 "Development of Large Systems
with Generic Methods" funded by the German Research Foundation (DFG). Dr.

 Software Product Metrics – Goal-Oriented Software Product Measurement 457

Münch received his PhD degree (Dr. rer. nat.) in Computer Science from the Univer-
sity of Kaiserslautern, Germany. Dr. Münch’s research interests in software engineer-
ing include: (1) modeling and measurement of software processes and resulting prod-
ucts, (2) software quality assurance and control, (3) technology evaluation through
experimental means and simulation, (4) generic methods for the development of large
systems, (5) technology transfer methods. He has been teaching and training in both
university and industry environments, and also has significant R&D project manage-
ment experience. Jürgen Münch is a member of IEEE, the IEEE Computer Society,
and the German Computer Society (GI), a member of the program committee of vari-
ous software engineering conferences, and has published more than 50 international
publications.

Dirk Hamann did his study and PhD in the Computer Science department at the
University of Kaiserslautern. He is working as project manager in national and
international research projects in the area of software process definition, process de-
ployment, process improvement as well as project and quality management at the
Fraunhofer Institute for Experimental Software Engineering (IESE) in Kaiserslautern,
Germany. In industrial technology transfer and consultancy projects, he has led nu-
merous process assessment, process improvement and measurement projects, mainly
in the automotive and banking/insurance sector. Since 2000, he is accredited by the
QAI-USA as Competent SPICE Assessor, allowing him also to educate and train as-
sessors according to ISO/IEC 15504.

References

1. Basili, V.; Weiss, D.: A Methodology for Collecting Valid Software Engineering Data, In:
IEEE Transactions on Software Engineering, SE-10(6):728-738, 1984.

2. Birk, A.; Hamann, D.; Hartkopf, S.: A Framework for the Continuous Monitoring and
Evaluation of Improvement Programmes. In: Oivo, Markku (Ed.) u.a.: Second International
Conference on Product Focused Software Process Improvement. Profes'2000 - Proceedings.
Berlin : Springer-Verlag, 2000, 20-35

3. Briand, Lionel C.; Differding, Christiane; Rombach, H. Dieter: Practical Guidelines for
Measurement-Based Process Improvement. In: Software Process - Improvement and Prac-
tice 2 (1996), 4, 253-280

4. Münch, Jürgen; Heidrich, Jens, “Software Project Control Centers: Concepts and Ap-
proaches”, International Journal of Systems and Software, vol. 70, issues 1-2, pp. 3-19, Feb-
ruary 2004.

5. Münch, Jürgen; Heidrich, Jens,, “Tool-based Software Project Controlling“, In: Handbook
of Software Engineering and Knowledge Engineering, Vol. 3: Recent Advances”, (S. K.
Chang, ed.), World Scientific Publishing Company, pp. 477-512, August 2005.

6. Solingen, Rini van; Berghout, Egon: The Goal/ Question/ Metric Method. A Practical Guide
for Quality Improvement of Software Development. London: McGraw-Hill, 1999

J. Münch and M. Vierimaa (Eds.): PROFES 2006, LNCS 4034, pp. 458 – 461, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Art and Science of System Release Planning

Günther Ruhe and Omolade Saliu

Software Engineering Decision Support Lab
University of Calgary

2500 University Drive, NW
Calgary, AB T2N 1N4, Canada

ruhe@ucalgary.ca, saliu@cpsc.ucalgary.ca
http://sern.ucalgary.ca/~ruhe/,

http://cpsc.ucalgary.ca/~saliu/SEDS/Main.html

Abstract. Informed and qualified decisions are key factors for project failure or
success. The idea of decision support always arises when timely decisions must
be made in unstructured or semi-structured problem domains, where multiple
stakeholders are involved, and when the information available is uncertain. Re-
lease planning (RP) addresses decisions related to the selection and assignment
of features to a sequence of consecutive product releases such that the most
important technical, resource, budget, and risk constraints are met. Release
planning is an important and integral part of any type of incremental product
development. The objective of this tutorial is to describe and position the ‘art
and science’ of software release planning. The “art of release planning” refers
to relying on human intuition, communication, and capabilities to negotiate be-
tween conflicting objectives and constraints. The “science of release planning”
refers to emphasizing formalization of the problem and applying computational
algorithms to generate best solutions. Both art and science are important for
achieving meaningful release planning results. We investigate the release plan-
ning process and propose a hybrid planning approach that integrates the strength
of computational intelligence with the knowledge and experience of human ex-
perts.

1 Presenters´ Background

Dr. Günther Ruhe is an iCORE (Informatics Circle of Research Excellence) profes-
sor and the Industrial Research Chair in Software Engineering at the University of
Calgary. His research interests include software engineering decision support, soft-
ware release planning, requirements and COTS selection, measurement, simulation,
and empirical research. From 1996 until 2001 he was deputy director of the Fraun-
hofer Institute for Experimental Software Engineering in Kaiserslautern, Germany.
He is the author of two books, several book chapters, and more than 140 publications.
He is a member of the ACM, IEEE Computer Society, and German Computer Society
GI. Dr. Ruhe has been PC member and/or PC chair of various conferences and work-
shops in many areas of software engineering and knowledge engineering. He has or-
ganized and chaired several workshops on software engineering decision support. He
is a member of the Editorial Board of several international journals in the area of
Knowledge Engineering, Software Engineering, Hybrid Intelligence, Cognitive In-
formatics, and Advanced Intelligence.

 Art and Science of System Release Planning 459

Omolade Saliu is a PhD candidate and an iCORE (Informatics Circle of Research
Excellence) scholar in the Computer Science Department at the University of Cal-
gary, Canada. He has two years of industrial experience as a systems analyst. His re-
search interests include software metrics and measurement, software engineering de-
cision support, software process-related issues, and soft computing. He received his
MS in computer science from King Fahd University of Petroleum & Minerals, Saudi
Arabia. Omolade is a member of the IEEE and Computer Society. He is a PC member
of the 2006 HICSS-39 workshop on Strategic Software Engineering. He is currently
the vice President Operations of the Software Engineering Consulting Consortium
(SECCO) at the University of Calgary, Canada.

2 Research Design

The main goal of the tutorial is to give a comprehensive overview of methods and
techniques for performing release planning as part of incremental software develop-
ment. The whole perspective here is on decisions to be made and how these decisions
can be supported to make them more qualified.

What will the participants learn from the tutorial?

• The paradigm of software engineering decision support and its application to soft-

ware release planning
• State-of-the art and state-of-the practice in software release planning
• The two fundamental approaches called art and science
• The synergy of art and science for release planning
• Case study project from Telecom
• Release planning for evolving systems

3 Scope

This tutorial is aimed at project managers who want to know about the possible sup-
port that they can get outside the existing state of practice. Also, it targets business
customers who are interested in participating in the release planning process , while
protecting their preferences without physical meetings. Software development profes-
sionals and academics would also benefit from the technical aspects of the discussion.
No prior experience in performing release planning nor any background in computa-
tional algorithms is necessary.

4 Summary of Contents

4.1 Paradigm of Software Engineering Decision Support

The idea of decision support always arises when timely decisions must be made in
unstructured or semi-structured problem domains, where multiple stakeholders are in-
volved, and when the information available is uncertain. Decision support under these
circumstances to us means all activities and techniques that would [1]:

460 G. Ruhe and O. Saliu

• facilitate understanding and structuring of the problem under investigation
• help in understanding the information needed for making good decisions
• bring the concerns of relevant stakeholders to bear and allow them to contribute to

the decision-making process
• generate, evaluate, and prioritize solution alternatives, and
• explain solution alternatives

4.2 Software Release Planning

The inability of humans to cope well with complex decisions involving competing
and conflicting goals in software engineering suggests the need for supplementary de-
cision support [1]. When considering problems involving several hundreds of features
and large numbers of widely distributed stakeholders, it becomes very hard to find
appropriate solutions without appropriate decision support. Instantiation of the release
planning problem as a decision problem would be discussed in this tutorial.

4.3 Solution Approaches

This tutorial will present two approaches to release planning. First, the art of release
planning approach, which relies on human intuition, communication, and capabilities
to negotiate between conflicting objectives and constraints. Secondly, the science of
release planning, which that formalizes the problem and applies computational algo-
rithms to generate best solutions. The art-based approach has trouble coping with the
RP problem’s complexity as the number of factors grows. The science-based ap-
proach copes better with complexity but cannot evaluate the problem with the same
analytical abilities as the human decision-maker. [2]

4.4 Release Planning for Evolving Systems

The tutorial would finally present an analysis of characteristics that constitute extra
challenges for release planning of evolving software systems. As evolving systems
demand the analysis of each feature in light of the components of existing system be-
fore feature selection and scheduling decisions, we will discuss an extended model of
the marriage above that assists in integrating information and knowledge about exist-
ing system architecture into release planning decisions [4].

5 Structure of Contents

This tutorial discusses the following:

1. Introduce the paradigm of software engineering decision support
2. Discuss the release planning problem and characterize the difficulties involved
3. Release planning guidelines and process framework
4. Discusse the reasons for the pervasiveness of ad hoc planning strategies
5. Challenges involved in managing cognitive and computational complexities
6. The marriage of art and science of planning to provide appropriate decision sup-

port

 Art and Science of System Release Planning 461

7. Release planning with evolving systems dimension
8. Example projects, Case studies discussions, and Experience reports
9. Interactive session involving participants in the process

10. Summary and Conclusions

References

[1] Ruhe, G. Software Engineering Decision Support – Methodology and Applications. In:
Tonfoni and Jain (Eds.) Innovations in Decision Support Systems, (2003), 143-174.

[2] Ruhe, G. and Saliu, O. The Art and Science of Software Release Planning. IEEE Software,
22, 6 (Nov/Dec 2005), In press.

[3] Ruhe, G. and Ngo-The, A. Hybrid Intelligence in Software Release Planning. International
Journal of Hybrid Intelligence Systems, 1, 2, (2004), 99-110.

[4] Saliu, O. and Ruhe, G. Software Release Planning for Evolving Systems. Innovations in
Systems and Software Engineering: a NASA Journal, 1, 2 (Sep. 2005), 189-204.

J. Münch and M. Vierimaa (Eds.): PROFES 2006, LNCS 4034, pp. 462 – 465, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Multiple Risk Management Process Supported by
Ontology

Cristine Martins Gomes de Gusmão1,2 and Hermano Perrelli de Moura1

1 Centro de Informática – Universidade Federal de Pernambuco (UFPE)
Caixa Postal 7851 – 50.732-970 – Recife – PE – Brazil

2 Curso de Bacharelado em Sistemas de Informação – Faculdade Integrada do Recife (FIR)
Recife – PE – Brazil

{cmgg, hermano}@cin.ufpe.br
http://www.cin.ufpe.br/~hermano/gp2

Abstract. Multiple Projects Development Environments have evolved recently.
However, most available environments do not provide risk management process
support to the project manager’s activities. This support could be provided
through the analysis of the interactions between projects. One of the main
weaknesses of the approaches up to now is that risk management process im-
provement based on the risks between ongoing projects and completed ones is
being neglected. In this light, we propose the creation of a Risk Management
Model for Multiple Project Environments to treat the risk interactions between
projects.

1 Introduction

Software development projects, given their diverse and abstract nature, offer unique
challenges and risks [Boehm and DeMarco 1997]. According to the Standish Group
Report, “CHAOS: A Recipe for Success”, only 28 percent of all software projects in
2000 were on time and within budget and had all planned features [Murthi 2002] –
which means that the other 76 percent of projects failed or did not meet specified
goals.

The increasing competition on the market and the challenging expectations of the
clients´ requirements force the software developing organizations to closely manage
their risks [Gusmão and Moura 2004]. Several risk management approaches [Charette
1990, Humphrey 1990, Boehm 1991, Higuera 1994, Chapman and Ward 1997, Kontio
1998, Jacobson 1999, Barros 2001] have been introduced during the past two decades.
While some organizations defined their own risk management approaches, others do
not manage their risks explicitly and systematically [Gusmão and Moura 2004]. Risk
management based on intuition and individual efforts alone is rarely effective and
consistent. Risk management is necessary during both project management and
software development operations.

Whereas most research has focused on managing technical and project risks in
software development projects, there are many other components of software devel-
opment projects or multiple projects environments that are currently not being evalu-
ated and managed effectively [Gusmão and Moura 2004]. Risk is always involved

 Multiple Risk Management Process Supported by Ontology 463

with loss, but also considers the possibility that the outcome of certain risks might be
a gain.

In Multiple Projects Environments, the project manager has a particular challenge
of balancing several projects with a seemingly limitless workload and limited re-
sources, and doing it in a dramatically altered business environment [Dye and Penny-
packer 2000]. This kind of difficulty is made worse by the fact that, the organizations
managers need to make decisions that probably affect some projects with different
lifetimes and resources. Every project decision involves risk because there is always
uncertainty information [Moura et al. 2004].

Risk management is the heart of project management, and software product devel-
opment inevitably requires project management. Risk management must be promoted
via dynamic environments that support life cycle project processes based an organiza-
tion issues. However, most organizations do not provide support to risk management
processes, tools for communications, and neither to the project manager´s activities.
In this light, this tutorial presents OntoPRIME – risk domain ontology – which sup-
ports multiple project environments helping managers to get project risk information
in all phases of the software development process.

2 Overall and Detailed Objectives

Unfortunately, some project managers rely on a reactive risk management strategy,
that is, merely reacting to risks as they occur. This is even worse in multiple projects
environments. A more intelligent strategy is preventive risk management, which is a
way to improve the organization´s knowledge about its projects.

Using software multiple projects environments concepts, this tutorial aims to pre-
sent on Ontology for Project Risk Management to support a multiple project risk
management process. Theoretically, the process is based on CMMI – Capability Ma-
turity Model Integrated [SEI 2001], Software Engineering Institute Risk Model [Hi-
guera 1994], Quantitative and Qualitative techniques in risk evaluation [Humphrey
1990], as a way to improve the risk management process in organizations. Using
software multiple projects environments and ontologies concepts [Corcho et al. 2001]
and based on Taxonomy -based Risk Identification [Carr et al. 1993], we developed
the risk domain ontology – OntoPRIME.

OntoPRIME is an Artificial Intelligence component that helps software teams to
evolve their project risk management. It is a part of the Multiple Project Risk Man-
agement Model, an artifact development in a doctorate study.

The methodological development is conducted in an action research manner within
a real-life systems development project. OntoPRIME was modeled in a multidimen-
sional structure to enrich and qualify the processes and stored knowledge.

Although many risk management approaches provide a process to support devel-
opment software, what is really needed is a common vocabulary to improve and
support all information resulting from this process in order to comfortably refer to it
and add new contributions. The main idea is to facilitate risk analysis interaction be-
tween projects and communication as a way to provide access to the organization´s
multitude of project information. Besides, it is a way to develop an organizational
knowledge management [Falbo 2004].

464 C.M.G. de Gusmão and H.P. de Moura

2.1 Tutorial Learning Objectives

When completed, the attendee will be able to:

1. Understand the different kinds of risk within organizations.
2. Understand the importance of ontology, which includes the standardization and hi-

erarchical arrangement of concepts.
3. Understand the importance and vantages of managing multiple project risks sup-

ported by ontologies as a way to increase knowledge and improve the risk man-
agement process.

3 Qualifications of the Instructors

Hermano Perrelli de Moura – Project Management Professional (PMP). PhD in
Computing Science, University of Glasgow, Scotland. MSc in Computing Science,
Federal University of Pernambuco, Brazil. Electronic Engineering, Pernambuco Fed-
eral University, Brazil. Professor of Project Management at Pernambuco Federal Uni-
versity, he has taught many courses on the subject and done consulting on project
management for software development projects. Co-founder of Quality Software
Processes, a company specialized in software process improvement.

Cristine Martins Gomes de Gusmão – PhD student in Computing Science Program,
Risk Management research area, Federal University of Pernambuco. MSc in Comput-
ing Science, Federal University of Pernambuco, Brazil. Professor of Project Manage-
ment and Software Engineering at Faculdade Integrada do Recife, she has taught
many courses and presentations about project risk management and developing pro-
jects to support risk management processes based on intelligent components.

References

Boehm, B and De Marco, T. Software Risk Management. IEEE – Software. IEEE Computer
Society Press. 1997.

Murthi, S. Preventive Risk Management for Software Projects. IEEE – Software. IEEE Com-
puter Society Press. 2002.

Gusmão, C. M. G. e Moura, H. P. Gerência de Risco em Processos de Qualidade de Software:
uma Análise Comparativa. Anais do III Simpósio Brasileiro de Qualidade de Software.
Brasília – DF – Brasil. 2004.

SEI – Software Engineering Institute -CMMI -Capability Maturity Model Integration version
1.1 Pittsburgh, PA. Software Engineering Institute, Carnegie Mellon University. USA. 2001.

Jacobson, I. The Unified Software Development Process. Addison-Wesley Longman Publish-
ing Co., Boston, MA, USA. 1999.

Corcho, O. et al. OntoWeb. Technical Roadmap v.1.0. Universidad Politécnica de Madrid.
2001.

Dye, L. D and Pennypacker, J. S. Project Portfolio Management and Managing Multiple Pro-
jects: Two Sides of the Same Coin? In: The Project Management Institute Annual Seminars
& Symposium. Houston, Texas, USA. 2000.

 Multiple Risk Management Process Supported by Ontology 465

Carr, M. J et al. Taxonomy -Based Risk Identification. Technical Report. Software Engineering
Institute. Carnegie Mellon University. 1993

Humphrey, W.S. Managing The Software Process. Addison Wesley, 1990.
Boehm, B. Software Risk Management: principles and practices. In IEEE Software, Vol. 8.

No.1, pp 32-41. 1991.
Charette, R. Application strategies for risk analysis. MultiScience Press, New York, USA.

1990.
Chapman, C. and Ward, S. Project Risk Management. John Wiley & Sons. Chichester, UK.

1997.
Higuera, R. P et al. An Introduction to Team Risk Management (version 1.0). Special Report

CMU/SEI -94-SR-1, In Software Engineering Institute, Pittsburgh, Pennsylvania, USA.
1994.

Moura et al. Portfolio Management: A Critical View of Risk Factors Balancing. NORDNET -
Proceedings of International PM Conference. Helsinki – Finland. 2004.

Falbo, R.A. et al. Learning How to Manage Risk using Organization Knowledge. Proceedings
of the 6th International Workshop on Learning Software Organizations -LSO'2004, pp. 7-18.
Canada, 2004.

Barros, M. O. Gerenciamento de Projetos baseado em Cenários: Uma Abordagem de Mode-
lagem Dinâmica e Simulação. Doctorate Thesis. Federal University of Rio de Janeiro. 2001.

Kontio, J. et al. Experiences in improving risk management processes using the concepts of the
Riskit method, In Proceedings of the Sixth International Symposium on the Foundations of
Software Engineering (FSE-6) pp. 163-174. 1998.

J. Münch and M. Vierimaa (Eds.): PROFES 2006, LNCS 4034, pp. 466 – 471, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Get Your Experience Factory Ready for the Next Decade:
Ten Years After “How to Build and Run One”

Frank Bomarius1 and Raimund L. Feldmann2

1 Fraunhofer Institute for
Experimental Software Engineering (IESE),

Fraunhofer Platz 1,
67663 Kaiserslautern, Germany

Tel.: +49 631 6800 1201
frank.bomarius@iese.fraunhofer.de

2 Fraunhofer Center for Experimental Software Engineering (CESE) 4321 Hartwick Rd - Suite
500 College Park, 20742 MD, USA

Tel.: +1 301 403 8933
rfeldmann@fc-md.umd.edu

Abstract. Ten years after the presentation of the tutorial “The Experience Fac-
tory: How to Build and Run One” at ICSE 17 in 1995 [4], the idea of building
such a Learning Software Organization (LSO) is in wide spread use. Mean-
while, the Experience Factory (EF) concept [2], i.e., the systematic goal-
oriented utilization of experience, is also being successfully applied outside the
domain of Software Engineering [11], [12]. However, defining and implement-
ing a successful Experience Factory is still a challenge [9]. In this tutorial we
take a look at existing concepts on how to identify and structure the content of
the experience base (EB), discuss solutions for how to implement an EB, and
present processes on how to setup, run, evaluate, and maintain an EF in an or-
ganization. The tutorial is based on the authors’ organizations’ experiences with
implementing EFs in research, industry, and government environments.

Keywords: Experience Factory, Experience Base, Knowledge & Experience
Management, Experience-based process improvement.

1 Objectives

The general goal of this tutorial is to provide an overview on how to define and suc-
cessfully implement a state-of-the-art Experience Factory (EF) infrastructure [2] and
how to systematically build up and manage the experience of an organization. Based
on our practical experiences (e.g., [5], [8], [11], [12]), we will discuss different as-
pects ranging from processes via tools and implementation techniques to different EF
sizes and scalability. More specifically, the goals of this tutorial are:

• to provide participants with a method for setting the goals of an EF and identifying
relevant content to be captured in the Experience Base (EB);

• to describe guidelines and principals on how to organize and structure an EB to ef-
fectively support the identified learning processes;

 Get Your Experience Factory Ready for the Next Decade 467

• to discuss an approach for how participants can tailor EF requirements to their spe-
cific organizational needs (e.g., specific environment/domain, distribution, eBiz
support);

• to give an overview of candidate implementation technologies and how to select
the appropriate ones for incremental implementation of the EF;

• to guide participants in defining necessary processes for running, evaluating, and
maintaining the EF;

• to present examples and lessons learned so as to help avoid common problems and
pitfalls.

The material included in this tutorial is not limited to the authors’ own experiences.
Lessons learned and research results regarding EF installations such as [1], [3], [6],
[7], [10] are integrated in the approach and presented as examples.

2 Scope

This tutorial aims at industry practitioners, managers, and developers alike, who want
to learn more about how to successfully design, implement, and run an EF. Attending
this tutorial will help the participants (not only from the software domain) to initially
setup or to further develop and improve their organization’s EF. Thereby, participants
can effectively support improvement activities (such as TQM, ISO 9000, CMMI or
SPICE, TSP) to gain competitive advantages. The tutorial will also provide practical
guidance on how to evaluate the cost-benefit of an EF in an organization. .

3 Structure of Contents

I Introduction

The introduction sets the stage for understanding the EF concepts and its capabilities
as well as its limitations. This includes:

• The “original” EF organization
• What can be expected from an EF
• Common misconceptions

II Example Applications of EF in Today’s Organizations

Examples from different domains and of different sizes are presented, thus demon-
strating the flexibility and scalability of the EF concept:

• Software engineering research support
• Software process improvement (SPI) support
• Knowledge intensive quality assurance support
• Knowledge portals

468 F. Bomarius and R.L. Feldmann

III Engineering an EF

This chapter covers all steps from the early identification of stakeholders down to the
evolutionary enhancement of a running EF. Topics addressed include:

• Identification of stakeholders
• Assessment of existing processes and available knowledge
• Goal setting, technology selection, and introduction plan
• Techniques for knowledge structuring and representation
• Engineering the EF usage processes
• Prototyping and trial phase
• Incremental enhancement and continuous evaluation
• Deployment
• Planning the next increment

IV Technology

This chapter details a selection from the broad range of implementation techniques
that can be successfully applied within an EF. The techniques will be classified re-
garding their purpose and applicability in different application contexts and organiza-
tional settings. Classification is based on issues such as:

• Scalability
• Ease of introduction
• Usability
• Distribution and replication
• Meantime to success
• Cost / benefit

V Additional Materials and References

Examples
• References

4 Presenter’s Background

4.1 Prof. Dr. Frank Bomarius

Graduated from the University of Kaiserslautern, Germany, with a major in Computer
Science and with a minor in Electrical Engineering in 1986 and received his Ph.D.
(Dr. rer. nat.) in Computer Science in 1991. He then worked in an ESPRIT 2 project
at the German Research Center for Artificial Intelligence in the area of Multi-Agent
Systems. In 1993 he became a team leader and software developer at Tecmath GmbH.
Since 1996, he has been head of the department “Competence Management” and
since 2000, deputy director of the Fraunhofer Institute for Experimental Software En-
gineering (IESE). He holds a professorship at the University of Applied Sciences in
Kaiserslautern and teaches computer science in the Department of Engineering.

 Get Your Experience Factory Ready for the Next Decade 469

At IESE, Bomarius is transferring continuous, goal-oriented software process im-
provement (SPI) programs to software organizations in different industrial sectors. He
applies the Quality Improvement Paradigm (QIP), the Goal/Question/Metric (GQM),
and the Experience Factory (EF) approach. He is doing applied research and technol-
ogy transfer in the area of Learning Software Organizations (LSO) and introduces EF-
based knowledge management into industrial engineering and production settings. His
major focus is on the successful integration of knowledge management with existing
organizational structures and work processes, alignment with ongoing improvement
programs as well as the technical integration of experience bases with an organiza-
tion's infrastructure.

Frank Bomarius has given numerous presentations at industrial as well as scientific
workshops and seminars. He has 10 years of industrial experience and 20 years of ex-
perience in teaching and training of students as well as professionals.
He is serving as organizer, program chair and program committee member in national
and international conferences and workshops in the area of software process im-
provement and knowledge management, such as SEKE, PROFES, CONQUEST,
Net-ObjectDays, ICCBR and LSO.

Frank Bomarius is a member of the IEEE Computer Society, the German Com-
puter Society (GI) and the Working Group for Artificial Intelligence of the GI, and a
member of the board of the regional chapter of the GI.

You can contact him at:
Prof. Dr. Frank Bomarius
Deputy Director Prof. Dr. Frank Bomarius
Fraunhofer Institute for Department of Engineering
Experimental Software Engineering, (IESE) University of Applied Sciences
Fraunhofer Platz 1, Morlauterer Straße 31
67663 Kaiserslautern, Germany 67657 Kaiserslautern, Germany

Phone +49 6301 6800 1201 Phone +49 6301 3724 315
Email frank.bomarius@iese.fraunhofer.de Email frank.bomarius@fh-kl.de

4.2 Raimund L. Feldmann

Received his M.S. degree (Diplom) in Computer Science with a minor in Economics
from the University of Kaiserslautern, Germany in 1996. His research interests are fo-
cused on experience and knowledge repositories and Software Process Improvement
(SPI). In 1997, Raimund joined the Software Engineering Research Group (AGSE)
headed by Prof. Dr. H. D. Rombach at the University of Kaiserslautern, Germany, as
an employee of the strategic grant project 501 “Development of Large Systems with
Generic Methods” (SFB 501), funded by the German Science Foundation (DFG). As
part of his work, Raimund established the central Experience Base in the SFB 501
Software Engineering Laboratory.

Currently, Raimund Feldmann is the technical lead for Knowledge & Experience
Management at the Fraunhofer Center Maryland (CESE). He is actively involved in
the definition and development of the US Department of Defense (DoD) Acquisition
Best Practice Clearinghouse, a web-based EF for providing Software Engineering and
System Engineering best practices for government employees and contractors. Before

470 F. Bomarius and R.L. Feldmann

he joined CESE in 2004, Raimund participated in several technology transfer projects
in Germany. Among others projects, he was responsible for the development of the
underlying EB of the software-kompetenz.de portal (VSEK), funded by the Ministry
of Education and Research (BMBF) of the German Federal Government, to offer up-
to-date SE knowledge to Germany´s SMEs. As part of his employment at the Univer-
sity of Kaiserslautern, Raimund taught and organized practical courses and seminars
on Software Engineering and Learning in Software Organizations.

Raimund Feldmann is a member of the IEEE Computer Society and of the steering
committee for the international LSO (Learning Software Organizations) workshop
series.

You can contact him at:
Raimund L. Feldmann
Fraunhofer Center for Experimental Software Engineering, Maryland (CESE)
4321 Hartwick Rd Suite
500 College Park,
MD 20742-3290, USA

Phone: +1 301 403 8933
Fax.: +1 301 403 8976
E-mail: r.feldmann@computer.org

Acknowledgments

This tutorial is based on the initial work of Victor R. Basili, H. Dieter Rombach and
Frank McGarry, the fathers of the EF concept. Part of this work is based on previous
tutorials by IESE and CESE. We appreciate the effort and support of our past and cur-
rent colleagues from CESE and from IESE, who contributed to this and the previous
tutorials.

References

[1] K. D. Althoff, K. U. Becker, B. Decker, A. Klotz, E. Leopold, J. Rech, and A. Voss: "The
indiGo project: enhancement of experience management and process learning with mod-
erated discourses," in Data Mining in Marketing and Medicine, vol. LNCS, P. Perner
(Ed), Berlin, Germany, Springer Verlag, 2002, pp. 53-79.

[2] V.R. Basili, G. Caldiera, and H.D. Rombach: Experience Factory. In J.J. Marciniak, edi-
tor, Encyclopedia of Software Engineering, volume 1, pages 469–476. John Wiley &
Sons, 1994.

[3] V.R. Basili, M. Lindvall, and P. Costa: Implementing the Experience Factory concepts as
a set of Experience Bases. In Proceedings of the Thirteenth Conference on Software En-
gineering and Knowledge Engineering (SEKE), pages 102–109, Buenos Aires, Argen-
tinia, June 2001.

[4] V.R. Basili and F.E. McGarry: The Experience Factory: How to Build and Run One. Tu-
torial given at the 17th International Conference on Software Engineering (ICSE17), Se-
attle, Washington, USA, April 1995.

 Get Your Experience Factory Ready for the Next Decade 471

[5] F. Bomarius and G. Ruhe: Learning Software Organization – Methodology and Applica-
tions. Lecture Notes in Computer Science # 1756, Springer Verlag, November 2000.

[6] K. Dangle, L. Dwinnell, J. Hickok, and R. Turner: Introducing the Department of De-
fense Acquisition Best Practices Clearinghouse. CrossTalk, May 2005, pp. 4.

[7] B. Decker, et al: A Framework for Agile Reuse in Software Engineering using Wiki
Technology. KMDAP Workshop 2005: Knowledge Management for Distributed Agile
Processes, Kaiserslautern, Germany, 2005.

[8] R.L. Feldmann and M. Pizka: An on-line software engineering repository for Germany's
SME - an experience report. Advances in Learning Software Organizations. 4th Interna-
tional Workshop (LSO 2002), Chicago, IL, USA, 6 Aug. 2002.

[9] A. Koennecker, R. Jeffery, and G. Low: Lessons Learned from the Failure of an Experi-
ence Base Initiative Using Bottom-up Development Paradigm. In Proceedings of the 24th
Annual Software Engineering Workshop (SWE24), Greenbelt, Maryland, USA, Decem-
ber 1999.

[10] C. Tautz: Customizing Software Engineering Experience Management Systems to Organ-
izational Needs. PhD Thesis, Dept. of Computer Science, University of Kaiserslautern,
Kaiserslautern, Germany, 2000. Published in 2001 by Fraunhofer IRB Verlag, Stuttgart,
Germany, ISBN 3-8167-5881-9

[11] http://www.bridgeit.de/
[12] http://www.checkmate-online.de/

Author Index

Ahonen, Jarmo J. 5, 151
Amasaki, Sousuke 402
Anda, Bente 94
Arisholm, Erik 94
Auvinen, Jussi 79

Back, Rasmus 79
Barcellos, Rafael 249
Barreto, Ahilton 249
Bayer, Joachim 348
Benestad, Hans Christian 94
Biffl, Stefan 319
Bomarius, Frank 466
Børretzen, Jon Arvid 389
Bosch, Jan 4
Brinkkemper, Sjaak 234
Bueno, Paulo M.S. 263

Cabral, Reinaldo 249
Canfora, Gerardo 383
Cannegieter, Jan Jaap 2
Cerdeiral, Cristina 249
Chang, Soo Ho 334, 447
Cimitile, Aniello 383
Ciolkowski, Markus 453
Coleman, Gerry 290
Conradi, Reidar 389
Corr, Ronan 290
Coulette, Bernard 429
Counsell, Steve 166
Crespo, Adalberto N. 263

Daneva, Maya 112
Dong, Bich Thuy 429
Du, Gengshen 435

Eerola, Anne 142

Feldmann, Raimund L. 466
Fernandes, João M. 422
Figueiredo, Sávio 249
Flohr, Thomas 305
Fushida, Kyohei 441

Garcia, Felix 383
Geddes, Stella 166

Gomes de Gusmão, Cristine
Martins 462

Greer, Des 290

Haapio, Topi 151
Hamann, Dirk 455
Hamano, Yasuhiro 402
Hannington, Anne 192
Heidenberg, Jeanette 79
Her, Jin Sun 447
Hikichi, Kazumasa 441
Hirayama, Masayuki 47
Hirkman, Piia 79

Iida, Hajimu 441

Jäntti, Marko 142
Jedlitschka, Andreas 453
Jino, Mario 263
Juutilainen, Päivi 5

Kankaanpää, Irja 5
Karlsson, Lena 19
Kawai, Nao 47
Kettunen, Petri 61
Kikuno, Tohru 402
Kim, Soo Dong 334, 447
Kitchenham, Barbara 3
Kollanus, Sami 377
Kose, Mathias 348
Koskinen, Jussi 5, 377
Kuvaja, Pasi 454

Lawthers, Ian 290
Lintinen, Heikki 5
Lupo, Peter 249

Machado, Ricardo J. 422
Madeyski, Lech 278
Matsumoto, Ken’ichi 441
McDaid, Kevin 290
McElroy, Jim 435
Mendes, Emilia 166
Milovanov, Luka 79
Min, Hyun Gi 447

474 Author Index

Mizuno, Osamu 402
Moe, Nils Brede 208
Monden, Hiroshi 47
Monteiro, Paula 422
Montoni, Mariano 249
Mossberg, Staffan 362
Münch, Jürgen 455

Niazi, Mahmood 222, 395
Nieto-Ariza, Erika M. 34

Ocampo, Alexis 348
Ohno, Katsumi 47
Olsson, Hans O. 362
Ortiz-Hernández, Javier 34

Perrelli de Moura, Hermano 462
Phalp, Keith 166
Piattini, Mario 383
Porres, Ivan 127
Pries-Heje, Jan 408

Reed, Karl 192
Regnell, Björn 19, 362
Rhew, Sung Yul 334
Rocha, Ana Regina 249
Rodrigues, Helena 422
Rodŕıguez-Ortiz, Guillermo 34
Ruhe, Günther 435, 458

Sage, Paul 290
Saliu, Omolade 458
Santos, Gleison 249
Schalken, Joost 234
Schneider, Thorsten 305
Sivula, Henna 5
Šmite, Darja 208
Soares, Andréa 249
Staron, Miroslaw 177

Tamaru, Kichiro 47
Taylor, Philip S. 290
Tilus, Tero 5
Toroi, Tanja 142
Tran, Hanh Nhi 429

Valiente, Maŕıa C. 127
van Genuchten, Michiel 1
van Vliet, Hans 234
Vinter, Otto 408
Visaggio, Corrado Aaron 383

Washizaki, Hironori 415
Wilson, David 222
Winkler, Dietmar 319
Wohlin, Claes 177

Zowghi, Didar 222

	Frontmatter
	Keynote Addresses
	Processes and the Software Business
	Controlling the Chaos of the CMMI Continuous Representation
	Evidence-Based Software Engineering and Systematic Literature Reviews
	Expanding the Scope of Software Product Families: Problems and Alternative Approaches

	Decision Support
	Defining the Process for Making Software System Modernization Decisions
	Introducing Tool Support for Retrospective Analysis of Release Planning Decisions
	A Qualitative Evaluation Method for Business Process Tools

	Embedded Software and System Development
	An Effective Source Code Review Process for Embedded Software
	Troubleshooting Large-Scale New Product Development Embedded Software Projects
	Software Process Improvement with Agile Practices in a Large Telecom Company

	Measurement
	Assessing Software Product Maintainability Based on Class-Level Structural Measures
	Integrating Reuse Measurement Practices into the ERP Requirements Engineering Process
	Process Definition and Project Tracking in Model Driven Engineering

	Industrial Experiences
	Difficulties in Establishing a Defect Management Process: A Case Study
	A Case Study on the Success of Introducing General Non-construction Activities for Project Management and Planning Improvement
	The Concerns of Prototypers and Their Mitigating Practices: An Industrial Case-Study
	An Industrial Case Study on the Choice Between Language Customization Mechanisms
	Preliminary Results from a Survey of Multimedia Development Practices in Australia
	An ISO 9001:2000 Certificate and Quality Awards from Outside -- What's Inside? -- A Case Study

	Process Improvement
	Implementing Software Process Improvement Initiatives: An Empirical Study
	Using Linear Regression Models to Analyse the Effect of Software Process Improvement
	Taba Workstation: Supporting Software Process Deployment Based on CMMI and MR-MPS.BR
	Analysis of an Artifact Oriented Test Process Model and of Testing Aspects of CMMI

	Agile Development Practices
	The Impact of Pair Programming and Test-Driven Development on Package Dependencies in Object-Oriented Design --- An Experiment
	Applying an Agility/Discipline Assessment for a Small Software Organisation
	Lessons Learned from an XP Experiment with Students: Test-First Needs More Teachings
	An Empirical Study on Design Quality Improvement from Best-Practice Inspection and Pair Programming

	Product Line Engineering
	A Variability-Centric Approach to Instantiating Core Assets in Product Line Engineering
	Improving the Development of e-Business Systems by Introducing Process-Based Software Product Lines
	Assessing Requirements Compliance Scenarios in System Platform Subcontracting

	Short Papers
	Software Inspections in Practice: Six Case Studies
	Productivity of Test Driven Development: A Controlled Experiment with Professionals
	Results and Experiences from an Empirical Study of Fault Reports in Industrial Projects
	Software Process Improvement: A Road to Success
	Characterization of Runaway Software Projects Using Association Rule Mining
	A Framework for Selecting Change Strategies in IT Organizations
	Building Software Process Line Architectures from Bottom Up
	Refinement of Software Architectures by Recursive Model Transformations
	A UML-Based Process Meta-model Integrating a Rigorous Process Patterns Definition
	Ad Hoc Versus Systematic Planning of Software Releases -- A Three-Staged Experiment
	A Software Process Tailoring System Focusing to Quantitative Management Plans
	An Extreme Approach to Automating Software Development with CBD, PLE and MDA Integrated

	Workshops
	Experiences and Methods from Integrating Evidence-Based Software Engineering into Education
	Workshop on Embedded Software Development in Collaboration

	Tutorials
	Software Product Metrics -- Goal-Oriented Software Product Measurement
	Art and Science of System Release Planning
	Multiple Risk Management Process Supported by Ontology
	Get Your Experience Factory Ready for the Next Decade: Ten Years After ``How to Build and Run One''

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

