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Abstract. The visual secret sharing (VSS for short) scheme is a secret image 
sharing scheme. A secret image is visually revealed from overlapping shadow 
images without additional computations. However, the contrast of reconstructed 
image is much lost. By means of the reversing operation (reverse black and 
white), Viet and Kurosawa used the traditional VSS scheme to design a VSS 
scheme which the secret image is almost perfectly reconstructed. Two 
drawbacks of the Viet-Kurosawa scheme are: (1) one can only reconstruct an 
almost ideal-contrast image but not an ideal-contrast image (2) the used 
traditional VSS scheme must be a perfect black scheme. This paper shows a 
real perfect contrast VSS scheme such that black and white pixels are all 
perfectly reconstructed within finite runs, no matter what type (perfect black or 
non-perfect black) of the traditional VSS scheme is. 

Keywords: Visual secret sharing scheme, secret sharing scheme, ideal contrast. 

1   Introduction 

Naor-Shamir (k, n) VSS scheme [1] is to share the secret image into n shadow images 
(shadows) by dividing a pixel in the secret image to m black(B)/white(W) sub pixels 
in each shadow. When decrypting, any k out of n participants can reconstruct the 
secret image by stacking their shadows. In the reconstructed image, the ‘m−h’B‘h’W 
and ‘m−l’B‘l’W sub pixels are used to represent the white and black secret pixels, 
respectively, where h and l are the whiteness of the white and black secret pixel and 

0m h l> > ≥ . For a perfect black VSS (PBVSS) scheme (l=0), the black pixel is 
perfectly reconstructed but the white pixel is not. For the specific h and l, Eisen and 
Stinson [2] had found the minimum m to achieve the better contrast. However, since 

0m h> > , ‘m−h’B‘h’W is impossibly changed into ‘m’W anyway and thus we 
cannot reconstruct an ideal-contrast image, i.e., all black and white pixels are 
perfectly reconstructed.  

Consider another totally different approach to improve the contrast, by more runs 
of stacking shadows and reversing operation (a non-cryptographic operation), Viet 
and Kurosawa used the PBVSS scheme to design an almost ideal VSS scheme [3]. 
Note that, in fact, many copy machines have the reversing operation that the black 
(white) color is changed into the white (black) color. For the Viet-Kurosawa scheme, 
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‘m’B sub pixels are reconstructed for the black secret pixel and ‘m’W sub pixels are 
reconstructed for almost all white secret pixels. The more runs the more ‘m’W sub 
pixels for the white secret pixels. However, the ideal whiteness cannot be achieved 
even for large number of runs. So we call the Viet-Kurosawa scheme an almost 
contrast VSS scheme. Afterwards, Cimato et al. [4] achieved the ideal-contrast image 
within m finite runs. In this paper, a cyclic shift operation of sub pixels in the shadow 
image is used to design a real perfect contrast VSS (RPCVSS) with an ideal-contrast 
image when finishing (m−h+1) finite runs. Moreover, for even m and h=m/2 the 
number of runs is reduced to two. Besides, the shift operation can also be applied to 
design a RPCVSS scheme based on the non-perfect black VSS (NPBVSS) scheme 
with odd ‘h−l’. 

The rest of this paper is organized as follows. Section 2 reviews the previous 
works. In Section 3 we describe the proposed RPCVSS schemes based on the PBVSS 
and NPBVSS schemes, respectively. Experimental results, discussion and comparison 
are given in Section 4, and we draw our conclusion in Section 5. 

2   Previous Works 

2.1   Naor-Shamir VSS Scheme 

Suppose that B1 and B0 are the black and white n×m basis Boolean matrices A= [aij], 

where aij = 1 if and only if the jth sub pixel in the ith shadow is black, otherwise aij=0 
for the (k, n) VSS with the pixel expansion m. C1 and C0 are their corresponding black 
and white sets including all matrices obtained by permuting the columns of B1 and B0. 
The dealer randomly chooses one row of the matrix in the set C1 (resp. C0) to a 
relative shadow for sharing a black (resp. white) pixel. The chosen matrix defines the 
gray level of the m sub pixels in the reconstructed image. 

When any k or more shadows are stacked, we view a reconstructed image whose 
black sub pixels are represented by the Boolean ‘OR’ of the corresponding rows in A. 

The gray level of this reconstructed image is proportional to the Hamming weight of 
the ORed m-vector V. If H(V) ≥ (m–l), this gray level is interpreted by the user’s 
visual system as black, and if H(V) ≤ (m–h), the result is interpreted as white. For 

example, in a (2, 2) VSS scheme, let black and white matrices be B1=
0 1
1 0
⎡ ⎤
⎢ ⎥⎣ ⎦

, 

B0=
0 1
0 1
⎡ ⎤
⎢ ⎥⎣ ⎦

 and then their corresponding sets are C1= { }0 1 1 0,1 0 0 1
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

, 

C0={ }0 1 1 0,0 1 1 0
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

. For sharing a black secret pixel in the recovered image, the dealer 

may randomly choose the first matrix or second matrix in the black set C1. Suppose 

choosing the first matrix 0 1
1 0
⎡ ⎤
⎢ ⎥⎣ ⎦

, we then use 1W1B in the first shadow and 1B1W in 

the second shadow. The stacked result of the black secret pixel is 2B, but otherwise it 
is observed that the stacked result of white secret pixel is 1B1W or 1W1B. Therefore, 
we can view the recovered secret due to the different contrast, while we cannot get 
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any information from any one shadow because every pixel is represented as 1B1W or 
1W1B sub pixels in shadows. 

Formal contrast and security conditions for (k, n) VSS schemes are shown  
below [1]: 

(1) Contrast condition: 
For any r (≥k) shadows, 

1
, ,

ri is sK , the ORed V of rows i1, i2, …, ir of matrices in C1 

(resp. C0) satisfies H (V)≥ (m–l)  (resp. H(V) ≤ (m–h)). 
(2) Security condition: 
For any r (<k) shadows, 

1
, ,

ri is sK , the two collections of r×m matrices obtained by 

restricting each n×m matrices in C1 and C0 to rows i1, i2, …, ir are not visual in the 
sense that they contain the same matrices with the same frequencies. 

For l=0, we call a VSS scheme the PBVSS scheme because the black secret pixel is 
all reconstructed by m black sub pixels; otherwise we call it the NPBVSS scheme. In 
this paper, we use (k, n, h, l, m)-VSS scheme to denote a (k, n) VSS scheme with the 
whiteness h, l and the pixel expansion m. Example 1 shows (k, n, h, l, m)-PBVSS and 
(k, n, h, l, m)-NPBVSS schemes, respectively. 
 
Example 1. For a (2, 2, 1, 0, 2)-PBVSS scheme with the black and white matrices 

B1=
0 1
1 0
⎡ ⎤
⎢ ⎥⎣ ⎦

 and B0=
0 1
0 1
⎡ ⎤
⎢ ⎥⎣ ⎦

, the black secret pixel is represented as 2B sub pixels and 

the white pixel is 1B1W sub pixels in the reconstructed image. For a (2, 3, 2, 1, 3)-

NPBVSS with B1=
1 0 0
0 1 0
0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

and B0=
1 0 0
1 0 0
1 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

, the black secret pixel is 2B1W sub 

pixels and the white secret pixel is 1B2W sub pixels in the reconstructed image. Table 
1 shows the diagrammatic representation for the stacked results of (2, 2, 1, 0, 2)-
PBVSS scheme and the (2, 3, 2, 1, 3)-NPBVSS scheme. The whiteness percentage PW 
means the whiteness percentage in all the white (or black) secret pixels for a 
reconstructed image.                                                                                                      

Table 1. The (2, 2, 1, 0, 2)-PBVSS scheme and the (2, 3, 2, 1, 3)-NPBVSS scheme 

(k, n, h, l, m)-VSS schemes Secret pixel Probability 
Reconstructed 

pixel 
Whiteness 

percentage PW 
1/2   
1/2  

50% 

1/2  
(2, 2, 1, 0, 2)-PBVSS scheme 

 
1/2  

0% 

1/3  
1/3   
1/3   

67% 

1/3  
1/3  

(2, 3, 2, 1, 3)-NPBVSS scheme 

 
1/3  

33% 
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2.2   Almost Ideal VSS Scheme: The Viet-Kurosawa Scheme  

By using the reversing operation of copy machines, Viet-Kurosawa scheme shows a 
novel idea to achieve the perfect reconstruction of white pixel by using a (k, n)-
PBVSS scheme [3]. The sharing phase includes two steps: (1) distribution (2) 
reconstruction. A brief description for the Viet-Kurosawa scheme is shown as 
follow. 
 
Distribution phase 
Perform a (k, n)-PBVSS scheme R times independently. These n shadows, 

1
, ,i i

n
s sK , 

are used for the ith run, i∈[1, R]. Finally, Participant j gets R shadows 1 , , R

j j
s sK . 

Reconstruction phase 
For ith run, we first reconstruct the image Ti by stacking any k ore more shadows, 

1 r

i i
i i iT s s= + +K , i∈[1, R]. Note that each Ti is a reconstructed image of the PBVSS 

scheme. To improve the contrast we perform the following operations: reverse the 
reconstructed image in each round and then stack them; finally reverse the stacked 

image again. The reconstructed image of the ith run is 1 2 iT T T+ + +K ; for example, 

the final run is 1 2 RT T T+ + +K . 
Doing more runs, the whiteness of the white secret pixel is increased. Table 2 

shows a (2, 2, 1, 0, 2)-PBVSS scheme with reversing for two runs. The whiteness 
percentage of the white secret pixel is increased from 50% to 75 % and the whiteness 
percentage of the black secret pixel is still 0 %. The average PW of the white secret 

pixel when finishing R runs is ( )1 (1 )Rh m− −  [3]. To achieve the percentage 

( )1 (1 ) 100%Rh m− − ≈  (ideal contrast), the R value needs to be infinite. So there is a 

loss of resolution for the Viet-Kurosawa scheme within finite runs. Also, for the 
higher resolution, a participant needs to store more shadows. 

Table 2. An almost ideal contrast VSS scheme based on (2, 2, 1, 0, 2)-PBVSS scheme for two 
runs 

Secret 
Pixel 

Probability T1 T2 1 2U T T= +  U  
Whiteness 

percentage PW 
1/4     
1/4     
1/4     

 

1/4     

75% 

 1     0% 

2.3   Ideal VSS Scheme: Cimato et al’s Scheme 

Cimato et al. [4] used reversing operation to propose an ideal contrast VSS scheme 
based on (n, k, h, l, m)-PBVSS scheme which the whiteness percentage of the white 
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secret pixel PW=100% (ideal contrast) can be achieved within m finite runs. Meantime 
the shadow size is not expanded. The sharing process is described below. 

Distribution phase 
When sharing a black (resp. white) pixel, the dealer randomly chooses one matrix 
form C1 (resp. C0) and delivers a pixel pi, where (p1, …, pm) is located in ith row of 
matrix, to the i

j
s  shadow for participant j. Finally, participant j gets m shadows 

1 , , m

j j
s sK  for m runs. Note that a secret pixel is represented by a pixel in the shadow, 

and hence the shadow size is same to the original image. 

Reconstruction phase 
For ith run, we first reconstruct the image iα  by stacking any k ore more shadows, 

1 r

i i
i i is sα = + +K , i∈[1, m]. Using reversing and stacking to get 1 2 ... iβ α α α= + + + , 

the reconstructed image is then obtained by reversing again, i.e, β . 

Table 3 shows the whiteness percentage of the white secret pixel can be improved 
to 100% within two runs. It is evident that the whiteness percentage of the black 
secret pixel is still 0% because we use the PBVSS scheme. So it is a really ideal 
contrast VSS scheme when finishing m runs. 

Table 3. The ideal contrast VSS scheme based on (2, 2, 1, 0, 2)-PBVSS scheme for two runs 

Secret 
Pixel 

Probability 1α  2α  1 2β α α= +  β  
Whiteness 

percentage PW 
1/2      
1/2     

 
100% 

 1     0% 

3   The Proposed RPCVSS Schemes 

In this section, two RPVCC schemes based on PBVSS scheme and one RPVCC 
scheme based on NPBVSS scheme are proposed. All schemes achieve the real perfect 
contrast, i.e., the whiteness percentage of white and black secret pixels are 100% and 
0%, respectively, within finite runs. 

3.1   RPCVSS Scheme Based on Perfect Black VSS Scheme 

For the description of the construction, we first define a matrix operation ( )Γ ⋅  that 

cyclically shifts right one sub pixel in every m sub pixels (for a secret pixel) in the 
shadow image. 

Let the shadow image s be represented as a matrix [ ]ijks  as follows, where ijks  

means the secret pixel ijs  in the (W H)-pixel secret image replaced by m sub pixels 

1 2( , , , )ij ij ijms s sK , where i∈[1, H], j∈[1, W], k∈[1, m]. Then the matrix operation 

( )[ ]ijksΓ = [ ( )]ijksγ , where 1 2( ), , ,ij ij ijms s sγ K = 1 1( , , , )ijm ij ijms s s −K . 
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Method A: 
Distribution phase 
Perform a (n, k, h, l=0, m)-PBVSS scheme to generate n shadows, 1 1

1
, ,

n
s sK  to n 

participants, for the first run. For ith run, Participant j gets the shadows 1( )i i

j j
s s −= Γ , 

[2, ( 1)]i m h∈ − + . Finally a participant has (m−h+1) shadows. 

Reconstruction phase 
Same to the Viet-Kurosawa scheme. 
 
Theorem 1. The whiteness percentages PW for the white and black secret pixels of the 
RPCVSS scheme based on Method A are 100% and 0%, respectively, when finishing 
(m−h+1) runs. 

Proof. here are ‘m−h’B‘h’W sub pixels for the white secret pixel. The maximum 
interval between two “0” is (m−h) an thus when shifting right one bit (m−h) times, 
there is at least a white sub pixel in a same position in a white secret pixel block for 
these Ti images, i=∈[1, (m−h+1)]. Reversing and stacking will result in all black sub 
pixels and finally reverse again to get the pure white color. It is evident that the 
whiteness percentage of the black secret pixel is PW=0% because we use the PBVSS 
scheme and other shadows are obtained from the shadows in the first run by shifting 
operation. The proof is completed.                                                                                
 
For even m and h=m/2, the number of runs can be substantially reduced to two. From 
observation of the proof for Theorem 1, it is evident that if only assure a same 
position of at least a white sub pixel, we can reconstruct the ideal-contrast image 
using the same decoding way. 
 
Method B: 
Distribution phase 
Perform a (n, k, h=m/2, 0, m: even)-PBVSS scheme to generate n shadows, 1 1

1
, ,

n
s sK  

to n participants, for the first run. For the second run, Participant j gets the shadows 
2 1

j j
s s= , [1,  ]j n∈ . Finally a participant has only two shadows. 

Reconstruction phase 
Same to the Viet-Kurosawa scheme. 
 
Theorem 2. The whiteness percentages PW for the white and black secret pixels of the 
RPCVSS scheme based on Method B are 100% and 0%, respectively, when finishing 
two runs. 

Proof. Because the two shadows for these two runs are complemented, the sub pixel 
in a in a white secret pixel block for T1 and T2 are mutually complemented. So, 
reversing and stacking will result in all black sub pixels in the white secret pixel and 
finally reverse again to get the pure white color. Same as the poof in Theorem 1, the 
whiteness percentage of the black secret pixel is PW=0%. The proof is completed.     
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Using the (2, 2, 1, 0, 2)-PBVSS scheme, we can design a RPCVSS scheme (Method 
A) with two runs (since (m−h+1)= 2). Table 4 shows that our RPCVSS scheme has 
the whiteness percentage of the white (resp. black) secret pixel PW=100% (resp. 0%) 
when finishing two runs. 

Table 4. The RPCVSS scheme based on (2, 2, 1, 0, 2)-PBVSS scheme for two runs 

Secret 
Pixel 

Probability T1 T2 1 2U T T= +  U  
Percentage of  
whiteness PW 

1/2     
 

1/2     
100% 

 1     0% 

3.2   RPCVSS Scheme Based on Non-perfect Black VSS Scheme 

Both the almost ideal VSS scheme and the ideal VSS scheme [3, 4] are based on 
PBVSS scheme. The shift operation used in Section 3.1 can also be used to design a 
RPCVSS scheme based on the NPBVSS scheme. However, the difference of 
whiteness ‘h−l’ needs to be odd number and the exclusive or (XOR) operation is 
required for decoding. 

Generally, copy machines support reversing operation (i.e. NOT) and OR can be 
done by stacking shadows. By Boolean reduction, the XOR(⊕) operation can be 

reduced as ( ) ( )A B A B A B⊕ = + + + . Thus XOR operation can be implemented by 

four NOTs and three ORs. 
 
Method C: 
Distribution phase 
Perform a (n, k, h, l≠0, m)-NPBVSS scheme, where ‘h−l’ is odd number, to generate n 
shadows, 1 1

1
, ,

n
s sK , for the first run. For ith run, Participant j gets the shadows 

1( )i i

j j
s s −= Γ , [2,  ]i m∈ . Finally a participant has m shadows. 

Reconstruction phase 
Reconstruct Ti image for i-th run, i∈[1, m]. Use XOR operation to reconstruct 

1 ... mU T T′ = ⊕ ⊕ . If ‘m−h’ is even (i.e., ‘m−l’ is odd) then the reconstructed image is 

U ′ ; otherwise the reconstructed image is U ′ . 
 
Theorem 3. The whiteness percentages PW for the whie and black secret pixels of the 
RPCVSS scheme based on Method C are 100% and 0%, respectively, when finishing 
m runs. 

Proof. There are ‘m−h’B‘h’W (resp. ‘m−l’B‘l’W) sub pixels for the white (resp. 
black) secret pixel. When shifting right one bit m times, there is m−h (resp. m−l) black 
sub pixels for the white (resp. black) secret pixels in U ′ . Suppose ‘m−h’ is even 
(resp. odd), then XORing will result in all white sub pixels for the white pixels in U ′  

(resp. U ′ ). Thus, PW for the white secret pixel is 100%. On the other hand, even 
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(resp. odd) ‘m−h’ means odd (resp. even) ‘m−l’ since ‘h−l’ is odd. It is evident that 
XORing operation will result in all black sub pixels for the black pixels in U ′  (resp. 

U ′ ), i.e., PW for the black secret pixel is 0%. The proof is completed.                        
 

Example 2. Using a (2, 3, 2, 1, 3)-NPBVSS with B1=
1 0 0
0 1 0
0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

 and B0=
1 0 0
1 0 0
1 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

 to 

design our RPCVSS scheme (Method C), we show the patterns of black and white 
pixels for these three runs. 

Suppose three sub pixels for the white secret pixel in the 1st-run shadow 1

1
s  is (010) 

for Participant #1, where 1 and 0 denote black and white colors, so Participant #2 and 
Participant #3 also have the pattern (010) on 1

2
s  and 1

3
s . Then the patterns of sub 

pixels for other shadows 2

1
s , 3

1
s , 2

2
s , 3

2
s , 2

3
s  and 3

3
s  are determined from the 

following. 

The patter in 2

i
s  is 1(the pattern in )

i
sγ = (010)γ = (001), i=1, 2, 3; 

the patter in 3

i
s  is 2(the pattern in )

i
sγ = (001)γ = (100), i=1, 2, 3. 

Suppose three sub pixels for the black secret pixel in the 1st-run shadow 1

1
s  is also 

(010) for Participant #1, so Participant #2 and Participant #3 have the patterns (100) 
and (001) on 1

2
s  and 1

3
s , respectively. Then the patterns of sub pixels for other 

shadows 2

1
s , 3

1
s , 2

2
s , 3

2
s , 2

3
s  and 3

3
s  are determined from the following. 

The patter in 2

1
s  is 1

1
(the pattern in )sγ = (010)γ = (001); 

the patter in 3

1
s  is 2

1
(the pattern in )sγ = (001)γ = (100); 

the patter in 2

2
s  is 1

2
(the pattern in )sγ = (100)γ = (010); 

the patter in 3

2
s  is 2

2
(the pattern in )sγ = (010)γ = (001); 

the patter in 2

3
s  is 1

3
(the pattern in )sγ = (001)γ = (100); 

the patter in 3

3
s  is 2

3
(the pattern in )sγ = (100)γ = (010). 

Table 5 shows that our RPCVSS scheme has the whiteness percentages of the 
white and black secret pixels are PW=100% and 0%, respectively, when finishing 
three runs. We successfully implement a real perfect contrast VSS scheme from a 
NPBVSS scheme.                                                                                                          
 
Note that as the Method C uses the XOR operation. For obtaining the ideal-contrast 
secret image it can not be implemented just by superimposing the shadows but need 
using XOR operations among shadows, i.e., 1 ... mU T T′ = ⊕ ⊕ . As the above 

description, one XOR can be implemented by 4 NOTs and 3 ORs. For example, to 

get 1 2T T⊕ , one needs to first superimpose separately ( 1 2and T T ) and ( 1 2 and T T ). 

Then will have to process ( 1 2and T T ) (resp. 1 2and T T ) to get ( 1 2T T+ ) (resp. 
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1 2T T+ ) and then superimpose them. So, although it does not follow the traditional 

VSS scheme where just superimposes shadows and no additional computation is 
required, it still can be implemented using the copy machine with reversing function 
to achieve the XORed result step by step according the above procedure. Even if we 
do not have the copy machine with reversing function, like the Viet-Kurosawa 
scheme, Method C can reconstruct the secret image by stacking the shadows 
directly in the same way as the traditional VSS scheme. The reason is that for the 
same round our shadows are just obtained from the first shadow by cyclically 
shifting right a creation position. 

Table 5. The RPCVSS scheme based on (2, 3, 2, 1, 3)-NPBVSS scheme for three runs 

Secret 
Pixel 

Probability T1 T2 T3 1 2 3
U T T T′ = ⊕ ⊕  U ′  

Whiteness 
percentage PW 

1/3      
1/3       
1/3      

100% 

1/3      
1/3       
1/3      

0% 

4   Experimental Results and Comparison 

We show experimental results of the (2, 2, 1, 0, 2)-PBVSS scheme, the (2, 2, 2, 0, 4)-
PBVSS scheme and the (2, 3, 2, 1, 3)-NPBVSS scheme among the Viet-Kurosawa 
scheme [3], Cimato et al’s scheme [4] and our proposed RPCVSS schemes. The first 
twos show the case of different h, and the third shows the case of NPBVSS scheme. 
Also, discussion and comparison for these schemes are given. 

4.1   Experimental Results 

Fig. 1 is the original secret image (a school badge of National Dong Hwa University). 
Fig. 2 (a) is our RPCVSS scheme, Fig. 2(b) is the almost ideal contrast scheme (the 
Viet-Kurosawa scheme) and Fig. 2(c) is the ideal contrast scheme (Cimato et al’s 
scheme) based on the (2, 2, 1, 0, 2)-PBVSS scheme. For viewing convenience, we 
 

 
Fig. 1. The original secret image 
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2
nd run 

(a-2) (b-2) (c-2)

3
rd run 

(b-3)

4
th run 

(b-4)  

Fig. 2. Different schemes based on the (2, 2, 1, 0, 2)-PBVSS scheme (a) the proposed RPCVSS 
scheme (Method A) (b) the Viet-Kurosawa scheme (c) Cimato et al’s scheme 

arrange the reconstructed images to the same original image size without expansion. 
From Fig. 2(b), the reconstructed images by the Viet-Kurosawa  scheme of 1, 2, 3, 4- 
run, it is shown that the whiteness of the white secret pixel is increased gradually. 
There are still noise-like random dots on the reconstructed image in Fig. 2(b-4). On 
the contrary, Figs. 2(a) and (c) show that the proposed scheme (Method A) and 
Cimato et al’s scheme achieve 100% whiteness of the white secret pixel within two 
runs. The pixel expansion of our RPCVSS scheme is 2; however there is no pixel 
expansion for Cimato et al’s scheme because it uses the construction nature of the 
probabilistic VSS schemes [5, 6]. 

When using (2, 2, 2, 0, 4)-PBVSS scheme, do the same experiment like Fig. 2. The 
results are given in Fig.3. Our scheme (Method B) still achieves 100% whiteness of 
the white secret pixel within two runs. According Cimato et al’s construction in [4], 
they prepared four shadows for each participant but, in fact, only three runs  
are required to achieve 100% whiteness. This is due to the using of 2B2W  for a white 
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1
st run 

(a-1) (b-1) (c-1) 

2
nd run 

(a-2) 
(b-2) (c-2) 

3
rd run 

(b-3) (c-3) 

4
th run 

(b-4)   

Fig. 3. Different schemes based on the (2, 2, 2, 0, 4)-PBVSS scheme (a) the proposed RPCVSS 
scheme (Method B) (b) the Viet-Kurosawa scheme (c) Cimato et al’s scheme 
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secret pixel and there is at least one white sub pixel in a same position when finishing 
three runs. Thus, the number of runs for Cimato et al’s scheme should be modified to 
(m−h+1). In Fig. 4, we show a RPCVSS scheme based on the (2, 3, 2, 1, 2)-NPBVSS 
scheme (Method C). We have the perfect whiteness of the white secret pixel and 
perfect blackness of the black secret pixel when finishing three runs. However, we see 
nothing in other runs except the first and last runs due to the XOR operation. 

1st run 2nd run 3rd run  

Fig. 4. The RPCVSS scheme based on the (2, 3, 2, 1, 2)-NPBVSS scheme (Method C) 

4.2   Discussion and Comparison 

In this section, we discuss about the security, compatibility, complexity and contrast 
for the R-run VSS schemes. Besides, the comparison is given for three schemes: the 
RPCVSS schemes, the almost ideal contrast scheme and the ideal contrast scheme.  
 
Security: For the R-run (k, n) VSS schemes, as examples, the participants store more 
than one shadow for improving the contrast of the reconstructed image, e.g.,  the 
dealer needs to prepare n R shadows, i

j
s , i∈[1, R] and j∈[1, n]. Considering 

security, the first concern is that one should not get any secret information from his 
own shadows, 1 , , R

j j
s sK . The Viet-Kurosawa scheme performs the VSS scheme R 

times independently. Cimato et al’s scheme uses the concept of probabilistic scheme 
and delivers the elements in one row to the shadows of different runs.In the same 
position of m different shadows, the frequencies of black and white sub pixels are 
same and thus one cannot obtain any information from his own shadows. The 
proposed RPCVSS schemes only perform the shift operation on the first shadow to 
generate other shadows. Therefore, all three schemes satisfy the first security concern, 
i.e., there is no any mutual information among their own shadows. 

The second concern is that whether stacking any k or more shadows of the different 
run from the different participants, the secret information should be kept secret or not. 
For this scenario, the leak of secret information does not affect the secrecy of secret 
sharing scheme. The reason is that when one discloses the shadow, in fact, he agrees 
to share the secret. So, at this time, if one can see the secret image it does not 
compromise the secrecy. Unlike the Viet-Kurosawa scheme performing the VSS 
scheme R times independently, Cimato et al’s scheme and the RPCVSS schemes may 
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have the secret image when stacking shadows of different runs. Considering these two 
schemes constructed from (2, 2, 1, 0, 2)-PBVSS scheme, our cyclic shift operation 
and Cimato et al’s delivering elements of one row to different shadows are just right 
changing the black and white color in the stacking result. For example, for the 
RPCVSS scheme, when stacking the shadows of different runs the black and white 

matrices in the stacked result are 1
0 1
0 1B ⎡ ⎤′ = ⎢ ⎥⎣ ⎦

 and 0
0 1
1 0B ⎡ ⎤′ = ⎢ ⎥⎣ ⎦

 which same to the 

white and black matrices 0
0 1
0 1B ⎡ ⎤= ⎢ ⎥⎣ ⎦

 and 1
0 1
1 0B ⎡ ⎤= ⎢ ⎥⎣ ⎦

 in a (2, 2, 1, 0, 2)-PBVSS 

scheme. Fig. 5 shows this situation. Both schemes are secure even though Figs. 5(a) 
and (b) reveal the secret. 
 
Compatibility: Even if we do not have the copy machine with reversing operation, 
the Viet-Kurosawa scheme could reconstruct the image by stacking the shadows 
directly. We call the Viet-Kurosawa scheme fully compatible to the traditional VSS 
scheme. It is evident that the proposed RPCVSS schemes and Cimato et al’s scheme 
also have the compatibility (see Fig. 2 ~ Fig. 4). However, in [4], another construction 
method based on binary secret sharing scheme and Boolean function method [7, 8] 

was proposed for reducing the number of shadows to log( 2) 1n k− + +⎢ ⎥⎣ ⎦  (lower 

bound). The scheme does not hold the compatibility. For example an ideal contrast (k, 
k) VSS scheme in [4] only needs one shadow and one run to achieve the ideal contrast 
by XORing these shadows but get nothing when stacking them directly. Although our 
Method C for NPBVSS scheme also uses XOR operation but we can reconstruct the 
image by direct stacking. 
 
Complexity: Operations of stacking any k shadows equal (k−1) ORs. When finishing 
R runs of the Viet-Kurosawa scheme, we require R NOTs to reverse Ti and (R−1) ORs 
to stack them and finally a NOT to reverse the image. So, the total operations are 

( )( 1) ( 1) ( 1)R k R Rk− + − = − ORs, (R+1) NOTs. Instead of R by (m−h+1) and 2, the 

operations are ( )( 1) 1m h k− + −  ORs, (m−h+2) NOTs (Method A and Cimato et al’s 

scheme), and (mk−1) ORs, 3 NOTs (Method B). For the RPCVSS scheme (Method 
 
C) based on NPBVSS scheme, except the operations of stackind shadows, we require 
(k−1) XORs and one NOT when finishing m runs. So, the total operations are 

( )( 1) 3( 1) ( 2 3)m k m mk m− + − = + −  ORs and (4(m−1)+1)= (4m−3) NOTs. (Note: 1 

XOR = 3 ORs + 4 NOTs). 

Contrast: The Viet-Kurosawa scheme is an almost ideal contrast scheme but our 
proposed RPCVSS scheme and Cimato et al’s scheme are really ideal contrast 
scheme. So the reconstructed images of the last two schemes are better than the first 
scheme. Actually, our scheme is the deterministic VSS scheme with the pixel 
expansion m and Cimato et al’s scheme is the probabilistic VSS scheme with no pixel 
expansion. The disadvantage of the probabilistic VSS scheme is that details of the 
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(a) (b) (c)  

Fig. 5. Stacking 1 2

1 2
s s+  for the RPCVSS scheme and Cimato et al’s scheme based on the (2, 2, 

1, 0, 2)-PBVSS scheme (a) the original secret image: white background color (b) the RPCVSS 
scheme: black background color (c) Cimato et al’s scheme: black background color 

Table 6. Comparison of VSS schemes with reversing 

RPCVSS scheme 

Method A Method B Method C 

Viet-Kurosawa 
scheme 

Cimato et al’s  
scheme 

Number of runs m−h+1 2 m R: 1→ m−h+1 
Shadow expansion m m m m 1

OR (m−h+1)k−1 2k−1 mk+2m−3 (m−h+1)k−1 1mk −Operation 
complexity NOT m−h+2 3 4m−3 m−h+2 m+1

Compatibility YES YES YES YES 
YES (or NO for XOR 

based scheme) 
Available to NPBVSS

scheme 
NO NO YES NO NO 

Contrast The best among these three schemes 
the random dots 
due to the almost 
ideal contrast 

the loss of clarity due 
to th probabilistc 
nature  

 

picture are not recognizable if they do not consist of enough pixels. When comparing 
these two schemes, our reconsructed image is better than Cimato et al’s scheme. From 
the above description, our contrast is the best among these three schemes. 

The comparison among the proposed RPCVSS schemes and the schemes in [3, 4] 
are summarized in Table 6. The RPCVSS schemes based on PBVSS scheme has less 
runs and operations than other two schemes and the RPCVSS scheme based on 
NPBVSS is the first R-run scheme available to the NPBVSS scheme.   

5   Conclusion 

We first use the cyclic shift operation of the sub pixels to design a real perfect 
contrast VSS scheme based on the PBVSS scheme with simple reversing operation 
within less finite runs. Using the same strategy and the XOR operation (also a no-
cryptographic operation), we next propose the scheme based on the NPBVSS scheme. 
It will be interesting to further design the real perfect contrast scheme based on the 
NPBVSS scheme for even (h – l) by means of other simple operations. 
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