
E. Dubois and K. Pohl (Eds.): CAiSE 2006, LNCS 4001, pp. 495 – 509, 2006.
© Springer-Verlag Berlin Heidelberg 2006

On the Quantitative Analysis of Agent-Oriented Models

Xavier Franch

Universitat Politècnica de Catalunya (UPC),
C/Jordi Girona 1-3, UPC-Campus Nord (Omega), Barcelona, Spain

franch@lsi.upc.edu
http://www.lsi.upc.edu/~franch/

Abstract. Agent-oriented models are used in organization and information sys-
tem modelling for providing intentional descriptions of processes as a network
of relationships among actors. As such, they capture and represent goals, de-
pendencies, intentions, beliefs, alternatives, etc., which appear in several con-
texts: business process reengineering, information system development, etc. In
this paper, we are interested in the definition of a framework for the analysis of
the properties that these models exhibit. Indicators and metrics for these proper-
ties are defined in terms of the model elements (e.g., actors, dependencies, sce-
nario paths, etc.) Our approach is basically quantitative in nature, which allows
defining indicators and metrics that can be reused in many contexts. However, a
qualitative component can be introduced if trustable expert knowledge is avail-
able; the extent up to which quantitative and qualitative aspects are intertwined
can be determined in every single case. We apply our proposal to the i* notation
and we take as main case study a highly-intentional property, predictability of
model elements.

1 Introduction

Goal- and agent-oriented analysis methods and languages such as KAOS, i*, GRL or
TROPOS [1, 2, 3] are widespread in the information systems community for the re-
finement and decomposition of the customer needs into concrete goals, during the
early phase of the requirements specification [4, 5]. This kind of models represents an
organization and its processes as a network of actors and dependencies, which may be
decomposed into simpler elements.

Once built, the models can be used for different purposes. Two of the most impor-
tant ones are: analysis of the properties they exhibit, and comparison of alternatives.
In the first case, it is checked whether some properties hold in the model; some actors
or dependencies exhibit some property (either positive or not) are searched; etc. In the
second case, different models, that represent different ways of implementing organ-
izational processes or information systems, are compared with respect to properties
that have been considered as crucial. In both cases, evaluation of models is the cor-
nerstone of these analyses, and therefore some suitable metrics to rely upon are
needed.

The use of metrics with this purpose is very common in other type of models. For in-
stance, there are some suites of metrics in the field of object-oriented modeling [6, 7],
which refer to structural properties like cohesion and coupling. Properties referring to

496 X. Franch

the system itself, such as security, efficiency or cost, which mainly fall into the cate-
gory of non-functional or organizational requirements, appear when considering mod-
els of the system architecture [8]. These metrics are usually defined in terms of the
components, nodes, pipes, etc., that compose the final configuration of the system.

In the case of goal- and agent-oriented modeling, typical approaches analyse mod-
els in a qualitative way, especially in conjunction with non-functional requirements
[9], by targeting to specific properties such as availability, security and adaptability.
These target properties are decomposed into simpler criteria that may be used to
evaluate different candidate models for the system-to-be [10]. This evaluation is basi-
cally qualitative, which means that the extent up to which a criterion is fulfilled by a
candidate model is determined by expert judgement. Although qualitative analysis is a
powerful mechanism that is satisfactory in many cases, it may introduce a certain
degree of uncertainness because it relies completely on the claims that experts make.
The dichotomy among qualitative and quantitative analysis is not new and by no
means exclusive of organization or information system modelling, or even the com-
puter science discipline (see [11, p. 40] for an abridged comparison). Some research-
ers advocate that both types of analysis are exclusive [12], but others believe that they
are compatible [13] and even complementary [14]. In goal-orientation, some contribu-
tions exist that combine quantitative and qualitative analysis for finding assignment of
labels to nodes and determine its propagation in goal graphs [15, 16].

In this paper we are interested in the analysis of agent-oriented models with special
emphasis on the quantitative side. To be able to express our approach in detail, we
consider agent-oriented models written in the i* language, although we think that the
underlying concepts could be adapted to other approaches. More precisely, we want
to take profit of the networked structure of i* models to define structural indicators
that are quantitative in nature, counting actors, dependencies, and other elements;
indicators can be used to define metrics that measure model properties. Our defini-
tions will make it possible to include some expert judgement if considered necessary
to obtain more accurate results; in fact, we will see that indicators are highly custom-
izable depending on both the knowledge available on the problem (expert judgement
and current state of refinement of the model) and the effort to be invested in this proc-
ess. Due to its structural nature, our framework is expressed in terms of the OCL [17];
operators such as allInstances and select suit well for working with model
elements.

The paper is structured as follows. In section 2, we define the i* framework using
UML. In section 3, we introduce our framework for measuring i* model properties.
We analyse one particular property, predictability, in section 4, using the concepts
introduced. Finally, we provide some comparison, conclusions and future work in
sections 5 and 6.

2 A UML Definition of i*

In this section, we introduce the i* framework using the UML for defining rigorously
its concepts. We think that this section is necessary because, as reported in [18], there
are several variations in the literature for the i* notation and thus we need to make
explicit which constructs do we use in this paper and which properties do we assume.

 On the Quantitative Analysis of Agent-Oriented Models 497

Our i* framework is based on the seminal Yu’s proposal [2] with some minor sim-
plifications. Yu proposes two types of models, each corresponding to a different
abstraction level (see fig. 1): a Strategic Dependency (SD) model represents the inten-
tional level and the Strategic Rationale (SR) model represents the rational level.

A SD model consists of a set of nodes that represent actors, and a set of dependen-
cies that represent the relationships among them, expressing that an actor (depender)
depends on others (dependees) in order to obtain some objective (dependum). Alto-
gether form a network of knowledge that allows understanding “why” the system
behaves in a particular way [19]. The dependum is an intentional element that can be
a resource, task, goal or softgoal (see [2] for a detailed description).

A SR model allows visualizing the intentional elements into the boundary of an ac-
tor to refine the SD model with reasoning capabilities. Once SR models are built, the
dependencies of the SD model may be linked to the appropriate intentional elements
inside the actor boundary. According to their intentional meaning, some restrictions
apply: goal dependencies can be assigned to goals and tasks in the dependee side; the
same for task dependencies; and resource dependencies just to task dependencies.

The elements inside the SR model are decomposed accordingly to 2 types of links:

• Means-end links establish that one or more intentional elements are the means that
contribute to the achievement of an end. The “end” can be a goal, task, resource, or
softgoal, whereas the “means” is usually a task. There is a relation OR when there are
several means, which indicate the different ways to obtain the end. The possible rela-
tionships are: Goal-Task, Resource-Task, Task-Task, Softgoal-Task, Softgoal-Softgoal
and Goal-Goal. In Means-end links with a softgoal as end it is possible to specify if
the contribution of the means towards the end is negative or positive; this label may
also appear in softgoal dependencies.

• Task-decomposition links state the decomposition of a task into different intentional
elements. There is a relation AND when a task is decomposed into more than one
intentional element.

Fig. 1. Example of an i* model for an academic tutoring system

498 X. Franch

SR models have additional elements of reasoning such as routines. A routine
represents one particular course of action to attain the actor’s goal among all the exist-
ing alternatives. The concept of routine appears in [2] but no notation is provided, so
we use the similar notion of scenario path as defined in [20] based on the use case
map concept appearing in GRL [21].

In Fig. 2 we show the conceptual model in UML, corresponding to our version of
the i* language; OCL constraints are not included for the sake of brevity. It is remark-
able that dependencies are not defined as a ternary association; we have opted for
composing two binary associations to facilitate the OCL expressions that we will
write later in the metrics framework. We remark some modeling elements of interest:
the Model class (singleton), which gives a name to the model; the Node class that
provides a key to model elements; the DependableNode class, which models the in-
tentional elements for which it is possible define dependencies, that is, actors and
intentional elements of the SR model; and the MeansEndContribution and Softgoal-
Contribution classes, that differentiate means-end links and dependencies that involve
softgoals.

As an additional point, it may be argued that, in order to formulate metrics to
evaluate and eventually compare i* models, it is necessary not only to rigorously
define the semantics of the i* elements that we use, but also how the models are built,
since different people may build correct models very dissimilar in nature and of
course too much diversity would make our quantitative framework difficult to apply.
We have tackled this point in our previous work, by defining two similar, comple-
mentary methodologies for building i* models, PRiM [22] and RiSD [23], depending
on whether we create the model as a process reengineering exercise or from the
scratch, respectively. Both methodologies define rules, checkpoints and procedures to
guide model construction, therefore we may say that using them we can obtain mod-
els in a predictable and repeatable enough manner.

-sort [*] : SortType

Actor

Agent Position Roleoccupies

* *

covers

* *

*
/ plays

*

SR-Element

1
*

DependableNode Dependum

/type: IntentionalType

Dependency

dependee

depender

type: IntentionalType

Intentional Element

{ disjoint, complete }

label : String

Node

{ disjoint, incomplete }

{ disjoint, complete }

{ disjoint, complete }
head

*

tail

*

Link

MeansEnd TaskDecomposition

{ disjoint, complete }

contr : ContributionType

MeansEndContribution

Goal
Task
Resource
Softgoal

«enumeration»
IntentionalType

+
-

«enumeration»
ContributionType

boundarybelongsTo

type

dependum

1 *

TaskOrGoal

-name : String

ScenarioPath

type

1..*

*

{ord}

-name : String

Model 1

owner

1..*

-contr [0..1] : ContributionType

SoftgoalContribution
dependency.type

DependeeLink

step

Fig. 2. A UML conceptual model for i*

 On the Quantitative Analysis of Agent-Oriented Models 499

3 A Framework for Metrics on i*

In this section, we explore the use of structural indicators that can be used to define
structural metrics that measure the properties of an i* model, i.e. those properties that
depend on the form of the model and the types of its elements. Structural metrics are
valuable for both analysing a highly abstract model of a system of any kind, com-
posed basically by roles, and for comparing different feasible realizations of this ab-
stract model (which take the form of actor models too, but composed basically by
positions and agents) with respect to the most relevant criteria established in the mod-
elled world. Some examples of properties that appear in the literature are:

• Ability, workability and commitment [2].
• Predictability, security, adaptability, coordinability, modularity and others [10].
• Correctness, completeness, verifiability, modifiability and traceability [24].

For a given property object of measure, it may be the case that all its elements (actors
and dependencies) influence the indicator. However, it is also possible that just elements
of some particular type affect this property. Furthermore, some individual elements may
be identified as especially relevant for the property; in the most general case, all the
elements may have a different weight in the indicator. We need then to take into account
all these situations if we aim at having a widely applicable metrics framework.

For a given property, different indicators can be defined according to two criteria:

• Returned value. We distinguish among numerical, logical and model-element indi-
cators. Numerical indicators return a value in the interval [0, 1]; this value meas-
ures the degree of accomplishment of some criteria. Logical indicators evaluate
true or false, and are used to discern if a property is fulfilled or not. Model-element
indicators return a (set of) model element (typically, actors, scenario paths or de-
pendencies) that fulfils a property (e.g., scenario path that maximizes a given crite-
ria, or set of actors that are greater than some threshold).

• Subject of measure. We can measure the whole model, individual elements or even
groups of individual elements. In the first case we have global indicators, which
produce a single value of any type. In the second case, we have local indicators,
which compute a value for any element of a given type (actor, scenario path, etc.,
or even dependency of some type). In the third case, we talk about group indica-
tors, which compute a value for any combination according to the grouping criteria
(e.g., pairs of actors).

Therefore, given a property such as completeness, we may measure completeness of
the model, of an element (e.g., an actor) or a group of related elements (e.g., all the
actors of the model), with the purpose of deciding if they are complete or not, or to
what extent they are complete (e.g., measuring the percentage of undefined elements)
or obtaining the elements that are not complete yet. Some of the indicators can be
built on top of the others, typically (but not always): logical and model-element indi-
cators are defined in top of numerical ones; global and group metrics are defined on
top of local ones.

In the next section we develop as example indicator for one property, predictabil-
ity, following the concepts introduced in this section.

500 X. Franch

4 Analysing Predictability of i* Models

Predictability is used in [10] as one of the properties of interest when analysing or-
ganizational styles. Its interest comes from the fact that “actors can have a high degree
of autonomy depending on the way they undertake action and communication in their
domains. It can be then sometimes difficult to predict individual actor characteristics
as part of determining the behaviour of an organization at large” [10]. Therefore,
discerning up to what extent the actors of a model are predictable may be useful for
knowing more about a model.

From the several points of view we can take to analyse predictability, we opt by an
external perception, i.e. how an actor perceives predictability of other actors. To be
more precise, an actor is interested to know how predictable is the behaviour of those
actors it depends upon, and this yields to select dependencies as the main construct of
interest for defining the metrics. In the rest of the section, we first analyse predictabil-
ity of individual dependencies and then we show several indicators that may be de-
fined upon individual predictability. We will use OCL for measuring predictability on
its different forms.

4.1 Predictability of Individual Dependencies

Yu states very clearly which is the degree of freedom bound to dependencies [2]:

• Goal dependencies. The dependee is free to, and is expected to, make whatever
decisions are necessary to achieve the goal.

• Task dependencies. The depender makes the decisions, therefore the dependee
cannot take a behaviour different than expected.

• Resource dependencies. They represent the finished product of some deliberation-
action process, and it is assumed that there are no open issues to be addressed.

• Softgoal dependencies. The depender makes the final decision, but does so with the
benefit of the dependee’s know-how.

Therefore we may conclude that task and resource dependencies are totally predict-
able whilst goal and softgoal ones are not. Considering that 1 represents the highest
predictability and 0 the lowest, we may define predictability of dependencies as:

context Dependency::predictability(): Real
 post: type = Task implies result = 1.0
 post: type = Resource implies result = 1.0
 post: type = Goal implies result = goalPredictability()
 post: type = Softgoal implies result = softgoalPredictability()

To define goal and softgoal predictability we may opt among different strategies:

• To assign a fixed weight to every single goal and softgoal dependency of the
model. This is a very basic quantitative approach, with the assumption that the fac-
tor that rules predictability is the existence of a dependency, whilst its particular
meaning or hidden intentionality is not so relevant.

• To provide weights to individual dependencies by expert judgement. This option
yields to a qualitative reasoning issue appearing in the context of our quantitative
procedure, which aligns with the point of view of [14]. This is the option to choose

 On the Quantitative Analysis of Agent-Oriented Models 501

when we have just the SD model, which happens in the first stages of organization
analysis. For instance, if we apply our RiSD method [23], we build a SD model
from the scratch and then perform analysis before proceeding further on. At this
stage, we have just the most relevant elements in the model, which means that
qualitative analysis is feasible in terms of cost. Experts may use techniques such as
laddering [25] or AHP [26] as a help during their assessment.

• To find some suitable rationale for determining predictability. This alternative
makes our approach basically quantitative; in fact, it may be defined in a total
quantitative manner. This option seems the most appropriate when a SR model is
available, which may happen in two ways: a) from the starting SD model, obtained
e.g. applying RiSD, dependencies and actors are refined; b) the i* model is synthe-
sised from observation of the current organization and then the SR model exists
from the very beginning, as we do in our PRiM method [22].

Fig. 3 summarizes these possibilities. It shows how expert judgement is needed in
almost all possible combinations. Expert judgement is represented by underlined
elements, i.e. values or functions that must be provided in order to build the metrics.

We focus on the last case, which requires more decisions to take. Considering soft-
goal dependencies, we decompose their evaluation into two factors. First, a factor
bound to the depender actor, which represents how capable it is to take predictable
decisions when resolving softgoals; we consider this factor bound to actors’ ability
and not to individual softgoal dependencies. Second, a factor bound to the depend-
ency, which represents the available know-how with respect to the given dependum.
For the OCL expression, we must take into account that the depender can be an actor
or an SR element, and in the second case we obtain its owner; a let expression
makes this easier to write:

context Dependency::softgoalPredictability(): Real
pre: type = Softgoal
let ownerActor(x: DependableNode): Actor =
 if x.oclIsTypeOf(Actor) then x else x.owner in
post: result = ownerActor(depender).dependerExpertise()
 * knowHow()

Depender expertise may be dealt with by two different strategies: considering ex-
pert judgement to weight individual actors, or else to agree a given weight for all the
actors. Concerning available know-how, we may define a strategy for measuring
predictability using the SR model as follows. We define the know-how as the number
of dependees that state a contribution value to the dependum. Then, we need a func-
tion such that: 1) when the number of contributions is 0, the function is also 0 (worst
predictability because the dependees do not know how to contribute to the softgoal);
2) as the number of contributions grow, the function tends to 1 (best predictability).

An easy, problem-independent way to define the function is 1 – (slope/n+1), being
n the number of known contributions for the softgoal dependum and slope a constant
(defined as an attribute of the model) that determines the slope of the function (see
fig. 4, left). Another possibility is to define a utility function [27] such that we define
a straight line from 0 to the maximum number of dependee contributions to a softgoal
dependum that exists in the model (see fig. 4, right).

502 X. Franch

predictability of a dependency
Dependency::predictability()

fixed (= 1.0)

others
expert judgement

considered better opt ion

SR model exist s and
quant itat ive-based
approach preferred

assign a fixed weight

assign individual weights
by expert judgement

Model::goalPredictability()
post result = value

Model::softgoalPredictability()
post result = value

Dependency::predictability()
pre type = goal or type = softgoal
post result = function(self.label)

goal

softgoal
Dependency::goalPredictability()
pre type = goal
post ... -- fixed

weight computed from
possible task combinat ions

know-howdepender expert ise

assign a fixed weight assign individual weights
by expert judgement

Actor::dependerExpertise()
post result = value

Actor::dependerExpertise()
post result = function(self.label)

determine funct ion

inverse
funct ion

ut ility
funct ion

Dependency::knowHow()
post result = ... -- fixed

Model::slope = value

Dependency::knowHow()
post result = ... – fixed

Model::slope = value

Dependency::softgoalPredictability()
pre type = softgoal
post ... -- fixed

count ing considered
enough

task, resource

Fig. 3. Procedure for determining the Predictability of individual dependencies

1.0 1.0

→ ∞

→ 1.0

n

Fig. 4. 2 different possibilities of know-how functions: left, inverse function with slope = 1;
right, utility function (n = maximum number of dependee contributions to softgoal dependum)

The resulting OCL definition for the first case is:

 context Dependency::knowHow(): Real
pre: self.type = Softgoal
 let theModel: Model = Model.allInstances()->any() in
let contributionsToSoftgoalDep(d: Dependency): Integer =
 d.dependeeLink.oclAsType(SoftgoalContribution)->

 select(contr->notEmpty())->size() in
post: result = 1 – theModel.slope /

(contributionsToSoftgoalDep(self)+1)

Fig. 5 presents an example of this case. It is an excerpt of a model for a distance
learning environment. The dean has as one of her goals to achieve academic quality, and
for this goal she depends on teachers and tutors for having Good Course Dynamics.

 On the Quantitative Analysis of Agent-Oriented Models 503

Dean

D

D+ Marks Avai-
lable T ime ly

Personalized
Feedback
Provided

Group
Feedback
Provided

D

FAQsExam
Feedback
Provided

Answer
Messages

Daily

+

++

– D
D

D

D

Good Course
Dynamics

Tutor

Teacher

Fig. 5. Distance learning environment model: predictability of softgoal dependencies

There are several ways in which teachers may contribute positively to this softgoal:
publishing exams’ marks timely, answering students’ messages daily and making
FAQs lists available. An important issue that influences course dynamics in distance
learning is the feedback that teachers provide to students about their exams. There are
roughly two strategies: sending personalized messages to students commenting their
mistakes, or giving group support by making public the solution and the evaluation
criteria, and sending personalized information just on demand. The first strategy is
considered to impact positively into the dynamics of the course, but not the second.
Concerning tutors, it has not been investigated yet how they contribute to course dy-
namics. Thus, we have 5 contributions to the softgoal dependency; applying the defi-
nition above with Model.slope = 1, GoodCourseDynamics.knowHow() = 0,83.
Since the dean is a highly strategic actor, we may assume that her dependerExper-
tise() = 1,0 and GoodCourseDynamics.softgoalPredictability() = 0,83.

Concerning goal dependencies, unpredictability depends on how many ways the
dependees have to fulfil the goal. As stated in section 2, a goal dependency may have
as intentional elements on the dependee side just goals and tasks. In both cases, the
different task combinations that we may find descending by the goal or task, using
means-end and tasks decompositions, are computed: the more combinations are
found, the less predictable is the dependee with respect to that dependency. It is worth
to remark that if the dependency involves more than one dependee, unpredictability
appears from the very beginning, because this means that there are many ways to
attain the goal dependum. Also we have to deal with the case that the dependee is not
a SR element but an actor, which means that the dependency has not been assigned
yet to an intentional element and thus unpredictability is maximized (i.e., equals to 0).

Similarly to the case above, a problem-independent function can be defined as the
inverse of the number of combinations. We outline the corresponding OCL function,
not including the function that computes the number of combinations:

504 X. Franch

context Dependency::goalPredictability(): Real
pre: self.type = Goal
let nbTaskCombinations(d: Dependency) = … in
post: nbTaskCombinations(self) = 0 implies result = 0
post: nbTaskCombinations(self) > 0 implies

 result = 1 / nbTaskCombinations(self)

Fig. 6 presents an example of this case focusing on how exam evaluation feedback
is provided. The two goals introduced in fig. 5 are refined. The most general goal that
appears, Evaluation Feedback Provided, is the dependee of the student’s goal Feed-
back from Exams Acquired. Since this goal has two means-end decomposition (which
are implicitly OR-ed, see section 2), two different ways to provide feedback are being
stated. Therefore, the evaluation for this dependency is 1 / 2 = 0,5. Effects of unpre-
dictability are clear if we analyse how the elements that appear in the decomposition
relate to other model elements. For instance, Personalized Feedback Provided has a
negative contribution to the Personal Workload kept Low softgoal that the teacher
has. This contribution is stating that deciding among Personalized or Group Feedback
Provided depends on what the teacher considers a reasonable threshold for her work-
load, and since this is out of the student’s control, predictability gets damaged.

As a final remark, we would like to point out that the obtained indicator for de-
pendency predictability is highly customizable (therefore reusable and repeatable);
key points are: does the SR model exist or not?, do I really need expert judgement
or do I keep my approach purely quantitative?, if expert judgement is chosen, do I
prefer to weight individual elements or do I assign the same weight to all of them?
The procedure depicted at fig. 3 shows clearly the needed steps; there we represent
the information required during the process by underlined italics in the body of
OCL expressions.

Student

D

Personalized
Feedback
Provided

Group
Feedback
Provided

Tutor
Teacher

Exa m
Feedback
Provided

Personal Work-
load Kept Low

–

Send
Personal
Messages

Make
Cla rifications

Publish
Correct ion

Criteria

Send
Detailed

Evaluation
Write Exa m

Solution

Provide
Group

Ass istance

Feedback
fro m Exa ms

Acquired
D

Fig. 6. Distance learning environment model: predictability of goal dependencies

 On the Quantitative Analysis of Agent-Oriented Models 505

4.2 Indicators for Predictability

Next we talk about the different indicators that may be defined on top of dependency
evaluation. The dimensions presented in section 3 can be used. Of particular interest
is the dimension about the subject of measure. We present 3 feasible possibilities:
• We may analyse predictability of actors. We may adopt two different points of view:

how predictable an actor perceives its environment, and how predictable an actor
looks to its environment. In the first case, we group the dependencies in which the
actor is a depender, whilst in the second case, we group the dependencies in which an
actor is a dependee. For instance, for the first point of view we obtain:

context Actor::perceivedPredictability(): Real
 let actorDependencies(a: Actor): Set(Dependency) =
 Dependency.allInstances()->
 select(d | d.depender = a or d.depender.owner = a) in
 post: actorDependencies(self)->size() = 0 implies result = 1
 post: actorDependencies(self)->size() > 0 implies result =
 actorDependencies(self).predictability()->sum()
 / actorDependencies(self)->size()

• Another possibility is to concentrate on scenario paths as representative of business
processes. A scenario path is composed by steps that are tasks or goals. Each step
is either decomposed inside the boundaries of the actor or as depending on external
actors; these two cases rule the OCL decomposition below. In both cases, predict-
ability depends on the number of task combinations that exist to carry out the step:

context ScenarioPath::predictability(): Real
 post: result = step.predictability()->sum() / step->size()

context TaskOrGoal::predictability(): Real
 let dependsUpon(): Boolean =
 self.dependency[depender]->notEmpty() in
 post: dependsUpon() implies
 result = dependency[depender].predictability()->sum()
 / dependency[depender]->size()
 post: not dependsUpon() and nbTaskCombinations() = 0
 implies result = if type = task then 1 else 0
 post: not dependsUpon() and nbTaskCombinations() > 0
 implies result = 1 / nbTaskCombinations(self)

being TaskOrGoal::nbTaskCombinations() a function that computes the
number of task combinations for that task or goal, defined analogously to Depend-
ency::nbTaskCombinations() introduced in section 4.1.

• As done in [10], we may define predictability for the whole model, obtaining there-
fore a single value. They use this property to compare different organizational pat-
terns such as joint venture, structure in 5, and others:

context Model::predictability(): Real
 post: result =
 Dependency.allInstances().predictability()->sum()
 / Dependency.allInstances()->size()

Concerning the second dimension, we can use these numerical indicators to obtain
boolean or model elements ones, allowing e.g.: finding out if strategic actors exceed

506 X. Franch

some threshold; given two models, which one is the most predictable; ordering all the
actors in terms of predictability; checking that scenario paths are fully predictable; etc.

5 Comparison with Related Work

In the introduction we have mentioned the existence of qualitative approaches for
analysing i* models but, to the best of our knowledge, there is not much related
work from a quantitative point of view. The most remarkable proposal in this area is
part of the AGORA method [24] that provides techniques for estimating the quality
of requirements specifications in a goal-oriented setting. In fact, AGORA puts more
emphasis in the analysis of the AND/OR graph resulting from decomposition than
in the kind of analysis that has been the focus of this paper. Therefore, comparison
is not really possible and in fact, we could think of using AGORA and our approach
jointly. Also, it is worth mentioning the work by Sutcliffe and Minocha [28] which
proposes the analysis of dependency coupling for detecting excessive interaction
among users and systems. They use expert judgement to classify the dependencies
of the system in a qualitative scale and then define a metric on the model that use to
compare alternative scenario. This metric for coupling is a good example of struc-
tural metric and we can check that it is definable using our framework in a straight-
forward way.

On the other hand, we have already mentioned some work on combining quantita-
tive and qualitative analysis of i* models for finding assignment of labels to nodes
and determine its propagation in goal graphs. In [15], qualitative reasoning is based
on a sound and complete set of rules that determine backward propagation in a goal-
oriented, SR-like graph. The rules combine 4 different types of relationships among
goals, depending on whether a goal fully/partially satisfies/denies another goal. Quan-
titative reasoning consists on assigning weights to those relationships. In [16], as-
signment of labels to goals, and the use of these labels to propagate values both
forward and backwards, become the subject of study. The main difference of these
approaches with the work presented in this paper is the interest of the analysis. Whilst
[15, 16] focus on goal satisfaction, our work is more interested in the analysis of
structural properties of the model. Therefore, we can say again that both approaches
are not exclusive but complementary. The way the authors encode the qualitative
framework is a good example of how knowledge may be represented in both a simple
and accurate way, and it could be thought that this description style of qualitative
knowledge may be used also in our context.

6 Conclusions and Future Work

We have presented a framework for the definition of structural metrics for agent-
oriented models using the i* language. The metrics are bound to properties of the
system model, which usually represent correctness concerns, organizational issues or
information systems requirements. The framework considers the definition of indica-
tors organized according to two dimensions (returned value and subject of measure).
The indicators are customised to use expert judgement as considered necessary,

 On the Quantitative Analysis of Agent-Oriented Models 507

although we may say that they are basically quantitative in nature. We have shown with
an example how these indicators may be used to find out properties of the system.

The most relevant characteristics of our approach are:

• Accuracy. We have provided a UML definition of i* models that is used as a base-
line upon which we have build our framework. Indicators and metrics are ex-
pressed with the OCL. The approach is complemented with two methodologies to
drive the construction of i* models in a consistent way.

• Expressiveness. The use of the OCL allows expressing metrics both in a comfort-
able and expressive way. Comfortability comes from the easy of structuring inher-
ent to object-orientation, which has been shown in the predictability example.

• Sensitivity. Metrics can be defined more or less accurately depending on: 1) the
expert judgement available; 2) the state of refinement of the model; 3) the effort we
want to invest in model analysis. Therefore, we have a highly configurable frame-
work that allows defining metrics in several ways (see fig. 3 as an example).

• Easy tool support. The form that our framework takes allows implementation of
tool support to drive indicators definition, model edition, generation of alternatives
and evaluation of models. We have a first prototype [29] which uses metrics pat-
terns as a way to improve productivity (although it is not based in the OCL). Tool-
support may also be used to customise the indicators in a particular setting by
means of wizards that basically asks for the required information following a data
flow such as the one presented in fig. 3.

• Reusability. The indicators and metrics obtained are independent of the domain
and therefore applicable to any model.

The framework presented here has been analysed with a few properties such as the
one presented in this paper. However, a proper validation plan has not been yet exe-
cuted. A long-term goal is to apply the framework to large-scale case studies but, in
the meantime, we are validating with respect to some exemplars that are widespread
in the i* community, such as the one of predictability presented in this paper. Valida-
tion is necessary also to gain more understanding on the property being analysed and
then to define more accurately OCL formula. In our example, this kind of validation
would help to know if the strategies applied to define goal and softgoals are accurate
enough and to compare different strategies. For instance, an alternative to the defini-
tion in the case of goals would be to take into account the depth of task decomposi-
tions: the deeper the decomposition appears, the less it affects predictability. A
thorough validation plan would allow choosing which alternative is better.

It may be said that one of the limitation of our approach is the need to elicit expert
judgement at some extent. However, we should remark that the involvement of ex-
perts is highly customizable. For instance, we have shown in our case study that this
expert judgement may be kept reduced if required by prioritising the quantitative part
of our framework (see fig. 3). In any case, we do think that some degree of qualitative
reasoning is necessary to obtain information that is accurate with respect to some
departing assumptions (which encode the knowledge of the expert). We remark also
that expert judgement will usually be necessary in the context of comparison of alter-
natives that has been cited in the introduction, because given two alternatives, in the
general case some metrics will behave better in one model and some in other, there-
fore expert judgement is needed to prioritize appropriately.

508 X. Franch

We have identified several ways to proceed along in this line of research. For mak-
ing our proposal useful, we remark the following:

• Construction of a catalogue of reusable indicators and metrics. Basically in three
directions: 1) model-related properties (predictability is one example); 2) organiza-
tional-related properties (such as segregation of duties [30]); 3) properties address-
ing non-functional aspects such as security, efficiency and so on.

• Identification of patterns for indicators and metrics. We have realized that most of
the indicators and metrics definitions apply similar rules over and over. In [31] we
have identified some patterns that capture some of these situations and we plan to
enlarge the catalogue.

• Better tool-support. We plan to enlarge our current prototype and adapt it to the
OCL as the language for metrics definition.

• Integration of the framework with other proposals. In particular, we are especially
interested in using this framework in the analysis of system architectures [8, 32].
We think that metrics on goal-oriented models may provide first-cut criteria for
classifying candidate architectures.

Acknowledgements

This work has been done in the framework of the research project UPIC, ref.
TIN2004-07461-C02-01, supported by the Spanish Ministerio de Ciencia y Tec-
nología. The author wants to thank Gemma Grau for her valuable comments.

References

[1] A. Dardenne, A. van Lamsweerde, S. Fickas. “Goal-directed Requirements Acquisition”.
Science of Computer Programming, 20, 1993.

[2] E. Yu. Modelling Strategic Relationships for Process Reengineering. PhD. thesis, Univer-
sity of Toronto, 1995.

[3] J. Castro, M. Kolp, J. Mylopoulos. “Towards Requirements-Driven Information System
Engineering: The Tropos Project”. Information Systems, 27, 2002.

[4] E. Yu. “Towards Modeling and Reasoning Support for Early-Phase Requirements Engi-
neering”. Procs. 3rd Intl. Symposium in Requirements Engineering (ISRE), 1997.

[5] A. van Lamsweerde. “Goal-Oriented Requirements Engineering: A Guided Tour”. Procs.
5th Intl. Symposium on Requirements Engineering (ISRE), 2001.

[6] M. Lorenz, J. Kidd. Object-oriented software metrics: a practical guide. Prentice-Hall,
1994.

[7] S.R. Chidamber, C.F. Kemerer. “A Metrics Suite for Object-Oriented Design”. IEEE
Transactions on Software Engineering, 20(6), 1994.

[8] L. Baas, P. Clements, R. Kazman. Software Architecture in Practice, 2nd edition. Addi-
son-Wesley, 2003.

[9] L. Chung, B. Nixon, E. Yu, J. Mylopoulos. Non-Functional Requirements in Software
Engineering. Kluwer Academic Publishers, 2000.

[10] M. Kolp, J. Castro, J. Mylopoulos. ‘‘Organizational Patterns for Early Requirements
Analysis’’. Procs. 15th Intl. Conf. on Advanced Information Systems Engineering
(CAiSE), 2003.

 On the Quantitative Analysis of Agent-Oriented Models 509

[11] M.B. Mile, A.M. Huberman. Qualitative Data Analysis. Sage Publications, 1994.
[12] T.A. Schwandt. “Solutions to the Paradigm Conflict: Coping with Conflict”. Journal of

Contemporary Etnography, 17(4), 1989.
[13] M.Q. Patton. Qualitative Evaluation and Research Methods. Sage Publications, 1990.
[14] R.B. Johnson, A.J. Onwuegbuzie. “Mixed Methods Research: A Research Paradigm

Whose Time Has Come”. Educational Researcher, 33(7), 2004.
[15] P. Giorgini, J. Mylopoulos, E. Nicciarelli, R. Sebastiani. “Formal Reasoning Techniques

for Goal Models”. Procs. 21st Intl. Conference on Conceptual Modeling (ER), 2002.
[16] R. Sebastiani, P. Giorgini, J. Mylopoulos. “Simple and Minimum-Cost Satisfiability for

Goal Models”. Proceedings of 16th Conf. on Advanced Information Systems (CAiSE),
2004.

[17] Object Management Foundation (OMG). “UML 2.0 OCL Specification”, available at
www.omg.org/docs/ptc/03-10-14.pdf, 2003.

[18] C. Ayala, C. Cares, J.P. Carvallo, G. Grau, M. Haya, G. Salazar, X. Franch, E. Mayol, C.
Quer. “A Comparative Analysis of i*-Based Goal-Oriented Modeling Languages”. Procs.
Intl. Workshop on Agent-Oriented Software Development Methodology (AOSDM), 2005.

[19] E. Yu. “Understanding 'why' in software process modeling, analysis and design”. Procs.
16th Intl. Conference on Software Engineering (ICSE), 1994.

[20] L. Liu, E. Yu, J. Mylopoulos. “Analysing Security Requirements as Relationships among
Strategic Actors”. Procs. 2nd Symposium on Requirements Engineering for Information
Security (SREIS), 2002.

[21] D. Amyot. “Use Case Maps Quick Tutorial Version 1.0”. Available at
http://www.usecasemaps.org/pub/UCMtutorial/, last accessed Nov. 2005.

[22] G. Grau, X. Franch, N. Maiden. “A Goal-Based Round-Trip Method for System Devel-
opment as Business Process Reengineering”. Procs. 11th Intl. Workshop on Requirements
Engineering: Foundation for Software Quality (REFSQ), 2005.

[23] G. Grau, X. Franch, E. Mayol, C. Ayala, C. Cares, J.P. Carvallo, M. Haya, F. Navarrete,
P. Botella, C. Quer. "RiSD: A Methodology for Building i* Strategic Dependency Mod-
els". Procs. 7th Intl. Conf. on Software Engineering & Knowledge Engineering (SEKE),
2005.

[24] H. Kaiya, H. Horai, M. Saeki. “AGORA: Attributed Goal-Oriented Requirements Analy-
sis Method”. Procs. 10th Joint Conference on Requirements Engineering (RE), 2002.

[25] T.J. Reynolds, J. Gutman. “Laddering Theory, Method, Analysis and Interpretation”.
Journal of Advertising Research, vol. 28, 1988, pp. 11-31.

[26] T.L. Saaty. The Analytic Hierarchy Process. McGraw-Hill, 1990.
[27] R. Keeney, H. Raiffa. Decision with Multiple Objectives: Preferences and Value Trade-

offs. Wiley, 1993.
[28] A. Sutcliffe, S. Minocha. “Linking Business Modelling to Socio-technical System De-

sign”. Procs. 11th Intl. Conf. on Advanced Information Systems Engineering (CAiSE),
1999.

[29] G. Grau, X. Franch, N. Maiden. “REDEPEND-REACT: an Architecture Analysis Tool”.
Procs. 13th Intl. Conference on Requirements Engineering (RE), 2005.

[30] A. Burt. “Internal Controls and Segregation of Duties”. UF Bridges Project, University of
Florida, 2004.

[31] X. Franch, G. Grau, C. Quer. “A Framework for the Definition of Metrics for Actor-
Dependency Models”. Procs. 12th Intl. Conf. on Requirements Engineering (RE), 2005.

[32] P. Grünbacher, A. Egyed, N. Medvidovic. “Reconciling Software Requirements and Ar-
chitectures - The CBSP Approach”. Procs. 5th Intl. Symposium on Requirements Engi-
neering (ISRE), 2001.

	Introduction
	A UML Definition of $i*$
	A Framework for Metrics on $i*$
	Analysing Predictability of $i*$ Models
	Predictability of Individual Dependencies
	Indicators for Predictability

	Comparison with Related Work
	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

