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Abstract. Agent-oriented models are used in organization and information sys-
tem modelling for providing intentional descriptions of processes as a network 
of relationships among actors. As such, they capture and represent goals, de-
pendencies, intentions, beliefs, alternatives, etc., which appear in several con-
texts: business process reengineering, information system development, etc. In 
this paper, we are interested in the definition of a framework for the analysis of 
the properties that these models exhibit. Indicators and metrics for these proper-
ties are defined in terms of the model elements (e.g., actors, dependencies, sce-
nario paths, etc.) Our approach is basically quantitative in nature, which allows 
defining indicators and metrics that can be reused in many contexts. However, a 
qualitative component can be introduced if trustable expert knowledge is avail-
able; the extent up to which quantitative and qualitative aspects are intertwined 
can be determined in every single case. We apply our proposal to the i* notation 
and we take as main case study a highly-intentional property, predictability of 
model elements. 

1   Introduction 

Goal- and agent-oriented analysis methods and languages such as KAOS, i*, GRL or 
TROPOS [1, 2, 3] are widespread in the information systems community for the re-
finement and decomposition of the customer needs into concrete goals, during the 
early phase of the requirements specification [4, 5]. This kind of models represents an 
organization and its processes as a network of actors and dependencies, which may be 
decomposed into simpler elements. 

Once built, the models can be used for different purposes. Two of the most impor-
tant ones are: analysis of the properties they exhibit, and comparison of alternatives. 
In the first case, it is checked whether some properties hold in the model; some actors 
or dependencies exhibit some property (either positive or not) are searched; etc. In the 
second case, different models, that represent different ways of implementing organ-
izational processes or information systems, are compared with respect to properties 
that have been considered as crucial. In both cases, evaluation of models is the cor-
nerstone of these analyses, and therefore some suitable metrics to rely upon are 
needed. 

The use of metrics with this purpose is very common in other type of models. For in-
stance, there are some suites of metrics in the field of object-oriented modeling [6, 7], 
which refer to structural properties like cohesion and coupling. Properties referring to 
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the system itself, such as security, efficiency or cost, which mainly fall into the cate-
gory of non-functional or organizational requirements, appear when considering mod-
els of the system architecture [8]. These metrics are usually defined in terms of the 
components, nodes, pipes, etc., that compose the final configuration of the system. 

In the case of goal- and agent-oriented modeling, typical approaches analyse mod-
els in a qualitative way, especially in conjunction with non-functional requirements 
[9], by targeting to specific properties such as availability, security and adaptability. 
These target properties are decomposed into simpler criteria that may be used to 
evaluate different candidate models for the system-to-be [10]. This evaluation is basi-
cally qualitative, which means that the extent up to which a criterion is fulfilled by a 
candidate model is determined by expert judgement. Although qualitative analysis is a 
powerful mechanism that is satisfactory in many cases, it may introduce a certain 
degree of uncertainness because it relies completely on the claims that experts make. 
The dichotomy among qualitative and quantitative analysis is not new and by no 
means exclusive of organization or information system modelling, or even the com-
puter science discipline (see [11, p. 40] for an abridged comparison). Some research-
ers advocate that both types of analysis are exclusive [12], but others believe that they 
are compatible [13] and even complementary [14]. In goal-orientation, some contribu-
tions exist that combine quantitative and qualitative analysis for finding assignment of 
labels to nodes and determine its propagation in goal graphs [15, 16]. 

In this paper we are interested in the analysis of agent-oriented models with special 
emphasis on the quantitative side. To be able to express our approach in detail, we 
consider agent-oriented models written in the i* language, although we think that the 
underlying concepts could be adapted to other approaches. More precisely, we want 
to take profit of the networked structure of i* models to define structural indicators 
that are quantitative in nature, counting actors, dependencies, and other elements; 
indicators can be used to define metrics that measure model properties. Our defini-
tions will make it possible to include some expert judgement if considered necessary 
to obtain more accurate results; in fact, we will see that indicators are highly custom-
izable depending on both the knowledge available on the problem (expert judgement 
and current state of refinement of the model) and the effort to be invested in this proc-
ess. Due to its structural nature, our framework is expressed in terms of the OCL [17]; 
operators such as allInstances and select suit well for working with model 
elements. 

The paper is structured as follows. In section 2, we define the i* framework using 
UML. In section 3, we introduce our framework for measuring i* model properties. 
We analyse one particular property, predictability, in section 4, using the concepts 
introduced. Finally, we provide some comparison, conclusions and future work in 
sections 5 and 6.  

2   A UML Definition of i* 

In this section, we introduce the i* framework using the UML for defining rigorously 
its concepts. We think that this section is necessary because, as reported in [18], there 
are several variations in the literature for the i* notation and thus we need to make 
explicit which constructs do we use in this paper and which properties do we assume.  
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Our i* framework is based on the seminal Yu’s proposal [2] with some minor sim-
plifications. Yu proposes two types of models, each corresponding to a different 
abstraction level (see fig. 1): a Strategic Dependency (SD) model represents the inten-
tional level and the Strategic Rationale (SR) model represents the rational level. 

A SD model consists of a set of nodes that represent actors, and a set of dependen-
cies that represent the relationships among them, expressing that an actor (depender) 
depends on others (dependees) in order to obtain some objective (dependum). Alto-
gether form a network of knowledge that allows understanding “why” the system 
behaves in a particular way [19]. The dependum is an intentional element that can be 
a resource, task, goal or softgoal (see [2] for a detailed description).  

A SR model allows visualizing the intentional elements into the boundary of an ac-
tor to refine the SD model with reasoning capabilities. Once SR models are built, the 
dependencies of the SD model may be linked to the appropriate intentional elements 
inside the actor boundary. According to their intentional meaning, some restrictions 
apply: goal dependencies can be assigned to goals and tasks in the dependee side; the 
same for task dependencies; and resource dependencies just to task dependencies. 

The elements inside the SR model are decomposed accordingly to 2 types of links: 

• Means-end links establish that one or more intentional elements are the means that 
contribute to the achievement of an end. The “end” can be a goal, task, resource, or 
softgoal, whereas the “means” is usually a task. There is a relation OR when there are 
several means, which indicate the different ways to obtain the end. The possible rela-
tionships are: Goal-Task, Resource-Task, Task-Task, Softgoal-Task, Softgoal-Softgoal 
and Goal-Goal. In Means-end links with a softgoal as end it is possible to specify if 
the contribution of the means towards the end is negative or positive; this label may 
also appear in softgoal dependencies.  

• Task-decomposition links state the decomposition of a task into different intentional 
elements. There is a relation AND when a task is decomposed into more than one 
intentional element.  

 

Fig. 1. Example of an i* model for an academic tutoring system 



498 X. Franch 

SR models have additional elements of reasoning such as routines. A routine 
represents one particular course of action to attain the actor’s goal among all the exist-
ing alternatives. The concept of routine appears in [2] but no notation is provided, so 
we use the similar notion of scenario path as defined in [20] based on the use case 
map concept appearing in GRL [21]. 

In Fig. 2 we show the conceptual model in UML, corresponding to our version of 
the i* language; OCL constraints are not included for the sake of brevity. It is remark-
able that dependencies are not defined as a ternary association; we have opted for 
composing two binary associations to facilitate the OCL expressions that we will 
write later in the metrics framework. We remark some modeling elements of interest: 
the Model class (singleton), which gives a name to the model; the Node class that 
provides a key to model elements; the DependableNode class, which models the in-
tentional elements for which it is possible define dependencies, that is, actors and 
intentional elements of the SR model; and the MeansEndContribution and Softgoal-
Contribution classes, that differentiate means-end links and dependencies that involve 
softgoals.  

As an additional point, it may be argued that, in order to formulate metrics to 
evaluate and eventually compare i* models, it is necessary not only to rigorously 
define the semantics of the i* elements that we use, but also how the models are built, 
since different people may build correct models very dissimilar in nature and of 
course too much diversity would make our quantitative framework difficult to apply. 
We have tackled this point in our previous work, by defining two similar, comple-
mentary methodologies for building i* models, PRiM [22] and RiSD [23], depending 
on whether we create the model as a process reengineering exercise or from the 
scratch, respectively. Both methodologies define rules, checkpoints and procedures to 
guide model construction, therefore we may say that using them we can obtain mod-
els in a predictable and repeatable enough manner. 
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Fig. 2. A UML conceptual model for i* 
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3   A Framework for Metrics on i* 

In this section, we explore the use of structural indicators that can be used to define 
structural metrics that measure the properties of an i* model, i.e. those properties that 
depend on the form of the model and the types of its elements. Structural metrics are 
valuable for both analysing a highly abstract model of a system of any kind, com-
posed basically by roles, and for comparing different feasible realizations of this ab-
stract model (which take the form of actor models too, but composed basically by 
positions and agents) with respect to the most relevant criteria established in the mod-
elled world. Some examples of properties that appear in the literature are: 

• Ability, workability and commitment [2]. 
• Predictability, security, adaptability, coordinability, modularity and others [10]. 
• Correctness, completeness, verifiability, modifiability and traceability [24]. 

For a given property object of measure, it may be the case that all its elements (actors 
and dependencies) influence the indicator. However, it is also possible that just elements 
of some particular type affect this property. Furthermore, some individual elements may 
be identified as especially relevant for the property; in the most general case, all the 
elements may have a different weight in the indicator. We need then to take into account 
all these situations if we aim at having a widely applicable metrics framework.  

For a given property, different indicators can be defined according to two criteria: 

• Returned value. We distinguish among numerical, logical and model-element indi-
cators. Numerical indicators return a value in the interval [0, 1]; this value meas-
ures the degree of accomplishment of some criteria. Logical indicators evaluate 
true or false, and are used to discern if a property is fulfilled or not. Model-element 
indicators return a (set of) model element (typically, actors, scenario paths or de-
pendencies) that fulfils a property (e.g., scenario path that maximizes a given crite-
ria, or set of actors that are greater than some threshold). 

• Subject of measure. We can measure the whole model, individual elements or even 
groups of individual elements. In the first case we have global indicators, which 
produce a single value of any type. In the second case, we have local indicators, 
which compute a value for any element of a given type (actor, scenario path, etc., 
or even dependency of some type). In the third case, we talk about group indica-
tors, which compute a value for any combination according to the grouping criteria 
(e.g., pairs of actors).  

Therefore, given a property such as completeness, we may measure completeness of 
the model, of an element (e.g., an actor) or a group of related elements (e.g., all the 
actors of the model), with the purpose of deciding if they are complete or not, or to 
what extent they are complete (e.g., measuring the percentage of undefined elements) 
or obtaining the elements that are not complete yet. Some of the indicators can be 
built on top of the others, typically (but not always): logical and model-element indi-
cators are defined in top of numerical ones; global and group metrics are defined on 
top of local ones.  

In the next section we develop as example indicator for one property, predictabil-
ity, following the concepts introduced in this section. 
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4   Analysing Predictability of i* Models 

Predictability is used in [10] as one of the properties of interest when analysing or-
ganizational styles. Its interest comes from the fact that “actors can have a high degree 
of autonomy depending on the way they undertake action and communication in their 
domains. It can be then sometimes difficult to predict individual actor characteristics 
as part of determining the behaviour of an organization at large” [10]. Therefore, 
discerning up to what extent the actors of a model are predictable may be useful for 
knowing more about a model. 

From the several points of view we can take to analyse predictability, we opt by an 
external perception, i.e. how an actor perceives predictability of other actors. To be 
more precise, an actor is interested to know how predictable is the behaviour of those 
actors it depends upon, and this yields to select dependencies as the main construct of 
interest for defining the metrics. In the rest of the section, we first analyse predictabil-
ity of individual dependencies and then we show several indicators that may be de-
fined upon individual predictability. We will use OCL for measuring predictability on 
its different forms. 

4.1   Predictability of Individual Dependencies 

Yu states very clearly which is the degree of freedom bound to dependencies [2]: 

• Goal dependencies. The dependee is free to, and is expected to, make whatever 
decisions are necessary to achieve the goal. 

• Task dependencies. The depender makes the decisions, therefore the dependee 
cannot take a behaviour different than expected. 

• Resource dependencies. They represent the finished product of some deliberation-
action process, and it is assumed that there are no open issues to be addressed. 

• Softgoal dependencies. The depender makes the final decision, but does so with the 
benefit of the dependee’s know-how. 

Therefore we may conclude that task and resource dependencies are totally predict-
able whilst goal and softgoal ones are not. Considering that 1 represents the highest 
predictability and 0 the lowest, we may define predictability of dependencies as: 

context Dependency::predictability(): Real 
 post: type = Task implies result = 1.0 
 post: type = Resource implies result = 1.0 
 post: type = Goal implies result = goalPredictability() 
 post: type = Softgoal implies result = softgoalPredictability() 

To define goal and softgoal predictability we may opt among different strategies: 

• To assign a fixed weight to every single goal and softgoal dependency of the 
model. This is a very basic quantitative approach, with the assumption that the fac-
tor that rules predictability is the existence of a dependency, whilst its particular 
meaning or hidden intentionality is not so relevant.  

• To provide weights to individual dependencies by expert judgement. This option 
yields to a qualitative reasoning issue appearing in the context of our quantitative 
procedure, which aligns with the point of view of [14]. This is the option to choose 
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when we have just the SD model, which happens in the first stages of organization 
analysis. For instance, if we apply our RiSD method [23], we build a SD model 
from the scratch and then perform analysis before proceeding further on. At this 
stage, we have just the most relevant elements in the model, which means that 
qualitative analysis is feasible in terms of cost. Experts may use techniques such as 
laddering [25] or AHP [26] as a help during their assessment. 

• To find some suitable rationale for determining predictability. This alternative 
makes our approach basically quantitative; in fact, it may be defined in a total 
quantitative manner. This option seems the most appropriate when a SR model is 
available, which may happen in two ways: a) from the starting SD model, obtained 
e.g. applying RiSD, dependencies and actors are refined; b) the i* model is synthe-
sised from observation of the current organization and then the SR model exists 
from the very beginning, as we do in our PRiM method [22].  

Fig. 3 summarizes these possibilities. It shows how expert judgement is needed in 
almost all possible combinations. Expert judgement is represented by underlined 
elements, i.e. values or functions that must be provided in order to build the metrics. 

We focus on the last case, which requires more decisions to take. Considering soft-
goal dependencies, we decompose their evaluation into two factors. First, a factor 
bound to the depender actor, which represents how capable it is to take predictable 
decisions when resolving softgoals; we consider this factor bound to actors’ ability 
and not to individual softgoal dependencies. Second, a factor bound to the depend-
ency, which represents the available know-how with respect to the given dependum. 
For the OCL expression, we must take into account that the depender can be an actor 
or an SR element, and in the second case we obtain its owner; a let expression 
makes this easier to write: 

context Dependency::softgoalPredictability(): Real 
pre: type = Softgoal 
let ownerActor(x: DependableNode): Actor = 
  if x.oclIsTypeOf(Actor) then x else x.owner in 
post: result = ownerActor(depender).dependerExpertise() 
               * knowHow() 

Depender expertise may be dealt with by two different strategies: considering ex-
pert judgement to weight individual actors, or else to agree a given weight for all the 
actors. Concerning available know-how, we may define a strategy for measuring 
predictability using the SR model as follows. We define the know-how as the number 
of dependees that state a contribution value to the dependum. Then, we need a func-
tion such that: 1) when the number of contributions is 0, the function is also 0 (worst 
predictability because the dependees do not know how to contribute to the softgoal); 
2) as the number of contributions grow, the function tends to 1 (best predictability). 

An easy, problem-independent way to define the function is 1 – (slope/n+1), being 
n the number of known contributions for the softgoal dependum and slope a constant 
(defined as an attribute of the model) that determines the slope of the function (see 
fig. 4, left). Another possibility is to define a utility function [27] such that we define 
a straight line from 0 to the maximum number of dependee contributions to a softgoal 
dependum that exists in the model (see fig. 4, right). 
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Fig. 3. Procedure for determining the Predictability of individual dependencies 
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Fig. 4. 2 different possibilities of know-how functions: left, inverse function with slope = 1; 
right, utility function (n = maximum number of dependee contributions to softgoal dependum) 

The resulting OCL definition for the first case is: 

    context Dependency::knowHow(): Real 
pre: self.type = Softgoal 
 let theModel: Model = Model.allInstances()->any() in 
let contributionsToSoftgoalDep(d: Dependency): Integer =  
   d.dependeeLink.oclAsType(SoftgoalContribution)-> 

  select(contr->notEmpty())->size() in 
post: result = 1 – theModel.slope /   

(contributionsToSoftgoalDep(self)+1) 

Fig. 5 presents an example of this case. It is an excerpt of a model for a distance 
learning environment. The dean has as one of her goals to achieve academic quality, and 
for this goal she depends on teachers and tutors for having Good Course Dynamics.  
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Fig. 5. Distance learning environment model: predictability of softgoal dependencies 

There are several ways in which teachers may contribute positively to this softgoal: 
publishing exams’ marks timely, answering students’ messages daily and making 
FAQs lists available. An important issue that influences course dynamics in distance 
learning is the feedback that teachers provide to students about their exams. There are 
roughly two strategies: sending personalized messages to students commenting their 
mistakes, or giving group support by making public the solution and the evaluation 
criteria, and sending personalized information just on demand. The first strategy is 
considered to impact positively into the dynamics of the course, but not the second. 
Concerning tutors, it has not been investigated yet how they contribute to course dy-
namics. Thus, we have 5 contributions to the softgoal dependency; applying the defi-
nition above with Model.slope = 1, GoodCourseDynamics.knowHow() = 0,83. 
Since the dean is a highly strategic actor, we may assume that her dependerExper-
tise() = 1,0 and GoodCourseDynamics.softgoalPredictability() = 0,83. 

Concerning goal dependencies, unpredictability depends on how many ways the 
dependees have to fulfil the goal. As stated in section 2, a goal dependency may have 
as intentional elements on the dependee side just goals and tasks. In both cases, the 
different task combinations that we may find descending by the goal or task, using 
means-end and tasks decompositions, are computed: the more combinations are 
found, the less predictable is the dependee with respect to that dependency. It is worth 
to remark that if the dependency involves more than one dependee, unpredictability 
appears from the very beginning, because this means that there are many ways to 
attain the goal dependum. Also we have to deal with the case that the dependee is not 
a SR element but an actor, which means that the dependency has not been assigned 
yet to an intentional element and thus unpredictability is maximized (i.e., equals to 0). 

Similarly to the case above, a problem-independent function can be defined as the 
inverse of the number of combinations. We outline the corresponding OCL function, 
not including the function that computes the number of combinations:  
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context Dependency::goalPredictability(): Real 
pre: self.type = Goal  
let nbTaskCombinations(d: Dependency) = … in 
post: nbTaskCombinations(self) = 0 implies result = 0 
post: nbTaskCombinations(self) > 0 implies  

   result = 1 / nbTaskCombinations(self) 

Fig. 6 presents an example of this case focusing on how exam evaluation feedback 
is provided. The two goals introduced in fig. 5 are refined. The most general goal that 
appears, Evaluation Feedback Provided, is the dependee of the student’s goal Feed-
back from Exams Acquired. Since this goal has two means-end decomposition (which 
are implicitly OR-ed, see section 2), two different ways to provide feedback are being 
stated. Therefore, the evaluation for this dependency is 1 / 2 = 0,5. Effects of unpre-
dictability are clear if we analyse how the elements that appear in the decomposition 
relate to other model elements. For instance, Personalized Feedback Provided has a 
negative contribution to the Personal Workload kept Low softgoal that the teacher 
has. This contribution is stating that deciding among Personalized or Group Feedback 
Provided depends on what the teacher considers a reasonable threshold for her work-
load, and since this is out of the student’s control, predictability gets damaged. 

As a final remark, we would like to point out that the obtained indicator for de-
pendency predictability is highly customizable (therefore reusable and repeatable); 
key points are: does the SR model exist or not?, do I really need expert judgement 
or do I keep my approach purely quantitative?, if expert judgement is chosen, do I 
prefer to weight individual elements or do I assign the same weight to all of them? 
The procedure depicted at fig. 3 shows clearly the needed steps; there we represent 
the information required during the process by underlined italics in the body of 
OCL expressions. 
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Fig. 6. Distance learning environment model: predictability of goal dependencies 



 On the Quantitative Analysis of Agent-Oriented Models 505 

4.2   Indicators for Predictability 

Next we talk about the different indicators that may be defined on top of dependency 
evaluation. The dimensions presented in section 3 can be used. Of particular interest 
is the dimension about the subject of measure. We present 3 feasible possibilities: 
• We may analyse predictability of actors. We may adopt two different points of view: 

how predictable an actor perceives its environment, and how predictable an actor 
looks to its environment. In the first case, we group the dependencies in which the 
actor is a depender, whilst in the second case, we group the dependencies in which an 
actor is a dependee. For instance, for the first point of view we obtain: 

context Actor::perceivedPredictability(): Real 
  let actorDependencies(a: Actor): Set(Dependency) = 
     Dependency.allInstances()-> 
        select(d | d.depender = a or d.depender.owner = a) in 
  post: actorDependencies(self)->size() = 0 implies result = 1 
  post: actorDependencies(self)->size() > 0 implies result = 
             actorDependencies(self).predictability()->sum() 
    / actorDependencies(self)->size() 

• Another possibility is to concentrate on scenario paths as representative of business 
processes. A scenario path is composed by steps that are tasks or goals. Each step 
is either decomposed inside the boundaries of the actor or as depending on external 
actors; these two cases rule the OCL decomposition below. In both cases, predict-
ability depends on the number of task combinations that exist to carry out the step: 

context ScenarioPath::predictability(): Real 
  post: result = step.predictability()->sum() / step->size() 

context TaskOrGoal::predictability(): Real 
  let dependsUpon(): Boolean = 
                  self.dependency[depender]->notEmpty() in 
  post: dependsUpon() implies 
        result = dependency[depender].predictability()->sum() 
                 / dependency[depender]->size() 
  post: not dependsUpon() and nbTaskCombinations() = 0 
  implies result = if type = task then 1 else 0 
  post: not dependsUpon() and nbTaskCombinations() > 0 
  implies result = 1 / nbTaskCombinations(self) 

being TaskOrGoal::nbTaskCombinations() a function that computes the 
number of task combinations for that task or goal, defined analogously to Depend-
ency::nbTaskCombinations() introduced in section 4.1.  

• As done in [10], we may define predictability for the whole model, obtaining there-
fore a single value. They use this property to compare different organizational pat-
terns such as joint venture, structure in 5, and others:  

context Model::predictability(): Real 
  post: result = 
            Dependency.allInstances().predictability()->sum() 
       / Dependency.allInstances()->size() 

Concerning the second dimension, we can use these numerical indicators to obtain 
boolean or model elements ones, allowing e.g.: finding out if strategic actors exceed 
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some threshold; given two models, which one is the most predictable; ordering all the 
actors in terms of predictability; checking that scenario paths are fully predictable; etc. 

5   Comparison with Related Work 

In the introduction we have mentioned the existence of qualitative approaches for 
analysing i* models but, to the best of our knowledge, there is not much related 
work from a quantitative point of view. The most remarkable proposal in this area is 
part of the AGORA method [24] that provides techniques for estimating the quality 
of requirements specifications in a goal-oriented setting. In fact, AGORA puts more 
emphasis in the analysis of the AND/OR graph resulting from decomposition than 
in the kind of analysis that has been the focus of this paper. Therefore, comparison 
is not really possible and in fact, we could think of using AGORA and our approach 
jointly. Also, it is worth mentioning the work by Sutcliffe and Minocha [28] which 
proposes the analysis of dependency coupling for detecting excessive interaction 
among users and systems. They use expert judgement to classify the dependencies 
of the system in a qualitative scale and then define a metric on the model that use to 
compare alternative scenario. This metric for coupling is a good example of struc-
tural metric and we can check that it is definable using our framework in a straight-
forward way. 

On the other hand, we have already mentioned some work on combining quantita-
tive and qualitative analysis of i* models for finding assignment of labels to nodes 
and determine its propagation in goal graphs. In [15], qualitative reasoning is based 
on a sound and complete set of rules that determine backward propagation in a goal-
oriented, SR-like graph. The rules combine 4 different types of relationships among 
goals, depending on whether a goal fully/partially satisfies/denies another goal. Quan-
titative reasoning consists on assigning weights to those relationships. In [16], as-
signment of labels to goals, and the use of these labels to propagate values both 
forward and backwards, become the subject of study. The main difference of these 
approaches with the work presented in this paper is the interest of the analysis. Whilst 
[15, 16] focus on goal satisfaction, our work is more interested in the analysis of 
structural properties of the model. Therefore, we can say again that both approaches 
are not exclusive but complementary. The way the authors encode the qualitative 
framework is a good example of how knowledge may be represented in both a simple 
and accurate way, and it could be thought that this description style of qualitative 
knowledge may be used also in our context. 

6   Conclusions and Future Work 

We have presented a framework for the definition of structural metrics for agent-
oriented models using the i* language. The metrics are bound to properties of the 
system model, which usually represent correctness concerns, organizational issues or 
information systems requirements. The framework considers the definition of indica-
tors organized according to two dimensions (returned value and subject of measure). 
The indicators are customised to use expert judgement as considered necessary, 
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although we may say that they are basically quantitative in nature. We have shown with 
an example how these indicators may be used to find out properties of the system. 

The most relevant characteristics of our approach are: 

• Accuracy. We have provided a UML definition of i* models that is used as a base-
line upon which we have build our framework. Indicators and metrics are ex-
pressed with the OCL. The approach is complemented with two methodologies to 
drive the construction of i* models in a consistent way. 

• Expressiveness. The use of the OCL allows expressing metrics both in a comfort-
able and expressive way. Comfortability comes from the easy of structuring inher-
ent to object-orientation, which has been shown in the predictability example. 

• Sensitivity. Metrics can be defined more or less accurately depending on: 1) the 
expert judgement available; 2) the state of refinement of the model; 3) the effort we 
want to invest in model analysis. Therefore, we have a highly configurable frame-
work that allows defining metrics in several ways (see fig. 3 as an example). 

• Easy tool support. The form that our framework takes allows implementation of 
tool support to drive indicators definition, model edition, generation of alternatives 
and evaluation of models. We have a first prototype [29] which uses metrics pat-
terns as a way to improve productivity (although it is not based in the OCL). Tool-
support may also be used to customise the indicators in a particular setting by 
means of wizards that basically asks for the required information following a data 
flow such as the one presented in fig. 3. 

• Reusability. The indicators and metrics obtained are independent of the domain 
and therefore applicable to any model. 

The framework presented here has been analysed with a few properties such as the 
one presented in this paper. However, a proper validation plan has not been yet exe-
cuted. A long-term goal is to apply the framework to large-scale case studies but, in 
the meantime, we are validating with respect to some exemplars that are widespread 
in the i* community, such as the one of predictability presented in this paper. Valida-
tion is necessary also to gain more understanding on the property being analysed and 
then to define more accurately OCL formula. In our example, this kind of validation 
would help to know if the strategies applied to define goal and softgoals are accurate 
enough and to compare different strategies. For instance, an alternative to the defini-
tion in the case of goals would be to take into account the depth of task decomposi-
tions: the deeper the decomposition appears, the less it affects predictability. A 
thorough validation plan would allow choosing which alternative is better. 

It may be said that one of the limitation of our approach is the need to elicit expert 
judgement at some extent. However, we should remark that the involvement of ex-
perts is highly customizable. For instance, we have shown in our case study that this 
expert judgement may be kept reduced if required by prioritising the quantitative part 
of our framework (see fig. 3). In any case, we do think that some degree of qualitative 
reasoning is necessary to obtain information that is accurate with respect to some 
departing assumptions (which encode the knowledge of the expert). We remark also 
that expert judgement will usually be necessary in the context of comparison of alter-
natives that has been cited in the introduction, because given two alternatives, in the 
general case some metrics will behave better in one model and some in other, there-
fore expert judgement is needed to prioritize appropriately. 
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We have identified several ways to proceed along in this line of research. For mak-
ing our proposal useful, we remark the following: 

• Construction of a catalogue of reusable indicators and metrics. Basically in three 
directions: 1) model-related properties (predictability is one example); 2) organiza-
tional-related properties (such as segregation of duties [30]); 3) properties address-
ing non-functional aspects such as security, efficiency and so on. 

• Identification of patterns for indicators and metrics. We have realized that most of 
the indicators and metrics definitions apply similar rules over and over. In [31] we 
have identified some patterns that capture some of these situations and we plan to 
enlarge the catalogue. 

• Better tool-support. We plan to enlarge our current prototype and adapt it to the 
OCL as the language for metrics definition. 

• Integration of the framework with other proposals. In particular, we are especially 
interested in using this framework in the analysis of system architectures [8, 32]. 
We think that metrics on goal-oriented models may provide first-cut criteria for 
classifying candidate architectures.  
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