
Model-Driven Enterprise Systems Configuration

Jan Recker1, Jan Mendling2, Wil van der Aalst1,3, and Michael Rosemann1

1 Queensland University of Technology,
126 Margaret Street, Brisbane QLD 4000, Australia

{j.recker, w.vanderaalst, m.rosemann}@qut.edu.au
2 Vienna University of Economics and Business Administration,

Augasse 2-6, 1090 Vienna, Austria
jan.mendling@wu-wien.ac.at

3 Eindhoven University of Technology,
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

w.m.p.v.d.aalst@tm.tue.nl

Abstract. Enterprise Systems potentially lead to significant efficiency
gains but require a well-conducted configuration process. A promising
idea to manage and simplify the configuration process is based on the
premise of using reference models for this task. Our paper continues along
this idea and delivers a two-fold contribution: first, we present a generic
process for the task of model-driven Enterprise Systems configuration
including the steps of (a) Specification of configurable reference models,
(b) Configuration of configurable reference models, (c) Transformation of
configured reference models to regular build time models, (d) Deployment
of the generated build time models, (e) Controlling of implementation
models to provide input to the configuration, and (f) Consolidation of
implementation models to provide input to reference model specification.
We discuss inputs and outputs as well as the involvement of different
roles and validation mechanisms. Second, we present an instantiation
case of this generic process for Enterprise Systems configuration based
on Configurable EPCs.

1 Enterprise Systems and Reference Modeling

Over the last years, Enterprise Systems (ES) have evolved to comprehensive
IT-supported business solutions that presumptively support and enhance orga-
nizations in their business operations. This, however, only holds true for such
systems that are well-aligned with organizational requirements. As Enterprise
Systems are developed in a generic manner in order to provide benefits to a
wide variety of organizations, industry sectors and countries, their implementa-
tion entails the problem of aligning business and IT. Alignment, however, implies
extensive configuration and customization efforts in the implementation process
and may lead to significant implementation costs that exceed the price of soft-
ware licenses by factor five to ten [1].

ES vendors are aware of these problems and try to increase the manageability
of the implementation process. One respective measure is to deliver ES products

E. Dubois and K. Pohl (Eds.): CAiSE 2006, LNCS 4001, pp. 369–383, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

370 J. Recker et al.

along with extensive documentation and specific implementation support tools.
Reference models play a central role within such documentation. Vendors pro-
vide a set of process models as reference models of their software package [2].
The SAP reference model as such an example includes a large number of process
models representing the system processes [3]. However, research shows that refer-
ence models still are only of limited use to the ES configuration process [4]. This
is mainly due to a lack of conceptual support for configuration in the underlying
modeling language. In this context, a configurable modeling language should at
least support the structured modification and exclusion of model elements or
whole parts of a model as well as the definition of constraints on configurability
[5]. This is of particular importance for leveraging the main objective of refer-
ence models, i.e., streamlining the adaptation of ES. Beyond conceptual support
in terms of flexible or configurable modeling languages, see e.g. [5, 6], there is a
need for a clearly structured configuration procedure. ES configuration based on
configurable reference models is a multi-facetted task requiring guidance to the
overall process. It comprises in particular model configuration, validation, trans-
lation, deployment, controlling, and consolidation; with each of these subtasks
demanding not only profound knowledge of configurable reference modeling but
also of the processes of the organization. A dedicated approach is needed to
manage the process of model-driven Enterprise Systems configuration all the
way from model design to deployment.

Following this line of argumentation this paper reports on the development
and application of a generic engineering process for the design and usage of
configurable reference models in a model-driven approach towards Enterprise
Systems configuration. To be more concise, the contribution of our paper is
two-fold: First, we introduce an engineering process covering the tasks of speci-
fication, configuration, transformation and deployment of configurable reference
models and the two feedback loops of controlling and consolidation. The engi-
neering process will be described on a generic level to allow for wider uptake in
ES contexts beyond the limits of any given modeling language. Second, as an
instantiation case, we report on the deployment of this generic engineering pro-
cess in the development and application of Configurable EPCs (C-EPCs) [5, 7]
in the context of model-driven ES configuration. We proceed as follows: Section
2 presents the generic engineering process for configurable reference models.
Section 3 then reports on the application of the engineering process based on
C-EPCs. After discussing related research in Section 4, we conclude the paper
in Section 5.

2 A Generic Configurable Reference Modeling Process

This section defines a process for engineering and deploying configurable refer-
ence models in the context of Enterprise Systems implementation. This process
is generic in that it is not dependent on a specific modeling technique or method.
However, a requirement for the application of our engineering process is that the
reference modeling language used throughout the process must be configurable

Model-Driven Enterprise Systems Configuration 371

as defined in Section 1. Subsection 2.1 gives an overview of the process while sub-
sections 2.2 to 2.7 introduce the six steps of model specification, configuration,
transformation, deployment, controlling, and consolidation.

2.1 Overview of the Process

Reference model configuration contrasts with the traditional software develop-
ment process: during implementation, the scope of the ES system is continuously
narrowed down to finally meet the requirements of the organization. This process
starts with the overall system capabilities which are then reduced to a relevant
subset. Reference models can be used as semi-formal descriptions of such over-
all capabilities [2] and a configurable reference modeling language provides the
means to express configuration alternatives. The lifecycle model introduced by
Rosemann and van der Aalst [5] illustrates this continuous ‘narrowing down’ pro-
cess by defining different “time” notions: At design time the overall capabilities
of the ES are captured as a (configurable) reference model. At configuration time
capabilities that are deemed desirable before the background of organizational
requirements are selected from the reference model. This means that irrelevant
parts of the model are excluded. At build time the configured model is deployed
on an ES to serve as a ‘template’ for how the system support for business will
look like during execution. Finally, at run time single instances are created for
specific cases. Our generic process for model-driven ES configuration is related to
these “time” notions, however, we extend this lifecycle with feedback loops as de-
scribed below. The overall process defines four major stages comprising reference
model specification, configuration, transformation, and deployment (see Fig. 1).

(2) Configuration
Configured
Reference

Model

(1) Specification
Configurable

Reference
Model

(4) Deployment

Implementation
Model

(3) Transformation

Enterprise
Model

(A) Controlling (B
) Conso

lid
at

io
n

Fig. 1. Engineering process for model-driven ES configuration

The four stages need to be continuously assessed as to their contribution to-
wards fulfilling organizational requirements, which in turn may be subjected to
modification due to internal or external changes. As reference models capture

372 J. Recker et al.

knowledge in the form of current best practice descriptions, they form part of an
organizational learning cycle by (a) being affected by changes within the organi-
zational setting and (b) effectuating such changes via technological or organiza-
tional developments. Organizational learning in general can be differentiated in
single- and double-loop learning [8]. Single-loop learning can be understood as
error minimization in accordance to given objectives and assumptions. Double-
loop learning includes a reflection upon these assumptions and may result in com-
pletely new objectives, processes and outcomes. Applying these insights to the
task of model-driven configuration of Enterprise Systems, we argue that single-
loop learning comprises the reflection on a configuration as to its contribution to
given organizational requirements. Double-loop learning then is the reflection on
the presupposed best practice knowledge captured in the reference models as to
whether or not it sufficiently enables organizations to fulfill their objectives. In
order to facilitate single- and double-loop learning with configurable reference
models, our generic process is extended by two feedback mechanisms, namely
controlling and consolidation. Controlling is understood as the reflection on the
implementation of the “best practice” knowledge described in the reference mod-
els within the organizational setting, viz., a diagnosis of how well the selected
configuration aligns with organizational requirements. Controlling in this sense
provides a means to facilitate single-loop learning. Consolidation is understood
as a reflection on the specification of the “best practice” knowledge described
in the reference models based on current implementation in several organiza-
tional settings, viz., a diagnosis of whether the reference model itself (and the
ES described within) has to be subjected to refinement or extension due to evo-
lution of technological and/or organizational factors in its domain. Based on this
understanding consolidation provides a means to facilitate double-loop learning.

The different stages and loops are explained in the following subsections. In
contrast to the lifecycle model used by Rosemann and van der Aalst [5] that
merely offers a conceptual distinction of the phases, our engineering process
provides guidance for those involved in an ES configuration project by giving
detailed recommendations for each of the four stages and the feedback loops. In
particular, we will describe for each stage the inputs and outputs, the different
steps, responsibilities, and validation mechanisms.

2.2 Step (1): Specification of Configurable Reference Models

The first step is concerned with model development. The goal is to produce
a configurable reference model as an output. This configurable reference
model captures system functionality, capabilities and structure on a conceptual
level (as does a traditional reference model) [2] and furthermore defines variation
points within the model that capture configurable aspects of an ES. A variation
point captures the place of a configuration decision together with the related pos-
sible choices and consequences, and thereby serves the concept of variability [9],
which empowers constructive model reuse and facilitates the derivation of model
variants from the initial model. Concerning input there are basically two options:
(1) Development from scratch. This means selecting an appropriate configurable

Model-Driven Enterprise Systems Configuration 373

modeling technique to develop the reference models. As to methodical guidance,
traditional reference model engineering approaches may be followed. The only
additional concern here is to place emphasis on the conceptual description of
variation points and configuration-related information within the models. (2) Ex-
tension of existing models. This option refers to the fact that, often, reference
models are already available. As an example, the SAP reference model (Version
4.6) [3] covers more than 1,000 business processes. Such existing reference models
are, however, usually depicted using traditional reference modeling techniques
that do not allow for the description of configuration-related information, for in-
stance the highlighting and selection of different process alternatives [5]. Hence,
a configurable modeling language is needed to extend the existing model in order
to express variation points and configuration information. It is efficient to stick to
the language in which the reference model is expressed and to extend it by anno-
tating the model with configuration concepts, rather than redefining the model
in (yet) another modeling language. A potential solution for re-engineering the
existing reference model based on process mining techniques is described in [7].

D
es

ig
n

tim
e

A B X

C

D

C
on

fig
ur

at
io

n
tim

e

A B X

C

D

A B D

C

D

C
on

fig
ur

at
io

n
tim

e

A B X

C

D
Variation point Desired setting

Decision point

Reference Model Specification(1) Reference Model Configuration(2)

Fig. 2. Specification and configuration of reference model

Part (1) of Fig. 2 illustrates how input and output of the specification step
are related. If there is a reference model available, configurable aspects of the
system being modeled have to be made obvious in the model by extending it
with variation points. In Fig. 2, we exemplarily highlighted such a configurable
element by a grey background color.

Concerning responsibilities, the specification step has to rely on ES experts
who are familiar both with the functionality of the ES and the support capabil-
ities for an organization’s business processes it provides. Furthermore, expertise
is required in terms of reference modeling. Usually, such experts are employees of
the ES vendor who are responsible for system documentation. If such documenta-
tion is not provided by the ES vendor itself, a configurable reference model of an
ES might be defined by a consulting company or by an organization using the ES.

Concerning validation mechanisms, existing model quality frameworks (e.g.,
[10]) can be used in order to ensure the quality of the configurable reference
model. This early step and the quality of its output is of crucial importance
since as conceptual models used in the requirements specification phase of a
system development process determine the acceptability and usability of the

374 J. Recker et al.

product to be built [11]. Not only the configuration alternatives have to be
made explicit, but also constraints in terms of interrelations between certain
configuration alternatives. Due to this delicate nature, it definitely calls for a
deeper investigation in terms of methodical guidance, which in turn we must
consider out of scope for this paper. We nevertheless suggest that the result of
this task should be validated by at least a second domain expert.

2.3 Step (2): Configuration of Configurable Reference Models

The second step deals with the configuration of a configurable reference model.
Taking the reference model defined in the previous step as input, this task defines
a set of configuration decisions for all configuration aspects of the model and
yields a configured reference model as an output. Hence, in the configurable
reference model for each configurable node a decision on the desired setting has
to be taken. Each variation point in the configurable reference model defines a
decision point at which the reference model user has to specify a configuration
parameter while adhering to potential constraints and requirements. Part (2) of
Fig. 2 demonstrates this problem in a simple example. The configurable refer-
ence model depicts two mutually exclusive alternatives of conducting business,
depicted by a circled X for a logical either-or split: either the sequence A−B−C
or A−B −D is allowed. A particular organization has to select one of these two
alternatives of conducting their business processes via the Enterprise System.
Hence, the X split in this case represents a decision point, e.g., to select the
option A − B − D (highlighted by changing the circled X to a circled D), with
the consequence of excluding C from the model.

Concerning responsibilities, this configuration step builds on the knowledge
of ES experts who are familiar both with the functionality of the ES, the re-
quirements of the organization, and the configuration of reference models. In
this context, these are most likely members of a configuration/implementation
project team involving consultants and experts of the organization itself.

Concerning validation mechanisms, at this stage, the desired configuration
needs to be validated against the constraints defined in the configurable reference
model. If these constraints have been specified in a formal manner, this task can
be conducted automatically. Consider the following example: an organization
chooses for its sales & distribution software package not to offer credit card
payment to customers. Conclusively, the accounting software package neither
needs to provide functionality for credit card authorization and payment. The
first configuration decision has a consequence onto the second variation/decision
point in that it restrains the possible set of configuration alternatives. Hence,
validation at this stage refers to the evaluation of configuration decisions against
constraints or configuration requirements.

2.4 Step (3): Transformation of Configured Reference Models

The third step is concerned with the transformation of a configured reference
model as input to an enterprise model as output. This enterprise model de-
scribes conceptually the way the organization will conduct business with the

Model-Driven Enterprise Systems Configuration 375

support of the Enterprise System once implemented and running. In short, a
“traditional” individual model has to be derived from the configured reference
model. If the configuration semantics of the configurable reference modeling lan-
guage have been defined in a formal way and the activities are supported by
applications, this task can be automated by a transformation program. Other-
wise, the transformation has to be done manually by an ES expert with modeling
expertise. It is recommended to automate the transformation, as a manual execu-
tion of this task is both time-consuming and error-prone. Furthermore, instead of
validating the enterprise model against the configured model, a validation of the
correctness of the transformation program is sufficient, which is much more effi-
cient. As an example, modeling languages that are specified via an XML schema
can easily be validated and transformed. Still, at least one ES and business ex-
pert should inspect the resulting models to validate that the models (still) meet
the requirements of the organization. An automated transformation is especially
beneficial when both the configuration decisions have to be translated to the
output model and the re-establishment of syntactical correctness of the model
becomes necessary [12]. For illustration purposes, consider the example given in
Part (3) of Fig. 3. It is assumed that an organization has chosen to implement
the sequence A−B −D instead of implementing the sequence A−B −C. Thus,
the option C - which still exists in the configured reference model - needs to be
excluded from the enterprise model. Furthermore, the decision point has to be
excluded from the model in order to re-establish syntactical correctness.

B
ui

ld
 ti

m
e

A B D

C

D

R
un

 ti
m

e

A B D

A B D

A B D

Executed model instances

Enterprise modelConfigured reference model

Enterprise -individual model

A B D
A3 B3 D3

Enterprise Model Deployment(4)Reference Model Transformation(3)

Fig. 3. Transformation to and deployment of enterprise model

2.5 Step (4): Deployment of Enterprise Model

The fourth step is concerned with the deployment of the enterprise model and
yields an implement and running enterprise system (which can be understood as
an implementation model) as output. Part (4) of Fig. 3 shows the principle.
There are basically two questions that are important in this context.

First, does a process engine or similar system exist that is able to execute
models, in particular the enterprise model, given the modeling language used? It
would be desirable if a reference process model that has been transformed to an
enterprise model would be directly executable in a workflow engine. A popular
example for such an executable process specification is BPEL4WS [13]. If the

376 J. Recker et al.

model is not directly executable, the enterprise model has to be transformed to
a modeling language that runs on a dedicated execution engine. If the semantics
of the used modeling language are defined in a formal way, this task can be
automated by a transformation program. Otherwise, the transformation has to
be done manually by an ES or IT expert with modeling expertise.

Second, does the enterprise model already include run time information about
data flow and interfaces to applications? If not, the enterprise model or the trans-
formed enterprise model need to be enriched with technical information, and can
only be deployed afterwards. Depending on how much technical information still
needs to be added to the model, the deployment has to be done by an IT expert or
may also be done by an ES expert. Furthermore, testing of the enterprise models
is of crucial importance before deployment, especially when run time information
is manually added by IT experts. The implementation models are supposed to be
instantiated in order to support the operations of the organization. Accordingly,
errors in the models may have a direct impact on business performance.

2.6 Loop (A): Controlling of Instance Models

The single-learning feedback loop stems from the notion of process monitoring
and controlling. For the purpose of this paper, process monitoring deals with
the collection of data about workflow instances at run time, mostly in audit trail
logs, i.e., an observation of the processes as they are executed in the organi-
zation at hand [14]. Process controlling, also referred to as process mining [15]
or business process intelligence [16], deals with the ex-post analysis of logged
audit trail data of process enactment. It aims at reviewing process performance
as to whether and how processes fulfill organizational requirements and support
organizational objectives. As process performance is determined by the support
provided by the implemented Enterprise System, we argue here that poor pro-
cess performance is an indicator for an Enterprise System configuration that
does not entirely support all organizational requirements and objectives. Based
on noted deviations in process performance, the process, as it is being supported
or enacted by the ES, needs to be re-configured in order to improve overall per-
formance. Hence, the feedback loop of controlling provides ex-post evaluation of
the customized implementation of the Enterprise System based on actual process
enactment performance.

To support the single-loop learning feedback look we use recent achievements
in process mining [15]. To illustrate the relationship between process mining and
reference models we refer to Fig. 4. Essential for process mining is the presence
of an event log (also referred to as audit trail or transaction log), which log refers
to some event, e.g., the start or completion of some activity. The event may bear
a timestamp or refer to the person/application executing it. The event may also
hold data, e.g., the outcome of a decision activity. Clearly, an information system
that is supporting or controlling an operational process is able to monitor such
events. We distinguish between two forms of process mining: process discovery
and conformance checking (see Fig. 4).

Model-Driven Enterprise Systems Configuration 377

enterprise
information

system

operational
process

configured
reference
models

event
logs

pr
oc

es
s

di
sc

ov
er

y

co
nf

or
m

an
ce

ch
ec

ki
ng

records

(4) Deploy

enacts/
controls

configurable
 reference

models
(2) Configure

enterprise
models

(3) Transform

(1) Specify

(A
)

C
o

n
tr

o
lli

n
g

(B
) C

on
so

lid
at

io
n

co
nf

or
m

an
ce

ch
ec

kin
g

pr
oc

es
s

dis
co

ve
ry

Fig. 4. Process mining approach and relation to configurable reference models

The goal of process discovery is to extract knowledge from event logs in the
form of models. These may be process models, e.g., an EPC or Petri net, but
also other models such as social networks or time-charts describing the perfor-
mance (e.g., flow times). Process discovery does not require an a-priori model
(such as a reference model), however, the discovered model may be used for
delta analysis, i.e., comparing the mined model representing the actual process
with the reference model representing the predefined process. Delta analysis can
be used to find parts of the process that are never used or find parts where
users deviate from the prescribed procedure. Moreover, the discovered models
may refer to other aspects such as time, data and resources. For example, the
discovered model may highlight the bottlenecks in the process, reveal the social
network (e.g., which people are working together on a frequent basis), or relate
properties of cases to their execution (e.g., cases involving more than 1000 euro
and handled by the team in Paris tend to be late).

Unlike process discovery, conformance checking does require an a-priori model
to which it compares the observed behavior as recorded in the log. Using confor-
mance checking one can detect discrepancies but it is also possible to see which
parts of the process are really used, where bottlenecks are etc. Clearly, this is
very useful for measuring (and quantifying) the “fit” between the real process
and some reference model and to pinpoint typical deviations.

To actually measure conformance and to discover a variety of models, we
have developed the ProM framework1. In the context of this framework, several
process discovery tools have been developed, e.g., the well-know alpha algorithm
[15]. Moreover, the framework offers a Conformance Checker, a Social Network
Analyser, and a variety of other analysis tools.

The dashed lines in Fig. 4 refer to the steps identified in Fig. 1. First, the
reference models are specified and then for a particular context (organization
and process) they are configured. The configured model is then transformed and
deployed. The configured reference model can be compared with the derived
models (process discovery) or directly with the event logs (conformance check-

1 Both documentation and software can be downloaded from www.processmining.org

www.processmining.org

378 J. Recker et al.

ing). This way it is possible to find different types of problems that may lead to
a re-configuration. For example, analysis may show that in reality, the execution
of the process does not match with the configured reference process model. This
may imply an incorrect implementation, office workers not following the proper
procedures, or a misalignment that needs to be addressed by reconfiguring the
system. The analysis may also highlight parts of the configured reference model
that are rarely active (or over-active), which, too, indicates a suboptimal configu-
ration of the system. Moreover, conformance checking may pinpoint bottlenecks
and other performance-related issues. These diagnostics may assist in improving
the configuration of the reference model.

Responsibilities for this task are multi-fold. The monitoring step of this stage
is best performed by IT experts that capture relevant process performance data
in audit trails and have experience in applying process mining techniques. The
actual analysis should be done by an analyst having knowledge of process mining
and the application domain. It is definitely possible to automate this analysis
and offer a kind of “business cockpit” to managers and end-users. Then, the
step of controlling is a rather managerial task and merely includes decisions
as to how to re-configure the processes in order to increase their performance.
Still, based on the assumption that process performance is determined by the
support provided by the Enterprise System, an ES expert is recommended to
be consulted for this task in order to elicit possible alternatives for supporting
existing processes through alternative ES configurations.

2.7 Loop (B): Consolidation of Instance Models

The single-loop learning approach focuses on a specific context (i.e., a given orga-
nization and process) and can only result in a reconfiguration. Therefore, it does
not aim at improving “best practice” in a broader setting, i.e., it does not reflect
on the qualities of the configurable reference model. The double-loop learning
approach that we refer to as consolidation has a wider scope than controlling.
The input of the consolidation feedback loop is a set of instances originating from
different configurations, i.e., experiences from multiple applications of the refer-
ence model are used as a starting point for the analysis of the reference model
itself and not (just) one selected configuration. The result of this analysis can be
used to modify the reference model itself. For example, analysis may show that
although it is possible to configure a variation point in multiple ways, in real-
ity always the same configuration decision is taken, thus leading to unnecessary
configuration work. It is also possible that analysis shows that certain problems
(e.g., performance or quality issues) typically occur when a certain configuration
is being used. This knowledge can be used to revise the original reference model
and the variation points within.

The consolidation phase consists of three smaller steps. First, process mining
techniques as described in Section 2.6 are applied in a variety of situations where
the reference model has been configured and deployed. For example, situations
in different organizational units in the same enterprise or in comparable orga-
nizational units across different organizations may be used as input. For each

Model-Driven Enterprise Systems Configuration 379

situation, process mining techniques are used to do process discovery and/or
conformance checking. This gives insights into the way the system is really be-
ing used, helps to identify problems and is used to quantify the performance
of the process. Each of these aspects is linked to the selected configuration and
external factors such as load and resource availability. Note that compared to
Section 2.6 these results are more likely at an aggregate level. The second step
uses the results of this first step and compares all situations to discover pat-
terns. This can be done in a qualitative way (“It seems that configuration A
only works properly if combined with configuration B.”) or in a quantitative
way (“There is a positive correlation between the flow time and a particular
configuration setting.”). In the third and final step these patterns are used to
modify the reference model (see Fig. 4). Note that the structure of the refer-
ence model may change. However, we envision that more changes will be made
to relationships between the different configuration decisions. Moreover, the use
of soft constraints in addition to hard constraints seems to be important. Soft
constraints can serve as guidelines based on empirical evidence gained from the
feedback loop of consolidation.

The responsibility of this task lies with the developers of the reference models
guided by input from the organizations involved.

3 An Instantiation Case Using Configurable EPCs

So far, we outlined a generic process that covers the overall reference model
lifecycle and applies it to the area of Enterprise Systems configuration. In the
following, we will illustrate the technical feasibility of this process by applying
it to the case of C-EPCs in the context of ES configuration. C-EPCs have been
developed with the clear intention in mind to facilitate a model-driven approach
towards ES configuration. In the following, we assume the reader to have some
basic knowledge of EPCs. For an introduction, refer to [17].

Event-Driven Process Chains (EPCs) are a frequently used business process
modeling language, especially for describing processes on a conceptual level.
EPCs have been developed in a joint project by University of Saarland and
SAP [17] and SAP has used them as a modeling language for their SAP R/3
reference model [3]. Configurable EPCs (C-EPCs) [5] extend EPCs to allow for
the specification of variation points, configuration requirements and configura-
tion guidelines in a reference model, including configurable functions that can
be switched on , off or optional ; configurable connectors that subsume possible
build time connector types, which are less or equally expressive; configuration
requirements (must-constraints) and guidelines (should-constraints); and an or-
der relation over the configurable nodes [5]. EPCs have been chosen because
they facilitate the usage of the SAP model in step 1 for the specification of
configurable reference models. Respective tool support is available as the ARIS
Toolset of IDS Scheer AG is shipped with the SAP model. As a basis for steps
2 to 4, an XML representation of (a) configurable EPCs and (b) configured
EPCs based on the EPC Markup Language (EPML) [18] has been specified [19].

380 J. Recker et al.

This EPML extension serves as an input format for a C-EPC validation tool
that has been implemented as a prototype [19]. This tool generates a report on
whether a configurable EPC is correct with respect to the C-EPC definition,
and whether configuration requirements and guidelines are met. The formal C-
EPC definition allows the automation of the validation and, therefore, supports
the configuration step (step 2). The transformation of C-EPCs to EPC process
models bears some challenges which are specific to the syntax and semantics of
EPCs [12]. An algorithm has been defined in [20] and implemented to automate
this transformation step (step 3). This is supposed to speed up the development
and grant the correctness of the resulting models. This algorithm is driven by
a minimality criterion in order to generate an EPC with as little structure as
necessary [20]. In the beginning, it had been an assumption that the generated
EPC models can be directly deployed on the ES (step 4). As this might not
always be the case, a transformation concept from EPCs to executable BPEL
[13] process definitions has been developed [21]. As BPEL is a generic language
for Web Service composition, this step can only be automated if the data flow
and the Web Service endpoints are made explicit in the EPC model. Basically,
such information can be included in the configurable model and preserved in
the transformation step, so it is still available for deployment. The two feedback
loops can both be supported by process mining techniques. The ProM frame-
work introduced in Section 2.6 is able to rebuild EPC models from SAP event
logs. Also, in [7] it has been shown how process mining can be used to generate
C-EPCs from running workflows for controlling or consolidation purposes.

The C-EPC case illustrates that respective tool support for each step of the
engineering process has already been established on a prototype basis. The next
challenge is to combine the different implementations into a comprehensive con-
figuration framework that can be used by practitioners.

4 Related Work

A number of academic contributions discussing issues related to Enterprise Sys-
tems aim at understanding the challenges of ES configuration. For instance, a
number of contingencies that potentially impact such projects have been revealed
in critical success factor models [22]. Other research claims that ES implemen-
tation project failures are likely due to difficulties arising while using specified
requirements in the implementation process [23]. Empirical studies, too, tell fail-
ure stories [1].

While vendors aim at increasing the chance of ES implementation success by
distributing reference models as part of system documentation, these models are
at best partly deployed in the configuration of Enterprise Systems. Daneva [4]
measured the level of reuse of the SAP reference models in a number of case
studies and indicated that full reuse was not achieved in any of them, although
sometimes the level of reuse was quite substantial. Some research has focused
the field of configurable modeling, good collections of related approaches can be
found in [5] and [24]. Some of the discussed approaches are closely related to our

Model-Driven Enterprise Systems Configuration 381

ideas of configurable modeling; worthwhile mentioning here is the approach by
Reinhartz-Berger et al. [25], who leverage the re-use of reference models for do-
main engineering using model specialization mechanisms based on generalization
and UML stereotypes.

Concerning limitations, model-driven configuration is well suited for deploy-
ment of commercial-off-the-shelf software packages but not as a general approach
to software engineering, which cannot entirely be described as a ‘scoping’ exer-
cise. Also, the notion of re-usable models in the software engineering discipline
refers to the employment of building blocks of software fragments in multiple
contexts rather than the depiction of best practice patterns. There is, however,
some related work. As an example, Haugen et al. [26] present an approach to
leverage configurable models for system family engineering. In order to cap-
ture model variability, they utilize mechanisms of UML 2.0 composite structures
and UML association multiplicities. Yet, their approach focusses more on the
derivation of individual software systems from system families than on deriving
variants from a given models.

5 Contributions and Limitations

This paper reported on the development and application of a generic engineer-
ing process for configurable reference modeling. We first presented a process for
model-driven Enterprise Systems configuration consisting of the steps specifica-
tion, configuration, transformation, and deployment, as well as the feedback loops
controlling and consolidation. The second contribution of this paper was the ap-
plication of this generic process to the development and application of C-EPCS
for the purpose of configuring Enterprise Systems. We showed how C-EPCs con-
ceptually facilitate a model-driven configuration process in all of our stages.

Our research has a few limitations. First, our approach needs to be empirically
validated with business practitioners. This task is currently being conducted.
We have already conducted a pilot laboratory experiment with postgraduate IT
students on the perceived usefulness and perceived ease of use of C-EPCs in com-
parison to EPCs, showing that C-EPCs are in fact perceived as more useful and
easier to use for the task of reference model configuration [27]. Second, our ap-
proach does not strongly consider the challenge of linking configurable models to
Enterprise Systems functionality, i.e., how to link model configurations to actual
modifications of programmed code. Third, we applied our generic engineering
process to a configurable process modeling approach. It would be interesting to
link it other perspectives such as a data view, refer, for instance, to [28].

Future work will concentrate on (a) an evaluation of our approach via case
study application and (b) the development of a sophisticated configuration
framework based on our proof-of-concept implementations. The ultimate goal
is then to provide comprehensive tool support towards model-driven systems
configuration.

Acknowledgement. The research on C-EPCs has been partly funded by SAP
Research and Queensland University of Technology with the Strategic Link with

382 J. Recker et al.

Industry project “Modelling Configurable Business Processes”. SAP is a trade-
mark of SAP AG, Germany.

References

1. Davenport, T.H.: Mission Critical: Realizing the Promise of Enterprise Systems.
Harvard Business School Press, Boston, MA (2000)

2. Rosemann, M.: Using Reference Models within the Enterprise Resource Planning
Lifecycle. Australian Accounting Review 10 (2000) 19–30

3. Curran, T., Keller, G., Ladd, A.: SAP R/3 Business Blueprint: Understanding the
Business Process Reference Model. Enterprise Resource Planning Series. Prentice
Hall PTR, Upper Saddle River, NJ (1997)

4. Daneva, M.: Practical Reuse Measurement in ERP Requirements Engineering.
In Wangler, B., Bergmann, L., eds.: 12th International Conference on Advanced
Information Systems Engineering. Volume 1789 of Lecture Notes In Computer
Science., Stockholm, Sweden, Springer (2000) 309–324

5. Rosemann, M., van der Aalst, W.: A Configurable Reference Modelling Language.
Information Systems In Press, also available from www.BPMCenter.org (2006)

6. Soffer, P.: Scope Analysis: Identifying the Impact of Changes in Business Process
Models. Software Process Improvement and Practice 10 (2005) 393–402

7. Jansen-Vullers, M.H., van der Aalst, W., Rosemann, M.: Mining Configurable
Enterprise Information Systems. Data and Knowledge Engineering 56 (2006) 195–
244

8. Argyris, C., Schön, D.: Organizational Learning II. Theory, Method, and Practice.
Addison-Wesley, Reading, MA et al. (1996)

9. Halmans, G., Pohl, K.: Communicating the Variability of a Software-Product
Family to Customers. Software and Systems Modeling 2 (2003) 15–36

10. Lindland, O.I., Sindre, G., Sølvberg, A.: Understanding Quality in Conceptual
Modeling. IEEE Software 11 (1994) 42–49

11. Lauesen, S., Vinter, O.: Preventing Requirement Defects: An Experiment in Pro-
cess Improvement. Requirements Engineering 6 (2001) 37–50

12. Recker, J., Rosemann, M., van der Aalst, W., Mendling, J.: On the Syntax of
Reference Model Configuration. Transforming the C-EPC into Lawful EPC Models.
In Bussler, C., Haller, A., eds.: Business Process Management Workshops. Volume
3812 of Lecture Notes in Computer Science. Springer, Berlin, Germany et al. (2006)
497–511

13. Andrews, T. et al.: Business Process Execution Language for Web Services. Version
1.1 (2003)

14. zur Muehlen, M.: Workflow-based Process Controlling. Foundation, Design and
Application of workflow-driven Process Information Systems. Logos, Berlin, Ger-
many (2004)

15. van der Aalst, W., Weijters, A., Maruster, L.: Workflow Mining: Discovering Pro-
cess Models from Event Logs. IEEE Transactions on Knowledge and Data Engi-
neering 16 (2004) 1128–1142

16. Grigori, D., Casati, F., Castellanos, M., Dayal, U., Sayal, M., Shan, M.: Business
Process Intelligence. Computers in Industry 53 (2004) 321–343

17. Keller, G., Nüttgens, M., Scheer, A.W.: Semantische Prozessmodellierung auf der
Grundlage “Ereignisgesteuerter Prozessketten (EPK)”. Technical Report 89, Insti-
tut für Wirtschaftsinformatik der Universität Saarbrücken, Saarbrücken, Germany
(1992)

www.BPMCenter.org

Model-Driven Enterprise Systems Configuration 383

18. Mendling, J., Nüttgens, M.: EPC Markup Language (EPML) - An XML-
Based Interchange Format for Event-Driven Process Chains (EPC). Informa-
tion Systems and e-Business Management In Press, also available from
wi.wu-wien.ac.at/home/mendling (2006)

19. Mendling, J., Recker, J., Rosemann, M., van der Aalst, W.: Towards the In-
terchange of Configurable EPCs: An XML-based Approach for Reference Model
Configuration. In Desel, J., Frank, U., eds.: Enterprise Modelling and Informa-
tion Systems Architectures. Volume P-75 of Lecture Notes in Informatics. German
Informatics Society, Klagenfurt, Austria (2005) 8–21

20. Mendling, J., Recker, J., Rosemann, M., van der Aalst, W.: Generating Correct
EPCs from Configured CEPCs. In: 21st Annual ACM Symposium on Applied
Computing, Dijon, France, ACM (2006) forthcoming

21. Ziemann, J., Mendling, J.: EPC-Based Modelling of BPEL Processes: a Pragmatic
Transformation Approach. In: 7th International Conference MITIP 2005, Genova,
Italy (2005)

22. Holland, C.P., Light, B.: A Critical Success Factors Model for ERP Implementa-
tion. IEEE Software 16 (1999) 30–36

23. Rolland, C., Prakash, N.: Bridging The Gap Between Organisational Needs And
ERP Functionality. Requirements Engineering 5 (2000) 180–193

24. Puhlmann, F., Schnieders, A., Weiland, J., Weske, M.: Variability Mechanisms
for Process Models. PESOA-Report TR 17/2005, DaimlerChrysler Research and
Technology and Hasso-Plattner-Institut, Ulm and Potsdam, Germany (2005)

25. Reinhartz-Berger, I., Soffer, P., Sturm, A.: A Domain Engineering Approach to
Specifying and Applying Reference Models. In Desel, J., Frank, U., eds.: Enterprise
Modelling and Information Systems Architectures. Volume P-75 of Lecture Notes
in Informatics. German Informatics Society, Klagenfurt, Austria (2005) 50–63

26. Haugen, Ø., Møller-Pedersen, B., Oldevik, J., Solberg, A.: An MDA-based Frame-
work for Model-driven Product Derivation. In Hamza, M.H., ed.: Software Engi-
neering and Applications, Cambridge, MA, ACTA Press (2004) 709–714

27. Recker, J., Rosemann, M., van der Aalst, W.: On the User Perception of Con-
figurable Reference Process Models - Initial Insights. In: 16th Australasian Con-
ference on Information Systems, Sydney, Australia, Australasian Chapter of the
Association for Information Systems (2005)

28. Rosemann, M., Shanks, G.: Extension and Configuration of Reference Models for
Enterprise Resource Planning Systems. In Finnie, G., Cecez-Kecmanovic, D., Lo,
B., eds.: Proceedings of the 12th Australasian Conference on Information Systems.
Southern Cross University, Coffs Harbour, Australia (2001) 537–546

wi.wu-wien.ac.at/home/mendling

	Enterprise Systems and Reference Modeling
	A Generic Configurable Reference Modeling Process
	Overview of the Process
	Step (1): Specification of Configurable Reference Models
	Step (2): Configuration of Configurable Reference Models
	Step (3): Transformation of Configured Reference Models
	Step (4): Deployment of Enterprise Model
	Loop (A): Controlling of Instance Models
	Loop (B): Consolidation of Instance Models

	An Instantiation Case Using Configurable EPCs
	Related Work
	Contributions and Limitations

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

