

Lecture Notes in Computer Science 4001
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Eric Dubois Klaus Pohl (Eds.)

Advanced Information
Systems Engineering

18th International Conference, CAiSE 2006
Luxembourg, Luxembourg, June 5-9, 2006
Proceedings

13

Volume Editors

Eric Dubois
Centre de Recherche Public Henri Tudor
29, Avenue John F. Kennedy, 1855 Luxembourg-Kirchberg, Luxembourg
E-mail: eric.dubois@tudor.lu

Klaus Pohl
Lero - The Irish Software Engineering Research Center
University of Limerick
Ireland
and
University of Duisburg-Essen
Software Systems Engineering
ICB - Institute of Computer Science and Business Information Sysems
Schützenbahn 70, 45117 Essen, Germany
E-mail: Pohl@sse.uni-essen.de

Library of Congress Control Number: 2006926432

CR Subject Classification (1998): H.2, H.3-5, J.1, K.4.3-4, K.6, D.2, I.2.11

LNCS Sublibrary: SL 3 – Information Systems and Application,
incl. Internet/Web and HCI

ISSN 0302-9743
ISBN-10 3-540-34652-X Springer Berlin Heidelberg New York
ISBN-13 978-3-540-34652-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11767138 06/3142 5 4 3 2 1 0

Preface

Welcome to CAiSE 2006 – the 18th International Conference on Advanced Infor-
mation Systems Engineering. The goal of the CAiSE conference series is to bring
together the R&D community concerned with the development of information
systems so as to take advantage of emerging methods and technologies that both
facilitate innovation and create business opportunities.

The conference theme of CAiSE 2006 was “Trusted Information Systems.”
Ambient, pervasive and ubiquitous computing are enabling the use of informati-
on systems almost everywhere. Consequently, the impact of information systems
on the everyday life of organizations as well as individuals is rapidly increasing.
Individuals and organizations find themselves depending on information systems
that they did not develop themselves, that they do not fully understand, or that
they do not manage and control themselves.

Under these rapidly changing circumstances, trust in information systems
is clearly becoming a central issue for organisations and individuals. Three im-
portant aspects of trust in information systems were addressed by the invited
keynotes of CAiSE 2006:

– Trusted Interaction: User Control and System Responsibilities in Interacti-
on Design for Information Systems by Larry Constantine (Constantine &
Lockwood, Ltd., and University of Madeira)

– Dealing with Trust in eGov Services by Vassily Kritis (Intrasoft Internatio-
nal)

– Trust: from Cognition to Conceptual Models and Design by Alistair Sutcliffe
(The Centre for HCI Design, University of Manchester)

The accepted papers and the panels, as well as the CAiSE Forum, addres-
sed additional facets of trust such as business/IT alignment, queries and Web
services, knowledge engineering and ontologies, change management, conceptual
modelling and requirements management.

For CAiSE 2006, we received 189 submissions in the five categories mentioned
in the call for papers: case studies, experience reports, experimental reports, pro-
blem statements and research papers. The largest number of submissions came
from China (21 papers) followed by Spain (19 papers) and Germany (13 papers).
Overall, one third of the submissions came from outside Europe. In an extensive
review process, the Programme Committee of CAiSE 2006 accepted 33 papers
out of the 189 submissions – an acceptance rate of 17%. In addition, the Pro-
gramme Committee recommended 18 papers for acceptance in the CAiSE 2006
Forum. The programme of CAiSE 2006 was complemented by 12 workshops, 1
working conference, a PhD consortium and 9 tutorials.

CAiSE 2006 would not have been possible without the efforts and expertise of
a number of people who selflessly offered their time and energy to help make this
conference a success. We would like to thank all the people on the Organisation

VI Preface

Committee. Special thanks are due to Sacha Reis and Richard van de Stadt for
their responsive and helpful support during the paper evaluation and selection
process, as well as during the preparation of the proceedings.

We also offer our sincere thanks to the members of the CAiSE 2006 Pro-
gramme Committee for devoting their time and knowledge to reviewing and
discussing the submitted papers. We would especially like to thank the members
of the Programme Committee who attended the two-day Programme Committee
meeting, held in Essen on January 30-31, 2006.

Finally, we thank the main conference sponsors: Research National Fund of
Luxembourg Public Research Centre Henri Tudor (Luxembourg), University of
Luxembourg, Lero (University of Limerick), University of Duisburg-Essen, Uni-
versity of Namur, Intrasoft International, Sun Microsystems and other national
research authorities.

We hope you enjoy the CAiSE 2006 the proceedings.

Eric Dubois
Klaus Pohl

organisation

Advisory Committee Janis Bubenko Jr.
Royal Institute of Technology, Sweden
Colette Rolland
Université Paris 1 - Sorbonne, France
Arne Sølvberg
Norwegian University of Science and Technology, Norway

General Chair Eric Dubois
Public Research Centre Henri Tudor, Luxembourg

Programme Chair Klaus Pohl
Lero - The Irish Software Engineering Research Centre,
Ireland, and
University of Duisburg-Essen, Germany

Organising Chair Pascal Bouvry
University of Luxembourg

Workshop Chairs Michael Petit
University of Namur, Belgium
Thibaud Latour
Public Research Centre Henri Tudor, Luxembourg

Tutorial Chairs Djamel Khadraoui
Public Research Centre Henri Tudor, Luxembourg
Patrick Heymans
University of Namur, Belgium

Doctoral Consortium Colette Rolland
Chairs Université Paris 1 - Sorbonne, France

Pedro F. Campos
University of Madeira, Portugal

Forum Chairs Nicolas Guelfi
University of Luxembourg, Luxembourg
Nacer Boudjlida
University Henri Poincaré Nancy I, LORIA, France

VIII Organisation

Publicity Chairs Riad Aggoune
University of Luxembourg, Luxembourg
Thorsten Weyer
University of Duisburg-Essen, Germany

Programme Committee

Jean-Claude Asselborn Luxembourg
Sjaak Brinkkemper The Netherlands
Silvana Castano Italy
Jaelson Castro Brazil
Johann Eder Austria
Hans-Dieter Ehrich Germany
Stefan Eicker Germany
João Falcão e Cunha Portugal
Xavier Franch Spain
Paolo Giorgini Italy
Claude Godart France
Jaap Gordijn The Netherlands
Jean-Luc Hainaut Belgium
Terry Halpin USA
Brian Henderson-Sellers Australia
Matthias Jarke Germany
Manfred Jeusfeld The Netherlands
Paul Johannesson Sweden
Gerti Kappel Austria
Dimitris Karagiannis Austria
Roland Kaschek New Zealand
John Krogstie Norway
Julio Leite Brazil
Michel Lemoine France
Michel Léonard Switzerland
Pericles Loucopoulos UK
Kalle Lyytinen USA
Neil Maiden UK
Florian Matthes Germany
Heinrich Mayr Austria
Jean-Pol Michel Luxembourg
Michele Missikoff Italy
Ana Moreira Portugal
Moira Norrie Switzerland
Andreas Oberweis Germany
Antoni Olivé Spain
Andreas L. Opdahl Norway

Organisation IX

Oscar Pastor Lopez Spain
Barbara Pernici Italy
Anne Persson Sweden
Yves Pigneur Switzerland
Klaus Pohl Germany
Jolita Ralyte Switzerland
Colette Rolland France
Kevin Ryan Ireland
Motoshi Saeki Japan
Camille Salinesi France
Guttorm Sindre Norway
Monique Snoeck Belgium
Janis Stirna Sweden
Alistair Sutcliffe UK
Bernhard Thalheim Germany
Juha-Pekka Tolvanen Finland
Aphrodite Tsalgatidou Greece
Yannis Vassiliou Greece
Gottfried Vossen Germany
Yair Wand Canada
Roel Wieringa The Netherlands
Eric Yu Canada

Additional Referees

Birger Andersson
João Araújo
Danilo Ardagna
George Athanasopoulos
Maria Bergholtz
Paola Bertolazzi
Aliaksandr Birukou
Enrico Blanzieri
Rik Bos
Volha Bryl
Andrew Burton-Jones
Hock Chan
François Charoy
Dolors Costal
Marcin Czenko
Fulvio D’Antonio
Daniel Dahl
Silke Eckstein
Joerg Evermann
Alfio Ferrara

Hans-Georg Fill
Anna Formica
Virginia Nunes

Leal Franqueira
Walid Gaaloul
Andrew Gemino
Miguel Goulão
Sabine Graf
Fabio Grandi
Michael Grossniklaus
Peter Höfferer
Stephan Hagemann
Martin Henkel
Sandra Hintringer
Slinger Jansen
Marijke Janssen
Rim Samia Kaabi
Kinshuk
Marite Kirikova
Maik Kollmann

Lyubov Kolos-Maruryk
Henk Koning
Hartmut König
Eleni Koutrouli
Gerhard Kramler
Andreas Kupfer
Jens Lechtenboerger
Marek Lehmann
Norbert Luttenberger
Sergio Mascetti
Brigitte Mathiak
Michele Melchiori
Elke Michlmayr
Pascal Molli
Stefano Montanelli
Marion Murzek
Enrico Mussi
Martin Nemetz
Karl Neumann
Antonio De Nicola

X Organisation

Nunzia Osimi
Michael Pantazoglou
Lia Patrıcio
Olivier Perrin
Horst Pichler
Thomi Pilioura
Manfred Reichert
Boriana Rukanova
Andrea Schauerhuber
Peter M. Schuler
Joachim Schwieren
Vladimir Shekhovtsov
Hala Skaf

Eriks Sneiders
Mehdi Snene
Pnina Soffer
Jurriaan Souer
Jorge Pinho de Sousa
Veronika Stefanov
Xiaomeng Su
Francesco Taglino
Nick Tahamtan
Philippe Thiran
Alexei Tretiakov
Slim Turki
Christina Tsagkani

Jan Herman Verpoorten
Johan Versendaal
Inge van de Weerd
Nadir Weibel
Liu Fu Wen
Peter Westerkamp
Manuel Wimmer
Andreas Wombacher
Lai Xu
Nicola Zannone
Jane Zhao
Sergiy Zlatkin

Organisation XI

Sponsors

In Cooperation with

Corporate Sponsors

Table of Contents

Keynotes

Trust: From Cognition to Conceptual Models and Design
Alistair Sutcliffe . 3

Dealing with Trust in eGov Services
Vassily Kritis . 18

Trusted Interaction: User Control and System Responsibilities in
Interaction Design for Information Systems

Larry L. Constantine . 20

Security

Designing Security Requirements Models Through Planning
Volha Bryl, Fabio Massacci, John Mylopoulos, Nicola Zannone 33

Towards a Comprehensive Framework for Secure Systems Development
Haralambos Mouratidis, Jan Jürjens, Jorge Fox . 48

Role-Based Modelling of Interactions in Database Applications
Milivoje Petrovic, Michael Grossniklaus, Moira C. Norrie 63

Conceptual Modelling

Incremental Evaluation of OCL Constraints
Jordi Cabot, Ernest Teniente . 81

Object-Relational Representation of a Conceptual Model for Temporal
Data Warehouses

Elzbieta Malinowski, Esteban Zimányi . 96

Data Translation Between Taxonomies
Sérgio Luis Sardi Mergen, Carlos Alberto Heuser 111

Queries

Managing Quality Properties in a ROLAP Environment
Adriana Marotta, Federico Piedrabuena, Alberto Abelló 127

XIV Table of Contents

Comprehensible Answers to Précis Queries
Alkis Simitsis, Georgia Koutrika . 142

An Efficient Approach to Support Querying Secure Outsourced XML
Information

Yin Yang, Wilfred Ng, Ho Lam Lau, James Cheng 157

Document Conceptualisation

Wrapping PDF Documents Exploiting Uncertain Knowledge
Sergio Flesca, Salvatore Garruzzo, Elio Masciari, Andrea Tagarelli . . . 175

Supporting Customised Collaboration over Shared Document
Repositories

Claudia-Lavinia Ignat, Moira C. Norrie . 190

Data Conceptualisation for Web-Based Data-Centred Application
Design

Julien Vilz, Anne-France Brogneaux, Ravi Ramdoyal,
Vincent Englebert, Jean-Luc Hainaut . 205

Service Composition

Resolving Underconstrained and Overconstrained Systems of
Conjunctive Constraints for Service Requests

Muhammed J. Al-Muhammed, David W. Embley 223

Discovering Remote Software Services that Satisfy Requirements:
Patterns for Query Reformulation

Nektarios Dourdas, Xiaohong Zhu, Neil Maiden, Sara Jones,
Konstantinos Zachos . 239

A Library of OCL Specification Patterns for Behavioral Specification of
Software Components

Jörg Ackermann, Klaus Turowski . 255

Workflow

Data–Driven Process Control and Exception Handling in Process
Management Systems

Stefanie Rinderle, Manfred Reichert . 273

Workflow Exception Patterns
Nick Russell, Wil van der Aalst, Arthur ter Hofstede 288

Table of Contents XV

Dynamic Workflow Modeling and Verification
Jiacun Wang, Daniela Rosca . 303

Business Modelling

On the Notion of Value Object
Hans Weigand, Paul Johannesson, Birger Andersson,
Maria Bergholtz, Ananda Edirisuriya, Tharaka Ilayperuma 321

Inter-organisational Controls as Value Objects in Network Organisations
Vera Kartseva, Jaap Gordijn, Yao-Hua Tan . 336

Landscape Maps for Enterprise Architectures
Leendert van der Torre, Marc M. Lankhorst, Hugo ter Doest,
Jan T.P. Campschroer, Farhad Arbab . 351

Configuration and Separation

Model-Driven Enterprise Systems Configuration
Jan Recker, Jan Mendling, Wil van der Aalst, Michael Rosemann 369

Configuration Management in a Method Engineering Context
Motoshi Saeki . 384

Why Software Engineers Do Not Keep to the Principle of Separating
Business Logic from Display: A Method Rationale Analysis

Malin Häggmark, Pär J. Ågerfalk . 399

Business Process Modelling

Translating Standard Process Models to BPEL
Chun Ouyang, Marlon Dumas, Stephan Breutel,
Arthur ter Hofstede . 417

Semantic Annotation Framework to Manage Semantic Heterogeneity of
Process Models

Yun Lin, Darijus Strasunskas, Sari Hakkarainen, John Krogstie,
Arne Sølvberg . 433

A Study of the Evolution of the Representational Capabilities of
Process Modeling Grammars

Michael Rosemann, Jan Recker, Marta Indulska, Peter Green 447

XVI Table of Contents

Agent Orientation

From Stakeholder Intentions to Software Agent Implementations
Loris Penserini, Anna Perini, Angelo Susi, John Mylopoulos 465

Modeling Mental States in Agent-Oriented Requirements Engineering
Alexei Lapouchnian, Yves Lespérance . 480

On the Quantitative Analysis of Agent-Oriented Models
Xavier Franch . 495

Requirements Management

An Empirical Evaluation of the i* Framework in a Model-Based
Software Generation Environment

Hugo Estrada, Alicia Mart́ınez Rebollar, Oscar Pastor,
John Mylopoulos . 513

Towards an End-User Development Approach for Web Engineering
Methods

Pedro Valderas, Vicente Pelechano, Oscar Pastor 528

Modeling Volatile Concerns as Aspects
Ana Moreira, João Araújo, Jon Whittle . 544

Author Index . 559

Keynotes

E. Dubois and K. Pohl (Eds.): CAiSE 2006, LNCS 4001, pp. 3 – 17, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Trust: From Cognition to Conceptual Models and Design

Alistair Sutcliffe

School of Informatics, University of Manchester,
PO Box 88, Manchester, UK
ags@manchester.ac.uk

Abstract. Trust as a design issue for information systems has appeared in
e-commerce, e-science, and a wide variety of collaborative applications. Much
discussion has centred around trust in computational artefacts such as protocols,
encryption and security mechanisms; however, little research has focused on
exactly what trust means in human terms. In this presentation I will review the
psychology literature on trust as a product of reasoning processes, and describe a
cognitive model to explain and predict inter-personal and inter-organisational
trust. I argue that sound design should be based on cognitive models of users, and
these should inform the semantics of conceptual modelling as well as guiding the
design process. I will explore the implications of the cognitive model of trust for
conceptual modelling in requirements specification languages such as i*. The
final part will be more speculative. After a brief review of the implementations
of trust-enhancing mechanisms in collaborative and e-science systems, focusing
on user interface features rather than encryption, etc. middleware, I will discuss
the design challenges for future trustworthy systems. This will cover how trust
can be communicated, and issues of honesty when users may not always have
the best intentions.

1 Introduction

Since trust has frequently been associated only with connotations of security and
privacy (Haley, Laney et al., 2004; Giorgini, Massacci et al., 2005), the scope and
interaction of trust-related issues in information systems development needs to be
investigated. This leads to investigating how trust as a phenomenon can be interpreted
in conceptual models and requirements specifications of systems. Modelling and
designing for trustworthy or trust-promoting systems necessitates understanding and
applying psychological and socio-psychological theories that explain trust and related
phenomena. Trust has a social dimension in its role of governing personal relation-
ships; it also has implications for how we make decisions, when we decide how to
react to objects and people, as trustworthy or not. However, to realise the value in
modelling trust, design implications should be discovered. To make some progress in
this direction I will propose a framework for modelling trust-related issues, and then
apply the framework in a case study of e-science. Trust has been highlighted as a
social issue in the UK e-science programme; however, to date there has been little
research that defines what trust means in e-science or how it should be interpreted in
designing collaborative software.

4 A. Sutcliffe

The paper is organised as follows; a brief review of cognitive and social psycho-
logical models of trust is followed by a description of the framework of trust-related
issues. The subsequent section applies the framework to analysing trust-related prob-
lems in e-science. Finally, a research agenda for trust-motivated research in informa-
tion systems is discussed.

2 Cognitive and Social Models of Trust

In sociology, trust models have considered economic viewpoints of trust between or-
ganisations as well as social attitudes governing trust towards institutions and between
groups. In transaction cost theory (Williamson, 1993), trust is viewed as a consequence
of inter-organisational relationships and the evolution of markets. The nature of the
transaction and value of the goods influences trust between the purchasers and vendor
and trust is regarded as a means of reducing transaction costs (e.g. legal fees) in con-
tracts. Thoburn and Takashima (1993) argue that the existence of contracts should not
inevitably be taken to mean that trust is absent, and note that in highly interdependent
relationships contracts must be supplemented by other measures such as relationship
building and the development of transparent accounting procedures between alliance
partners. This includes the development of a no-blame culture to encourage truthful
reporting and an open and honest dialogue (Tomkins, 2001).

Korczynski (2000) developed a model to illustrate the multiple types of trust that
underlie relationships in economic activity, and pointed out that trust has a “political”
as well as an economic aspect. For example, those who act out of social and ethical
motives will be trusted more than opportunistic individuals. In associations where the
participants have a long “time horizon” developed through personal associations and
shared vision, there is less likelihood that incumbents will be narrowly rational in
calculating trust. The “political” aspects of trust involve aspects such as legitimacy,
reputation, status and knowledge.

Sociological studies of trust follow the perspective of society as a whole (Barber,
1983) or from individual perspectives of personal trust (Lewis & Weigert, 1985;
Luhmann, 1979; Shapiro, 1987; Zucker, 1986). The primary definition used in the
sociological literature is that of Barber (1983, p. 165), who defines trust as two expecta-
tions: “[that] of technically competent performance and … of fiduciary obligation and
responsibility”. Generally sociologists consider trust to be developed over time
and influenced by personality traits, social experiences, or commonly shared norms and
values (Fukuyama, 1995). Risk is implied in trust, but the risk is a calculated one, so
individuals may choose not to trust if the risk is too great.

Drawing upon the literature of several disciplines, Hupcey et al. (2001) propose a
three-component model that contains (i) antecedents: a need which cannot be met
without help from another; prior knowledge and/or experience of the other, and as-
sessment of risk; (ii) attributes composed of dependency upon another to meet the
need, choice or willingness to take some risk; expectation that the trusted individual
will behave in a certain way; focus upon the behaviour related to the need and testing
the trustworthiness of the individual; (iii) boundaries when trust ceases to exist if
there is a perception of no choice or the risks outweigh the benefits.

 Trust: From Cognition to Conceptual Models and Design 5

In psychology the emphasis is upon interpersonal relationships as defined by Rot-
ter (1971, p. 444): “an expectancy held by an individual or a group that the word,
promise, verbal or written statement of another individual or group can be relied on”.
However, trusting an individual places the trustor at risk (Kramer, 1999), and there-
fore relies upon encountering consistent and benevolent behaviour in others
(Larzelere & Huston, 1980). Cannon, Doney and Mullen (1998) define trust as a will-
ingness to rely on another party, and therefore to make oneself vulnerable to that
party.

Formal socio-cognitive models of trust have been proposed (Castelfranchi & Fal-
cone, 1998) with equations that attempt to evaluate the various factors that influence
trusting relationships, such as the degree of delegation between the two parties, the
motivations, risks and goals shared by the parties to establish the need for a relation-
ship, and properties which can be evaluated to establish their reputations. The role of
the environment and experience also influence how trust may be assessed within
groups, although no clear means of assessing the impact of experience is given. The
socio-cognitive theory of trust (Falcone & Castelfranchi, 2001a, 2001b) represents a
considerable synthesis of the literature; however, the equations and premises contain
many assumptions which are not based on empirical evidence. Furthermore, the pre-
dictions of the model have not been validated in case studies or experiments.

Studies of trust in technology have investigated how people assess the trustworthi-
ness of websites and have proposed guidelines for trust enhancing design (Neilsen,
Molich et al., 2000). Empirical studies in e-commerce environments reviewed by
Grabner-Krauter and Kaluscha (2003), focus on assessment of trustworthiness of
websites as well as the web as an institution. Guidelines for promoting trust are re-
ported with questionnaire inventories for assessing reputation of trustees. Corritore,
Kracher and Wiedenbeck (2003) propose a model of trust oriented to assessment of
websites and interactive products, which assesses quality factors such as usability and
credibility balanced against the risk of entering into transactions on the web. A more
comprehensive model (Riegelsberger, Sasse & McCarthy, 2003) analyses trusting
relationships and trust-enforcing institutions and proposes mechanisms for promoting
trust in communities, with design guidelines to facilitate evaluation of intrinsic trust
of the reputation of the trustee, as well as feedback from experience. However,
Riegelsberger et al. note that external manifestations of trust can be subject to mim-
icry by ill-intentioned agents, so trust relies on well regulated communities.

The concept of trust has been elaborated into credibility in studies of websites
(Fogg, Marshall et al., 2001), where trust is an attribute assigned to websites based on
the user’s assessment of several factors such as usability, accuracy of information,
brand and persuasive features. However, Fogg proposed no specific model of trust per
se. A more elaborate model based on qualitative and quantitative research is the two-
process model of trust in which first impressions, based on the interface look and feel,
are distinguished from more detailed evaluations, based on the analysis of source
credibility, personalisation and predictability (Briggs, Burford et al., 2002). The rela-
tionship between trust, personalisation and brand was further investigated in a large-
scale experiment which also addressed methodological issues concerning the extent to
which planned and actual behaviours converge (Briggs, Burford & De Angeli, 2004).

Although the diversity in trust theories and models can be daunting, a common set
of components appears in several theories. First there must be some motivation for

6 A. Sutcliffe

one party to trust another. The fact that one party has a need which can potentially be
met by the other implies a degree of vulnerability. This is because the trustor is plac-
ing themselves at some risk vis-à-vis the potentially more powerful party. A trustor
has to feel some confidence in the past performance and reliability of the trusted party
to assess whether they are likely to fulfil their part of the bargain. The trustor relies on
the trusted, or trustee, to share their commitment towards achieving a goal. The
boundaries of trust are reached when one party perceives that the risks in trusting the
other party outweigh the potential benefits.

3 Modelling Trust

At the social level, trust is a relationship between the trustor and the trustee. There is
an implicit asymmetry in the relationship between the latter, who is more powerful,
and the trustor who is in some way more dependent on the trustee. Trust is associated
with power (i.e. authority and perceived power), vulnerability and risk. Indeed trust
can be seen as a type of insurance policy for making relationships manageable when
there is some doubt about the intentions of the other party. If one individual perceives
some risk or vulnerability which could be exploited in the relationship, the courses of
action are either to abandon the relationship, or to adopt risk reduction via legal con-
tracts, financial insurance, etc., or to trust the other party and hope for the best. Trust
has the added advantage of being cheap; if it works it reduces the overhead of rela-
tionship management and promotes a better modus operandi.

In information systems, trust may be modelled as a relationship between individual
agents, or organisations, as illustrated figure 1.

Fig. 1. Trust modelling conventions illustrated in an adaptation of i* notation

Trust relationships are associated with a goal dependency in which the trustor re-
lies on the trustee. The trustees’ suitability depends on their competence to fulfil the
goal, their benevolence not to exploit the trustor’s vulnerability, their ethical integrity
and predictability of their behaviour. The semantics of power relationships are worth
modelling explicitly, since power asymmetry is invariably associated with trust; an
evaluation function is required to assess the agent’s reputation from its properties. The
properties will vary between applications, individual agents and organisations; how-
ever, some generic properties which give an indication of domain specifics are hon-
esty, history of trustworthiness, association with reliable agents, openness in
negotiation, and membership of trustworthy organisations. Reputation assessment is

Trustor
Agent

Trustee
Agent

trust dependency

risk

power relations

reputation

Motivation
need

_
+

Goal

benevolence
competence
integrity
predictability

Trustor
Agent

Trustee
Agent

trust dependency

risk

power relations

reputation

Motivation
need

_
+

Goal

benevolence
competence
integrity
predictability

Agent

Goal

Dependency
relationship

Agent

Goal

Dependency
relationship

 Trust: From Cognition to Conceptual Models and Design 7

accompanied by power asymmetry or vulnerability analysis; hence the overall as-
sessment depends on each agent’s need for trust, which is a combination of their goals
and motivation for entering into the relationship, and vulnerability or risk exposure.
The need for trust defines the requirements for the relationship, i.e. a highly asymmet-
ric relationship implies a need for a higher level of trust than does a more symmetric
relationship. Trust develops over time, so in the initial stages the trustee’s reputation
is evaluated either in depth or more superficially depending on the trustor’s predispo-
sition and the availability of information. As the relationship matures trust becomes a
default assumption unless unpleasant experience triggers a review of the relationship.

4 Cognitive Model of Trust

Cognitive models place trust as in the context of theories of decision making, such as
the theory of reasoned action (Klein, 1989) which asserts that decisions are influenced
by a combination of the events and situation at a point in time combined with the
user’s prior memory and attitude towards the decision problem. Trust is a specialisa-
tion of such models in which the decision is to enter into a relationship with an agent
depending on the situation and prior knowledge. The following cognitive model of
trust considers both the reputation and experience components of trust. A four-stage
process is proposed elaborating concepts in earlier phase models (Briggs et al., 2004)
as illustrated in figure 2.

Relationship
initiated

by trustor

Trust
and

actions

Assess
need for

relationship

Evaluate
reputation

Evaluate
power

relations
Monitor and

assess
experience

Motivation
Goal task
Delegation
Responsibility
Opportunities
Alternatives

Competence
Benevolence
Integrity
Predictability

Trustee reputation
Trustworthiness

Authority
Perceived power
Intentions

Vulnerabilities
Positive events
Negative events
Critical events

Role, Authority
Membership
History, Title
Word of mouth
Competence

Risk
Goal not achieved
Vulnerability/loss

Requiremnt for Trust
_

+

Fig. 2. Process model of trust-related decision making

The first stage is assessment of the need for trust. The trustor agent has a goal
which requires the cooperation of another to achieve it. The importance of the goal is
evaluated in light of the options available and the potential loss if the goal is not

8 A. Sutcliffe

achieved. This assessment may be complex, involving trade-offs of recruiting multi-
ple relationships, the degree of explicitness in the relationship (i.e. overt delegation or
not), and alternatives to trust such as legal contracts, economic incentives, etc. While
assessment details will be domain and situation specific, the essence is a motivation
and risk calculation, expressed in equation 1. It creates a “need for trust” metric (Nt)
as a function of need, motivation and potential loss.

Nt = (M + G + env + (r.p)) (1)

Where
M = motivation for entering the relationship
G = goal that one party wishes to achieve expressed as importance ranking
env = environment factor that represents the degrees of freedom available to

 the trustor
r = risk exposure
p = perceived power difference between the parties.

Risk exposure and degree of choice available increase the need for trust value if the
risk is high and there are few alternatives. Env is assessed as higher if fewer choices
exist. As the risk and power asymmetry increases, the need for trust increases. The
formula can be converted into a metric by estimating M, G, env and r on a 10-point
(low to high) scale, with p expressed on a 0 to 1 scale where equal power = 0.5 and
1.0 = complete asymmetry in favour of the trustee. A constant of 0.5 modulates the
effect of power on risk exposure. So with a high motivation and an important goal for
the trustor, but with considerable risk and few options, the need for trust might be:

Nt = (M + G + env + r.(0.5 + p))

28.1 = 6 + 7 + 6 + 7.(0.5 + 0.8) (1)

These metrics can be used for comparative evaluation of different need for trust
situations; however, the trust values produced have no intrinsic validity. Motivation is
the agent’s predisposition to be trusting, while the goal represents the specific need.
Risk is modulated by power to reflect the vulnerability of the trustor, i.e. a more power-
ful trustee will have increased ability to inflict loss on the trustor without repercussions.

In the second stage the opportunity to enter into a trusting relationships is evalu-
ated in light of the need. This may involve a choice among several suitors so the risk
exposure will need to be evaluated for each suitor agent. Reputations of each trustor
are assessed from their perceived benevolence, competence, integrity and predictabil-
ity. Assessment criteria will vary by domain and the availability of evidence for the
trustor. However, typical reputation properties are the trustee’s competence to achieve
the goal, honesty, past trustworthiness, reputation as vouched for by others, member-
ship of trusted organisations, and socio-demographic factors such as occupation, age,
and gender. Reputations of the trustees are compared with the trustor’s requirements
for entering into the relationship. Equation 2 creates an “initial trust” metric as a func-
tion of needs and risk, balanced against the reputation of the trustee.

Ti = R- Nt (2)

Where
Ti = Initial trustworthiness level
R = Reputation of the trustee
Nt = trustor’s need level from equation (1).

 Trust: From Cognition to Conceptual Models and Design 9

The formula can be converted into a metric by estimating reputation on 40 point
scale to balance with the need for trust. If the trustee’s reputation is high and the trus-
tor’s need for trust does not exceed it, the starting level of trust will be positive. Al-
ternatively, if the trustee has a poor reputation or it is exceeded by a high need for
trust, then the starting trust level will be negative reflecting low confidence and mis-
trust. The value can be calculated in both directions in a relationship, although for
asymmetric relationships the trustee is the focus of attention. A confidence metric
may also be calculated based on the knowledge available to the trustor, risk exposure,
and previous reputation history of the trustee. The level of confidence is fed into the
threshold which determines when trust will switch into distrust.

Trusting relationships may change over time, so assessment of reputation only
models the initial starting point between the two parties. Events influence the evolu-
tion of trust. Adverse events may be tolerated for a while but sooner or later, trust will
rapidly decline into mistrust, from which there is no quick escape, as demonstrated by
empirical studies on the effect of errors on trust in computer applications (Lee &
Moray, 1992). Once this initial trust value has been established, the experience com-
ponent of the model predicts change over time, as described in equation 3:

Ti = Ti-1 fth(E.w) (3)

Where
T i, = level of trust in time interval i and the previous interval i-1
E = experiences which may be either positive, confirming or increasing

 trust; or negative and leading to suspicion about trustworthiness of the
 trustee

w = weighting factor for the criticality of each event
f = function determining trust increase or decrease
th = threshold that influences the trend function of the initial reputation-

 based trust.
The threshold function controls the four separate trend patterns according to the

initial reputation and history of the experience:

1. an initial high level of trust survives several adverse experiences but if the nega-
tive events continue once a critical threshold is exceeded trust will rapidly de-
crease into distrust

2. a low level of initial trust will experience gradual improvement with positive
experience and a similar decrease in trust with adverse experience

3. a relationship that started with high trust and descended into mistrust has a very
poor recovery function, so a large number of positive events are required before
trust is regained

4. mid-range trust values have an increasing gradient with positive experience and
a rapid decrease with adverse experience.

A screen dump of the computational tool that embeds the theory is illustrated in
figure 3.

The model is controlled by parameters and thresholds which determine when the
functions change for ascending or descending trust, as well as allowing the model to be
tailored for a specific domain, e.g. the number and strength of positive and negative

10 A. Sutcliffe

Fig. 3. Screen dump of tool that models Dynamic Trust Theory, showing a simulated time
course of a relationship (pattern 1 followed by 3)

events that will precipitate rapid descent to mistrust, etc. Event criticality is reflected
in the weighting factor as well as the input value assigned to each event. Assessment
of experience also depends on domain-specific interpretation of the number and
valency of events necessary and how the significance of events is determined. Typical
events in inter-organisational relationships are meeting deadlines, compliance with
commitments, provision of information, prompt responses, willingness to help the
other party, etc. Failure to fulfil obligations without any reason, and deceit in covering
up failure, are typical critical negative experiences. The agent’s reputation parameters
are entered as the settings for variables 1 to 6 and the plot shows the change in trust
with an experience scenario that starts with positive events followed by critical nega-
tive events leading to rapid decline in trust.

5 Framework for Trust Modelling

So far, the model has assumed agents (individual or organisational) were involved as
both parties; however, we also trust artefacts, products, information, processes, and
data. The relationship motivation and vulnerability analysis still apply. The risk expo-
sure of using the object is assessed to determine the need for trust. The object’s repu-
tation can be assessed as before; furthermore, for products the attribute of brand is an
important component of trust, as it is for inter-organisational relationships. The prob-
lem space of trust issues and relationships is summarised in figure 4.

The nature of experience with trusted objects depends on whether they are active or
passive. Active objects, for example mobile phones, exhibit behaviour resulting in the
user’s experience, which may be favourable or not. Any device which causes frequent

 Trust: From Cognition to Conceptual Models and Design 11

Owner
Agent

authored
-by

owned
-by

ObjectsObjects
Resources

Tools
Resources

Tools TasksTasks

Artefacts Information Methods
Procedures

Provenance
indirect

trust
relationship

Truster
Agent

Trustee
Agent

trust

power
Goal

Fig. 4. Framework of trust issues and relationships

errors will rapidly become distrusted. A passive object such as a book has no inherent
behaviour but can be experienced through reading. Trust in an author’s work may
develop if the reader feels the plots are consistently well constructed. Finally, some
passive objects may not be directly experienced in use; for instance, a painting is
appreciated aesthetically but not actually used. Trust in this case depends on the qual-
ity of the perceptual experience. Hence trust is closely related to use and possibly
aesthetics. In HCI there has been considerable interest in assessing qualities of use
including usability, aesthetics and the user’s experience (Hassenzahl, 2004; Lavie &
Tractinsky, 2004; Sutcliffe & De Angeli, 2005). However, these measures have not
been correlated with the development of trust between users and a software product,
although some authors have argued that the quality of experience and aesthetic appeal
are critical determinants of a product’s success because the experience creates a posi-
tive emotional response (i.e. pleasure) and this fosters trust (McCarthy & Wright,
2005; Norman 2004).

5.1 Design Implications

Modelling trust may illuminate our understanding of a socio-technical system; how-
ever, without any design implications its utility will be limited. Design and trust inter-
sect in two ways. First, software products need to be designed so users trust them and
have a positive experience. Secondly, technology is a mediator of trust between peo-
ple, organisations or products. The first role is fulfilled by good design, e.g. usability,
appropriate functionality, professional aesthetic look and feel, as well as design to
facilitate trust through ownership via customisation and adaptation to the user’s
needs. In the second role, technology should reduce the uncertainty in relationships
and thereby increase trust by making information more accessible, and by communi-
cating status, identity, intent and processes transparently. Better quality functions can
help evaluating reputations to promote trust, e.g. display of status information,
memberships and authorisations, recommender systems, and evaluation of reputation

12 A. Sutcliffe

berships and authorisations, recommender systems, and evaluation of reputation by
social feedback. Feedback also supports the experience phase of the relationship al-
lowing people to inspect the action of the trustee. Technology has a role to play in
policing trust, by providing support for institutions and communities to ensure human
members act by the rules with pattern recognisers to detect deceitful behaviour, iden-
tity checks and community feedback on the trustworthiness of individuals.

Several sets of guidelines have been proposed for trust enhancement, primarily in
e-commerce (Nielsen, 2000), and some advice has been offered on trust support for
general computer supported collaborative work (Olson & Olson, 2000). Rather than
reiterate the guidelines in detail the following heuristics are proposed to guide the
designer towards the issues that should be considered:

• Competence factors: trust is increased if the trustee agent achieves the user’s
(trustor’s) goal effectively. This emphasises the tailoring of functional re-
quirements towards stakeholder groups or specific individuals. Competence
also involves good navigation design and usability, so the user’s experience is
positive. Poor usability has a negative impact on trust.

• Benevolence: this property reflects more directly on the developer or owner of
the application. Favourable predispositions can be communicated by state-
ments of honesty, access to the people who operate the application, and provi-
sion of information about the developers/owners. In e-commerce applications
this is reflected in guidelines for “contact us” and “about us” information, and
statements of fair trading policies, etc.

• Integrity: this reflects the ethical standards of the developers/owners and can
be conveyed by brand images, membership of trustworthy organisations, com-
pliance with standards, and certification authorities.

• Predictability: this is a consistent experience related to good usability, reliable
applications, and prevention of errors.

Trust is also enhanced by good design for related non-functional requirements such
as accuracy (of information), privacy, security and reliability. Usability reduces un-
certainty by making interaction predictable with clear feedback, hence building confi-
dence in an application.

Design for trust may also involve fostering relationships between human and or-
ganisational parties more directly by processes to facilitate matching of trustors and
trustees, and vetting services for reputation management. Recommender systems,
brokers, and social feedback facilities such as eBay’s vendor reputation management
are examples of functions for trust relationship management. Workflow, version con-
trol, and coordination tools help build trust by efficient relationship management.
Logging and monitoring tools can track experience and make processes transparent by
shared data and models, while status displays can help build confidence in relation-
ships, thereby building trust. Provision of more information about individuals and the
ability to query claims and identities reduce the opportunities for deceit. In the next
section the framework and process model of trust is applied to an e-science domain to
investigate how design for trust might be deployed.

 Trust: From Cognition to Conceptual Models and Design 13

6 Case Study: Modelling Trust in e-Science

E-science is the collaboration between remote groups of scientists mediated by
CSCW (Computer Supported Collaborative Work) technology and GRID computing
over the Internet. Although e-science is proposed as an empowering form of re-
organising work practice, evidence of successful e-science collaboration is hard to
find, and furthermore, the few evaluations that have been carried out (Cummings &
Kiesler, in press) point to several reasons why collaborations have been unsuccessful.
Although several causal factors were cited such as clash of time zones, organisational
cultures, and inadequate technology, the lack of trust between teams was a contribut-
ing factor.

6.1 Applying the Framework

Trust in relationships between individuals and between teams is an important aspect
of improving relationships. Socio-psychological theories of group working (Arrow,
McGrath & Berdahl, 2000) emphasise the importance of frequent social contacts that
build a network of relationships between group members and hence create trust. The
role of CSCW and GRID video conference technology in promoting good social
bonds is poor, hence there may be no substitute for face-to-face interaction to build
this aspect of trust. However, the reputation of individuals and groups can be assessed
and this might provide an indicator of the trust requirements, when considered with
the needs of each group to enter into a collaboration.

The following example is based on e-science collaboration in genomic research in
which teams of biomedical researchers are trying to understand the complicated proc-
ess by which genes (DNA) are transcribed into an intermediate form (RNA) which is
then used to produce proteins in cells by complicated bio-chemical processes. Unfor-
tunately the mapping of genes (segments of DNA) to protein (sequences of amino
acids) is not 1 to 1. A common approach is to segment chromosomes into gene frag-
ments, provide the in vivo environment for protein synthesis using the gene (DNA
sequence) fragments, assay the proteins produced, then try the experiment with differ-
ent inhibitor chemicals and DNA segments to see when the inhibitors stop production
of the protein, thus confirming that DNA segment x is responsible for producing pro-
tein y. This process is time consuming and could benefit from a combined approach
where teams try different inhibitors on the same sequence, etc. The model of the col-
laboration, illustrated in figure 5, is produced by applying the trust analysis method as
follows:

Motivation Analysis: the motivation for the relationship is not strong since each team
can continue to work incrementally as before. However, the risk exposure of collabo-
ration is relatively low since each team will still have results to publish, although
there is the possible loss of not being the team to make the scientific breakthrough.
This creates a moderate need for trust.

Reputation Analysis: the reputation of each group depends on their host universities and
publication record; in this case reputation was approximately equal and both teams were
relatively well funded so the power balance is almost symmetrical. Reputation is rein-
forced by the need for trust, so e-science technology has to lower the cost of

14 A. Sutcliffe

collaboration and foster trust. The teams trust the artefacts produced by their experimen-
tal processes, e.g. microarrays, chromatography gels; the procedures they follow which
are set by conventions and the refereeing process in the biomedical research commu-
nity; and the analytic instruments they use (DNA and protein sequence auto-analysers)
which involves trusting the manufacturers. The trust relationships are all inter-
dependent. The teams trust their own results and artefacts, but that depends on following
procedures accurately and tools performing correctly. For each team to trust the other
they not only have to assess their mutual interests and respective reputations, but also
the second order trust relationships with procedures, etc. in each group.

Experience Analysis: in e-science CSCW technology can promote trust and manage
experience by making the experimental artefacts and procedures shareable. This allows
each team to inspect each other’s progress, working methods and results to build confi-
dence in the collaboration. However, as noted in the motivation analysis, such sharing
does involve some risk, so security and privacy have to be guaranteed, and visibly so.
Frequent communication via video conferencing can help to build trust by facilitating
social interaction. However, there are limitations in the ability of collaborative technol-
ogy to promote trust. The benevolence of each team, their competence and integrity are
human properties that can be communicated but not enhanced by technology.

produced
-by

ObjectsObjects
Resources

Tools
Resources

Tools TasksTasks

Artefacts
results

Information Methods
Procedures

Team A Team B

trust

power

Manufact
-urers

produced
-by owned

-by

ObjectsObjects
Resources

Tools
Resources

Tools TasksTasks

Artefacts
Results

Information Experimental Methods
Procedures

Analyse
Gene
function

Scientific
community

Manufact
-urers

owned
-by

owned
-by

Scientific
community

Fig. 5. Model of e-science collaboration

Promoting trust in e-science has to overcome the problem of low motivation or
adopting the technology by lowering the cost of establishing trust. This can be
achieved by enhancing the shareability and visibility of the methods, procedures and
results between teams to build confidence. Increasing the visibility of each team’s
experimental procedures helps build confidence in the competence and integrity of
each team, and may have the side benefit of facilitating sharing of workflows for
experimental procedures. Since social interaction is an important influence for build-

 Trust: From Cognition to Conceptual Models and Design 15

ing trust between groups (Arrow et al., 2000), use of video conference facilities as
well as e-mail can enhance relationship building. Since e-science collaborations are
agreements in communities with little formal regulation, technology does not have a
trust policing role. Trust in e-science tools and collaborative technology is also a
function of usability in design (predictability in interaction), as well as fulfilling us-
ers’ requirements (competence).

7 Conclusions

Trust is a complicated topic which is difficult to pin down, since it can be viewed from
many perspectives. A plethora of models have been proposed, unfortunately exceeding
the volume of empirical evidence to justify their assumptions. The model proposed in
this paper takes a process perspective to draw attention to how trust can be evaluated, as
well as pointing out the components of trust synthesised from other theories.

As systems move into the social domain on the Internet and Cyber communities,
where use become discretionary, understanding and designing for trust-promoting facili-
ties will be a growing concern. Further research is necessary to improve the link be-
tween trust and uncertainty by better provision of information, and to understand how
trust in applications can be promoted by good design (competence). A more significant
challenge lies in developing trust management systems. The easy design options of
certificates for membership and identity, logging behaviours and social feedback have
already been implemented. However, the role of active agents, recommender systems
and brokers still needs to be explored in depth. The penalty here lies in bad experience
when intelligent systems make poor guesses, leading users to distrust them.

Trust modelling is still in its infancy. Although some modelling languages such as
i* have been used to analyse trust and more formal models have been proposed, these
do not address the complexities of trust in socio-technical systems. Modelling meth-
ods and tools are required to better understand how risk, trust and power interact.
There are considerable opportunities for tool development to evaluate trust; however,
given that evaluation details will frequently be domain dependent, such tools will
need to be configurable.

Finally, trust is but one facet of the complexity of human social relationships that needs
to be approached within a wider, theoretically sound framework. Theories of decision
making (Klein, 1996; Payne, Bettman & Johnson, 1993) or socio-psychological models of
group behaviour (Arrow et al., 2000) may provide the answer. Integrating such theories
into conceptual modelling languages is the grand challenge for information systems
engineering, and trust may well provide the stimulus.

References

Arrow, H., McGrath, J. E., & Berdahl, J. L. (2000). Small groups as complex systems: Forma-
tion, coordination, development and adaptation. Thousand Oaks CA: Sage Publications.

Barber, B. (1983). The logic and limits of trust. New Brunswick NJ: Rutgers University Press.
Briggs, P., Burford, B., & De Angeli, A. (2004). Personalisation and trust: A reciprocal rela-

tionship? In K. Karat, J. O. Blom, & J. Karat (Eds.), Designing personalised user experi-
ences in e-commerce (pp. 39-55). Norwell MA: Kluwer Academic Publishers.

16 A. Sutcliffe

Briggs, P., Burford, B., De Angeli, A., & Lynch, P. (2002). Trust in online advice. Social Sci-
ence Computer Review, 20(3), 321-332.

Cannon, J., Doney, P., & Mullen, M. (1998). National culture and the development of trust: The
need for more data and more theory. Academy of Management Review, 24(1), 8-11.

Castelfranchi, C., & Falcone, R. (1998). Social trust: Cognitive anatomy, social importance,
quantification and dynamics. Proceedings: Autonomous Agents '98 Workshop on Deception,
Fraud and Trust in Agent Societies, Minneapolis/St Paul, (pp. 35-49).

Corritore, C. L., Kracher, B., & Wiedenbeck, S. (2003). On-line trust: Concepts, evolving
themes, a model. International Journal of Human-Computer Studies, 58, 737-758.

Cummings, J., & Kiesler, S. (in press). Collaborative research across disciplinary and organiza-
tional boundaries. Social Studies of Science.

Falcone, R., & Castelfranchi, C. (2001a). Social trust: A cognitive approach. In C. Castelfran-
chi, & Y. Tan (Eds.), Trust and deception in virtual societies (pp. 55-90). Boston MA: Klu-
wer Academic Publishers.

Falcone, R., & Castelfranchi, C. (2001b). The socio-cognitive dynamics of trust: Does trust
create trust? In R. Falcone, M. Singh, & Y. Tan (Eds.), Trust in cybersocieties: Integrating
the human and artificial perspectives (pp. 55-72). Berlin: Springer.

Fogg, B. J., Marshall, J., Laraki, O., Osipovish, A., Varma, C., et al. (2001). What makes web
sites credible? A report on a large quantitative study. In J. A. Jacko, A. Sears, M. Beaudouin-
Lafon, & R. J. K. Jacob, (Eds). CHI 2001 Conference Proceedings: Conference on Human
Factors in Computing Systems, Seattle 31 March-5 April 2001. New York: ACM Press.

Fukuyama, F. (1995). Trust: The social virtues and the creation of prosperity. New York: Free
Press.

Giorgini, P., Massacci, F., Mylopoulos, J., & Zannone, N. (2005). Modeling security require-
ments through ownership, permission, and delegation. Proceedings: 13th IEEE Interna-
tional Conference on Requirements Engineering, Paris 29 August - 2 September 2005, (pp.
167-176). Los Alamitos CA: IEEE Computer Society Press.

Grabner-Krauter, S., & Kaluscha, E. A. (2003). Empirical research in online-trust: A review
and critical assessment. International Journal of Human-Computer Studies, 58, 783-821.

Haley, C. B., Laney, R., Moffett, J. D., & Nuseibeh, B. (2004). The effect of trust assumptions
on the elaboration of security requirements. Proceedings: 12th IEEE International Confer-
ence on Requirements Engineering, Kyoto 6-10 September 2004,. Los Alamitos CA: IEEE
Computer Society Press.

Hassenzahl, M. (2004). The interplay of beauty, goodness and usability in interactive products.
Human-Computer Interaction, 19(4), 319-349.

Hupcey, J. E., & et al. (2001). An exploration and advancement of the concept of trust. Journal
of Advanced Nursing, 36(2), 282-293.

Klein, G. A. (1989). Recognition-primed decisions. In W. B. Rouse (Ed.), Advances in man-
machine systems research (Vol. 5) (pp. 47-92). Greenwich CT: JAI Press.

Klein, S. (1996). The configuration of inter-organisational relations. European Journal of In-
formation Systems, 5, 92-102.

Korczynski, M. (2000). The political economy of trust. Journal of Management Studies, 37(1),
1-22.

Kramer, R. M. (1999). Trust and distrust in organizations: Emerging perspectives, enduring
questions. Annual Review of Psychology, 50, 556-557.

Larzelere, R. J., & Huston, T. L. (1980). The dyadic trust scale: Toward understanding interper-
sonal trust in close relationships. Journal of Marriage and the Family, 42(August), 595-604.

Lavie, T., & Tractinsky, N. (2004). Assessing dimensions of perceived visual aesthetics of web
sites. International Journal of Human-Computer Studies, 60(3), 269-298.

Lee, J., & Moray, N. (1992). Trust, control strategies and allocation of function in human ma-
chine systems. Ergonomics, 35(1), 1243-1270.

Lewis, J., & Weigert, A. (1985). Trust as a social reality. Social Forces, 63, 967-985.

 Trust: From Cognition to Conceptual Models and Design 17

Luhmann, N. (1979). Trust and power. New York: Wiley.
McCarthy, J., & Wright, P. (2005). Technology as experience. Cambridge MA: MIT Press.
Nielsen, J. (2000). Designing web usability: The practice of simplicity. New Riders.
Nielsen, J., Molich, R., Snyder, S., & Farell, C. (2000). E-commerce user experience: Trust.

Nielsen Norman Group.
Norman, D. A. (2004). Emotional design: Why we love (or hate) everyday things. New York:

Basic Books.
Olson, G. M., & Olson J.S. (2000). Distance matters. Human-Computer Interaction, 15(2),

139-178.
Payne, J. W., Bettman, J. R., & Johnson, E. J. (1993). The adaptive decision maker. Cam-

bridge: Cambridge University Press.
Riegelsberger, J., Sasse, M. A., & McCarthy, J. D. (2003). Shiny happy people building trust?

Photos on e-commerce websites and consumer trust. In V. Bellotti, T. Erickson, G. Cockton,
& P. Korhonen, (Eds). CHI 2003 Conference Proceedings: Conference on Human Factors
in Computing Systems, Fort Lauderdale FL 5-10 April 2003, (pp. 121-128). New York:
ACM Press.

Rotter, J. B. (1971). Generalised expectancies for interpersonal trust. American Psychologist,
26, 443-452.

Shapiro, S. (1987). The social control of interpersonal trust. American Journal of Sociology, 93,
623-658.

Sutcliffe, A. G., & De Angeli, A. (2005). Assessing interaction styles in web user interfaces. In
M. F. Costabile, & F. Paterno, (Eds). Proceedings: Human Computer Interaction - Interact
2005, Rome, (pp. 405-417). Berlin: Springer Verlag.

Thoburn, J. T., & Takashima, M. (1993). Industrial performance: Lessons from Japanese subcon-
tracting. National Westminster Bank Quarterly Review (February), 2-11.

Tomkins, C. (2001). Interdependencies, trust and information in relationships, alliances and
networks. Accounting, Organizations and Society, 26(2), 161-191.

Williamson, O. E. (1993). Calculativeness, trust and economic organization. Journal of Law
and Economics, 36, 453-486.

Zucker, L. G. (1986). The production of trust: Institutional sources of economic structure,
1840-1920. In B. M. Staw, & L. L. Cummings (Eds.), Research in Organizational Behav-
iour (pp. 8:55-111). Greenwich CT: JAI Press.

E. Dubois and K. Pohl (Eds.): CAiSE 2006, LNCS 4001, pp. 18 – 19, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Dealing with Trust in eGov Services

Vassily Kritis

Intrasoft International, Chief Operation Officer, 40, rue Montoyer straat,
B-1000 Brussels, Belgium

Vassily.Kritis@intrasoft-intl.com

Public Organisations are generally concerned with delivery of services to taxpayers and
members of a sovereign state, or with delivery and maintenance of frameworks that
benefit the general public (traffic networks, protection against criminals, education,
protection from foreign perpetrators, etc.). Traditionally and in most states, Public
Organizations have been early adopters of Information and Communication Technologies
(ICT) in their effort to increase efficiency and quality of services delivered to the public.

Typically, trust in general purpose public sector Computerised Information Systems
is established by ensuring integrity, confidentiality, availability, authentication and non-
repudiation of the various constituents. This applies to software, communications,
data, hardware, as well as the physical/environmental aspects, staff, and remaining
administrative/organisational aspects. It must however be observed that, in recent years,
contemporary Public Sector Information Systems increasingly expand their scope into
the management of public funds. In this particular area though, the process of
establishing trust in related Public Information Systems must extend beyond the five
trust elements mentioned above, and also address the prevention of fraud.

Fraud detection is the first step in building a Public Organisation’s Information
System fraud-prevention shield. Intelligent fraud detection is necessary so that
additional overhead introduced, that might have a damaging effect on the relationship
between citizens and the State, is kept to the minimum. Also, continuous fraud detection
is necessary to identify (a) new cases previously unknown, (b) variants of previously
detected frauds, or (c) cases which ceased to be relevant to the organisation. Fraud may
have many guises, be that of (a) individual public administrators abusing their access
authority on potential system loopholes, (b) multiple public administrators colluding in an
institutionalised privilege, or (c) collusion between public administrators and outsiders.

In order to deal with fraud, a Public Organisation must identify and evaluate which
fraud cases could be potentially conducted through its Information Systems. We address
the need to monitor and fight fraud in an intelligent and continuous way by employing
the process of Data Mining. By analysing information within an Information System,
data mining helps identify patterns, relationships and recognisable indicators of
fraudulent activities. To fight fraud successfully requires an understanding of both, (a)
the fraud mechanisms themselves and (b) the potential of data mining in an Information
System. Data mining techniques may be used proactively to review a business process
to identify anomalies or operational risks and reactively to assist law enforcement
agencies in their investigations.

 Dealing with Trust in eGov Services 19

By building data mining based fraud-detection systems within Governmental
Information Systems we increase fraud deterrence and therefore enhance trust. We
can further prevent fraud which cannot be easily deterred and promptly detect fraud
which cannot be obviously prevented. Additionally we enable analysis and
investigation of detected fraud to substantiate legal action against those responsible.

E. Dubois and K. Pohl (Eds.): CAiSE 2006, LNCS 4001, pp. 20 – 30, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Trusted Interaction:
User Control and System Responsibilities in Interaction

Design for Information Systems

Larry L. Constantine, IDSA

University of Madeira, Laboratory for Usage-centered Software Engineering
Constantine & Lockwood Ltd, 58 Kathleen Circle, Rowley, MA 01969, USA

lconstantine@foruse.com

Abstract. Trust emerges from interaction. If trust in information systems is to
be promoted, then attention must be directed, at least in part, to interaction de-
sign. This presentation will explore issues of trust in the interactions between
users and systems from the perspective of interaction design. It will consider a
variety of pragmatic aspects in interaction design that impact user trust, includ-
ing, predictability, interface stability, user control, and the match between ex-
pectations and performance. It will critically examine contemporary design
practices, such as adaptive interfaces, in terms of their impact on user trust.

1 Introduction

Trust has long been recognized as a crucial element shaping human relationships and
human interaction of all kinds. Where there is trust, activities proceed more smoothly,
actions are more decisive, and people work with greater confidence. By reducing
uncertainty under conditions of interdependence, trust engenders more efficient col-
laboration [1]. The absence of trust, in contrast, introduces inefficiencies, demanding
added vigilance, encouraging protective and unproductive actions, and complicating
interaction.

Trust, then, is a potentially important factor in human performance, not only in
interpersonal relations but in our relationships with the technology we use in our eve-
ryday personal and work lives. When we do not trust the system we are using, we
proceed more cautiously and hesitantly. We take additional time, often unnecessary,
to think through and plan actions before proceeding, then double-check our actions.
We protect ourselves from untrustworthy software with redundant copies of data or
take circuitous and inefficient but seemingly safe paths to achieve our goals. Unable
to count on “good behavior” from the software, we are reluctant to explore new fea-
tures that might well prove useful to us.

It is not the purpose of this paper to offer yet another survey of the extensive litera-
ture on trust in human relations nor even to review that subset concerned with trust in
commercial transactions. Rather the intent to is to explore the interconnected issues of
user trust and user performance from the perspective of a designer, to gain insights
from the broader field of human trust to draw implications regarding how we can
design the interface between system and user to promote and sustain trust on the part

 Trusted Interaction: User Control and System Responsibilities 21

of users, and thereby enhance user performance. With this objective in mind, it is
appropriate to begin with a focus on the problems of user interface design.

2 Designing Interaction

Although there is wide variability in how applicable terms are defined and employed,
the design of user interfaces ultimately encompasses two broad areas, which may
conveniently be referred to as presentation design and interaction design. Presentation
design covers what is presented to the user, where it is presented, and how it is pre-
sented. As such, it involves the designer in decisions about what information and
capabilities--the tools and materials available for use--are to be present, how these
will be arranged or organized, and how they will look, feel, or sound to the user. For
the graphical user interfaces of modern information systems, this often largely re-
duces to visual design, although other modalities of communication, such as sound,
may also play some role. To an industrial designer devising products for consumer,
business, or industrial use, many other factors may come into play, such as, weight
and shape of devices and the tactile response of manual controls.

In recent years, professional interaction designers have laid claim to virtually the
entire territory of external design, but, strictly speaking, interaction design is con-
cerned with the design or planning of the interaction between user and system by way
of the user interface. Thus interaction design covers not only how the user will inter-
act with the system but how the system will respond to the user, including how the
behavior of the various elements or pieces of the user interface are coupled or inter-
dependent.

2.1 Designing for User Performance

User performance refers to the ability of users of a system to satisfy their intentions
and achieve their objectives efficiently and reliably. One would expect that user per-
formance would be at the heart of user interface design, and that was certainly the
case with early work in ergonomics and human factors. However, throughout recent
decades, a different perspective has dominated the design world, particularly for the
Web and in products aimed at the general consumer population. Under the broad
rubric of user-centered [2] or human-centered design, this perspective makes users
and user satisfaction the central focus of design activities. Its purest and most extreme
manifestations can be found in participatory design, which actively involves users as
collaborators in the design process, and in user experience design, which broadens the
focus of design to encompass every aspect of the user’s experience with a system.

User-centered design elevates user satisfaction and user experience to primary im-
portance. Potentially every aspect of users as human participants in use is of interest,
including personality, attitudes, feelings, social context, cultural background, personal
and work experience, and the like. Although user-centered design methods and tech-
niques vary widely, the essence of all user-centered approaches is iterative design
refinement grounded in a rich understanding of users gained through substantial initial
user studies and driven through successive rounds of redesign by extensive feedback
from user evaluations and user testing.

22 L.L. Constantine

Growing dissatisfaction with the end results of this process has led to recent calls
for a shift in focus from users to usage, from actors to activities [3]. Even the origina-
tor of the term “user-centered design,” Donald Norman, has suggested in a highly
controversial critique [4] that the current interpretation of user-centered design is
flawed and even potentially harmful. He has called for an activity-centered design
philosophy that looks more closely at what people are doing and are trying to do.

Activity-centered design in the sense used by Norman and usage-centered design
[5] both seek to enhance user performance by devising user interfaces better fitted to
the activities, tasks, and operations carried out by users. Users are primarily of interest
for the roles they play in relationship to the system being design and for the parts they
play in activities. The goal of the designer is to fully understand the tasks of users
within these activities and to find the most effective way to support these tasks-
broadly, in combination, and in detail.

From this point of view, trust in itself is of little interest except insofar as it
improves performance in interaction with the system being designed. While this ori-
entation may seem cold hearted to those steeped in the humanistic traditions of user-
centered design, in truth it gets to the heart of why people use systems at all, namely,
to accomplish something.

3 Elements of Human Trust

In human social contexts, trust is recognized as complex and variable, but it is, at least
in part, an expression of individual propensity. Some of us are more prone to trust
from the outset than are others. Trust also clearly depends on the specific interper-
sonal relationship. We trust some people more than we do others. It can also depend
on the situation. You may trust a close colleague with sensitive commercial informa-
tion but not with your personal health history. Finally, it may depend on particular
kinds of social contexts. We are required by the setting to put our trust into certain
people at certain times, such as when being treated by medical personnel in an emer-
gency facility. Trust, then, is an attribute of the individual, the relationship, the situa-
tion, and the context.

Trust can be viewed from many different perspectives, and many disciplines in the
human sciences have weighed in on the matter, including psychology, sociology, and
economics. Some recent attempts have tried to distill the essence of this vast literature
for various purposes [6, 7].

With an eye to application in electronic commerce, McKnight and Chervany [6]
combined the sundry perspectives of diverse fields into an interdisciplinary model of
trust concepts that includes dispositional trust, institutional trust (referring to both
situations and social structures), and interpersonal trust. They developed a typology of
trust based on analysis of some 65 definitions of trust from varied disciplines. These
they ultimately distilled down to 16 characteristics organized into four conceptual
categories--competence, predictability, benevolence, and integrity--plus a miscellane-
ous category of otherwise unclassified characteristics, of which the most salient is
openness.

Also addressing the domain of electronic commerce on the Web, MIT trust guru
Glen Urban advocates for trustworthy Web sites based on eight imperatives [8]:

 Trusted Interaction: User Control and System Responsibilities 23

transparency, quality of products and services, alignment with customers, helping
customers help themselves, putting customers to work, comparing products to com-
petitors, trust-based supply chain, and trust as top priority. While some of these
clearly relate to business policy and practice rather than interaction design, others
might be conceptually linked to interaction design.

Although commerce-oriented Web sites are certainly a special case of information
systems, there is considerable overlap with work in other areas of application, such as
the Tschannen-Moran and Hoy [8] catalog of facets of trust validated through factor
analysis. These facets include: willingness to risk vulnerability, confidence, benevo-
lence, reliability (consistency or predictability), competence, honesty, and openness.

4 Trust in User Interaction

Among the many facets of trust in human social situations, not all are equally salient
for human-computer interaction or as likely to yield rich insights for interaction de-
sign. Some, like predictability, can be applied directly. Others, such as benevolence or
integrity, require a certain amount of creative interpretation. Still others, such as,
comparing products to competitors or trust-based supply chain, are limited to very
specific contexts. And some, such as, alignment with customers or trust as top prior-
ity, are clearly beyond the ken of interaction design.

By reorganizing the elements of the theoretical models and focusing on those of
clearest salience and most closely coupled to interaction design, four factors (Table 1)
emerge as important in design for trusted interaction: predictability, transparency,
competence, and benevolence.

Table 1. Salient factors in interaction design for trusted interaction

Factor Characteristics
predictability consistency, reliability, dependability
transparency openness, visibility, accessibility, directness,

clarity
competence capability, completeness, reliability, accuracy,

performance
benevolence responsiveness, responsibility, safety

4.1 Predictability

“At its most basic level trust has to do with predictability, that is, consistency of be-
havior and knowing what to expect from others,” [7]. A close reading of numerous
sources suggests that predictability is arguably the most important single factor in
promoting trust in interaction. We are apt to trust a system that does what we expect
and what we ask, that is reliable and behaves as we anticipate, that does not suddenly
do something different when we take a particular action. The behavior most damaging
to trust is when a system does something unpredictable and unexplainable, particu-
larly if it is unwanted or unasked.

24 L.L. Constantine

Predictability is often conflated with consistency or even repetitiveness, but pre-
dictability is more than mere consistency. Even completely novel features and un-
precedented functions can promote trust in the system and encourage exploration if
they behave as the user predicts or anticipates [9].

4.2 Transparency

Transparency is the user interface parallel to honesty in human relationships. An in-
terface is transparent when its content and organization are evident to the user, when
features and information are visible or readily available where and when needed.
Transparency means directness of communication, without obfuscation, misdirection,
or disguise. It means that representations are direct, that What You See Is What You
Get (WYSIWYG) [5].

Openness is the extent to which relevant information is not withheld [10, 11]. Does
an application expose information to the user or keep it hidden? Is important informa-
tion easily accessed, particularly information needed by users to make decisions and
exercise their options? Is the underlying model or structure of the information evi-
dent? Does the user interface attempt to hide what is happening or what it does or
does it expose these to the user?

Transparency is very closely related to the widely accepted design principle of
visibility [5, 12] which admonishes designers to make clear to users what options are
available and what actions are possible as what are the results of their actions.

4.3 Competence

Trust is affected by whether the other party possesses the competence or relevant
capability to carry out their responsibilities in a relationship. In the context of infor-
mation systems, competence means that the system is capable of doing what the user
needs it to do, that it performs reliably and delivers accurate results. To be considered
competent by the user, the system must be complete in the functionality that the user
reasonably expects, without flaws or holes in functionality that would render it inef-
fective. It must perform with sufficient speed and dispatch to meet user needs with
respect to timeliness.

4.4 Benevolence

In human relationships, trust depends to some degree on the perception of benevo-
lence, that the other has our best interests at heart or at least is not malevolent. While
the application of this concept to interaction design may seem to be a stretch, some
aspects of benevolence carry over into human-computer interaction. Benevolence is
dependent on respect, on respect for possessions, for boundaries, and for privacy. It
has been described as “the confidence that one’s well-being, or something one cares
about, will be protected and not harmed” by the other [7]. Benevolence in this sense is
obviously connected to the sense of safety and security, the assurance that the system
will not bring harm to the user by discarding, corrupting, or destroying the user’s data.
Thus the manner in which a system handles user input and possessions, such as data
files, is clearly an important contributor to perceived benevolence. A trustworthy

 Trusted Interaction: User Control and System Responsibilities 25

system acts responsibly in handling user information. It does not require re-entry of
already provided data. It does not unduly penalize the user for mistakes or make re-
covery from error difficult.

Benevolence also includes responsiveness (McKnight and Chervany). A system
that is responsive to user needs, as expressed in user actions and choices, is, in an
important sense, benevolent. Benevolence, like predictability, is linked to user con-
trol, the perception that the system will respond as directed and desired, taking re-
sponsibility for doing what the user asks when asked.

5 The Process of Trust

How is trust engendered or eroded? How do we, as users, come to trust or distrust the
technology we use? For that matter, how do we, as colleagues, come to trust—or
distrust—each other? Trust in tools or artifacts is not the same as trust in persons or
institutions, but it does, to some large degree, emerge from the same foundations.

A precondition of trust is interdependence, where each party to an interaction de-
pends on the other in some manner [13]. This is clearly the case in human-computer
interaction: the system obviously depends on the user for input and direction, while
the user depends on the system to perform as requested and provide feedback and the
desired results.

Predisposition
to Trust

Interaction
Style

User
Experience

Evaluation of
Experience

Trust
Level

Fig. 1. Feedback model of trust in user-system interaction

26 L.L. Constantine

Apart from any pre-existing propensity, trust emerges from experience. The evolu-
tion of trust in human-computer interaction can be expressed in a simple feedback
model with five elements: predisposition, trust level, interaction style, user experi-
ence, and evaluation. As represented in Figure 1, the level of trust at any given time is
a function of the evaluation of experience in interaction with the system as influenced
by the prior level of trust.

Users bring to their first encounter with any system a predisposition to trust that is
compounded of many factors, including personality, habitual orientation, and prior
experience with other software. This predisposition to trust determines the initial level
of trust and shapes the style of early interaction. Level of trust in turn influences in-
teraction experience, as it affects such things as the speed of interaction, propensity to
explore new or alternative paths, and use of self-protective mechanisms, all of which
can impact system behavior and, consequently, user experience. High levels of initial
distrust may slow or even preclude the development of trust.

It is unlikely that most users consciously or deliberately evaluate their experience
and thereby alter their level of trust, yet it seems evident that users are typically aware
of their level of trust regarding specific software or software in general. (“I find Excel
very unpredictable. I can never trust it to do what I expect.” “In general, I don’t trust
new releases.” “I think that [XYZ] is a firewall I can trust.”)

One manifestation of distrust is the emergence of defensive interaction involving
self-protective measures. An example of defensive interaction is compulsively saving
a file after every few paragraphs to avoid losing work or always spelling out the full
name of operations to avoid the misinterpretation of a mistyped abbreviation.

The model also closes the loop from interaction in the particular back to the pre-
disposition to trust. Users who are burned by badly behaved software often carry that
experience over into future interactions with other software. Defensive interaction can
become habitual. For example, when installing new software, many users will not
allow the installation process to automatically restart the system but will opt for man-
ual restart at a later time because in the past they have seen installations hang during
automatic restart.

6 Designing for Trusted Interaction

A few attempts have been made to tie user interface design and usability to user trust,
primarily in e-commerce (for example, [14, 15, 16]). Systems that are easier to use
are, not surprisingly, more trusted. Initial trust in Web sites, for example, has been
found to be promoted by logical structure, simple and clear classification, ease of
navigation, consistency, and the like [16]. Such conclusions are somewhat akin to
asserting that well-behaved and well-dressed people are likely to be perceived as
trustworthy.

A more interesting question is how specific design practices and interaction tech-
niques influence facets of user trust. In this section, I will consider a number of con-
temporary user interface design practices in terms of their impact on user trust and
user performance.

 Trusted Interaction: User Control and System Responsibilities 27

6.1 Adaptive and Adaptable Interfaces

Stability of the user interface is a critical contributor to predictability. When the same
elements are always located in the same place and do the same thing, the interface is
prima facie more predictable, contributing to user trust and thus enhancing user per-
formance. This is not just a matter of consistency in the traditional sense of similarity
of appearance and consistent placement of objects within the user interface; it is also a
matter of interaction design.

Adaptive user interfaces are a popular modern style of interaction design. Adaptive
interfaces change form and behavior automatically in response to user actions, in
principle to adapt dynamically to ever changing tasks and context of use. Adaptable
interfaces, by way of contrast, support end-user tailoring of the user interface. Where
adaptive user interfaces attempt to anticipate user needs and configure the user inter-
face for the user, adaptable user interfaces leave changes in the configuration under
the control of the user.

The popular application suite Microsoft Office provides examples of both kinds of
designs. In addition to being able to alter dozens of predetermined options, such as
whether or not to check spelling and grammar continuously, users can also enter a
special mode that allows them to customize the configuration of menus and toolbars,
even to define new toolbars. This is an example of an adaptable interface.

The adaptive menu feature of Microsoft Office is an example, as the name sug-
gests, of adaptive interface design. On initial installation, the default behavior of Of-
fice menus is to display short, incomplete lists of commands when a menu is opened,
as seen in Figure 2(a). After a short delay or when the user clicks at the bottom of the
menu, the complete list of available commands appears, as in Figure 2(b). Which
commands display when a menu is first opened depends on what selections the user
has made previously. Selecting a command not initially displayed will promote it to
the initial list. Commands that are used infrequently automatically disappear from the
short list. Thus, not only does each menu change between two distinct forms, short
and long, with different arrangements of commands, but the contents and arrangement
of the short form seen first can vary from use to use, as seen in Figure 2(c).

(a) (b) (c)

Fig. 2. Adaptive menus in Microsoft Office. Initial short list (a), full list (b), and short list after
some use (c).

28 L.L. Constantine

The design rationale for this approach is that it is supposed to simplify use by adjust-
ing the menu content to the user’s actual pattern of usage. The impact on user trust and
performance is quite different, however. Adaptive interfaces not only reduce stability
and predictability, but they usurp user control. Users describe their experience with
adaptive menus in terms of what to them is utter unpredictability. (“I never know what I
am going to see when I open a menu. Something that was one place the last time I used
it is now suddenly someplace else or hidden where I have to wait for it.”)

Performance is degraded because users must actually read down the menu list on
every use in order to select the right command. Moreover, they never gain the efficien-
cies of learned reflexes, such as clicking halfway down the Tools menu to track
changes. The constantly changing content and organization also reduces the reliability
of interaction by significantly increasing the likelihood of making the wrong selection.

In informal audience surveys of thousands of students, professionals, and business
people over recent years, only a handful of regular Office users report finding the
feature to be useful. The vast majority have turned it off, and not a few have reported
trying unsuccessfully to stop the behavior. (The feature was not originally indexed as
such within the help system, and the is not where most users expect it within the
Tools | Options... dialog but under Tools | Customize... on the
Options tab.)

6.2 Wizards, Agents, and Pseudo-intelligence

Leaving aside the issue of predictability and interface stability, to be effective, adap-
tive interfaces must correctly anticipate user needs. Often this requires some manner
of software intelligence, usually in the form of rules-based or heuristic inference. In
principle, a sufficiently intelligent software agent might successfully analyze user
actions and anticipate needs. In practice, the limited pseudo-intelligence provided by
the software is rarely if ever helpful. The problem is, of course, that not even human
beings are very good at anticipating the real needs of others, even in relatively simple
situations. For that matter, in the real physical world and in real human relationships,
accurate anticipation is not always experienced as a good thing. (“I’d rather do it
myself.”) People can find it disconcerting to have their every need or intention antici-
pated through behind-the-scenes manipulation [17].

In the software world, Microsoft Office once again provides a convenient example
in the form of the so-called Office Assistant, known to most users as “Clippy” (or
“that (*)#@^ animated paper clip”) but actually named Clippit. Almost from the be-
ginning, the intrusively obsequious dancing paper clip has been a controversial user
interface feature. My own informal audience surveys over the decade since its intro-
duction in Office ’97 suggest that the Office Assistant is widely reviled, almost uni-
versally regarded as useless or at least largely ineffective, and frequently the subject
of violent fantasies, particularly among those who were unable to get rid of it. In op-
eration, the Office Assistant tries to guess what the user is doing and then offer ap-
propriate help. However, it almost invariably guesses wrong and the proffered help is
rarely if ever useful. Over time, most users come to see most such agents as arrogant
and decidedly not benevolent.

Even where users are highly dependent on pseudo-intelligent agents, such as in
automatic email spam filters, there remains a high level of distrust, particularly as

 Trusted Interaction: User Control and System Responsibilities 29

false positives, in which legitimate and potentially important messages get classified
as spam, require manual review and recovery by the user.

7 Paternalism and User Control

To some extent, many modern user interface design practices are experienced by
users as arrogant, manifesting an attitude of “we know better than you.” Modern in-
formation systems often hoard information and hide it from the user. They bury con-
trols under layers of wizards and dialogs, menus and property sheets, all in the name
of protecting users from themselves.

Truly benevolent design is not paternalistic. It is built on trust and grounded in re-
spect, respect for the integrity and the ability of the user. It manifests itself in not only
the architecture of interaction but also small details of design and programming prac-
tices, such as never discarding user input. Nothing erodes trust more quickly than for
users to click on the back button within a browser only to discover a form newly
cleared of all their personal data so carefully entered. To treat with cavalier disrespect
what the user has worked hard to create not only violates trust but obviously contrib-
utes to inefficiency, inaccurate or incomplete data, and even lost customers.

Trust is reciprocal. If users are to trust systems, system designers need to learn how
to trust users, to return control to users and allow them to make their own decisions
about what to do, where to do it, and how. This is not a call for a return to the intimi-
dating and confusing tabula rasa of the command-line interface of yesteryear. Rather
it is a suggestion that designers and developers may have become too arrogant in
assuming that users are stupid and incapable, and that “we” know best.

In truth, all too often users have been made stupid and incapable by the ill-
conceived tools we have given them. Rather than “dumbing down” interfaces with so-
called wizards that work no magic or arrogating user prerogatives by embedding in
software more so-called intelligence that is at best profoundly naïve and at worst
maliciously misguided, we should instead be designing better tools. Tools do not do
the work of the user. Good tools serve the user—and thereby earn the user’s trust—by
allowing and enabling activity, use, performance. To this end, to design trustworthy
interaction, we must better understand and apply knowledge of how tools are used in
the activities of users.

References

1. Arrow, K. J.: The Limits of Organization. Norton, New York (1974)
2. Norman, D., and Draper, S.: User Centered System Design: New Perspectives on Human-

Computer Interaction. Erlbaum (1986)
3. Constantine, L. L.: Beyond User-Centered Design and User Experience. Cutter IT Journal,

Vol. 17 No. 2, (2004)
4. Norman D.: Human-Centered Design Considered Harmful. Interactions, Vol. 12, No. 4,

(2005) 14-19
5. Constantine, L. L., and Lockwood, L. A. D.: Software for Use: A Practical Guide to the

Models and Methods of Usage-Centered Design. Addison-Wesley Reading, MA (1999)

30 L.L. Constantine

6. McKnight, D. H., Chervany, N. L.: What Trust Means in E-Commerce Customer Relation-
ships: An Interdisciplinary Conceptual Typology. International Journal of Electronic Com-
merce, Vol. 6, No. 2, (2001) 35–59

7. Tschannen-Moran, M. and Hoy, W. K.: A conceptual and empirical analysis of trust in
schools. Review of Educational Research, Vol. 71 (2000) 547-593.

8. Urban, G. L. The Trust Imperative. MIT Sloan School of Management Working Paper
4302-03 (2003)

9. Constantine, L. L., and Lockwood, L. A. D.: Instructive Interaction: Making Innovative In-
terfaces Self-Teaching. User Experience, Vol. 1, No. 3, Winter (2002)

10. Butler, J. K. & Cantrell, R.S.: A Behavioral Decision Theory Approach to Modeling Dy-
adic Trust in Superiors and Subordinates. Psychological Reports, Vol. 55 (1984), 81-105

11. Hosmer, L.T.: Trust: The Connecting Link Between Organizational Theory and Philoso-
phical Ethics. Academy of Management Review, Vol. 20, (1995) 379–403.

12. Norman, D.: The Psychology of Everyday Things.
13. Rousseau, D., Sitkin, S. B., Burt, R., and Camerer, C.: Not So Different After All: A

Cross-Discipline View of Trust. The Academy of Management Review, Vol. 23, No. 3
(1998) 393-404

14. Kim, J. Towards the Construction of Customer Interfaces for Cyber-Shopping Malls. Elec-
tronic Markets, Vol. 7, No. 2 (1997) 12-15

15. Egger, F. N.: Consumer Trust in E-Commerce: From Psychology to Interaction Design. In
J. Prins (ed.) Trust in Electronic Commerce. Kluwer International (2002)

16. Zhou, X., and Liu, X.: Effective User Interface Design for Consumer Trust: Two Case
Studies. Masters Thesis. Lulea University of Technology, Lulea, Sweden (2005)

17. Johnson, A.: Hotels Take 'Know Your Customer' to New Level. The Wall Street Journal,
February 8, D1 (2006)

Security

Designing Security Requirements Models Through
Planning�

Volha Bryl, Fabio Massacci, John Mylopoulos, and Nicola Zannone

Department of Information and Communication Technology,
University of Trento - Italy

{bryl, massacci, jm, zannone}@dit.unitn.it

Abstract. The quest for designing secure and trusted software has led to refined
Software Engineering methodologies that rely on tools to support the design pro-
cess. Automated reasoning mechanisms for requirements and software verifica-
tion are by now a well-accepted part of the design process, and model driven
architectures support the automation of the refinement process. We claim that
we can further push the envelope towards the automatic exploration and selec-
tion among design alternatives and show that this is concretely possible for Se-
cure Tropos, a requirements engineering methodology that addresses security and
trust concerns. In Secure Tropos, a design consists of a network of actors (agents,
positions or roles) with delegation/permission dependencies among them. Ac-
cordingly, the generation of design alternatives can be accomplished by a planner
which is given as input a set of actors and goals and generates alternative multi-
agent plans to fulfill all given goals. We validate our claim with a case study using
a state-of-the-art planner.

1 Introduction

The design of secure and trusted software that meets stakeholder needs is an increas-
ingly hot issue in Software Engineering (SE). This quest has led to refined Requirements
Engineering (RE) and SE methodologies so that security concerns can be addressed dur-
ing the early stages of software development (e.g. Secure Tropos vs i*/Tropos, UMLsec
vs UML, etc.). Moreover, industrial software production processes have been tightened
to reduce the number of existing bugs in operational software systems through code
walkthroughs, security reviews etc. Further, the complexity of present software is such
that all methodologies come with tools for automation support.

The tricky question in such a setting is what kind of automation? Almost fifty years
ago the idea of actually deriving code directly from the specification (such as that advo-
cated in [22]) started a large programme for deductive program synthesis,1 that is still
� We thank Alfonso Gerevini and Alessandro Saetti for the support on the use of

LPG-td. This work was partly supported by the projects RBNE0195K5 FIRB-ASTRO,
RBAU01P5SS FIRB-SECURITY, 016004 IST-FP6-FET-IP-SENSORIA, 27587 IST-FP6-IP-
SERENITY, 27004 IST-FP6-STREP-S3MS, 2003-S116-00018 PAT-MOSTRO, 1710SR-B/P
PAT-STAMPS.

1 A system goal together with a set of axioms are specified in a formal specification language.
Then the system goal is proved from the axioms using a theorem prover. A program for achiev-
ing the goal is extracted from the proof of the theorem.

E. Dubois and K. Pohl (Eds.): CAiSE 2006, LNCS 4001, pp. 33–47, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

34 V. Bryl et al.

active now [5, 11, 25, 29]. However, proposed solutions are largely domain-specific, re-
quire considerable expertise on the part of their users, and in some cases do not actually
guarantee that the synthesized program will meet all requirements stated up front [11].

Another approach is to facilitate the work of the designer by supporting tedious
aspects of software development by automating the design refinement process. This ap-
proach underlies Model Driven Architectures (MDA) [27], which focuses on the (pos-
sibly automatic) transformation from one system model to another. Tools supporting
MDA exist and are used in the Rational Unified Process for software development in
UML. Yet, the state-of-the-art is still not satisfactory [30].

Such approaches only cover part of the work of the designer. We advocate that there
is another activity where the support of automation could be most beneficial [20]:

“Exploring alternative options is at the heart of the requirements and design
processes.”

Indeed, in most SE methodologies the designer has tools to report and verify the final
choices (be it goal models in KAOS, UML classes, or Java code), but not actually the
possibility of automatically exploring design alternatives (i.e. the potential choices that
the designer may adopt for the fulfillment of system actors’ objectives) and finding a
satisfactory one. Conceptually, this automatic selection of alternatives is done in de-
ductive program synthesis: theorem provers select appropriate axioms to establish the
system goal. Instead, we claim that the automatic selection of alternatives should and
indeed can be done during the very early stages of software development. After all,
the automatic generation of alternatives is most beneficial and effective during these
stages.

There are good reasons for this claim. Firstly, during early stages the design space is
large, and a good choice can have significant impact on the whole development project.
Supporting the selection of alternatives could lead to a more thorough analysis of bet-
ter quality designs with respect to security and trust. Secondly, requirements models
are by construction simpler and more abstract than implementation models (i.e. code).
Therefore, techniques for automated reasoning about alternatives at the early stages of
the development process may succeed where automated software synthesis failed.

Since our overall goal is to design a secure system we have singled out the Secure
Tropos methodology [16] as the target for our work. Its primitive concepts include
those of Tropos and i* [7], but also concepts that address security concerns, such as
ownership, permission and trust. Further, the framework already supports the designer
with automated reasoning tools for the verification of requirements as follows:

1. Graphical capture of the requirements for the organization and the system-to-be,
2. Formal verification of the functional and security requirements by

– completion of the model drawn by the designer with axioms (a process hidden
to the designer)

– checking the model for the satisfaction of formal properties corresponding to
specific security or design patterns

In this framework (as in many other similar RE and SE frameworks) the selection of the
alternatives is left to the designer. We will show that we can do better.

Designing Security Requirements Models Through Planning 35

Indeed, in Tropos (resp. Secure Tropos) requirements are conceived as networks of
functional dependencies (resp. delegation of execution) among actors (organizational/
human/software agents, positions and roles) for goals, tasks and resources. Every depen-
dency (resp. delegation of execution) also involves two actors, where one actor depends
on the other for the delivery of a resource, the fulfillment of a goal, or the execution of a
task. Intuitively, these can be seen as actions that the designer has ascribed to the mem-
bers of the organization and the system-to-be. As suggested by Gans et al. [14] the task
of designing such networks can then be framed as a planning problem for multi-agent
systems: selecting a suitable possible design corresponds to selecting a plan that satisfies
the prescribed or described goals of human or system actors. Secure Tropos adds to the
picture also the notion of delegation of permission and various notions of trust.

In this paper we show that it is possible to use an off-the-shelf planner to select
among the potential dependencies the actual ones that will constitute the final choice of
the requirements engineer. If a planner is already able to deliver good results then this
looks a promising avenue for transferring the technique to complex industry-level case
studies where a customized automated reasoning tool might be very handy. At the same
time, if the problem is not trivial, not all planners will be able to deliver and indeed this
turned out to be the case. The techniques we use are sufficiently powerful to cope with
security requirements as well as functional requirements, but we concentrate here on
their applicability to a security setting where an automated support for the selection of
potentially conflicting alternatives is more urgent. The application of the same planning
techniques to the overall software development phases can be found in [3].

In this work we have not focused on optimal designs: after all, human designers do
not aim for optimality in their designs. As noted by Herbert Simon in his lecture on a
“Science of Design” [31] what makes humans effective (in comparison to machines) is
their ability to identify a satisficing design as opposed to an optimal one.

Of course, we assume that the designer remains in the loop: designs generated by
the planner are suggestions to be refined, amended and approved by the designer. The
planner is a(nother) support tool intended to facilitate the design process.

The rest of the paper is structured as follows. Section 2 explains Secure Tropos
concepts and describes the requirements verification process. In Sections 3, 4 and 5 the
planning approach to the system design is introduced and explained, , while in Section 6
the implementation of our approach is presented. Finally, in Sections 7 and 8 a brief
overview of related work is presented and conclusions are drawn.

2 Secure Tropos

Secure Tropos [16] is a RE methodology for modeling and analyzing functional and
security requirements, extending the Tropos methodology [7]. This methodology is
tailored to describe both the system-to-be and its organizational environment starting
with early phases of the system development process. The main advantage of this ap-
proach is that one can capture not only the what or the how, but also the why a security
mechanism should be included in the system design. In particular, Secure Tropos deals
with business-level (as opposed to low-level) security requirements. The focus of such

36 V. Bryl et al.

requirements includes, but is not limited to, how to build trust among different partners
in a virtual organization and trust management. Although their name does not mention
security, they are generally regarded as part of the overall security framework.

Secure Tropos uses the concepts of actor, goal, task, resource and social relations for
defining entitlements, capabilities and responsibilities of actors. An actor is an inten-
tional entity that performs actions to achieve goals. A goal represents an objective of
an actor. A task specifies a particular sequence of actions that should be executed for
satisfying a goal. A resource represents a physical or an informational entity.

Actors’ desires, entitlements, capabilities and responsibilities are defined through
social relations. In particular, Secure Tropos supports requesting, ownership, provision-
ing, trust, and delegation. Requesting identifies desires of actors. Ownership identifies
the legitimate owner of a goal, a task or a resource, that has full authority on access and
disposition of his possessions. Provisioning identifies actors who have the capabilities
to achieve a goal, execute a task or deliver a resource. We demonstrate the use of these
concepts through the design of a Medical IS for the payment of medical care.2

Example 1. The Health Care Authority (HCA) is the “owner” of the goal provide
medical care; that is, it is the only one that can decide who can provide it and through
what process. On the other hand, Patient wants this goal fulfilled. This goal can be
AND-decomposed into two subgoals: provisioning of medical care and payment for
medical care. The Healthcare Provider has the capability for the provisioning of
medical care, but it should wait for authorization from HCA before doing it.

Delegation of execution is used to model situations where an actor (the delegator) del-
egates the responsibilities to achieve a goal, execute a task, or delivery a resource to
another actor (the delegatee) since he does not have the capability to provide one of
above by himself. It corresponds to the actual choice of the design. Trust of execution
represents the belief of an actor (the trustor) that another actor (the trustee) has the ca-
pabilities to achieve a goal, execute a task or deliver a resource. Essentially, delegation
is an action due to a decision, whereas trust is a mental state driving such decision.
Tropos dependency can be defined in terms of trust and delegation [17]. Thus, a Tro-
pos model can be seen as a particular Secure Tropos model. In order to model both
functional and security requirements, Secure Tropos introduces also relations involving
permission. Delegation of permission is used when in the domain of analysis there is
a formal passage of authority (e.g. a signed piece of paper, a digital credential, etc.).
Essentially, this relation is used to model scenarios where an actor authorizes another
actor to achieve a goal, execute a task, or deliver a resource. It corresponds to the actual
choice of the design. Trust of permission represents the belief of an actor that another
actor will not misuse the goal, task or resource.

Example 2. The HCA must choose between different providers for the welfare man-
agement for executives of a public institution. Indeed, since they have a special private-
law contract, they can qualify for both the INPDAP and INPDAI3 welfare schemes. The

2 An extended description of the example is provided in [4].
3 INPDAP (Istituto Nazionale di Previdenza per i Dipendenti dell’Amministrazione Pubblica)

and INPDAI (Istituto Nazionale di Previdenza per i Dirigenti di Aziende Industriali) are two
Italian national welfare institutes.

Designing Security Requirements Models Through Planning 37

Fig. 1. Secure Tropos model

INPDAP scheme requires that the Patient partially pays for medical care (with a ticket)
and the main cost is directly covered by the HCA. On the contrary, the INPDAI scheme
requires that the Patient pays in advance the full cost of medical care and then gets
reimbursed. Once an institution has decided the payment scheme, this will be part
of the requirements to be passed onto the next stages of system development. Obvi-
ously, the choice of the alternative may have significant impacts on other parts of the
design.

Figure 1 summarizes Examples 1 and 2 in terms of a Secure Tropos model. In this
diagram, actors are represented as circles and goals as ovals. Labels O, P and R are
used for representing ownership, provisioning and requesting relations, respectively.
Finally, we represent trust of permission and trust of execution relationships as edges
respectively labelled Tp and Te.

Once a stage of the modeling phase is concluded, Secure Tropos provides mecha-
nisms for the verification of the model [16]. This means that the design process iterates
over the following steps:

– model the system;
– translate the model into a set of clauses (this is done automatically);
– verify whether appropriate design or security patterns are satisfied by the model.

Through this process, we can verify the compliance of the model with desirable
properties. For example, it can be checked whether the delegator trusts that the delegatee
will achieve a goal, execute a task or deliver a resource (trust of execution), or will use a

38 V. Bryl et al.

goal, task or resource correctly (trust of permission). Other desirable properties involve
verifying whether an actor who requires a service, is confident that it will be delivered.
Furthermore, an owner may wish to delegate permissions to an actor only if the latter
actually does need the permission. For example, we want to avoid the possibility of
having alternate paths of permission delegations. Secure Tropos provides support for
identifying all these situations.

Secure Tropos has been used for modeling and analyzing real and comprehensive
case studies where we have identified vulnerabilities affecting the organizational struc-
ture of a bank and its IT system [24], and verified the compliance to the Italian legisla-
tion on Privacy and Data Protection by the University of Trento [23].

3 Design as Planning

So far the automated reasoning capabilities of Secure Tropos are only able to check that
subtle errors are not overlooked. This is rather unsatisfactory from the point of view
of the designer. Whereas he may have a good understanding of possible alternatives,
he may not be sure which is the most appropriate alternative for the case at hand. This
is particularly true for delegations of permission that need to comply with complex
privacy regulations (see [23]).

Example 3. Figures 2(a) and 2(c) present fragments of Figure 1, that point out the po-
tential choices of the design. The requirements engineer has identified trust relations
between the HCA and INPDAP and INPDAI. However, when passing the requirements
onto the next stage only one alternative has to be selected because that will be the sys-
tem that is chosen. Figures 2(b) and 2(d) present the actual choices corresponding to
the potential choices presented in Figures 2(a) and 2(c), respectively.

(a) Potential choices (b) Actual choice

(c) Potential choices (d) Actual choice

Fig. 2. Design Alternatives

Designing Security Requirements Models Through Planning 39

Here, we want to support the requirements engineer in the selection of the best alterna-
tive by changing the design process as follows:

– Requirements analysis phase
• Identify system actors along with their desires, capabilities and entitlements,

and possible ways of goal decomposition.
• Define trust relationships among actors both in terms of execution and

permission.
– Design phase
• The space of design alternatives is automatically explored to identify delega-

tion of execution/permission.
• Depending on the time/importance of the goal the designer may settle for sat-

isficing solutions [31] or ask for an optimal solution.

To support the designer in the process of selecting the best alternative we advocate a
planning approach which recently has proved to be applicable in the field of automatic
Web service composition [6].

The basic idea behind the planning approach is to automatically determine the course
of actions (i.e. a plan) needed to achieve a certain goal where an action is a transition
rule from one state of the system to another [34, 28]. Actions are described in terms
of preconditions and effects: if the precondition is true in the current state of the sys-
tem, then the action is performed. As consequence of the action, the system will be in
a new state where the effect of the action is true. Thus, once we have described the
initial state of the system, the goal that should be achieved (i.e. the desired final state
of the system), and the set of possible actions that actors can perform, the solution of
the planning problem is the (not necessarily optimal) sequence of actions that allows
the system to reach the desired state from the initial state.

In order to cast the design process as a planning problem, we need to address the
following question: which are the “actions” in a software design? When drawing the
Secure Tropos model, the designer assigns the execution of goals from one actor to
another, delegates permission and – last but not least – identifies appropriate goal re-
finements among selected alternatives. These are the actions to be used by the planner
in order to fulfill all initial actor goals.

4 Planning Domain

The planning approach requires a specification language to represent the planning do-
main and the states of the system. Different types of logics could be applied for this
purpose, e.g. first order logic is often used to describe the planning domain with con-
junctions of literals4 specifying the states of the system. We find this representation
particularly useful for modeling real case studies. Indeed, when considering security
requirements at enterprise level, one must be able to reason both at the class level (e.g.
the CEO, the CERT team member, the employee of the HR department) and at the
instance level (e.g. John Doe and Mark Doe playing those roles).

4 Let p be a predicate symbol with arity n, and t1, . . . , tn be its corresponding arguments.
p(t1, . . . , tn) is called an atom. The expression literal denotes an atom or its negation.

40 V. Bryl et al.

Table 1. Primitive Predicates

Goal Properties
AND decompositionn(g : goal, g1 : goal, . . . , gn : goal)
OR decompositionn(g : goal, g1 : goal, . . . , gn : goal)
Actor Properties
provides(a : actor, g : goal)
requests(a : actor, g : goal)
owns(a : actor, g : goal)
Actor Relations
trustexe(a : actor, b : actor, g : goal)
trustper(a : actor, b : actor, g : goal)

Table 2. Actions

Basic Actions
DelegateExecution(a : actor, b : actor, g : goal)
DelegatePermission(a : actor, b : actor, g : goal)
Satisfy(a : actor, g : goal)
AND Refinen(a : actor, g : goal, g1 : goal, . . . , gn : goal)
OR Refinen(a : actor, g : goal, g1 : goal, . . . , gn : goal)
Absence of Trust
Negotiate(a : actor, b : actor, g : goal)
Contract(a : actor, b : actor, g : goal)
DelegateExecution under suspicion(a : actor, b : actor, g : goal)
Fulfill(a : actor, g : goal)
Evaluate(a : actor, g : goal)

The planning domain language should provide support for specifying:

– the initial state of the system,
– the goal of the planning problem,
– the actions that can be performed,
– the axioms of background theory.

Table 1 presents the predicates used to describe the initial state of the system in terms
of actor and goal properties, and social relations among actors. We use

– AND/OR decomposition to describe the possible decomposition of a goal;
– provides, requests and owns to indicate that an actor has the capabilities to

achieve a goal, desires the achievement of a goal, and is the legitimate owner of
a goal, respectively;

– trustexe and trustper to represent trust of execution and trust of permission rela-
tions, respectively.

The desired state of the system (or goal of the planning problem) is described through
the conjunction of predicates done derived from the requesting relation in the initial
state. Essentially, for each request(a,g) we need to derive done(g).

By contrast, an action represents an activity to accomplish a goal. We list them in
Table 2 and define them in terms of preconditions and effects as follows:

Satisfy. The satisfaction of goals is an essential action. Following the definition of goal
satisfaction given in [16], we say that an actor satisfies a goal only if the actor wants
and is able to achieve the goal, and – last but not least – he is entitled to achieve it.
The effect of this action is the fulfillment of the goal.

Designing Security Requirements Models Through Planning 41

DelegateExecution. An actor may not have enough capabilities to achieve assigned
goals by himself, and so he has to delegate their execution to other actors. We
represent this passage of responsibilities through action DelegateExecution. It is
performed only if the delegator requires the fulfillment of the goal and trusts that
the delegatee will achieve it. Its effect is that the delegator does not worry any
more about the fulfillment of this goal after delegating it since he has delegated its
execution to a trusted actor. Furthermore, the delegatee takes the responsibility for
the fulfillment of the goal and so it becomes a his own desire. Notice that we do not
care how the delegatee satisfies the goal (e.g. by his own capabilities or by further
delegation). It is up to the delegatee to decide it.

DelegatePermission. In the initial state of the system, only the owner of a goal is
entitled to achieve it. However, this does not mean that he wants it or has the ca-
pabilities to achieve it. On the contrary, in the system there may be some actors
that want that goal and others that can achieve it. Thus, the owner could decide to
authorize trusted actors to achieve the goal. The formal passage of authority takes
place when the owner issues a certificate that authorizes another actor to achieve
the goal. We represent the act of issuing a permission through action Delegate-
Permission which is performed only if the delegator has the permission on the
goal and trusts that the delegatee will not misuse the goal. The consequence of this
action is to grant rights (on the goal) to the delegatee, that, in turn, can re-delegate
them to other trusted actors.

AND/OR Refine. An important aspect of Secure Tropos is goal refinement. In partic-
ular, the framework supports two types of refinement: OR decomposition, which
suggests the list of alternative ways to satisfy the goal, and AND-decomposition,
which refines the goals into subgoals which all are to be satisfied in order to sat-
isfy the initial goal. We introduce actions AND Refine and OR Refine. Essentially,
AND Refine and OR Refine represent the action of refining a goal along a possible
decomposition. An actor refines a goal only if he actually need it. Thus, a precondi-
tion of AND Refine and OR Refine is that the actor requests the fulfillment of the
initial goal. A second precondition determines the way in which the goal is refined.
The effect of AND Refine and OR Refine is that the actor who refines the goal
focuses on the fulfillment of subgoals instead of the fulfillment of the initial goal.

In addition to actions we define axioms in the planning domain. These are rules that
hold in every state of the system and are used to complete the description of the current
state. They are used to propagate actors and goal properties along goal refinement: a
goal is satisfied if all its AND-subgoals or at least one of the OR-subgoals are satisfied.
Moreover, axioms are used to derive and propagate entitlements. Since the owner is
entitled to achieve his goals, execute his tasks and access his resources, we need to
propagate actors’ entitlements top-down along goal refinement.

5 Delegation and Contract

Many business and social studies have emphasized the key role played by trust as a
necessary condition for ensuring the success of organizations [9]. Trust is used to build
collaboration between humans and organizations since it is a necessary antecedent for

42 V. Bryl et al.

cooperation [1]. However, common sense suggests that fully trusted domains are simply
idealizations. Actually, many domains require that actors who do not have the capabil-
ities to fulfill their objectives, must delegate the execution of their goals to other actors
even if they do not trust the delegatees. Accordingly, much work in recent years has
focused on the development of frameworks capable of coping with lack of trust, some-
times by introducing an explicit notion of distrust [14, 17].

The presence (or lack) of trust relations among system actors particularly influences
the strategies to achieve a goal [21]. In other words, the selection of actions to fulfill a
goal changes depending on the belief of the delegator about the possible behavior of the
delegatee. In particular, if the delegator trusts the delegatee, the first is confident that
the latter will fulfill the goal and so he does not need to verify the actions performed
by the delegatee. On the contrary, if the delegator does not trust the delegatee, the first
wants some form of control on the behavior of the latter.

Different solutions have been proposed to ensure for the delegator the fulfillment of
his objectives. A first batch of solutions comes from transaction cost economics and
contract theories that view a contract as a basis for trust [35]. This approach assumes that
a delegation must occur only in the presence of trust. This implies that the delegator and
the delegatee have to reach an agreement before delegating a service. Essentially, the idea
is to use a contract to define precisely what the delegatee should do and so establish trust
between the delegator and the delegatee. Other theories propose models where effective
performance may occur also in the absence of trust [12]. Essentially, they argue that
various control mechanisms can ensure the effective fulfillment of actors’s objectives.

In this paper we propose a solution for delegation of execution that borrows ideas
from both approaches. The case for delegation of permission is similar. The process
of delegating in the absence of trust is composed of two phases: establishing trust and
control. The establishing trust phase consists of a sequence of actions, namely Nego-
tiate and Contract. In Negotiate the parties negotiate the duties and responsibilities
accepted by each party after delegation. The postcondition is an informal agreement
representing the initial and informal decision of parties to enter into a partnership. Dur-
ing the execution of Contract the parties formalize the agreement established during
negotiation. The postcondition of Contract is a trust “under suspicion” relation be-
tween the delegator and the delegatee. Once the delegator has delegated the goal and
the delegatee has fulfilled the goal, the first wants to verify if the latter has really satis-
fied his objective. This control is performed using action Evaluation. Its postcondition
is the “real” fulfillment of the goal. To support this solution we have introduced some
additional actions (last part of Table 2) to distinguish the case in which the delegation
is based on trust from the case in which the delegator does not trust the delegatee.

Sometimes establishing new trust relations might be more convenient than extending
existing trust relations. A technical “side-effect” of our solution is that it is possible
to control the length of trusted delegation chains. Essentially, every action has a unit
cost. Therefore, refining an action into sub-actions corresponds to increasing the cost
associated with the action. In particular, refining the delegation action in absence of
trust guarantees that the framework first tries to delegate to trusted actors, but if the
delegation chain results too long the system can decide to establish a new trust relation
rather than to follow the entire trust chain.

Designing Security Requirements Models Through Planning 43

Need-to-know property of a design decision states that the owner of a goal, a task
or a resource wants that only the actors who need permission on its possession are
authorized to access it. Essentially, only the actor that achieves a goal, executes a task
or delivers a resource, and the actors that belong to the delegation of permission chain
from the owner to the provider should be entitled to access this goal, task or resource.
Thus, we want to obtain a plan where only the actions that contribute to reaching the
desired state occur, so that if any action is removed from the plan it no longer satisfies
the goal of the planning problem. This approach guarantees the absence of alternative
paths of permission delegations since a plan does not contain any redundant actions.

6 Using the Planner

In the last years many planners have been proposed (Table 3). In order to choose one of
them we have analyzed the following requirements:

1. The planner should produce solution that satisfy need-to-know property by
construction, that is, the planner should not produce redundant plans. Under non-
redundant plan we mean that, by deleting an arbitrary action of the plan, the result-
ing plan is no more a “valid” plan (i.e. it does not allow to reach the desired state
from the initial state).

2. The planner should use PDDL (Planning Domain Definition Language) [15], since
it is becoming the “standard” planning language and many research groups work
on its implementation. In particular, the planner should use PDDL 2.2 specifica-
tions [10], since this version support features, such as derived predicates, that are
essential for implementing our planning domain.

3. The planner should be available on both Linux and Windows platforms as our pre-
vious Secure Tropos reasoning tool works on both.

Table 4 presents a comparison among the planners we have considered with respect
to above requirements. Based on such requirements, we have chosen LPG-td, a fully

Table 3. Comparison among planners

Planner Release URL
DLVK 2005-02-23 http://www.dbai.tuwien.ac.at/proj/dlv/K/
IPP 4.1 2000-01-05 http://www.informatik.uni-freiburg.de/ koehler/ipp.html
CPT 1.0 2004-11-10 http://www.cril.univ-artois.fr/ vidal/cpt.en.html
SGPLAN 2004-06 http://manip.crhc.uiuc.edu/programs/SGPlan/index.html
SATPLAN 2004-10-19 http://www.cs.washington.edu/homes/kautz/satplan/
LPG-td 2004-06 http://zeus.ing.unibs.it/lpg/

Table 4. Comparison among planners

�������Requirement
Planner

DLVK IPP CPT SGPLAN SATPLAN LPG-td

1 X X X X X
2 X X X
3 X X X X

44 V. Bryl et al.

(: action Satisfy
: parameters (?a − actor ?g − goal)
: precondition (and

(provides ?a ?g)
(requests ?a ?g)
(has per ?a ?g))

: effect (and
(done ?g)
not (requests ?a ?g)))

(a) Satisfy

(: action DelegatePermission
: parameters (?a ?b − actor ?g − goal)
: precondition (and

(trustper ?a ?b ?g)
(has per ?a ?g))

: effect (and
(has per ?b ?g)))

(b) DelegatePermission

Fig. 3. Actions’ Specification

DelegateExecution Pat HP ProvideMC
AND Refine HP ProvideMC ProvisioningMC PaymentMC
DelegatePermission HCA HP ProvisioningMC
Satisfy HP ProvisioningMC
DelegateExecution HP HCA PaymentMC
DelegateExecution HCA INPDAP PaymentMC
AND Refine INPDAP PaymentMC PaymentTicket PaymentHCA
DelegateExecution HCA INPDAP PaymentHCA
Satisfy HCA PaymentHCA
OR Refine INPDAP PaymentTicket PaymentTicketINPDAP PaymentTicketHP
DelegatePermission HCA INPDAP PaymentTicketINPDAP
Satisfy INPDAP PaymentTicketINPDAP

Fig. 4. The optimal solution

automated system for solving planning problems, supporting PDDL 2.2. Figure 3 shows
the specification of actions Satisfy and DelegatePermission in PDDL 2.2.

We have applied our approach to the Medical IS presented in Figure 1. The desired
state of the system is obviously one where the patient gets medical care. The PDDL 2.2
specification of the planning problem is given in [4].

Figure 4 shows the optimal solution (i.e. the plan composed of the fewer number of
actions than any other plan) proposed by LPG-td. However, this was not the first choice
of the planner. Before selecting this plan, the planner proposed other two sub-optimal
alternatives (see [4] for a discussion). It is interesting to see that the planner has first
provided a solution with INPDAP, then a solution with INPDAI, and then, finally, a
revised solution with INPDAP. A number of other experiments were conduced to test
the scalability of our approach. The results are reported in [4].

7 Related Work

In recent years many efforts have addressed the integration of security with the system
development process, in particular during early requirements analysis. In this setting,
many researchers have recognized trust as an important aspect of this process since
trust influences the specification of security and privacy policies. However, very few
requirements engineering methodologies introduce trust concerns during the system
development process. Yu et al. [36] model trust by using the concept of softgoal, i.e.
goal having no clear definition for deciding whether it is satisfied or not. However,

Designing Security Requirements Models Through Planning 45

this approach considers trust as a separate concept from security and does not provide a
complete framework to consider security and trust throughout the development process.
Haley et al. [18] propose to use trust assumptions, problem frames, and threat descrip-
tions to aid requirements engineers to define and analyze security requirements, and to
document the decisions made during the process.

Other approach focus on security requirements without taking into account trust as-
pect. van Lamsweerde et al introduce the notion of antigoals for representing the goals
of attackers [33]. McDermott et al. define abuse case model [26] to specify the interac-
tions among actors, whose the results are harmful to some actors. Similarly, Sindre et
al. define the concept of a misuse case [32], the inverse of a use case, which describes a
function that the system should block.

Model Driven Architecture (MDA) approach [27], proposed by Object Management
Group, is a framework for defining software design methodologies. Its central focus
is on the model transformation, for instance from the platform-independent model of
the system to platform-specific models used for implementation purposes. Models are
usually described in UML, and the transformation is performed in accordance with the
set of rules, called mapping. Transformation could be manual, or automatic, or mixed.
Among the proposals on automating a software design process the one of Gamma et
al. on design patterns [13] has been widely accepted. A design pattern is a solution
(commonly observed from practice) to the certain problem in the certain context, so
it may be thought as a problem-context-solution triple. Several design patterns can be
combined to form a solution. Notice that it is still the designer who makes the key
decision on what pattern to apply to the given situation.

The field of AI planning have been making advances during the last decades, and
has found a number of applications (robotics, process planning, autonomous agents,
Web services, etc.). There two basic approaches to the solution of planning problems
[34]. One is graph-based planning algorithms [2] in which a compact structure called
a Planning Graph is constructed and analyzed. While in the other approach [19] the
planning problem is transformed into a SAT problem and a SAT solver is used. An
application of the planning approach to requirements engineering is proposed by Gans
et al. [14]. Essentially, they propose to map trust, confidence and distrust described in
terms of i* models [36] to delegation patterns in a workflow model. Their approach
is inspired by and implemented in ConGolog [8], a logic-based planning language.
In this setting, tasks are implemented as ConGolog procedures where preconditions
correspond to conditionals and interrupts. Also monitors are mapped into ConGolog
procedures. They run concurrently to the other agent tasks waiting for some events
such as task completion and certificate expiration. However, their focus is on modeling
and reasoning about trust in social networks, rather than on secure design.

8 Conclusions

We have shown that in our extended Secure Tropos framework it is possible to automat-
ically support the designer of secure and trusted systems also in the automatic selection
of design alternatives. Our enhanced methodology allows one to:

46 V. Bryl et al.

1. Capture through a graphical notation of the requirements for the organization and
the system-to-be.

2. Verify the correctness and consistency of functional and security requirements by
– completion of the model drawn by the designer with axioms (a process hidden

to the designer),
– checking the model for the satisfaction of formal properties corresponding to

specific security or design patterns.
3. Automatically select alternative solutions for the fulfillment of functional and se-

curity requirements by
– transformation of the model drawn by the designer into a planning problem (a

process hidden to the designer),
– automatic identification of an alternative satisficing the goals of the various

actors by means of planner.

In this paper we show that this is possible with the use of an off-the-shelf planner
to generate possible designs for not trivial security requirements. Of course, we assume
that the designer remains in the design loop, so the designs generated by the planner
are seen as suggestions to be refined, amended and approved by the designer. In other
words, the planner is a(nother) support tool intended to facilitate the design process.

Our future work includes extending the application of this idea to other phases of the
design and towards progressively larger industrial case studies to see how far can we go
without using specialized solvers.

References

1. R. Axelrod. The Evolution of Cooperation. Basic Books, 1984.
2. A. Blum and M. L. Furst. Fast Planning Through Planning Graph Analysis. Artif. Intell.,

90(1-2):281–300, 1997.
3. V. Bryl, P. Giorgini, and J. Mylopoulos. Requirements Analysis for Socio-technical Systems:

Exploring and Evaluating Alternatives, 2006. Submitted to RE’06.
4. V. Bryl, F. Massacci, J. Mylopoulos, and N. Zannone. Designing Security Requirements

Models through Planning. Technical Report DIT-06-003, University of Trento, 2006.
5. J. Caldwell. Moving Proofs-as-Programs into Practice. In Proc. of ASE’97, pages 10–17.

IEEE Press, 1997.
6. M. Carman, L. Serafini, and P. Traverso. Web service composition as planning. In Proc. of

the 2003 Workshop on Planning for Web Services, 2003.
7. J. Castro, M. Kolp, and J. Mylopoulos. Towards Requirements-Driven Information Systems

Engineering: The Tropos Project. Inform. Sys., 27(6):365–389, 2002.
8. G. de Giacomo, Y. Lespérance, and H. J. Levesque. ConGolog, a concurrent programming

language based on the situation calculus. Artif. Intell., 121(1-2):109–169, 2000.
9. P. Drucker. Managing the Non-Profit Organization: Principles and Practices. HapperCollins

Publishers, 1990.
10. S. Edelkamp and J. Hoffmann. Pddl2.2: The language for the classical part of the 4th inter-

national planning competition. Technical Report 195, University of Freiburg, 2004.
11. T. Ellman. Specification and Synthesis of Hybrid Automata for Physics-Based Animation.

In Proc. of ASE’03, pages 80–93, 2003.
12. M. J. Gallivan. Striking a balance between trust and control in a virtual organization: a

content analysis of open source software case studies. ISJ, 11(2):277, 2001.

Designing Security Requirements Models Through Planning 47

13. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1995.

14. G. Gans, M. Jarke, S. Kethers, and G. Lakemeyer. Modeling the Impact of Trust and Distrust
in Agent Networks. In Proc. of AOIS’01, pages 45–58, 2001.

15. M. Ghallab, A. Howe, C. Knoblock, D. McDermott, A. Ram, M. Veloso, D. Weld, and
D. Wilkins. PDDL – The Planning Domain Definition Language. In Proc. of AIPS’98, 1998.

16. P. Giorgini, F. Massacci, J. Mylopoulos, and N. Zannone. Modeling Security Requirements
Through Ownership, Permission and Delegation. In Proc. of RE’05, pages 167–176. IEEE
Press, 2005.

17. P. Giorgini, F. Massacci, J. Mylopoulos, and N. Zannone. Modelling Social and Individual
Trust in Requirements Engineering Methodologies. In Proc. of iTrust’05, LNCS 3477, pages
161–176. Springer-Verlag, 2005.

18. C. B. Haley, R. C. Laney, J. D. Moffett, and B. Nuseibeh. Using Trust Assumptions with
Security Requirements. Requirements Eng. J., 11:138–151, 2006.

19. H. Kautz and B. Selman. Planning as satisfiability. In Proc. of ECAI’92, pages 359–363.
John Wiley & Sons, Inc., 1992.

20. E. Letier and A. van Lamsweerde. Reasoning about partial goal satisfaction for requirements
and design engineering. ACM SIGSOFT Software Eng. Notes, 29(6):53–62, 2004.

21. N. Luhmann. Trust and Power. Wisley, 1979.
22. Z. Manna and R. Waldinger. A Deductive Approach to Program Synthesis. TOPLAS,

2(1):90–121, 1980.
23. F. Massacci, M. Prest, and N. Zannone. Using a Security Requirements Engineering Method-

ology in Practice: The compliance with the Italian Data Protection Legislation. Comp. Stan-
dards & Interfaces, 27(5):445–455, 2005.

24. F. Massacci and N. Zannone. Detecting Conflicts between Functional and Security Require-
ments with Secure Tropos: John Rusnak and the Allied Irish Bank. Technical Report DIT-
06-002, University of Trento, 2006.

25. M. Matskin and E. Tyugu. Strategies of Structural Synthesis of Programs and Its Extensions.
Comp. and Informatics, 20:1–25, 2001.

26. J. McDermott and C. Fox. Using Abuse Case Models for Security Requirements Analysis.
In Proc. of ACSAC’99, pages 55–66. IEEE Press, 1999.

27. Object Management Group. Model Driven Architecture (MDA).
http://www.omg.org/docs/ormsc/01-07-01.pdf, July 2001.

28. J. Peer. Web Service Composition as AI Planning - a Survey. Technical report, University of
St. Gallen, 2005.

29. S. Roach and J. Baalen. Automated Procedure Construction for Deductive Synthesis. ASE,
12(4):393–414, 2005.

30. R. K. Runde and K. Stølen. What is model driven architecture? Technical Report UIO-IFI-
RR304, Department of Informatics, University of Oslo, March 2003.

31. H. A. Simon. The Science of the Artificial. MIT Press, 1969.
32. G. Sindre and A. L. Opdahl. Eliciting security requirements with misuse cases. Requirements

Eng. J., 10(1):34–44, 2005.
33. A. van Lamsweerde, S. Brohez, R. De Landtsheer, and D. Janssens. From System Goals to

Intruder Anti-Goals: Attack Generation and Resolution for Security Requirements Engineer-
ing. In Proc. of RHAS’03, pages 49–56, 2003.

34. D. S. Weld. Recent Advances in AI Planning. AI Magazine, 20(2):93–123, 1999.
35. R. K. Woolthuis, B. Hillebrand, and B. Nooteboom. Trust, Contract and Relationship Devel-

opment. Organization Studies, 26(6):813–840, 2005.
36. E. S. K. Yu and L. Liu. Modelling Trust for System Design Using the i* Strategic Actors

Framework. In Proc. of the Workshop on Deception, Fraud, and Trust in Agent Societies,
LNCS 2246, pages 175–194. Springer-Verlag, 2001.

E. Dubois and K. Pohl (Eds.): CAiSE 2006, LNCS 4001, pp. 48 – 62, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Towards a Comprehensive Framework for Secure
Systems Development

Haralambos Mouratidis1, Jan Jürjens2, and Jorge Fox2

1 Innovative Informatics, School of Computing and Technology, University of East London, UK
haris@uel.ac.uk

2 Software and Systems Engineering, TU Munich, Germany
juerjens@in.tum.de, fox@in.tum.de

Abstract. Security involves technical as well as social challenges. In the
development of security-critical applications, system developers must consider
both the technical and the social parts. To achieve this, security issues must be
considered during the whole development life-cycle of an information system.
This paper presents an approach that allows developers to consider both the
social and the technical dimensions of security through a structured and well
defined process. In particular, the proposed approach takes the high-level
concepts and modelling activities of the secure Tropos methodology and
enriches them with a low level security-engineering ontology and models
derived from the UMLsec approach. A real case study from the e-commerce
sector is employed to demonstrate the applicability of the approach.

1 Introduction

Security related challenges and problems fall into two categories: technical
challenges, i.e. those related to the available technology and the infrastructure of
information systems, and social challenges, i.e. those related to the impact of the
human factor on the security of a system. To be able to develop secure information
systems, both dimensions should be considered simultaneously. Consider for instance,
a typical social engineering attack on health information systems. Social engineering
is a non-technical kind of intrusion that relies on human interaction and involves
tricking other people (doctors, or nurses in the case of medical records) to break
normal security procedures. A private detective (or someone interested in obtaining
personal health information) calls in a health professional’s office or a hospital,
introduces herself as a doctor in an emergency hospital and asks information about the
medical record of a particular patient [22]. This example shows that considering only
the technical dimension of security, will not produce the desirable output.

To enable developers to deal with both dimensions, research has shown that
security should not be considered in isolation but within the context of the
development process employed to develop the system [7][13][16][8]. However, it has
remained true over the last 30 years, since the seminal paper [16], that no coherent
and complete methodology to ensure security in the construction of large general-
purpose systems exists yet, in spite of very active research and many useful results
addressing particular subgoals [17], as well as a large body of security engineering

 Towards a Comprehensive Framework for Secure Systems Development 49

knowledge accumulated [1]. In contrast, today ad hoc development leads to many
deployed systems that do not satisfy important security requirements. Thus a sound
methodology supporting secure systems development is needed. Such a methodology
should take into account not only the technical problems but also the social dimension
of developing secure information systems.

Our goal is to work towards the development of such methodology. This paper
presents an approach for modelling secure information systems, which takes the high-
level concepts and modelling activities of the secure Tropos methodology [3] and
enriches them with a low level security-engineering ontology and models derived
from the UMLsec [11] approach. More concretely, we present an approach that
integrates two complementing security-oriented approaches: secure Tropos and
UMLsec. Section 2 provides an overview of secure Tropos and UMLSec, and section
3 discusses their integration. Section 4 illustrates the enhanced framework with the
aid of a use case, and section 5 concludes the paper.

2 An Overview of Secure Tropos and UMLsec

Secure Tropos [13][14] is a security-oriented extension of the well known1 Tropos
methodology. Tropos provides support for four phases [3]: Early Requirements
Analysis, aimed at defining and understanding a problem by studying its existing
organizational setting; Late Requirements Analysis, conceived to define and describe
the system-to-be, in the context of its operational environment; Architectural Design,
that deals with the definition of the system global architecture in terms of subsystems;
and the Detailed Design phase, aimed at specifying each architectural component in
further detail, in terms of inputs, outputs, control and other relevant information.

Secure Tropos introduces security related concepts to the Tropos methodology, to
enable developers to consider security issues throughout the development of informat-
ion systems. A security constraint is defined as a restriction related to security issues,
such as privacy, integrity, and availability, which can influence the analysis and design
of the information system under development by restricting some alternative design
solutions, by conflicting with some of the requirements of the system, or by refining some
of the system’s objectives [13]. Additionally, secure Tropos defines secure dependencies.
A secure dependency introduces security constraint(s) that must be fulfilled for the
dependency to be satisfied [14]. Secure Tropos uses the term secure entity to describe
any goals and tasks related to the security of the system. A secure goal represents the
strategic interests of an actor with respect to security. Secure goals are mainly
introduced in order to achieve possible security constraints that are imposed to an actor
or exist in the system. However, a secure goal does not particularly define how the
security constraints can be achieved, since alternatives can be considered. The precise
definition of how the secure goal can be achieved is given by a secure task. A secure
task is defined as a task that represents a particular way for satisfying a secure goal.

UMLsec is an extension of UML [15] for secure systems development. Recurring
security requirements, such as secrecy, integrity, and authenticity are offered as

1 In the requirements engineering area.

50 H. Mouratidis, J. Jürjens, and J. Fox

specification elements by the UMLsec extension. These properties and its associated
semantics are used to evaluate UML diagrams of various kinds and indicate possible
security vulnerabilities. One can thus verify that the desired security requirements, if
fulfilled, enforce a given security policy. One can also ensure that the requirements
are actually met by the given UML specification of the system. UMLsec encapsulates
knowledge on prudent security engineering and thereby makes it available to
developers who may not be experts in security. The extension is given in form of a
UML profile using the standard UML extension mechanisms. Stereotypes are used
together with tags to formulate security requirements and assumptions on the system
environment. Constraints give criteria that determine whether the requirements are
met by the system design, by referring to a precise semantics mentioned below.

The tags defined in UMLsec represent a set of desired properties. For instance,
“freshness” of a value means that an attacker can not guess what its value was.
Moreover, to represent a profile of rules that formalise the security requirements, the
following are some of the stereotypes that are used: «critical», «high», «integrity»,
«internet», «encrypted», «LAN», «secrecy», and «secure links». The definition of the
stereotypes allows for model checking and tool support. As an example consider
«secure links». This stereotype is used to ensure that security requirements on the
communication are met by the physical layer. More precisely, when attached to a
UML subsystem, the constraint enforces that for each dependency d with stereotype

{ }>><<>><<>><<∈ high,integrity,secrecys between subsystems or objects on

different nodes, according to each of the above stereotypes, there shall be no
possibilities of an attacker reading, or having any kind of access to the communication,
respectively. A detailed explanation of the tags and stereotypes defined in UMLsec can
be found in [11]. The extension has been developed based on experiences on the
model-based development of security-critical systems in industrial projects involving
German government agencies and major banks, insurance companies, smart card and
car manufacturers, and other companies. There have been several applications of
UMLsec in industrial development projects.

3 Integration of Secure Tropos and UMLsec

There are various reasons for selecting secure Tropos and UMLsec from the large
number of different existing methodologies and modelling languages. Secure Tropos
considers the social dimension of security as well as the high-level technical dimension
of it. Firstly, an analysis regarding social aspects of security takes place in which the
security requirements of the stakeholders, users and the environment of the system are
analysed and identified. Then, the methodology continues to a more technical
dimension by considering the system and identifying its secure requirements, and
allowing developers to identify the architecture of their systems with respect to the
identified requirements. However, the developers of the methodology do not focus on
the detailed security specification of each component of the system. The UMLsec
approach is on the other side of the spectrum. It does not consider the social dimension,
since the only analysis that it offers at the early stages of the development (stages at
which the social issues are introduced) is use case diagrams, which do not consider the
social security requirements of the system’s stakeholders. We believe that integrating
these two approaches will lead us to a complementary approach for secure information

 Towards a Comprehensive Framework for Secure Systems Development 51

systems development, which will consider the two dimensions of security. In particular,
we have identified individual strengths of such integration, which indicate what makes
each of these approaches suitable for our purpose, as well as combinational strengths,
which indicate why these two approaches are suitable for integration. Individually,
secure Tropos considers security issues throughout the development stage, from the
early requirements analysis down to implementation. Moreover, it allows developers not
only to identify security issues but also to reason about them, and it provides a security
pattern language to assist developers without much security knowledge to specify the
architecture of the system according to its security requirements. On the other hand,
UMLsec encapsulates established rules of prudent security engineering in the context of
widely known notations, and thus makes them available to developers without extensive
training in security. In addition, UMLsec supports automatic validation/verification of
security properties. Combinational, both of the approaches are extensions of well-
known approaches (Tropos and especially UML) and this makes the approach easier
accessible to a large number of researchers/developers. Also, the strength of secure
Tropos (requirements analysis) is complementary to the strengths of UMLsec (design)
and vice versa, therefore providing a complete solution. In addition, the use of UML
models during the design stage of the Tropos methodology makes the integration of
secure Tropos and UMLsec more natural.

As mentioned above, secure Tropos is particularly focused on the Early Require-
ments Analysis, Late Requirements Analysis, and Architectural Design, whereas for
the Detailed Designed stage the methodology is mainly based on UML diagrams with
minor extensions to indicate some security issues [13]. On the other hand, the strength
of UMLsec can be found on the architectural and detailed design stages, while some
weak support for late requirements can be introduced using use case diagrams.
Therefore, the integration of the two methods provides a framework of particular
strength throughout all the development stages as shown in Figure 1.

However, the integration of secure Tropos and UMLsec is not straightforward and
we had to deal with various challenges. To overcome these, a set of mapping guidelines
and steps were defined and the secure Tropos development process was redefined and
enriched with extra methods and procedures.

Early
Requirements

Late
Requirements

Architectural
Design

Detailed
Design

secure Tropos

UMLsec

Integration

Strong

Weak

Not supported

Fig. 1. Secure Tropos and UMLsec coverage of development phases

52 H. Mouratidis, J. Jürjens, and J. Fox

3.1 Mapping the Secure Tropos Models to UMLsec Models

As it was mentioned above, the appropriate stage of the secure Tropos development
process for the integration is the architectural design stage. However, different
concepts and notations are used by secure Tropos and UMLsec. So, the first challenge
involved the definition of a set of guidelines to map the secure Tropos analysis and
early design models to UMLsec models. The following guidelines and steps were
identified towards this direction.

Guideline 1: Map the Secure Tropos Analysis Model to UMLsec Class Diagram

• Step 1. Identify the UMLsec classes: For every actor on the secure Tropos
actor diagram a class is created on the UMLsec class diagram. In case there are
sub-actors, these are mapped into the UMLsec class diagram as an inheritance
relationship pointing from the sub-actor class to the main actor class.

• Step 2. Identify the operations of the UMLsec classes: The capabilities of
each of the actors mapped into the UMLsec classes are added on the
corresponding class as operations.

• Step 3. Identify the attributes of the UMLsec classes: Resources related to
each of the actors are mapped to attributes on the UMLsec diagram. This is not
a 1-to-1 mapping, meaning that a UMLsec class will not have exactly the same
number of attributes as the secure Tropos actor counterpart. The reason for this
is that Tropos models are mainly analysis models, whereas the UMLsec model
is a design model. Therefore, it is up to the developers to identify additional
attributes according to the identified operations, by following the same process
followed when identifying attributes for a class on any class diagram.

• Step 4. Identify associations: In order to identify any associations between
the UMLsec classes, the dependencies of the secure Tropos actor diagram are
taken into account. Each dependency might provide an association. However,
this is not a strict rule, and in fact in some cases developers will identify one
association for a number of dependencies. This is again due to the reason that
secure Tropos models are analysis models and UMLsec are design models so
they contain more information.

• Step 5. Identify UMLsec stereotypes: UMLsec stereotypes are identified
through the secure dependencies. The type of the secure dependency indicates
whether an actor is critical for the security of the system or not. Actors are
considered critical when a security constraint is imposed to them. The classes
corresponding to critical actors are indicated with the <<critical>> stereotype.

Guideline 2: Map the Secure Tropos Analysis Model to UMLsec Deployment Diagram

The actor diagrams of the secure Tropos methodology contain two types of actors,
external and internal, without differentiating between them. However, in UMLsec
deployment diagrams, nodes and components need to be defined together with their
communications and any security related stereotypes. The following steps are defined:

• Step 1. Identify UMLsec nodes and components: Define at least one “user” and
one “system” nodes. A “user” node represents one or more external actors of the
system, whereas the “system” node represents the system. External actors should be

 Towards a Comprehensive Framework for Secure Systems Development 53

modelled as components on the appropriate “user” node, whereas system’s internal
actors must be modelled as components of the “system” node.

• Step 2. Mode of communication: Identify the mode of communication between
the different nodes and use UMLsec stereotypes to denote that mode. For
example, if the internet is used as the mode of communication between user
node X and system node Y, then the <<internet>> UMLsec stereotype should be
employed to denote that communication.

• Step 3. Identify the necessary security stereotypes: Consider the security
constraints from the secure Tropos model. At least one UMLsec stereotype
should be identified for each security constraint. It should be noted that the
mapping is not one-to-one, meaning that more than one stereotypes will,
usually, result from one security constraint.

3.2 The New Process

In a nutshell, the redefined secure Tropos process, allows developers initially to
employ secure Tropos concepts and modelling activities to identify and analyse the
security requirements of the system-to-be. Then, a combination of secure Tropos and
UMLsec is employed to determine a suitable architecture for the system with respect
to the identified security requirements, and identify the components of the system
along with their secure capabilities, protocols, and properties. During the last stage
UMLsec is used to specify in detail the components, which were identified in the
previous stage, with respect to security.

In particular, during the Early Requirements Analysis the security needs of the
stakeholders are analysed and a set of security constraints are imposed to the actors that
satisfy the identified security needs. Moreover, security goals and entities are identified,
for each of the participating actors, to satisfy the imposed security constraints. To
achieve this, developers employ a set of different, but related, modelling activities
defined by secure Tropos and its diagrammatic notations, such as actor’s and the goal
diagrams [13]. During the Late Requirements Analysis, the security requirements of the
system are identified taking into account the security needs of the stakeholders as well
as their security constraints (identified during the analysis of the previous stage). The
output of this stage will be the definition of the system’s security requirements together
with a set of security constraints, along with the system’s security goals and tasks that
allow the satisfaction of the security requirements of the system.

The main aim of the Architectural Design is to define the architecture of the
system with respect to its security requirements. To achieve this, initially secure
Tropos notation together with a set of security patterns [13] are used to determine the
general architecture and the components of the system, then the secure Tropos models
are mapped to UMLsec models and in particular UMLsec Class and Deployment
diagrams. These are used to model the security protocols and properties of the
architecture.

During Detailed design, UMLsec is used to specify in detail the components of the
system identified in the previous stage. For this reason, UMLsec activity diagrams are
used to define explicitly the security of the components, UMLsec sequence diagrams
are used to model the secure interactions of the system’s components, e.g., to determine
if cryptographic session keys exchange in a key exchanged protocol remain confidential

54 H. Mouratidis, J. Jürjens, and J. Fox

in considering possible adversaries. UMLsec statechart diagrams are used to specify the
security issues on the resulting sequences of states and the interaction with the
component’s environment. Figure 2 illustrates the redefined development process.
Highlighted in italic are the new activities due to the integration of the two approaches.

Fig. 2. The redefined development process

4 Case Study

To demonstrate our approach, we employ a case study from the e-commerce domain:
The Common Electronic Purse System (CEPS) [4]. CEPS proposes the use of stored
value smart cards, called electronic purses or CEP cards, to allow cash-free point-of-
sale (POS) transactions offering more fraud protection than credit cards2.

Amongst others, the following participants are defined in a CEP transaction [4]:
the Scheme Provider, the authority responsible for establishing an infrastructure for
the overall functionality and security of the CEP system and enforcing the operating

2 Credit card numbers are valid until the card is stopped, enabling misuse. In contrast, electronic

purses can perform cryptographic operations which allow transaction-bound authentication.

Stage: Early Requirements
Activity: Stakeholders Analysis

Activity: Security Constraints Analysis
Activity: Secure Entities Analysis

Stage: Late Requirements
Activity: System Analysis

Activity: System Security Constraints Analysis
Activity: System Secure Entities Analysis

Stage: Architectural Design
Activity: General System Architecture

Activity: Secure Tropos Models to UMLSec
Activity: Modelling of Security Protocols

Activity: Modelling of Security properties of Architecture

Stage: Detailed Design
Activity: Definition of Components

Activity: UMLSec explicit definition of Security Components
Activity: modelling of Secure Interactions of Secure Components

Activity: Automatic Verification

 Towards a Comprehensive Framework for Secure Systems Development 55

rules and regulations of the scheme; the Card Issuer, the organisation responsible for
the provision and distribution of smart cards containing a CEP application (electronic
purses), and the management of the funds pool; the Cardholder, the person who uses
the card for making purchases; the Load Acquirer, the entity responsible for
establishing business relationships with one or more scheme providers to process load
and currency exchange transactions, and settle unlinked transactions; the Merchant,
who is responsible for the use of a POS device to accept CEP cards for payment of
goods and services; the Merchant Acquirer, the entity responsible for establishing a
business relationship with one or more scheme providers to process POS transactions,
and settle POS transactions. Moreover, the merchant acquirer is responsible for the
provision and distribution of Purchase Secure Application Modules (PSAMs) that
interact with terminals for conducting transactions at the point of sale.

4.1 Early Requirements

Initially, the main actors of the system are identified together with their dependencies
and their security constraints. In particular, a CEP based transaction, although it
provides many advantages, over a cash transaction, for both the buyer and the
merchant; it is much more complex. In a normal operating scenario of the CEPS
scheme, the Cardholder loads his/her card with money. During the post-transaction
settlement, the Load Acquirer sends the money to the relevant Card Issuer. The
Cardholder buys a product from a Merchant using his/her card. In the settlement, the
Merchant receives the corresponding amount of money from the Card Issuer. It is
worth mentioning that card issuers can take on the roles of load acquirers. As shown
in Figure 3, the Merchant depends on the Buyer (known as the cardholder on the CEP
scheme) to pay using the CEP Card, on the CEP Scheme Provider to provide the cash
free transaction infrastructure and on the Card Issuer to collect the money.

Fig. 3. Actor diagram of the CEP System

56 H. Mouratidis, J. Jürjens, and J. Fox

On the other hand, the Buyer depends on the Card Issuer to obtain a CEP enabled card,
on the Load Acquirer to load the card and on the CEP Scheme Provider for convenient
cash free shopping. As part of these dependencies, security related constraints are
introduced, imposed by the different actors and the environment [13]. For instance, the
Buyer imposes to the Card Issuer the Allow use only from authorised cardholder
security constraint as part of the Obtain CEP Card dependency. In turn, and in order
to satisfy this constraint, the Card Issuer imposes two security constraints, one to the
Buyer (sign receipt of card) and one to the Merchant (Display evidence of
transaction). On the other hand, the Merchant, to satisfy the security constraint
imposed by the Card Issuer, imposes two security constraints to the Buyer (sign proof
of purchase) and the CEP Scheme Provider (Keep infrastructure secure). Apart from
defining the dependencies and the security constraints of these dependencies, secure
Tropos allows developers to analyse each actor internally3.

4.2 Late Requirements Analysis

During the late requirements analysis, the system is introduced as another actor who has
a number of dependencies with the existing actors, and it accepts a number of
responsibilities delegated to it by the other actors. For instance, for the CEP case study,
the CEP Scheme Provider delegates the responsibility for administering the CEP
transactions to the CEP System, whereas the Merchant delegates the CEP transaction
resource to the CEP System (cf. Figure 4). With respect to security, since dependencies
are delegated from the actors to the CEP System, possible security constraints regarding
those dependencies are also delegated. In our case study, the CEP Scheme Provider actor

Fig. 4. Actor diagram including the CEP System

3 Due to lack of space we do not illustrate in this paper the internal analysis of the actors. The

modelling activities used for this can be found in [13].

 Towards a Comprehensive Framework for Secure Systems Development 57

together with the administer CEP transactions goal, delegates the Keep transactions
secure security constraint on the CEP system actor. This means, that the CEP System is
responsible now for satisfying that security constraint.

On the other hand, the introduction of the CEP system introduces new dependencies
between the system and the existing actors. For example, the CEP System depends on
the Merchant to get information regarding the transactions, such as the product
information, the amount and so on. The CEP System also depends on the Buyer to get
payment details such as the Buyer’s card and account number. Moreover, these new
dependencies impose extra security constraints on the CEP System. For instance, the
Buyer wants their payment details to remain private so a security constraint is imposed
to the CEP System from the Buyer as part of the Get Payment Details secure
dependency. Similarly, the Merchant imposes a security constraint on the CEP System
for the Get Transaction Information secure dependency.

However, at this stage, the security constraints are defined at a high level which
makes it impossible (and impractical) to truly understand the security implications of the
imposed security constraints to the CEP System. Moreover, the system itself has not
been defined in such a detail that it can allow developers to further analyse the security
constraints. Therefore, the next step involves the internal analysis of the CEP system
actors following the same analysis techniques used during the early requirements stage.

Due to lack of space, we focus our analysis for the rest of the case study to a central
part of the CEP System, the purchase transaction. This is an off-line protocol that allows
cardholders to use their electronic CEP card to pay for products. The internal analysis
of the system for the purchase transaction results in the identification of the following
main goals of the system: process transaction data, store transaction data, adjust credit
balance, display transaction details and provide proof of transaction.

From the security point of view, secure goals are identified to satisfy the security
constraints imposed initially from the other actors to the system. Moreover, the
internal analysis of the system helps to identify security constraints that were not
identified during the previous analysis or define in more details some existing security
constraints. For instance, the Keep transactions secure security constraint imposed by
the CEP Scheme Provider to the CEP System can now (that the system’s goals have
been identified) be further defined. For example, related to the purchase transaction,
the Keep transaction secure security constraint can be further refined to constraints
such as keep transaction private, keep transaction available and keep integrity of the
transaction. These security constraints introduce more security constraints on the
system such as obtain user’s authorisation details, authenticate all transactions and
so on. When all the goals, secure goals, entities and secure entities have been
identified, the next stage of the process is the architectural design.

4.3 Architectural Design

During the architectural design, the architecture of the system is defined with respect to
its security requirements, and potential sub-actors are identified and the responsibility
for the satisfaction of the system’s goals and secure goals is delegated to these actors.

Furthermore, the interactions of the newly identified sub-actors and the existing
actors of the system are specified. In our case study, the sub-actors of the system, related
to the purchase transaction, are the Point-Of-Sale (POS) Device, the Purchase Security
Application Module (PSAM), and the Display. Therefore, these actors are delegated

58 H. Mouratidis, J. Jürjens, and J. Fox

responsibility for the system’s goals (such as Adjust Credit Balance, Process
Transaction Data and Display Transaction Details) and secure goals (such as Perform
Integrity Checks, Ensure Data Availability and Perform Cryptographic Procedures).
Moreover, this process allows developers to identify security constraints that could not
be identified earlier in the development process. For instance, the Merchant and the
Buyer now depend on the POS Device to deliver the resource Proof of Transaction.
However, both these actors impose, as part of the Proof Transaction dependency, the
security constraint tamper resistant to the POS Device. The Buyer imposes that
constraint because he/she does not want to be charged more than the transaction
amount, and the Merchant because he/she wants to make sure they will get the money
displayed on the transaction. On the other hand, the POS Device actor, in turn, imposes
that security constraint to the other actors involved with the resource proof of
transaction, i.e. the PSAM and the Display. Therefore, security goals are introduced to
the PSAM and the Display to satisfy the tamper resistant security constraint.

Moreover, a new actor is identified that interacts with the system, the CEP Card. In
particular, the Buyer depends on the CEP Card actor to pay for goods. However, the
Buyer imposes two security constraints to the CEP Card actor, to verify the transaction
and to be tamper-resistant. Therefore, secure goals are identified for the CEP Card
actor to satisfy these two security constraints. When all the security constraints and
secure goals have been identified the next step in the development process involves the
use of UMLsec to define more precisely some of the security related attributes of
the identified actors. As indicated in Section 3.1 the first step on this process is to map
the Secure Tropos analysis model to the UMLsec class diagram. Following the first four
steps described in section 3.1 the UML classes are identified as shown in Figure 5.

In particular, as our analysis has shown, the participants involved in the off-line
purchase transaction protocol are the customer's card and the merchant's POS device.
The POS device contains a Purchase Security Application Module (PSAM) that is used
to store new and processed data. As indicated in our analysis, the PSAM is required to
be tamper-resistant. Moreover, following step 5 of our guidelines, UMLSec stereotypes
are identified. For example, the sessions keys SK on the PSAM object are required to be
fresh, therefore this is indicated using the {fresh} tag of UMLsec (see section 2 for
{fresh}).

Following the steps of the second guideline provided in section 3.1, the deployment
diagram of figure 6 is constructed. To satisfy the security constraint tamper resistant,
identified during the previous stage, for the PSAM, the Display and the POS device, the
communication link between the PSAM and the Display is secured.

As shown in Figure 6, this is achieved by using a smart card with an integrated
display as the PSAM. Furthermore, to satisfy the rest of the security constraints of our
analysis, our design makes sure that the PSAM cannot be replaced without being
noticed.

4.4 Detailed Design

The next step on the development involves the detailed design of each of the system
components.

 Towards a Comprehensive Framework for Secure Systems Development 59

Fig. 5. Partial UMLSec diagram for the presented case study

Fig. 6. Deployment diagram of the case study

During this stage each of the components identified in the previous stages is further
specified by means of Statechart Diagrams, Activity Diagrams, and Sequence Diagrams4.
Moreover, the UMLsec stereotypes allow us to specify the security constraints linked to
the information flow and the processes carried out by the components.

UMLsec sequence diagrams are used to specify the security issues on the resulting
sequences of states and the interaction with the component’s environment. As an
example, consider the following diagram for the purchase protocol:

4 Due to lack of space we illustrate only sequence diagrams.

60 H. Mouratidis, J. Jürjens, and J. Fox

At the beginning of its execution in the POS device, the PSAM creates a transaction
number NT with value 0. Before each protocol run, NT is incremented. If a certain limit
is exceeded, the PSAM stops functioning, to avoid rolling over of NT to 0. Note that
here we assume an additional operation, the +, to build up expressions. The protocol
between the Card C, the PSAM P, and the Display D starts after the Card C is inserted
into a POS device containing P and D and after the amount M is communicated to the
PSAM by typing it into a terminal assumed to be secure. Each protocol run consists of
the parallel execution of the card's and the PSAM's part of the protocol. Both check the
validity of the received certificate. If all the verifications succeed, the protocol finishes,
otherwise the execution of the protocol stops at the failed verification.

Fig. 7. UMLSec sequence diagram for the purchase protocol

4.5 Discussion

The original CEPS specification requires the CEP card and the PSAM to be tamper-
proof but not the POS device. This, leads to the following weakness with respect to
security. The POS device is not secure against a potential attacker who may try to
betray the Merchant, for example some of his/her employees, by replacing the PSAM
and manipulating the Display. The idea of the attack is that the attacker redirects the
messages between the Card C and the PSAM P to another PSAM P’, for example with
the goal of buying electronic content and let the cardholder pay for it. We assume that the
attacker manages to have the amount payable to P’ equal the amount payable to P.
The attacker also sends the required message to the display which will then reassure
the merchant that he has received the required amount.

In our design such attack will fail. Our analysis and design improves the initial
CEPS specification by securing the communication link between the PSAM and the
Display, and by making sure that the PSAM cannot be replaced without being noticed.
This will guarantee that the Display cannot anymore be manipulated, which means
that if the PSAM received less money than expected, it would be noticed immediately.

5 Conclusions

Because of their wide-spread use in security-critical applications, information systems
have to be secure. Unfortunately, the current state of the art in the development of

 Towards a Comprehensive Framework for Secure Systems Development 61

security-critical information systems is far from satisfactory. A sound methodology to
consider the technical as well as the social dimension of security is needed.

Towards this goal, we have presented the integration of two prominent approaches
to the development of secure information systems: secure Tropos and UMLsec. The
main feature of our proposal is the integration of the strong parts of each of these
approaches, namely the socially oriented part of the secure Tropos methodology and
the technical part of the UMLsec. This achieves several goals. First of all, developers
are able to consider security both as a social aspect as well as a technical aspect. As it
was argued in the introduction, this is important when developing information
systems. Secondly, the approach allows the definition of security requirements in
different levels and as a result it provides better integration with the modelling of the
system’s functionality. Thirdly, security is not considered in isolation but
simultaneously with the rest of the system requirements. Fourthly, the integration
allows the consideration of the organisational environment for the modelling of
security issues, by facilitating the understanding of the security needs in terms of the
security policy and the real security needs of the stakeholders, and then it allows the
transformation of the security requirements to a design that is amenable to formal
verification with the aid of automatic tools. It is worth mentioning at this point, that
advance tool support is provided to assist with our approach [10]. The developed tool
can be used to check the constraints associated with UMLsec stereotypes
mechanically, and it uses analysis engines, such as model-checkers and automated
theorem provers. The results of the analysis are given back to the developer, together
with a modified UMLsec model, where the weaknesses that were found are
highlighted. There is also a framework for implementing verification routines for the
constraints associated with the UMLsec stereotypes.

To demonstrate the practical applicability and usefulness of our approach we have
applied it to the CEP case study. The results are promising since our analysis in fact
improves the security of the system. A large number of research efforts related to our
work has been presented in the literature [2][5][6][8][9][12][19][23]. However, our
work is different in two main points. Existing work is mainly focused either on the
technical or the social aspect of considering security, and it presented approaches
applicable only to certain development stages. In contrast our approach considers
security as a two dimensional problem, where the technical dimension depends on the
social dimension. Moreover, our approach is applicable to stages from the early
requirements to implementation.

References

1. Anderson, R., Security Engineering: A Guide to Building Dependable Distributed Systems.
John Wiley & Sons, New York, 2001.

2. Basin, D., Doser, J., Lodderstedt, T., Model Driven Security for Process Oriented Systems.
In Proceedings of the 8th ACM symposium on Access Control Models and Technologies,
Como, Italy, 2003

3. Bresciani, P. Giorgini, P., Giunchiglia, F., Mylopoulos, J., Perini, A., TROPOS: An Agent
Oriented Software Development Methodology. In Journal of Autonomous Agents and
Multi-Agent Systems, Kluwer Academic Publishers Volume 8, Issue 3, Pages 203-236,
2004

62 H. Mouratidis, J. Jürjens, and J. Fox

4. CEPSCO, Common Electronic Purse Specifications, Business Requirements ver. 7,
Functional Requirements ver. 6.3, Technical Specification ver. 2.2. Available from
http://www.cepsco.com [2000].

5. Crook, R., Ince, D., Lin, L., Nuseibeh, B., Security Requirements Engineering: When
Anti-requirements Hit the Fan, In Proceedings of the 10th International Requirements
Engineering Conference, pp. 203-205, IEEE Press, 2002

6. Cysneiros, L.M. Sampaio do Prado Leite, J.P., Nonfunctional Requirements: From
Elicitation to Conceptual Models. IEEE Trans. Software Eng. 30(5): 328-350 (2004)

7. Devanbu, P., Stubblebine, S., Software Engineering for Security: a Roadmap. In
Proceedings of ICSE 2000 (“the conference of the future of Software engineering”), 2000.

8. Giorgini, P., Massacci, F., Mylopoulos, J., Requirements Engineering meets Security: A
Case Study on Modelling Secure Electronic Transactions by VISA and Mastercard, in
Proceedings of the International Conference on Conceptual Modelling (ER), LNCS 2813,
pp. 263-276, Springer-Verlag, 2003.

9. Hermann, G. Pernul, G., Viewing business-process security from different perspectives.
International Journal of electronic Commence 3:89-103, 1999

10. Jürjens, J., Shabalin, P., Tools for Critical Systems Development with UML (Tool Demo),
UML 2004 Satellite Events, Nuno Jardim Nunes, Bran Selic, Alberto Silva, Ambrosio
Toval (eds.), LNCS, Springer-Verlag 2004E. [Accessible at http://www.UMLsec.org.
Protected content can be accessed as user: Reader, with password: Ihavethebook].
Available as open-source.

11. Jürjens, J., Secure Systems Development with UML, Springer, March-Verlag, 2004
12. McDermott, J., Fox, C., Using Abuse Case Models for Security Requirements Analysis. In

Proceedings of the 15th Annual Computer Security Applications Conference, December 1999.
13. Mouratidis, H., A Security Oriented Approach in the Development of Multiagent Systems:

Applied to the Management of the Health and Social Care Needs of Older People in
England. PhD thesis, University of Sheffield, U.K., 2004

14. Mouratidis, H., Giorgini, P., Manson, G., Integrating Security and Systems Engineering:
towards the modelling of secure information systems. In Proceedings of the 15th
Conference on Advanced Information Systems (CaiSE 2003), Velden –Austria, 2003

15. Object Management Group, OMG Unified Modeling Language Specification v1.5, March
2003. Version 1.5. OMG Document formal/03-03-01.

16. Saltzer, J., Schroeder, M., The protection of information in computer systems. Proceedings
of the IEEE, 63(9):1278–1308, September 1975.

17. Schneider, F., editor. Trust in Cyberspace. National Academy Press, Washington, DC,
1999. Available as http://www.nap.edu/readingroom/books/trust/.

18. Schneier, B., Secrets & Lies: Digital Security in a Networked World, John Wiley & Sons,
2000

19. Schumacher, M., Roedig, U., Security Engineering with Patterns. In Proceedings of the 8th
Conference on Pattern Languages for Programs (PLoP 2001), Illinois-USA, September 2001

20. Schumacher, M., Security Engineering with patterns. In LNCS 2754, Springer-Verlag,
2003

21. Shamir, A., Crypto Predictions. In 3rd International Conference on Financial Cryptography
(FC 1999), 1999.

22. The Economist, Digital rights and wrongs, July 17, 1999
23. van Lamsweerde, A., Letier, E., Handling Obstacles in Goal-Oriented Requirements

Engineering, Transactions of Software Engineering, 26 (10): 978-1005, 2000
24. Viega, J., McGraw, G., Building a Secure Software. Addison-Wesley, Reading, MA, 2002.

Role-Based Modelling of Interactions in
Database Applications

Milivoje Petrovic, Michael Grossniklaus, and Moira C. Norrie

Institute for Information Systems,
ETH Zurich,

8092 Zurich, Switzerland
{petrovic, grossniklaus, norrie}@inf.ethz.ch

Abstract. Modern information systems interact with a wide variety
of users ranging from people with specific roles in business processes
to end-users who access information in various ways and in different
environments. Therefore, an application has to adhere to a well defined
security policy on one hand and be highly adaptable to context on the
other. We have extended the OM data model, with its rich support for
role modelling, with concepts for modelling interactions between users
and applications. In this paper, we show how the resulting interaction
model can be used for role-based access control, as well as for modelling
interactions in context-aware applications.

1 Introduction

Interaction with users is one of the central aspects of designing an information
system. Any interaction between a user and an application has to take care
of two things. First, the application should be able to adapt to the users and
their environment, and consequently provide only relevant information. Second,
only authorised users should be allowed to interact with the application in a
particular way. Depending on the type and purpose of a system, one or the
other component is dominant. However, in every multi-user environment both
context-awareness and security are always present to some extent.

An information system which supports an organisation’s business processes
has to support interaction with users having different responsibilities. In such
systems, it is important to deliver the right information to the right users within
given time constraints, and to ensure that only users with certain roles are
allowed to perform a task. In contrast, recent developments in mobile information
systems focus more on delivering relevant information to users depending on
contextual parameters such as location, preferences and client device. In content
management systems, these two aspects come together as nowadays they are
expected to offer multi-channel and personalised access, while at the same time
enforcing strict access control to content authoring based on user roles.

Interaction depends on characteristics of users and application entities. Often
the same characteristics are relevant to both security and context-awareness.
Moreover, relevant information and services delivered to a user will always be

E. Dubois and K. Pohl (Eds.): CAiSE 2006, LNCS 4001, pp. 63–77, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

64 M. Petrovic, M. Grossniklaus, and M.C. Norrie

subsets of the information and services, respectively, that they are authorised
to access. For these reasons, it is necessary to reason about interactions on an
abstract level, describing them in a way that covers both aspects. Both security
and context are orthogonal to the application’s functionality and therefore, in-
stead of being modelled in the core application, they should be described in a
separate model that enables their influence on runtime behaviour to be handled
with well-defined algorithms based on that model.

In this paper, we present such a model and show how it can be used to capture
both the context-dependent and access control aspects of information systems.
A role-based approach to modelling interactions is used as role hierarchies map
well to organisational hierarchies and their expressiveness makes them suitable
both for capturing requirements and system design. However, role-based models
are rather coarse-grained, and thus should be augmented with means to address
fine-grained features.

Section 2 motivates our approach through an example scenario and discusses
related work. The OM model and its support for role modelling is described
in Sect. 3. Section 4 introduces the interaction model based on OM concepts.
Section 5 discusses the role-based access control model obtained from the in-
teraction model, while Sect. 6 discusses modelling interactions in context-aware
applications. In Sect. 7 we briefly deal with implementation issues. Concluding
remarks are given in Sect. 8.

2 Background

Throughout the paper, we will use a simplified version of an on-line conference
management system to explain our approach. The different roles that users may
have are Programme Committee (PC) members, some of whom are PC chairs,
reviewers and authors. An author submits a paper before the submission deadline
and classifies it by topics. PC members register their preference for topics and,
given a list of papers associated with these topics, indicate their preferences for
papers to review. The PC chairs then assign papers to reviewers who include
PC members but may also include other nominated reviewers. Reviews should
be submitted before a review deadline, after which, the PC decides whether or
not a paper is accepted.

Each of the user roles has clear responsibilities and associated permissions.
Reviewers can review papers but the system must ensure that only a reviewer
who is assigned to the paper may actually activate review permission on it.
Users may have multiple roles as a reviewer can also be an author. In this case,
the protection mechanism has to take care of possible conflicts of interest and
disallow that a paper is reviewed by its author. Further, permissions change over
time according to the phases in reviewing process. For example, authors should
not be allowed to submit or update papers after the submission phase is over
and reviewers should not be able to change their reviews in the decision phase.

A conference management system not only has to be secure, but also should
provide its users with information relevant to their role and task. For example,

Role-Based Modelling of Interactions in Database Applications 65

when a PC member wants to select papers for review, the system should not only
exclude the papers that they authored, but also present those which match their
preferences by default. The system should also be proactive and push information
to the user. For example, one day before the review deadline, the system could
automatically send a reminder to reviewers who have not completed all of their
reviews.

Probably the most widely used models for capturing interactions between
users and applications are UML use case and interaction diagrams [1]. Use case
diagrams are used to model the requirements of an application and to clearly de-
fine the boundaries of a software system in interaction with actors which can be
either humans or other software systems. On the other hand, sequence and com-
munication interaction diagrams model a sequence of messages passed between
objects on the level of method calls. The level of abstraction that we need is be-
tween those of use case and interaction diagrams. Similar to use case diagrams,
our goal is to capture interactions between users and applications. However, to
be able to model access control and context requirements, application entities
with which the user interacts have to be present in the model. We are not inter-
ested at this level in the order of the messages and low level interactions in the
implementation of application logic. Rather, we want to focus on characteristics
of a user and application entity which influence interaction, and to change the
runtime behaviour accordingly.

Research in access control in the past was focused on mandatory (MAC)
and discretionary access control (DAC). MAC associates security labels to both
subjects and objects and manages access rights in a centralised fashion, whereas
DAC leaves the administration of access rights to the object’s owner. Role-based
access control (RBAC) [2, 3] allows for simplified management of permissions
since they are specified on the level of roles and not of individual users. RBAC
is policy neutral and can also be used to support MAC and DAC policies [4].

Role hierarchies further simplify the management of permissions by allow-
ing inheritance of access rights. However, as shown in [5], in some cases such
inheritance may lead to violation of organisation’s control principles, such as
separation of duty. In addition to generalisation based role hierarchies described
in [2, 3], some other types of role hierarchies have been identified in organisation
structures. In [5], activity hierarchies were introduced to model inheritance of the
responsibility for activities that are part of larger activities, whereas supervision
hierarchies were used to represent user positions in the organisation hierarchy.
In [6], contextual and seniority role hierarchies of users and asset hierarchies of
accessed objects were introduced. Contextual roles are used to model the fact
that, in order to access an asset, a user not only has to posses the required
ability, but also needs to be linked to it through some situational role, such as a
common project.

In [7], a model-driven security approach is taken where security and a de-
sign language are combined to enable automatic generation of access control
infrastructures on target software platforms. SecureUML is a security modelling
language for role-based access control built as an extension of UML and thus

66 M. Petrovic, M. Grossniklaus, and M.C. Norrie

with an intuitive graphical notation. It can be combined using a dialect with any
design language in order to introduce access control on its resources. A security
design model obtained by merging SecureUML and a structure model enables
usage of OCL authorisation constraints to express activation of permissions de-
pending on the state of a system, such as the existence of a relationship between
a user and an accessed object.

The roles and properties of individual users and objects may also effect in-
teraction between the user and the system in terms of the form and content of
information delivered to the user in a particular context. In web engineering [8, 9],
a role-based approach for adaptation to user interests and access control is taken
on the navigational and presentational level in a manner similar to adaptive hy-
permedia [10]. It is usually assumed that the user logs in with one role and
navigates through the site view designed for this role. Personalisation is done by
querying information associated with a particular user through that role. For our
requirements, it is important to integrate access control and context awareness
in the core interactions between users and application entities. Further, we need
to take all user roles into account when filtering information. Finally, we want
to deliver the relevant information by means of an algorithm at runtime based
on the model, rather than with queries written in application logic. Note that in
this paper, we will not deal with the gathering, representation and interpretation
of context information, but rather assume that context is already present in the
data model and use it to specify conditions which influence interactions.

There have been several attempts to bring together security and context.
In [11], a dynamic access-based control model is presented with the focus on
the activation and deactivation of user roles in the session based on changes in
user context. In [12], a generalised role-based access control (GRBAC) model
is proposed with the notion of environment roles. Environment roles represent
conditions which have to hold for some permission to be granted. These ap-
proaches are concerned with using context information, such as location and
time, to make access control decisions. Our primary goal, however, is to provide
a model and an algorithm which can be used to achieve goals focused either on
context awareness, access control or both. GRBAC is also interesting because
it classifies not only users, but also objects into roles. Such a feature allows for
greater flexibility in modelling.

We want to make several points in this paper. Firstly, security and context-
awareness are related and consequently can be modelled using the same concepts.
They are both system aspects [13] and should be represented in terms of a model
rather than in application logic. Further, extensive use of role modelling for both
user and application entities can satisfy complicated interaction requirements in
a simple way. The modelling of fine-grained behaviour on the level of individual
objects can be achieved by the integration of the interaction and structure model.
Having users as application entities makes such integration simpler and leads to
flexible user management. Finally, querying which takes multiple user and object
roles into account can be expressed in such model and can be handled by means
of an algorithm.

Role-Based Modelling of Interactions in Database Applications 67

3 The OM Data Model

The OM data model combines conceptual modelling constructs present in ex-
tended entity relationship models with object-oriented constructs, by introduc-
ing a clear separation of typing and classification [14, 15]. While types specify
the actual representation of objects, collections and associations represent their
semantic groupings.

(0,*)

(1,1)

(0,*)
(0,*)

(1,1)(3,*)(1,*) (3,*)

(1,1)(0,*)

(1,*) (1,*)

_user

Users
_object

Objects

integer

IntLevel

_user

Committee
reviewer

Reviewers

author

Authors

paper

Papers
review

Reviews

_user

Chairs
reviewer

Members

paper

Registered paper

Submitted

paper

Reviewed

paper

Assigned

review

Drafts review

Finals

partitionpartition

authored_by

owns

assigned_to has_reviews

interested_in

with

Fig. 1. Conceptual modeling in OM

A simplified OM model of the conference management system is shown in
Fig. 1. Shaded rectangles represent semantic collections of objects and ovals
associations between the members of collections. Generalisation hierachies are
built from subcollection relationships between collections which are represented
by directed edges between collections. For example, Committee, Reviewers and
Authors are all subcollections of Users. The association authors captures the re-
lationship between authors and their papers. Members is a subcollection of both
Committee and Reviewers, expressing the fact that PC members are both review-
ers and members of the committee together with its chair. The subcollections
of Papers and Reviews correspond to the phases in the reviewing process. The
partition constraint ensures that an object is always in exactly one phase. The
system collections Objects and Users are parent collections for all application
and user collections, respectively. The collection Users is also a subcollection of
Objects, but this is not shown in the figure for reasons of clarity. Every applica-
tion object has its owner, which is represented by the system association owns.
Associations of interest between different user roles and Papers are represented.
Since reviewers create reviews, the relationships between them are captured im-
plicitly by the association owns.

The separation of typing and classification allows flexible role modelling to be
supported as the multiple classification of objects simply corresponds to member-
ship of multiple collections. At the type level, the OM model supports multiple

68 M. Petrovic, M. Grossniklaus, and M.C. Norrie

instantiation as objects are dynamically composed from type units depending on
a particular type view. Every collection has an associated type which restricts
membership to objects of that type and determines the default type view of an
object accessed through that collection. Thus, if a user object is accessed through
the collection Reviewers, the properties of type reviewer will be accessible, while
if they are accessed through collection Authors then it will be the properties
of type author. Further, associations can be defined between two roles without
having to change the types of the associated objects. This allows for extensive
use of role hierarchies and associations without impact on the representation.

Many object-oriented models lack the semantic expressiveness of OM in terms
of role modelling. Another important factor is that OM is not simply a modelling
language but also a model for data management and offers a well defined oper-
ational model inclusive of an algebra over collections and associations. Various
implementations exist, such as OMSwe, a database system designed to support
context-aware web publishing [16]. The OM model therefore offers better sup-
port for modelling interactions according to our requirements than UML and
OCL.

4 Interaction Model

In the previous section we presented the structure model of the conference man-
agement system. Having identified user roles and the most important applica-
tion entities, we can model interactions based on the requirements presented
in Sect. 2. We first introduce the core concepts of the interaction model. An
interaction represents a set of semantically correlated messages which can be
exchanged between a user and an accessed object. An interaction constraint is
a logical predicate which determines the validity of the interaction. To specify
that an interaction is possible between a member of a user role and a member
of the object role, we use an interaction relation which is a tuple consisting of
a user role, an object role, an interaction and a set of interaction constraints. If
interaction constraints are defined on the interaction relation, then all of them
have to be satisfied for the interaction between two objects to be valid.

The model of interactions between user roles and papers is shown in Fig. 2.
An interaction relation is graphically represented as a labelled, directed line
between two roles. An interaction constraint is graphically represented as an
annotation to the line. From the diagram, we see that a user who possesses the
role of a reviewer may issue a review interaction for a paper if the interaction
constraint assigned to is satisfied for the two objects. Interaction constraints are
expressed in terms of the OM collection algebra extended with the keywords
caller and callee to refer to the user and the accessed object, respectively.
Interaction constraints may accept additional parameters if they are defined for
the interaction as in the case of the interaction assign to(member). A list of
the interaction constraints used for the model is given below. We assume there
is a global object conference which holds information on submission deadline,
whereas parameter global time represents the current system time. We see that

Role-Based Modelling of Interactions in Database Applications 69

_user

Users

_user

Committee
reviewer

Reviewers

author

Authors

_user

Chairs

reviewer

Members

_object

Objects
paper

Papers

paper

Registered

paper

Submitted

paper

Reviewed

paper

Assigned

partition

{authored_by}

{assigned_to}

{not authored_by}

{not authored_by (param)}

{before_submission_deadline}

update

register

view

accept/reject

indicate_interest

review

assign_to (member)

delegate(reviewer)

Fig. 2. Interaction model example

some interaction constraints are dependent on relationships between objects
in the structure model, while others depend on context information such as
time.

authored by(param) := (param, callee) in a"authored by"

authored by := (caller, callee) in a"authored by"

assign to := a"assigned_to"

before submission deadline :=

global time < conference[submission deadline]

The relationships in assigned to are created in interaction assign to. Both
associations and interactions link two objects. However, associations represent
static, persistent relationships between objects, while interactions are dynamic,
transient relationships which exist only during the exchange of messages.

Both users and papers are classified into role hierarchies. When an interac-
tion relation is defined between a user and an object role, it is inherited by
all combinations of child user and object roles, including the user and object
roles themselves. This means that the view interaction relation defined between
Chairs and Papers implies that PC chairs can view papers in all phases. Sim-
ilarly, the review interaction relation between Reviewers and Assigned implies
that PC members can also review papers in that phase. In the case that a user or
object role is a child of more than one role, then it inherits interaction relations
from all of its parent roles. Nevertheless, in some cases, roles need to redefine
the interaction relation defined between parent roles because of different inter-
actions or interaction constraints, or both. An example is given in Fig. 3 where
the interaction relation view between Reviewers and Reviews is redefined by the
interaction relation between Members and Finals, to allow only PC members to
view all other finalised reviews once they have finalised their own.

70 M. Petrovic, M. Grossniklaus, and M.C. Norrie

_user

Users
_object

Objects
_user

Committee
reviewer

Reviewers
review

Reviews

reviewer

Members

review

Drafts
review

Finals

partition

create

view

write

{owner}

{of_assigned_paper}

{all_paper_reviews}{finalised_own}

view

Fig. 3. Redefinition of interaction relations

To model the creation and deletion of objects, we assume that, for each OM
type, there is a collection corresponding to the extent of that type. We introduce
system interactions create and delete which are only allowed to be specified on
collections that correspond to type extents e.g. Reviews. Creation and deletion
are considered equivalent to insertion into and removal from such collections. As
reviewers create reviews, we define an interaction relation with the interaction
create between the roles Reviewers and Reviews, as shown in Fig. 3. Interaction
constraints can be specified in combination with the create interaction, in which
case they are checked after the interaction has been carried out and the object
created. In this example, the constraint of assigned paper given below checks
whether the reviewer is assigned to the paper for which the review is created.
In the case of instance deletions, all interaction constraints are checked before
the interaction. When it comes to other collections, insertion and removal have
different semantics as they correspond to granting and revoking roles. The system
interactions grant and revoke are allowed to be used only when the accessed
collection does not correspond to the extent of a type.

of assigned paper :=

(caller, callee) in inverse (a"assigned_to") compose a"has_reviews"

The metamodel of the interaction model is presented in Fig. 4. An interaction
relation connects a user role, an object role, an interaction and a set of interaction
constraints. Both user and object roles can take part in many interaction rela-
tions. An interaction constraint expresses conditions from the structure model
and thus can be used for many interaction relations. Since an interaction is just
a set of messages, the same interaction can exist between many combinations of
user and object roles. Thus, an interaction can be related with many interaction
relations. An interaction relation can redefine zero or one interaction relations
between parent roles, with the constraint that both the source and target roles
are subcollections of the source and target parent roles. Further, an interaction
relation can be redefined by many interaction relations defined between different
combinations of user and object child roles. Interactions which correspond to a

Role-Based Modelling of Interactions in Database Applications 71

single message are called atomic interactions. An interaction may be composed
of many interactions which in turn can either be composite or atomic. Any inter-
action can be part of many interactions. Limitations in composing interactions
come only from the evaluation of the interaction constraints in interaction rela-
tions. Any interaction constraint which is valid on the parent interaction has to
be valid on the child interactions.

Fig. 4. Interaction metamodel

Both a user and an accessed object are classified into many roles in parallel
inheritance paths. The resolution algorithm given below takes this into account
to check the validity of interaction i, issued by user u on object o, by passing a
set of parameters P . A more general version of the algorithm receives a collection
of objects and returns those for which the requested interaction is valid. This is
useful when querying for objects which can provide a certain interaction.

1. let Ru and Ro be sets of user and object roles of u and o, respectively
2. let IR be the set of interaction relations IRk for which (has caller(IRk),

has callee(IRk)) ∈ Ru ×Ro and i ∈ has interaction(IRk)
3. let IR′ be the subset of IR obtained by leaving out all IRk for which exists

some IRj such that redefines(IRj) = IRk

4. accept if there is IRk ∈ IR′ for which for all c ∈ has constraints(IRk),
c(u, o, P) = true

5 Role-Based Access Control Model

The interaction model of the conference management system is in fact a role-
based access control model. We specified which interactions are allowed for user
roles in different phases of the reviewing process. In that sense, interactions are
permissions that are activated if all interaction constraints evaluate to true for

72 M. Petrovic, M. Grossniklaus, and M.C. Norrie

objects in the interaction. Thus, interaction constraints play the role of autho-
risation constraints in this case.

We will show how the concepts of our interaction model relate to those pro-
posed as a possible standard for role-based access control [3]. The first important
difference stems from the OM feature that not only user objects, but also ob-
jects accessed by them may have multiple roles. This means that our model
is role-based both from the point of view of the user and the accessed object.
Permissions correspond to interactions, and they can be used in many interac-
tion relations defined between different user and object roles. Thus there exists
a chain of many-to-many relations between users, user roles, permissions, ob-
ject roles and objects. Interactions can be decomposed to the level of atomic
interactions which correspond to operations on objects. As atomic interactions
can be part of many interactions, there exists a many-to-many relation between
permissions and operations as well. Such generality results in great flexibility in
modelling security requirements. Especially useful is the usage of object roles.
We used this feature to change access rights according to the reviewing phases.
Otherwise, the state information would have to be maintained in the object it-
self, leading to non-intuitive diagrams and complicated authorisation constraints
composed of a large number of logical conjunctions and disjunctions.

The second important difference stems from the redefinition of interaction
relations. In the proposed standard for role-based access control, a partial or-
der relation exists between roles: senior roles acquire the permissions of their
juniors and junior roles acquire users of senior roles. Senior roles correspond to
the child roles of the OM model and junior roles correspond to its parent roles.
The acquisition of users is achieved using OM subcollections, while the acqui-
sition of permissions is obtained in the interaction model. If a child role has
more than one parent role, it inherits the permissions from all of them. Also, a
parent role may have many child roles which then inherit its permissions. Thus,
role hierarchies are general as they allow multiple inheritance of both users and
permissions. The same observations are valid for object role hierarchies. In our
model, interaction relations can be redefined by child roles, thus changing per-
missions and authorisation constraints. This allows for situations where a senior
role has less permissions than the junior role. This breaks the partial order but
allows for greater flexibility. Without this feature, non-conceptual roles would
have to be introduced, as is the case with private roles in [2], thus leading to
non-intuitive models.

Authorisation constraints partition objects with the same role into those
which are authorised to participate in a given interaction and those which are
not. This allows for the expression of fine-grained security requirements. A par-
ticularly important authorisation constraint is owner since, in many security
policies, the object’s owner has special rights on it. The owner constraint stems
from the system association owns defined between system collections Users and
Objects. It can be placed on any interaction relation since the user and the
accessed object must be members of the corresponding system collections.

Role-Based Modelling of Interactions in Database Applications 73

The constraint and operational model of OM allows for the specification of
complex constraints such as separation of duty, where a task is divided into
smaller ones which have to be done by different persons. Simple cases can be
handled on the level of the structural model using OM constraints. For instance,
the disjoint constraint could be used to ensure that a user object cannot pos-
sess more than one role from a set of child roles. However, more complex cases
require the use of authorisation constraints. Since, in our example, a user may
have both the author and the reviewer role, a conflict of interest is prevented by
controlling permission activation using authorisation constraints. In similar fash-
ion, authorisation constraints could be used to solve conflicts between control
principles and inheritance of access rights posed in [5]. Relationships could be
used to track performers of activities. Separation of duty would then be enforced
by placing an authorisation constraint which would be negation of the existence
of relationship between user and object in the previous activity.

Requirements stemming from the presence of different types of role hierarchies
in organisations [6] can be expressed in terms of our model by using associations
and authorisation constraints. User and object role hierarchies of our model cor-
respond to functional roles and asset hierarchies, respectively. We do not need
to explicitly define seniority and contextual roles that a user needs to possess in
addition to functional roles in order to access an asset. Rather, we can introduce
an association between user roles to model seniority, and associations between
user and object roles instead of contextual roles. Then, we can use authorisation
constraints based on these associations to achieve the same effect. Our model is
general in the sense that it provides a framework where arbitrary associations
between roles can be defined and then used for expression of authorisation con-
straints in terms of the OM algebra. This enables us to also support delegation
and responsibility introduced in [5], since they are in fact based on relationships
between user roles and sets of activities.

_user

Users
reviewer

Reviewers

reviewer

Members

_user

Committee

_user

Chairs

create/delete

grant/revoke

Fig. 5. User management

User objects are not treated differently from any other objects in the OM
model. This is convenient for user management and administration as permis-
sions on users can be modelled and controlled in the same way and using the
same rules as other objects. The model shown in Fig. 5 states that both PC chairs
and members can create reviewers, and that only chairs can promote them to
PC members. In this way, we can model and control the creation of users and
propagation of privileges in a fine-grained way.

74 M. Petrovic, M. Grossniklaus, and M.C. Norrie

Our model is similar to a security design language obtained by a merging of
SecureUML [7] and a static structure design language in that it is graphically
intuitive and makes use of authorisation constraints. The difference is that in
such a language, users and roles from SecureUML are not part of the structure
model, and thus have to be connected with the application entities which repre-
sent them using a convention. This complicates the expression of authorisation
constraints and, more importantly, prevents the administration of users in the
same way as application entities.

6 Context-Aware Interactions

To be able to express context in terms of a model, we generalise the notion
of context to any information present in the data and interaction model that
is relevant for the interaction between a user and an application. This is in
accordance with the definition of context given in [17]. Relevant information and
its influence on interaction is expressed in terms of interaction constraints, which,
in this case play, the role of context constraints. Any property that characterises
a user, an accessed object, associated objects or the global environment can be
context for a particular interaction. Often the fact that some relationship exists
influences the interaction, thus being context itself.

To illustrate how we can support the delivery of relevant information and
services based on the interaction model, consider the interaction in which a PC
member indicates interests in papers. Although PC members have rights to ac-
cess any paper, the system should provide them with the list of papers that
matches their topic preferences as a default. To achieve this, we can classify
PC members into many roles based on their preferences and expertise. Simi-
larly, authors classify papers by topic. Then, we can introduce an interaction
which indicates user preferences and specify it using interaction relations be-
tween the corresponding user and object roles, as shown in Fig. 6. When a
user issues interaction list preferred on the collection Papers, the resolution al-
gorithm takes all user roles into account, finds the corresponding object roles
through the interaction relations and returns only papers having one of these
roles. For further fine-grained modelling of preferences, it is possible to create
multilevel user and object role hierarchies, and introduce context constraints on
interaction relations. We believe that a role based approach to the modelling of
user profiles and object categories is graphically intuitive and allows for multi-
ple user and object roles to be taken into account when querying for preferred
objects.

Further, when a PC member accesses a paper, the relevant functionality
should be offered to them. If they access a paper in which they have already
indicated an interest, the system should offer an update operation. Otherwise,
it should offer them the option to indicate their interest. This behaviour is
achieved by introducing the interactions indicate interest and update interest
in combination with the context constraint indicated based on the association
interested in.

Role-Based Modelling of Interactions in Database Applications 75

_object

Objects

reviewer

Members

paper

Papers

reviewer

Modellers

reviewer

DBExperts

reviewer

WebExperts

paper

Submitted

paper

WebPapers

paper

DBPapers

paper

Models

update_interest

list_preferred

list_preferred

list_preferred

indicate_interest

{not indicated}{not authored_by} {indicated}

Fig. 6. Context aware requests

We have shown how the runtime resolution algorithm can use the inter-
action model to adapt the system when a user makes request. Nevertheless,
context-aware applications need to be proactive. They should be able to push
information to users and execute actions on their behalf when certain condi-
tions are satisfied. Such conditions can be expressed using context constraints.
This requires that the application is equipped with an environment that period-
ically checks all context constraints to trigger proactive interactions. Examples
of such proactive interactions in our example are shown in Fig. 7. Interactions
which push information are directed from the object to the user role, while in-
teractions which represent automatic execution do not have a direction. In this
case, the system will send a reminder to a reviewer one day before the review
deadline if a review has not been finalised. The interaction auto finalise states
that the system will automatically move the review to the finalised state af-
ter the deadline, if a reviewer has set the automatic finalise setting in their
preferences.

_user

Users
_object

Objects
_user

Committee
reviewer

Reviewers
review

Reviews

review

Drafts
review

Finals

partition

{owner}

remind

{reminder_time}

finalise

auto_finalise

{review_deadline} {automatic_set}

Fig. 7. Proactive behaviour

automatic set := caller[automatic_finalise]

reminder time := conference[review_deadline] - global_time < 24h

76 M. Petrovic, M. Grossniklaus, and M.C. Norrie

7 Implementation

We have shown in Sect. 4 how interactions between roles are modelled on the
conceptual level. However, the behaviour of individual objects is specified by
the methods of the underlying object-oriented type model. Each interaction can
be recursively decomposed to the level of atomic interactions and then mapped
to method declarations in an object-oriented language. The interaction model
does not deal with the method implementation, and redefinition of interaction
relations is fundamentally different from method redefinition. Further, to ensure
that interaction constraints are valid, object types need to have the correspond-
ing properties. For example, given the model of Fig. 7, type review would need to
provide an attribute for review deadline and a common method for interactions
finalise and auto finalise. Finally, system interactions create, delete, grant and
revoke correspond to the methods insert and remove of the collection type.

By developing the interaction model as an extension of OM model, we could
integrate it into the core of eOMS, a new data management platform under de-
velopment based on the OM model. The operational model of eOMS is based
on a specially developed object-oriented database programming language OML,
which brings together the algebraic operators of the OM query language with
procedural constructs. Application logic is provided in OML methods and ac-
cess control is enforced by the runtime checking of the validity of method calls
by applying the resolution algorithm on the application database. To support
context-awareness, we are integrating concepts developed in OMSwe, an OM-
based platform for web publishing [16].

The interaction model could be also used together with other object-oriented
platforms and languages. Similarly to the approach in [7], security infrastruc-
tures could be generated for existing software platforms which already support
role-based access control to some extent, as is the case with application servers.
However, because of the generality of the interaction model, complex mappings
would need to be defined in order to bridge the gap between the models. Another
approach would be to integrate the interaction model with an existing object-
oriented language such as Java. Aspect-oriented frameworks could be used to
instrument application code in order to perform security checks on method in-
vocation. However, this would result in issues of how to handle the impedance
mismatch arising from the fact that OM supports multiple instantiation and
inheritance. Other issues would be how to keep the information on object roles
and deal with OM operations in the case of unidirectional Java references.

8 Conclusions

We have shown that it is possible to have a unified role-based interaction model
that caters for both the security and context-aware aspects of user interaction
with database applications. This was achieved by extending the OM object data
model with concepts of interaction relations, interactions and interaction con-
straints and providing mechanisms for the inheritance and refinement of inter-
actions in role hierarchies.

Role-Based Modelling of Interactions in Database Applications 77

We plan to facilitate modelling of complex application domains, by providing
design patterns to address often occuring requirements. Also, we are working on
combining of the interaction model with our extended version model in order to
model interactions in collaborative and mobile environments.

References

1. OMG: Unified Modeling Language: Superstructure Version 2.0. (2004)
2. Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-Based Access

Control Models. IEEE Computer (1996)
3. Ferraiolo, D.F., Sandhu, R., Gavrila, S., Kuhn, D.R., Chandramouli, R.: Proposed

NIST Standard for Role-Based Access Control. ACM Trans. Inf. Sys. Sec. (2001)
4. Osborn, S., Sandhu, R., Munawer, Q.: Configuring Role-Based Access Control to

Enforce Mandatory and Discretionary Access Control Policies. ACM Trans. Inf.
Sys. Secur. (2000)

5. Moffett, J.D.: Control Principles and Role Hierarchies. In: Proc. RBAC. (1998)
6. Crook, R., Ince, D.C., Nuseibeh, B.: Modelling Access Policies Using Roles in

Requirements Engineering. Information & Software Technology (2003)
7. Basin, D., Buchheit, M., Doser, J., Hollunder, B., Lodderstedt, T.: Model Driven

Security. In: Proc. DACH Security. (2005)
8. Koch, N., Kraus, A., Hennicker, R.: The Authoring Process of the UML-based Web

Engineering Approach. In: Proc. Web-Oriented Software Technology Workshop.
(2001)

9. Schwabe, D., Guimaraes, R.M., Rossi, G.: Cohesive Design of Personalized Web
Applications. IEEE Internet Computing (2002)

10. Brusilovsky, P.: Adaptive Hypermedia. User Modeling and User-Adapted Interac-
tion (2001)

11. Zhang, G., Parashar, M.: Context-Aware Dynamic Access Control for Pervasive
Applications. In: Proc. Comm. Networks and Distr. Systems Modeling and Simu-
lation. (2004)

12. Covington, M., Moyer, M., Ahamad, M.: Generalized Role-Based Access Control
for Securing Future Applications. In: Proc. Inf. Sys. Sec. (2000)

13. Kiczales, G., Lamping, J., Menhdhekar, A., Maeda, C., Lopes, C., Loingtier, J.M.,
Irwin, J.: Aspect-Oriented Programming. In: Proc. ECOOP. (1997)

14. Norrie, M.C.: An Extended Entity-Relationship Approach to Data Management
in Object-Oriented Systems. In: Proc. ER. (1993)

15. Norrie, M.C.: Distinguishing Typing and Classification in Object Data Models.
In: Proc. European-Japanese Seminar on Information and Knowledge Modelling.
(1995)

16. Norrie, M.C., Palinginis, A.: Versions for Context Dependent Information Services.
In: Proc. CoopIS. (2003)

17. Dey, A.K., Abowd, G.D.: Towards a Better Understanding of Context and Context-
Awareness. In: Proc. Context-Awareness Workshop, CHI. (2000)

Conceptual Modelling

E. Dubois and K. Pohl (Eds.): CAiSE 2006, LNCS 4001, pp. 81 – 95, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Incremental Evaluation of OCL Constraints

Jordi Cabot1 and Ernest Teniente2

1
Estudis d’Informàtica i Multimèdia, Universitat Oberta de Catalunya

jcabot@uoc.edu
2 Dept. Llenguatges i Sistemes Informàtics, Universitat Politècnica de Catalunya

teniente@lsi.upc.edu

Abstract. Integrity checking is aimed at determining whether an operation
execution violates a given integrity constraint. To perform this computation
efficiently, several incremental methods have been developed. The main goal of
these methods is to consider as few of the entities in an information base as
possible, which is generally achieved by reasoning from the structural events
that define the effect of the operations. In this paper, we propose a new method
for dealing with the incremental evaluation of the OCL integrity constraints
specified in UML conceptual schemas. Since our method works at a conceptual
level, its results are useful in efficiently evaluating constraints regardless of the
technology platform in which the conceptual schema is to be implemented.

1 Introduction

Integrity constraints (ICs) play a fundamental role in defining the conceptual schemas
(CSs) of information systems (ISs) [8]. An IC defines a condition that must be
satisfied in every state of an information base (IB). The state of an IB changes when
the operations provided by the IS are executed. The effect of an operation on an IB
may be specified by means of structural events [18]. A structural event is an
elementary change in the population of an entity or relationship type, such as insert
entity, delete entity, update attribute, insert relationship, etc.

The IS must guarantee that the IB state resulting from the execution of an operation
is consistent with the ICs defined in the CS. This is achieved by ensuring that
the structural events that define the operation’s effect do not violate any ICs. This
process, which is known as integrity checking, should be performed as efficiently as
possible.

Efficiency is usually achieved by means of incremental integrity checking, i.e. by
exploiting the information that is available on the structural events to avoid having to
completely recalculate the ICs. Hence, the main goal of these methods is to consider
as few of the entities in the IB as possible during the computation of IC violations.

For example, a ValidShipDate constraint in the CS in Fig. 1.1, which states that
“all sales must be completely delivered no later than 30 days after the payment date,”
may be violated by the execution of the AddSaleToShipment(s:Sale,sh:Shipment)
operation, which creates a new relationship between sale s and shipment sh, since sh
may be planned for a date beyond the last acceptable date for s.

82 J. Cabot and E. Teniente

 Sale
id : Natural
paymentDate: Date

Shipment
id: Natural
plannedShipDate: Date

1..* *DeliveredIn

Fig. 1.1. A conceptual schema for sales and their shipments

To verify that ValidShipDate is not violated after the execution of the previous
operation it is sufficient to consider sale s and shipment sh of the new relationship, as
incremental methods do, rather than carrying out a naive evaluation which must check
the previous constraint for all sales and shipments.

In this paper, we propose a new method for coping with the incremental evaluation of
ICs at the conceptual level. We assume that CSs are specified in UML [12] and that ICs
are defined as invariants written in OCL [11]. For each IC ic in the CS and for each
structural event ev that may violate it, our method provides the most incremental
expression that can be used instead of the original IC to check that the application of ev
does not violate ic. By most incremental we mean the one that considers the smallest
number of entities of the IB. Our method ensures the most incremental evaluation of the
ICs regardless of their specific syntactic definition in the original CS.

If our method were applied to the previous example, it would return an expression
whose computation would only verify that the value of the attribute plannedShipDate of
sh does not exceed the value of the attribute paymentDate of s by more than 30 days.

Since our method works at the conceptual level, it is not technology-dependent.
Therefore, the most incremental expressions obtained by our method can be used to
efficiently verify the ICs regardless of the target technology platform chosen to
implement the CS. Therefore, our results may be integrated into any code-generation
method or any MDA-compliant tool to automatically generate an efficient evaluation.

To the best of our knowledge, ours is the first incremental method for OCL
constraints. Several proposals have been made for an efficient evaluation of OCL
constraints, but with limited results. Moreover, our method is no less efficient than
previous methods for the incremental computation of integrity constraints in deductive
or relational databases. A comparison with related research is provided in this paper.

The research described herein extends our previous research in [2], in which we
proposed a method for computing the entities that might violate an integrity constraint;
this method provides partial efficiency results in the evaluation of ICs. The main
limitation of that research was that the results were totally dependent on the particular
syntactic definition of the IC chosen by the designer, which involved, in the worst
case, an almost complete recomputation of the IC after certain structural events. For
instance, with the previous definition of ValidShipDate, after the AddSaleToShipment
operation, [2] would verify that the planned date of all shipments of s is correct with
regards to the payment date (instead of considering just sh and s, which is achieved
using the method we propose here).

The paper is organized as follows. In the subsequent section we present several
basic concepts. Section 3 describes our method for incremental integrity checking.
Section 4 introduces an optimization for dealing with sets of structural events. An
example of the method’s application is shown in Section 5. Section 6 compares our
approach to related research. Finally, Section 7 presents the conclusions and points
out further work.

 Incremental Evaluation of OCL Constraints 83

2 Basic Concepts

Our method assumes that CSs are specified in UML [12]. In UML, entity types and
relationship types are represented as classes and associations respectively, while
entities are called objects and relationships are referred to as links.

Additionally, the method assumes that textual ICs are defined as invariants written in
OCL [11]. Graphical constraints supported by UML, such as cardinality or disjointness
constraints, can be transformed into a textual OCL representation, as shown in [6];
therefore, they can also be handled by our method.

As an example, consider the CS in Fig. 2.1, which was designed to (partially)
model a simple e-commerce application. The CS contains information on the sales
and the products they contain. Sales can be delivered split up into several shipments
and shipments can be reused to ship several sales. Finally, sales may be associated
with registered customers who benefit from discounts depending on their category.

The CS includes three textual ICs. The first IC (CorrectProduct) verifies that all
products have a price greater than zero and a max discount of 60% (the maximum
discount permitted by the company). The second one is the previous ValidShipDate
IC, stating that sales must be completely shipped within 30 days after the payment
date (and that therefore all shipments of that sale must be planned before that date).
Finally, NotTooPendingSales holds if customers do not have pending sales for an
amount greater than the maxPendingAmount value in their category.

Note that an IC in OCL is defined in the context of a specific type1 or context type,
and its body (the Boolean OCL expression that states the IC condition) must be
satisfied by all instances of that type. For example, in ValidShipDate, Sale is the
context type, the variable self refers to an entity of Sale and the date condition (the
body) must hold for all possible values of self (i.e. all entities of Sale).

Category

Sale
Purchases 1..*

name : String
maxPendingAmount:Money
discount: Percentage

id : Natural
date: Date
amount: Money
paymentDate: Date

context Product inv CorrectProduct: self.price>0 and self.maxDiscount<=60

context Sale inv ValidShipDate: self.shipment->forAll(s| s.plannedShipDate<=self.paymentDate+30)

context Category inv NotTooPendingSales:

self.customer->forAll(c| c.sale->select(paymentDate>now()).import->sum()<=self.maxPendingAmount)

SaleLine

quantity: Natural

0..1
Customer

Id: Natural
name : String
nationality: String
creditCard: String

BelongsTo
*
1

Product
id : Natural
name: String
price: Money
maxDiscount:Percentage
description: String

1..**

Shipment

id: Natural
plannedShipDate: Date
address: Address

1..*

*
DeliveredIn

Fig. 2.1. Our running example

1 In UML 2.0, the context type may be either an entity type or a relationship type since both

types are represented in the UML metamodel as subclasses of the Classifier metaclass.

84 J. Cabot and E. Teniente

As we mentioned above, ICs must be checked after structural events have been
applied. In this paper, we consider the following kinds of structural event types:

- InsertET(ET): inserts an entity in the entity type ET
- UpdateAttribute(Attr,ET) updates the value of attribute Attr.
- DeleteET(ET) deletes an entity of entity type ET.
- SpecializeET(ET) specializes an entity of a supertype of ET to ET.
- GeneralizeET(ET) generalizes an entity of a subtype of ET to ET.
- InsertRT(RT) creates a new relationship in the relationship type RT.
- DeleteRT(RT) deletes a relationship of relationship type RT.

3 Determining the Incremental Expressions of an OCL Constraint

In this section, we describe the method we propose for obtaining the most incremental
expressions that should be used instead of the original IC, to ensure that the IC is not
violated when a structural event is applied to the IB. We start by providing an
overview of the method in Section 3.1. Then, in Sections 3.2 to 3.4, we define the
three main operators used in our method to obtain these incremental expressions. An
implementation of the method is described in [4].

3.1 An Overview of the Method

A direct evaluation of the original OCL definition of an IC, i.e. the one specified in
the CS, may be highly inefficient. For example, a direct evaluation of the constraint
ValidShipDate (as stated in Fig. 2.1) after an event InsertRT(DeliveredIn), which
creates a new relationship d between sale s and shipment sh, would require taking into
account all sales (because this is the context type) and, for each sale, all its shipments
(because of the forAll operator), leading to a total cost proportional to PsxNsh, where
Ps is the population of the Sale type and Nsh is the average number of shipments per
sale. However, if we take the structural event into account we may conclude that the
following expression:

exp ≡ d.shipment.plannedShipDate<=d.sale.paymentDate+30

suffices to verify ValidShipDate (since the IB satisfies exp iff ValidShipDate also
holds). Evaluating exp only requires that two entities be taken into account: the
shipment participating in d (d.shipment) and its sale (d. sale). Clearly, evaluating this
expression is much more efficient than directly evaluating the original IC.

The main goal of our method is to translate an OCL constraint ic into the set of
most incremental OCL expressions that allow an efficient evaluation of ic every time
a structural event is applied over the IB. In general, there will be a different most
incremental expression for each IC and each structural event that may violate it.

By incremental we mean that the evaluation of the expression does not need to take
all entities of the context type of ic and all their relationships into account, since it can
reason forward directly from the entities that have been updated by the structural
event. The most incremental expression is the one that considers the lowest number of
entities of the IB. Obviously, the more entities required to evaluate an expression the
less efficient is its computation. We use inc<ic,ev> to denote the most incremental

 Incremental Evaluation of OCL Constraints 85

expression for a constraint ic after a structural event ev has been applied. In the
previous example, exp is the most incremental expression for ValidShipDate after the
event InsertRT(DeliveredIn) has been applied.

The events that may violate an IC are called potentially violating structura
 events (PSEs) for that IC and may be determined by the method proposed in [1].
Applied to our example, this method would state that only InsertRT(DeliveredIn),
UpdateAttibute(plannedShipDate, Shipment) and UpdateAttribute(paymentDate, Sale)
can violate ValidShipDate. Note that other events such as DeleteET(Sale) or
UpdateAttribute(address,Shipment) may never violate that IC. The most incremental
expressions of an IC must only be defined by events in the set of PSEs of the IC.

Determining the most incremental expressions depends on the given PSE and on
the structure of the IC. Moreover, it generally requires changing the context type of
the initial IC, since we cannot guarantee that the context chosen by the designer to
specify the IC is the most appropriate one as far as efficiency is concerned.

Intuitively, our method works as follows. First, it selects from all possible context
types for the constraint (those types referenced in the body of the IC) the most
appropriate one with respect to the structural event (i.e. the one that will produce the
most efficient expression at the end of the process for that event). Second, it redefines
the body of the IC in terms of this new context type ct’. Third, it computes the
instances of ct’ that may have been affected by the event. Finally, the incremental
expression is obtained by refining the body of the IC to be applied only over those
relevant instances. This procedure is specified in the following algorithm.

Algorithm. Obtaining the most incremental expressions

Given an IC ic, which is defined in terms of a context type ct and an event ev (where
ev is a PSE for ic), the following IncrementalExpression algorithm returns the
inc<ic,ev> expression:

IncrementalExpression(ic: Constraint, ev: Event) : Expression
Type bestContext := BestContext(ic,ev)
Constraint ic’:= Translate(ic,ev,bestContext);
Expression rel := Relevant (ic’, ev)
return (Merge(rel, ic’))

where

1. BestContext(ic:Constraint, ev:,Event) returns the type that must be used as a
context of ic to generate an incremental expression for ic after event ev.

2. Translate(ic:Constraint, ev:Event, t:Type) returns an IC ic’, which is defined
using t as a context type, such that ic’ is equivalent to ic regarding ev.

3. Relevant(ic:Constraint, ev:Event) returns an OCL expression whose evaluation
returns the instances of ct (the context type of ic) affected by ev.

4. Merge(exp:Expression, ic:Constraint) creates the final inc<ic,ev> expression by
applying b (the body of ic) to all entities reached in exp (the expression
computing the relevant instances). If the evaluation of exp returns a single
instance (i.e. all navigations included in exp have ‘1’ as a maximum
multiplicity), this operator just replaces all occurrences of self in b with exp.
Otherwise, the final expression is exp-> forAll(v|b) where all occurrences of
self in b are replaced with v.

86 J. Cabot and E. Teniente

Let us again consider the event InsertRT(DeliveredIn) and the constraint
ValidShipDate. As we have seen their incremental expression is exp, which is
obtained using our method in the following way:

1. BestContext(ValidShipDate,InsertRT(DeliveredIn)) = DeliveredIn
2. Translate(ValidShipDate, InsertRT(DeliveredIn), DeliveredIn) =

context DeliveredIn inv newIC:
self.shipment.plannedShipDate<=self.sale.paymentDate+30

3. Relevant(newIC,InsertRT(DeliveredIn)) = d, the new relationship created by the
InserRT event over DeliveredIn

4. Merge(d,newIC) (i.e. inc<ValidShipDate,InsertRT(DeliveredIn)>) =
d.shipment.plannedShipDate <= d.sale.paymentDate+30

We show in [3] that the expression generated by the previous algorithm is always
the most incremental one.

In the rest of this section we formally define the BestContext, Translate and
Relevant operators. To facilitate their definition, our method assumes a normalized
representation of the ICs. The normalization reduces the number of different OCL
operators appearing in their body (for instance, replacing the implies operator with a
combination of the not and or operators or the exists operator with a combination of
the select and size operators). This representation is automatically obtained from the
initial IC and does not entail a loss of expressive power of the ICs we deal with.

All three operators work with the ICs represented as an instance of the OCL
metamodel [11]. According to this representation, they can handle the OCL
expression by forming the body of the IC as a binary tree, in which each node
represents an atomic subset of the OCL expression (an operation, an access to an
attribute or an association, etc.) and the root is the most external operation of the OCL
expression. As an example, in Fig. 3.1 the constraint ValidShipDate is represented by
means of the OCL metamodel. Each node is marked with the set of PSEs produced by
that node [1] (i.e. the events that are PSEs of the IC because of that particular node).

3.2 BestContext(ic:Constraint, ev:,Event)

The best context to verify an IC ic after applying an event ev to the IB is
automatically drawn from the node where ev is assigned in the tree representing IC.
We use nodeev to denote this node (when different nodeev exist we repeat the process
for each node). The BestContext operator always returns the same result regardless of
the original syntactic definition of ic, since all possible syntactic definitions of ic must
contain nodeev (because all of them may be violated by ev).

To determine the context type, we must consider whether nodeev participates (i.e. is
included) in an individual condition or in a collection condition. Intuitively, individual
conditions must be verified for each individual entity (for instance, each individual
product must satisfy the CorrectProduct IC). In contrast, collection conditions must
be verified by the set of entities affected by the condition as a whole (for instance, in
NotTooPendingSales, the sum of all sales of a customer must satisfy the
maxPendingAmount condition). Individual and collection conditions are formalized in
Definitions 3.2.1 and 3.2.2.

 Incremental Evaluation of OCL Constraints 87

 :IteratorExp
 (forAll)

:OperationCallExp
 (<=)

:AssociationEndCallExp
 (shipment)

:VariableExp
 (self)

:AttributeCallExp
(plannedShipDate)

:VariableExp
 (sh)

UpdateAttribute(plannedShipDate, Shipment)

InsertRT(DeliveredIn)

:AttributeCallExp
 (paymentDate)

:VariableExp
 (self)

UpdateAttribute(paymentDate, Sale)

:OperationCallExp
 (+)

:IntegerLiteralExp
(30)

Fig. 3.1. The OCL metamodel of ValidShipDate and its set of PSEs

Definition 3.2.1. A node n participates in a collection condition when n is used to
compute an aggregate operator. Formally, when n verifies that {∃n’| n’∈ PathRoot(n)
and n’.oclIsTypeOf(OperationCallExp) and n’.referredOperation ∈ {size, sum,
count}}, where PathRoot(n) is defined as the ordered sequence of nodes encountered
between n (the first node in the sequence) and the root of the tree (the last one).
OclIsTypeOf and referredOperation are elements defined in the OCL metamodel.

Definition 3.2.2. A node n participates in an individual condition if it does not
participate in a collection condition.

Clearly, since individual conditions must hold for each individual entity restricted by
the constraint, the most incremental expression will be the one that only takes into
account the single entity updated by the event. The original IC must then be redefined
in terms of the type of entity to obtain this expression.

Proposition 3.2.3. Let ev be an event over an entity e (resp. relationship r) of type E
(resp. R). If nodeev is included in an individual condition, BestContext returns the
same type E (resp. R) as the best context.

In our example, the constraint ValidShipDate may be violated by three different
structural events, all of them included in individual conditions: InsertRT(DeliveredIn),
UpdateAttribute(plannedShipDate,Shipment) and UpdateAttribute(paymentDate,Sale), as
shown in the tree in Fig. 3.1. Their best contexts are therefore DeliveredIn, Shipment
and Sale respectively.

The same idea cannot be applied to events included in collection conditions since
those conditions must be satisfied by the collection as a whole and not by each single
instance. Thus, to consider the modified entity or relationship is not enough to verify
it because, after every modification, the whole collection must be recomputed again
and the other entities in the collection must also be taken into account. For this reason,
in selecting the best context it must be ensured that, after each modification, only the
exact set of entities involved in the condition is checked.

88 J. Cabot and E. Teniente

For instance, an InsertRT(Purchases) event (i.e. the assignment of a sale s to a
customer c) may violate the constraint NotTooPendingSales. In this case, the
maxPendingAmount condition must be satisfied by the set of sales of each customer;
thus, after assigning a sale to a customer c, it is enough to verify the set of sales of c.
In this way, the Customer type is the origin of the collection condition. Note that
Category is not the origin since it is not the union of sales of all customers in a
category who must satisfy the condition.

Therefore, if the event ev in the call to the BestContext operator is included in a
collection condition, the type defined as the origin of the collection is the best context.
This will be especially true when dealing with sets of events (see Section 4).

Definition 3.2.4. Given a node n, PathVar(n) is defined as the ordered sequence of
nodes encountered between n (the first node) and the node representing the self
variable (the last node) of the subtree to which n belongs. More precisely, PathVar(n)
is computed as follows:

- The first node is n.
- For each node included in PathVar we also include its child (or the left child if

the node has two children), if any.
- When a node n included in PathVar represents a variable other than self (i.e.

variables used in select or forAll iterators), we add as a left child the node
pointed to in n.referredVariable.loopExpr (i.e. the node representing the
iterator; referredVariable and loopExpr are associations defined in the OCL
metamodel).

Definition 3.2.5. Given an integrity constraint ic, an event ev and the sequence
PathVar(nodeev), nodeor, the node origin of a collection condition is
- The left child of a node n∈ PathVar(nodeev), representing a forAll iterator, when

a select iterator is not encountered between the self variable and n.
- Otherwise, the last node in PathVar(nodeev) (i.e. the node representing the self

variable). If following the self variable there is a set of nodes representing
navigations r1...rn where all ri have a maximum multiplicity of 1, then the final
nodeor is the node at rn.

Proposition 3.2.6. Let ev be an event included in a collection condition. The type of
the entities at nodeor is then returned as the best context.

In the NotTooPendingSales constraint, Customer is the origin of the condition since it
is the type of the entities accessed in the node previous to the forAll iterator (the node
navigating to customers from category). Therefore, Customer is the BestContext for
all events included in the collection condition (updates of the paymentDate and
amount attributes and inserts of Purchases relationships). The PSEs
UpdateAttribute(maxPendingAmount) and InsertRT(BelongsTo) are included in
individual conditions; thus, their best contexts are Category and BelongsTo
respectively (as determined by Proposition 3.2.3).

3.3 Translate(ic:Constraint, ev:Event, t:Type)

Given an IC ic that has a context type t and an event ev, the Translate operator returns
an IC ic’ defined over a type t’, t’≠ t, which is semantically equivalent to ic with

 Incremental Evaluation of OCL Constraints 89

respect to event ev. Having applied ev over the IB, ic’ and ic are semantically
equivalent when ic’ is satisified iff ic is also satisfied in the new state of the IB.

The Translate operator extends the method we presented in [5] since the context
changes required in the work reported here present two particularities that can be used
in order to provide a more optimized redefinition than the one in the previous
reference.

First, t’ is the type returned by the BestContext operator (this implies, for instance,
that t’ is referenced in the body of ic). Second, ic and ic’ need only be equivalent with
regards to the particular event ev. Therefore, ic’ need not worry about all the literals
of ic that cannot be violated by ev.

For instance, given that the body of ic follows the pattern L1 and L2 (as
CorrectProduct in Fig. 2.1) and that ev can only induce a change in the truth value of
L1, ic’ does not need to include the verification of L2. L2 was true before ev was
executed (since all the states of the IB must be consistent) and, since ev does not
affect it, L2 will still hold after its execution. When it does not hold it is because some
other event, ev’, has been applied. The incremental expression for ev’ will take care of
this possible violation.

Translate is defined in two separate steps. First, the tree is pruned to remove the
irrelevant conditions. Then the remaining tree is redefined over the context type t’ to
obtain the final body of the translated constraint ic’.

Definition 3.3.1. Let ev be an event attached to a node nodeev. A node nand
representing an AND condition may be pruned if {nand ∈ PathRoot(nodeev) and ¬∃n’|
n’∈PathRoot(nand) and n’.oclIsTypeOf(IteratorExp) and n’.name=”select”}. Nand
nodes are replaced with the child node nchild ∈ PathRoot(nodeev). Consequently, the
other child of nand (i.e. the other condition) is removed from the tree.

Definition 3.3.2. Given a pruned tree tr that represents a constraint ic defined using a
context type t, an event ev and the new context type t’, the redefined tree tr’ that
represents an equivalent IC ic’ defined over t’ is obtained according to the following
steps (see [5] for a more detailed explanation and examples):

- Determining the node nodet’. Nodet is the node ∈ PathVar(nodeev) whose evaluation
returns entities of type t’. If t’ is a relationship type, nodet’ is the node previous to the
navigation through a role of t’.

- Replacing all subtrees that match the sequence seq=PathVar(nodet’) with a single
node representing the self variable.

- Replacing all other nodes that represent self variables with the subtree
corresponding to the expression self.r1…rn (or self.r1…rn->forAll(v|) when the
maximum multiplicity of some ri is greater than 1), where r1..rn are the roles
needed to navigate from t’ to t (the roles opposite to the ones used in the ic to
navigate from t to t’). Formally, r1...rn = Inverse(PathVar(nodet)) with Inverse
defined as {∀n ∈ PathVar(nodet) | n.oclIsTypeOf(AssociationEndCallExp)
OppositeRole(n) ∈ Inverse(PathVar(nodet))}.

- Adding the subtree that corresponds to the expression self.r1…rn->notEmpty()
implies X (where X is the tree resulting from the previous steps) to ensure that only
those instances of t’ related to a given instance of t are verified (otherwise, they
were not involved in the original IC).

90 J. Cabot and E. Teniente

The resulting tree can be simplified [5] by, for instance, replacing the subtree
self.r1...rn->notEmpty() with true if all multiplicities of r1...rn are at least 1 or by
removing the forAll iterators over single entities.

For example, Translate(NotTooPendingSales,UpdateAttr(paymentDate,Sale),
Customer) transforms the constraint NotTooPendingSales, as defined in Fig. 2.1, in
the following NotTooPendingSales’ constraint defined with the context Customer:

context Customer inv: self.sale->select(paymentDate>now()).amount>sum()
<=self.category.maxPendingAmount

where, after step one, self.customer has been replaced with self, the other self variable
has been replaced with self.category (category is the role required to navigate from
customer to category) and finally, self.category->notEmpty() has been simplified (all
customers belong to a category) and the forAll has been removed.

3.4 Relevant(ic:Constraint, ev:Event)

After issuing a PSE ev for an IC ic whose context type is t, only the instances of t that
may have been affected as a result of applying ev should be verified. The goal of the
Relevant operator is to return an expression exp that returns this set of relevant
instances when it is evaluated; exp can be automatically derived from the tree
representing ic [2].

Intuitively, the relevant instances of t are the ones related to the instance modified
by ev. Therefore, the basic idea is that exp will consist of the sequence of navigations
required to navigate back from the modified instance to the instances of t. As in the
previous operator, the navigations required are obtained by reversing the navigations
used to navigate from the self variable to nodeev.

Definition 3.4.1. Let ic be an IC and ev a PSE that appears in nodes nodeev1…nodeevn.
Then, Relevant(ic,ev) = Inverse(PathVar(nodeev1)) ∪ … ∪ Inverse(PathVar(nodeevn)).

As an example, let us consider the NotTooPendingSales’ IC (as redefined in the
previous section). After the event UpdateAttribute(amount, Sale) that updates a sale s,
the IC must be verified over customers returned by Relevant(NotTooPendingSales’,
UpdateAttribute(amount, Sale)). In this case, the operator returns the expression
s.customer, which implies that we just need to verify the customer that the sale is
assigned to (at most one, because of the maximum multiplicity specified in
Purchases). In the expression, customer represents the opposite role of the sale role of
the Purchases relationship type (the single role appearing in the PathVar sequence of
nodes for the nodeev of the update event).

4 Dealing with Sets of Events

Up to now we have provided a method that generates incremental expressions for the
efficient verification of an IC after issuing a PSE ev. Obviously, if an operation
consists of several PSEs for the IC, the consistency of the new state of the IB can be
verified using the incremental expressions corresponding to each individual event.

 Incremental Evaluation of OCL Constraints 91

However, the efficiency can be improved by taking into account the relationship
between the different events when computing the affected instances. This
improvement is only relevant to events included in collection conditions (events in
individual conditions must be individually verified by each entity).

By way of example, let us assume that the execution of an operation updates the
amount of two sales (s1 and s2) and assigns a sale s3 to a customer c. If one (or both)
of the updated sales were also assigned to c, we must verify the NotTooPendingSales
constraint over c several times (once because of the sale assignment and the other
times because of the update of sales of c). However, if we first merge the customers
affected by each single event and then verify them, we avoid having to verify the
same customer several times.

Proposition 4.1. Let set={ev1,ev2,…evn} be a set of different events for an IC ic
sharing the same IC definition ic’ after the the BestContext and Translate operators,
and included in the same operation (without loss of generality, we assume that
each operation constitutes a single transaction). The Relevant operator is then
redefined as

Relevant(ic’,set):= Relevant(ic’ ,ev1) ∪ ... ∪ Relevant(ic’, evni)

Following the previous example, now the relevant customers (i.e. the ones that will be
verified) are computed with the expression

c.union->(s1.customer->union(s2.customer))

Thus, each relevant customer will be verified only once.

5 Applying the Method

We have applied our method to obtaining the most incremental expressions of all ICs
in the CS in Fig. 2.1. The results are shown in Table 5.1. The first column indicates
the IC. The second one specifies the structural events2 that may violate each IC.
Finally, the third column shows the most incremental expressions obtained for each IC
due to each of the events. In this column, the initial variable represents the entity or
relationship modified by the event (d represents the created DeliveredIn relationship, sh
the updated Shipment and so forth).

For instance, Table 5.1 allows us to detect that the application of an event
UpdateAttribute(paymentDate,Sale) over a sale s may violate the ICs: ValidShipDate
and NotTooPendingSales. The most incremental expressions that allow us to verify
that the new state of the IB does not violate any ICs are given by expressions 3 and 7.

As we said, using the most incremental expressions to verify the ICs in the original
CS ensures the optimal efficiency of the integrity checking process as far the number
of entities involved during the computation is concerned. To illustrate the importance
of those results, Table 5.2 compares the cost of the most incremental expressions for
ValidShipDate (as given by Table 5.1) with the cost of directly evaluating the original
IC (see Fig. 2.1).

2 To simplify, we use the notation UpdateAttr(attr) when the type is clear from the context.

92 J. Cabot and E. Teniente

Table 5.1. Results of applying our method over the example CS

IC Event Incremental expression

InsertRT(DeliveredIn) 1. d.shipment.plannedShipDate<=d.sale.paymentDate+30

UpdateAttr(plannedShip
Date)

2. sh.sale->forAll(s| sh.plannedShipDate <=
s.paymentDate+30)

Valid
Ship
Date

UpdateAttr(paymentDate) 3. s.shipment->forAll(sh| sh.plannedShipDate <=
s.paymentDate+30)

UpdateAttr(maxPending
Amount)

4. c.customer->forAll(cu| cu.sale->select(paymentDate>
now()).amount->sum()<=c.maxPendingAmount

InsertRT(BelongsTo) 5. b.customer.sale ->select(paymentDate>now()).amount-
>sum()<=b.category.maxPendingAmount

InsertRT(Purchases) 6. pur.customer.sale ->select(paymentDate>now()).amount-
>sum()<=pur.customer.category.maxPendingAmount

UpdateAttr(paymentDate)

NotToo

Pend

Sales

UpdateAttr(amount)

7. s.customer.sale->select(paymentDate>now()).amount-
>sum()<=s.customer.category.maxPendingAmount

UpdateAttr(price) 8. p.price>0

UpdateAttr(maxDiscount) 9. p.maxDiscount<=60

Correct
Prod

InsertET(Product) 10. p.price>0 and p.maxDiscount<=60

Table 5.2. Cost comparisons for ValidShipDate

Event Cost(ValidShipDate) Cost (Incremental Expression)

InsertRT(DeliveredIn) Ps x Nsh 2

UpdateAttribute(paymentDate) Ps x Nsh 1+1xNsh

UpdateAttribute(plannedShipDate) Ps x Nsh 1+1xNs

Other events Ps x Nsh 0

In Table 5.2, Ps stands for the number of instances of Sale, Nsh for the average
number of shipments per sale and Ns for the average number of sales per shipment.
Cost comparisons for the evaluation of the other ICs are given in [3].

Designers may use the most incremental expressions to efficiently verify the ICs
when they are implementing the CS in any final technology platform. For instance,
during code generation for an object-oriented technology, adding expressions 3 and 7
to methods that include the UpdateAttribute(paymentDate, Sale) event is enough to
ensure that the IB is not violated after the application of the event. Additionally, when
we are using a relational database as an IB, we may create a set of triggers that verify
both expressions before we apply the change to the Sale table data. For example,
Fig. 5.1 shows a possible verification of expression 3 in both technologies.

6 Related Work

Two kinds of related research are relevant here: methods devoted to the problem of
integrity checking, of which there is a long tradition, especially in the database field
(see Section 6.1), and tools that provide code-generation capabilities that may include
facilities for improving the efficiency of integrity checking (see Section 6.2).

 Incremental Evaluation of OCL Constraints 93

 MethodX(Sale s,…)

{ . . . s.paymentDate = value; …

 //Verification of expression 3

 Iterator setsh = s.shipments.iterator();

 while (setsh.hasNext())

 { Shipment sh = (Shipment) setsh.next();

 If (sh.plannedShipDate>s.paymentDate+30)

 throw new Exception(“Invalid date”);

 }

}

create trigger uPaymentDate

before update of PaymentDate on Sale for each row

Declare v_Error NUMBER;

 EInvalidDate Exception;

Begin --Verification of expression 3

 SELECT count(*) into v_Error

 FROM DeliveredIn d, Shipment sh

 WHERE d.sale = :new.id and d.shipment = sh.id
 and sh.plannedShipDate>:new.paymentDate+30;

 If (v_Error>0) then raise EInvalidDate; end if;

End;

Fig. 5.1. Examples of incremental expressions implemented in particular technologies

6.1 Integrity Checking Methods for Deductive or Relational Databases

The most important results of related research of an incremental checking of integrity
constraints are provided by methods proposed for integrity checking in deductive
databases. In what follows we briefly show that the efficiency of our incremental
expressions is equivalent to the incremental rules generated by the most representative
proposals in this field (see [7] for a survey).

They define ICs as inconsistency predicates that will be true whenever the
corresponding IC is violated. For example, they would represent ValidShipDate as
(where S stands for Sale, Sh for Shipment, D for DeliveredIn, pd for paymentDate and
psh for plannedShipDate)

IcValidShipDate ← S(s,pd) ∧ D(s,sh) ∧ Sh(sh, psd) ∧ pd+30<psd

To incrementally check this constraint they would consider the following rules:

1. IcValidShipDate ← iS(s,pd) ∧ D(s,sh) ∧ Sh(sh, psd) ∧ pd+30<psd
2. IcValidShipDate ← uS(s,pd’) ∧ D(s,sh) ∧ Sh(sh, psd) ∧ pd’+30<psd
3. IcValidShipDate ← S(s,pd) ∧ iD(s,sh) ∧ Sh(sh, psd) ∧ pd+30<psd
4. IcValidShipDate ← S(s,pd) ∧ D(s,sh) ∧ iSh(sh, psd) ∧ pd+30<psd
5. IcValidShipDate ← S(s,pd) ∧ D(s,sh) ∧ uSh(sh, psd’) ∧ pd+30<psd’

where iX(y) means that the entity y of type X has been inserted and uX means that it
has been updated (those updates are only considered explicitly in [17]).

After applying our method to the same constraint, we obtain the following three
incremental expressions (as shown in Table 5.1):

a. s.shipment->forAll(sh|s.paymentDate+30>=sh.plannedShipDate)
b. sh.sale->forAll(s| s.paymentDate+30>=sh.plannedShipDate)
c. d.sale.paymentDate+30>=d.shipment.plannedShipDate

where s is the updated sale, sh the updated shipment and d the new DeliveredIn
relationship. The definitions we get are respectively equivalent to Rules 2, 5 and 3 in
those methods. Note that the insertion of a shipment (Rule 4) cannot violate the
constraint if it is not assigned to a sale, which is already controlled by our expression
c (similarly, for the insertion of sales, Rule 1).

94 J. Cabot and E. Teniente

6.2 Tools with Code-Generation Capabilities

Almost all current CASE tools offer code-generation capabilities. However, most of
them do not allow the definition of OCL constraints or (more commonly) do no take
them into account when they generate the code. This is the case of tools such as
Rational Rose, MagicDraw, ArcStyler, OptimalJ, Objecteering/UML and many more.

All tools that are able to generate code for the verification of OCL constraints
depart from the ICs exactly as defined by the designer; thus, their efficiency depends
on the concrete syntactic representation of the IC. The differences between these tools
lie in how they decide when the IC needs to be checked and the amount of entities
they take into account every time the IC is checked.

Tools such as Octopus [10] or OCLE [16] transform the IC into a Java method;
when the method is executed, an exception is raised if the IC does not hold. However,
the decision of when to verify the IC is left to the designer. The OO-Method [13]
verifies all ICs whose context type is t whenever a method of t is executed (even if the
changes produced by the method cannot violate a given IC). Dresden OCL [15]
verifies the ICs only after events that modify the elements appear in the IC body, but
it does not consider whether that sort of change can really induce its violation. For
instance, Dresden OCL would verify ValidShipDate after deletions of DeliveredIn
relationships, although only the latter event can really violate the IC. OCL2SQL
(included in [15]) transforms each IC into an SQL view so that the view returning
data indicates that the IC does not hold. Nevertheless, the view is not incremental.
Every time an entity is modified, the view verifies all the entities of the context type.

7 Conclusions and Further Work

We have presented a method that generates the most incremental expressions for OCL
constraints defined in UML CSs. These expressions can be used instead of the
original IC when the IB is verified after modifications caused by a set of structural
events. The method has been implemented in [4].

The most incremental expressions use information on the structural events issued
during the operation to optimize the integrity checking process by considering as few
entities of the IB as possible. In this way, we ensure an optimal verification of the ICs
regardless of the concrete syntactic definition originally chosen by the designer.

The main advantage of our approach is that it works at a conceptual level; therefore,
it is not technology-dependent. In contrast with previous approaches, our results can
be used regardless of the final technology platform selected to implement the CS. In
fact, any code-generation strategy able to generate code from a CS, such as the ones
presented in the previous section, could be enhanced with our method for the purpose
of automatically generating an optimal integrity checking code for the ICs.

As further work, we could try to further improve the efficiency of the whole
integrity checking process by considering, at the conceptual level, additional
optimization techniques initially proposed for databases like [9] and [14]. Moreover,
we would also like to adapt our method for the incremental maintenance of derived
elements specified in a CS.

 Incremental Evaluation of OCL Constraints 95

Acknowledgments

We would like to thank the people of the GMC group J. Conesa, D. Costal, X. de
Palol, C. Gómez, A. Olivé, A.Queralt, R. Raventós and M. R. Sancho for their many
useful comments in the preparation of this paper. This work has been partially
supported by the Ministerio de Ciencia y Tecnologia under project TIN2005-06053.

References

1. Cabot, J., Teniente, E.: Determining the Structural Events that May Violate an Integrity
Constraint. In: Proc. 7th Int. Conf. on the Unified Modeling Language (UML’04), LNCS,
3273 (2004) 173-187

2. Cabot, J., Teniente, E.: Computing the Relevant Instances that May Violate an OCL
Constraint. In: Proc. 17th Int. Conf. on Advanced Information Systems Engineering
(CAiSE’05), LNCS, 3520 (2005) 48-62

3. Cabot, J., Teniente, E.: Incremental Evaluation of OCL Constraints (extended version).
UPC, LSI Research Report, LSI-05-12-R (2005)

4. Cabot, J., Teniente, E.: A Tool for the Incremental Evaluation of OCL Constraints.
Available at www.lsi.upc.edu/~jcabot/research/tools/caise06 (2006)

5. Cabot, J., Teniente, E.: Transforming OCL Constraints: A Context Change Approach. In:
Proc. 21st Annual ACM Symposium on Applied Computing (Model Transformation
Track), (2006)

6. Gogolla, M., Richters, M.: Expressing UML Class Diagrams Properties with OCL. In: A.
Clark and J. Warmer, (eds.): Object Modeling with the OCL. Springer-Verlag (2002) 85-114

7. Gupta, A., Mumick, I. S.: Maintenance of Materialized Views: Problems, Techniques, and
Applications. In: Materialized Views Techniques, Implementations, and Applications. The
MIT Press (1999) 145-157

8. ISO/TC97/SC5/WG3: Concepts and Terminology for the Conceptual Schema and
Information Base. ISO, (1982)

9. Lee, S. Y., Ling, T. W.: Further Improvements on Integrity Constraint Checking for
Stratifiable Deductive Databases. In: Proc. 22nd Int. Conf. on Very Large Data Bases.
Morgan Kaufmann (1996) 495-505

10. Klasse Objecten.: Octopus: OCL Tool for Precise UML Specifications. (2005)
11. OMG: UML 2.0 OCL Specification. OMG Adopted Specification (ptc/03-10-14)
12. OMG: UML 2.0 Superstructure. OMG Adopted Specification (ptc/03-08-02)
13. Pastor, O., Gómez, J., Insfrán, E., Pelechano, V.: The OO-Method Approach for

Information Systems Modeling: From Object-Oriented Conceptual Modeling to
Automated Programming. Information Systems 26 (2001) 507-534

14. Ross, K. A., Srivastava, D., Sudarshan, S.: Materialized View Maintenance and Integrity
Constraint Checking: Trading Space for Time. In: Proc. ACM SIGMOD international
conference on Management of data, (1996) 447-458

15. Dresden University.: Dresden OCL Toolkit. (2005)
16. Babes-Bolyai University.: Object Constraint Language Environment 2.0.
17. Urpí, T., Olivé, A.: A Method for Change Computation in Deductive Databases. In: Proc.

18th Int. Conf. on Very Large Data Bases. Morgan Kaufmann (1992) 225-237
18. Wieringa, R.: A Survey of Structured and Object-Oriented Software Specification

Methods and Techniques. ACM Computing Surveys 30 (1998) 459-527

Object-Relational Representation of a
Conceptual Model for Temporal Data

Warehouses�

Elzbieta Malinowski�� and Esteban Zimányi

Department of Informatics & Networks,
Université Libre de Bruxelles

emalinow@ulb.ac.be, ezimanyi@ulb.ac.be

Abstract. Temporal Data Warehouses (TDWs) allow to manage time-
varying multidimensional data by joining the research of Temporal
Databases and Data Warehouses. TDWs raise different issues such as
temporal aggregations,multidimensional schemaversioning, etc.However,
very little attention from the research community has been drawn to con-
ceptual modeling for TDWs and its subsequent logical representation. In
this paper, we present a mapping transforming our conceptual model for
TDW design into the conventionalER and an object-relational models. For
the latter, we show some examples using the SQL:2003 standard. We in-
clude the mapping for time-varying levels, hierarchies, and measures. We
also discuss the inconveniences of a pure relational representation.

1 Introduction

Data Warehouses (DWs) store and provide access to large volumes of historical
data supporting the decision-making process. The structure of DWs is usually
represented as a star schema, consisting of fact and dimension tables. A fact
table contains numeric data called measures, e.g., sales. Dimensions are used for
exploring the measures from different analysis perspectives. They usually contain
hierarchies that allow to analyze detailed and generalized data using the roll-up
and drill-down operations of On-Line Analytical Processing (OLAP) systems.

Current DW models include a time dimension that is used for grouping pur-
poses (the roll-up operation) and also serves as a time-varying indicator for
measures, e.g., sales in March 2005. However, the time dimension cannot be
used for representing changes in other dimensions.

On the other hand, Temporal Databases (TDBs) allow to represent time-
varying information. Two different temporal types1 are considered: valid time
(VT) and transaction time (TT) that indicate, respectively, when the data is
� The work of E. Malinowski was funded by a scholarship of the Cooperation Depart-

ment of the Université Libre de Bruxelles.
�� Currently on leave from the Universidad de Costa Rica.
1 Usually called time dimensions; however, we use the term “dimension” in the mul-

tidimensional context.

E. Dubois and K. Pohl (Eds.): CAiSE 2006, LNCS 4001, pp. 96–110, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Object-Relational Representation of a Conceptual Model for TDWs 97

true in the modeled reality and when it is current in the database. If both
temporal types are used, they define bitemporal time (BT). Further, the lifespan
(LS) allows to record changes in time for an object as a whole.

Temporal Data Warehouses (TDWs) join the research achievements of TDBs
and DWs in order to manage time-varying multidimensional data. In [6, 8] we
proposed MultiDimER, a conceptual model for modeling TDW applications. In
this work we give a logical representation for this conceptual model.

Two approaches can be used for logical-level design: using normalization (e.g.,
[5]) or mapping a conceptual model into a logical model (e.g., [4]). We choose the
latter since there are no well-accepted normal forms for TDBs even though some
formal approaches exist (e.g., [5, 13]). Further, the purpose of normalization is
to avoid the problems of data redundancy, potential inconsistency, and update
anomalies. However, the usual practice in DWs is to de-normalize relations to
improve performance and to avoid the costly process of joining tables.

In this paper, we present a mapping of a conceptual model for time-varying
multidimensional data into a classical ER and into an object-relational (OR)
models. The ER representation allows a better understanding of the constructs
used in our model. Further, to assist implementers who use our model for con-
ceptual design, we propose general rules for mapping directly our model to the
OR model. We consider the particularities of the different elements of a multidi-
mensional model and exploit the features of OR databases for modeling complex
objects. In this paper, we do not consider operations in TDWs. There are not
easy to cope with since (1) different time granularities between dimension data
and measures should be considered, and (2) as demostrated by, e.g., [2, 11], so-
lutions for managing different schema versions should also be included.

Section 2 surveys works related to TDWs. Section 3 briefly presents the main
features of the MultiDimER model. Section 4 presents our rationale for using
the ER and OR models. Section 5 describes general rules for transforming tem-
poral types to both models. Sections 6 to 8 present, respectively, mappings of
temporal levels, temporal links between levels, and temporal measures. Finally,
the conclusions are given in Section 9.

2 Related Work

TDWs raise many challenging issues, e.g., the inclusion of temporal types (e.g.,
[9]) or correct aggregation in the presence of data and structure changes (e.g.,
[2, 11]). However, very few conceptual models for TDWs have been proposed
(e.g., [2, 11, 12]). These models formally describe the temporal support for mul-
tidimensional models, nevertheless, they do not consider several aspects proposed
in our model, e.g., (non-) temporal relationships between (non-) temporal levels.
Further, these models do not provide an associated logical representation.

On the other hand, [1] introduces a temporal star schema that differs from
the classical one by the fact that the time dimension does not exist; instead
the rows in all tables of the schema are timestamped. They compare this model
with the classical star schema taking into account database size and performance.

98 E. Malinowski and E. Zimányi

They conclude that the temporal star schema facilitates expressing and executing
queries, it is smaller in size, and it does not keep redundant information.

Since to the best of our knowledge there are not proposed solutions for a
logical representation of TDWs, we briefly review logical models for TDBs with
the goal to adapt some of these ideas for the logical representation of TDWs.

One approach for logical-level design of TDBs is to use normalization. Tem-
poral functional dependencies have been defined (e.g., [5, 13]). New temporal
normal forms (e.g., [13]) or extensions of conventional ones (e.g., [5]) have been
also proposed. Most of these approaches rely on the first normal form (1NF),
however, the non-first normal form (NF2) was proposed for solving the limita-
tions of the 1NF for modeling complex data. The NF2 allows structured domains,
collection domains, and relation-valued domains, which are also included in the
SQL:2003 standard under the name of object-relational model [10].

Another approach for logical-level design of TDBs is based on mapping con-
ceptual models. While this is the usual practice for conventional (i.e., non-
temporal) database design, to the best of our knowledge only [4] propose such
an approach. In general, the mapping of timestamped elements produces a ta-
ble for each entity type that includes lifespan, a separate table for each times-
tamped monovalued attribute, and one additional table for each multivalued
attribute, whether timestamped or not. This approach gives a significant num-
ber of tables since entities and their time-varying attributes are represented sep-
arately. Further, it is not intuitive for expressing the semantics of the modeled
reality.

3 Overview of the MultiDimER Model

The MultiDimER model is a conceptual model allowing to represent time-
varying multidimensional data [6]2. Figure 1 shows notations used in our model
and Figure 2 presents the metamodel. A schema is defined as a finite set of di-
mensions and fact relationships. A dimension is an abstract concept representing
either a level, or one or more hierarchies. Levels are represented as entity types
(Figure 1 a). An instance of a level is called a member .

A hierarchy contains several related levels (Figure 1 b) that are used for
roll-up and drill-down operations. Given two consecutive levels of a hierarchy,
the higher level is called parent and the lower level is called child . A level that
does not have a child level is called leaf . Hierarchies express different structures
according to an analysis criterion (Figure 1 c), e.g., geographical location.

Levels have one or several key attributes (represented in bold and italic in
Figure 1) and may also have other descriptive attributes . Key attributes of a
parent level define how child members can be grouped. Key attributes in a leaf
level or in a level forming a dimension without hierarchy indicate the granularity
of measures in the associated fact relationship.

A temporal level is a level for which the application needs to keep its time-
varying characteristics. We allow support for both temporal attributes and level
2 The non-temporal version of the model is presented in [7].

Object-Relational Representation of a Conceptual Model for TDWs 99

Key attribute
Other attributes

Level name

a)

(1,N)

b)

d)

(0,N)
(1,1)
(0,1)Criterion

g)

Key attribute
Other attributes

Level name1
Fact

relationship
name

Measure attributes

e)

Key attribute
Other attributes

Level name2

VT BT

LS DWLT

c)

TT
LC

f)

Fig. 1. Notations: a) one-level dimension, b) hierarchy, c) analysis criterion, d) tem-
poral types, e) cardinality ratios, f) cardinality types, and g) fact relationship

lifespan. Figure 1 d) shows the different temporal types. We allow valid time
(VT), transaction time (TT), bitemporal time (BT), and lifespan (LS) coming
from source systems (if available), and data warehouse loading time (DWLT)3.

The relationship between two levels is characterized by cardinalities (Figure 1
e), which restrict the minimum and the maximum number of members in one
level that can be related to a member in another level. This cardinality may be
interpreted in two possible ways. The snapshot cardinality is valid every time
instant whereas the lifespan cardinality is valid over the entire members lifespan.
The former is represented as a continuous line and the latter as a dotted line with
LC symbol (Figure 1 f). The presence of only one cardinality symbol indicates
that both cardinalities are the same. Further, the relationship between levels
may include different temporal types: VT, TT, BT, and/or DWLT. There is no
LS support for relationships since they do not exist by themselves without their
participating levels.

A fact relationship (Figure 1 g) represents an n-ary relationship between leaf
levels. It may contain attributes commonly called measures. In the MultiDimER
model measures are temporal, i.e., they always require to include a temporal
element (VT, TT, BT, and/or DWLT) [8].

An example of using our notation is given in Figure 3. It represents a schema
for analysis of product sales where, for example, changes to products, categories,
and relationships between them are kept. Further, changes in measure values are
represented using a temporal type (VT in the figure) instead of relying on the
conventional Time dimension.

4 Motivation for Mapping to the ER and OR Models

For implementing the MultiDimER model we propose two mappings: to the ER
and OR models. The former is a well-known and widely-used model for concep-
tual modeling. Therefore, the ER representation of the constructs of the Mul-
tiDimER model allows a better understanding of their semantics. Further, the
3 In [6, 8] we present our rationale for the inclusion of different temporal types in

TDWs.

100 E. Malinowski and E. Zimányi

/Name: string
/Temporal: string

Dimension

Criterion: string
/Temporal: string

Hierarchy
1..*

1

xor DimHierAgg
1

HierLevAgg
1..*

1..*
1

1..*
Name: string
TemSup: temporal

Level

1..*

0..* 0..*

child parent

1

0..*

Name: string

Attribute

Non-Temporal

TemSup: temporal

Temporal

Identified

Connects

Min. snap. child card. : int
Max. snap. child card. : int
Min. snap. parent card. : int
Max. snap. parent card. : int
Min. lifesp. child card. : int
Max. lifesp. child card. : int
Min. lifesp. parent card. : int
Max. lifesp. parent card. : int
TemSup: temporal

LevAttrAgg

DimLevAgg

KeyAttrAgg

1

1..*

Key

Related Name: string

Fact relationship

1

0..*

2..*

1..*

MeasAgg

Shared Aggregation
Composition
Specialization
Association
Derived attribute/

Fig. 2. Metamodel of the temporally-extended MultiDimER model

transformation of the ER model into operational data models is well understood
(e.g., [3]) and this translation can be done using usual CASE tools.

On the other hand, in order to better assist the implementers who use the
MultiDimER model for conceptual design of TDWs, we propose mapping rules
that allow a direct translation of schemas from our model to the OR model.
We choose the OR model as logical model since it preserves the foundations of
the relational model while extending its modeling power. It also offers upward
compatibility with existing relational languages allowing to “flatten” non-atomic
data to a conventional 1NF. Further, the OR model allows to better represent
the real world by inherently grouping related facts into a single row. In addition,
OR features are also included in the SQL:2003 standard [10] and in leading
DBMSs, e.g., Oracle or Informix.

5 Mapping of Temporal Types

The temporal support in the MultiDimER model is added in an implicit manner,
i.e., the timestamp attributes used for capturing a temporal aspect are hidden
using instead pictograms. Therefore, the transformation of the time-related data
into classical non-temporal structures of the ER model requires additional at-
tributes for timestamps, which are manipulated as usual attributes.

Object-Relational Representation of a Conceptual Model for TDWs 101

Sales facts

VT

Client

Client id
Client name
Client address
Other attributes

Sales
Quantity

Category

Name
Description
Responsible
Max amount

Product

Number
Name
Description
Size
DistributorVT

VT

LSLS

VT
LC

VT

Sales district

District name
Representative
Contact info
District area
No. employees

LS

VT

Store

Store number
Store name
Store address
Manager's name
Area

LS

LC

Fig. 3. Example of conceptual schema for a TDW

Further, mapping of temporal types to the ER model depends on whether
these types are used for events or states. Events represent something that hap-
pens at a particular time point whereas states something that has extent over
time. For the former an instant is used, i.e., a time point on an underlying time
axis. A state is represented by an interval or period indicating the time between
two instants. Sets of instants and sets of intervals can also be used.

Figure 4 presents different options for mapping VT: a monovalued attribute
for an instant (Figure 4 a), a multivalued attribute for a set of instants (Figure 4
b), a simple composite attribute for a period (Figure 4 c), and a multivalued
composite attribute for a set of periods (Figure 4 d). Notice that a set of periods
or instants are used when the attribute has the same value in different periods
or instants of time.

d)a)
VB VE

VT VT

b)

VT

c)
VB VE

VT

Fig. 4. Different representations of VT in the ER model

As LS can be represented by a period or a set of periods, it is transformed
into a simple or multivalued composite attribute, respectively. The latter allows
to include discontinuous lifespans, e.g., a professor leaving for sabbatical during
some period of time. For representing TT, the usual practice in TDBs is to use a
period (or a set of periods) similar to LS. Since DWLT represents the time when
data was loaded into a TDW, an instant is used for representing this temporal
type, which is transformed into a simple attribute in the ER model.

To specify the mapping rules to the OR model, we use the different elements
included in the SQL:2003 standard. For example, we use a multiset composite

102 E. Malinowski and E. Zimányi

type, which allows to store unordered collections of values. Alternatively, the
array composite type could be used if there is a limited number of elements.
Further, since structured user-defined types are analogous to class declarations
in object languages, they allow to group semantically related attributes4.

The mapping rules to the OR model consider a multivalued attribute in the
ER model as a multiset attribute while a composite attribute in the ER model
as an attribute of a structured type comprising specified component attributes.

The mapping of different temporal types from our model to the OR model is
based on the following rules:

Rule 1: A temporal type representing an instant is mapped to an attribute of
date or timestamp type.

Rule 2: A temporal type representing a set of instants is mapped to a multiset
attribute of date or timestamp type.

Rule 3: A temporal type representing a period is mapped to an attribute of a
structured type composed of two attributes of date or timestamp type.

Rule 4: A temporal type representing a set of periods is mapped to a multiset
attribute of a structured type consisting of two attributes of date or timestamp
type.

For example, the different options for VT in Figure 4 can be represented in
SQL:2003 as follows:

create type InstantT as date;
create type InstantSetT as (InstantT multiset);
create type PeriodT as (Pbegin date, Pend date);
create type PeriodSetT as (PeriodT multiset);

6 Mapping of Temporal Levels

Changes in a level can occur either for a member as a whole (e.g., deleting a
product) or for attribute values (e.g., changing a product’s size). Representing
these changes in TDWs is important for analysis purposes, e.g., to discover how
the exclusion of some products or the change in their sizes influences sales.

In the MultiDimER model changes to a level member as a whole are repre-
sented using the LS symbol next to the level name, e.g., the Product level in
Figure 3. For representing changes in attribute values (Size and Distributor in
the figure), we use attribute timestamping. We group temporal attributes in our
model to ensure that they can be distinguished from non-temporal attributes
and to minimize the number of symbols.

A level in our model corresponds to a regular entity type in the ER model.
Each temporal attribute is represented in the ER model as a multivalued com-
posite attribute that includes an attribute for the value and another attribute
for a temporal type. Notice, that using a multivalued attribute allows to have

4 Due to space limitations, in this paper we do not consider methods.

Object-Relational Representation of a Conceptual Model for TDWs 103

a)

ProductNumber

Name
Description

Value

VB VE

Value

b)

VT

VB VE

VT

Size Distributor

LsB LsE

LS
Product

 05/2002 08/2002

 15 08/2003 NOW
 20 09/2002 07/2003QB876 ...

... 18 05/2002 NOW

3 ... 25 05/2002 08/2003
 18 09/2004 NOW

 1 05/2002 NOW

 2 05/2002 NOW
 05/2002 08/2003
 09/2004 NOW

QD555

QE666

Sid Number Other
attrib.

LS

LsB LsE VB VE
VT

Size

Value
10

Fig. 5. A temporal level: a) the ER model and b) the OR representation

different values (e.g., sizes or distributors) of the attribute in different periods
of time. For example, the transformation of the Product level (Figure 3) to the
ER model is shown in Figure 5 a).

Mapping the corresponding ER model to the relational model gives four ta-
bles: one with all monovalued attributes and one for each multivalued attribute.
This representation is not very intuitive since attributes of a level are stored as
separate tables. It also has well-known performance problems due to the required
join operations.

An OR representation allows to overcome these drawbacks. It preserves more
semantics keeping together in a single table a level and its temporal attributes.
The mapping of temporal attributes is straightforward:

Rule 5: An attribute with temporal support is mapped to the OR model as
a multiset attribute of a structured type composed of two attributes: one for
representing the value and another one for the associated temporal type.

For example, given the declarations for the temporal types in Section 4, the
type for the Size attribute5 is defined as follows: create type SizeT as (Value real,
VT PeriodT). Since Size is a multivalued attribute, we represent it as a collection
type using either array or multiset, e.g., create type SizeCT as (SizeT multiset).

Mapping a level to the OR model is straightforward once the types for its
attributes are defined:

Rule 6: A level is mapped to a relation containing all its attributes and an
additional attribute for a key. If a level has LS support, an additional attribute
as specified by Rules 3 or 4 should be included.

Figure 5 b) shows the OR schema using a tabular representation containing
the member key, the lifespan, and all its attributes represented together in the
same table. It corresponds to a so-called temporally-grouped data model, which
is considered as more expressive for modeling complex data.

The Product level can be represented in several ways in SQL:2003. For ex-
ample, two types of tables can be used. Relational tables are usual tables while
typed tables are tables that use structured user-defined types for their defini-
5 For simplicity we do not represent in the figure the Distributor attribute, which can

be mapped similarly to the Size attribute.

104 E. Malinowski and E. Zimányi

tion. Typed tables contain in addition an automatically-created self-referencing
column keeping the value that uniquely identifies each row, i.e., a surrogate.

Surrogates are important in DWs for ensuring better performance during join
operations and independence from transactional systems. Further, surrogates do
not vary over time allowing to include historical data in an unambiguous way.

Therefore, to define a table for the Product level (Product) we use a typed
table6. The declaration of a typed table requires first the definition of a type
(ProductT) for the elements of the table:

create type ProductT as (LS PeriodSetT, Number integer, Name character varying(25),
. . . , Size SizeCT) ref is system generated;

create table Product of ProductT (constraint prodPK primary key (Number),
ref is Sid system generated);

The clause ref is Sid system generated indicates that Sid is a surrogate attribute
automatically generated by the system. In SQL:2003 these surrogates can also
be generated by the user or derived from one or more attributes.

Until now we have discussed the representations of VT and LS. However, VT
and LS can be combined with TT and/or DWLT. They can be mapped according
to the explanations given in this section and in Section 5.

7 Mapping of Child-Parent Relationships

7.1 Non-temporal Relationships

Non-temporal relationships indicate that either these relationships never change
or if they do, only the last modification is kept. To avoid an incorrect manage-
ment of hierarchies and dangling references between levels, non-temporal rela-
tionships may only link levels that do not keep their LS and do not include VTs
for their key attributes, which are used for aggregation purposes [6].

Figure 6 a) represents a hierarchy with a non-temporal relationship. The
relationship between child and parent levels corresponds to a usual binary rela-
tionship in the ER model as shown in Figure 6 b)7.

For obtaining the corresponding OR schema, first we represent each level as
explained in Section 6. Then, we use the traditional mapping for binary many-
to-one relationships.

Rule 7: A non-temporal many-to-one relationship between child and parent lev-
els is mapped to the OR representation by including a parent key in the child
level table.

For example, the mapping of the Product level and the Product–Category rela-
tionship gives the same relation as the one in Figure 5 b) including an additional
attribute in the Product table with the foreign key of the Category table.

6 For simplicity, in the examples we omit full specification of constraints and additional
clauses required by the SQL:2003 standard.

7 For simplicity we do not present level attributes.

Object-Relational Representation of a Conceptual Model for TDWs 105

Category

Name
Description
Responsible
Max amount

Product

Number
Name
Description
Size
DistributorVT

VT N 1 Category

b)a)

Product ProCat

Fig. 6. A hierarchy with a non-temporal relationship: a) the MultiDimER model and
b) the ER model

To define the Product table in SQL:2003 first we need to create a typed table
Category with the surrogate in the Sid attribute. Then, we specify:

create type ProductT as (Number integer, . . . , Sizes SizeCT, CatRef REF(CategoryT)
scope Category references are checked) ref is system generated;

create table Product of ProductT (constraint prodPK primary key (Number),
ref is Sid system generated);

The Product type includes a reference (REF) type that points to the cor-
responding row in the Category table. In this way, the OR approach replaces
value-based joins with direct access to related rows using the identifiers.

7.2 Temporal Relationships

Temporal relationships allow to keep track of the evolution of links between
parent and child members. These relationships can link non-temporal levels
(Figure 7 a) and 8 a)) or temporal levels (Figure 3). For the former, in or-
der to ensure correct measure aggregations and avoid dangling references, the

Employee

Employee id
Name
Position
Other attributes

Section

Section name
Description
Activity
Other attributes

VT
Works

Employee

Employee id
Name
Position
Other attributes

Section

Section name
Description
Activity
Other attributes

N 1

a) b)
VB VE

VT

Employee

1 E2244 ...

2 E2345 ...

05/2002 08/2002
07/2003 NOW
05/2002 NOW

S1
S1

c) d)

Works

1
2

05/2002 08/2002
07/2003 NOW
05/2002 NOW

S1
S1

VB VE
VT

InSection
Section

FK

Empl.
FK VB VE

VT
InSection

Section
FK

...Empl.
sid

Empl.
id

Fig. 7. Temporal relationships linking non-temporal levels: a) the MultiDimER model,
b) the ER model, c) and d) alternative OR representations

106 E. Malinowski and E. Zimányi

modifications of levels are not allowed [6]. To represent temporal relationships
we place the corresponding temporal symbol (VT, TT, BT, and/or DWLT) on
the link between levels (Figure 7 a).

Temporal relationships have associated snapshot and lifespan cardinalities.
In the example in Figure 7 a) these cardinalities are the same, many-to-one,
indicating that an employee may work only in one section and if he returns after
a leave, he must be assigned to the same section. In the example of Figure 8 a),
the relationship has a many-to-one snapshot cardinality (continuous line) and a
many-to-many lifespan cardinality (dotted line with the LC symbol), i.e., at each
instant an employee works in exactly one section, but he may work in several
sections over his entire lifespan.

Figure 7 b) shows the ER model for Figure 7 a). We use a multivalued com-
posite attribute for representing VT since an employee can be hired several times
in the same section.

For the OR representation we can either create a separate table for the Works
relationship (Figure 7 c) or include a multivalued attribute in the child-level
table, e.g., include in the Employee table an attribute for the Section surrogates
with its temporal characteristics (Figure 7 d).

The definition of the Works relation in SQL:2003 requires that Employee and
Section tables have already been declared as typed tables. We do not use a typed
table for representing the Works relationship since the relationship does not exist
without their levels.

create type WorksT as (SecFK REF(SectionT) scope Section references are checked,
VT PeriodSetT);

create table Works (EmplFK REF(EmplT) scope Employee references are checked,
InSection WorksT);

The SQL:2003 declaration for Employee in Figure 7 d) requires to include the
InSection attribute of the WorksT type in the Employee type. This representation
expresses in a better way the semantics of the relationship since all changes of
working place of an employee are included in the same row.

On the other hand, if the snapshot and the lifespan cardinalities are different
(Figure 8 a), the lifespan cardinality is considered when mapping to the ER
model. The mapping to the ER model is similar to the one in Figure 7 b) except
that the cardinalities are many–to–many.

As for the previous case, two different OR representations may be used: either
a separate table for the Works relationship or a table for a child level (Employee)
with an additional attribute representing this relationship; the latter is shown in
Figure 8 b). Notice, that the foreign key is represented as set of values since an
employee can work in many sections over his lifespan. This leads to the inclusion
of a multiset type for the InSection attribute of the EmployeeT type:

create type EmployeeT as (EmplID integer, . . . , InSection WorksT multiset);

Another case arises when a child member is related to many parent members
at every time instant8, i.e., the snapshot and lifespan cardinalities between child

8 Called in [7] non-strict hierarchies.

Object-Relational Representation of a Conceptual Model for TDWs 107

Employee

Employee id
Name
Position
Other attributes

Section

Name
Description
Activity
Other attributes

VT

a) b)

LC

Employee

1 E2244 ...

2 E2345 ...

05/2002 08/2002

09/2002 06/2003
07/2003 NOW

05/2002 NOW

S1

S2
S1

VB VE
VT

InSection
Section

FK
...Empl.

sid
Empl.

id

Fig. 8. Temporal relationships linking non-temporal levels: a) the MultiDimER model
with snapshot and lifespan cardinalities and b) the OR representation

and parent levels are many-to-many. This situation can be mapped in the same
way as the previous one.

Summarizing, for mapping temporal relationships between the child and par-
ent levels to the OR model the following rule is used:

Rule 8: First, a structured type composed of two attributes is defined: one at-
tribute for surrogates of the parent level and another one for the corresponding
temporal type. Then, this structured type is used for defining a simple or a mul-
tiset attribute depending on whether the cardinality between child and parent
levels is many-to-one or many-to-many, respectively. Let us call this attribute
TemRel. Finally, one of two possible OR representations can be used:

1. Creating a new relation that contains an attribute for the surrogate keys
of the child level and the TemRel attribute.

2. Extending the relation corresponding to the child level with the TemRel
attribute.

Even though the second option preserves more semantics, the choice among
the alternative OR representations may depend on physical-level considerations
for the particular DBMS, such as join algorithms, indexing capabilities, etc. For
example, defining the InSection attribute as a nested table in Oracle 10g, will
require a join of two tables, thus not offering any advantage with respect to
the solution of a separate table for the Works relationship. Notice that for the
previous cases, the relational model only offers the option of creating a separate
table for the Works relationship.

Additionally, a relationship between levels can include TT and/or DWLT for
which the mapping specified in Section 5 can be used.

8 Fact Relationships with Temporal Measures

The MultiDimER model includes temporal support for measures as shown in
Figure 3. Notice that the usual Time dimension does not need to be attached to
the fact relationship. In fact, temporal support applies to the whole schema of
the TDW, i.e., to measures and dimensions.

108 E. Malinowski and E. Zimányi

Depending on analysis needs, time-varying measures may represent either
events or states. In the following example, due to space limitations, we only re-
fer to measures whose VT is represented as an instant with granularity month.
Nevertheless, the results may be straightforwardly generalized if VT is repre-
sented by a period or a set of periods.

Sales facts

b)

Sales

a)

c)

Sales facts

1 P1 W1

...

VT

Quantity

VT

10000 05/2002
15000
18000

06/2002
07/2002

100
05/2002

150
07/2002
06/2002

1 P1 W2 20000 05/2002

 5000
07/2002
06/2002

200 05/2002

 80
06/2002
07/2002

 50

...

Sales facts
Client

FK
Product

FK
Store
FK

1 P1
1 P1 W2

W1

Sales VT

10000
20000 05/2002

05/2002

...
1 P1 W1 15000 06/2002

...

1 P1 W2 5000 06/2002
...
1 P1 W1 18000 07/2002

...

1 P1 W2 20000 07/2002

VT
Quantity

Value
Store
FK

Client
FK

Product
FK VT

Sales
Value

Value Value

Fig. 9. Temporal measures: a) the ER representation, b) the relational table for the
Sales measure, and c) the OR representation

A fact relationship in the MultiDimER model corresponds to an n-ary rela-
tionship in the ER model. Measures as attributes of a relationship are mapped
to the ER model in the same way as temporal attributes of a level. Therefore,
each measure is represented as a multivalued composite attribute (Figure 9 a).

Mapping this fact relationship to the relational model in 1FN gives two tables.
In Figure 9 b) we only show the table with the Sales measure since the other
table with the Quantity measure has similar structure. However, if additional
information is available, this model can be simplified. For example, if all measures
are calculated with respect to the same VT, they can be represented in one table
and tuple timestamping can be applied.

The OR model creates also a separate table based on the following rule:

Rule 9: A fact relationship with temporal measures is mapped to the OR model
by creating a new relation that includes as attributes the surrogate keys of the
participating levels. In addition, every measure is mapped into a new temporal
attribute according to Rule 5.

Object-Relational Representation of a Conceptual Model for TDWs 109

An example of the tabular OR representation is given in Figure 9 c).
However, even though the OR model allows to represent the changes in mea-

sure values for the same combination of foreign keys, in practice it may be not
well suited for aggregations related to time. The objects created for every mea-
sure contain two-level nesting: one for representing different measure values for
the same combination of foreign keys and another for representing a temporal
element. Therefore, it is more difficult to express aggregation statements related
to time accessing the second-level nesting. As a consequence, the relational rep-
resentation is more adequate in order to represent in a more “balanced” manner
all attributes that may be used for aggregation purposes.

9 Conclusions

The temporally-extended MultiDimER model [6, 8] is used for modeling time-
varying data for DW applications. It is symmetric in the sense that it allows to
represent changes for both measures and dimensions. In this paper we presented
a mapping of this conceptual model into the ER model and the OR model.

We used an object-relational approach based on the SQL:2003 standard that
allows better to represent complex data and preserve as much TDW semantics as
possible. We discussed mappings for a temporal level and for hierarchies. Finally,
we referred to temporal measures in fact relationships.

The object-relational model allows to better represent time-varying levels and
hierarchies than the classical relational model. In the former model a level and
its corresponding time-varying attributes are kept together while the relational
model produces a significant number of tables with well-known disadvantages for
modeling and implementation. Further, for representing a relationship between
levels forming a hierarchy the object-relational model gives a designer several
alternatives. Thus, he can choose the one considering semantics and physical
level features of the particular OR DBMS. On the other hand, the relational
model is more adequate for representing time-varying measures. It considers in
the same manner all attributes including the ones that represent time, thus it
facilitates aggregation procedures.

The proposed mapping shows that TDWs can be implemented using current
OR DBMSs. Further, the features of OR databases for representating complex
objects facilitate the implementation of attribute timestamping. As opposed to
tuple timestamping, which is mostly used in the relational representation of
TDBs, attribute timestamping not only allows a better representation of reality
(temporal changes are represented only for the specified attributes) but also
saves storage space during implementation (the values of attributes that do not
vary on time are not repeated).

We have already undertaken a real-scale study in the domain of TDWs to
evaluate the usability of our conceptual model and the feasibility of its imple-
mentation using Oracle 10g. The results will be reported in a forthcoming paper,
but a first analysis has already given encouraging indications that allow us to
move to the next research step, i.e., developing a methodology for TDW design.

110 E. Malinowski and E. Zimányi

The proposed mapping may vary according to the expected usage patterns,
e.g., data mining algorithms, and specific features of the target implementation
system. For example, a user may choose a multidimensional tool-specific storage
(e.g., Analytic Workspace in Oracle 10g) instead of relying on more general
solutions as the ones proposed in this paper.

References

1. R. Bliujute, S. Slatenis, G. Slivinskas, and C. Jensen. Systematic change mange-
ment in dimensional data warehousing. Technical report, Time Center, TR-23,
1998.

2. J. Eder, C. Koncilia, and T. Morzy. The COMET metamodel for temporal data
warehouses. In Proc. of the 14th Int. Conf. on Advanced Information Systems
Engineering, pages 83–99, 2002.

3. R. Elmasri and S. Navathe. Fundamentals of Database Systems. Adison-Wesley,
fourth edition, 2003.

4. H. Gregersen, L. Mark, and C. Jensen. Mapping temporal ER diagrams to rela-
tional schemas. Technical report, Time Center, TR-39, 1998.

5. C. Jensen and R. Snodgrass. Temporally enhanced database design. In M. Pa-
pazoglou, S. Spaccapietra, and Z. Tari, editors, Advances in Object-Oriented Data
Modeling, pages 163–193. MIT Press, 2000.

6. E. Malinowski and E. Zimányi. A conceptual solution for representing time in
data warehouse dimensions. In Proc. of the 3rd Asia-Pacific Conf. on Conceptual
Modelling, pages 45–54, 2006.

7. E. Malinowski and E. Zimányi. Hierarchies in a multidimensional model: from
conceptual modeling to logical representation. Data & Knowledge Engineering. To
appear, 2006.

8. E. Malinowski and E. Zimányi. Inclusion of time-varying measures in temporal
data warehouses. In Proc. of the 8th Int. Conf. on Enterprise Information Systems,
2006. To appear.

9. C. Mart́ın and A. Abelló. A temporal study of data sources to load a corporate data
warehouse. In Proc. of the 5th Int. Conf. on Data Warehousing and Knowledge
Discovery, pages 109–118, 2003.

10. J. Melton. Advanced SQL: 1999. Understanding Object-Relational and Other Ad-
vanced Features. Morgan Kaufman Publisher, 2003.

11. A. Mendelzon and A. Vaisman. Temporal queries in OLAP. In Proc. of the 26th
Very Large Database Conference, pages 243–253, 2000.

12. T. Pedersen, C. Jensen, and C. Dyreson. A foundation for capturing and querying
complex multidimensional data. Information Systems, 26(5):383–423, 2001.

13. X. Wang, C. Bettini, A. Brodsky, and S. Jajodia. Logical design for temporal
databases with multiple granularities. ACM Transactions on Database Systems,
22(2):115–170, 1997.

Data Translation Between Taxonomies

Sérgio Luis Sardi Mergen and Carlos Alberto Heuser

Universidade Federal do Rio Grande do Sul, Av. Bento Gonalves,
9500 Porto Alegre - RS - Brasil

{mergen, heuser}@inf.ufrgs.br

Abstract. The task of translating data from one schema into another
is usually performed with the help of information stating how the ele-
ments between two schemas correspond. Translation mechanisms can use
this information in order to identify how instances of a source schema
must be translated. We claim that a uniform matching approach, where
instances of a source classes are always translated into the same target
classes, may not represent the reality, specially when the schemas in-
volved describe taxonomies. In this paper we demonstrate taxonomies
that support our idea, and propose the usage of a conditional matching
approach to improve the accuracy of taxonomical instances translation.

1 Introduction

Data translation plays a fundamental role in the information integration area.
It is up to a data translation process the task of converting data from its native
storage representation into another representation.

There are several applications where data translation mechanisms represent
a crucial task. In a mediated system[18, 3], when a user submits a query, a
usual approach would be to translate the results coming from the sources into
a format expected by the user. When migrating databases from an old version
to a new version, a commonly faced challenge involves data translation, where
the arising question is how to covert data stored in the old schema into the new
schema, specially when dealing with heterogeneous schemas, or even worse, when
the schemas are represented in different models. Even in data warehouses, the
incoming data must be processed in some way before storage; e.g. data may be
filtered, and relations may be joined or aggregated. As the data is copied from
the sources, it may need to be transformed in certain ways to make all data
conform to the schema at the data warehouse.

Independently of the underlying mechanism that performs the data trans-
lation, this processing relies on a general idea that is to identify the matches
between the schemas and apply transformation rules to translate instances of
the source into instances of the target[14, 1, 4, 5] . Figure 1(a) illustrates an ab-
stract example where two schemas are matched. The schemas are represented as
classes with properties. The match is represented by the bold line, which indi-
cates that instances of Person in the source should be translated into instances
of Student in the target.

E. Dubois and K. Pohl (Eds.): CAiSE 2006, LNCS 4001, pp. 111–124, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

112 S.L.S. Mergen and C.A. Heuser

(a) Non-taxonomical example (b) Taxonomical example

Fig. 1. Matching examples

At this time, there is no fully automatic semantic integration approach[10],
which means the user is still responsible for identifying the matches and creating
the translation rules. Nevertheless, this often laborious task can be aided with the
help of schema matching techniques that suggest to the user the most probable
ways to do the matching, and possibly, which transformations to apply on the
instances.

However, when it comes to translate data between two taxonomies, there is a
gap that neither schema matching techniques nor data translation mechanisms
seem to support. Take for instance the taxonomies depicted in figure 1(b). The
target schema presents the academic staff in a taxonomical model, where classes
are described in terms of specialization and generalization of other classes. In the
source schema, the Person class is used to store both Students and Professors
instances, undiscriminatingly. Observing the schema level alone it is not clear if
an instance of Person in the source is in fact a student or a professor.

On the other hand, the instance level may provide some relevant cues on
how to translate the instances. For instance, the studiesAt and title proper-
ties of the person class are disjoint by nature. Thus, it is expected that every
instance of Person contains at most one of these two properties. Taking this
reasoning one step further, we conclude that the presence (or absence) of some
particular property in an instance may be strong indicators of that instance
semantics.

Based on this reasoning, we present an approach to the translation of ta-
xonomies, based on the adoption of a simple mechanism, that we call translation
script. A translation script is generated based on pre-computed matches between
the schemas.

A translation script is composed of alternative matches for every source class.
Each alternative match is associated to a condition that indicates whether the
match can be used in the translation of a particular instance or not. During
translation, the script can be used to guide the translation process by determin-
ing which of the alternative matches should be used when translating a specific
instance.

Our contribution is twofold. Firstly, the translation script is a novel method
for data translation, that is specifically useful for translating data between ta-
xonomies. Secondly, we demonstrate that the generation of this translation script
is straightforward, once it simply requires that pre-computed matches between
the schemas involved in the translation are provided.

Data Translation Between Taxonomies 113

The rest of the paper is organized as follows: In section 2 we show approaches
related to the issue of matching taxonomies along with existing mechanisms
used for data translation. Section 3 presents motivating examples that illustrate
how alternative matches can be used to improve the translation accuracy. In
section 4 we define a translation script and describe the algorithm used to gener-
ate a translation script based on pre-computed matches. Section 5 demonstrates
a case study where we suggest the use of a translation script on real world on-
tologies. Section 6 briefly describes a different approach that is also based on a
translation script to perform data translation. Final conclusions are presented
in section 7.

2 Related Work

When studying translation of taxonomical data, related work can be classified
in two groups: Schema matching approaches and data translation approaches.

In general, matching taxonomies can be seen as a broader problem, which
is the matching of ontologies. Most of the integrated approaches for ontology
matching are based on the idea of combining different strategies and measures
of similarity. In the vast literature on ontology matching, we have found several
strategies to match taxonomies[6, 11, 12, 15, 9], but none of them seems to worry
about the existence of alterative matches to a source class(concept).

The S-Match system [9] takes the process of matching taxonomies one step fur-
ther by allowing matches with semantic operators other than equivalence. Given
two concepts, the algorithm assigns a semantic relation that can be of equiva-
lence (=), generalization(�),specialization(�), mismatch(⊥), or overlap(�). The
matches are computed by selecting the strongest semantic relation discovered
by the algorithm between two ontology concepts. This kind of matching bet-
ter describes the semantic of the correspondences between taxonomies, but still
presents the drawback of allowing one single match per concept.

In [13] the authors also use several semantic operators when matching
schemas. However, they claim that sometimes it is not possible to identify a
single match between each pair of concepts of two schemas. They present an
approach for schema integration that allows alternative matches for each pair of
concepts, where a match is given a level of belief. The matches, referred to as un-
certain matches, are computed in the schema matching process and propagated
to a schema merging process that is responsible for generating an integrated
schema. Similar work is presented in [8], with the limitation that matches can
only be done through the equivalence operator. The usage of uncertain matches
resembles the usage of the alternative matches suggested in our work, in a sense
that both kind of matches are used to dynamically resolve semantic matching
problems. However, uncertain matches are applicable for semantic reconciliation
of schemas, while our approach is applicable for data translation.

The usage of uncertainty is also present in [17], only this time the uncertainty
lies on the data level, instead of the schema level. Their approach, based on

114 S.L.S. Mergen and C.A. Heuser

the probability theory, allows the user to query for uncertain data in a data
integration environment.

As for data translation approaches, most of them [14, 1, 4, 5] rely on the usage of
matching rules to perform data translation. Despite some small variations among
the approaches, they all share the same idea on what the matching rules should ex-
press, which are the matches between the schemas, and the transformations that
must be performed when translating the instances. The instances can be trans-
formed either by value modification or by schema restructuring. In [2] the authors
introduce a middleware data model that supports the declaration of correspon-
dences between two different representations (schemas). They also describe some
practical cases where the correspondences are automatically turned into transla-
tion rules. One of the benefits of their approach is that the specification of corre-
spondences can be used to perform translation of data in both directions.

For the best of our knowledge, none of the translation approaches consider
the usage of alternative matches, where a match to a given source class may
vary during translation. As far as we know, the existing approaches can use the
absence of properties inside a given instance only to indicate that the instance
should not be translated. Using the presence/absence of properties values of a
source instance to decide whether one given class or another should be selected
as the target is an entirely new idea.

We claim that our approach to data translation could be incorporated in data
translation mechanisms, as a way to dynamically select one of the alternative
matches, based on the presence or absence of property values in a given instance.

3 Running Examples of Taxonomy Translation

In order to perform data translation, it is necessary to understand how the
source and target schema correspond to each other. Based on this understanding,
generally expressed in the form of matchings, it is possible to translate instances
of the source schema into instances of the target schema. In this context, we
argue that the usage of a uniform matching - where one single match suffices for
translating every instance of a source class - is questionable, specially when the
schemas describe taxonomies. In such cases, the translation of the instances can
vary, according to the values actually being translated.

Next, we show cases where the translation of taxonomical instances may result
in an erroneous classification if the translation uses a uniform mapping strategy
instead of a flexible one. We also demonstrate how the translation can be seman-
tically improved if the idea of a translation script is used to guide the translation
process.

To start, consider the academic staff taxonomies presented in figure 2. Con-
sider a taxonomy-aware matcher able to realize that Γ2.T enured is a better
match to Γ1.P rofessor, instead of its polysemous Γ2.P rofessor. Additionally,
the matcher was able to find the properties correspondences, where nationality
matches nationality, institution matches lecturesAt and tenuredSince matches
isT enuredSince.

Data Translation Between Taxonomies 115

This match solves the problem of translating the instances of professors in Γ1
without information losses - since all properties of the source are translated -
but it does not guarantee there will not be semantic losses. Suppose that some
professors stored in Γ1 are tenured, while others are not. During translation,
if the match between Γ1.P rofessor and Γ2.T enured is used, every instance of
professor in Γ1 ends up translated into instances of Γ2.T enured.

Fig. 2. Academic staff taxonomies Fig. 3. Bank account taxonomies

However, this is not the expected classification, given that not every professor
is tenured. One way to differentiate professors from tenured professors in Γ2 is
that professors lack the definition of properties that are exclusive to tenured
professors, such as the property isT enuredSince.

In this context, we propose a solution that does not hardwire a match to a
specific source class, but allows a range of alternative matches. During instance
translation, it is possible to choose one among several alternative matches, by
using some inference mechanism that analyzes the presence or absence of proper-
ties values in the instance being translated. For the example above, a Professor
instance in Γ1 is translated into a Tenured instance in Γ2, when the property
tenuredSince has a value assigned to it, and is translated into a Professor
instance in Γ2 otherwise. Note that the best that traditional translation mecha-
nisms could do in this case is to invalidate the translation if some of the properties
are missing.

We could go even further and say that a professor is a visitor, if we knew that
all Γ2 visitors come from abroad. This kind of information can be embedded in
the schema itself, in the form of constraints, if the taxonomy supports this kind
of constraint. Another way to obtain additional knowledge from the taxonomies
is by discovering data patterns in some sample instances. A data pattern could
state the fact that every visitor is actually a professor whose country of origin is
different from the country in which the university is located.

Despite the presumable benefits from using existing or computed constraints
to improve data translation, this kind of analysis is out of the scope of this paper.
Our commitment is on demonstrating that the semantics of the translation can
be improved by using an approach that is less sophisticated, but still effective,
based solely on the presence/absence of property values in the instances.

Figure 3 shows another example where the presence/absence of property val-
ues can eliminate translation ambiguity. In this case the taxonomies describe

116 S.L.S. Mergen and C.A. Heuser

bank accounts. Notice that the computation of a match for the Account class in
Γ3 is even more dubious that the prior example, since the properties declared in
the Account class in Γ3 are split across the classes in Γ4.

Again, exploiting the presence of properties values inside bank account in-
stances could improve the quality of the translation, whereas a traditional trans-
lation approach would fail. For instance, an account in Γ3 with no value for
interestRate and borrowingLimit fits the description of an Account in Γ4.

Moreover, accounts in Γ3 with all properties defined but borrowingLimit could
be translated into a SavingsAccount in Γ4. Likewise, accounts in Γ3 with all prop-
erties defined but interestRate could be translated into a CurrentAccount in Γ4.

4 The Translation Script Approach

In this section we present the definition of a translation script, along with exam-
ples that demonstrate how a translation script can be used during the translation
of taxonomies. We start this section with the definition of a taxonomy.

Definition 1 (Taxonomy). Let Γ =< C, P, Prop(ci), sup(ci) > be a taxon-
omy, where C is a set of classes {ci} and P is a set of properties {pi}.

Further, let Prop(ci) be a function that returns the set of properties of ci. Ad-
ditionally, let sup(ci) be a function that returns the immediate super-class of ci.

Having defined this, we have that iff ci = sup(cj), then Prop(ci) ⊆ Prop(cj).

A taxonomy is represented as a hierarchy of classes, where each class contains
a set of properties. A class shares its properties with each of its sub-classes.
For our purposes, it suffices to define properties merely as being part of a class.
Additional constraints of a class/property composition, such as the cardinality,
are not defined since they are not exploited by our translation mechanism.

For the rest of the paper, we use Γs to refer to a source taxonomy, while Γt

is used to denote a target taxonomy.
The translation script is generated based on an input matching that describes

how classes of a source taxonomy correspond to classes of a target taxonomy.
The computation of an input matching is out of the scope of this paper, but there
are several approaches in the literature that handle class to class matching, as
described in section 2. We define the input matching as follows:

Definition 2 (Input Matching). The input matching M is a set of matches
{mi}. Let mi be a tuple <cs, ct, Ψ>, where:

- cs ∈ Cs, having Cs ∈ Γs,
- ct ∈ Ct, having Ct ∈ Γt,
- Ψ is a set of property matchings ψ =<ps, pt>, where ps ∈ Prop(cs) and

pt ∈ Prop(ct). Further, if ∃ ψi =<psi, pti> ∈ Ψ , than 	 ∃ ψj =<psj, ptj> ∈ Ψ ,
such that ψi 	= ψj and (psi = psj or pti = ptj).

A match is composed by a source class, a target class and a set of correspondences
between the classes’ properties. Within a single class to class match, only one-to-
one property matches are allowed. This restriction is, in fact, an expression of the

Data Translation Between Taxonomies 117

local one-to-one match cardinality restriction[16], that prevents the occurrence of
matches where there is no direct correspondence between elements of the source
and target.

This kind of match, also referred to as indirect match[7], occurs, for instance
when a source property is actually a composition of two target properties (eg.
name in the source and a concatenation of firstName and lastName in the
target). Our translation script generation approach currently does not accept
indirect matches as part of the input matching. The inability to handle such
sort of match is a limitation that we expect to overcome in the near future.

The listing below shows an input matching used to match the taxonomies
described in figure 2. Observe that the input matching is valid according to
definition 2.

m1 = {Γ1.P erson, Γ2.Employee, [(nationality, nationality)]}
m2 = {Γ1.P rofessor, Γ2.T enured, [(nationality, nationality),

(institution, lecturesAt), (tenuredSince, isT enuredSince)]}

Listing 1.1. Input matching for the taxonomies of figure 2

The definition 3 describes a translation script. Notice that a translation script
is actually an extension of the input matching, where we have κ to express the
condition that must be satisfied so that one particular match can be considered
valid. A condition is expressed as a set of properties, where all properties belong
to the source class. Since the matches are associated to a condition, they are
referred to as conditional matches.

Definition 3 (Translation Script). A translation script M ′ is a list of condi-
tional matches [m′

1, m
′
2, ..., m

′
n], where m′

l is a tuple on the form m′
l =<m, κ>,

having κ as a set of properties {pi}, such that pi ⊆ Prop(m.cs) and ∃ <pi, pj>∈
m.Ψ .

When translating instances, a conditional match can be interpreted as follows:
if at least one of the properties within the match κ condition is present (has a
value) in an instance, then the κ condition is satisfied, and the match can be
used in the translation.

Inside a translation script, the conditional matches that refer to the same
source class must be ordered according to definition 4. The matches are sorted
with respect to the target class, and go from the more subsumed target class,
as the first element, to the less subsumed target class, as the last element. The
relation of subsumption between two classes is directly related to the hierarchical
relation between the classes. The deeper a target class is in the hierarchy, the
higher will be its sorting position.

Definition 4 (Property Presence Sorting). Having m′
i =<ml, κi> ∈ M ′

and m′
j =<mn, κj> ∈ M ′, and having ml.cs = mn.cs, then i < j if ml.ct is a

subsumption of mn.ct.

118 S.L.S. Mergen and C.A. Heuser

Furthermore, the conditional matches that refer to the same source class have
mutually exclusive κ conditions, as determined in definition 5. It is important
that both definitions 4 and 5 are respected so the execution of the translation
script may succeed.

Definition 5 (Mutually Exclusive Conditions). Having m′
i =<ml, κi> ∈

M ′ and m′
j =<mn, κj> ∈M ′, and having ml.cs = mn.cs, then κi ∩ κj = �.

In listing 1.2 we show an example of a translation script that is based on part of
the input matching presented in listing 1.1. The translation script is composed
by some conditional matches that can be used for translating instances of the
source class Γ1.P rofessor. For clarity reasons, we omit the value of Ψ , whose
content is [(tenuredSince, isTenuredSince), (lecturesAt, lecturesAt), (nationality,
nationality)].

m′
1 = {{Γ1.P rofessor, Γ2.T enured, Ψ}, [tenuredSince]}

m′
2 = {{Γ1.P rofessor, Γ2.P rofessor, Ψ}, [lecturesAt]}

m′
3 = {{Γ1.P rofessor, Γ2.Employee, Ψ}, []}

Listing 1.2. Translation script for instances of Γ1.P rofessor

On the data translation phase, the decision on how to translate an instance
can be performed using a rather simple approach. The algorithm starts from the
first conditional match to the last and chooses the first match whose κ condition
is satisfied.

For instance, the κ conditions expressed in the translation script of listing
1.2 can be used to decide whether a professor in Γ1 should turn into a tenured
professor, a regular professor or an employee in Γ2. If the source instance has
a value for the property tenuredSince, then this instance is translated into a
Γ2.T enured instance. Otherwise, if the property lecturesAt has a value, than this
instance is translated into a Γ2.P rofessor instance. If the previous alternatives
fail, the instance is translated into a Γ2.Employee instance, instead.

Note that the matches agree with definitions 4 and 5. If that was not the case,
the processing of the translation script could lead to a misplaced translation,
given situations where more than one κ condition can be satisfied regarding a
given instance. As an example, if the matches position of listing 1.2 were inverted,
tenured professors would be translated into a Γ2.Employee instance.

4.1 Translation Script Generation

In this section we present an algorithm that generates conditional matches based
on an input matching. Recall that a translation script is actually the list of
conditional matches derived from the matches used as input. This algorithm can
be used, for instance, to transform the match for the source class Γ1.P rofessor
specified in listing 1.1 into the translation script presented in listing 1.2.

The algorithm responsible for generating the translation script processes each
original match at a time (processMatches()). To every original match, the

Data Translation Between Taxonomies 119

processMatches()
for mi ∈ M do

conditionBuilder(mi.cs, mi.ct, mi.ct, mi.Ψ)
end for

conditionBuilder(cs, ct, cχ, Ψ)
c′χ ← sup(cχ)
if c′χ �= NULL and |MatchedProp(ct)| > 0 then

κ ← MatchedProp(cχ) − MatchedProp(c′χ)
if |κ| > 0 then

createMatch(cs, ct, Ψ, κ)
conditionBuilder(cs, c

′
χ, c′χ, Ψ)

else
conditionBuilder(cs, ct, c

′
χ, Ψ)

end if
end if
createMatch(cs, ct, Ψ, ∅)

Algorithm 4.1. Translation script generation algorithm

recursive algorithm conditionBuilder() is called. As a result of this processing,
each original match (m = {cs, ct, Ψ}) generates at least one conditional match
in the output. More details about the algorithm conditionBuilder() are given
below:

The first and the second parameters represent respectively the source (cs) and
the target class (ct) of the original match. The third parameter initially repre-
sents the target class (ct), but its value is changed throughout the execution of
the recursive calls. This parameter is used to help in identifying the properties
of a condition. The fourth parameter is the set of property matches of the source
and target class(Ψ). This parameter remains constant throughout the execution
of the recursive calls. The function MatchedProp(c) returns all properties of the
class c that were matched (are part of Ψ). Observe that the generation of the con-
ditional matches are represented by symbolic calls to the createMatch function.

Given a target class, two kinds of conditional matches can be generated:

Match with an empty condition. A conditional match with an empty κ
condition is generated when the target class has no properties, or when
it has the same properties as its root class in the taxonomy.

Match with a non empty condition. If the target class has more properties
than its top-most parent, a conditional match is generated, where the κ
condition is the difference of the properties between the target class and
its closest predecessor that has fewer properties. Afterward, the processing
starts over using this predecessor as the target class.

The algorithm finishes when the target class is one of the taxonomy roots.
The algorithm assures that at least one conditional match is generated for every
original match, which will be the match between the source and target class of
the original match itself.

120 S.L.S. Mergen and C.A. Heuser

All target classes of the generated conditional matches belong to the same
branch of the target class of the original match (they are super-classes of the
original target class). The match derivation process is performed by climbing
the nodes from the target class of the original match until a root is found. Since
the algorithm assumes each target class has at most one direct parent, there is
currently no support for taxonomies with multiple inheritance.

The set of property matches of a conditional match is equal to the set of
property matches of the original match. If the source class of an original match
has unmatched properties, such properties are not included in the derived con-
ditional matches. During translation, these properties are ignored.

When more than one conditional match is generated for the same source class,
the matches are sorted according to definition 4, except from one special case,
when the input matching contains more than one match for the same source
class. Take for instance, the listing below, that shows an input match for the
taxonomies of figure 3. For clarity reasons, we omit the property matches, whose
content is Ψα = [(balance, balance), (interestRate, interestRate)], for m1, and Ψβ

= [(balance, balance), (borrowingLimit, borrowingLimit)], for m2. Notice that
the input match presents two matches to the source class Account.

m1 = {Γ3.Account, Γ4.SavingsAccount, Ψα}
m2 = {Γ3.Account, Γ4.CurrentAccount, Ψβ}

Listing 1.3. Input matching for the source class Γ3.Account

When applying the algorithm to this input matching, we obtain the transla-
tion script showed in listing 1.4. Notice that two conditional matches (m′

2 and
m′

4) match with the same target class (Γ4.Account).

m′
1 = {{Γ3.Account, Γ4.SavingsAccount, Ψα}, [interestRate]}

m′
2 = {{Γ3.Account, Γ4.Account, [(balance, balance)]}, []}

m′
3 = {{Γ3.Account, Γ4.CurrentAccount, Ψβ}, [borrowingLimit]}

m′
4 = {{Γ3.Account, Γ4.Account, [(balance, balance)]}, []}

Listing 1.4. Translation script for instances of Γ3.Account

For this kind of situation, it is necessary to remove redundant matches. In
order to preserve the correct match ordering, it suffices to remove all redundant
matches whose position within the translation script is higher. In the case of
listing 1.4, it would mean to remove the m′

2 conditional match.
An interesting remark about this translation script comes from using it to

perform data translation between taxonomies whose instances are inconsistent
with respect to each other. For instance, account instances in Γ3 with all prop-
erties defined are not consistent with respect to Γ4, since in the latter taxonomy
the properties interestRate and borrowingLimit are disjoint. In this case both
conditional matches m′

1 and m′
3 are valid. Since there is no deterministic way

Data Translation Between Taxonomies 121

Fig. 4. Ontologies of a research community domain

of sorting these two matches (at least not by our sorting strategy), the instance
are always translated into the valid match that is processed first, which is the
Γ4.SavingsAccount for the case in question.

5 Case Study

During the explanation of our proposal, we have presented some examples in
which conditional matches can be use to improve translation accuracy. In this
section, we demonstrate how a translation script behaves when dealing with a
translation situation where it is not clear how the instances of a source taxonomy
should be translated.

This case study was held using parts of real ontologies we have extracted
from the Web. The source ontology(Γs) and the target ontology (Γt) model a re-
search community, including persons, organizations, and bibliographic metadata.
Figure 4 describes the part of the ontologies that were actually used in the ex-
periment. This part represents a taxonomical description of academic people.

Since the ontologies were modelled independently from each other, there is
no common agreement on how the classes should match. Given this, we have
conducted an exercise with the purpose of establishing a common sense on
this subject. In this exercise we asked a group of students from a database re-
search community to identify which classes of the source ontology correspond to
which classes of the target ontology. We also asked them to identify the property
matches inside each class to class match.

An interesting remark about this exercise is the divergence on the matching
of Γs.PG. A significant amount of students (43%) relied more heavily on the
semantics of the class names to deduce that Γs.PG matches Γt.Gradute. The
intuition behind the term ”graduate” tells that it is a word used to designate
students that are beyond the bachelors degree, which is indeed the case of a PG
(Post-Graduate) student.

The most significant amount of students (53%) gave more attention to the
classes properties to deduce the matches. The students observed that some of the
properties of Γs.PG(hasSupervisor, inProject) are similar to some properties of

122 S.L.S. Mergen and C.A. Heuser

Γs.PhdStudent(supervisor, worksAtProject). This led them to the conclusion
that Γs.PG should match Γt.phdStudent.

One of the conclusions of this exercise was that the instance matching can be
a rather subjective task. In the case of Γs.PG there were two potential ways to
translate instances of the source class PG. Given this subjectivity, the translation
script approach can be used as an attempt to satisfy both groups.

Before building a translation script for the Γs.PG class, we need to stipulate
an input match for this class. The input match was not computed by a matcher,
though. Instead, we took the most frequent answer of the exercise as the correct
match. Additionally, we relied on the students opinion to stipulate the following
property matches Ψ : [(hasEmail, email), (hasName, name), (studiesAt, stud-
iesAt), (inProject, worksAtProject), (hasSupervisor, supervisor)]. Listing 1.5
shows the resulting input matching.

m1 = {Γs.PG, Γt.PhdStudent, Ψ}

Listing 1.5. Input matching for source class Γs.PG

Given this input match, our translation script generation algorithm produces
the following output:

m′
1 = {{Γs.PG, Γt.PhdStudent, Ψ}, [inProject, hasSupervisor]}

m′
2 = {{Γs.PG, Γt.Graduate, Ψ}, [studiesAt]}

m′
3 = {{Γs.PG, Γt.P erson, Ψ}, []}

Listing 1.6. Translation script for instances of Γs.PG

Using this translation script, we have three translation possibilities: i) if the
properties Γs.PG.hasSupervisor or Γs.PG.inProject have a value, the instance
is translated into Γt.PhDStudent; ii) if the property Γs.PG.studiesAt has a
value, the instance is translated into Γt.Graduate; iii) the instance is translated
into Γt.P erson otherwise.

6 Alternative for the Translation Script

We have devised two alternatives when using conditions for the translation of
taxonomical data. So far we have presented the alternative that verifies whether
at least one condition property is present in an instance. The second alternative
does the opposite, and verifies whether all condition properties are absent. In this
case, a match is considered valid only if all its condition properties are absent
in a given instance. The listing below shows an example of how the translation
script would look like, if the conditions expressed the absence of properties. This
translation script regards conditional matches for the source class Γ1.P rofessor,
from figure 2.

Data Translation Between Taxonomies 123

m′
1 = {{Γ1.P rofessor, Γ2.Employee, Ψ}, [lecturesAt, tenuredSince]}

m′
2 = {{Γ1.P rofessor, Γ2.P rofessor, Ψ}, [tenuredSince]}

m′
3 = {{Γ1.P rofessor, Γ2.T enured, Ψ}, []}

Listing 1.7. Translation script for instances of Γ1.P rofessor

Again, during the translation phase, the matches must be analyzed in the
correct order to prevent the wrong match from being chosen. As opposed to
the approach where a condition tests the properties presence, in this alternative
the matches are ordered from the less subsumed target class to the more sub-
sumed target class, as indicated by definition 6.

Definition 6 (Property Absence Sorting). Having m′
i =<ml, κi> ∈ M ′

and m′
j =<mn, κj> ∈ M ′, and having ml.cs = mn.cs, then j < i if ml.ct is

subsumed by mn.ct.

We believe that testing conditions as property presence is faster than testing
the opposite. Our conviction is based on the fact that taxonomy instances are
expected to have all its properties (or the majority of them) defined. Hence,
testing if all properties of a condition are absent may take longer than testing if
at least one property of a condition is present.

7 Conclusions

In this paper we address the problem of translating instances between taxonom-
ies. Our approach encompasses a rule-base translation mechanism, that analyzes
the presence of properties in the instances to identify the best translation.

Unlike most translations mechanisms, we are not concerned on designing a
complete architecture that supports a broad range of translation needs, such as
the specification of the transformation rules that must be applied when trans-
lating the instances. Instead, we focus our efforts on a simple rule specification,
called translation script, that was conceived as a solution for the translating of
taxonomical instances.

Since taxonomical instances are becoming increasingly popular with the ad-
vent of ontology models, we claim that the general idea hereby presented could be
incorporated into more general/complete translation mechanisms, so the over-
all translation accuracy could be improved when the schemas involved in the
translation describe taxonomies.

As future work, we intend to improve our translation mechanism in order to
support indirect matches and taxonomies with multiple inheritance. Addition-
ally, we intend to further explore the heuristic that perform data translation
based on the absence of properties, and provide a comprehensive comparison
between this heuristic and the one based on the presence of properties.

Acknowledgements. This paper was partially supported by projects
FAPERGS PRONEX - 0408933, PETROGRAPHER - 360707 and CAPES.

124 S.L.S. Mergen and C.A. Heuser

References

1. Serge Abiteboul, Sophie Cluet, and Tova Milo. Correspondence and translation
for heterogeneous data. In Proceedings of the 6th International Conference on
Database Theory, Delphi, Greece, 1997. Springer, Berlin.

2. Serge Abiteboul, Sophie Cluet, and Tova Milo. Correspondence and translation for
heterogeneous data. Theor. Comput. Sci., 275(1-2):179–213, 2002.

3. Michael Boyd, Sasivimol Kittivoravitkul, Charalambos Lazanitis, Peter McBrien,
and Nikos Rizopoulos. Automed: A bav data integration system for heterogeneous
data sources. In CAiSE, pages 82–97, 2004.

4. Chen-Chuan K. Chang and Héctor Garćıa-Molina. Conjunctive constraint mapping
for data translation. In Proceedings of the Third ACM International Conference
on Digital Libraries, Pittsburgh, Pa., 1998. ACM Press, New York.

5. Sophie Cluet, Claude Delobel, Jérôme Siméon, and Katarzyna Smaga. Your me-
diators need data conversion! pages 177–188, 1998.

6. M. Ehrig and Y. Sure. Ontology mapping - an integrated approach.
7. David W. Embley, Li Xu, and Yihong Ding. Automatic direct and indirect schema

mapping: experiences and lessons learned. SIGMOD Rec., 33(4):14–19, 2004.
8. Avigdor Gal, Ateret Anaby-Tavor, Alberto Trombetta, and Danilo Montesi. A

framework for modeling and evaluating automatic semantic reconciliation. The
VLDB Journal, 14(1):50–67, 2005.

9. Fausto Giunchiglia, Pavel Shvaiko, and Mikalai Yatskevich. S-match: an algo-
rithm and an implementation of semantic matching. In Y. Kalfoglou, M. Schor-
lemmer, A. Sheth, S. Staab, and M. Uschold, editors, Semantic Interoperability
and Integration, number 04391 in Dagstuhl Seminar Proceedings, Dagstuhl, Ger-
many, 2005. Internationales Begegnungs- und Forschungszentrum (IBFI), Schloss
Dagstuhl, Germany.

10. Sandra Heiler. Semantic interoperability. ACM Comput. Surv., 27(2):271–273,
1995.

11. Y. Kalfoglou and M. Schorlemmer. If-map: An ontology-mapping method based
on information-flow theory, 2003.

12. Alexander Maedche, Boris Motik, Nuno Silva, and Raphael Volz. Mafra - a mapping
framework for distributed ontologies. In EKAW ’02: Proceedings of the 13th Interna-
tional Conference on Knowledge Engineering and Knowledge Management. Ontolo-
gies and the Semantic Web, pages 235–250, London, UK, 2002. Springer-Verlag.

13. M. Magnani, N. Rizopoulos, P.J. McBrien, and D. Montesi. Schema integration
based on uncertain semantic mappings. In ER’05, LNCS, pages XX–XX. Springer,
2005.

14. Yannis Papakonstantinou, Héctor Garćıa-Molina, and Jeffrey Ullman. Medmaker:
A mediation system based on declarative specifications. In Proceedings of the 12th
International Conference on Data Engineering, New Orleans, La., 1996.

15. Sushama Prasad, Yun Peng, and Tim Finin. A Tool For Mapping Between Two
Ontologies Using Explicit Information. In AAMAS 2002 Workshop on Ontologies
and Agent Systems, Bologna, Italy, July 2002.

16. Erhard Rahm and Philip A. Bernstein. A survey of approaches to automatic schema
matching. VLDB Journal: Very Large Data Bases, 10(4):334–350, ???? 2001.

17. Maurice van Keulen, Ander de Keijzer, and Wouter Alink. A probabilistic xml
approach to data integration. In ICDE, pages 459–470, 2005.

18. Gio Wiederhold. Mediators in the architecture of future information systems. In
Michael N. Huhns and Munindar P. Singh, editors, Readings in Agents, pages
185–196. Morgan Kaufmann, San Francisco, CA, USA, 1997.

Queries

E. Dubois and K. Pohl (Eds.): CAiSE 2006, LNCS 4001, pp. 127 – 141, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Managing Quality Properties in a ROLAP Environment

Adriana Marotta1, Federico Piedrabuena1,and Alberto Abelló2

1 Instituto de Computación, Universidad de la República, Montevideo, Uruguay
2 Universitat Politècnica de Catalunya, Barcelona, España

{amarotta, fpiedrab}@fing.edu.uy, aabello@lsi.upc.edu

Abstract. In this work we propose, for an environment where multidimensional
queries are made over multiple Data Marts, techniques for providing the user
with quality information about the retrieved data. This meta-information
behaves as an added value over the obtained information or as an additional
element to take into account during the proposition of the queries. The quality
properties considered are freshness, availability and accuracy. We provide a set
of formulas that allow estimating or calculating the values of these properties,
for the result of any multidimensional operation of a predefined basic set.

1 Introduction

The use of OLAP systems has become common practice, and in current times
enterprise managers have the possibility to analyze the whole enterprise information
with a multidimensional visualization. This information is obtained querying many
databases, whose data is prepared for this kind of analysis. These databases are called
Data Marts (DM). Each DM contains information that is represented in a multidimens-
ional manner, is oriented to certain subject of interest, and comes from other databases,
such as enterprise Data Warehouses or operational databases.

The user, who receives the answers of the queries submitted to the DMs, is quite far
from the generation of the information (unknowing how and when it was generated at
sources and loaded to DMs), therefore it would be extremely useful for him to count
with additional information. This meta-information would make him feel more
confident about the decisions he is making based on the information retrieved by the
queries and, on the other hand, would allow him to eventually reformulate his queries.

Data quality is being deeply studied since some years ago. There exists various
quality properties defined in the literature, such as completeness, accuracy,
accessibility, freshness, availability. In this direction, there is much work for the
particular case of information systems that are fed from multiple sources [1] [2] [3].
The possibility to provide a considerable amount of quality information to the users of
such systems, and its importance, is globally recognized.

The meta-information associated to the retrieved information from the DMs may
consist of a set of values corresponding to certain quality properties. We consider
freshness, availability and accuracy constitute an interesting group of quality
properties for this context, due to functional characteristics of the DMs and intrinsic
characteristics of the information received by the user. On one hand, each DM is
periodically maintained, which generates constraints in the DM availability and

128 A. Marotta, F. Piedrabuena, and A. Abelló

restricts the freshness of its data. On the other hand, the information obtained by the
user is the result of combinations of data coming from different sources, with
probably heterogeneous levels of accuracy, thus the accuracy of this information is
not a trivial meta-information and is a significant added value for the user.

As an example, consider a director of a multi-national enterprise, who needs
information about its sales throughout several countries. For obtaining it, he makes
queries over DMs belonging to the different countries’ subsidiaries. These DMs follow
certain standards of formats, codification, etc., so that their information can be
integrated by multidimensional operations. Suppose the director obtains sales amounts
corresponding to South-America, discriminated by products, for each month of the
current year. We believe that this person would be really grateful if he also obtained
meta-information such as when the involved data was loaded in the DMs and how
accurate it is. And still more, if previous to the execution of the query he is informed
about the availability of the data he is requiring, and alternative DMs for obtaining the
non-available information are suggested to him.

Some works about federations of OLAP systems and other technologies can be
found in the literature [4] [5]. This work is situated in the context of an environment
where multidimensional queries are made over multiple DMs, sometimes combining
various DMs in the same query. Our goal is to propose techniques for giving support
to users, providing them quality information about the information retrieved, as an
added value over the obtained information or as an additional element to consider
during the proposition of the queries.

Given a query over DMs, proposed by the user, and the freshness, availability and
accuracy values of each DM, the problem we address consists on calculating: (i)
availability of the needed DMs’ information, and (ii) freshness and accuracy of the
information resulting from the executed query. The techniques we propose use
existing proposals for quality properties propagation in Relational Algebra operations
[1][6][7] as a reference point. Nevertheless, they involve particular criteria that are
related with a multidimensional classification of the relational elements and other
particularities of the OLAP context.

The contribution of this work is the proposal of: (i) a specific scenario where
OLAP-queries results are enriched with quality meta-information, and (ii) techniques
for calculating the availability, freshness and accuracy values of information that was
obtained through application of OLAP queries to multiple DMs.

The rest of the paper is organized as follows. Section 2 presents the context of the
work, Section 3 presents the quality properties we use, in Section 4 we present our
proposal for quality evaluation, and finally in Section 5 we present the conclusions.

2 Context

We establish here a concrete scenario, for which we propose the quality management
techniques. First, we describe the basic scenario that we consider as starting point for
our work. After, we present the enriched scenario, which is the basic one enriched
with our proposal.

 Managing Quality Properties in a ROLAP Environment 129

2.1 Basic Scenario

We consider a ROLAP system (OLAP over RDBMS), where users execute
multidimensional queries. These queries are composed by multidimensional operations.
In this section we present the scenario and the multidimensional-operations set
considered.

OLAP functionality is characterized by dynamic multidimensional analysis of

consolidated enterprise data supporting end user analytical and navigational activities

(interactively exploring cubes). In an OLAP system each multidimensional operation
is a function that takes Cubes (a set of cells placed in an n-dimensional space) as
arguments and returns a Cube. “ROLAP” tools automatically generate a SQL query
according to the operations performed by the user, see Figure 1. Many times end users
navigate from Cube to Cube not just applying isolated operations but performing
sequences of operations; this sequence is performed as a sequence of SQL queries.

Fig. 1. ROLAP System Fig. 2. Relational implementation of multidimens-
ional concepts

Given that it does not exist any standard multidimensional algebra or data model,
we use YAM2 [9] multidimensional algebra for the set of operations, because it
provides a direct translation to SQL and it allows making any multidimensional
query; in [8] this algebra is stated as complete, which assures us the expressiveness
offered. Multidimensional operations are represented as SQL queries using a cube-
query template that was proposed in [8] for retrieving a Cell of data that conforms to a
Cube, from the RDBMS. Figure 2 shows the correspondences between an OLAP and
a ROLAP system, each multidimensional operation can be translated to a cube-query
and each cube can be translated to a relation.

Each DM in this scenario is a set of cubes that correspond to the same subject of
analysis, i.e. to the same fact. These cubes are represented by the Relational Model,
through the star (see Figure 3), snowflake (see Figure 4) or a hybrid schema. Completely
normalizing each Dimension we get a snowflake schema and not normalizing them at all
results in a star schema. We choose the generic approach, like in [10]. With respect to
the Fact, it is defined as a set of Cells, which are materializations of different levels of

130 A. Marotta, F. Piedrabuena, and A. Abelló

aggregations of the same fact. The Dimension Levels may be materialized according
to the materializations of the Cells, since the latter have FKs that must point to the
corresponding PKs in the Level relations.

Fig. 3. Star schema Fig. 4. Snowflake schema

We define two kinds of DMs, according to the volatility of their data, and we
assume that our system is organized this way: (1) Stable DM, contains only historical
information, whose fact-dates range between two certain dates in the past. Therefore,
this DM is not refreshed nor loaded any more. (2) Non-stable DM, contains
information that comes up to the present date. This DM is periodically refreshed.

Multidimensional Operations. We use the SQL template (Cube-query), for constructing
the different multidimensional operations.

Cube-query: RESULT = SELECT l1.ID, …, ln.ID, c.Measure1, …
FROM Cell c, Level1 l1, …, Leveln ln
WHERE c.key1 = l1.ID AND … AND c.keyn = ln.ID
GROUP BY l1.ID, …, ln.ID
ORDER BY l1.ID, …, ln.ID

The following are the intuitive operations definitions and the associated SQL code.

Dice. By means of a predicate P over a Dimension attribute, this operation allows to
choose the subset of points of interest out of the whole n-dimensional space.

SELECT l1.ID, …, ln.ID, c.Measure1, …
FROM Cell c, Level1 l1, …, Leveln ln
WHERE c.key1 = l1.ID AND … AND c.keyn = ln.ID
AND P
GROUP BY l1.ID, …, ln.ID
ORDER BY l1.ID, …, ln.ID

Projection. This just selects a subset of Measures from those available in the Cube.

SELECT l1.ID, …, ln.ID, c.Measure1, …
FROM Cell c, Level1 l1, …, Leveln ln
WHERE c.key1 = l1.ID AND … AND c.keyn = ln.ID
GROUP BY l1.ID, …, ln.ID
ORDER BY l1.ID, …, ln.ID

Drill-across. This operation changes the image set of the Cube. The n-dimensional
space remains exactly the same, only the cells placed in it change.

 Managing Quality Properties in a ROLAP Environment 131

SELECT l1.ID, …, ln.ID, c.Measure1, …,
c’.Measure1’, …
FROM Cell c,Cell’ c’, Level1 l1, …, Leveln ln
WHERE c.key1 = l1.ID AND … AND c.keyn = ln.ID
AND c’.key1 = l1.ID AND … AND c’.keyn = ln.ID
GROUP BY l1.ID, …, ln.ID
ORDER BY l1.ID, …, ln.ID

Roll-Up. It groups cells in the Cube based on an aggregation hierarchy, modifying the
granularity of data. Assuming the two levels are materialized separately, suppose
level1 and levelk are two contiguous levels from the same dimension (it exists a
foreign key from level1 to levelk), and we want to roll up from level l1 to level lk.

SELECT lk.ID, …, ln.ID, F(c.Measure1), …
FROM Cell c,Level1 l1, …, Leveln ln, Levelk lk
WHERE c.key1 = l1.ID AND … AND c.keyn = ln.ID
AND l1.keyk = lk.ID
GROUP BY lk.ID, …, ln.ID
ORDER BY lk.ID, …, ln.ID

Change Base. This operation reallocates exactly the same instances of a Cell in a new
n-dimensional space with exactly the same number of points. Thus, it actually
modifies the analysis dimensions used.

SELECT n1.ID, …, nn.ID, c.Measure1, …
FROM Cell c, Level1 l1, …, Leveln ln,
NewLevel1 n1, …, NewLeveln nn
WHERE c.key1 = l1.ID AND … AND c.keyn = ln.ID
AND l1.att1 = n1.ID AND … AND ln.attn = nn.ID
GROUP BY n1.ID, …, nn.ID
ORDER BY n1.ID, …, nn.ID

Union. We propose a variant of Union operation proposed in [8], because, is very
important to consider the possibility of combining cubes, which we know they have
the same schema and formats, but we do not know anything about the data they
contain. This operation performs the union of two n-dimensional identical cubes.

SELECT l1.ID, …, ln.ID, c.Measure1, …
FROM Cell c, Level1 l1, …, Leveln ln
WHERE c.key1 = l1.ID AND … AND c.keyn = ln.ID
GROUP BY l1.ID, …, ln.ID
ORDER BY l1.ID, …, ln.ID
UNION
SELECT l1.ID, …, ln.ID, c.Measure1, …
FROM Cell’ c, Level1’ l1, …, Leveln’ ln
WHERE c.key1 = l1.ID AND … AND c.keyn = ln.ID
GROUP BY l1.ID, …, ln.ID
ORDER BY l1.ID, …, ln.ID

2.2 Enriched Scenario

We enrich the scenario presented in last section with the quality evaluation of the
queries that are posed by the user. In the following, we present the way it would work.
The user of the OLAP system poses an OLAP query over various DMs. This query is
decomposed into various multidimensional operations and translated to SQL.

132 A. Marotta, F. Piedrabuena, and A. Abelló

Availability is calculated through the sequence of operations, knowing if the
information required by the user is available or not. The user is informed about it.
Suppose it is available. Next, the user asks the system for the estimations of freshness
and accuracy of the cube he will obtain. The system gives him a freshness value of the
cube and an accuracy value for each of the cube measures he will obtain. The user
decides to change a bit his query, excluding one of the participating DMs, and the
estimated values improve. Finally, the user executes the query, obtaining the cube
with its associated quality metadata, which was exactly calculated by the system. This
metadata includes, the cube freshness value, the accuracy values for each cube
measure, and also includes these values for each tuple that can be seen by the user if
he is interested in going more in detail.

System Metadata. To provide a comprehensive picture of the overall ROLAP system
we use an extension of the Federation Ontology for Multi-Source Information System
(MSIS) stated in [11]. It provides six metadata categories of federation information
(e.g. quality properties indicators, access control directives topology information),
which are highly flexible. In this context we only need two categories:

• Data Quality: This category defines the data quality properties of the DM data and
the multidimensional data result.

• Source Quality of Service: This category defines the quality properties of the
service of each DM. The DM resolves each multidimensional operation by means
of a process or service.

Each DM provides its own metadata to be used by the OLAP system.

3 Quality Properties

The quality properties we have chosen for our scenario are freshness, availability and
accuracy. This choice is mainly due to two reasons: the usefulness that they may have
for the DM users, and the existence of previous work about them that can be applied
to our context. Based on existing approaches and definitions of these properties we
propose one specific definition for each one, which we think are the most suitable for
our needs. Besides each definition we state the level of granularity at which we apply
the property, e.g. a whole DM, a cube, a table, each tuple, etc.

3.1 Freshness

Several definitions can be found in the literature for quality properties related to the
age of the information. Some of them can be found in [12][13][1], while in [14] they
present a summary and classification of a wide set of existing approaches for this
property. For this work we propose the definition: Freshness is the time elapsed since
the data was loaded in the DM until it is received by the user through a query.

We propose for the assignment of freshness values to the system, a DM
granularity, a cube granularity and in some cases a tuple granularity. At each DM we
do not manage tuple granularity, because we assume it is entirely loaded on a periodic

 Managing Quality Properties in a ROLAP Environment 133

basis, therefore it would be useless to have the possibility of different freshness values
in different portions of the DM.

The metadata needed for freshness information at the DM is the following:

• Loading Period (lp): An integer that represents the quantity of hours passed
between the starting time of two loading processes (period between loadings).

• Loading Duration (ldur): An integer that represents an approximation of the
quantity of hours that passes between the starting time of the loading process (the
downing of the DM service) and its ending time (the starting service instant).

• Last Loading Date/Time (lastl): A decimal that represents the date and time when
the last loading process was started.

• Stable-or-Not (st): A boolean that indicates if the DM is stable, i.e. if the DM is not
refreshed because its information should cover just until certain date (as we
explained in Section 2.1).

In the case the DM is stable:

lp = ldur = 0 .

lastl = NOW .

(1)

(2)

where NOW is a special value, which means the actual moment.
The metadata needed for freshness information in the whole system is the

following:
For each fact table (cube):

• Freshness Value (fv): An integer that represents the quantity of hours elapsed since
the table data was loaded in the DM.

For each fact table, for each tuple:

• Freshness Value by Tuple (fv_by_tuple): An integer that represents the quantity of
hours elapsed since the tuple was loaded in the DM.

The freshness information at the DM allows us to calculate the exact value of
freshness at a certain moment at the DM (fv), and also the maximum and minimum
freshness values (maxfv and minfv) that are possible at the DM.

We calculate these DM values through the following formulas:

fv = round(actual_datetime – lastl) .

maxfv = lp + ldur .

minfv = ldur .

(3)

(4)

(5)

Note that for stable DMs:

fv = maxfv = minfv = 0 . (6)

Each fv_by_tuple of each DM fact table is set to the fv of the DM.

3.2 Accuracy

The term accuracy is frequently used to describe many different aspects related to the
data itself. Semantic correctness, syntactic correctness, precision and fuzziness are

134 A. Marotta, F. Piedrabuena, and A. Abelló

some of the concepts related to accuracy that are used with similar intentions [1], [6],
[15], [16]. For this work we propose the definition: Accuracy is the probability of an
attribute value to be correct. A value is correct if corresponds to reality.

The granularity we use for this property is at attribute level, but we manage
accuracy information only for the measure attributes. This is because we consider this
kind of attributes is the most relevant for the OLAP analysis, and also this restriction
allows us to find solutions that are more specific to certain type of information. For
each measure attribute we manage DM, cube and, sometimes, tuple granularity. At
each DM we do not manage tuple granularity, because the measurement of accuracy
at the DMs could not be made for each value of the attributes, since they are numeric
values and cannot be easily verified (considering errors generated by wrong
digitations). For example, it is not possible to use tools such as dictionaries or look-up
tables, which allow verifying string values belonging to determined domains.
Therefore, we suppose that the accuracy values at the DMs are estimated through
statistic methods or by people involved in the generation of the data.

The metadata needed for accuracy information is the following:
For each fact table, for each measure attribute:

• Accuracy Value (av): A decimal number between 0 and 1 that represents the
probability of being correct for the values of the attribute.

For each fact table, for each measure attribute, for each tuple:

• Accuracy Value by Tuple (av_by_tuple): A decimal number between 0 and 1 that
represents the probability of being correct for the value.

At the DMs, each av_by_tuple of each measure of the fact tables is set to the av of the
measure attribute.

3.3 Availability

Availability is a measure of a system or service readiness to perform its function
when it is needed [17], [12]. For this work we propose the definition: Availability
indicates if a service is ready for use at a given instant.

We assume that the only factor that influences the availability of the DM is the
loading process and that the DM is totally unavailable during this process. We
manage a DM granularity and in the rest of the system a cube granularity.

The metadata needed for availability information at the DM is the same as for
freshness: i) loading period (lp), ii) loading duration (ldur), iii) last loading date/time
(lastl) and iv) stable-or-not (st).

The metadata needed for availability information in the whole system is the
following:

• Avalilability Value (vv): A Boolean that represents if the DM is available (vv =
TRUE) or not (vv = FALSE).

The metadata at the DM allows us to calculate the availability of the DM at a
certain moment (vv). We calculate this value through the following formula:

vv = actual_datetime >= (lastl + ldur) . (7)

 Managing Quality Properties in a ROLAP Environment 135

Note that for stable DMs:

vv = true(due to lastl = actual_datetime and ldur = 0) . (8)

4 Quality Evaluation of User Queries’ Results

Our goal is to determine how to obtain the quality values of the information retrieved
by a query in our defined context. We propose techniques for two kinds of quality
evaluation: (i) quality values calculation, after the query is executed, and (ii) quality
values estimation, before the query is executed. For the calculation, we need to manage
a granularity of tuple, since it takes into account the resulting tuples of each operation.
In contrast, for the estimation we manage a cube granularity, since we do not need the
information about the obtained tuples in each operation.

We provide a formula for each quality property and operation. For a sequence of
operations, the formulas are composed to obtain the quality values of the final cube.
The estimations and calculations are done taking into account the SQL specifications
for each multidimensional operation given in Section 2.1. The formulas we propose
are based on previously proposed formulas for the Relational Algebra (RA) operators
[1] [6] [7]. However, they take into account three main aspects that characterize our
context: (i) the type of the elements that participate in each operation. Different types
of relational elements are distinguished in the operations specifications. A relation can
be a Cell (or fact table) or a Level (a table containing dimension data). An attribute
can be a Measure, the key of a dimension level or some other dimension attribute. (ii)
the relevance that each type of element has in the resulting quality. We state that the
quality of the fact tables determines the quality of the user queries results. Therefore
the fact tables and measure attributes must have the greatest influence in the quality
evaluation formulas. (iii) the granularity managed. The OLAP context particularities
suggest us certain granularities for the quality values, which are suitable and useful.
We consider the cube granularity because each multidimensional operation result is a
cube (in particular the user query result). We also work with the tuple granularity and
in the case of accuracy, we manage the granularity at the level of each measure
attribute.

For the following sub-sections, consider the SQL specifications for the multi-
dimensional operations presented in Section 2.1.

4.1 Estimations

In this section we present, for each multidimensional operation, a general formula for
estimating the quality value of the result of its application.

Freshness. In this context, it is not worth considering the cost (duration) of the
operations because it is depreciable in comparison to the loading time of a DM and to
the period of time between two loadings. We consider facts’ freshness relevant only,
since we assume dimensions have rather stable information.

136 A. Marotta, F. Piedrabuena, and A. Abelló

Estimations for RA Operations:

• Projection, Selection, Aggregation: The original fv is maintained by these operations.
• Join (R,S), Union (R,S):

fv(Result) = max(fv(R), fv(S)) . (9)

Estimations for Multidimensional Operations:

• Dice, Roll-Up, Projection, Change Base: The result has the same freshness value as
the input fact table. Dice, Roll-Up, and Change Base operations involve joins
between the fact table and dimension tables. However, the freshness of the
dimensions does not affect the resulting freshness.

fv(Result) = fv(Cell) . (10)

• Drill Across: It involves a join between the fact table of the original cube (Cell)
and another fact table (Cell’). The dimensions that are also involved in the join, do
not affect the resulting freshness.

fv(Result) = max(fv(Cell), fv(Cell’)) . (11)

• Union: The union relational operator is applied over two sets of tuples from
different fact tables. The formula is the same as (11).

Accuracy. We consider as relevant the facts’ accuracy and not the dimensions’ one
because the dimensions’ values are rather stable and we assume they have a good
accuracy, while the quantity of measures’ values is constantly growing and these
values are the main basis for the decision making process.

Estimations for RA Operations:

• Projection, Selection, Aggregation: The original av is maintained by these operations.
• Join (R,S):
 av(Result) = av(R) * av(S) . (12)

• Union (R,S): A weighted average of input tables’ accuracy values, according to the
tuple quantity of each input table, is done.

av(Result) = (av(R) * |R| + av(S) * |S|) / |R| + |S| . (13)

Note that these estimations are proposed for a relation granularity.

Estimations for Multidimensional Operations: In this case, the join operations never
affect the resulting accuracy values due to the granularity we manage, therefore we do
not apply the estimation proposed for the RA join. When there is a join between fact
tables, each measure attribute maintains its accuracy value.

• Dice, Roll-Up, Projection, Change Base: These operations maintain the accuracy
values for each measure attribute.

av(Result, Measurei) = av(Cell, Measurei) . (14)

 Managing Quality Properties in a ROLAP Environment 137

• Drill Across: It maintains the accuracy values for each measure attribute.

av(Result, Cell.Measurei) = av(Cell, Measurei) .

av(Result, Cell’.Measurej) = av(Cell’, Measurej) .
(15)

• Union: For each measure attribute, we do a weighted average as in (13).

av(Result, Measurei) = (av(Cell, Measurei) * |Cell| +

av(Cell’, Measurei) * |Cell’|) / |Cell| + |Cell’| .
(16)

Availability. Given a multidimensional operation, for availability to be true, we need
that all necessary data for answering the corresponding SQL query are available.
Therefore, in the estimation of this property the dimensions’ information has the same
incidence as the facts’ information.

• Projection, Roll-Up: These operations have as input only one fact table with one
associated availability value.

vv(Result) = vv(Cell) . (17)

• Dice: This operation includes a predicate P over an attribute of a dimension table,
which may not be its key. Therefore, for executing this operation we need not only
the availability of the fact table, but also the availability of the mentioned
dimension table. However, all these tables belong to the same DM, therefore,
assuring availability of the fact table is enough. The formula is the same as (17).

• Change Base: For this operation not only the fact table must be available, but also
the original and new dimension tables, so that the join between them can be done.
The new dimension tables may belong to a different DM.

vv(Result) = vv(Cell) AND vv(NewLevel1) AND … AND

vv(NewLeveln) .
(18)

• Drill Across, Union: In these operations the resulting data comes from both input
fact tables, which may belong to different DMs. Therefore, the availability value of
the result is equal to the “AND” of the availability values of the input fact tables.

vv(Result) = vv(Cell) AND vv(Cell’) . (19)

4.2 Calculations

In this section we present, for each multidimensional operation, a general formula for
calculating properties values of the result.

For calculations we use a tuple granularity, thus the property values are affected by
an operation when it generates one tuple from the combination of two or more tuples.
Therefore, the RA operations that can affect calculations are join and aggregation.

We use the ideas of estimations for RA operations existing in the literature for the
cases of join and union, but in most cases we propose calculations that are specific for
our context and granularity.

138 A. Marotta, F. Piedrabuena, and A. Abelló

Freshness
Calculation of fv_by_tuple. After the application of a multidimensional operation, we
can calculate the fv by tuple.

• Projection, Change Base, Dice: These operations do not affect tuples’ freshness
values. Dice and Change Base operations involve joins between fact table and
dimension tables. However, the freshness of dimension tuples does not affect
freshness of the resulting tuples.

fv_by_tuple(t1) = fv_by_tuple(t2) . (20)

for all <t1,t2>, where t1 is a Result tuple and t2 is the corresponding Cell tuple.
• Union: The union relational operator is applied over two sets of tuples from

different fact tables, however, when managing tuple granularity, the freshness
values are not affected.

fv_by_tuple(t1) = fv_by_tuple(t2) .

fv_by_tuple(t3) = fv_by_tuple(t4) . (21)

for all <t1,t2> where t1 is a Result tuple and t2 is the corresponding Cell tuple, for all
<t3,t4>, where t3 is a Result tuple and t4 is the corresponding Cell’ tuple.

• Roll-Up: This operation generates tuples that are aggregations from input tuples.

fv_by_tuple(t) = max(fv_by_tuple(u)) . (22)

for all t, Result tuple, for all u ∈ T, where T is the tuple set of Cell grouped in t.
• Drill Across: Each resulting tuple is generated by a join that involves two fact

tables (Cell and Cell’), therefore its freshness is calculated from the freshness of
the corresponding tuples of the input fact tables.

fv_by_tuple(t) = max(fv_by_tuple(u), fv_by_tuple(u’)) . (23)

for all t, tuple of Result, where u ∈ Cell, and u’ ∈ Cell’, are the tuples whose
values participate in t.

Calculation of fv. After the application of a multidimensional operation, we can
calculate the fv of a relation from the fv_by_tuple of its tuples.

fv(Result) = max(fv_by_tuple(t)) . (24)

for all t, tuple of Result.
Note that in the case of Projection and Change Base the fv of the cube is maintained,

while in the case of the other operations it may change.

Accuracy
Calculation of av_by_tuple. Since the granularity managed for accuracy is of tuple and
attribute, the RA join operator does not affect the accuracy of the resulting tuples. The
value of each measure attribute of the result comes from only one of the input fact
tables, therefore the accuracy of each tuple for each measure attribute is maintained by
the join.

 Managing Quality Properties in a ROLAP Environment 139

• Projection, Change Base, Dice: These operations do not affect the tuples’ accuracy
values for each measure attribute.

av_by_tuple(t1[Measurei]) = av_by_tuple(t2[Measurei]) . (25)

for all <t1,t2>, where t1 is a tuple of Result and t2 is the matching tuple of Cell.
• Union: Analogously to the case of freshness, the union relational operator is

applied but it does not affect tuples’ accuracy values. The accuracy of each tuple in
each measure of the result is the same it was in the corresponding input table.

av_by_tuple(t1[Measurei]) = av_by_tuple(t2[Measurei]) .

 av_by_tuple(t3[Measurej]) = av_by_tuple(t4[Measurej]) . (26)

for all <t1,t2>, where t1 is a tuple of Result and t2 is the matching tuple of Cell, for
all <t3,t4>, where t3 is a tuple of Result and t4 is the matching tuple of Cell’.

• Drill Across: It does not affect tuples’ accuracy values for each measure attribute.

av_by_tuple(t1[Measurei])=av_by_tuple(t2[Measurei]) .

av_by_tuple(t1[Measurej])=av_by_tuple(t3[Measurej]) . (27)

for all <t1,t2,t3>, where t1 is a tuple of Result, t2 is the corresponding tuple of Cell,
and t3 is the corresponding tuple of Cell’.

• Roll-Up: This operation generates tuples that are aggregations of input tuples. This
calculation is made with the same criteria we use in the calculation of the av of a
relation (we explain it below).

av_by_tuple(t[Measurei]) = (av_by_tuple(u1[Measurei]) *
digits(u1[Measurei]) + … + av_by_tuple(un[Measurei]) *

digits(un[Measurei])) / digits(u1[Measurei])+…+digits(un[Measurei]) .
(28)

for all t, tuple of Result, for all ui ∈ T, where T is the set of tuples of Cell grouped
in t, where ui[Measurei] is the value of the attribute Measurei in tuple ui, and
digits(n) returns the quantity of digits of number n.

Calculation of av: The av of a relation is calculated from the av_by_tuple of its tuples.
For each measure attribute, we make a weighted average, taking into account the values
of the measure attribute (multiplying by the number of digits), since we consider that the
accuracy of greater values must have more influence on the accuracy of the whole table.

av(Result,Measurei) = (av_by_tuple(Cell, Measurei,t1) *
digits(t1.Measurei) +…+ av_by_tuple(Cell, Measurei,tn) *

digits(tn.Measurei)) / digits(t1.Measurei) +…+ digits(tn.Measurei) .
(29)

where t1 … tn are all the tuples of Result, ti.Measurei is the value of the attribute
Measurei in tuple ti, and digits(n) returns the quantity of digits of number n.

Note that in the case of Projection and Change Base the av of each measure is
maintained, while in the cases of the other operations it may change.

Availability. In our approach, the calculation of this property has no sense because
the availability values never depend on the tuples obtained in each operation, but only
on the DMs that are involved in the query. Therefore, only estimations can be done.

140 A. Marotta, F. Piedrabuena, and A. Abelló

5 Conclusion

In this work we propose a mechanism for adding quality properties meta-information
to an OLAP system. We state a very specific scenario, where the system is
implemented as ROLAP and each DM consists of a set of cubes that correspond to the
same fact. For the definition of this scenario, we base on the work presented in [8],
[10]. The quality properties we manage are freshness, accuracy and availability. We
propose a set of formulas for estimating and calculating the values of these properties
for any possible multidimensional query posed by the user. Estimations and
calculations are both useful for the user. Estimations can be used for changing the
query so that a better quality is obtained, and calculations provide a more exact meta-
information that may be very valuable at the moment of making decisions.

For the performed study, we focused on a given set of SQL queries and on data
with certain given characteristics, e.g. the measure attributes. Such preconditions
allowed us to obtain interesting results, such as some formulas for accuracy that take
into account the values of the attributes. They also showed how some operations in
general do not affect the quality values, while other ones have a great incidence.

This study also shows the feasibility of applying techniques of quality evaluation to
an OLAP environment, emphasizing on the main characteristics of these systems.

Future work will focus on considering user quality requirements and managing the
system quality for maintaining their satisfaction. This problem leads to extend the
scope of our environment, such that the sources of the DMs and the data
transformations between them be considered. Another aspect that may be addressed is
the extension of the present study to other quality properties.

Acknowledgements

Our work has been supported by the Spanish Research Program PRONTIC and
FEDER under project TIN2005-05406, and by Comisión Sectorial de Investigación
Científica from Universidad de la República, Montevideo, Uruguay.

References

1. Naumann, F.; Leser, U.; Freytag, J.C.: Quality-driven Integration of Heterogenous
Information Systems. VLDB 1999: 447-458

2. Marotta, A.; Ruggia, R.: Quality Management in Muti-Source Information Systems. II
Workshop de Bases de Datos, Jornadas Chilenas de Computación (JCC’03), Chile. Nov. 03

3. Marotta, A.; Ruggia, R.: Managing Source Quality Changes in Data Integration Systems.
Second International Workshop on Data and Information Quality (DIQ’05) (in conjunction
with CAISE). June, 14th. 2005, Porto, Portugal

4. Bach Pedersen, T.; Shoshani, A.; Gu, J.; Jensen, C.: Extending OLAP Querying to External
Object Databases. Int. Conf. on Information and Knowledge Management. CIKM 2000.

5. Pedersen, D.; Riis, K.; Bach Pedersen, T.: Query optimization for OLAP-XML federations.
ACM Fifth International Workshop on Data Warehousing and OLAP, Nov. 2002, USA.

6. Motro, A.; Rakov, I.: Estimating the Quality of Databases. International Conference on
Flexible Query Answering Systems. FQAS 1998: 298-307

 Managing Quality Properties in a ROLAP Environment 141

7. Peralta, V. ; Ruggia, R.; Kedad, Z.; Bouzeghoub, M.: A Framework for Data Quality
Evaluation in a Data Integration System. 19º Simposio Brasileiro de Banco de Dados
(SBBD’2004). Brasil, October 2004

8. Abelló, A.; Samos, J.; Saltor, F.: Implementing Operations to Navigate Semantic Star
Schemas (© ACM). In 6th International Workshop on Data Warehousing and OLAP
(DOLAP 2003). New Orleans (USA), November 2003.

9. Abelló, A.; Samos J.; Saltor F.: YAM2 (Yet Another Multidimensional Model): An
Extension of UML. International Database Engineering & Applications Symposium,
IDEAS'02, July 17-19, 2002, Edmonton, Canada.

10. Romero, O.; Abelló, A.: Improving automatic SQL translation for ROLAP tools. In
Proceedings of Jornadas de Ingeniería del Software y Bases de Datos (JISBD 2005). Granada
(Spain), September 2005. Pages 123-130. Thomson Editores, ISBN 84-9732-434-X

11. Piedrabuena, F.; Tercia, S.; Vazquez, G.: Federation Ontology for Multi-Source Information
Systems. Internal Report. Instituto de Computación, Facultad de Ingeniería, Uruguay. 2005

12. Lee, Y.W.; Strong, D.M.; Kahn, B.K.; Wang, R.Y.: AIMQ: A Methodology for
Information Quality Assessment. Information & Management, published by Elsevier
Science (North Holland). (Accepted in November 2001)

13. Theodoratos, D.; Bouzeghoub, M.: Data Currency Quality Factors in Data Warehouse
Design. In Proc. of the Int. Workshop on Design and Management of Data Warehouses
(DMDW'99), Germany, 1999.

14. Bouzeghoub, M.; Peralta, V.: A Framework for Analysis of Data Freshness. 1st Int.
Workshop on Information Quality in Information Systems (IQIS). Paris, France, June 2004.

15. Motro, A.: Accommodating Imprecision in Database Systems: Issues and Solutions. ACM
SIGMOD Record (Special issue on directions for future DBMS research and
development), Vol. 19, No. 4, December 1990, pp. 69--74

16. Strong, D.M.; Lee, Y.W.; Wang, R.Y.: Data Quality in Context. Communications of the
ACM. May 1997/Vol.40, No.5

17. Availability. http://availability.com/. Last accessed: Oct. 9, 2005.

E. Dubois and K. Pohl (Eds.): CAiSE 2006, LNCS 4001, pp. 142 – 156, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Comprehensible Answers to Précis Queries

Alkis Simitsis1 and Georgia Koutrika2

1 National Technical University of Athens,
Department of Electrical and Computer Engineering,

Athens, Greece
asimi@dbnet.ece.ntua.gr

2 University of Athens,
Department of Computer Science,

Athens, Greece
koutrika@di.uoa.gr

Abstract. Users without knowledge of schemas or query languages have
difficulties in accessing information stored in databases. Commercial and
research efforts have focused on keyword-based searches. Among them, précis
queries generate entire multi-relation databases, which are logical subsets of
existing ones, instead of individual relations. The logical database subset
contains not only items directly related to the query selections but also items
implicitly related to them in various ways. Earlier work has identified the need
of providing the naïve user with meaningful answers to his questions and has
suggested the translation of précis query answer in narrative form. In this paper,
we present a semi-automatic method that translates the relational output of a
précis query into a synthesis of results. We describe a translator engine that uses
a template mechanism for generating a précis in a narrative form through a set
of reusable templates.

1 Introduction

The need for facilitating access to information stored in databases has been early
recognized in the research community with initial efforts dating back to seventies [7].
Emergence of the World Wide Web has made information access possible to a
growing number of people. A large fraction of information resides in databases, as
libraries, museums, and other organizations publish their electronic contents on the
Web. In the same time, most users have no specific knowledge of schemas or
structured query languages for accessing information stored in a database. In this
context, the need for facilitating access to information stored in databases becomes
increasingly more important.

Existing efforts have mainly focused on facilitating querying over relational
databases proposing either handling natural language queries [2, 13, 16] or free-form,
i.e. keyword-based, queries [1, 18]. In this work, we focus on a relative, still novel,
issue of generating meaningful answers to queries and we propose an approach to
translate the relational output of a query into a form that resembles narration and is
thus more comprehensible to the naïve user.

 Comprehensible Answers to Précis Queries 143

In particular, we consider the output of précis queries [11]. These are free-form
queries that generate entire multi-relation databases, which are logical subsets of
existing ones, instead of individual relations. The logical subset of the database
generated by a précis query contains not only items directly related to the query
selections but also items implicitly related to them in various ways. Logical database
subsets are useful in many cases. Given large databases, enterprises often need
smaller subsets that conform to the original schema and satisfy all of its constraints in
order to perform realistic tests of new applications before deploying them to
production. Likewise, software vendors need such smaller but correct databases to
demonstrate new software product functionality. Additionally, non-expert users
would rather expect a summary or précis of the information contained in a logical
subset. For instance, a more meaningful response than the classic “tabular-form”
answer to a query that asks about “Woody Allen” might be in the form of the
following précis:

“Woody Allen was born on December 1, 1935 in Brooklyn, New York, USA.
As a director, Woody Allen’s work includes Match Point (2005), Melinda
and Melinda (2004), Anything Else (2003). As an actor, Woody Allen’s work
includes Hollywood Ending (2002), The Curse of the Jade Scorpion (2001).”

A précis may be incomplete in many ways; for example, the abovementioned
précis includes a non-exhaustive list of Woody Allen’s works. Nevertheless, it
provides sufficient information in a comprehensible way to help one learn about
“Woody Allen” and possibly identify new keywords for further searching. For
example, one may decide to explicitly issue a new query about “Anything Else” or
implicitly by following underlined topics (hyperlinks) to pages containing more
relevant information.

Contributions. This paper deals with the presentation of a précis answer to a
keyword query over a relational database. In brief, the contributions of this paper are
the following.

− We extend the functionality of précis queries, by enriching the model with labels
attached to its constructs. We propose a formal way to compose these labels
through a simple to use language.

− We present a mechanism for the definition and instantiation of template labels.
− We present a semi-automatic method that translates the relational output of a précis

query into a narrative synthesis of results.

Outline. The rest of the paper is structured as follows. Section 2 discusses related
work. Section 3 describes the general framework of précis queries. Section 4 presents
a technique for the translation of the information produced by précis queries in a
narrative form. Finally, Section 5 concludes our results with a prospect to the future.

2 Related Work

The need for free-form queries has been early recognized in the context of databases
[18]. With the advent of the World Wide Web, the idea has been revisited. Several

144 A. Simitsis and G. Koutrika

research efforts have emerged for keyword searching over relational [1, 3, 8, 12] and
XML data [5, 6, 9]. Oracle 9i Text [19], Microsoft SQL Server [15] and IBM DB2
Text Information Extender [10] create full text indexes on text attributes of relations
and then perform keyword queries.

Existing keyword searching approaches focus on finding and possibly
interconnecting tuples in relations that contain the query terms. For example, the
answer for “Woody Allen” would be in the form of relation-attribute pair, such as
(Director, Name). In many cases, this answer may suffice, but in many practical
scenarios it conveys little information about “Woody Allen”. A more complete
answer containing, for instance, information about this director's movies and awards
would be more meaningful and useful instead. In the spirit of the above, recently,
précis queries have been proposed [11]. These are free-form queries that instead of
simply locating and connecting values in tables, they also consider information
around these values that may be related to them. Therefore, the answer to a précis
query might also contain information found in other parts of the database, e.g., movies
directed by Woody Allen. This information needs to be “assembled” -in perhaps
unforeseen ways- by joining tuples from multiple relations. Consequently, the answer
to a précis query is a whole new database, a logical database subset, derived from the
original database compared to flattened out results returned by other approaches.

As we have already mentioned, logical database subsets are useful in many cases.
However, naïve users would rather prefer a friendly representation of the information
contained in a logical subset, without necessarily understanding its relational
character. In earlier work [11], the importance of such representation constructed
based on information conveyed by the database graph, has been suggested. This is
inspired by BAROQUE [17] and shields the user from the particularities of the
underlying data schema and model in use. BAROQUE uses a network representation
of a database and defined several types of relationships in order to support functions
that scan this network. However, it only locates the position and the relationships in
which an item participates. As the database representation adopted does not include
joins, it cannot assemble answers split into several relations.

The problem of facilitating the naïve user has been thoroughly discussed in the
field of natural language processing (NLP). For the last couple of decades, several
works are presented concerning NL Querying [26, 14], NL and Schema Design
[22, 13, 4], NL and DB interfaces [16, 2], and Question Answering [24, 21]. As far as
we are aware of, related literature on NL and databases, has focused on totally
different issues such as the interpretation of users’ phrasal questions to a database
language, e.g., SQL, or to the automatic database design, e.g., with the usage of
ontologies [23]. There exist some recent efforts that use phrasal patterns or question
templates to facilitate the answering procedure [16, 21]. Also, there exists a recent
experimental study [26] that compares NL Querying versus keyword search and
supports the usefulness of the latter especially in the presence of complex queries.

This paper deals with the generation of meaningful answers from keyword queries
and develops an approach to translate the relational output of a query into a form that
resembles narration and is thus more comprehensible to a user. The process resembles
those involved in handling natural language query over relational databases in that

 Comprehensible Answers to Précis Queries 145

they both involve some amount of additional predefinitions for the meanings
represented by relations, attributes and primary-to-foreign key joins. However, natural
language query processing is more complex, since it has to handle ambiguities in
natural language syntax and semantics whereas our approach uses well defined
templates to rephrase relations and tuples. Furthermore, it has the advantage that it is
not limited by any dictionary, because it concerns relational databases where the
schemata are predictable and familiar to an expert, e.g., the dba; thus the template
mechanism introduced later in this paper is sufficient for our aim. Moreover, précis
queries are keyword queries which can lead to complex SQL queries whose form is
only limited by the database schema graph. Works such [21] use a set of pre-defined
question patterns, which cannot claim for completeness, i.e. this set is difficult to
capture any possible query over a given database. Furthermore, these works produce
pre-specified answers, where only the values in the patterns change. This is in contrast
to précis queries, which construct logical subsets on demand and use templates and
constructs of sentences defined on the constructs of the database graph, thus
generating dynamic answers. This characteristic of précis queries also enables
template multi-utilization.

In this paper, we built upon the ideas suggested in [11] and we elaborate on the
idea of translating a logical database subset generated by a précis query into a
narrative piece of information.

3 The Précis Query Framework

The purpose of this section is to provide essential background information on précis
queries. First, we describe how a database can be modeled as a graph, and we
introduce an example that we refer to throughout the paper. Next, we describe the
précis query model and the system architecture of our framework.

3.1 Preliminaries

We consider the database schema graph G(V,E) as a directed graph corresponding to a
database schema D. Nodes in V are: (a) relation nodes, R, one for each relation in the
schema; and (b) attribute nodes, A, one for each attribute of each relation in the
schema. Edges in E are: (a) projection edges, , each one connects an attribute node
with its container relation node, representing the possible projection of the attribute in
the answer; and (b) join edges, J, from a relation node to another relation node,
representing a potential join between these relations. These could be joins that arise
naturally due to foreign key constraints, but could also be other joins that are
meaningful to a domain expert. Joins are directed as explained later. For simplicity in
presentation, we assume that (a) primary keys are not composite; thus, an attribute
from a relation joins to an attribute from another relation, and (b) these attributes have
the same name. The common name of the joining attributes is tagged on the
respective join edge between the two relations.

Therefore, a database graph is formally defined as a directed graph G(V,E), where:
V = R∪A, and E = ∪J. The notation for its graphical representation is given in Fig. 1.

146 A. Simitsis and G. Koutrika

A weight, w, is assigned to each edge of the graph G. This is a real number in [0, 1]
representing the significance of the connection between the nodes involved. Weight
equal to 1 expresses strong relationship; in other words, if one node of the edge
appears in an answer, then the edge should be taken into account making the other
node appear as well. If a weight equals to 0, occurrence of one node of the edge in an
answer does not imply occurrence of the other node. Two relation nodes could be
connected through two different join edges, in the two possible directions, between
the same pair of attributes, but carrying different weights. A directed join edge
expresses the dependence of the source relation of the join on the target. The source
relation indicates the relation already considered for the answer and the target
corresponds to the relation that may be included influencing the final result, if the join
is applied. For simplicity, we assume that there is at most one directed edge from one
node to the same destination node.

Fig. 1. Representation of graph elements

A directed path between two relation nodes, comprising adjacent join edges,
represents the “implicit” join between these relations. Similarly, a directed path
between a relation node and an attribute node, comprising a set of adjacent join edges
and a projection edge represents the “implicit” projection of the attribute on this
relation. The weight of a path is a function of the weight of constituent edges. This
function should satisfy the condition that the weight decreases as the length of the
path increases, based on human intuition and cognitive evidence.

DIRECTOR(did,dname,blocation,
 bdate)
THEATRE(tid,name,phone,region)
PLAY (tid,mid,date),
GENRE(mid,genre)
MOVIE(mid,title,year,did)
CAST (mid,aid,role)
ACTOR(aid,aname,blocation,
 bdate)

Fig. 2. An example database graph

 Comprehensible Answers to Précis Queries 147

Example. Consider a movies database1 described by the schema presented in Fig. 2;
primary keys are underlined. For instance, observe the two directed edges between
MOVIE and GENRE. Movies and genres are related but one may consider that genres
are more dependent on movies than the other way around. In other words, an answer
regarding a genre should always contain information about related movies, while an
answer regarding a movie may not necessarily contain information about its genres.
For this reason, the weight of the edge from GENRE to MOVIE is set to 1, while the
weight of the edge from MOVIE to GENRE is set to 0.9.

Using different weights on the graph’s edges allows constructing different answers
to the same query. Weights may be provided in different ways. They may be set by a
user at query time using an appropriate user interface that enables interactive
exploration of the contents of a database. A user may explore different regions of the
database starting, for example, from those containing objects closely related to the
topic of a query and progressively expanding to parts of the database containing
objects more loosely related to it. Alternatively, sets of weights corresponding to
different queries or groups of users may be stored in the system [20]. For instance,
different sets would capture preferences of movie reviewers and filmgoers. The
former may be typically interested in in-depth, detailed answers; using an appropriate
set of weights would enable these users to explore larger parts of the database around
a single précis query. On the other hand, cinema fans usually prefer shorter answers.
In this case, a different set of weights would allow producing answers containing only
highly related objects. Finally, multiple sets of weights corresponding to different user
profiles may be stored in the system. Using user-specific weights allows generating
personalized answers. For example, a user may be interested in the region where a
theatre is located, while another may be interested in a theatre’s phone.

However, the approach presented is general in that it does not depend on a specific
weight-model.

3.2 Précis Query Model

Consider a database D properly annotated with a set of weights and a précis query Q,
which is a set of tokens, i.e. Q={k1,k2,…,km}. We define as initial relation any
database relation that contains at least one tuple in which one or more query tokens
have been found. A tuple containing at least one query token is called initial tuple.

A logical database subset D’ of D satisfies the following:

− The set of relation names in D’ is a subset of that in the original database D.
− For each relation Ri’ in the result D’, its set of attributes in D’ is a subset of its set

of attributes in D.
− For each relation Ri’ in the result D’, the set of its tuples is a subset of the set of

tuples in the original relation Ri in D (when projected on the set of attributes that
are present in the result).

The result of applying query Q on a database D given a set of constraints C is a
logical database subset D’ of D, such that D’ contains initial tuples for Q and any other
tuple in D that can be transitively reached by (foreign-key) joins on D starting from

1 www.imdb.com

148 A. Simitsis and G. Koutrika

some initial tuple, subject to the constraints in C. Possible constraints in C could
include the maximum number of joins, the maximum number of tuples in D and so
forth. Using different constraints allows generating different answers for the same
query and the same set of weights over the edges of the database graph. Similarly to
weights, constraints may be specified at query time, or be pre-stored in the system.

3.3 System Architecture

Given a précis query Q={k1,k2,…,km}, the following steps are performed in order to
generate an answer.

A keyword may be found in more than one tuples and attributes of a single relation
and in more than one relations. For this reason, the system uses an inverted index that
returns for each term ki in Q, a list of all its occurrences. A single keyword occurrence
is a tuple <Rj,Alj,Tidlj>, where Tidlj is the id of a tuple in relation Rj that contains
keyword ki as part of the value of attribute Alj. If no tuples contain the query tokens,
the following steps are not executed.

Next, the system maps all initial relations returned from the inverted index on the
database schema graph G and tries to find which part of the graph may contain
information related to Q. The output of this step is the schema of the logical database
subset D’ involving initial relations and relations transitively joining to the former and
a subset of their attributes that should be present in the result according to the
constraints provided.

Finally, the system populates relations in the logical database subset starting from
initial relations. More tuples from other relations are retrieved by join queries starting
from initial relations and transitively expanding on the logical database subset schema
graph. At the end of this phase, the logical database subset is produced.

More technical details for the two steps above, along with the algorithms involved,
can be found in [11]. As we have already discussed, in this work, we are mainly
concerned with the exploitation of the information stored in the logical database
subset. In what follows, we take a step further towards facilitating access of
information in databases. This is performed by using information conveyed by the
database graph, which may be properly annotated to further enhance its semantics.

4 Translator

In this section, we present a semi-automatic method to render the SQL-like response
of a précis query to a more user-friendly synthesis of results. In the context of this
work, the presentation of a query answer is defined as a proper structured
management of individual results, according to certain rules and templates predefined
by a designer or the administrator of the database. Clearly, we do not anticipate the
construction of a human-intelligent system; rather, we try to provide a user-friendly
response through the composition of simple clauses.

4.1 Preliminaries

In our framework, in order to describe the semantics of a relation R along with its
attributes in natural language, we consider that relation R has a conceptual meaning

 Comprehensible Answers to Précis Queries 149

captured by its name, and a physical meaning represented by the value of at least one
of its attributes that characterizes tuples of this relation. We name this attribute the
heading attribute and we depict it as a hachured rounded rectangle. For example, in
Fig. 2, the relation MOVIE conceptually represents “movies” in real world; indeed, its
name, MOVIE, captures its conceptual meaning. Moreover, the main characteristic of a
“movie” is its “title”, thus, the relation MOVIE should have the TITLE as its heading
attribute, since the word “title” captures the physical meaning of a “movie”.

Heading Attributes. The heading attribute, hR, of a relation R is defined as the
attribute whose name represents the physical meaning of that relation. By definition,
the projection edge that connects a heading attribute with the respective relation has a
weight 1 and this attribute is always present in the result of a précis query. A domain
expert makes the selection of heading attributes, at the initial construction of the
database graph.

We do not anticipate that all relations should have a heading attribute. For instance,
a relation used only for storing n-to-m relationships between different entities (e.g.,
relation CAST in Fig. 2) does not require a heading attribute. Clearly, this is not a
problem, since, in general, these relations are used only for the construction of paths
that represent query answers and have no attributes in the logical database subset.

Labels. Each projection edge e∈ that connects an attribute a with its container
relation R, is annotated by a label that signifies the meaning, in terms of natural
language, of the relationship between this attribute and the heading attribute of the
respective relation. For instance, with respect to the design of Fig. 2, a possible label
attached to the projection edge between the relation MOVIE and its attribute YEAR may
be: “the YEAR of a MOVIE (.TITLE)”; recall, that TITLE is the heading attribute of
MOVIE.

If a projection edge is between a relation node and its heading attribute, then the
respective label reflects the relationship of this attribute with the conceptual meaning
of the relation; e.g., the TITLE of a MOVIE.

Each join edge e∈J between two relations has a label that signifies the relationship
between the heading attributes of the relations involved; e.g., the GENRE (.GENRE) of
a MOVIE (.TITLE). The label of a join edge that involves a relation without a heading
attribute signifies the relationship between the previous and subsequent relations.

4.2 Template Mechanism

The synthesis of query results follows the database schema and the correlation of
relations through primary and foreign keys. Additionally, it is enriched by alphanumeric
expressions called template labels mapped to edges of the database schema graph.

Templates. A template label, label(u,z) is assigned to each edge e(u,z)∈E of
the database schema graph G(V,E). This label is used for the interpretation of the
relationship between the values of nodes u and z in a narrative form.

We define as the label l of a node n the name of the node and we denote it as
l(n). For example, the label of the attribute node TITLE is “title”. The name of a
node should be determined by the designer/administrator of the database.

150 A. Simitsis and G. Koutrika

The template label label(u,z) of an edge e(u,z) formally comprises the
following elements: (a) a unique identifier for the label in the database graph; (b) the
name of the starting node, i.e. l(u); (c) the name of the ending node, i.e. l(z); and
(d) several alphanumeric expressions.

A simple template label has the form:

label(u,z) = expr1 + l(u) + expr2 + l(z) + expr3

where expr1, expr2, expr3 are alphanumeric expressions and the operator “+” acts
as a concatenation operator.

In order to use template labels or to register new ones, we use a simple language
for templates that supports variables, loops, functions, and macros. A similar
approach, but, still, in a totally different environment, can be found in [25] where the
authors present a template mechanism for the description of ETL processes in a data
warehouse environment. Below, we describe this language.

In a template, when we refer to the conceptual meaning of a node, we simply use
its name. When an instance of the node is needed, then we use the node as a variable.
There are two kinds of variables: parameter variables and loop iterators.

Parameter Variables. Parameter variables are marked with a @ symbol at their
beginning and are replaced by values at instantiation time. For example, a template
label for the projection edge e(PHONE,THEATRE) could be:

label(PHONE,THEATRE)= “The PHONE of the THEATRE @THEATRE.NAME is @PHONE”

where PHONE and THEATRE stand for the conceptual meaning of the nodes (attribute
and relation, respectively) PHONE and THEATRE; i.e., l(PHONE) = “phone” and
l(THEATRE) = “theatre” respectively. Moreover, @THEATRE.NAME and @PHONE are
parameter variables, with possible values “ALPHAVILLE” and “12345”. In this case,
a valid label for this edge can be the following:

“The phone of the theatre ALPHAVILLE is 12345”

In several cases, the values returned in a query result from a certain attribute could
be more than one. Then, we use a list of parameters denoted as:

@<parameter name>[]

For such lists, their length should be provided at instantiation time.

Loop Iterators. Loop iterators are implicitly defined in the loop constraint, as we will
discuss later. In each round of the loop, all the properly marked appearances of the
iterator in the loop body are replaced by its current value (similarly to the way a C
preprocessor treats #DEFINE statements). Iterators that appear marked in the loop
body are instantiated even when they are part of another string or a variable name. We
mark such occurrences by enclosing them between $. This functionality enables
referencing all values of a parameter list and facilitates the creation of an arbitrary
number of pre-formatted strings.

Functions. We employ a built-in function, arityOf(<list_of_parameters>),
which returns the arity of a list of parameters, mainly in order to define upper bounds
in loop iterators.

 Comprehensible Answers to Précis Queries 151

Loops. Loops enhance the genericity of the templates by allowing the designer to
handle templates with unknown number of variables and with unknown arity for
parameters involved. The general form of loops is:

[<simple constraint>] {(loop body)},

where simple constraint has the form:

<lower> <operator> <iterator> <operator> <upper>

We consider only linear increase with step equal to 1. Upper bound and lower
bound (default value 1) can be arithmetic expressions involving arityOf() function
calls, variables and constants. Valid arithmetic operators are +, -, /, * and valid
comparison operators are <, >, = , all with their usual semantics. During iterations the
loop body is reproduced and at the same time all the marked appearances of the loop
iterator are replaced by its current value, as described before. Loop nesting is
permitted. For instance, consider the following case:

[i arityOf(MOVIE)] {MOVIE_i}

In this case, the lower bound has the default value (1), and the upper bound is limited
by the number (arity) of attributes of the relation MOVIE. Thus, the iterator i takes value
between 1 and the total attributes of MOVIE. As far as the loop body is concerned, it
contains a parameter list that stores the attributes involved in the relation MOVIE.

For the example database depicted in Fig. 2, with respect to the relation MOVIE, the
loop that represents its attributes has the following form:

[i 2] {MOVIE_i}

and at the instantiation of the parameters, we get the following results: MOVIE_1 =
TITLE (first attribute) and MOVIE_2 = YEAR (second attribute).

Macros. We introduce macros to ease the definition and to improve the readability of
templates. Macros facilitate attribute and variable name expansion. For instance, one
major problem in defining a language for templates is the difficulty of dealing with
attributes or attribute values of arbitrary arity. At the template level, it is not possible
to pin-down the number of (a) attributes that are projected in the précis query, and (b)
values of the involved attributes, to a specific value.

For example, in order to find out:

(a) The attributes projected in a certain précis query we need to create a series of
attributes like the following:

 DEFINE MOVIES_LIST as

[i<arityOf(MOVIE)] {MOVIE_i,}

[i=arityOf(MOVIE)] {MOVIE_i}

(b) The titles of movies that correspond to a certain query, we need to create a series
of values as follows:

 DEFINE MOVIES_TITLES_LIST as

[i<arityOf(@MOVIE.TITLE)] {@MOVIE.TITLE[i],}

[i=arityOf(@MOVIE.TITLE)] {@MOVIE.TITLE[i]}

152 A. Simitsis and G. Koutrika

For the example database of Fig. 2, the attribute and value series are:

MOVIES_LIST = {TITLE, YEAR}

MOVIES_TITLES_LIST = {“ Match Point”,
 “Melinda and Melinda”,
 “Anything Else”}

Note the existence of the two loops in each macro in order to avoid the presence of
an erroneous “,” after the last value in each list.

4.3 Translation

Additionally, we present a method that parses the result database graph and composes
a synthesis of query results in a narrative form.

The translation is realized separately for every occurrence of a token. At the end,
the précis query lists all clauses produced. For each occurrence of a token, the
analysis of the query result graph starts from the relation that contains the input token.
The labels of the projection edges that participate in the query result graph are
evaluated first. The label of the heading attribute comprises the first part of the
sentence. It becomes obvious that for multiple attributes of the same relation we have
to repeat several times the same subject. To avoid this, a domain expert should have
attached suitable expressions in the projection edges, in order to allow the
construction of complex sentences that make sense.

For instance, consider Fig. 2. Assume that in relation DIRECTOR the labels of the
projection edges that connect the heading attribute, DNAME, with attributes BDATE and
BLOCATION, which store information about the birth data and birth location of a
director, are the following:

label(hR,BDATE) = @DNAME + “ was born” + “ on ” + @BDATE

label(hR,BLOCATION)=@DNAME + “ was born” + “ in ” + @BLOCATION

When both attributes are involved in the answer, then the clause derived from the
DIRECTOR relation could be as follows:

“@DNAME was born on @BDATE in @BLOCATION”

This operation is realized as a simple find-and-replace mechanism, namely
resolve_common_expressions, which finds common expressions in the clauses
that respond to each label attached to a projection edge. In the example above, the
common expressions are @DNAME and “ was born ”.

The procedure used for the translation of the information stored in a relation is
depicted in Fig. 3.

After having constructed the clause for the relation that contains the input token,
we compose additional clauses that combine information from more than one relation
by using foreign key relationships. Each of these clauses has as subject the heading
attribute of the relation that has the primary key. In the example of Fig. 2, the
DIRECTOR relation is connected to the MOVIE relation through the DID key. The
subject of the respective clause will be the DNAME attribute, while the rest is
constructed in a sense similar to the one described before. The procedure terminates

 Comprehensible Answers to Précis Queries 153

Algorithm Translation of a Relation (TR)
Input: a relation R, a set of tokens T, a database graph G(V,E)
Output: an array of sentences Sentence[]
Begin
 For each token t∈T
 Sentence[t] = ‘’
 Let R∈V be the container relation of t
 Let hR be the heading attribute of R
 clause[t,hR] = l(hR)
 For each attribute a in R, a hR
 clause[t,a] = label(hR,a)
 End for
 Sentence[t]=Sentence[t]+resolve_common_expressions(clause[])
 End for

End.

Fig. 3. The algorithm TR

Fig. 4. A part of our example database

when the traversal of the databases graph is complete. In addition, for each attribute
projected in the answer, a hyperlink may be created. When a user follows a hyperlink,
a new précis query is submitted containing the hyperlink’s text.

Consider the case of the database of Fig. 2. Assume that a logical database subset
concerning a user’s question (e.g., the token “Woody Allen”) involves only the
relations DIRECTOR and MOVIE, while the schema of the logical subset is depicted in
Fig. 4. At first, we consider the case of “Woody Allen” as a director. We construct the
template clause that derives from the DIRECTOR relation, as before:

@DNAME + “ was born” + “ on ” + @BDATE + “ in ” + @BLOCATION

Next, we built the respective template clause that derives from the MOVIE relation:

@TITLE + “ (” + @YEAR + “)”

Then, we proceed with the clause composed by the join relationship that connects
the relations DIRECTOR and MOVIE. The template label of this relationship is
represented with the following formula:

label(DIRECTOR,MOVIE) = expr_1 + @DNAME + expr_2 + MOVIE_LIST

154 A. Simitsis and G. Koutrika

The macro MOVIE_LIST and the expressions may be defined as:

 DEFINE MOVIE_LIST as

 [i<arityOf(@TITLE)]

{@TITLE[i]+“ (”+@YEAR[i]+“),”}

 [i=arityOf(@TITLE)]

{@TITLE[i]+“ (”+@YEAR[i]+“).”}

 expr_1 “As a director, ”
 expr_2 “’s work includes ”

Therefore, the result of the précis query for the token “Woody Allen” located in the
relation DIRECTOR will be:

“Woody Allen was born on December 1, 1935 in Brooklyn, New York, USA.
As a director, Woody Allen’s work includes Match Point (2005), Melinda
and Melinda (2004), Anything Else (2003).”

In the general case, if we enrich the above example with the constraint that only
projections with weight equal to or greater than 0.9 should be present in the answer
and up to three tuples should be retrieved per relation, then the logical subset contains
also the relations GENRE, ACTOR, and CAST.

In this case, we retain the previous result about DIRECTOR and MOVIE, and we
proceed with the clause composed by the join relationship between the MOVIE and
GENRE relations. The template label of this relationship is represented with the
following formula:

 label(MOVIE,GENRE) = @TITLE + expr_2 + GENRE_LIST
 DEFINE GENRE_LIST as

 [i<arityOf(@GENRE)] {@GENRE[i]+“,”}

 [i=arityOf(@TITLE)] {@GENRE[i]+“.”}

 expr_2 “ is ”

Therefore, the result of the précis query for the token “Woody Allen” located in the
relation DIRECTOR will be:

“Woody Allen was born on December 1, 1935 in Brooklyn, New York, USA. As
a director, Woody Allen’s work includes Match Point (2005), Melinda and
Melinda (2004), Anything Else (2003). Match Point is Drama, Thriller. Melinda
and Melinda is Comedy, Drama. Anything Else is Comedy, Romance.”

In a similar way, we construct the result of the précis query for the token “Woody
Allen” located in the relation ACTOR. Recall that the relation CAST does not have a
heading attribute. Thus, the designer should enrich the join edges that interconnect the
three relations ACTOR, CAST, and MOVIE with an appropriate label. An example
template label could be the following:

“As an actor, @ACTOR’s work includes MOVIE_LIST”

and so, given that the label for join relationship between the MOVIE and GENRE
relations is constructed as before, the result of the précis query will be:

 Comprehensible Answers to Précis Queries 155

“As an actor, Woody Allen’s work includes Hollywood Ending (2002), The
Curse of the Jade Scorpion (2001), Picking Up the Pieces (2000).
Hollywood Ending is Comedy, Drama. The Curse of the Jade Scorpion is
Comedy, Drama. Picking Up the Pieces is Comedy, Fantasy.”

As we mentioned before, if there does not exist any information that both instance
values refer to the same physical entity, then, the answer of the précis query
comprises two parts, one for each occurrence of the token as shown in the example
above. Otherwise, the answers can be merged to produce a fancier result.

5 Conclusions and Future Work

Précis queries are free-form queries that generate entire multi-relation databases,
which are logical subsets of existing ones, instead of individual relations. The logical
subset of the database generated by a précis query contains not only items directly
related to the query selections but also items implicitly related to them in various
ways. Earlier work has identified the need of providing the naïve user with
meaningful answers to his/her questions and has suggested the translation of a précis
query answer in narrative form.

In this paper, we have extended précis queries by presenting a semi-automatic
method that turns the relational output of a précis query into a narrative synthesis of
results. In the context of this work, the presentation of a query answer is defined as a
proper structured management of individual results, according to certain rules and
templates predefined by a designer or the administrator of the database. More
specifically, we have extended the functionality of précis queries, by enriching the
model with labels attached to its constructs. Moreover, we have proposed a formal
way to compose these labels through a simple to use language. Also, we have
presented a template mechanism for the definition and instantiation of template labels.
Finally, we have proposed a semi-automatic method that translates the relational
output of a précis query into a narrative synthesis of results.

Clearly, as we have already stressed, we do not anticipate the construction of a
human-intelligent system; rather, we try to provide a user-friendly response through
the composition of simple clauses, so that a user without any particular knowledge of
relational schemas or languages may understand and use the information returned to
him/her.

We are currently experimenting with users to solidify the evidence on the
effectiveness of our approach. From the feedback obtained, we plan to improve the
performance/“intelligence” of the translator presented in this paper. In a similar line
of research, a challenging issue is the extension of précis queries to providing ranked
or top-k results.

Acknowledgments. This work is co-funded by the European Social Fund (75%) and
National Resources (25%) - Operational Program for Educational and Vocational
Training II (EPEAEK II) and particularly the Program PYTHAGORAS.

156 A. Simitsis and G. Koutrika

References

1. S. Agrawal, S. Chaudhuri, and G. Das. DBXplorer: A system for keyword-based search
over relational databases. In ICDE, pp. 5-16, 2002.

2. I. Androutsopoulos, G.D. Ritchie, and P. Thanisch. Natural Language Interfaces to
Databases - An Introduction. NL Eng., 1(1), pp. 29-81, 1995.

3. G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S. Sudarshan. Keyword searching
and browsing in databases using BANKS. In ICDE, pp. 431-440, 2002.

4. A. Dusterhoft, and B. Thalheim. Linguistic based search facilities in snowflake-like
database schemes. DKE, 48, pp. 177-198, 2004.

5. D. Florescu, D. Kossmann, and I. Manolescu. Integrating keyword search into xml query
processing. Computer Networks, 33(1-6), 2000.

6. L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram. XRank: Ranked keyword search
over XML documents. In SIGMOD, pp. 16-27, 2003.

7. L. R. Harris. User-Oriented Data Base Query with the ROBOT Natural Language Query
System. VLDB 1977: 303-312.

8. V. Hristidis, L. Gravano, and Y. Papakonstantinou. Effcient IR-style keyword search over
relational databases. In VLDB, pp. 850-861, 2003.

9. V. Hristidis, Y. Papakonstantinou, and A. Balmin. Keyword proximity search on XML
graphs. In ICDE, pp. 367-378, 2003.

10. IBM. DB2 Text Information Extender. url:
www.ibm.com/software/data/db2/extenders/textinformation/.

11. G. Koutrika, A. Simitsis, and Y. Ioannidis. Précis: The essence of a query answer. In
ICDE, 2006.

12. U. Masermann, and G. Vossen. Design and implementation of a novel approach to
keyword searching in relational databases. In ADBIS-DASFAA, pp. 171-184, 2000.

13. E. Metais, J. Meunier, and G. Levreau. Database Schema Design: A Perspective from
Natural Language Techniques to Validation and View Integration. In ER, pp. 190-205, 2003.

14. E. Metais. Enhancing information systems management with natural language processing
techniques. DKE, 41, pp. 247-272, 2002.

15. Microsoft. SQL Server 2000. url: http://msdn.microsoft.com/library/.
16. M. Minock. A Phrasal Approach to Natural Language Interfaces over Databases. In

NLDB, pp. 181-191, 2005.
17. A. Motro. Baroque: A browser for relational databases. ACM Trans. Inf. Syst., 4(2), pp.

164-181, 1986.
18. A. Motro. Constructing queries from tokens. In SIGMOD, pp. 120-131, 1986.
19. Oracle. Oracle 9i Text. url: www.oracle.com/technology/products/text/.
20. A. Simitsis, and G. Koutrika. Pattern-Based Query Answering. In PaRMa, 2006.
21. E. Sneiders. Automated Question Answering Using Question Templates That Cover the

Conceptual Model of the Database. In NLDB, pp. 235-239, 2002.
22. V.C. Storey, R.C. Goldstein, H. Ullrich. Naive Semantics to Support Automated Database

Design. IEEE TKDE, 14(1), pp. 1-12, 2002.
23. V.C. Storey. Understanding and Representing Relationship Semantics in Database Design.

In NLDB, pp. 79-90, 2001.
24. A. Toral, E. Noguera, F. Llopis, and R. Munoz. Improving Question Answering Using

Named Entity Recognition. In NLDB, pp. 181-191, 2005.
25. P. Vassiliadis, A. Simitsis, P. Georgantas, M. Terrovitis, and S. Skiadopoulos. A Generic

and Customizable Framework for the Design of ETL Scenarios. Information Systems,
30(7), pp. 492-525, 2005.

26. Q. Wang, C. Nass, and J. Hu. Natural Language Query vs. Keyword Search: Effects of
Task Complexity on Search Performance, Participant Perceptions, and Preferences. In
INTERACT, pp. 106-116, 2005.

An Efficient Approach to Support Querying
Secure Outsourced XML Information�

Yin Yang, Wilfred Ng, Ho Lam Lau, and James Cheng

Department of Computer Science,
Hong Kong University of Science and Technology
{yini, wilfred, lauhl, csjames}@cs.ust.hk

Abstract. Data security is well-recognized a vital issue in an informa-
tion system that is supported in an outsource environment. However,
most of conventional XML encryption proposals treat confidential parts
of an XML document as whole blocks of text and apply encryption algo-
rithms directly on them. As a result, queries involving the encrypted part
cannot be efficiently processed. In order to address these problems, we
propose XQEnc, a novel approach to support querying encrypted XML.
XQEnc is based on two important techniques of vectorization and skele-
ton compression. Essentially, vectorization, which is a generalization of
columns of a relational table, makes use the basic path of an XML tree
to label the data values. Skeleton compression collapses the redundant
paths into a multiplicity attribute. Our analysis and experimental study
shows that XQEnc achieves both better query efficiency and more ro-
bust security compared with conventional methods. As an application,
we show how XQEnc can be realized with relational techniques to enable
secure XML data outsourcing.

1 Introduction

XML has emerged as a new standard for data representation and exchange on
the Internet. As more data is expressed in XML, it is increasingly common to
find sensitive information in XML, and thus security becomes an important
issue. In order to avoid unauthorized access, the confidential parts of the XML
document have to be protected. This can be done by access control mechanisms,
e.g. security views [1] in the XML repository, or by applying encryption. In many
cases, the access control components can be bypassed and encryption is a must.
For instance, when transmitting data via an untrusted channel, and when the
data is stored in vulnerable storage [2], e.g. the hard drive may be stolen.

The heterogeneous nature of XML data raises new requirements for encryp-
tion. Specifically, different parts of data need different treatments. Consider the
running example of XML snippet given in Table 1(a) in which the details about
the customer are confidential and thus must be encrypted, while the names of

� This work is partially supported by RGC CERG under grant number
HKUST6185/03E.

E. Dubois and K. Pohl (Eds.): CAiSE 2006, LNCS 4001, pp. 157–171, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

158 Y. Yang et al.

the customers may be accessed by multiple parties and therefore should be kept
in plain text. The proposal recommended by W3C [3] addresses this problem.
Using the methods described in [3], only details about credit cards are encrypted,
resulting in the XML code given in Table 1(b) (some details such as namespaces
are omitted for the sake of simplicity in illustration).

Table 1. (a) A running example of XML snippet (b) the Encrypted XML snippet

<PaymentInfoList>
 <PaymentInfo>
 <Name>John Smith<Name/>
 <CreditCard>
 <Number>4019 2445 0277 5567</Number>
 <Issuer>Bank of the Internet</Issuer>
 <Expiration>04/09</Expiration>
 </CreditCard>
 </PaymentInfo>
 <PaymentInfo>
 <Name>Susan Smith<Name/>
 <CreditCard>
 <Number>5497 2998 4263 9986</Number>
 <Issuer>Cyber Bank</Issuer>
 <Expiration>05/08</Expiration>
 </CreditCard>
 </PaymentInfo>
 </PaymentInfoList>

 <PaymentInfoList>
 <PaymentInfo>
 <Name>John Smith<Name/>
 <EncryptedData><CipherData>
 <CipherValue>A23B45C56</CipherValue>
 </CipherData></EncryptedData>
 </PaymentInfo>
 <PaymentInfo>
 <Name>Susan Smith<Name/>
 <EncryptedData><CipherData>
 <CipherValue>FD465988C</CipherValue>
 </CipherData></EncryptedData>
 </PaymentInfo>
 </PaymentInfoList>

(a) (b)

Encryption

In the above treated XML fragment shown in Table 1(b), the plain text seg-
ment from “<CreditCard>” to “</CreditCard>” is encrypted and replaced
by an EncryptedData node. Note that the protected data is still treated as a
whole block of text, and its internal structure is ignored. One problem is that
the redundancy introduced by the XML format can be exploited to attack the
encryption. For instance, the fact that the encrypted part always ends with the
string “</CreditCard>” can be used for cryptanalysis. Another problem is that,
since each confidential part is replaced by its corresponding encrypted block, the
context around it may be exploited by the adversary. In our example, one can
judge that the first encrypted block is the credit card information for John Smith.
Besides, the fact that John Smith has some secrets (in this case a credit card) in
this data file is exposed. When more items are encrypted together, the adversary
is able to find out the rough number by judging the length of the cipher text. In
other words, some statistical information may be exposed.

Apart from these security defects, treating the protected data as a whole
inevitably incurs efficiency problems. Consider the following XPath [4] query:

//PaymentInfo[//Issuer = "Bank of the Internet"]/Name

Among various details of credit cards, only information about issuers is nec-
essary to answer this query. However, since the entire block of sensitive informa-
tion is encrypted, there is no way to extract the issuer alone from the encrypted

An Efficient Approach to Support Querying Secure Outsourced XML 159

blocks. Consequently, a large amount of unnecessary decryption is performed,
which may seriously slow down query processing.

Motivated by these security and efficiency drawbacks of existing solutions,
we propose XQEnc, a novel XML encryption approach based on recent develop-
ments of XML repositories, namely, vectorization and skeleton compression [5],
[6], [7]. We show experimentally that compared with existing methods, XQEnc
has efficient query processing capability.

Importantly, XQEnc facilitates secure XML data outsourcing, which has not
been discussed in the literature. In a nutshell, secure XML data outsourcing
makes it possible for organizations to store confidential XML data on untrusted
database servers and shift the query workload to the server as much as possible,
without revealing the content of the data to the server. From business point of
view, organizations following this paradigm are able to enjoy the benefit that
their resources can be better invested in their core business but on the other
hand, data management is supported by a dedicated service provider.

The rest of the paper is organized as follows: Section 2 surveys related work,
focusing on existing XML security schemes and the theoretical foundation of our
work: XML vectorization and skeleton compression. Section 3 presents XQEnc
with analysis. Section 4 then describes how our XQEnc is able to employ rela-
tional technology to enable XML data outsourcing. Section 5 supports our se-
curity and efficiency claims by presenting a comprehensive experimental study.
Finally, Section 6 concludes the paper with directions for future work.

2 Related Work and Preliminaries

In this section, we present the background of secure data outsourcing and the
fundamentals of XML vectorization and skeleton compression.

2.1 XML Encryption

The most influential XML encryption method is the one officially recommended
by W3C [3]. Essentially, its emphasis is on providing a mechanism such that dif-
ferent parts of the same document can get different treatments. One of the main
virtues of this technique is in its flexibility. Since the encrypted document is still
a valid XML document, an XML document can be encrypted for several times
by different parties on different parts. An intuitive example of XML encryption
using this method has been given in Section 1.

The problems of this approach, and also similar approaches, are apparent. Since
the focus is on flexibility, rather than data security or query efficiency, naturally
it does not satisfy the requirements of many applications where data security and
query efficiency is highly important. In XQEnc,we try to match its flexibility, while
at the same time we provide enhanced security and optimized query efficiency.

2.2 XML Vectorization and Skeleton Compression

One technique we adopt in XQEnc is called vectorization. XML vectorization
generalizes the well-known technique of vertical partitioning in relational

160 Y. Yang et al.

databases for optimizing query performance. An extreme form of vertical parti-
tioning, which is called vectorization, is to store each column of a relational table
separately. Vectorization means partitioning the document into path vectors in
the context of XML. The result of partitioning outputs a sequence of data values
appearing under all paths and bearing the same path labeling. Applying vector-
ization on the XML fragment presented in Table 1 of the running example, we
obtain the set of vectors (PaymentInfoList is the root node) in Table 2:

Table 2. Path vectors in the ”payment information list” document of Table 1

/PaymentInfoList/PaymentInfo/Name [John Smith, Susan Smith]
/PaymentInfoList/PaymentInfo/CreditCard/Number [4019 2445 0277 5567,

5497 2998 4263 9986]
/PaymentInfoList/PaymentInfo/CreditCard/Issuer [Bank of the Internet,

Cyber Bank]
/PaymentInfoList/PaymentInfo/CreditCard/Expiration [04/09, 05/08]

Each of these vectors corresponds to a path of labels that leads to a nonempty
text node. This technique has been employed in the recently proposed “semantic
compressor” XMILL [8] to achieve optimal compression ratio of XML documents.
As we will show in Section 3, XML vectorization can also be utilised to enhance
security in addition to compressing XML data in XQEnc.

PaymentInfoList

PaymentInfo

Name CreditCard

Number Issuer Expiration

(2)

Fig. 1. The compressed skeleton of the running example

Another important technique called “skeleton compression” was originally
proposed in [6] for supporting query processing of compressed XML documents.
The main idea is to remove the redundancy contained in the XML document
tree by sharing common sub branches and replacing identical and consecutive
branches with one branch and a multiplicity annotation. The compressed skele-
ton of our running example in Table 1 is shown in Fig. 1. Note that the two
PaymentInfo records are compressed into one branch and one multiplicity anno-
tation, (2). According to the experimental results reported in [6], the compressed
XML skeleton is small enough to fit well into main memory. This empirical fact
motivates our proposed approach for query processing on outsourced XML data,
described in Section 4. Finally, it is worth mentioning that Buneman et al. [5] ex-
tend the skeleton compression technique to facilitate the processing of XQuery

An Efficient Approach to Support Querying Secure Outsourced XML 161

queries. However, to our knowledge there has been no attempt to apply the
technique in querying encrypted XML data in literature.

2.3 Secure Data Outsourcing

Recently, the problem of secure data outsourcing (also referred to as “privacy
preserving data outsourcing” in literature) has drawn considerable attention. In
the data outsourcing paradigm proposed in [9], data owners store their data on
rented servers, and query the server to get desired information. The database
server is not trusted, and thus the data must be stored in encrypted form. Mean-
while, the server needs some information about the data (for example the use
of “crypto-index” in [10]) in order to process queries. The result of a query is
usually an encrypted superset of the actual result and is transferred to the client.
There needs second processing on the (trusted) client side by decrypting the data
and filtering out those that do not satisfy the query conditions. The goal is to
shift query processing as much as possible to the server side while maintaining
data security during processing and data transfer. Fig.2 illustrates a simplified

(1) User Query
Query

Translator

Query
Executor

(Server side)

(2) Query
over encrypted data

Query
Executor

(Client side)
(3) Encrypted Results(4) Final Results

Client Side Server Side

Fig. 2. A simplified architecture of a data outsourcing system

architecture of a typical data outsourcing system. A user query is translated by
the query translator into two sub-queries: a query over encrypted data, which is
executed at the server side with the help of the crypto-index, and a “filtering”
query executed at the client side to select the real answer to the query from the
temporary results returned by the server. The temporary results returned by the
server are encrypted tuples, and the client needs to do decryption first in order
to perform the filtering step.

There are different proposals for defining the crypto-index that provides the
helper information for the server to process the queries. The original proposal in
[9] is to first partition the entire data space into disjoint buckets, and then stores
the bucket IDs on the server. During query processing, the values in the queries
are translated into their corresponding bucket IDs. This method reveals infor-
mation (i.e. bucket IDs) of the original data and the server returns a super set of
the actual results. A more efficient way is to use the order preserving encryption
algorithm proposed in [2], which guarantees no information leakage and optimal
communication overhead. All these proposals, however, consider only the data
in relational setting. These proposals are not applicable in XML setting, since
the internal structure of the sensitive nodes can also be confidential in XML,

162 Y. Yang et al.

thus simply substituting values by crypto-indices may reveal the structural in-
formation to the (untrusted) server. In our running example, storing the sensitive
credit card details with only values encrypted (e.g. substituted by bucket IDs)
exposes the internal structure of the CreditCard node. Therefore, existing meth-
ods designed for querying encrypted relational data are not appropriate for XML
data outsourcing. This motivates our development of XQEnc.

3 XQEnc: Queriable XML Encryption

Let d denote the plain text XML document to be treated. The goal of XQEnc is to
transform d into another XML document dT such that confidential information
is protected and queries and are efficiently processed. For ease of presentation, we
first simply assume that all the data contained in d is confidential, and describe
the basic ideas of XQEnc in Section 3.1. In Section 3.2 we tackle the more
general case in which only some parts of d need to be encrypted. The security
and efficiency of XQEnc is analyzed in Section 3.3.

3.1 Basic Ideas of XQEnc

We first illustrate the basic idea of XQEnc by assuming that all textual and
structural information in the plain text document d is confidential and needs
to be encrypted. In our running example, this means not only the details of
credit cards, but also other document information such as names and document
structures needs to be encrypted. Hence, the resulting document dT has only
one text node, containing the cipher text of the original document.

<EncryptedData><CipherData>

<CipherValue>2313FB3D980A0</CipherValue>

</CipherData></EncryptedData>

Note that this transformation fully complies with the W3C XML encryption
standard. The crucial part in the transformation is how to generate the cipher value
based on the original document. Traditionalmethods simply treat the original doc-
ument as a whole piece of text and apply an encryption algorithm like triple DES
on the text. The drawbacks of this methodology have been discussed in Section 1.
The basic idea of XQEnc is that we first compute the compressed skeleton and the
corresponding set of data vectors, and then encrypt these two entities separately.

In our implementation, XQEnc adopts the approach based on vectorization
and skeleton compression for building a structural index called Structure Index
Tree (or SIT). The SIT helps to remove the redundant, duplicate structures in
an XML document. An example of a SIT is shown in Fig. 4(b), which is the
index of the tree in Fig. 4(a), the structure of the sample XML extract in Fig. 3
modelled as a tree. Note that the duplicate structures in Fig. 4(a) are eliminated
in the SIT shown in Fig. 4(b). In fact, large portions of the structure of most
XML documents are redundant and can be eliminated. For example, if an XML
document contains 1000 repetitions of our sample XML extract (with different
data contents), the corresponding tree modelling its structure will be 1000 times

An Efficient Approach to Support Querying Secure Outsourced XML 163

bigger than the tree in Fig. 4(a). However, the structure of its index tree will
essentially have the same structure as the one in Fig. 4(b), implying that the
search space for query evaluation is reduced 1000 times by the index.

1. <open_auctions>
2. <open_auction id = "open1">
3. <initial> $12.00 </initial>
4. <bid>
5. <date> 12/02/2000 </date>
6. <increase> $2.00 </increase>

7. </bid>
8. <bid>
9. <date> 12/03/2000 </date>
10. <increase> $1.50 </increase>
11. </bid>
12. </open_auction>

13. <open_auction id = "open2">
14. <initial> $500.00 </initial>
15. </open_auction>
16. <open_auction id = "open3">
17. <initial> $1.50 </initial>
18. <bid>

19. <date> 11/29/2002 </date>
20. <increase> $0.50 </increase>
21. </bid>
22. </open_auction>
23.</open_auctions>

Fig. 3. A simple Auction XML Extract

Our implementation avoids full decryption by grouping the data (i.e. v.ext
in Fig. 4(b)) into many small blocks. We utilize the index to evaluate queries
on the encrypted XML data. The novelty is that we apply an encryption algo-
rithm (like triple DES) to encrypt each data block in XQEnc. After that, the
encrypted blocks are combined to form the cipher value for the original docu-
ment. Query processing in XQEnc requires that we first decrypt the relevant
encrypted data blocks necessary to answer the query. Our design is not only
compatible with compression on the data blocks but also supports a fine-grained
encryption as will be discussed later. An immediate benefit of using SIT as in-

111, 1

0, 0

17, 11

3, 12 33, 13

17, 14

3, 15 7, 17

9, 1989, 18

17, 2

3, 3

9, 7

7, 533, 4

89, 6

element_id , node id

Tree Node

(a)

111, 1

0, 0

17, 11

3, 12 33, 13

17, 2

3, 3 33, 4

{0}

{1}

{2, 14} {11}

{3, 15}

{5, 8, 17}

{4, 16} {12} {13}

v.ext = {nid0, ... ,nidn}

(b)

Element ID Assignment
initial -> 33ROOT -> 0

open_auctions -> 111
open_auction -> 17
@id -> 3

89, 9

7, 8

9, 10

33, 16

bid -> 7

increase -> 9
date -> 89

7, 5

9, 789, 6{6, 9, 18} {7, 10, 19}

Fig. 4. (a) A simple Auction XML Extract Structure Tree (contents of the exts not
shown) of the Auction XML Extract and (b) its corresponding SIT

dexing in XQEnc is that we are able to compress and decrypt the blocks at the
same time. During query processing, a retrieved data block is first decrypted
and then decompressed. It is clear that there is an overhead of doing compres-
sion/decompression, but the overall performance may be better, since compres-
sion removes redundancy in the data, the cost of doing encryption/decryption
is also reduced. However, a more detailed study of the problem of compression
and encryption interaction is not the scope in this paper.

3.2 The General Case in XQEnc

Because of the heterogeneous nature of XML data, in most cases only parts of
the original text document d need to be encrypted. These confidential parts may
scatter all over d, with or without clear patterns. An intuitive way is to apply

164 Y. Yang et al.

the method described in the previous section on each confidential part of the
document separately, which complies with the W3C standard. However, there
are several drawbacks with this approach as we have illustrated using our running
example in Table 1. For example, if we apply XQEnc on the two blocks of credit
card information separately, and replace them with their corresponding cipher
text, the resulting XML document dT is similar to the transformed document
presented in Section 1, except that the cipher values are generated using XQEnc.
The security concern remains that the context can be exploited to attack the
encryption and derive statistical information. Moreover, in this example and
many other cases, the confidential parts have exactly the same internal structure
and the same compressed skeleton is kept multiple times. Meanwhile, the data
vectors for a single confidential part are often not large enough to fill a data
block, which seriously affects storage utilization and query efficiency.

Rather than encrypting each confidential part individually, XQEnc puts them
together and produces one single piece of cipher text, inserted as the last child
of the root node. Using our running example, XQEnc generates the result as
shown in the following transformed document:

<PaymentInfoList>

<PaymentInfo>

<Name>John Smith<Name/>

</PaymentInfo>

<PaymentInfo>

<Name>Susan Smith<Name/>

</PaymentInfo>

<EncryptedData><CipherData>

<CipherValue>E7FDA243B745CC586</CipherValue>

</CipherData></EncryptedData>

</PaymentInfoList>

The cipher value consists of the following two components: the compressed
skeleton of the original document d, and the confidential data partitioned in
vectors, both components are in the encrypted form. Keeping the compressed
skeleton of d ensures no loss of structural information. The compressed skeleton
of a document is usually very small [6], which is much less than 1 megabytes
for a document as large as hundreds of megabytes, or much less than 1% of the
document size. This memory requirement is not demanding even in lightweight
computing devices, given the trend of RAM size has been increasing as tech-
nology advances. Furthermore, an alternative is to keep only the “partial” com-
pressed skeleton that is relevant to the confidential data. This makes the cipher
value even shorter, at the cost of more complicated query processing. In our cur-
rent design and implementation version of XQEnc, we adopt the former method
(keeping the whole compressed skeleton) though we need to point out that a
comparison with the latter is an interesting future work.

For the data vectors, we only include the confidential data, together with
their document positions, in the cipher value. To answer an XPath query, first
the compressed skeleton of the original document is decrypted from the cipher
value. Then, the query processing algorithm of XQEnc described in the previous

An Efficient Approach to Support Querying Secure Outsourced XML 165

subsection is executed, treating the unencrypted part of the document and the
cipher value as two data sources. When the query processor needs the textual in-
formation of a non-confidential text node, it gets that from the plain text part of
the document. XQEnc partitions the data vectors into blocks and encrypts each
block individually. During query processing the minimum unit of data retrieval
is a data block. This technical detail is omitted for the ease of presentation.

In our implementation the unencrypted part is first parsed during preprocess-
ing and the value of a text node can be easily retrieved. When the information
contained in a confidential text node is needed, the query processor extracts
from the encrypted data vectors according to the document position of the text
node . In our running example, the cipher text contains the compressed skele-
ton shown in Fig. 1, and the last three data vectors in Table 2. During query
processing, the names of the card holders are retrieved from the plain text part
while confidential details like the issuer of the credit cards are retrieved from the
encrypted data vectors.

3.3 Discussion

Using the algorithms described in Section 3.2, there is only one piece of cipher
text no matter how many confidential text nodes are scattered through the doc-
ument, and the cipher text is always appended at the end of the document and
affects only one block. This drastically reduces the concern that the context can
be exploited to attack the encryption and derive sensitive information. Further-
more, the redundancy of the XML format is eliminated by vectorization, making
it even harder to attack the encryption.

The query efficiency of XQEnc can be substantially improved, since rather
than retrieving and decrypting the entire confidential part, XQEnc only ac-
cesses the data necessary to answer the XPath query, thus the overhead of data
retrieval and decryption are reduced to a minimum. As shown in Section 5,
XQEnc improves query efficiency by more than an order of magnitude.

4 Secure XML Data Outsourcing Using XQEnc

As discussed in Section 2.3, existing techniques for data outsourcing, which ad-
dress mainly relational data, can not be applied directly to XML data, in which
structural information can be confidential. In this section we propose our solution
based on XQEnc, with analysis.

4.1 Assumptions and Setting

We first make several assumptions about the data to be outsourced. First, we as-
sume that the outsourced data is expressed in XML format, and is to be stored
in a rented server running a relational database system. This is practical because
XML provides flexibility for data expression, while relational database systems
are ubiquitous. The main reason for this assumption is that we want to utilize ex-
isting data outsourcing techniques by transforming XML data to relational data.

166 Y. Yang et al.

Note that this transformation must not expose the internal structure of the XML
data to the server. Therefore, existing XML-to-relational transformation meth-
ods, e.g. [11, 12], cannot be applied. Second, for the sake of presentation simplicity
we make the assumption that the entire XML data to be outsourced is confiden-
tial. The general case that only some parts of the data is confidential can be han-
dled similarly by applying the techniques presented in Section 3.2. For queries,
we limit our scope to answering XPath queries. Essentially, the XPath queries
on the original document are translated to SQL queries on the transformed rela-
tional data by the query translator. Therefore, to handle the more general XQuery
queries requires a modified query translator, which is left as future work.

Existing data outsourcing techniques mostly translate a user query on the
original data to exactly one query on the encrypted data stored on the server
side. In our method the query translator may translate one XPath query into
a corresponding set of multiple SQL queries. This is natural because an XPath
query can be very complicated and even not expressible in one single SQL query.
Moreover, we may need to process the answer returned by the server in order to
issue the next SQL query. Therefore, there are interactions between the query
translator and the query processor at the client side.

Another issue is that data outsourcing requires stronger security than the core
problem of encrypting data. This is because the server owns the knowledge of
not only the encrypted data, but also the translated queries. Therefore the secu-
rity requirement here is that the server cannot derive confidential information,
including both textual and structural information, from the encrypted data and
all the SQL queries it receives.

4.2 The Solution Based on XQEnc

The solution consists of two parts. The first part is the method to transform a
given XML document d to relational data to be stored on the server. The second
part is the query answering process. We describe them in sequel.

In order to transform the given document d to relational data, we first com-
pute the compressed skeleton and data vectors of d, as in XQEnc. We denote the
compressed skeleton by s, which is small even for very large XML documents
as discussed. One key point of our design is that s is not stored on the server;
rather, it is stored inside the query translator on the client as metadata. This
means that it is impossible for the server to obtain any structural information
of d, which is contained in s. Next, we need to transform the data vectors into
relational data, and the security requirements in this step is reduced to ensuring
confidentiality of textual information.

For each item i in the data vectors, we create a tuple < Vi, Pi, Ti >, where Vi is
the vector ID that identifies the vector containing i; Pi is the document position of
i, and Ti is the textual value of i. This step essentially transforms the data vectors
into one single table, which has three columns V (the vector IDs), P (the document
positions) and T (the textual data). The primary key of this relation is denoted
as the pair < V, P >. This transformation is information preserving, in the sense
that the original data vectors can be restored using the resulting tuples.

An Efficient Approach to Support Querying Secure Outsourced XML 167

After transforming the data vectors to relational data, the last step is to
transform the relational data using existing data outsourcing techniques. Specif-
ically, each tuple < Vi, Pi, Ti > is transformed to another tuple < etuple, V S

i ,
PS

i , T S
i >, where etuple is the encrypted tuple, and XS is the crypto-index of

attribute X . Depending on the data outsourcing techniques used, the crypto-
indices can be either bucket IDs using the bucketization technique [9], or en-
crypted values using the order preserving encryption technique [2].

A potential optimization during this step is to build multiple relations rather
than one relation. The problem with cramming everything into one relation is
that data in different vectors may have different ranges and distribution, which
makes it difficult to compute a good bucketization or order preserving encryption
scheme. In order to solve this problem, we devise an optimized cluster to group
the vectors according to their sizes and characteristics of their textual values,
and establish one relation for each cluster of vectors.

Finally, we support query processing as follows. We run the XQEnc query
processing algorithm at the client side, treating the server as an external storage.
A query is issued to the server whenever we need to access an item in one of
the data vectors. Specifically, when we need the textual value of a data item in
vector v and document position p, the following SQL query is sent to the Oracle
database server.

SELECT etuple FROM R(v) WHERE V S = crypto − index(v)

AND P S = crypto − index(p)

The result returned from the server is then decrypted and the textual data
is used for further processing. In addition, when the path predicate contains
a condition specifying the range or the textual values, e.g. [issuer = “Bank of
the Internet”] in our running example, a corresponding selection condition is
appended in the WHERE clause of the SQL statement sent to the server. In this
example, the condition T S = crypto-index(“Bank of the Internet”) is appended
to the SQL query to further reduce the amount of data transmitted from the
server to the client.

4.3 Analysis

We now justify that our solution preserves data confidentiality, i.e. both textual
and structural information is protected from unauthorized access by the server.
First of all, the data stored on the server side does not contain any structural
information, and thus the structural information is protected. This is because all
structural information is contained in the compressed skeleton s, which is stored
only on the client side and not accessible by the server. A single SQL query
issued to the server does not contain any structural information either. The only
concern is that by analyzing a sequence of queries, the server may derive some
pieces of structural information. This can be further avoided by processing a set
of multiple XPath queries at the same time, and the client mixes together their
translated SQL queries sent to the server.

168 Y. Yang et al.

The confidentiality of textual information is guaranteed by the traditional
data outsourcing techniques, e.g. bucketization [9] or order preserving encryption
[2]. These techniques are the state of the art techniques for relational data. In
other words, that is the best possible robust scheme we can use to protect the
textual information. For this reason, we claim that the structural and textual
information is best possible protected in XQEnc.

Regarding query efficiency, one might think that a possible weakness of our
approach is that we need the client to perform the second query processing,
in addition to the first processing on the server. With a critical observation of
the various factors affecting query efficiency, we argue that our solution is still
efficient, despite of having this weakness. The bottleneck of the entire data out-
sourcing architecture is data transmission between the client and the server.
This overhead in XQEnc is reduced to a minimum because the query processing
algorithm only retrieves data necessary to answer the query. This also means the
decryption work done at the client side is reduced to a minimum, which compen-
sates the computation cost of running the XQEnc query processing algorithm.
In general, all data intensive work is reduced to a minimum on the client, while
the amount of undesirable overhead imposed by running the XQEnc query pro-
cessing algorithm is purely determined by the size of the XPath query. Therefore,
our solution based on XQEnc provides very competitive query efficiency as also
supported by the experimental study next section.

5 Experiments

In this section we evaluate the query efficiency of XQEnc through experiments.
We have implemented a prototype for XQEnc. All the experiments were run on
the Windows XP Professional platform. The CPU was a 1.5 GHz Pentium 4,
while the system had 512MB of physical memory. For system parameters, the
block size of data vectors is the maximum of 2 megabytes and 1000 data items,
which is the empirical optimal block size obtained by the experimental study of
[7]. The encryption algorithm chosen is DES.

We carried out the experiments on five different real XML datasets, all of
which are well established benchmarks for studying XML query processing al-
gorithms. The sizes of these data sets are listed in Table 3. For more details of
the datasets, the readers may refer to [13] describing these datasets.

In order to evaluate the query performance of XQEnc, we need to make
practical assumptions about which parts of the XML documents are considered
confidential, as well as to choose several representative queries involving confi-
dential parts of the document. Due to limited space we describe the experimen-

Table 3. Five data sets used in the experiments

Dataset DBLP SwissProt LineItem TreeBank Shakespeare
Size (MB) 127 109 30.7 82 7.4

An Efficient Approach to Support Querying Secure Outsourced XML 169

tal settings and results in detail for the DBLP dataset. The settings for other
datasets are listed in Appendix A.

The document structure for the DBLP dataset is relatively simple. It is ba-
sically a fact sheet of various publications. Since the focus here is to test the
efficiency of XQEnc, there should be a large part of the document considered
confidential. In our experiments we assume all the “inproceedings” nodes, both
the internal structures and textual values are confidential. In addition, we make
further assumptions that all document URLs, and theses not in public domain
are confidential for copyright reasons. The queries used in the experiments are
listed below:
(Q1) /dblp/inproceedings/title

(Q2) //mastersthesis/author

(Q3) //article[year = "2002"]/url

(Q4) //inproceedings[booktitle = "DASFAA"]/url

(Q5) //inproceedings[author = "Wilfred Ng"]/title

The query Q1 is to show that the major factor of query performance is the size
of the result, and the most time consuming operation is decryption. Because
there is a large number of records for conference papers, the result for Q1 is
very large, while the query itself is relatively simple to parse and process. Query
Q3 involves both confidential and non-confidential information, and Q4 and Q5
contain highly selective predicates. The conventional method needs to retrieve
and decrypt lots of unnecessary data and thus should be much slower than
XQEnc, which only retrieves the data needed to answer the query.

We report several aspects of the efficiency of XQEnc. First, we compare the
time needed to encrypt the confidential part, using both conventional methods
(i.e. treating each part as a whole piece of text) and XQEnc. Second, we show the
time needed for decrypting the entire document. In the extreme case, everything
in the document is confidential and this time is the lower bound for a conven-
tional method to answer most XPath queries. Third, we report the response time
for processing the queries, both the conventional method and XQEnc.

The experimental results are shown in Table 4. All the numbers in the table
are response times measured in seconds. For encryption and query response time,
we give both the time needed for XQEnc and the conventional method, in the
shown query order. In general, the encryption cost of datasets in XQEnc is larger
than the conventional method but still within an acceptable range as it is not

Table 4. Experimental results. Here X/C means the ratio of response time by XQEnc
to that by Conventional method. The response times are rounded to the nearest second.

Dataset Encryption Decryption Q1 Q2 Q3 Q4 Q5
time (X/C) time (C) (X/C) (X/C) (X/C) (X/C) (X/C)

DBLP 50/40 38 10/30 1/23 5/23 1/30 1/30
SwissProt 49/35 33 8/30 2/28 2/28 1/28 2/28
LineItem 13/11 10 2/8 1/7 1/8 1/7 1/7
TreeBank 49/27 25 8/18 8/17 8/17 9/17 8/17
Shakespeare 4/3 2 1/2 1/2 1/2 1/2 1/2

170 Y. Yang et al.

frequent. The response time shows that XQEnc is very competitive in answering
queries. Another interesting fact is that decrypting the entire dataset is very
expensive. Therefore, when the entire dataset is confidential, XQEnc is more
than an order of magnitude faster than conventional methods.

The results in the DBLP dataset clearly show that the response time for Q1
is relatively greater than other queries, thought Q1 itself is simple. This can be
explained by the fact that the results for Q1 is much larger, and thus decryption
becomes the major cost of query processing and XQEnc enjoys less cost-saving
benefit as expected. However, XQEnc is much faster for queries Q4 and Q5,
which justifies our efficiency analysis.

6 Conclusions

We propose XQEnc, which is a novel XML encryption technique based on
XML vectorization and skeleton compression techniques. The technique is use-
ful to support query processing of XML information in an outsourcing environ-
ment. Compared with existing solutions, XQEnc provides strengthened security
and efficient query processing capability. The resulting document after apply-
ing XQEnc complies with the W3C encryption standard, which allows different
treatments to be applied on different parts of the XML Document. The tech-
niques can be used together with the existing compression technologies to reduce
the data exchange overhead in network.

Throughout, we explain and show how secure XML data outsourcing can be
achieved using XQEnc and existing relational data outsourcing techniques. Our
solution guarantees robust protection for structural and textual information.
Importantly, we demonstrate with a spectrum of XML benchmark datasets that
the query performance of our solution is very competitive. Specifically, all data
intensive computation and transmissions are reduced to a minimum.

XQEnc gives rise to many interesting topics for future work. At the current
stage our design and implementation of XQEnc focus on XPath query support.
We plan to extend our solution to more general query languages. For example,
Schema-based (e.g. XSchema) validation on encrypted XML data is another
promising subject to further study. We also plan to compare our approach with
other approaches beside [3]. The analytical study of the relationship between the
block parameters, query workload and the encryption efficiency underpinning the
cost model is also important to further optimise query processing in XQEnc.

References

1. Fan, W., Chan, C., Garofalakis, M.: Secure XML querying with security views. In:
SIGMOD Conference. (2004) 587–598

2. Agrawal, R., Kiernan, J., Srikant, R., Xu., Y.: Order preserving encryption for
numeric data. In: SIGMOD Conference. (2004) 563–574

3. Imamura, T., Dillaway, B., Simon, E.: XML encryption syntax and processing.
W3C Recommendation (2002)

4. Clark, J., DeRose, S.: XML path language (XPath). W3C Working Draft (1999)

An Efficient Approach to Support Querying Secure Outsourced XML 171

5. Buneman, P., Choi, B., Fan, W., Hutchison, R., Mann, R., Viglas, S.: Vectorizing
and querying large XML repositories. In: ICDE. (2005) 261–272

6. Buneman, P., Grohe, M., Koch, C.: Path queries on compressed XML. In: VLDB.
(2003) 141–152

7. Cheng, J., Ng, W.: XQzip: Querying compressed XML using structural indexing.
In: EDBT. (2004) 219–236

8. Liefke, H., Suciu, D.: XMILL: An efficient compressor for XML data. In: SIGMOD
Conference. (2000) 153–164

9. Hacigumus, H., Iyer, B.R., Li, C., Mehrotra, S.: Executing SQL over encrypted data
in the database-service-provider model. In: SIGMOD Conference. (2002) 216–227

10. Hore, B., Mehrotra, S., Tsudik, G.: A privacy preserving index for range queries.
In: VLDB. (2004) 720–731

11. Bohannon, P., Freire, J., Roy, P., Simeon, J.: From XML schema to relations: A
cost-based approach to XML storage. In: ICDE. (2002) 64–76

12. Shanmugasundaram, J., Tufte, K., Zhang, C., He, G., DeWitt, D.J., Naughton,
J.F.: Relational databases for querying XML documents: Limitations and oppor-
tunities. In: VLDB. (1999) 302–314

13. Miklau, G.: The XML data repository. http://www.cs.washington.edu /research
/xmldatasets/ (2006)

A Appendix: The Datasets for the Experiments

Dataset: SwissProt

Confidential Parts: all entries whose class is "standard" and mtype is "PRT"

Q1: //Species

Q2: //Ref[DB = "MEDLINE"]

Q3: //Features[//DOMAIN/Descr = "HYDROPHOBIC"]

Q4: //Entry[AC = "Q43495"]

Q5: //Entry[//Keyword = "Germination"]

Dataset: LineItem

Confidential Parts: all lines whose order key value is between 10000 and 40000

Q1: //table/T/L_TAX

Q2: /table/T[L_TAX = "0.02"]

Q3: /table/T[L_TAX[[. >= "0.02"]]]

Q4: //T[L_ORDERKEY = "100"]

Q5: //L_ DISCOUNT

Dataset: TreeBank

Confidential Parts: everything enclosed by <_QUOTE_> tags

Q1: //_QUOTE_//_NONE_

Q2: //_QUOTE_//_BACKQUOTES_

Q3: //_QUOTE_//NP[_NONE_ = "FTTVhQZv7pnPMt+EeoeOSx"]

Q4: //_QUOTE_//SBAR//VP/VBG

Q5: //_QUOTE_//NP/PRP_DOLLAR_

Dataset: Shakespeare

Confidential Parts: all speeches

Q1: //SPEAKER

Q2: //PLAY//SCENE//STAGEDIR

Q3: //SPEECH[SPEAKER = "PHILO"]/LINE

Q4: //SCENE/SPEECH/LINE

Q5: //SCENE[TITLE="SCENE II. Rome. The house of EPIDUS"]/LINE

Document
Conceptualisation

Wrapping PDF Documents
Exploiting Uncertain Knowledge

Sergio Flesca1, Salvatore Garruzzo2, Elio Masciari3, and Andrea Tagarelli1

1 DEIS, University of Calabria
{flesca, tagarelli}@deis.unical.it

2 DIMET, University of Reggio Calabria
salvatore.garruzzo@unirc.it

3 ICAR-CNR – Institute of Italian National Research Council
masciari@icar.cnr.it

Abstract. The PDF format represents the de facto standard for print-
oriented documents. In this paper we address the problem of wrapping
PDF documents, which raises new challenges in the information extrac-
tion field. The proposal is based on a novel bottom-up wrapping ap-
proach to extract information tokens and integrate them into groups
related according to the logical structure of a document. A PDF wrap-
per is defined by specifying a set of group type definitions which impose
a target structure to token groups containing the required information.
Due to the intrinsic uncertainty on the structure and presentation of
PDF documents, we devise constraints on token groupings as fuzzy logic
conditions. We define a formal semantics for PDF wrappers and propose
an algorithm for wrapper evaluation working in polynomial time with
respect to the size of a PDF document.

1 Introduction

In the context of Information Extraction, wrapping is the process of extracting
data containing information pertinent to a specific application domain, and or-
ganizing such data into a machine-readable format. Traditional wrapping refers
to the Web environment; Web wrapping systems (e.g. [1, 2, 3, 4, 5, 6]) exploit
markup tags in HTML pages to generate delimiter-based extraction rules [7].

However, HTML and XML are not the only formats to spread and exchange
textual information for the purpose of making it accessible to companies and pri-
vate users. A further and related kind of textual document refers to print-oriented
formats, whose Acrobat PDF [8] is the de facto standard. A PDF document is
described by a PDF content stream, which contains a sequence of graphical and
textual objects located at precise positions inside the document pages. Such in-
trinsic print-oriented nature of PDF documents arises many issues that make
the information extraction task particularly difficult.

As a motivating application scenario, consider PDF documents describing
company balance sheets, like that of Fig. 1. Automatically extracting informa-
tion from balance sheets is extremely useful to build data warehouses of finan-
cial data. Balance sheets are statements of the total assets and liabilities of

E. Dubois and K. Pohl (Eds.): CAiSE 2006, LNCS 4001, pp. 175–189, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

176 S. Flesca et al.

Fig. 1. Excerpt of a sample balance sheet

an organization, at a particular date, and are usually available as PDF doc-
uments. Each company may encode balance data using different presentation
styles (e.g. two-column or four-column layout, different instructions for text for-
matting etc.). The subjectivity in the layout structure that characterize even
thematically similar balance sheets leads to “uncertainty” in the specification of
the syntactic extraction rules.

To date, the problem of wrapping PDF documents has not been studied at
all, in spite of its applicability to a wide variety of scenarios. No existing wrapper
generation system is designed for print-oriented documents. At a first sight, it is
evident that while most information extraction approaches can be extended to
deal with the characteristics of the PDF format, the main hypothesis enabling
most wrapping approaches is lacking: even if documents are yet automatically
produced using data coming from company databases, each company can use a
different program to encode data in a document and, consequently, the resulting
layouts can be different.

In this paper we address the problem of extracting information from PDF
documents by focusing on their spatial and content features. We propose a novel
bottom-up wrapping approach which considers the complex schema of the in-
formation to be extracted and exploits logical fuzzy rule-based conditions on
the extracted information. The combined use of bottom-up extraction and fuzzy
conditions enables effectively handling uncertainty on the comprehension of the
layout structure of PDF documents.

Section 2 introduces basic notions for dealing with PDF documents as sets of
spatial tokens, and provides background on spatial relations and fuzzy set theory.
Section 3 describes a novel framework for wrapping PDF documents and a seman-
tics for PDF wrappers. Section 4 addresses the PDF wrapper evaluation issue and
describes an algorithm for extracting a maximal token group from a source PDF

Wrapping PDF Documents Exploiting Uncertain Knowledge 177

document, which works in polynomial time with respect to the size (number of
tokens) of the source document. Section 5 contains concluding remarks.

2 Preliminaries

2.1 Fuzzy Sets

The sharp nature of classic set theory may often lead to scenarios in which the
exact assignment of an object to a set is hardly obtained or unfeasible. Fuzzy set
theory [9] takes into account the uncertainty due to subjective factors in data by
introducing a smooth measure to state the place and role in the objects’ class
assignment. Given a set U , a fuzzy set A is defined by means of its membership
function μA : U �→ [0..1], such that, for any element x ∈ U , the membership
value μA(x) is defined as: μA(x) = 0 if x does not belong to A, μA(x) = 1 if x
belongs to A, whereas 0 < μA(x) < 1 if x partially belongs to A.

A fuzzy atom is a formula p(t1, . . . , tn), where t1, . . . , tn are terms and p is
a predicate symbol. Fuzzy predicates can be regarded as fuzzy sets of tuples,
that is μ(p(t1, . . . , tn)) = μp(t1, . . . , tn), where μp is the membership function
of predicate p. Given an atom a, the truth value μ(a) ranges in [0..1], and a
fuzzy fact is an expression of the form a ← μ(a). In our setting, we mainly use
built-in predicates, where the truth values of the ground atoms are pre-assigned.
Truth value of conjunction and disjunction of atoms can be straightforwardly
defined by means of aggregation operators [10]. Formally, given two fuzzy atoms
p(t1, . . . , tn) and q(t′1, . . . , t

′
k), we have:

– μ(p(t1, . . . , tn) ∧ q(t′1, . . . , t
′
k)) = min(μ(p(t1, . . . , tn)), μ(q(t′1, . . . , t

′
k))),

– μ(p(t1, . . . , tn) ∨ q(t′1, . . . , t
′
k)) = max(μ(p(t1, . . . , tn)), μ(q(t′1, . . . , t

′
k))),

– μ(¬p(t1, . . . , tn)) = 1− μ(p(t1, . . . , tn)).

As we shall explain in the following, fuzzy formulas enable modelling uncer-
tainty in the wrapping process.

2.2 Spatial Documents

We refer to the concept of token as the basic element of a PDF document. A
token is an atomic object (i.e. a textual element or an image), which is totally
contained within a document page. The graphical representation of a token on
the page layout takes up a certain room delimited by the token bounding box.
We assume the presence of an alphabet Γ of token values.

Definition 1 (Document token). A document token is a tuple 〈v, p, infx, infy,
supx, supy〉, where v ∈ Γ , p is a page number, infx and infy (resp., supx and supy)
are the coordinates (pixels) of the top-left corner (resp., bottom-right corner) of
the token bounding box. A spatial document is a set of document tokens.

Reasoning about tokens and their relationships lies on the capability of defining
suitable predicates to check syntactic as well as semantic properties, and to
characterize the spatial properties between pairs of tokens.

178 S. Flesca et al.

Spatial predicates allow for capturing relationships between locations of to-
kens. We denote with spatialrelation(t1, t2) a type of predicate that holds
if there exists a specific spatial relation between tokens t1 and t2. More pre-
cisely, spatial predicates include cardinal direction predicates, namely east, west,
north, northeast, northwest, south, southeast, southwest, and topological pred-
icates such as precedes and follows.

Cardinal direction predicates are defined as fuzzy predicates, whose truth
values depend on spatial relationships between tokens. For instance, the truth
value of an atom north(t1, t2), defined on tokens t1 and t2, depends on the
amplitude of the angle formed by a line connecting the center of t1 to the center
of t2 and the vertical axis of the document. By contrast, topological predicates
are more simple since we assume they admit only true or false as truth value.

Content predicates are defined on the content of tokens. Some useful content
predicates are listed below:

– containsStr(t, s): holds if string s is contained in the text of token t;
– isNumber(t): holds if token t represents a number;
– value(t, s): holds if string s is the text value of token t;
– regExp(t, e): holds if the text of token t matches a regular expression e;
– concept(t, c): measures the relevance of token t with respect to an ontology

concept c.

In the following section, we shall give evidence that spatial and content pred-
icates are the basis for setting constraints on the construction of token groups.

3 Wrapping PDF Documents

3.1 PDF Extracted Information Model

In order to extract desired information, individual tokens are hierarchically or-
ganized into groups. A token group collects logically related tokens. For instance,
in Fig. 1, tokens appearing in a line of a balance sheet are to be grouped together
to compose a balance item. Balance items of type Current Assets, Cash, T-bills,
Accounts Receivable, and Total Current Assets are then grouped together to
compose the current asset group and so on. We assume the presence of a finite
alphabet T of group types.

Definition 2 (Token group). A token group is a pair 〈τ, γ〉, where τ ∈ T is a
group type and γ is either a sequence γ = [〈τ1, γ1〉, . . . , 〈τn, γn〉] of token groups,
or a single token.

Given a token group g = 〈τ, γ〉, we denote with children(g) the set of the groups
appearing in γ, and with subgroups(g) the set of the groups that either appear
in γ or are recursively contained in subgroups(g′) such that g′ ∈ γ.

As stated in Definition 2, each token group is associated with a group type, and
may consist of more subgroups each having a specific type. Thus, a compound
token group is characterized in terms of the group types corresponding to its
subgroups.

Wrapping PDF Documents Exploiting Uncertain Knowledge 179

Definition 3 (Group content type). Given a token group g = 〈τ, γ〉, the
content type cnt(g) of g is either τ1, . . . , τn if γ = [〈τ1, γ1〉, . . . , 〈τn, γn〉], or
symbol ε /∈ T if γ is a single token.

However, not all the token groups are well-suited to be considered as a result of
the extraction task. In particular, we only consider “non-overlapping” groups,
that is any group must not contain two identical subgroups. This must be true
not only for the children of a group but also for all its descendants. For this
purpose, the notion of well-formed group is next given.

Definition 4 (Well-formed group). A token group g = 〈τ, γ〉 is said to be
well-formed if and only if there not exist two groups g′, g′′ ∈ subgroups(g),
with g′ /∈ subgroups(g′′) and g′′ /∈ subgroups(g′), such that children(g′) ∩
children(g′′) 	= ∅.

Proposition 1. Let g = 〈τ, γ〉 be a token group. If g is well-formed, each g′ ∈ γ
is well-formed.

Let g′ = 〈τ ′, γ′〉 and g′′ = 〈τ ′′, γ′′〉 be two token groups, where γ′ = [g′0, . . . , g
′
n]

and γ′′ = [g′′0 , . . . , g′′m]. We say that g′ contains g′′ (g′ ⊇ g′′) if and only if:

– g′ = g′′, or
– n = m and, for each i ∈ [0..n], g′i ⊇ g′′i , or
– n > m and there exists a sequence of indexes i0, . . . , im such that, for each

j ∈ [0..m], ij < ij+1 and g′ij
⊇ g′′j .

3.2 PDF Wrappers

In order to define a PDF wrapper we have to specify how to create a group
starting from previously recognized subgroups, and which conditions these sub-
groups must satisfy. However, the print-oriented nature of PDF documents makes
it impossible to specify tight conditions. To overcome this limitation we possibly
exploit fuzzy conditions on token groupings.

Spatial and content predicates, introduced in Section 2.2 for characterizing
properties and relationships between tokens, can be easily extended for token
groups. The underlying idea is that a content predicate holds for a group if
it holds for all the token within the group. Analogously, a spatial relationship
between two groups holds if it holds for all the pairs of tokens within the groups.
For instance, given two groups g1 and g2, relation north(g1, g2) can be formalized
as follows: north(g1, g2) → ∀ti ∈ γ1, tj ∈ γ2, north(ti, tj). This guarantees the
monotonicity property for cardinal direction predicates. Extension of topological
predicates to token groups can be made straightforwardly, since such predicates
are not defined by means of fuzzy constraints.

A fuzzy constraint is a disjunction of conjunctions of content and spatial pred-
icates. Formally, given a set of variables V , a fuzzy constraint c(V) is a formula∨n

i=0 ci(Vi), where each ci(Vi) is a conjunction of group atoms
∧ki

j=0 ai,j(Vi,j)
such that Vi,j is the set of all variables appearing in ai,j , Vi =

⋃ki

j=0 Vi,j , and
V =

⋃n
i=0 Vi.

180 S. Flesca et al.

Let V and G be a set of variables and a set of groups, respectively, and let θ
be a set of pairs x/g such that x ∈ V and g ∈ G. θ is a group variable substitution
if and only if it does not contain two pairs x/g′ and x/g′′ such that g′ 	= g′′.
Moreover, given a conjunction c(V) of group atoms, a group variable substitution
θ is said ground for c(V) if and only if it contains a pair x/g for each x ∈ V .

As is usual in standard logic programming, the application of a substitution
θ to a variable x returns a group g if x/g ∈ θ, or x itself otherwise. The result
of the application of a substitution θ to an atom a(x0, . . . , xl), denoted with
θ ◦ a(x0, . . . , xl), is an atom a(θx0, . . . , θxl). The application of a substitution to
conjunction and disjunction of atoms is defined accordingly.

Proposition 2. Let c be a conjunction of group atoms, and θ, θ′ be ground
group variable substitutions for c. If, for each x/g ∈ θ, there is a pair x/g′ ∈ θ′

such that g ⊆ g′ then μ(θ ◦ c) ≥ μ(θ′ ◦ c).

Group Type Definitions. The specification of group content model requires
the conditions, which selected subgroups must satisfy, are defined with respect
to the type of a group.

Given an alphabet T of group types and an alphabet V of variables, an an-
notated element name is defined as a pair τ : x, such that τ ∈ T and x ∈ V . An
annotated content model on (T ,V) is either a one-unambiguous regular expres-
sion [11] on annotated element names, or a pair #TOKEN : x, where #TOKEN
is the token content model and denotes a simple textual token.1

Given a group g = 〈τ, γ〉 and an annotated content model e, the content type
cnt(g) is valid for e if:

– cnt(g) = ε and e = #TOKEN : x, or
– cnt(g) = τ1, . . . , τn ∈ L(e), where L(e) denotes the language generated by e.

Given a group g = 〈τ, γ〉 and an annotated content model e such that cnt(g) is
valid for e, the variable binding of γ with respect to e, denoted with e(g), is a set
of pairs {g1/x1, . . . , gn/xn} such that xi is the variable implicitly associated to
gi parsing γ = [g1, . . . , gn] with e. Moreover, we denote with Θ(e, g) the set of all
the subsets of e(g) that are group variable substitutions. Notice that, in general
e(g) is not a group variable substitution, since a variable can be associated to
multiple subgroups.

Definition 5 (Group type definition). Let τ be a group type, e be an anno-
tated content model on (T ,V), and c be a fuzzy constraint on e. A group type
definition is a tuple 〈τ, e, c〉.
1 The “one-unambiguous” property for a regular expression allows for determining

uniquely which position of a symbol in the expression should match a symbol in an
input word, without looking beyond that symbol in the input word. For this reason,
it is worth emphasizing that there is only one way by which a string of group types
can be “parsed” using an annotated content model, thus an annotated content model
implicitly associates a variable xi to each subgroup 〈τi, γi〉 in γ.

Wrapping PDF Documents Exploiting Uncertain Knowledge 181

Roughly speaking, a group type definition is a complete specification of the
content model, together with an additional fuzzy constraint. Moreover, a group
type definition 〈τ, e, c〉 refers to the type τ . In the following, we characterize
the validity of a token group of type τ with respect to a group type definition
referring to τ .

Definition 6 (Group validity). Let g = 〈τ, γ〉 be a token group and gtd =
〈τ ′, e, c〉 be a group type definition. We say that g is valid with respect to gtd if
τ = τ ′ and cnt(g) is valid for e.

The syntactic validity of groups being extracted is not affected by the applica-
tion of fuzzy constraints. The truth value of a token group can be computed by
combining the truth values of its subgroups with the truth values of the fuzzy
constraints according to the rules defined in Section 2.1. However, we have to
define how a constraint c is grounded by the application of a group variable
substitution θ. It may happen that applying θ to c the resulting formula is not
ground, i.e. θ ◦ c still contains some variables. In this case, the semantics of con-
straint intuitively requires that the conjunction in which a variable still appears
will not be considered. The following example explains the above intuition.

Example 1. In Fig. 1, consider a group g whose description is as follows:

group type (τ) content (γ)

g Assets [g1, g2]
g1 Current Assets t1

g2 Intangible Assets t2

where g1, g2 are token groups and t1, t2 are tokens. Group g is associated with the
group type definition gtd = 〈τ, e, c〉 such that τ = Assets, e = Current Assets :
CA, (Inventory : I|Intangible Assets : IA), and c = follows(CA, I). By
parsing g with e, we have e(g) = {g1/CA, g2/IA}, which equals the set Θ(e, g)
since it is a group variable substitution. By applying the substitution to c we
obtain the non-ground constraint follows(g1, I). Thus, the truth value of g is
provided by the minimum between the truth values of its subgroups (i.e. g1, g2).

Given a fuzzy constraint c = c0 ∨ . . . ∨ cn and a group variable substitution θ,
the grounded version of θ ◦ c is defined as ground(θ ◦ c) = ground(θ ◦ c0)∨ . . .∨
ground(θ ◦ cn), where ground(θ ◦ ci) is θ ◦ ci if θ ◦ ci is ground, false otherwise.

Given a group g = 〈τ, γ〉 which is valid for a group type definition gtd =
〈τ ′, e, c〉, the truth value of g with respect to gtd is given by the truth value of
the formula

μgtd(g) = μ

⎛
⎝ ∧

g′∈γ

μ(g′) ∧ ground(θ ◦ c), ∀θ∈Θ(e, g)

⎞
⎠ ,

where for each possible variable binding we compute its truth value with respect
to all ground constraints θ ◦ c. Once computed the truth value of each conjunct,
the overall value is obtained by using the min operator (cf. Section 2.1). Notice

182 S. Flesca et al.

that, the truth value of the overall formula propagates starting from the token
value. Thus, token truth values bound the overall value of the formula and, as
usual in classic logic, if any conjunct evaluates to 0 the overall formula will
evaluate to 0 too.

PDF Wrapper Specification and Semantics. Faced with the above defini-
tions, we are now ready to provide the notion of PDF wrapper.

Definition 7 (PDF wrapper). A PDF wrapper is a tuple W = 〈τ, G〉, where
τ ∈ T is the root group type and G = {〈τ0, e0, c0〉, . . . , 〈τn, en, cn〉} is a set of
group type definitions such that τi 	= τj , for each i, j ∈ [0..n], i 	= j.

Let W = 〈τ, G〉 be a PDF wrapper and 〈τ1, e1, c1〉, 〈τ2, e2, c2〉 ∈ G be two group
type definitions. We say that τ1 depends on τ2 if τ2 appears in e1, or there exists
a group type definition 〈τ3, e3, c3〉 such that τ1 depends on τ3 and τ3 depends
on τ2. A PDF wrapper is said to be non-recursive if it does not contain two
group types τ1, τ2 such that τ1 depends on τ2. In the following we consider only
non-recursive PDF wrappers.

Given a wrapper W = 〈τ0, G〉 and a group type τ , we denote with W (τ) the
group type definition of τ in G.

Definition 8 (Valid group). Let W = 〈τ0, G〉 be a PDF wrapper and doc be
a PDF document. A group g = 〈τ, γ〉 on doc is valid for W if and only if:

1. g is well-formed, and
2. τ = τ0, and
3. g is valid with respect to W (τ), and
4. for each subgroup g′ = 〈τ ′, γ′〉 of g, g′ is valid with respect to W (τ ′).

The set of all groups over doc valid for W is denoted as G(W, doc).

Broadly speaking, a valid group is essentially a well-formed group of tokens,
which conforms to the schema defined by a wrapper. The reliability of the ex-
tracted data that are contained in a group g is substantially fuzzily measured by
μgtd(g). However, since the truth value of a group depends both on its associated
gtd and the truth values of its subgroups, in the following we denote with μW (g)
the truth value of a group according to the definition of a wrapper W .

Given a PDF wrapper W and a document doc, there can be several differ-
ent groups that are valid with respect to W . However, not all such groups are
desirable as results of the evaluation of W on doc. The key-idea is to consider
only groups that are “maximal”, i.e. groups whose truth value is equal to or
greater than a predefined threshold, and which are not contained inside other
valid groups that meet the truth value requirement as well.

Definition 9 (Maximal group). Let W = 〈τ0, G〉 be a PDF wrapper, t be a
truth value threshold, and doc be a PDF document. A group g ∈ G(W, doc) is
said to be maximal with respect to t if and only if:

Wrapping PDF Documents Exploiting Uncertain Knowledge 183

– μW (g) ≥ t, and
– there not exists g′ ∈ G(W, doc) such that g′ ⊇ g and μW (g′) ≥ t.

The set of all maximal groups with respect to t is denoted as Mt(W, doc).

Clearly, it is possible to consider only the maximal groups having the greatest
truth value. However, this strategy may be computationally expensive; thus, we
rather prefer to adopt a greedy approach for searching a maximal group with
the greatest truth value.

4 PDF Wrapper Evaluation

In the proposed approach, the objective of evaluating a wrapper for a PDF
document is to compute a maximal token group from that PDF document. We
consider a restricted form of wrappers, called �-free wrappers, which do not
contain optionals or repeated subgroups in group definitions.

Definition 10 (�-free wrapper). Let W = 〈τ0, G〉 be a PDF wrapper. W is
said to be �-free if and only if, for each group type definition 〈τ, e, c〉 ∈ G, e does
not contain ∗ or ?.

Given a wrapper W , we denote with W � the wrapper obtained by replacing
each group type definition 〈τ, e, c〉 in W with 〈τ, e�, c〉, where e� is the annotated
content model obtained from e by removing each occurrence of symbols ∗ and ?.
This operation allows us to consider the “kernel” of the content model defining
W : indeed, as can be easily observed, any expression in L(e�) is also in L(e),
that is L(e�) ⊆ L(e).

The search for maximal groups works by repeatedly trying to add new sub-
groups to existing groups. This is achieved by expanding optional parts of group
definition which have not been previously considered.

Definition 11 (Group expansion). Let W = 〈τ0, G〉 be a PDF wrapper, doc
be a PDF document, g = 〈τ, γ〉 and g′ = 〈τ, γ′〉 be two groups from doc, and
G(τ) be 〈τ, e, c〉. We say that g′ is an expansion of g if and only if g ⊆ g′ and
each pair gi/xi ∈ e(g) also belongs to e(g′).

Lemma 1. Let W be a PDF wrapper, doc be a PDF document, and g, g′ two
groups from doc. If g′ is an expansion of g then μW (g) ≥ μW (g′).

Lemma 2. Let W be a PDF wrapper, doc be a PDF document, and t be a
truth value threshold. For each group g in Mt(W, doc), there exists a group g′

in Mt(W �, doc) such that g is an expansion of g′.

Lemma 3. Let W be a PDF wrapper, doc be a PDF document, and t be a truth
value threshold. Mt(W, doc) is empty if and only if Mt(W �, doc) is empty.

Theorem 1. Let W be a PDF wrapper, doc be a PDF document, and t be a truth
value threshold. Checking ifMt(W, doc) is empty can be done in polynomial time
with respect to the number of tokens in doc.

184 S. Flesca et al.

Theorem 2. Let W be a PDF wrapper, doc be a PDF document, and t be a
truth value threshold. Checking whether a group g is in Mt(W, doc) is feasible
in polynomial time with respect to the number of tokens in doc.

4.1 A Fuzzy Algorithm for Extracting Maximal Token Groups

In this section we describe a PDF wrapper evaluation algorithm designed to
extract a maximal token group from a PDF document (Fig. 2). Given a PDF
document doc and a wrapper W for it, the maximal token group can be extracted
according to the content models specified in W and to a predefined truth value
threshold.

Initially, all the elementary token groups (i.e. groups of type #TOKEN) are
extracted from the source document doc. These groups are simply computed
by selecting all the tokens that satisfy the truth value threshold with respect
to the associated constraints. Then, the �-free wrapper W � is applied to doc
to extract all the �-free token groups; among these, the token group with the
maximum truth value is chosen and recursively “expanded” while the group
being constructed satisfies the desired truth value threshold.

Expanding a token group consists substantially in adding some subgroups to
its content, that is re-defining its original annotated content model including the
content of other groups. For this purpose, a normal form for annotated content
models is exploited.

Definition 12 (Normal form annotated content model). An annotated
content model e = exp1, . . . , expn is in disjunction-free normal form if and only
if, for each i ∈ [1..n], expi is either an annotated element name τ : x or an
expression of the form exp?, or exp∗, where exp is an annotated content model.

Given a group g and an annotated content model e in disjunction-free normal
form, g is matched by e if and only if cnt(g) is valid for e�. In order to compute the
expansion of a group g, the annotated content model e in disjunction-free normal
form that matches g is considered. Let e = exp1, . . . , expn be an annotated
content model in disjunction-free normal form. When parsing g with e, each
gi =〈τi, γi〉, such that γi ∈ cnt(g), is associated to one subexpression of e which
corresponds to a group type; then, a subexpression of the form exp? or exp∗ is
chosen, and a group sequence g′1, . . . , g

′
k valid for expi is found.

As an example, consider a group g = 〈τ, [〈a, γ1〉, 〈b, γ2〉, 〈c, γ3〉]〉 and an anno-
tated content model in disjunction-free normal form e = (a : x1, b : x2, (b : x3 | d :
x4)∗, c : x5) which matches g. Parsing g with e will result in assigning x1 to
〈a, γ1〉, x2 to 〈b, γ2〉, and x5 to 〈c, γ3〉. g can be expanded by selecting a new group
of type b or d, and computing the groups g′ = 〈τ, [〈a, γ1〉, 〈b, γ2〉, 〈b, γ′

4〉, 〈c, γ3〉]〉
or g′′ = 〈τ, [〈a, γ1〉, 〈b, γ2〉, 〈d, γ′′

4 〉〈c, γ3〉]〉, respectively. Besides groups g′ and g′′,
two annotated content models in disjunction-free normal form that match g′

and g′′, respectively, can be derived and further used to find new group ex-
pansions. For example, with respect to group g′, the annotated content model
e′ = (a : x1, b : x2, b : x3, (b : x3|d : x4)∗, c : x5), which is in disjunction-free
normal form, can be derived.

Wrapping PDF Documents Exploiting Uncertain Knowledge 185

Input:
A PDF document doc; A PDF wrapper W = 〈τ0, G〉;
A truth value threshold t.
Output:
A maximal token group g.
Method:
dbGroups := extractElementaryT okenGroups(doc,W, t);
G := buildStarF reeGroups(W,dbGroups, t);
g := selectMaxT ruthV alueGroup(G);
do

/* computes a group g′ from g by expanding g itself or one of its subgroups */

g′ := expand(W,g, dbGroups, t);
if (g′ �= null) then

g := g′;
while (g′ �= null);
return g;

Function expand(W,g, dbGroups, t) : g′;
Method:
S := ∅; g′ := null;
for each g′′ in descendantOrSelf(g) do

Exp := findExpansion(W,g′′, dbGroups, t);
for each gg ∈ Exp do

gg′ := replace(g, g′′, gg);
if gg′ is valid for G(τ0) and μW (gg′) ≥ t and gg′ is well-formed then

S := S ∪ {gg′};
if (S �= ∅) then

g′ := selectMaxT ruthV alueGroup(S);
return g′;

Function findExpansion(W,g,dbGroups, t) : Exp;
Method:
let g = 〈τ, γ, e〉, with e = exp1, . . . , expn;
Exp := ∅;
for each expi of the form exp? or exp∗ do

S := instantiate(expi);
for each ex ∈ S do

SG := selectGroups(ex�, dbGroups);
for each sg ∈ SG do

let ex′ = exp1, . . . , expi−1, ex, expi+1, . . . , expn;
if 〈τ, compose(ex′, γ, sg)〉 is valid for G(τ) and

μW (〈τ, compose(ex′, γ, sg)〉 ≥ t and
〈τ, compose(ex′, γ, sg)〉 is well-formed then

Exp := Exp ∪ 〈τ, compose(ex′, γ, sg), ex′〉;
return Exp;

Fig. 2. The TokenGroupExtractor algorithm

186 S. Flesca et al.

Let g be a group to be expanded, and e = exp1, . . . , expn be its matched
annotated content model in disjunction-free normal form. The expansion of g can
be computed by instantiating each expression expi ∈ e, that is by computing a
set of annotated content models (in disjunction-free normal form) derived from
expi and such that they do not parse the empty string. We define a function
instantiate as follows:

– instantiate(exp∗) = instantiate(exp), exp∗;
– instantiate(exp?) = instantiate(exp);
– instantiate(exp1|exp2) = instantiate(exp1) ∪ instantiate(exp2);
– instantiate(exp1, exp2) = instantiate(exp1), instantiate(exp2);
– instantiate(τ : x) = τ : x.

The concatenation of two sets of annotated content models E1, E2 is the set of
annotated content models {e1, e2 | e1∈E1 ∧ e2∈E2}. We say that an expression
of the form exp? or exp∗ is an expandable expression.

Let g = 〈τ, γ〉 be a group and e = exp1, . . . , expn be the annotated content
model in disjunction-free normal form that matches g. Let expi be an expand-
able expression, exi be an expression in instantiate(expi), γ be [g1, . . . , gn], and
g′1, . . . , g

′
k be a sequence of groups matching exi. The sequence [g1, . . . , gj, g

′
1, . . . ,

g′k, gj+1, . . . , gn] matching ex = exp1, . . . , expi−1, exi, expi+1, . . . , expn, is de-
noted as compose(ex, γ, [g′1, . . . , g′k]).

We are now able to gain an insight into the TokenGroupExtractor algorithm of
Fig. 2. We assume that a database dbGroups is used to store extracted annotated
groups. An annotated group is a triplet of the form g = 〈τ, γ, e〉, where 〈τ, γ〉 is
a group and e the annotated content model in disjunction-free normal form that
matches 〈τ, γ〉.

Once elementary token groups have been extracted and stored into dbGroups,
function buildStarF reeGroups first normalizes the input wrapper by produc-
ing, for each gtd ∈ G, group type definitions in disjunction-free normal form;
then, following the order derived from the dependence relation between group
types, for each normalized group type definition 〈τ, e, c〉 it computes �-free groups
by invoking selectGroups(e�, dbGroups), selects those that are well-formed and
satisfy the desired truth value threshold, annotates them with the content model
e, and finally adds the computed groups into dbGroups.

Function expand tries to expand a group g and returns an expanded group
if possible, null otherwise. Among all possible ways of expanding g, function
expand chooses the one exhibiting the highest truth value. Given three groups
g, g′, and gg, function replace returns a new group obtained by replacing g′ with
gg inside g if g′ is a subgroup of g, or returns gg otherwise. Moreover, function
descendantOrSelf , given a group g, yields the set of all the subgroups of g and
g itself. Finally, function selectMaxTruthV alueGroup, given a set of groups S,
returns the group with the maximum truth value in S.

Function findExpansion computes a set of all the possible expansions of an
annotated group with respect to the wrapper, the group database, and the truth
value threshold. Function selectGroups, given a �-free annotated content model
e = τ1 : x1, . . . , τn : xn (in disjunction-free normal form) and dbGroups, returns

Wrapping PDF Documents Exploiting Uncertain Knowledge 187

the set of group sequences of the form {g1, . . . , gn | ∀i gi∈πτi(dbGroups)}, where
πτi(dbGroups) is the set {g | g∈dbGroups ∧ type(g) = τi}.

Theorem 3. Let W be a PDF wrapper, doc be a PDF document, and t be a truth
value threshold. IfMt(W, doc) is not empty, the TokenGroupExtractor algorithm
computes a maximal group g in Mt(W, doc) in polynomial time with respect to
the number of tokens in doc.

5 A Case Study: Wrapping Balance Sheets

To assess the effectiveness of the PDF wrapping framework, we considered a
collection of balance sheets made publicly available from Italian companies; it is
highly heterogeneous due to the variety of formatting styles used to report the
balance assets and liabilities. For the sake of brevity, we describe a significant
example of information extraction from a page of the test balance sheet shown
in Fig. 3.

Suppose we would like to extract items each containing a balance voice (i.e.
the item label) and two currency values referring to different fiscal years. Table 1
summarizes details about the specification of a wrapper suitable to the example
balance sheet.

The maximal group to be extracted is of type item collection. This group
is composed of token groups item, which in turn consist of triplets of type
(balance voice, amount, amount). Each group item is constrained by a con-
junction of two cardinal direction predicates. Once a group item has been built,

Bilancio di esercizio al 31/12/2003 Pagina 1

 STATO PATRIMONIALE - ATTIVO 31/12/2003 31/12/2002

 B) IMMOBILIZZAZIONI

 I) IMMOBILIZZAZIONI IMMATERIALI

 1) Costi di impianto e di ampliamento 10.739 73.792

 5) Avviamento 433.824 495.799

 I TOTALE IMMOBILIZZAZIONI IMMATERIALI 444.563 569.591

 II) IMMOBILIZZAZIONI MATERIALI

 2) Impianti e macchinari

 a) impianti e macchinari 399.839 336.282

 b) f.a.impianti e macchinari 169.253- 105.762-

 2 TOTALE Impianti e macchinari 230.586 230.520

 3) Attrezzature industriali e commerciali

 a) attrezzature industriali e commerciali 63.045 61.845

 b) f.a.attrezzature industriali e commerciali 47.446- 29.561-

 3 TOTALE Attrezzature industriali e commerciali 15.599 32.284

 4) Altri beni

 a) altri beni 19.693 18.703

 b) f.a.altri beni 11.094- 6.621-

 4 TOTALE Altri beni 8.599 12.082

 II TOTALE IMMOBILIZZAZIONI MATERIALI 254.784 274.886

Fig. 3. Sample page of the test Italian company’s balance sheet

188 S. Flesca et al.

Table 1. A wrapper for the balance sheet of Fig. 3

W = 〈τ0, G〉 τ0 = item collection

G = 〈gtd1, gtd2, gtd3, gtd4〉
gtd1 = 〈τ1, e1, c1〉 τ1 = τ0

e1 = (item : IT)∗
c1 = T rue()

gtd2 = 〈τ2, e2, c2〉 τ2 = item
e2 = balance voice : BV, amount : N1, amount : N2

c2 = west(BV,N1) ∧ west(N1, N2)
gtd3 = 〈τ3, e3, c3〉 τ3 = balance voice

e3 = �TOKEN : X1

c3 = concept(X1, balance voice object)
gtd4 = 〈τ4, e4, c4〉 τ4 = amount

e4 = �TOKEN : X2

c4 = isNumber(X2)

<?xml version="1.0" encoding="UTF-8"?>
<item_collection>

<item>
<balance_voice>

<value>1) Costi di impianto
e di ampliamento</value>

<page>1</page>
<inf_x>45.7799</inf_x>
<inf_y>372.8574</inf_y>
<sup_x>210.92456</sup_x>
<sup_y>383.8794</sup_y>

</balance_voice>
<amount>

<value>10.739</value>
<page>1</page>
<inf_x>423.2689</inf_x>
<inf_y>374.8614</inf_y>
<sup_x>476.07428</sup_x>
<sup_y>383.8794</sup_y>

</amount>
<amount>

<value>73.792</value>
<page>1</page>
<inf_x>505.3864</inf_x>
<inf_y>374.8614</inf_y>
<sup_x>558.19183</sup_x>
<sup_y>383.8794</sup_y>

</amount>
</item>

<item>
<balance_voice>

<value>5) Avviamento</value>
<page>1</page>
<inf_x>45.7799</inf_x>
<inf_y>395.8974</inf_y>
<sup_x>118.79464</sup_x>
<sup_y>406.9194</sup_y>

</balance_voice>
<amount>

<value>433.824</value>
<page>1</page>
<inf_x>420.4875</inf_x>
<inf_y>397.9014</inf_y>
<sup_x>475.847</sup_x>
<sup_y>406.9194</sup_y>

</amount>
<amount>

<value>495.799</value>
<page>1</page>
<inf_x>502.6391</inf_x>
<inf_y>397.9014</inf_y>
<sup_x>557.9986</sup_x>
<sup_y>406.9194</sup_y>

</amount>
</item>
. . .
. . .

</item_collection>

Fig. 4. XML document extracted from the balance sheet of Fig. 3

it is added to the content of the group of type item collection, without being
subject to a real constraint (i.e. constraint c1 always holds).

Another noteworthy remark concerns c3. This constraint checks whether a
token associated to type balance voice really represents a balance voice. To
accomplish this, a predicate concept evaluates the membership of a given token
as an instance of class balance voice object, according to some functions which

Wrapping PDF Documents Exploiting Uncertain Knowledge 189

compute at what degree a string (token value) conceptually matches a class
property (e.g. a domain-specific cue phrase). Figure 4 shows an XML fragment
representing the maximal token group of type item collection extracted by
evaluating the wrapper of Table 1, with a truth value threshold set to 0.8.

6 Conclusion

We have presented a novel PDF wrapping framework based on a bottom-up
approach, in which the extraction task consists in grouping together document
tokens. A wrapper is defined by specifying the content for each type of token
group. Annotated content models and fuzzy constraints as the basic elements of
group type definitions. Fuzzy constraints are used to impose spatial and logical
conditions on the content of each group. We have defined a declarative seman-
tics of PDF wrappers and provided a polynomial time algorithm for extracting
maximal groups. We have given evidence that fuzzy constraints are well-suited
to capture subjective factors that brand the authorship in logically structuring
information into a PDF document.

A system prototype is in advanced phase of development2 and is currently
being applied for extracting information from balance sheets.

References

1. Ashish, N., Knoblock, C.A.: Wrapper Generation for Semistructured Internet
Sources. ACM SIGMOD Record 26(4) (1997) 8–15

2. Baumgartner, R., Flesca, S., Gottlob, G.: Visual Web Information Extraction with
Lixto. In: Proc. VLDB ’01 Conf. (2001) 119–128

3. Crescenzi, V., Mecca, G., Merialdo, P.: RoadRunner: Towards automatic data
extraction from large Web sites. In: Proc. VLDB ’01 Conf. (2001) 109–118

4. Freitag, D.: Machine Learning for Information Extraction in Informal Domains.
Machine Learning 39(2–3) (2000) 233–272

5. Muslea, I., Minton, S., Knoblock, C.: Hierarchical Wrapper Induction for
Semistructured Information Sources. Autonomous Agents and Multi-Agent Sys-
tems 4(1/2) (2001) 93–114

6. Soderland, S.: Learning Information Extraction Rules for Semistructured and Free
Text. Machine Learning 34(1–3) (1999) 233–272

7. Laender, A., Ribeiro-Neto, B., da Silva, A., Teixeira, J.: A Brief Survey of Web
Data Extraction Tools. ACM SIGMOD Record 31(2) (2002) 84–93

8. Adobe Systems Incorporated: PDF Reference, 5th edition: Adobe Portable Doc-
ument Format version 1.6. Available at http://partners.adobe.com/public/

developer/pdf (2004)
9. Zadeh, L.: Fuzzy Sets. Information and Control 8 (1965) 338–353

10. Wygralak, M.: Fuzzy Cardinals based on the Generalized Equality of Fuzzy Sub-
sets. Fuzzy Sets & Systems 18 (1986) 143–158

11. Bruggemann-Klein, A., Wood, D.: One-Unambiguous Regular Languages. Infor-
mation and Computation 142(2) (1998) 182–206

2 http://www.deis.unical.it/tagarelli/pdf-wrapping

Supporting Customised Collaboration over
Shared Document Repositories

Claudia-Lavinia Ignat and Moira C. Norrie

Institute for Information Systems, ETH Zurich,
CH-8092 Zurich, Switzerland

{ignat, norrie}@inf.ethz.ch

Abstract. The development of collaborative environments that not
only manage information and communication, but also support the ac-
tual work processes of organisations is very important. XML documents
are increasingly being used to mark up various kinds of data from web
content to data used by applications. Often these documents need to be
collaboratively created and edited by a group of users. In this paper we
present a flexible solution for supporting collaboration over shared repos-
itories containing both XML and text documents. By adopting hierar-
chical document models instead of linear representations used in most
editing systems, the level of conflict granularity and resolution can be
varied dynamically and the semantics of the user operations can be eas-
ily expressed. Merging of user work is based on the operations performed
rather than the document states which provides a less complex and more
appropriate way of handling conflicts.

1 Introduction

Collaboration is a central aspect of any team activity and hence of importance
to any organisation - be it business, science, education, administration, political
or social. The development of collaborative environments that not only manage
information and communication, but also support the actual work processes of
organisations is therefore very important. While some collaborative activity may
involve shared access to databases, a great deal of information central to the oper-
ation of organisations is held in documents and support for collaboration is left to
file systems, document editors, revision control systems or the users themselves.
At the same time, XML documents are increasingly being used to store all kinds
of information including not only application data, but also all forms of meta-
data, specifications, configurations, templates, web documents and even code.
While some XML documents are generated automatically from systems, for ex-
ample database exports, there are many cases where XML documents are created
and edited by users either in raw text format or through special tool support.

Although a number of document management and collaborative editing sys-
tems have been developed to support collaboration over documents, they tend to
focus on a particular form of document or mode of working. For example, some
collaborative editors support only synchronous editing of text documents while

E. Dubois and K. Pohl (Eds.): CAiSE 2006, LNCS 4001, pp. 190–204, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Supporting Customised Collaboration over Shared Document Repositories 191

revision control systems often support only asynchronous editing with support
for merging of versions. However, within a single project, it is often the case that
different forms of collaboration are used at different stages of the document life
cycle and, depending on the activity and mode of working, it should be possible
to support both synchronous and asynchronous collaboration and customise the
definition and resolution of potential conflicts, as pointed out in [7].

In [8] we described our approach for maintaining consistency for real-time
collaboration over text documents. In [5, 6] we described how our approach has
been applied to asynchronous collaboration over a repository, the basic unit for
collaboration being the text document. In this paper, we focus on asynchronous
working over a shared document repository and show how flexible solutions to
collaboration over both text and XML documents can be achieved by adopt-
ing hierarchical document models instead of the linear representations used in
most editing systems. These models enable the level of conflict granularity and
resolution to be varied dynamically and capture more of the semantics of user
operations. The handling of conflicts is based on the technique of operational
transformations applied to different document levels and the merging of user
work is therefore based on the operations that they perform rather than the
document states which, as we will show, provides a much more appropriate way
of detecting and handling conflicts. Rather than providing a full description of
the merging algorithms for consistency maintenance, in this paper, we briefly
describe the principles of merging and instead focus on the aspects of customi-
sation achieved by our approach in terms of the types of documents supported,
i.e. text and XML, and flexibility in the definition and resolution of conflicts.

The paper is structured as follows. We begin in section 2 by presenting the
limitations of existing version control systems for collaboration over documents
and give an overview of the existing asynchronous collaborative systems for text
and XML documents. Section 3 describes the document model that we adopted.
In section 4, we present the set of operations that are used to describe the changes
performed by the users. In section 5, we show how an existing linear-based merge
approach has been used by our tree-based merging approach recursively over the
document levels. We then describe in section 6 how conflicts can be defined and
resolved in a flexible way in our system. Concluding remarks are presented in
section 7.

2 Collaboration over Documents

We start this section with the description of some scenarios showing the set of
requirements of a version control system supporting a group of people collabora-
tively working on set of XML and text documents and the limitations of existing
systems. Afterwards we present existing related approaches for asynchronous col-
laboration on XML and text documents and highlight the contribution of our
approach.

Consider the case of a research team in the field of computational physics
that wants to publish the results of their simulations in XML documents and

192 C.-L. Ignat and M.C. Norrie

also write scientific papers about their research work. The XML format offers a
number of advantages for computational physics: clear markup of input data and
results, standardised data formats, and easier exchange and archival stability of
data. Concurrent editing of the documents containing the data results should
be supported as simulations and the gathering of results can be performed in
parallel by the members of the group. Documentation for the simulations can be
edited and stored in XML or text documents. However, scientific papers should
conform to different formats required for publication. Text documents that in-
clude formatting instructions cover most of the formats required for publication.
For instance, RTF (Rich Text Format) and LaTex documents are text documents
including formatting instructions. For the moment, we only consider collabora-
tive editing on raw text documents, but in the future we are going to extend it
to text documents that include different formatting instructions.

First consider the editing of XML documents and the case that two researchers
concurrently edit the following part of an XML document.

<averages>
<scalar_average name="Energy">

<mean>-0.9469</mean><error>0.00362</error>
</scalar_average>

</averages>

Assume they concurrently modify the values of the mean and error elements,
with the values -0.9336 and 0.00299. The two changes should both be per-
formed and the final version of the document should be

<averages>
<scalar_average name="Energy">

<mean>-0.9336</mean><error>0.00299</error>
</scalar_average>

</averages>

In the CVS [1] or Subversion [3] systems merging is performed on a line by
line basis with the basic unit of conflict therefore being the line. This means that
the changes performed by two users are deemed to be in conflict if they refer to
the same line and therefore the concurrent modification of the mean and error
elements is detected as conflict. The user has then to manually choose one of the
modifications. If conflicts would be defined at the level of elements both changes
could be taken into consideration. Another case is when one user adds some
spaces between the mean and error elements for reformatting purposes, while
another user in parallel performs some changes to the mean element. Version
control systems such as CVS and Subversion will detect conflict since the same
line of the document has been modified, even though there is no semantic conflict.
Again, such situations can be avoided if the document is structured into elements
and separators and the resolution conflict is set at the level of the element.
Situations may arise where a user would like to work exclusively on part of a
document. The possibility of locking parts of an XML document before an update
procedure is performed is not offered by existing version control systems.

Let us analyse next how flexible granularity and policies for the resolution
of conflicts could help users in the collaborative editing process. Consider the

Supporting Customised Collaboration over Shared Document Repositories 193

example of two PhD students from the computational physics group writing
a research paper together with their professor. At the beginning, they decide
on the structure of the paper and divide the work of writing sections. Initially,
after writing different sections, their work is easily merged because the parts
that they have been working on do not overlap. Even though they have been
assigned separate parts of the document to work on, some parts of the document
such as the bibliography or the introduction may be edited together. Moreover,
at a later stage, the sections written by one of the authors will be read by the
other authors. In early stages of writing the paper, the maximum number of
modifications performed in parallel should be kept. In this case, defining the
conflict at the word level would be appropriate, i.e. conflict is detected only if
modifications have been performed on the same word. But, at a later stage when
changes are critical, the conflict granularity can be set at the paragraph level.
This means that if two modifications have been performed in the same paragraph,
the author committing the changes has to carefully read the two versions of the
paragraph and decide which version to keep. Suppose that each version in the
repository is associated with the user who committed that version. In the case
that the last version from the repository was committed by the professor, the
students might choose to synchronise their local workspaces in accordance with
the automatic policy of keeping the changes from the repository in the case of a
conflict. In this way, in the case of conflict, the changes of the professor included
in the last version in the repository are considered rather than the changes of
the students.

As seen from the above examples, there is a need to adopt a flexible means of
defining conflicts, as opposed to the fixed unit of conflict (the line) adopted by
version control systems such as CVS and Subversion. We propose an approach
that allows conflicts to be defined using semantic units corresponding to the
structure of the document, such as paragraph, sentence or word in the case of
text documents or elements, attributes, separators, words and characters in the
case of XML documents. Moreover, in our approach, we offer not only manual
resolution for conflicts, but also other automatic resolution policies, such as to
keep the changes in the repository or in the local workspace in the case of conflict.

Another disadvantage of existing version control systems such as CVS and
Subversion is the fact that they adopt state-based merging where only the in-
formation about the states of the documents and no information about the evo-
lution of one state into another is used. An operation-based merging approach
[15, 10] keeps information about the evolution of one document state into an-
other in a buffer containing a history of the operations performed between the
two states of the document. Merging is done by executing the operations per-
formed on a copy of the document onto the other copy of the document to be
merged. In contrast to the state-based approach, the operation-based approach
does not require documents to be transferred over the network between the local
workspaces and the repository. Moreover, no complex differentiation algorithms
for XML [17, 2, 9] or diff [14] for text have to be applied in order to compute
the delta between the documents. Therefore, the responsiveness of the system

194 C.-L. Ignat and M.C. Norrie

is better in the operation-based approach. Merging based on operations also of-
fers better support for conflict resolution by having the possibility of tracking
user operations. In the case of operation-based merging, when a conflict occurs,
the operation causing the conflict is presented in the context in which it was
originally performed. In the state-based merging approach, the conflicts are pre-
sented in the order in which they occur within the final structure of the object.
For instance, CVS and Subversion present the conflicts in the line order of the
final document, the state of a line possibly incorporating the effect of more than
one conflicting operation.

In this paper, we propose a merging approach based on the transformation
of operations representing the changes performed during editing. By adopting a
tree model of the document, different semantic units can be associated to the
document levels and the approach offers a flexible way of defining and resolving
conflicts. Our approach is general for any document conforming to a hierarchical
structure and we show how it can be applied to both text and XML documents.

In what follows we are going to give a very short overview of the existing
approaches for the merging of both text and XML documents.

An operation-based merging approach that uses a flexible way of defining
conflicts has been used in FORCE [15]. However, the FORCE approach assumes
a linear representation of the document, the operations being defined on strings
and not taking into account the structure of the document. Another approach
that uses the principle of transformation of the operations has been proposed
in [11]. However, for the merging of the text documents, the authors proposed
using a fixed working unit, i.e. the block unit consisting of several lines of text.

By using a hierarchical model of documents, not only can conflicts be detected
and handled in a flexible way, but also the efficiency in terms of the number
of transformations performed is improved compared to approaches that use a
linear representation of documents, as shown in [8, 6] and shortly explained in
what follows. The existing operation-based linear merging algorithms maintain a
single log in the local workspace where the locally executed operations are kept.
When the operations from the repository need to be integrated in turn into the
local log, the entire local log has to be scanned and transformations need to
be performed even though the changes refer to completely different sections of
the document and do not interfere with each other. In our approach, we keep
the log distributed throughout the tree. When an operation from the repository
is integrated into the local workspace, only those local logs that are distributed
along a certain path in the tree are spanned and transformations performed. The
same reduction in the number of transformations is achieved when the operations
from the local workspace have to be transformed against the operations from the
repository in order to compute the new difference to be kept on the repository.
Our merging algorithm recursively applies over the different document levels any
existing merging algorithm relying on the linear structure of the document.

A flexible object framework that allows the definition of the merge policy
based on a particular application was presented in [13]. The objects subject to
the collaboration are structured and therefore semantic fine-grained policies for

Supporting Customised Collaboration over Shared Document Repositories 195

merging can be specified. A merge matrix defines the merge functions for the
possible set of operations. The approach proposes different policies for merging,
but does not specify an ordering of concurrent operations, such as the order of
execution of two insert operations or an insert and delete. The approach does not
describe how the difference between two versions of the hierarchical documents
is generated. In our approach, we dealt with both the generation of differences
between document versions and the handling of conflicts.

Some state-based approaches for merging XML documents have been pro-
posed in [17, 2, 9]. In contrast, our approach is operation-based and we previ-
ously highlighted the advantages of merging based on operations compared to
state-based merging.

Another operational-transformation approach for merging hierarchical docu-
ments, such as XML and CRC (Class, Responsibility, Collaboration) documents,
has been proposed in [12]. The environment provides the user with a graphical in-
terface which allows operations to be performed such as the creation and deletion
of a new node, the creation and deletion of a certain attribute and the modifica-
tion of an attribute. By using the graphical interface, no customised formatting
for the elements can be used. Modification of a node involves the deletion of the
node and the insertion of a new node containing the modified value. Moreover,
for text nodes, a lower granularity such as words or characters does not exist. Our
approach offers a more natural way of editing XML documents, as we provide a
text interface. We have chosen to rather add some additional logic to the editor
to ensure well-formed documents than limit the user with a graphical interface.
Moreover, our approach achieves better efficiency since the log of operations is
distributed throughout the tree rather than being linear.

3 Model of the Document

We now present our model for text and XML documents and the particular is-
sues concerning consistency maintenance during the editing of well-formed XML
documents as defined by W3C. We mention that we did not consider issues of
checking the validity during collaborative editing of XML documents according
to DTD (Document Type Definition) or XML Schema.

We model a text document as being composed of a set of paragraphs, each
paragraph containing a set of sentences, each sentence being formed by a set
of words and each word containing a set of characters. In this way, the con-
flicts can be defined and resolved at different granularity levels, corresponding
to the document levels (paragraph, sentence, word and character). For instance,
a conflict can be defined at the level of sentence, and, in this way, if two users
concurrently modify a sentence, a conflict will be detected. Books, a more gen-
eral form of text documents, also conform to a hierarchical model being formed
by chapters, sections, paragraphs, sentences, words and characters.

XML, the popular format for marking up various kinds of data from web
content to data used by applications, is also based on a tree model. We classified
the nodes of the document into root nodes, processing nodes, element nodes,

196 C.-L. Ignat and M.C. Norrie

attribute nodes, word nodes and separator nodes in order that various conflict
rules can be defined. A conflict could then be defined, for example, for the case
that two users perform operations on the same word node or for the case that
users concurrently modify the same attribute node.

When editing XML content, we encounter problems which do not occur when
working with text. Consider the case that a user edits an XML document, e.g.
by adding the line ‘<test>hello world</test>’ character by character. In this
way, the XML document will not be well-formed until the closing tag is com-
pleted. The editor should provide support to insert complete elements, so that
the operations can be tracked unambiguously at any time in the editing process.
Our editor offers auto-completeness of elements. For instance, every time the
user inserts a ‘<’ character, the insertion of ‘<></>’ is performed. Of course an
empty tag, such as ‘<></>’ is not a valid XML element, but at least it allows
the desired operation of creating a new element to be addressed in a valid way.

Additional rules for the deletion of characters have to be provided. A user
should be prevented from deleting parts of the structure of an element, such as
the begin or end tag, unless the whole element is deleted. For instance, the user
cannot delete ‘</test>’ from an element ‘<test>hello world</test>’. Another
issue regarding the editing of elements is the two different forms that an empty
element can take: the form containing both the opening and closing tags such as
‘<test></test>’, or the form of an empty element such as ‘<test/>’ containing
only the closing tag meaning that no further child elements are defined. The user
is prevented from directly deleting the closing tag (‘</test>’). Instead the user
can insert a ‘/’ character at the end of the starting tag (‘<test>’⇒ ‘<test/>’) in
order to tell the system that the element should be transformed into an empty
element containing only a closing tag. The operation is not performed if the
element contains other child nodes. On the other hand, the deletion of the ‘/’
character in an empty element leads to the creation of an element containing a
begin and end tag.

In the remainder of this section, we discuss detailed handling of each type
of node that we used to structure XML documents. The root node is a special
node representing the virtual root of the document that contains the nodes of
the document. The user cannot perform operations on this node.

Processing nodes can be used to define processing instructions in the XML
document such as ‘<?xml version="1.0"?>’. In order to keep the XML content
valid and to allow insertions of whole elements, the insertion of processing nodes
is restricted to complete processing nodes, i.e. ‘<??>’ and the deletion of elements
referring to the structure of a processing node can be done only if the whole
processing node is deleted.

Element nodes represent XML element structures and they consist of an ele-
ment name, as well as some optional attribute and child nodes. For the following
element node ‘<test att="val">hello world</test>’, the string ‘test’ is the
element name, ‘att="val"’ is an attribute node and ‘hello world’ is composed
of three child nodes, namely two word nodes and one separator node. Similar
to processing nodes, in order to ensure well-formed XML documents, only com-

Supporting Customised Collaboration over Shared Document Repositories 197

plete element nodes having the form ‘<></>’ are allowed to be inserted, and the
deletion of characters modifying the structure of the element node is restricted.
Element nodes present a further issue as the element name in the opening and
closing tag must be the same. As the update of the element name is an atomic
operation, the editor alters the element names automatically whenever the user
adds/removes some characters to/from the tag name.

The attribute nodes can be used either by the processing nodes or the element
nodes and they basically consist of a single attribute string. To support the user,
the editor will insert the ‘=""’ characters automatically whenever the user adds
a new attribute.

The separator nodes are used to preserve the formatting of the XML document
and they represent white spaces and quotation marks.

4 The Set of Operations

In this section, we present the set of operations used to describe the actions
performed by users during the editing process of text and XML documents. The
set of operations has been chosen to be as minimal as possible, but to allow the
flexible definition and resolution of conflicts. Even if the sets of operations for
describing the changes performed in the text and XML documents are different,
the mechanism for consistency maintenance is the same, as we will show later.

For text editing, the set of operations that can be performed on the model of
the document are insert and delete a semantic unit, such as paragraph, sentence,
word or character.

For XML editing, the set of operations contains various forms of insert and
delete operations. INSERT PROCESSING inserts a new processing node. IN-
SERT ELEMENT inserts a new element node that can either be a child of
the root node or a child of another element node. INSERT ATTRIBUTE in-
serts a new attribute node that can either be added to a processing or ele-
ment node. INSERT WORD inserts a new word node that can be added to
any element node. INSERT SEPARATOR inserts a new separator node. In or-
der to maintain well-formed documents, the user is not allowed to split the
names of processing nodes, elements or attributes by means of separators. IN-
SERT CHAR inserts a character that can be added to update processing or
element names, attributes and words. INSERT CLOSING TAG adds a closing
tag. DELETE PROCESSING, DELETE ELEMENT, DELETE ATTRIBUTE,
DELETE WORD, DELETE SEPARATOR, DELETE CHAR and DELETE
CLOSING TAG are the delete operations corresponding to the set of insert
operations.

5 Operational Transformation Approach

The operational transformation approach [4] is a suitable approach for merg-
ing that has been adopted for text documents conforming to a linear structure,

198 C.-L. Ignat and M.C. Norrie

such as a sequence of characters. The advantages for merging based on oper-
ations compared to state-based merging are, as already pointed out, improved
responsiveness and the possibility of tracking the activity of the users.

The basic operations supplied by a configuration management tool are check-
out, commit and update. A checkout operation creates a local working copy of
the document from the repository. A commit operation creates in the repository
a new version of the document based on the local copy, assuming that the reposi-
tory does not contain a more recent version of the document than the local copy.
An update operation performs the merging of the local copy of the document
with the last version of that document stored in the repository.

We first illustrate the basic operation of the operational transformation mech-
anism, called inclusion transformation, by means of an example. The Inclusion
Transformation - IT (Oa, Ob) transforms operation Oa against operation Ob such
that the effect of Ob is included in Oa. Suppose the repository contains the
document consisting of one sentence “We present the merge.” and two users
check-out this version of the document and perform some operations in their
workspaces. Further, suppose User1 performs the operation O11=InsertWord
(“procedure”,5). It is an operation intending to insert the word “procedure” at
the end of the sentence, as the 5th word, in order to obtain “We present the merge
procedure.” Afterwards, User1 commits the changes to the repository and the
repository stores the list of operations performed by User1 consisting of O11.
Concurrently, User2 executes operation O21=InsertWord(“next”,2) of inserting
the word “next” as the 2nd word into the sentence in order to obtain “We next
present the merge.” Before performing a commit, User2 needs to update the
local copy of the document. The operation O11 stored in the repository needs to
be transformed in order to include the effect of operation O21. Because operation
O21 inserts a word before the insertion position of O11, O11 needs to increase its
position of insertion by 1. In this way the transformed operation will become an
insert operation of the word “procedure” as the 6th word, the result being “We
next present the merge procedure.”

In what follows, we outline an existing operational transformation approach
working on linear structures of documents. Afterwards we present the extension
of the linear-based approach working for a hierarchical document structure.

5.1 Linear-Based Merging

First we describe the merging algorithm applied to a linear representation of
documents as implemented in [15].

In the commit phase, the repository simply executes sequentially the oper-
ations performed in the local workspace in order to generate the state of the
latest version from the repository. The list of operations sent to the repository
represents the difference between the latest two versions of the document. In the
checkout phase, in the case that the requested version number of the document
equals the latest version number in the repository, the state of the latest version
of the document is sent to the local workspace. In the case that the requested
version number is less than the latest version number from the repository, the

Supporting Customised Collaboration over Shared Document Repositories 199

state of the document that is sent to the local workspace has to be computed. It
is obtained by executing on the state of the latest version of the document the
inverses of the operations that represent the deltas between the latest version in
the repository and the requested version.

In the updating phase, the merging algorithm has to be performed between the
list of operations executed in the local workspace LL and the list of operations
DL representing the delta between the most recent version from the repository
and the version that the local user started working on. Two basic steps have
to be performed. The first step consists of transforming the remote operations
from DL in order to include the effect of the local operations. These transformed
operations are then executed on the local workspace. The second step consists of
transforming the operations in LL in order to include the effects of the operations
in DL, the list of the transformed local operations representing the new delta
into the repository. In the case that operation Oi belonging to DL is in conflict
with an operation from LL, Oi cannot be executed in the local workspace and it
needs to be included into the delta as its inverse in order to cancel the effect of
Oi. Moreover, all operations following it in the list DL need to exclude its effect.

In the case that a user wants to commit the local changes to the repository
after performing an update, but in the meantime another user committed his
changes to the repository, the first user has to perform a new update.

5.2 Hierarchical-Based Merging

The merging approach presented in the previous section works for a linear repre-
sentation of documents, the operations being defined on strings, without taking
into account the structure of the document. Structuring the document into dif-
ferent semantic units allows the possibility for the user to define and resolve the
conflicts in a natural way. The approach that we present is a generalisation of
the merging mechanism for a linear structure applied to a hierarchical structure.

The disadvantage of the linear-based merging approach is that all operations
in the repository and in the local workspace are kept in a single buffer and,
when an operation has to be integrated into one of these buffers, a large number
of transformations have to be performed. In our approach, the history buffer
is distributed throughout the tree, thereby making the merge more efficient as
only certain paths in the tree have to be spanned and few transformations are
performed. Using the same model, we were also able to improve the efficiency
of real-time collaborative editing as reported in [8]. The model of the document
is therefore extended by associating to each node in the hierarchical structure
(excluding leaf nodes) a history buffer containing operations associated with its
children nodes.

The structure of a text-based document is illustrated in Fig. 1. Each internal
node of the tree has an associated history containing operations of insertion or
deletion of child nodes.

For the XML document below, its tree representation is illustrated in Fig. 2.
The attributes of a node are considered to be children of that node.

200 C.-L. Ignat and M.C. Norrie

<?xml version=“1.0”?>
<addressBook>

<person id=“p001”>
<name>Smith, John< /name>

< /person>
< /addressBook>

Operations referring to processing nodes, elements, attributes, words and sep-
arators are added to the history associated with the parent node. Operations
referring to characters are added to the history associated to the processing tar-
get, element names, attributes or words to which they belong. The operations
referring to the closing tags are added to the history associated with the element
to which they belong.

The commit and checkout phase follow the same principles as described for
the linear representation of the documents, with the addition that, in the commit
phase, the hierarchical representation of the history of the document is linearised
using a breadth-first traversal of the tree. For instance, in the case of text edit-
ing, the first operations in the log will be the ones belonging to the paragraph
logs, followed by the operations belonging to the sentence logs and finally the
operations belonging to the word logs.

…

…

Document

Pa1 Pa2

Se2.3 Se2.4

W2.3.1 W2.3.2

C2.3.2.3
“g”

Doc. Hist.

Se2.3 Hist.

…

W2.3.3

C2.3.2.4
“o”

History for operations
at paragraph level

History for operations on
sentences in paragraph Pa2

C2.3.2.1
“a”

C2.3.2.2
“l”

Levels

Document

Paragraph

Sentence

Word

Character

Pa1 Hist. Pa2 Hist.

Se2.4 Hist.

W2.3.1 Hist. W2.3.2 Hist.

…

C2.3.2.5
“r”

W2.3.3 Hist.

Se2.1 Se2.1 Hist. Se2.2 Se2.2 Hist.

… …

W2.3.4 W2.3.4 Hist.

C2.3.2.6
“i”

C2.3.2.7
“t”

C2.3.2.8
“h”

C2.3.2.9
“m”

Fig. 1. Structure of a text document

RootNode Hist. RootNode

xml Hist. xml addressBook Hist. addressBook

version=“1.0” Hist. attr. version person

‘\n’

‘ ’ ‘\n’ ‘\t’ Hist. person ‘\n’

id=“p001” Hist. attr. id‘ ’ ‘\n’ ‘\t’ ‘\t’ name Hist. name ‘\n’ ‘\t’

Smith Hist. Smith ‘,’ ‘ ’ John Hist. John

Fig. 2. Structure of an XML document

Supporting Customised Collaboration over Shared Document Repositories 201

We now describe the update procedure that we apply for the case of text
editing. The update procedure achieves the actual update of the local version of
the hierarchical document with the changes that have been committed by other
users to the repository and kept in linear order in the remote log. It has as its
objective the computing of a new delta to be saved in the repository, i.e. the
replacement of the local log associated with each node with a new one which
includes the effects of all non-conflicting operations from the remote log and the
execution of a modified version of the remote log on the local version of the
document in order to update it to the version on the repository.

The update procedure is repeatedly applied to each level of the document
starting from the document level. First the remote level log is constructed to
contain those operations from the remote log that have the level identical with
the level of the operations from the history buffer of the current node. The oper-
ations belonging to the remote level log are eliminated from the remote log. The
basic merging procedure for linear structures is applied to merge the local log of
the current node with the remote level log. As a result of the merging procedure,
the new remote log representing the operations that need to be applied on the
local document and the new local log representing the operations to be saved
on the repository are computed. After the new remote log is applied locally, the
operations from the remote log are transformed against the operations in the
local log and are divided among the children of the current node. Afterwards,
the merging procedure is recursively called for each child. A detailed description
of the update procedure is presented in [5].

The same basic ideas underlying the merging of text documents have been
applied to the merging of XML documents. While in the case of text editing,
transformation functions have been defined between the operations of insert and
delete, in the case of XML editing, transformation functions have been defined for
all types of operations targeting processing nodes, elements, attributes, words,
characters and separators.

6 Conflict Definition and Resolution

In this section, we show how our approach can be used to define and resolve
conflicts in a flexible way.

Due to the tree model of the document, for the case of text editing, the
conflicts can be defined at different granularity levels: paragraph, sentence, word
or character. In our current implementation, we have defined that two operations
are conflicting in the case that they modify the same semantic unit: paragraph,
sentence, word or character. The semantic unit is indicated by the conflict level
chosen by the user from the graphical interface. The conflicts can be visualised
at the chosen granularity levels or at a higher level of granularity. For example,
if the user chooses to work at the sentence level, it means that two concurrent
operations modifying the same sentence are conflicting. The conflicts can be
presented at the sentence level such that the user can choose between the two
versions of the sentence. It may happen that in order to choose the right version,

202 C.-L. Ignat and M.C. Norrie

the user has to read the whole paragraph to which the sentence belongs, i.e. the
user can choose to visualise the conflicts also in the context of the paragraph or
at an upper level. Other rules for defining the conflicts could be implemented
such as to check if some grammar rules are satisfied. This testing can easily be
implemented using the semantic units defined by the hierarchical model.

We allow different policies for conflict resolution, such as automatic resolution
where the local changes are kept in the case of a conflict or manual resolution,
where the user can choose the modifications to be kept. Concerning manual
resolution policies, the user can choose between the operation comparison and
the conflict unit comparison policies. The operation comparison policy means
that when two operations are in conflict, the user is presented with the effects
of both operations and has to decide which of the effects to preserve. In the
conflict unit comparison policy, the user has to choose between the set of all local
operations and the set of all remote operations affecting the selected conflict unit
(word, sentence or paragraph). The user is therefore presented with the two units
that are in conflict. The policies for the resolution of conflicts can be specified in
the graphical interface. The rules for the definition of conflict and the policies for
conflict resolution can be specified by each user before an update is performed
and they do not have to be uniquely defined for all users. Moreover, for different
update steps, users can specify different definition and resolution merge policies.

In order to better understand how conflicts are defined and resolved, we are
going to provide the following scenario. Suppose that two users are concurrently
editing a document where the last paragraph consists of the sentence: “Our
algorithm applie a linear merging procedure”. For simplicity, we are going to
analyse the concurrent editing performed on this paragraph. The first user adds
the character “d” at the end of the word “applie” and inserts the word “recur-
sively” as illustrated in Fig. 3. The second user adds the character “s” at the end
of the word “applie” and the new sentence “The approach offers an increased
efficiency.” as also shown in the figure.

Suppose that, after performing their modifications, the first user commits
their changes to the repository. In order to commit to the repository, User2 has
to update their local version. In the case that User2 has chosen the conflict level
to be sentence and the policy for merging to be conflict unit comparison, the user
is presented with the two sentences that are in conflict, as illustrated in Figure 3.
Suppose that they choose the variant corresponding to their local version. After
the second user performs a commit, the last paragraph of the new version of the
document in the repository becomes: “Our algorithm applies a linear merging
procedure. The approach offers an increased efficiency.”

In the case that the second user would have chosen the word level granu-
larity, the conflict would have been detected for the word “applie”. The two
words in conflict would be “applied” and “applies”. Suppose that the variant
corresponding to their local version is chosen. After performing a commit, the
last paragraph of the new version of the document in the repository becomes:
“Our algorithm applies recursively a linear merging procedure. The approach
offers an increased efficiency.”

Supporting Customised Collaboration over Shared Document Repositories 203

Fig. 3. Conflict resolution

In this example, we see that it is easy to define generic conflict rules involv-
ing different semantic units. We mention that, in the case of version control
systems such as CVS and Subversion, when User2 is updating the local copy,
a conflict between the line “Our algorithm applied recursively a linear merging
procedure.” from the repository and the line “Our algorithm applies a linear
merging procedure. The approach offers an increased” from the workspace will
be detected, as well as the addition of the line “efficiency.” User2 would have
to manually choose between the two conflicting lines and to add the additional
line. Most probably, User2 will decide to keep their changes and choose the line
they edited, as well as adding the additional line. In order to obtain a combined
effect of the changes, User2 has to add manually the word “recursively” in the
local version of the workspace.

For the case of XML documents, as for the case of text documents, the editor
provides a conflict resolution dialogue when concurrent changes have been per-
formed on the same granular unit, such as attribute, word or element. The user
then needs to decide whether they want to keep the local or the remote version.
In the case that a user wants to keep the local version of some parts of the XML
document when a merging is performed, they might use the functionality to lock
nodes of the document.

7 Conclusions

We have presented a customised approach for supporting collaboration over
shared repositories containing both text and XML documents. We have shown
that, by adopting a hierarchical model of the document, different semantic units

204 C.-L. Ignat and M.C. Norrie

can be associated to the document levels and therefore conflicts can be defined
and resolved in a flexible way. Our merging approach is operation-based rather
than state-based and therefore provides a less complex and more appropriate
way of detecting and handling conflicts.

An asynchronous collaborative editor application that allows the editing of
both text and XML documents has been implemented in our group based on the
ideas described in this paper.

References

1. Berliner, B.: CVS II: Parallelizing software development. Proc. of USENIX, Wash-
ington D.C. (1990)

2. Cobena, G., Abiteboul, S., Marian, A.: Detecting changes in xml documents. Proc.
of the Intl. Conf. on Data Engineering (2002)

3. Collins-Sussman, B., Fitzpatrick, B.W., Pilato, C.M.: Version Control with Sub-
version. O’Reilly, ISBN: 0-596-00448-6 (2004)

4. Ellis, C.A., Gibbs, S.J.: Concurrency control in groupware systems. Proc. of the
ACM SIGMOD Conf. on Management of Data (1989) 399-407

5. Ignat, C.-L., Norrie, M.C.: Flexible Merging of Hierarchical Documents. Intl. Work-
shop on Collaborative Editing. GROUP’05, Sanibel Island, Florida (2005)

6. Ignat, C.-L., Norrie, M.C.: Operation-based Merging of Hierarchical Documents.
Proc. of the CAiSE’05 Forum, Porto, Portugal (2005) 101-106

7. Ignat, C.-L., Norrie, M.C.: CoDoc: Multi-mode Collaboration over Documents.
Proc. of the CAiSE’04, Riga, Latvia (2004) 580-594

8. Ignat, C.-L., Norrie, M.C.: Customisable Collaborative Editor Relying on treeOPT
Algorithm. Proc. of ECSCW’03, Helsinki, Finland (2003) 315-334

9. La Fontaine, R.: A Delta Format for XML: Identifying Changes in XML Files and
Representing the Changes in XML. XML Europe (2001)

10. Lippe, E., van Oosterom, N.: Operation-based merging. Proc. of the 5th ACM
SIGSOFT Symposium on Software development environments (1992) 78-87

11. Molli, P., Oster, G., Skaf-Molli, H., Imine, A.: Using the transformational approach
to build a safe and generic data synchronizer. Proc. of Group’03 (2003)

12. Molli, P., Skaf-Molli, H., Oster, G., Jourdain, S.: Sams: Synchronous, asynchronous,
multi-synchronous environments. Proc. of CSCWD, Rio de Janeiro, Brazil (2002)

13. Munson, J.P., Dewan, P.: A flexible object merging framework. Proc. of ACM Conf.
on CSCW (1994) 231-242

14. Myers, E.: An O(ND) difference algorithm and its variations. Algoritmica, 1(2)
(1986) 251-266

15. Shen, H., Sun, C.: Flexible merging for asynchronous collaborative systems. Proc.
of CoopIS/DOA/ODBASE (2002) 304-321

16. Vidot, N., Cart, M., Ferrié, J., Suleiman, M.: Copies convergence in a distributed
real-time collaborative environment. Proc. of CSCW (2000) 171-180

17. Wang, Y., DeWitt, D.J., Cai, J.Y.: X-Diff: An Effective Change Detection Algo-
rithm for XML Documents. Proc. of ICDE (2003)

E. Dubois and K. Pohl (Eds.): CAiSE 2006, LNCS 4001, pp. 205 – 219, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Data Conceptualisation for Web-Based Data-Centred
Application Design

Julien Vilz, Anne-France Brogneaux, Ravi Ramdoyal, Vincent Englebert,
and Jean-Luc Hainaut

Laboratory of Database Application Engineering - University of Namur,
Rue Grandgagnage 21 - B-5000 Namur, Belgium

{jvi, afb, rra, ven, jlh}@info.fundp.ac.be

Abstract. The paper describes the conceptualisation process in the ReQuest
approach, a wide-spectrum methodology for web-based information systems
analysis and development. This methodology includes a strong involvement of end
users in the requirement elicitation process by building prototype user interface
fragments of the future application. The paper focuses on the analysis step of these
fragments that yields a draft conceptual schema of the application domain. The
analysis includes a tree-based representation of the fragments, the detection of
shared subtrees through mining techniques, their normalisation and the derivation
of the conceptual schema. A short description of a supporting tool is given.

1 Introduction

Despite a large offer of open source and proprietary IDEs for developing web-based
applications, the problems of designing and developing quality applications at
reasonable cost still are open issues, as testified by the poor quality and the high cost
of many e-commerce applications.

The ReQuest framework is a wide spectrum tool-supported methodology for web-
based data-centred applications analysis, development and maintenance intended to
address these problems. It relies on five principles, namely, (1) intensive user
involvement in the requirement collection and analysis phases [1], (2) the induction of
the system behaviour from users scenarios [2], (3) the induction of the conceptual
data structures from user interfaces [3], (4) the wrapper-based integration of existing
data and services [4], and (5) automated validation and generation of major
components of the target application. This research is part of ReQuest, a project
funded by the Region Wallonne.

This paper concentrates on some important aspects of the database stream of the
methodology, and more particularly on principles (1) and (3), that state that a large
part of the conceptual data structures can be inferred from the user interface. Whereas
existing approaches for modelling web information systems [5] usually produce
presentation and navigational models from an existing conceptual schema built using
the most traditional approach [6], this elaboration of the conceptual schema is a key
part of the ReQuest approach.

206 J. Vilz et al.

According to principle 1, representative users are invited to sketch, through
intuitive drawing tools [7], the user interface (comprising windows, dialog boxes,
electronic forms and task description) to the intended system that best suits his/her
needs. Though this low-fidelity description still has to be validated and modified with
the help of design experts, it provides a rich description from which the most
important components of the database schema can be extracted.

User Requirements

Conceptual level

Logical Level

Physical level

A
b

stractio
n

P
latfo

rm
 S

p
ecific

Schema

Conceptual Normalized

Statecharts

Scenarios
Legacy
Conceptual

Schema

Schema

Relational
Logical Schema

Legacy Global
SchemaObject

Scenarios
Logical

User Interface Model

Database development

Databases

Object/relational
Mapping

Transfer Objects
Application

serviceslegacy new

Fig. 1. The ReQuest framework as an MDE-compliant approach. The left area of the schema
represents the products of the database development stream. Arrows express derivation processes
between design products and artefacts.

Fig. 1 shows the part of the ReQuest framework that copes with database building.
The design and development of the application services (behavioural aspects) are only
suggested at the right part of the schema while the user interface development
(interaction aspects) is not shown.

In the ReQuest approach, prototype interfaces sketched by users are translated into
a Logical user interface model that, among others, expresses in an abstract way their
underlying data structures. This logical interface model is then analysed in order to
identify redundant data aggregates that the user naturally exchanges with the system,
to reduce these potentially conflicting structures and to produce the conceptual
schema. The Scenario models (right) and the kernel of the Conceptual schema of the
database (left) are derived from the Logical interface model. From the latter, we
derive the relational schema of the new database as well as the Object schema through
which the application services will access the legacy and new data.

Integrating existing services is sketched for data only. The logical schema and the
conceptual schemas of the legacy database are extracted through reverse engineering

 Data Conceptualisation for Web-Based Data-Centred Application Design 207

techniques [8]. The conceptual schema is compared with the global conceptual schema
and the subset of the latter that is not covered by the legacy data is translated into the
schema of the new database. At the physical level, legacy data access is ensured
through a wrapper-based interface [4].

These derivation processes heavily rely on the transformational paradigm, which
guarantees the propagation of specifications throughout the various levels of
abstraction, from user requirements to the application code [9].

Analysing the information underlying corporate forms has long been a part of
database design methodologies [6]. Extracting data structures from user interfaces has
been proposed in [10] and eliciting knowledge from forms is described in [11]. The
former proposal describes structural derivation rules, induction rules from sample data
and an expert system that extracts a tentative conceptual schema from a set of forms.
The latter proposals is based on a tree representation of forms that allows tree
manipulation algorithms to be applied. In the database reverse engineering realm, [12]
develops the FORE method to capture the knowledge buried in forms and to derive
from it a conceptual object-oriented model.

The specific aspects of Web applications have lead to several specification
methodologies that generally are extensions of standard approaches. Entity-relation
models have been used and adapted in [13] and in [14] for instance, while [15] proposes
an extension of the ORM model. The user-driven dynamic aspects of these systems has
lead to enrich these models with behavioural specifications [16]. WebML [17]
integrates most pertinent aspects of web applications and makes them available through
models, modelling languages, processes and graphical tools. However, inference
mechanisms such as those developed have not been developed so far.

Finally, the importance of user involvement in Web application design has been
emphasised by, e.g., [18] and [19].

This paper is organised as follows. Section 2 describes the aspects of user interfaces
that are relevant to database design and their mapping to the Logical interface model.
Section 3 describes the conceptual extraction process, while Section 4 concludes the
discussion.

2 User Interfaces as User Requirements Expression

The most abstract level the ReQuest approach is the User requirements level. From
users viewpoint, electronic forms and dialog boxes appear to be the most natural form
of system description. Their use and structure are familiar to end users [11] and the
transition to a semantic model has been shown to be tractable [10]. Indeed:

− forms are more natural and intuitive than usual conceptual formalisms to express
information requirements;

− the data structures contained in each form can be seen as a user view of the (future)
conceptual schema of a database;

− finally, since a form is a kind of physical implementation of a part of the conceptual
schema, database reverse engineering techniques can be used to recover that part of
the schema [8].

208 J. Vilz et al.

The information on the components of user interfaces, such as the type of the
component, explicit labels, semantic names, value type, value size, sample data, default
value, and dynamic links, is exploited in two ways.

First, it is analysed to extract user objects that are natural data component
aggregates that appear in forms. The latter are then transformed into the conceptual
schema of the future database. Discovering the semantic of the user objects is similar
to a reverse engineering process applied to the underlying data structures of the forms.

Secondly, it is used to specify the task model and to develop and generate the
actual user interface of the target application. These aspects are ignored in this paper.

The input of the conceptualisation process is the Logical user interface model,
which is extracted from the physical code of the prototype interface. In the ReQuest
approach, it consists of a tree representation of restricted web forms.

2.1 User Interface Drawing

Strong involvement of end users in the requirements elicitation process is one of the
major objectives of the ReQuest approach: this aspect is materialised by allowing the
end users to design a prototype user interface of the future application. To this aim,
selected users must have a good knowledge of the application domain and must be
familiar with form-based application interface. They are briefly trained in the use of
the interface drawing tool and are taught simple guidelines in user interface design.
These guidelines aim to ease the automatic analysis of user interfaces and to reuse
them in the final application . The guidelines target web-oriented systems. For
instance they encourage users to avoid tables for layout purpose in web pages.

The user builds the interface either alone, or with the help of an experienced
designer. Empirical studies have shown us that motivated users can quickly design
quite valuable prototype interface [20].

Web pages combine specific content and reusable template material [21]. Therefore,
the end user designs and annotates the different fragments of the interface according to
the context (navigational information, domain application information as well as states
of performed tasks), then assembles them to obtain the different complete web pages.
Later on, the user can be asked to provide sample data as part of the specification
process, which could notably lead to highlight functional dependencies [22].

2.2 Logical User Interface Model

The logical model of an interface comprises controls as well as input and output
information for a task that will be performed by the target application. For each
interface fragment drawn by the user, the corresponding tree-structured logical user
interface model is created, following the translation rules of Table 1.

The data part of the logical interface model is a forest. Leaf nodes are labelled with
the user name of the corresponding logical input or output interface components. The
(hopefully) semantic name is either extracted from the form labels or explicitly
provided by the user when drawing the interfaces. It identifies the concept handled by
the component (for instance a name or an address).

A non-leaf node represents a logical container such as a table and group box. Its
subtree gathers the data handled by the graphical components enclosed by this container.

 Data Conceptualisation for Web-Based Data-Centred Application Design 209

The node representing the user interface fragment (the top container) is the root of the
tree. Fig. 2 illustrates the modelling of two user interface fragments. Controls such as
buttons add are ignored in this discussion.

Catalog

Products

Title Price Description

0-N

Catalog

Products

Title Price Description

0-N

Shoppingcart fragment

Catalog fragments

Title

Shoppingcart

Chosenproducts

Price Quantity Total

0-N

TotalAmount

Title

Shoppingcart

Chosenproducts

Price Quantity Total

0-N

TotalAmount

Logical model

Fig. 2. The logical models of two user interface fragments. The data structures underlying each
of them is expressed as a composition tree.

Tools have been developed to extract this model from user interface components
written in XUL and XHTML. We have also extended these languages with custom
properties to support the necessary annotations described in Section 2.1.

Table 1. Common widgets and their tree translation

Widget Tree equivalent Properties
Group box Node whose children represent the

elements contained in the group box.
name

Text input Leaf node. name, maximum length,
value type, mandatory

Radio button set Leaf which aggregates the radio buttons
of the set.

name, value domain

Check box set Leaf which aggregates the check boxes
of the set.

name, value domain

Selection list Leaf node. name, value domain, multiple,
mandatory

Table Node whose children represent the
elements contained in the table. The
table is dynamic if its content is
generated on demand

name, dynamic; if relevant,
maximum length, value type,
mandatory of the cells

2.3 Formal Definition of the Logical User Interface Model

Each node of a tree in a model is labelled with the properties extracted from the
widgets, e.g., the semantic name, the size of the input data or the value domain of a
selection list. Hence, the formal definition of this model is an extension of the
definition of rooted labelled tree as defined in [23].

210 J. Vilz et al.

To cope with the properties of the data structure extracted from the user interface,
the labelling function needs to be refined in order to distinguish the two following
properties: the semantic name and the value domain of the data.

Therefore, we define the set Att of pairs N x D where N is a set of names and D a
set of value domains.

− The function A: V→ (N, D) replaces function L.
− The functions NameOf : Att → N and DomainOf : Att → D allow each part of

the definition of an attribute to be accessed.

A new labelling function for the edges is also needed to represent repetitive data
structures such as tables or optional data structures. The function C: E Card
attaches cardinalities to edges. Card is a set representing the minimum and maximum
number of child node instances allowed for each parent instance (Fig. 2). Typically,

− Card = {0-1, 1-1, 0-N}

The definition of a tree in our logical user interface model hence becomes: T (V, E,
Att, Card, A, C).

3 From the Logical User Interface Model to the Conceptual Schema

3.1 Searching for Domain Concepts

A domain concept can appear in several interface fragments. Since a user view
describes a user object, we conclude that a user objects is made up of aggregates of
domain objects that can appear in other user objects. Hence the idea to identify the
subtrees that appear in more than one interface fragment of the logical interface model
and to derive from them tentative domain concepts. We call them shared subtrees1.

The basic procedure we will describe consists in (1) identifying the shared subtrees,
(2) for each of them, removing all its instances from the source fragment, (3) represent-
ing the domain concept subtree by a standalone tree and (4) linking the modified source
fragments to this tree. Moreover, the composition relationships that hold among shared
subtrees in an interface tree is interpreted as semantic relationships between correspond-
ing domain concepts.

The use of shared subtree limits the search for data structures to redundant tree
structures. So a non-connex redundant group of nodes will not be identified in this
approach, which can be extended by the use of wildcards in tree labels during the
search, as in XML queries [24].

Subtree Definition. There are several types of subtrees, but the most suitable for our
purpose are the induced subtrees. An induced subtree keeps the parent/child
relationship of its source tree. Chi et Al. [25] define the induced subtree as follow:
“For a tree T with vertex set V and edge set E, we say that a tree T’ with vertex set V’
and edge set E’ is an induced subtree of T iff, (1) V’ ⊆ V, (2) E’ ⊆ E, (3) the labelling
of V’ and E’ is preserved in T’. […] Intuitively, an induced subtree T’ of T can be
obtained by repeatedly removing leaf nodes (or possibly the root node if it has only

1 The standard name in the domain of tree mining is “frequent subtree”.

 Data Conceptualisation for Web-Based Data-Centred Application Design 211

one child) in T.” Basically, an induced tree is a view on the conceptual schema to be
discovered, that is, a subset of its objects.

Identifying Shared Subtrees. Comparing the subtrees that can be derived from the
forest of a user interface can be done by mining the logical interface model for shared
subtrees. Several algorithms have been developed to solve this complex problem [23].
We choose the algorithm FreqT [25] since it has a reasonable complexity2, and the
output of the algorithm identifies each occurrence of each shared subtree.

FreqT handles ordered induced subtrees. Since the order of sibling nodes is
immaterial, we can, without any information loss, order them as required, for instance
according to the lexicographic order on the set N used in the labelling function A.

The algorithm FreqT builds potential induced subtrees of the trees extracted from
the interface model. These subtrees, also called pattern subtrees, are built using
redundant labels. If it exists several occurrences of a pattern subtree in the input trees
this pattern is used to create new patterns by adding nodes to it.

According to the definition of induced subtree, the labelling of the source tree must
be preserved in T’. As we have redefined the labelling function in our logical user
interface model, the equivalence between node labels must also be redefined.

Theoretically, two nodes vi and vk are declared identical if the set of input or output
data instances in the widgets they represent are identical, or at least, if one set is a non
empty part of the other one. However, since the logical interface model is extracted
from unpopulated interfaces, we can only rely on structural and naming properties.

In the context of conceptualisation, we approximate vi = vk with ni ≅ nk and di ≈ dk,
as follows (np = NameOf(A(vp)) and dp = DomainOf(A(vp))).

1. The name similarity relation "≅" defines a non strict equality between names.
Since the same domain concept can have different names in several interfaces
according to the context, the name equality relation can be refined, for instance to
cope with synonyms and homonyms using dictionaries or ontologies. We currently
use the Jaro-Winkler metrics [26] to compare node names. With this approach,
“Chosen products” is similar to “Product” with a distance of 0,68 (two identical
strings have a distance of 1). String distance metrics allow to highlight similarly
strings according to different criteria. The user validate or invalidate the
discovered similarity. As we have a complete control on input trees, a more
sophisticated approach has not been felt to be useful so far.

2. The domain similarity relation "≈" is also defined as a non strict equality between
domain values. It is verified whenever di ⊆ dk or dk ⊆ di. This definition is driven
by the fact that the logical user interface model does not always provide the
precise domain values available for a specific widget. For instance, text fields can
typically be used to input several data types such as names, numbers and dates.
The user can specify the exact data type through annotations. Otherwise, the usual
compatibility rules are used.

For instance, two user interface fragments include a field named “City”, that, in the
first fragment is defined by a predefined value list and in the second one as a 50

2 O(fmn) with f the number of frequent trees, m the number of nodes in the largest tree and n the

number of nodes.

212 J. Vilz et al.

character string. If all the predefined values are no longer than 50, then both domains
are considered similar. We do not use the edge labelling function C in the induced
subtrees research, but this information will be used later.

T1 T2 T3

Catalog

Products

Title Price Description

0-N

Title

Shoppingcart

Chosenproducts

Price Quantity Total

0-N

TotalAmount
Product

Title Price Description

Product

Title

T4 [3]

Product

Title

Product

Title

T4 [3]

Product

Price

T5 [3]

Product

Price

Product

Price

T5 [3]

Product

Description

T6 [2]

ProductProduct

T6 [2]

Product

Title Price

T7 [3]

Product

Title Price

Product

Title Price

T7 [3]

Product

Title Price Description

T10 [2]

Product

Title Price Description

Product

Title Price Description

T10 [2]

FreqTFreqT

Product

Price Description

T8 [2]

Product

Price Description

Product

Price Description

T8 [2]

Product

Title Description

T9 [2]

Product

Title

Product

Title

T9 [2]

Fig. 3. FreqT extracts shared trees T4 to T10 from input trees T1 to T3. The number between
brackets indicate in how many input trees the shared tree has been found.

Results of the Induced Subtrees Search. Algorithm FreqT produces a list of subtree
patterns with the references of the instances that appear in the logical model. Accord-
ing to our goal, which is to isolate domain concepts in user interfaces, we will see that
not all results are pertinent.

Fig. 3 shows the results of FreqT on the input trees T1, T2 and T3. For simplicity,
we only keep the shared subtrees that have more than one node. We get seven
subtrees T4 to T10, that all describe the potential domain concept “Product”. We first
observe that keeping only the maximal induced subtrees, i.e., those which are not an
induced subtree of another result, is not necessarily appropriate. For instance the
maximal induced subtree T10 is shared by two input trees only, while T7 is shared by
all of them. We keep T7 and T10 and discard the other ones.

To keep only a set of results that will be useful for the transformation of trees into
conceptual structures, we apply the following filter on FreqT results. Let

− Ti and Tk be shared subtrees resulting from application of FreqT.
− Ti be an induced subtree of Tk.
− Ii be the set of trees in which Ti appears (same for Ik and Tk).

Ti is retained if Ii and Ik are distinct tree sets, so that there is at least a tree in which
either Ti or Tk appear.

Applying this filter yields subtrees T7 and T10. This result highlights links between
potential domain concepts “Catalog”, “Shopping cart” and “Product”.

3.2 Representing Trees in the Entity-Relationship Model

Since most database designers are not familiar with abstract graphs, we express the data
structures of the logical interface models in a wide-spectrum variant of the popular

 Data Conceptualisation for Web-Based Data-Centred Application Design 213

Entity-relationship model, called the Generic ER model (GER), that encompasses
logical and conceptual structures [9, 27]. In this section, we show how logical
interface models and induced subtrees can be described in the GER.

In [27], the GER has been given a non first normal form (N1NF) interpretation.
Trees as we defined them also are N1NF data structure. For instance,

Shopping Cart (Chosen products[0-N](Title, Price, Quantity, Total), TotalAmount)

is a N1NF relation schema expressing both the tree and the entity type of Fig. 4.

Title

Shopping cart

Chosen products

Price Quantity Total

0-N

TotalAmount

Shopping Cart

Chosen products[0-N]
Title
Price
Quantity
Total

TotalAmount

Fig. 4. Expressing a tree as an entity types with compound and/or multivalued attributes

Representing Shared Subtrees. The usual way to extract attributes from a relation is
by projection. The projection of a N1NF relation seems the natural way to define a
subtree from a source tree, provided this operator can still yield a N1NF relation. The
standard projection produces bottom-up subtrees, as defined in [23]: “A bottom-up
subtree T’ of T is obtained by taking a vertex v of T together with all the descendants
of v and their corresponding edges”. For instance, in Fig. 3, we can extract subtree
T10 from T1 written as N1FN relation using a projection3:

− T10(Products(Price, Title, Description))
− T1(Catalog (Products[0-N](Price, Title, Description))
− T10(Products(Price, Title, Description)) = T1[Products]

Shopping Cart
Chosen products[0-N]

Title
Price
Quantity
Total

TotalAmount
ShaGr: Chosen products[*]

Chosen products[*].Title
Chosen products[*].Price

Product
Title
Price
Description
MaGr: Description

Title
Price

MaGr: Title
Price

Catalog

Products[0-N]
Title
Price
Description

ShaGr: Products[*]
Products[*].Title
Products[*].Price
Products[*].Description

ShaGr: Products[*]
Products[*].Title
Products[*].Price

Fig. 5. Induced subtrees in entity types

3 We only use an informal notation that is sufficient for the needs of the presentation. Notation

R[I] specifies the projection of relation R on subset I of its attributes. More detail can be
found in [15].

214 J. Vilz et al.

However, this operator cannot extract T7 from T1. So we define the induced
projection to specify induced subtrees by indicating subtrees instead of mere node
names. This projection is denoted by a N1FN relation representing the induced
subtree to isolate and surrounded by “[]”.

− T7(Product (Title, Price)) = T1 [Products(Title, Price)]

In the GER, the induced projection is represented by a group of attributes called
Shared Group (ShaGr) in the third compartment of the representation of an entity
type. The group gathers all the attributes involved in the projection4. Some induced
projection can involve the entity type name itself like the projection that extracts T7
from T3 in the Fig. 3. We also define another type of group called Master Group
(MaGr), which has the same meaning as the Shared Group, but indicates that the root
of the induced subtree is the entity type itself.

According to our hypothesis, redundant structures such as “Product” in user
interfaces probably represent domain concepts. An entity type named “Product” must
therefore be created, containing a master group. A domain concept must be
represented by one entity type, so that a shared subtree will be represented by one
master group and one or more shared groups.

Fig. 5 represents trees T1, T2 and T3 of Fig. 3 by entity types Catalog, Shopping
Cart and Product, and induced subtrees T7 and T10 by shared and master groups.
An arrow is drawn from each shared group to its corresponding master group.
Conceptually, this link is similar to a N1NF foreign key.

3.3 Logical Model Normalisation

The resulting schema must be processed in order to discard redundant specificat-
ions. We describe two techniques : embedded shared groups and redundant master
groups.

Embedded Shared Groups. A shared group is embedded into another one when its
components also are part of the latter. If they reference the same master group, then
the embedded group can be discarded.

For instance Fig. 6 shows two links between “Catalog” and “Product”, based on
T7 and T10. Since the group that represents T7 is embedded into that of T10, we can
discard it with no information loss.

Redundant Master Groups. During the transformation of trees and induced subtrees
into entity types, several resulting entity types may have names such that ni ≅ nk. We
can assume that these entity types describe the same domain concept.

Fig. 6 extends Fig. 5 with a user interface fragment that allows the administrator to look
at the “Shopping Cart” of the connected users. This fragment is called “Shopping
cart (Administration)”. If we assume that “Shopping cart (Administration)” ≅ “Shopping
cart”, there exists a shared induced subtree having “Shopping cart” as its root. That
induced subtree is represented in both entity types by a master group.

4 Symbol [*] means that the property holds for each instance of the parent instance.

 Data Conceptualisation for Web-Based Data-Centred Application Design 215

User
Status
Password
Name
Log In
First Name
MaGr: Name

Log In

Shopping Cart
Chosen products[0-N]

Title
Price
Quantity
Total

TotalAmount
ShaGr: Chosen products[*].Title

Chosen products[*].Price
Chosen products[*]

MaGr: Chosen products[*]
Chosen products[*].Title
Chosen products[*].Price
Chosen products[*].Quantity
Chosen products[*].Total
TotalAmount

Shopping Cart (Administration)
User

Log In
Name

Products[0-N]
Title
Price
Quantity
Total

TotalAmount
ShaGr: User

User.Log In
User.Name

ShaGr: Products[*]
Products[*].Title
Products[*].Price

MaGr: Products[*]
Products[*].Title
Products[*].Price
Products[*].Quantity
Products[*].Total
TotalAmount

Product
Title
Price
Description
MaGr: Title

Price
MaGr: Title

Price
Description

Catalog
Products[0-N]

Title
Price
Description

ShaGr: Products[*].Title
Products[*].Price
Products[*]

ShaGr: Products[*]
Products[*].Title
Products[*].Price
Products[*].Description

Fig. 6. An unnormalised schema that still includes redundant structures

As only one master group may exist for each shared induced subtree, we merge the
entity types in which these groups have the master status5. Entity types integration
keeps the shared groups of all merged entity types.

The integration consists in adding all the attributes which are not concerned with
the redundant Master Group into the resulting entity type, as well as the groups
involving those attributes. In the example Fig. 6, “User”, “Login”, “Name” will be
added to the new entity type “Shopping Cart”, as well as the group linked with the
entity type “User”.

3.4 Logical to Conceptual Transformation

The representation of trees and shared subtrees provides us with a logical Entity-
relationship schema from which a pure conceptual schema must be extracted. This
process is a variant of the conceptualisation phase of reverse engineering, through
which one attempts to recover the conceptual origin of each technical construct.
Transformational techniques have proved particularly powerful to carry out this
process. The process is based on three main transformations.

1. Each shared group and its attributes are transformed into relationship type R with the
entity type of the Master group. The transformation removes an attribute only if it does
not appear in another, still unprocessed, shared group. The cardinality constraints of
the roles of R are computed from the cardinalities of the attribute in the highest level of
the projection that defines the shared group. When the cardinalities of a role cannot be

5 In the future, less strict relationships will be considered, such IS-A relations.

216 J. Vilz et al.

computed, the most general one is assumed, i.e., [0–N]. The stereotype6 “?”
indicates that it must be validated and further refined.

If the transformation removes a compound attribute which is a superset of the
components of the shared group, the additional attributes are lost. For instance,
attributes “Quantity” and “Total” of entity type “Shopping Cart” are not part of the
master group in entity type “Product”. Removing compound attribute “Chosen
products” induces the loss of attributes “Quantity” and “Total”. We propose two
transformations to keep these attributes.

2. If they appear to be characteristics of the relationship type between the entity
types, they are moved to this relationship type.

3. Otherwise, they are moved to the master entity type. Since attributes “Quantity”
and “Total” are only meaningful for the “Product” in the context of the “Shopping
Cart”, they are moved to the newly created relationship type.

3.5 Remarks on the Completeness of the Resulting Conceptual Model

The resulting conceptual model can be incomplete and needs to be validated by the
analyst. For instance, some role cardinality constraints have been left undefined
during conceptualisation. Moreover, some elements extracted from the logical user
interface model actually are derived or computed attributes. These attributes appear in
the resulting conceptual model but need not be made persistent and can be discarded.

This emphasises the fact that user interfaces analysis, despite its importance, must
be complemented by other, more traditional, information sources when required. User
interviews and legacy application observation and analysis are popular techniques for
requirement elicitation that can be used to validate and complete the conceptual
schema obtained so far.

«?»
0-N

1-1Use_Sho

«?»
0-N

0-N
Sho_Pro
Quantity
Total

«?»
0-N

0-N Cat_Pro

User
Status
Password
Name
Log In
First Name
MaGr:Name

Log In

Shopping Cart
TotalAmount

Product
Title
Price
Description
MaGr:Title

Price
MaGr:Title

Price
Description

Catalog

Fig. 7. Partially conceptualised data structures

6 GER stereotype has the same meaning (or absence thereof) as UML’s.

 Data Conceptualisation for Web-Based Data-Centred Application Design 217

4 Conclusions

The process described in this paper is one of the components of the ReQuest
framework, the goal of which is to develop a comprehensive environment to specify
and generate in a semi-automated way data-intensive applications.

Our contribution to database design in complex web-based application
development is threefold. First, it allows a more natural and more intensive user
involvement7 in requirement definition. Second, it gives form-based analysis a clean
3-step architecture derived from database reverse engineering methodologies: (1)
physical structure extraction, through XHTML and XUL form parsing, (2) structural
enrichment by eliciting shared subtrees through tree mining and normalisation
techniques and (3) semantic interpretation or - conceptualisation - of the enriched
structures through transformational techniques. Third, specific tools, integrated in the
DB-MAIN environment, that support the three steps of this methodology have been
developed. In this way, form-based analysis can be integrated in more general tool-
supported database design methodologies.

Three case studies have been designed to validate the ReQuest framework,
including the requirement elicitation and analysis process. The first one is a training
session management system with 10 user interface fragments and a schema of 15
entity types. The second one is a real estate advertising platform for which 10 user
interface fragments have been drawn. The resulting conceptual schema comprises 21
entity types. The last one is a classical web sales platform that comprises 20 user
interface fragments translating into 4 entity types. Though these studies are recent
and limited, we already have drawn interesting information.

1. Size estimation. There is no relation between the number of interface fragments
and the size of the schema.

2. Scalability. The approach is more scalable than expected, but for unexpected
reason! Indeed, it appears that a subsystem of 15-30 interface fragments
constitutes the ideal work package. This size is manageable in a short time by a
motivated user (1-3 days), the result can be visually validated by an expert
designer in 2-4 days and the algorithms that extract the redundant substructures
and derive the conceptual schemas are still fast despite their complexity (1-5
seconds for FreqT). Moreover, the resulting conceptual structures are fairly stable,
that is, additional input interface fragments do not significantly improve the
quality of the result. Larger systems can be split into subsystems whose conceptual
schemas are then integrated through traditional methods [28].

3. Completeness. For each case study, the result has been compared with a reference
schema elaborated with other methods. It appears that the only missing concepts
are processed by well identified non-interactive workflows. Therefore the user
model was complete in all cases.

7 The idea to imply end users in the specification of web-based application (e.g., a business-to-

customer application) may seem somewhat paradoxical since the real users (the hopefully
thousands of customers) cannot be asked to draw their preferred interface. In such cases,
representative corporate employees, for instance from the marketing department, can be
substituted for these undefinable users.

218 J. Vilz et al.

4. Soundness. Some concepts were absent from the reference schema. They all were
derivable attributes that were erroneously considered basic data by the user.
Helping him/her to refine the definition of the fields quickly solved the problems.

5. Quality. The resulting schemas were as good as unnormalised schemas extracted
through standard techniques. For instance, some ISA relations were left in their
physical translation (one-to-one relationship type for instance) and needed further
processing. This process is standard and is not specific to our approach.

6. Acceptance. The users enjoined being involved in the building of their future tool.
In addition, the resulting schema were quite well accepted, since it merely
translated in another formalism the information requirements of the users.

Future work will mainly be devoted to (1) enrich the conceptual schema, e.g., by
exploiting the dynamic links and information transfer between forms, (2) enhance the
validation process through paraphrasing and prototyping techniques, (3) introduce
induction reasoning to exploit sample data provided by users.

References

1. The British Computer Society & Royal Academy of Engineering: The Challenges of
Complex IT Projects. Published by the Royal Academy of Engineering (2004)

2. Damas, C., Lambeau, B., Dupont, P., van Lamsweerde, A. : Generating Annotated
Behavior Models from End-User Scenarios, to appear in IEEE Transactions on Software
Engineering, Special Issue on Interaction and State-based Modeling, 2006.

3. Brogneaux, A-F., Ramdoyal, R., Vilz, J., Hainaut, J.-L.: Deriving User-requirements From
Human-Computer Interfaces, in Proc. of 23rd IASTED Int. Conf., Innsbruck, Austria, Feb.
2005.

4. Thiran Ph., Hainaut, J-L., Houben, G-J., Benslimane, D.: Wrapper-based Evolution of
Legacy Information Systems, to appear in ACM Transactions on Software Engineering
and Methodology (TOSEM), 2006.

5. Schewe, K. D., Thalheim, B.: Conceptual modelling of web information systems. Data
Knowl. Eng. 54(2): 147-188 (2005)

6. Batini, C., Ceri, S., & Navathe, S., B. Conceptual Database Design, Benjamin/Cummings.
1992

7. Coyette, J. Vanderdonckt, A.: Sketching Tool for Designing Anyuser Anyplatform
Anyplatform, Anywhere User Interfaces, in Proc. of the 10th IFIP TC 13 Conf. On Human
Computer Interaction Interact '05, Roma, Italy, September 2005.

8. Hainaut, J.-L.: Introduction to Database Reverse Engineering, 3rd Edition, LIBD Publish.,
Namur, 2002 [http://www.info.fundp.ac.be/~dbm/publication/2002/DBRE-2002.pdf]

9. Hainaut, J.-L.: Transformation-based Database Engineering, Chapter in Transformation of
Knowledge, Information and Data: Theory and Applications, P. van Bommel Editor,
IDEA Group (2005).

10. Rollinson, S. R., Roberts, S. A.: Formalizing the Informational Content of Database User
Interfaces. Conceptual Modeling - ER’98, in Proc. of the 17th International Conference on
Conceptual Modeling, Springer-Verlag, (1998) 65-77

11. Choobineh, J., Mannino, M. V., Tseng, V. P.: A Form-Based Approach for Database
Analysis and Design. Com. of the ACM, Vol. 35, N°2, (February 1992) 108-120

12. Lee, H., Yoo, C.: A Form-driven Object-oriented Reverse Engineering Methodology,
Information Systems, Vol. 25, No. 3, Elsevier, 2000

 Data Conceptualisation for Web-Based Data-Centred Application Design 219

13. Ceri, S., Fraternali, P., Bongio, A.: Web Modeling Language (WebML): a modeling
language for designing, Web sites. WWW9/Computer Networks 33(1-6): 137-157 (2000)

14. Conallen, J.: Building Web Applications with UML. Addison Wesley (Object Technology
Series), 2000.

15. Oaks, P., ter Hofstede, A., H., M., Edmond, D. , Spork, M.: Extending conceptual models
for web based applications, in Proc. of ER Conference 2003, Springer

16. Brambilla, M.: Extending hypertext conceptual models with process-oriented primitives,
in Proc. ER Conference 2003, Springer

17. WebML, [http://webml.org/]
18. Cato, J.: User-Centered Web Design, Addison-Wesley, 2001.
19. Escalona, M., Koch, N., Requirements Engineering for Web Applications – A Comparative

Study, in Web Engineering Journal, Vol. 2, No. 3, 2004
20. Jakob Nielsen : User Interface directions for the Web, in Com. of the ACM, Volume 42,

Number 1 (1999), pp 65-72.
21. Gibson, D., Punera, K., Tomkins, A. : The Volume and Evolution of Web Page Templates,

David Gibson Center (2005).
22. Collopy, E., Levene, M., Evolving Example Relations to Satisfy Functional Dependencies,

in Issues and Applications of Database Technology, 1998, pp. 440-447.
23. Chi, Y., Nijssen, Y., Muntz, R., Frequent Subtree Mining - An Overview. Fundamenta

Informaticae XXI. IOS Press (2001) 1001–1038
24. Yang, L., Lee, M., Hsu, W., Guo, X.: 2PXMiner - An Efficient Two Pass Mining of

Frequent XML Query Patterns. In Proc. of the SIGKDD2004. 2004.
25. Asai, T., Abe, K., Kawasoe, S., Arimura, H., Sakamoto, H., Arikawa, S.: Efficient

Sub-structure Discovery from Large Semi-structured Data. In Proc. of the 2nd Annual
SIAM Symposium on Data Mining, 2002.

26. Cohen, W. W., Ravikumar, P., Fienberg, S. E.: A comparison of string distance metrics
for name-matching tasks. In Proc. of the IJCAI-2003. 2003

27. Hainaut, J.-L.: Entity-Relationship models: formal specification and comparison, In Proc.
of the 9th Int. Conf. on the Entity-Relationship Approach, 1991.

28. Spaccapietra, S., Parent, C., Dupont,Y.: Model independent assertions for integration of
heterogeneous schemas. in VLDB Journal, 1 (1992) 81–126

Service Composition

Resolving Underconstrained and
Overconstrained Systems of Conjunctive

Constraints for Service Requests

Muhammed J. Al-Muhammed� and David W. Embley�

Department of Computer Science,
Brigham Young University, Provo, Utah 84602, USA

Abstract. Given a service request such as scheduling an appointment
or purchasing a product, it is possible that the invocation of the service
results in too many solutions that all satisfy the constraints of the request
or in no solution that satisfies all the constraints. When the invocation
results in too many solutions or no solution, a resolution process becomes
necessary for agreeing on one of the solutions or finding some agreeable
resolution. We address this problem by imposing an ordering over all so-
lutions and over all near solutions. This ordering provides a way to select
the best-m with dominated solutions or dominated near solutions elimi-
nated. Further, we provide an expectation-based resolution process that
can take the initiative and either elicit additional constraints or suggest
which constraints should be relaxed. Experiments with our prototype im-
plementation show that this resolution process correlates substantially
with human behavior and thus can be effective in helping users reach an
acceptable resolution for their service requests.

Keywords: Service requests, underconstrained systems of constraints,
overconstrained systems of constraints, ordered solutions and near solu-
tions, dominance, expectation-based resolution.

1 Introduction

We described in a previous paper [AMEL05] a system that allows users to specify
service requests and invoke services. This approach is strongly based on concep-
tual modeling and supports a particular type of service whose invocation involves
establishing an agreed-upon relationship in the conceptual model. Examples of
these types of services include scheduling appointments, setting up meetings,
selling and purchasing products, making travel arrangements, and many more.1

� Supported in part by the National Science Foundation under grants 0083127 and
0414644.

1 We intend the word “service” to be thought of in accordance with its typical
meaning—“an act of assistance or benefit.” Technically, we define a very special
type of service (as described herein). We do not intend our services to be thought of
in other technical ways such as registering services with a broker so that they can be
found by expressing their functionality in terms of inputs, outputs, and capabilities.

E. Dubois and K. Pohl (Eds.): CAiSE 2006, LNCS 4001, pp. 223–238, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

224 M.J. Al-Muhammed and D.W. Embley

It is possible that the invocation of service requests for any of these services
results in too many satisfying solutions or in no solution at all although there
may be near solutions.

In our approach users can specify services such as the following request for
scheduling an appointment with a dermatologist.

I want to see a dermatologist on the 20th, 1:00 PM or after. The der-
matologist should be within 5 miles from my home and must accept my
IHC insurance.

Our approach uses conceptual-model-based information extraction to map ser-
vice requests to a domain ontology. This mapping transforms the service request
into a formal representation, which consists of concepts along with relationships
among these concepts and constraints over the values of these concepts in a
domain ontology. Figure 1 shows the formal representation of the appointment
request as a conjunctive predicate calculus statement—we added some comments
prefixed with “//” to provide more readability and to correlate the request with
the predicate calculus statement. To resolve the appointment request, the sys-
tem tries to instantiate each variable in the formal representation with values
such that all the constraints are satisfied. The values come from a databases
associated with the domain ontology, or are extracted from the service request,
or are obtained interactively from users.2

//I want to see a dermatologist
Appointment(x0) is with Dermatologist(x1) ∧ Appointment(x0) is for Person(x2)

//on the 20th
∧ Appointment(x0) is on Date(“the 20th”)

//1:00 PM or after
∧ Appointment(x0) is at T ime(x3) ∧ T imeAtOrAfter(x3, “1:00”)

//within 5 miles from my home
∧ Dermatologist(x1) is at Address(x4) ∧ Person(x2) is atAddress(x5)
∧ LessThanOrEqual(DistanceBetween(x4, x5), “5”)

//accept my IHC insurance
∧ Dermatologist(x1) accepts Insurance(“IHC”)

Fig. 1. The predicate calculus statement for the appointment request

A solution for a request is an instantiation for all the variables that satisfies
all the constraints. A near solution is an instantiation for all the variables that
satisfies a proper subset (maybe empty) of the constraints and, in a way to be
made precise later, comes close to satisfying the constraints not (yet) satisfied.
Ideally, our system would find just one solution or would find a handful of so-
lutions from which a user could select a desired one. More typically, however,

2 The details of producing formal representations and instantiating them are not the
focus of this paper and can be found elsewhere [AMEL05].

Resolving Underconstrained and Overconstrained Systems 225

Date Time Distance
s1 the 21th 1:00 PM 6 miles
s2 the 22th 1:30 PM 8 miles
s3 the 20th 2:20 PM 20 miles

Fig. 2. Near solutions for the appointment request

Make Price Year Mileage
s1 Dodge $13,999 2005 15,775 miles
s2 Dodge $13,999 2004 30,038 miles

Fig. 3. Solutions for the car purchase request

our system may return no solution or too many solutions. When our system re-
turns no solution, the request is overconstrained, and when it returns too many
solutions, the request is underconstrained.

A resolution for overconstrained requests is to offer the best-m near solutions.
Figure 2 shows three near solutions for our appointment request. Both s1 and
s2 violate the date and distance constraints at different degrees in the sense
that s1 is closer to the 20th and violates the distance constraint less than s2.
Consequently, it is reasonable to impose a greater penalty on s2 than on s1.
Further, the penalty provides a way to recognize dominated near solutions. Near
solution s1 dominates near solution s2 because s1 has less of a penalty for each
violated constraint. Penalties provide a way to offer the best-m near solutions by
ordering the near solutions based on their penalties and discarding the dominated
ones. Additionally, suggesting constraints for users to relax provides another way
to offer the best-m near solutions. For instance, if prior appointment requests
reveal that users are more likely to impose constraints on date and time than on
distance, it makes sense to suggest that users relax constraints on distance. Thus,
for example, the resolution process can suggest the relaxation of the constraint
on distance and possibly offer s3 as the best near solution in Figure 2.

A resolution for underconstrained requests is to offer the best-m solutions.
Consider, for example, the following request for a car purchase.

I want to buy a Dodge, a 2002 or newer. The mileage should be less than
80,000, and the price should not be more than $15,000.

For this request, www.cars.com offered 168 solutions when probed in November
2005, two of which are in Figure 3. Presenting all the solutions or m arbitrarily
chosen ones to users is not likely to be very helpful. A way to reduce the number
of solutions and offer the best-m solutions is to elicit additional constraints. If
prior car purchase requests reveal that users often impose constraints on the car
model, for example, it makes sense that a resolution process elicits a constraint on
the model of the car. In addition, some solutions satisfy constraints better than
others. As Figure 3 shows, s1 better satisfies the year constraint than s2 because
the car in s1 is newer. Therefore, we can grant s1 a reward for better satisfying the

226 M.J. Al-Muhammed and D.W. Embley

request. Further, the reward can provide a way to recognize dominated solutions.
As Figure 3 shows, the solution s2 is dominated by s1 because the car in s1 is
newer and has less mileage although both have the same price. Rewards provide
a way to offer the best-m solutions by ordering the solutions in a decreasing
order based on their rewards and discarding the dominated ones.

This paper offers ways to handle underconstrained and overconstrained ser-
vice requests. First, the paper offers an expectation-based process for eliciting
additional constraints for underconstrained requests and for suggesting some
constraints for users to relax for overconstrained requests. Second, the paper
offers an ordering over solutions and an ordering over near solutions, and a se-
lection mechanism based on Pareto optimality [Par97, Fel80], developed in the
late 1800’s, to choose the best-m, with dominated solutions or dominated near
solutions discarded.

We present these contributions as follows. Section 2 discusses an extension
to constraints that allows for ordering solutions based on the degree of satisfia-
bility and for ordering near solutions based on how close they are to satisfying
the constraints. For underconstrained requests, Section 3 introduces expectation
declarations as domain knowledge and proposes an expectation-based process to
select concepts for which to elicit constraints. In addition, we define an order-
ing of solutions based on the extension to constraint satisfaction introduced in
Section 2 and use it along with Pareto optimality to select the best-m solutions.
For overconstrained requests, Section 4 shows how to define an ordering over
near solutions and use it along with Pareto optimality to select the best-m near
solutions. It also introduces an expectation-based process to suggest constraints
for users to relax. We evaluate our proposed techniques in Section 5, and give
concluding remarks and directions for future work in Section 6.

2 Constraints

A constraint is an n-place predicate, which for a tuple t of n values evaluates to
either true or false depending on whether t satisfies or violates the constraint.
This true-false binary view of a constraint allows us to only differentiate tuples
based on whether they satisfy or violate a constraint. Researchers have extended
this view to differentiate between tuples that violate a constraint by assigning
to these tuples increasing positive real numbers that represent different degrees
of violation [LHL97, Arn02]. Although this extension allows for distinguishing
between tuples that violate a constraint, it does not allow for distinguishing
between tuples that satisfy a constraint because this extension lacks the notion
of degree of satisfiability. A constraint evaluates to zero for all tuples that satisfy
that constraint, which means all the tuples necessarily have the same degree of
satisfiability. We, therefore, further extend the binary view to not only consider
degree of violation, but also to consider degree of satisfiability by granting tuples
increasing rewards based on how well they satisfy a constraint.

Definition 1. Let C be an n-place constraint and let Di be the domain of the
ith place of C, 1 ≤ i ≤ n. A constraint is a function C : D1× ...×Dn −→ R that

Resolving Underconstrained and Overconstrained Systems 227

maps a tuple t = 〈v1, . . . , vn〉 ∈ D1×...×Dn to a real number in R. An evaluation
of the constraint C on a tuple t is defined as C(t) = α, where α ∈ R+ ∪ {0},
which is a positive real number R+ or zero, is the value of the evaluation if t
satisfies C, and C(t) = β, where β ∈ R−, which is a negative real number R−,
is the value of the evaluation if t violates C.

The value α in Definition 1 represents the reward granted to a tuple t for satis-
fying a constraint C. A higher value for the reward α denotes greater satisfac-
tion. The value β represents the penalty imposed on a tuple t for violating the
constraint. A lower negative value for α denotes a greater degree of violation.
Observe that in Definition 1, we try to capture the intuitive idea behind a reward
and a penalty by letting the reward be a non-negative real number (rewards are
positive) and the penalty be a negative real number (penalties are negative).

Designers should make domain decisions about the amount of a reward α and
a penalty β. For instance, in a car purchase domain, designers may give a greater
reward for newer cars. Therefore, they may define the evaluation for a constraint
on a year in which a car was made such as “a 2000 or later” as ≥(y, 2000) = y
− 2000. Observe that a 2001 car has a reward of 1 and a 2002 car has a reward
of 2, which means that a 2002 car has a greater satisfiability degree according to
this evaluation. Also observe that a 1999 car has a penalty of −1 and a 1980 car
has a penalty of −20, which means that a 1999 car has much less of a penalty
than a 1980 car.

An evaluation function can also impose a fixed penalty when ordering between
values is not obvious. As an example, a constraint of the form “Brand = Canon”
on digital camera brands can be defined as

BrandEqual(x, “Canon”) =
{

0, if x = “Canon”;
−1, otherwise

We imposed a fixed penalty for any brand other than “Cannon”, as Arnal sug-
gested [Arn02], because it is not obvious how we can order penalties between
brands other than “Cannon”.

For equality constraints over which a penalty ordering is possible, designers
can declare penalties. For instance, a designer may choose the evaluation for
EqualAppointmentTime(t, 10:00 AM) to be −(f(t) − f(10:00 AM))2, where f
is a function that converts a time to a unitless number. For example, the time
2:15 PM, which is the military time 14:15, could be converted to the integer 1415.
For illustration purposes, we have assumed that the designer has chosen to square
the difference to give proportionally less of a penalty to times close to 10:00 AM.

3 Underconstrained Service Requests

Underconstrained service requests admit too many solutions. In this section, we
discuss two ways to provide users with the best-m solutions out of n solutions.
First, we propose an expectation-based elicitation process to elicit additional
constraints and apply them to solutions. Applying additional constraints to so-
lutions may reduce the number of solutions and may also make the resulting

228 M.J. Al-Muhammed and D.W. Embley

solutions more desirable [SL01, FPTV04]. Second, we propose an ordering over
solutions based on our extension for constraints in Definition 1 along with Pareto
optimality based on this ordering to select the best-m solutions.

3.1 Constraint Elicitation Using Expectations

We associate expectations with concepts of a domain ontology. An expectation
is the probability that value(s) for a concept appear in a service request. The
expectation is, therefore, a number in the interval [0, 1], where the low and high
extremes of the interval mean, respectively, that a value for the concept is not
and is certainly expected to appear in a service request. Values in the open
interval (0, 1) represent varying degrees of expectations.

Domain ontology designers estimate the expectations associated with con-
cepts. Although there may be several ways to estimate the expectations, we
suggest two general ways. First, designers can estimate the expectation using
their knowledge of the domain. Second, designers can analyze service requests in
the domain of the ontology and count the frequency of appearance for each con-
cept in the domain ontology. Further, this latter method leads to the possibility
that the expectations can be adjusted as the system runs.

Unlike other approaches to constraint elicitation (e.g. [LHL97, SL01, PFK03]),
which are built on an assumption that users can impose additional constraints
if they review some examples of solutions, we let the resolution process take the
initiative and suggest the concepts on which to impose constraints according to
the associated expectations with these concepts. The intuitive idea is that the
resolution process can order the concepts based on their associated expectations
and make reasonable suggestions to users to constrain concept values, starting
from the concept associated with the highest expectation for which there is, as
of yet, no constraint.

The elicitation process terminates when one of the following three conditions
holds. First, the most recent elicited constraint is unsatisfiable in which case
the service request becomes overconstrained and the resolution process uses the
techniques in Section 4 to handle this situation. Second, the solution space is re-
duced to m or fewer solutions, in which case the system offers these solutions to
users to evaluate and choose one. Third, there is no other concept in the ordering
of concepts associated with an expectation that exceeds a prespecified threshold.

To demonstrate the idea of constraint elicitation using expectations, note that
the car purchase request in Section 1 does not specify a constraint on the model
of the car. Assuming that the expectation associated with Model, say 0.6, is the
highest among the unconstrained concepts and is above the threshold, say 0.5,
the resolution process suggests that the user could impose a constraint on the
model. If a user wishes to constrain Model to be “Stratus” the resolution process
can restrict the solutions to Dodge Stratuses.

3.2 Selecting the Best-m Solutions

Our extension to the binary view of constraints (Definition 1) provides a way
to impose an ordering over solutions based on rewards granted to each solution

Resolving Underconstrained and Overconstrained Systems 229

for satisfying the service request constraints. Let S ={s1, . . . , sn} be a set of
solutions each of which satisfies every constraint in the set of constraints C =
{C1, . . . , Ck}, which are imposed on a service request. The evaluation of the set
of constraints C for a solution si ∈ S returns a set of real numbers {C1(si), . . . ,
Ck(si)}, which are the rewards granted to si for satisfying the constraints.

Before computing an aggregate reward for a solution si over all constraints in
C, we first divide each reward Cj(si), 1 ≤ j ≤ k, by max

1≤i≤n
Cj(si), the maximum

reward value over all solutions for constraint Cj . This normalizes the rewards
to the interval [0, 1]. The purpose of the normalization is to discard the relative
effects of large magnitude rewards across different constraints and thus to make it
unnecessary to correlate values across different constraints. Let us denote the set
{C1(si), . . . , Ck(si)} after doing the normalization by C∗ = {C∗

1 (si), . . . , C∗
k(si)}.

Researchers have suggested several ways to compute combined evaluations (see
[MA04] for a thorough survey). We linearly combine rewards in C∗ yielding a
combined reward ρ for a solution si as follows:

ρ
C∗ (si) =

k∑
j=1

C∗
j (si); for i = 1, . . . , n.

Definition 2. Let si and sj be two solutions and C = {C1, . . . , Ck} be a set
of constraints. We say that si is better than or equivalent to sj, si �ρ sj, with
respect to C if ρ

C∗ (si) ≥ ρ
C∗ (sj).

To demonstrate the idea of reward-based ordering, let us suppose that we have
a set of constraints C = {≤(mileage, “30,000 miles”), ≤(price, “$20,000”)} and
two solutions s1 = {mileage = “29,000 miles”, price = “$19,000”} and s2 =
{mileage = “29,900 miles”, price = “$18,000”}, then designers might decide
to grant a reward of 1000 for s1 and of 100 for s2 for satisfying the mileage
constraint, and a reward of 1000 for s1 and a reward of 2000 for s2 for satisfying
the price constraint. Given these rewards, we can normalize them to [0, 1] by
dividing the mileage rewards by 1000 and the price rewards by 2000, yielding the
normalized rewards 1 and 0.1 for s1 and s2 respectively for satisfying the mileage
constraint and the normalized rewards 0.5 and 1 for s1 and s2 respectively for
satisfying the price constraint. Based on Definition 2, s1 �ρ

s2 because ρ
C∗ (s1)

= 1.5 and ρ
C∗ (s2) = 1.1.

The ordering �ρ sorts the solutions according to their combined rewards from
the solution with the highest combined reward to the lowest. (Any solutions with
identical rewards appear in a random order within their own equality group.)
Although this ordering does sort the solutions, it does not necessarily imply that
the first m solutions are the best-m solutions. The sorting procedure considers
only the combined rewards, but does not consider the rewards granted to the
solutions for satisfying each individual constraint. The rewards of the individ-
ual constraints, C1, . . . , Ck, in C provide additional knowledge to differentiate
among solutions based on Pareto optimality, which divides solutions into domi-
nating and dominated solutions based on a dominance relation.

230 M.J. Al-Muhammed and D.W. Embley

Definition 3. Let C = {C1, . . . , Ck} be a set of constraints and S = {s1, s2, . . . ,
sn} be a set of solutions. Let si, sj ∈ S be any two distinct solutions, we say that
si dominates sj if ∀p∈{1,...,k}(Cp(si) ≥ Cp(sj)) and ∃q∈{1,...,k}(Cq(si)>Cq(sj)).

Definition 3 says that the solution si, which dominates sj , has rewards from all
the constraints that are at least equal to the rewards for sj and for at least one
of the constraints si has a strictly higher reward. Observe the that Definition 3
does not explicitly consider the combined reward ρ

C∗ (sk). However, the com-
bined reward is implicit in this definition in the sense that a solution can never
dominate another solution with a higher combined reward.

Definition 3 provides the basis for our variation of Pareto optimality, a concept
which Pareto defined over a century ago [Par97].

Definition 4. Let S = {s1, s2, . . . , sn} be a set of solutions for a service request.
A solution si ∈ S is said to be Pareto optimal if there does not exist an sj ∈ S
such that sj dominates si.

The key idea in Definition 4 is that a solution cannot be Pareto optimal if it is
dominated by another solution.

3.3 Resolution of Underconstrained Requests

To demonstrate our resolution procedure, consider our request for a Dodge (in
the introduction). The system first uses expectations to elicit additional con-
straints to reduce the number of solutions. Since the request does not constrain
the model of the car and the expectation associated with the model is the highest
among all the unconstrained concepts, the system suggests that the user con-
strains the model. Adding the constraint that the model be a “Stratus” drops
the number of solutions to 53, which is still too many. Since there are no more
concepts with an expectation higher than the threshold, 0.5, the system uses
the ordering �

ρ
and Pareto optimality to return the best-m solutions. Figure 4

Solution Make Model Price Year Mileage ρ
C∗ (si) Pareto Optimal

s1 Dodge Stratus 13,999.00 2005 15,775 2.499 �
s2 Dodge Stratus 11,998.00 2004 23,404 2.497 �
s3 Dodge Stratus 14,200.00 2005 16,008 2.476 ×
s4 Dodge Stratus 14,557.00 2005 16,954 2.431 ×
s5 Dodge Stratus 10,590.00 2003 38,608 2.360 �
s6 Dodge Stratus 14,253.00 2004 17,457 2.332 ×
s7 Dodge Stratus 10,987.00 2004 56,377 2.267 �
s8 Dodge Stratus 13,999.00 2004 30,038 2.230 ×
s9 Dodge Stratus 12,995.00 2004 40,477 2.226 ×
s10 Dodge Stratus 12,577.00 2003 33,163 2.216 ×
s11 Dodge Stratus 14,620.00 2004 32,406 2.149 ×
s12 Dodge Stratus 8,975.00 2003 75,689 2.140 �

Fig. 4. Solutions for the car purchase request

Resolving Underconstrained and Overconstrained Systems 231

shows the top 12 solutions ordered in ascending order based on their combined
rewards ρ

C∗ (si). The rightmost column in Figure 4 shows whether a solution is
Pareto optimal (�) or not (×). For instance, the solution s3 is not Pareto opti-
mal because s1 dominates it—s1 is cheaper and has a lower mileage, although
both have the same year. Since we have chosen m = 5, the system returns the
first five Pareto optimal solutions, s1, s2, s5, s7, and s12.

4 Overconstrained Service Requests

Overconstrained service requests admit no solution. As in Section 3, we discuss
two ways to provide the best-m near solutions. First, we propose an ordering
over near solutions and use it along with Pareto optimality to offer the best-m
near solutions. Second, we propose an expectation-based relaxation process that
suggests unsatisfied constraints for a user to relax.

4.1 Ordering Near Solutions

We combine the penalties and rewards, if any, of each near solution, and order the
near solutions according to their combined penalties and rewards. Let S ={s1,
. . . , sn} be a set of near solutions each of which violates one or more constraints
from a set of constraints C = {C1, . . . , Ck}. The evaluation of a set of constraints
C for a near solution si ∈ S returns a set of real numbers {C1(si), . . . , Ck(si)},
where each Ck(si) is either a reward or a penalty. We divide these real numbers
Cj(si), 1 ≤ j ≤ k by max

1≤i≤n
|Cj(si)|, the maximum absolute reward or penalty

value over all near solutions for constraint Cj . This normalizes the rewards and
penalties to the interval [-1, 1]. Let us denote the set {C1(si), . . . , Ck(si)} after
normalization by C∗ = {C∗

1 (si), . . . , C∗
k (si)}. We combine each C∗

j (si) in C∗

linearly, as before, yielding a combined penalty/reward φ for each near solution
si as follows:

φ
C∗ (si) =

k∑
j=1

C∗
j (si); for i = 1, . . . , n.

Greater values of φ
C∗ (si) indicate lower penalties on si and (possibly) higher

rewards. Thus, a high value of φ
C∗ (si) denotes a better near solution si.

Definition 5. Let si and sj be two distinct near solutions and C = {C1, . . . , Ck}
be a set of constraints. We say that si is better than or equivalent to sj, si �φ

sj,
with respect to C if φ

C∗ (si) ≥ φ
C∗ (sj).

We define a dominance relation and Pareto optimality based on the ordering �
φ

in Definition 5 in the same way as we defined them in Definitions 3 and 4.

4.2 Constraint Relaxation Using Expectations

For constraint relaxation we use the same expectation values for constraints as
discussed in Subsection 3.1, but consider the lowest expectation values, rather

232 M.J. Al-Muhammed and D.W. Embley

than the highest, to be the candidates for relaxation. In addition, we consider
the violation degree when we suggest constraints for relaxation. For instance,
it is likely to be better to suggest relaxing a time constraint violated by 10
minutes than to suggest relaxing a distance constraint violated by 50 miles even
though a distance constraint is likely to be associated with a lower expectation
value. Further, since we should not badger the user with questions, the number
of suggested unsatisfied constraints should not exceed a prespecified threshold.
Taking all these ideas into consideration, the system selects the constraints to
suggest for relaxation based on the following procedure.

1. To avoid overloading the user with suggestions, select only near solutions
that violate fewer constraints than a prespecified threshold.

2. To take the expectation values into account, compute the cost of the re-
laxation for each near solution based on the expectation using the equation
r(si) =

∑
k ekC∗

k(si), where ek is the expectation value associated with the
constraint Ck and C∗

k(si) is the normalized penalty imposed on si for Ck.
3. To take the overall degree of violation into account, select the near solution

si with the lowest absolute value of r(si) and suggest relaxing the constraints
that si violates only to the degree necessary to satisfy the constraints of si.

We give an example in the next subsection.

4.3 Resolution of Overconstrained Requests

To demonstrate our resolution procedure, consider our request for an appoint-
ment (in the introduction). Figure 5 shows 8 near solutions for the request or-
dered in ascending order based on the combined penalty/reward φ

C∗ (si), which
appears in the second column from the right. The system tries first to suggest
some constraints to relax using the expectations associated with the constraints.
Figure 6 shows the constraints along with their associated expectation values and
their rewards/penalties for each near solution. The rightmost column in Figure 6
shows the computed relaxation cost r(si) for each near solution. Based on our
relaxation procedure, the system could consider the near solution s4 for suggest-
ing relaxation because it has the lowest relaxation cost r(si). The system does
not, however, because s4 violates three constraints, which exceeds the threshold
we set, namely fewer than three constraints. The near solution s3 satisfies our
procedure requirements in the sense that s3 violates two constraints and has the
next lowest relaxation cost r(si). The system therefore suggests letting the time
be 12:40 PM instead of 1:00 PM and letting the date be the 19th instead of the
20th. If the user accepts these relaxed constraints, the system can offer s3 as the
best solution.

For the sake of further discussing the possibilities, we assume that the user
does not accept the suggestion to relax the time and date constraints. To compute
the best-m near solutions, the system sorts the near solutions based on the
combined penalty/reward φ

C∗ (si) and discards the dominated near solutions
using the rewards and penalties information in Figure 6, i.e. φ

C∗ (s1) = −0.160
= −0.076 + 0.167 − 0.250; φ

C∗ (s2) = −0.180 = −0.090 + 0.160 − 0.250; and

Resolving Underconstrained and Overconstrained Systems 233

Near Solution Insurance Distance Time Date φC∗(si) Pareto Optimal
s1 IHC 16 1:00 PM the 19th −0.160 �
s2 IHC 18 1:10 PM the 19th −0.180 ×
s3 IHC 4 12:40 PM the 19th −0.257 �
s4 IHC 6 12:50 PM the 19th −0.264 �
s5 IHC 20 3:00 PM the 19th −0.271 ×
s6 IHC 8 1:40 PM the 18th −0.382 �
s7 IHC 18 2:20 PM the 22nd −0.479 ×
s8 IHC 3 11:30 AM the 16th −1.049 �

Fig. 5. Near solutions for the appointment request

Insurance=“IHC” Distance≤ 5 Time≥(“1:00 PM”) Date=“the 20th” r(si)
Expectation=0.4 Expectation=0.3 Expectation=0.8 Expectation=0.9

s1 0.000 −0.076 0.167 −0.250 −0.248
s2 0.000 −0.090 0.160 −0.250 −0.252
s3 0.000 0.007 −0.014 −0.250 −0.236
s4 0.000 −0.007 −0.007 −0.250 −0.233
s5 0.000 −0.102 0.083 −0.250 −0.256
s6 0.000 −0.021 0.139 −0.500 −0.456
s7 0.000 −0.090 0.111 −0.500 −0.477
s8 0.000 0.014 −0.062 −1.000 −0.950

Fig. 6. Rewards and penalties for the near solutions

so forth. The rightmost column in Figure 5 shows whether a near solution si

is Pareto optimal (�) or not (×). Since m = 5, the system returns the first 5
Pareto optimal near solutions, which in our example are s1, s3, s4, s6, and s8.

A closer look at the results in Figures 5 and 6 reveals that the returned near
solutions are better than the ones filtered out. For instance, comparing the near
solution s1 to the discarded near solution s2, we find that although both violate
the date constraint to the same degree and satisfy the time constraint, s1 violates
the distance constraint less than s2 and is closer to the requested time, 1:00 PM.
Therefore, from the Pareto-optimality’s viewpoint, given s1 as a possibility, no
user is likely to accept the near solution s2.

5 Performance Analysis

To evaluate the performance of our system, we conducted a user study. The
goal was to test whether there is a statistically significant difference between
human choices and system choices. The subjects in our study were from both
genders and from different academic disciplines and education levels—professors,
graduate students, and undergraduate students at Brigham Young University.
We gave every subject a request from a car purchase domain along with 32 cars

234 M.J. Al-Muhammed and D.W. Embley

that each satisfies all the constraints of the request, and another request from an
appointment scheduling domain along with 19 near solutions that each satisfies
some but not all the constraints of the appointment request. All the solutions
and near solutions were randomly shuffled so as not to provide the subjects with
any ordering information. We asked each subject to select and order the best-5
solutions out of 32 solutions for cars and the best-5 near solutions out of 19 near
solutions for appointments.

To visualize the degree of agreement between system choices and human
choices, we counted the number of times each solution was chosen by the 16
subjects for the car experiment and the number of times each near solution was

0

0.2

0.4

0.6

0.8

1

1.2

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
solutions

%
 o

f
so

lu
tio

n
 s

el
ec

ti
on

System Human

Fig. 7. Human solution selection compared to system solution selection

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 near solutions

%
 o

f
ne

ar
 s

o
lu

tio
n

 s
el

ec
ti

on

System Human

Fig. 8. Human near solution selection compared to system near solution selection

Resolving Underconstrained and Overconstrained Systems 235

chosen by the 15 subjects for the appointment experiment.3 Figures 7 and 8
show the percentage of human subjects who chose each solution or near solution
respectively. The first five solutions and near solutions are the ordered best-5
Pareto optimal solutions and near solutions. The remaining solutions and near
solutions are ordered by decreasing percentage of selection by human subjects.
As the figures show there is a high degree of agreement between the system’s
choices and the human subjects’ choices. As Figure 7 shows, over 87% of the
subjects chose solutions 1 and 2, and over 81% of the subjects chose solution 3.
Figure 8 shows an even higher degree of agreement. All the subjects chose near
solutions 1 and 2, and over 96% of them chose near solution 3. The solutions and
near solutions that were not chosen by the system as being among the best-5
were also selected less often by our human subjects, with the exception of solu-
tion 6 in Figure 7, which was selected by 43% of the human subjects, and the
near solutions 6 and 7, which were chosen by the 33% and 26% of the human
subjects. Interestingly, the system chose both solution 6 and near solution 6 as
the 6th Pareto optimal solution and near solution. Near solution 7, however, is
not Pareto optimal. All the other solutions and near solutions were chosen by
20% or fewer of the subjects. Figures 7 and 8 reveal a definite pattern: human
subjects chose a high percentage of the best-5 choices and a low percentage for
choices not among the best-5 system choices.

To statistically measure the degree of agreement between system choices and
human subjects choices, we ran an inter-observer agreement test [LK77] using
the MINITAB 14 software package [min05]. The inter-observer agreement per ob-
server pair (system and human) was determined with respect to the dichotomy:
the best-5 solutions or the best-5 near solutions and not the best-5. Figures 9
and 10 show the distribution of agreement and disagreement between the system
and our human subjects. We disregarded the order in which each subject ordered
the best-5 solutions or near solutions, and tallied the number of solutions and
near solutions chosen by subjects that belong to the best-5 solutions and the
best-5 near solutions selected by the system. We also tallied the number of solu-
tions and near solutions that were not chosen by the system and the subjects as
the best-5. For instance, the 16 subjects for the car experiment made 80 choices
of which 56 belong to the best-5 system choices and 24 do not. Further, of the
432 solutions not chosen, 24 were among the best-5 system choices while 408
were also not chosen by the system. Figure 11 shows the statistical summary for
the car and appointment experiments. The overall agreement, Po, and the agree-
ment due to chance, Pe, for the car experiment are 0.91 and 0.73 respectively
with a Cohen kappa κ value of 0.67, and for the appointment experiment are
0.90 and 0.61 with a κ value of 0.74. Based on the Landis-Koch interpretation
for κ values [LK77], the two κ values indicate “substantial” agreement between
the system and the subjects. The 95% confidence intervals for κ in Figure 11,
however, indicate that the agreement may range from “moderate” (0.58) to “sub-
stantial” (0.76) for the car experiment and from “substantial” (0.65) to “almost
perfect” (0.83) for the appointment experiment. It is useful also, as suggested

3 One of the subjects did not make choices for the appointment experiment.

236 M.J. Al-Muhammed and D.W. Embley

 System
Human

The best-5
solutions

Not the best-5
solutions

Total

The best-5 solutions 56 24 80
Not the best-5 solutions 24 408 432
Total 80 432 512

Fig. 9. Human versus system choices for the car experiment

 System
Human

The best-5 near
solutions

Not the best-5 near
solutions

Total

The best-5 near solutions 61 14 75
Not the best-5 near solutions 14 196 210
Total 75 210 285

Fig. 10. Human versus system choices for the appointment experiment

Agreement Type of Car Appointment
index agreement experiment experiment
Po overall 0.91 0.90
Ppos the best-5 0.70 0.81
Pneg not the best-5 0.94 0.93
Pe due to chance 0.73 0.61
Cohen kappa κ chance corrected 0.67 0.74
95% Confidence interval for κ [0.58, 0.76] [0.65, 0.83]

Fig. 11. Statistical summary

in [CF90], to compute two more indices, namely the positive agreement Ppos on
the best-5 and the negative agreement Pneg on those not among the best-5. The
positive agreement, Ppos, for the car experiment and for the appointment experi-
ment were respectively 0.70 and 0.81 whereas the negative agreement, Pneg, were
respectively 0.94 and 0.93. All these numbers show a high agreement between
the system and human subjects on both the best-5 and not among the best-5
(near) solutions. We next considered how the system and each subject ordered
the best-5 solutions and near solutions. The κ values for the car experiment
was 0.43 and for the appointment experiment was 0.61, indicating respectively
“moderate” and “substantial” agreement between system ordering and subject
ordering for the best-5 solutions and the best-5 near solutions.

6 Conclusions and Future Work

We proposed techniques to handle underconstrained and overconstrained sys-
tems of conjunctive constraints for service requests. These techniques depend on
defining an ordering over the solutions or near solutions along with Pareto opti-
mality to discard dominated solutions or near solutions. From among the ordered

Resolving Underconstrained and Overconstrained Systems 237

Pareto optimal solutions or near solutions, we select the best-m. We also intro-
duced expectation values as domain knowledge and proposed an expectation-
based process to elicit or relax constraints respectively for underconstrained and
overconstrained requests. We conducted experiments to test our proposed order-
ing and Pareto optimality techniques and found substantial agreement between
the system and human behavior.

Although still preliminary, the results are promising. As future work, we plan
to do more user studies on additional domains with a larger number of subjects. In
addition, we need to develop a dialog generation system for user interaction and
to conduct a field test for the generated dialog. Finally, we should integrate our
resolution techniques into a service request architecture, such as the semantic web.

Acknowledgements

We appreciate Del T. Scott from the Department of Statistics, Brigham Young
University, for his help with our statistical analysis. We also appreciate the help
of all the subjects who participated in the experiments.

References

[AMEL05] M. J. Al-Muhammed, D. W. Embley, and S. W. Liddle. Conceptual Model
Based Semantic Web Services. In Proceedings of the 24th International
Conference on Conceptual Modeling (ER 2005), pages 288–303, Klagen-
furt, Austria, October 2005.

[Arn02] M. T. Arnal. Scalable Intelligent Electronic Catalogs. PhD Dissertation,
Swiss Federal Institute of Technology in Lausanne (EPFL), 2002.

[CF90] D. Cicchetti and A. Feinstein. High Agreement But Low Kappa. II. Re-
solving The Paradoxes. Journal of Clinical Epidemiology, 43(6):551–558,
1990.

[Fel80] A. M. Feldman. Welfare Economics and Social Choice Theory. Kluwer,
Boston, 1980.

[FPTV04] B. Faltings, P. Pu, M. Torrens, and P. Viappiani. Designing Example-
Critiquing Interaction. In Proceedings of the 9th International Conference
on Intelligent User Interface, pages 22–29, Funchal, Portugal, November
2004.

[LHL97] G. Linden, S. Hanks, and N. Lesh. Interactive Assesment of User Prefer-
ence Models: The Automated Travel Assistant. In Proceedings of the 6th
International Conference on User Modeling (UM97), pages 67–78, Vienna,
New York, June 1997.

[LK77] J. R. Landis and G. Koch. The Measurement of Observer Agreement for
Categorical Data. Biometrics, 33(1):159–174, 1977.

[MA04] R. T. Marler and J. S. Arora. Survey of Multi-Objective Optimization
Methods for Engineering. Structural and Multidisciplinary Optimization,
26(6):369–395, 2004.

[min05] Minitab 14.2 Statitiscal Software. Website, 2005. www.minitab.com.
[Par97] V. Pareto. Cours d’économie politique. F. Rouge, Lausanne, Switzerland,

1897.

238 M.J. Al-Muhammed and D.W. Embley

[PFK03] P. Pu, B. Faltings, and P. Kumar. User-Involved Tradeoff Analysis in
Configuration Tasks. In Proceedings of the 3rd International Workshop on
User-Interaction in Constraint Satisfaction, pages 85–102, Kinsale, Ire-
land, September 2003.

[SL01] S. Shearin and H. Lieberman. Intelligent Profiling by Example. In Pro-
ceedings of the 6th International Conference on Intelligent User Interfaces,
pages 145–151, Santa Fe, New Mexico, January 2001.

E. Dubois and K. Pohl (Eds.): CAiSE 2006, LNCS 4001, pp. 239 – 254, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Discovering Remote Software Services that Satisfy
Requirements: Patterns for Query Reformulation

Nektarios Dourdas1, Xiaohong Zhu2, Neil Maiden2, Sara Jones2,
and Konstantinos Zachos2

1 SAP, Walldorf, Germany
2 Centre for HCI Design, City University, UK

NDourdas@gmail.com, XZhu@soi.city.ac.uk,
N.A.M.Maiden@city.ac.uk, S.V.Jones@soi.city.ac.uk,

KZachos@soi.city.ac.uk

Abstract. Developing service-centric applications will require developers to
discover candidate services during requirements processes. However such
discovery is challenging due to the ontological mismatch between requirement
and service descriptions. We propose patterns to re-express requirements-based
service queries using classes of solution service, to increase the likelihood of
discovering relevant services from service registries. We report a prototype
pattern language developed for service-based vehicle fleet management, and
demonstrate its use with an example.

1 Introduction

Recent developments in web services and standards have been rapid. Standards such
as SOAP and WSDL are well established. Major vendors such as IBM, Microsoft,
Sun and HP provide support for services in their development platforms, and many
companies are offering web service interfaces to their systems. UDDI offers
established directories of service providers. Leavitt [2004] reports that worldwide
spending on web services software projects will reach $11 billion by 2008, compared
to $1.1 billion in 2003. Given these trends, development of service-centric systems
with software services available over the internet is a new research challenge for
software engineering – a challenge that we are addressing in the EU-funded SeCSE
Integrated Project (secse.eng.it).

Developing service-centric systems has important consequences for how developers
determine the requirements of these systems. We conjecture that developers will want to
discover candidate services early in the development process, to explore what
capabilities are possible, design an architecture compliant with these capabilities, and
trade-off quality-of-service requirements [Jones et al. 2005]. To do this, requirements
must form elements of service queries with which to discover candidate services for a
new application [Schmid et al. 2005].

However, successfully discovering software services using requirements poses
research challenges. Requirements express desirable properties of the problem domain

240 N. Dourdas et al.

[Jackson 1995] in terms of the goals of the service consumer, for example repair a
fault in a car engine. In contrast, service specifications describe solution behaviour -
what the piece of software does, largely independent of the problem domain, to
maximise reuse of the software within and across domains. For example, services to
repair an engine fault include collect and diagnose engine data, and locate garages
equipped to undertake the repair. SeCSE’s current service discovery environment
implements an algorithm for discovering services from requirements specifications
using query expansion and word sense disambiguation techniques [Zachos & Maiden
2005] to handle the problem of incomplete requirements.

Alas query expansion alone cannot resolve the mismatch that arises because the
problem query and solution service are inevitably expressed using different
ontologies. To overcome this ontological mismatch, we are extending the SeCSE
algorithm with patterns that encapsulate knowledge about classes of proven service
solutions to classes of requirement problems. Knowledge about how service solution
classes can solve classes of problem can be applied to change the ontology of the
service query to the solution domain, thus increasing the likelihood of discovering
services that are compliant with consumer requirements. In the above simple example,
the resulting service query will seek services that collect and diagnose engine data
and locate garages, rather than simply repair an engine.

In SeCSE we are developing pattern languages in chosen automotive domains. One
domain that we have developed a pattern language for is vehicle fleet management in
DaimlerChrysler. DaimlerChrysler envisage that company managers of Mercedes car
fleets will use remote software services with on-board systems to manage cars that are
distributed across the fleet. This paper describes how the pattern language was
developed and represented, and demonstrates its usefulness in service discovery using
an example from DaimlerChrysler.

The remainder of this paper is in 4 sections. Section 2 describes SeCSE’s pattern-
based approach to service discovery. Section 3 describes the pattern language for
vehicle fleet management elicited from DaimlerChrysler engineers. Section 4 uses an
example to demonstrate potential benefits from patterns-based service discovery. The
last section describes how we are implementing pattern-based discovery, and outlines
future research.

2 Service-Centric Systems and Patterns

Service-centric systems are systems that integrate services from different providers
regardless of the underlying operating systems or programming languages of those
applications. A software service is a set of operations offered by an application. Users
access services through well-defined interfaces independently of where the service is
executed. Software services accessed over the internet are called web services.
Automotive manufacturers such as DaimlerChrysler can benefit from service-centric
applications because software and information used in these applications is not
embedded and isolated in cars, but available and up-to-date on remote servers.

Patterns research started with the architect Christopher Alexander, who described
over 250 architectural building patterns at different levels of abstraction

 Discovering Remote Software Services that Satisfy Requirements 241

[Alexander 1979]. Equivalent software patterns became popular in object-oriented
design [Gamma et. al. 1995], and have been applied subsequently to many phases of
software development. Our research uses Alexander’s [1979] original definition of a
pattern as a proven solution to a recurring problem in a context of use. In SeCSE we
employ this definition to describe: (i) classes of problem that re-occur during the design
of service-centric applications, and: (ii) classes of candidate services proven to solve
these problems. Returning to the above example, the problem element of the pattern
describes a class of problem in a context, i.e. a vehicle driving and developing a fault
that needs analysis and repair. The solution element describes classes of service to
collect engine fault data, analyze and diagnose this data, and send the data to a parts
supplier. To decouple development of SeCSE patterns from the publication of concrete
software services by service providers in heterogeneous service registries such as
UDDI, the patterns do not reference concrete services in these registries. Instead, each
pattern specifies descriptions of classes of service that an algorithm uses to transform
the service query and discover instances of new software services in the registries.

2.1 Previous Work

There has been little research into patterns for service discovery. The only work that
addresses service discovery directly was reported by Pärssinen [2004], who
introduced a pattern language for service discovery mined from existing discovery
protocols. The language describes different aspects of the service discovery process to
enable easier comparison of existing approaches.

Elsewhere researchers have posited patterns for service composition. Melloul et al.
[2004] expressed high-level patterns as objects that can be specialized to particular
applications and reused in the construction of higher-level patterns. Developers write
patterns in terms of high-level functions, then decide on the lower-level services to
compose. Melloul & Fox [2004] also discussed reuse trade-offs, showing that too
much abstraction makes patterns less expressive. To ensure sufficient expressiveness,
all patterns must capture what must be guaranteed in every context of invocation,
regardless of the selected services. However this work does not address the automatic
discovery or dynamic selection of services. It assumes that developers select services
manually at pattern-specialization time.

Closer to our work is that of Tut et al. [2002], who also investigated the use of
patterns to facilitate the composition of electronic services. Developers use their
domain knowledge to instantiate these patterns, which are indexed using classification
codes, to different problem domains. During service composition every task in the
pattern is mapped to a service or another pattern. However, again, this work does not
address service discovery directly.

Our work is also similar to the use of goal refinement patterns in the KAOS
requirements method. Goal refinement and operationalization is poorly supported in
many requirements methods, therefore Massonet & van Lamsweerde [1996] describe
the use of patterns to refine and operationalize goals in the problem domain. Patterns
in SeCSE are designed to serve a similar purpose – refine a service consumer goal to
determine one or more tasks that can be operationalised using invoked services.

242 N. Dourdas et al.

2.2 Service Discovery in SeCSE

To ensure industrial uptake, SeCSE’s requirements-based service discovery process
formulates service queries from use case and requirements specifications expressed in
structured natural language. To achieve this, SeCSE’s service discovery environment
has 4 main components: (i) UCaRE, which supports web-enabled specification of
requirements and use cases, and formulation of service queries from these
specifications [Jones et al. 2005]: (ii) EDDiE, which uses service queries to discover
service descriptions using different retrieval strategies [Zachos & Maiden 2005]; (iii)
SeCSE’s service registry – a federated and heterogeneous mechanism for storing
service descriptions that is searched by EDDiE; (iv) SeCSE’s service explorer
environment, which combines text and graphics descriptions of retrieved services to
enable selection.

In simple terms, EDDiE uses an analyst-defined service request to generate one or
more queries of single or compound natural language terms that it matches to
equivalent terms in service descriptions stored in SeCSE’s service registries. Distance
measures between terms in each query and service description are used to compute
the distance between the query and description.

Inevitably, service queries that are derived from incomplete and inconsistent
requirements will themselves be incomplete and inconsistent. Therefore EDDiE
extends service queries to increase the likelihood of successful service discovery
using two core strategies – query expansion and word sense disambiguation – that are
implemented in 4 key components shown in Figure 1. In the first the service query is
divided into sentences, then tokenized and part-of-speech tagged and modified to
include each term’s morphological root (e.g. driving to drive, and drivers to driver).
In the second the algorithm applies 7 procedures to disambiguate each term by
defining its correct sense and tagging it with that sense (e.g. defining a driver to be a
vehicle rather than a type of golf club). In the third the algorithm expands each term
with other terms that have similar meaning according to the tagged sense, to increase
the likelihood of a match with a service description (e.g. the term driver is
synonymous with the term motorist which is also then included in the query). In the
fourth component the algorithm matches all expanded and sense-tagged query terms
to a similar set of terms that describe each candidate service, expressed using the
service description facet in the SeCSE service registry. Query matching is in 2 steps:
(i) XQuery text-searching functions to discover an initial set of services descriptions
that satisfy global search constraints; (ii) traditional vector-space model information
retrieval, enhanced with WordNet, to further refine and assess the quality of the
candidate service set. This two-step approach overcomes XQuery’s limited text-based
search capabilities.

The WordNet on-line lexicon fulfills an important role for three of the algorithm’s
components. WordNet is a lexical database inspired by psycholinguistic theories of
human lexical memory [Miller 1993]. It has two important features. Firstly it divides
the lexicon into four categories: nouns, verbs, adjectives and adverbs. Word senses for
each category are organized into synonym sets (synsets) that represent concepts, and
each synset is followed by its definition or gloss that contains a defining phrase, an
optional comment and one or more examples. Secondly, WordNet is structured using
semantic relations between word meanings that link concepts. Relationships between

 Discovering Remote Software Services that Satisfy Requirements 243

conceptions such as hypernym and hyponym relations are represented as semantic
pointers between related concepts [Miller 1993]. A hypernym is a generic term used
to designate a whole class of specific instances. For example, vehicle denotes all the
things that are separately denoted by the words train, chariot, dogsled, airplane, and
automobile, and is therefore a hypernym of each of those words. On the other hand, a
hyponym is a specific term used to designate a member of a class, e.g. chauffeur,
taxidriver and motorist are all hyponyms of driver. A semantic relation between word
meanings, such as a hypernymy, links concepts.

M
atching engine

SeCSE
service
registry

Pre-
processed

terms

T
erm

 expander

W
ord sense

disam
biguator

N
atural language

processor

SeCSE
service query

WordNet

Local glossary

Sense-
tagged
terms

Expanded
terms

Match
terms

Sense-tagged
glossary terms

Stemmer Senses Semantic
relations

Service
query
terms

Retrieved
services

Pattern library

Match terms Revised
Match terms

Query
reformulatorPattern

solution

Fig. 1. SeCSE’s service discovery algorithm, showing original EDDiE components and our
pattern extension to the algorithm below the dotted line

EDDiE implements the WordNet.Net library, the .Net Framework library for
WordNet [Crowe 2005]. The library provides public classes that can be accessed
through public interfaces. It uses the synonym sets and associated word senses to
disambiguate between different meanings of the same word, and semantic relations
such hypernym and hyponym as well as synonyms to expand service queries.

Although we treat query expansion and word sense disambiguation as necessary
techniques for effective service discovery, we do not believe that, on their own, they
are sufficient to overcome the ontological mismatch that will exist between
requirement specifications and service descriptions. To deliver this sufficient
algorithm, we have developed the pattern extension to EDDiE.

2.3 Pattern-Based Extension to Service Discovery

As Figure 1 shows we implement the pattern-based extension by adding a patterns
catalogue and a new component – the query reformulator – to EDDiE. Input to this
extension is an expanded and disambiguated set of terms in a service query, and
output is one or more new service queries reformulated using retrieved patterns.

244 N. Dourdas et al.

Each pattern in the pattern language includes a structured natural language
description of a class of problem in context and a structured natural language
description of one or more candidate classes of service that are proven solutions to the
class of problem. Pattern-based service discovery is in 3 stages:

1. Pattern match: EDDiE uses its existing algorithm [Zachos & Maiden 2005] to
match the expanded and disambiguated service query to the problem
description of each pattern. The result is an ordered set of retrieved patterns that
match to the service query;

2. Reformulate service request: EDDiE uses the described classes of service in the
solution part of each retrieved pattern to generate one or more new service
queries that are expressed in terms of the service features rather than consumer
requirements;

3. Service match: EDDiE applies each new service query to discover service
descriptions from the SeCSE service registries. The result is an ordered set of
service descriptions that match the reformulated service query.

We have designed each pattern to enable more effective pattern matching in stage 1
using two WordNet structures. Firstly, each term in the pattern’s problem description
is pre-tagged with the correct word sense (e.g. a vehicle is a conveyance that
transports people or objects), so that EDDiE only applies word sense disambiguation
to terms in the service query. Secondly, terms in the problem description are made
more generic using hypernym relationships specified in WordNet, thus ensuring that
the pattern can be applied more widely in the automotive domain whilst still enabling
effective term matching using the hypernym relationship.

Previously we proposed this pattern-based extension to service discovery [Zhu et
al. 2005], however both its feasibility and effectiveness were unproven. In the
remainder of this paper we report a first evaluation that sought to establish whether:
(i) a pattern language could be elicited from domain experts – in our case automotive
engineers, and; (ii) the language has the potential to improve service discovery. This
paper reports an empirical answer to the first question and an example-based
demonstration to begin to answer the second.

3 Developing a Pattern Language for Vehicle Fleet Management
in DaimlerChrysler

We worked with SeCSE partners DaimlerChrysler to develop and evaluate a
prototype pattern language for their on-board systems for fleet vehicle management.
Fleet vehicle management enables DaimlerChrysler to maintain effective customer
support after sale or lease, to ensure vehicle quality and support vehicle use. The
result was a 40-page specification of a language that contained 7 core patterns. Each
pattern was described using 4 facets. The first described background information
about the pattern in text form and i* strategic dependency (SD) and strategic rationale
(SR) models [Yu & Mylopoulos 1994] that represent and communicate the essence of
each pattern. The SD model depicts dependencies between strategic actors whilst the
SR model depicts how actors achieve strategic goals in terms of tasks and resources

 Discovering Remote Software Services that Satisfy Requirements 245

[Yu & Mylopoulos 1994]. We had successfully used i* models to elicit, evaluate
and communicate patterns on submarine design with BAE SYSTEMS engineers
[Pavan et al. 2003], and applied this method again in SeCSE. The second facet
described the pattern’s problem in context using structured natural language
descriptions in use case specifications [Jacobson et al. 2000] and VOLERE
requirement statements [Robertson & Robertson 1999]. The third facet described the
pattern solution in terms of the behaviour of the service-centric application, again as a
use case specification. The fourth facet described classes of service implemented in
this application, in terms of structured service descriptions from which EDDiE
generates revised service queries [Sawyer et al. 2005].

3.1 Elicitation Method

Elicitation was in three phases. Each focused on a one-day workshop with
DaimlerChrysler engineers in Stuttgart. The engineers were experienced system
designers from DaimlerChrysler’s Research and Development department, and at
least 2 engineers participated in each workshop. Throughout each workshop we
encouraged the engineers to converse with each other. This technique, known as
constructive interaction [Miyake 1986], overcomes the unnatural aspects of other
elicitation techniques. All conversation took place in German, the engineer’s native
language, and the SeCSE researcher was fluent in the language. All results were then
translated into English, the language of the project.

The 3 workshops had 3 different goals:

1. Pattern discovery, to walk through scenarios that envision how vehicle fleet
management might take place, and discover and document design decisions
about possible on-board service-centric applications. Results provided an
outline pattern language and template for each pattern;

2. Pattern definition, to develop and specify complete patterns around the
reported design decisions, including the description of possible classes of
service that an application might discover and bind to during deployment;

3. Pattern evaluation, to evaluate the specified patterns and revise them in light
of feedback.

During the first workshop we walked through DaimlerChrysler scenarios that
described how fleet vehicle management took place. Engineers selected the scenarios
according to business importance, how frequently these scenarios might occur, and
the potential use for future software services. They then elaborated these scenarios
into sequences of actions that were walked through to discover design decisions that
would need to be made to implement the software services. Next we combined
brainstorming with laddering, a form of structured interviewing, to elicit knowledge
about different candidate architectures, why each was chosen or rejected, and
conditions for the use of each. Laddering questions gathered important data about
trade-offs between requirements and the feasibility of different architectures. All data
was recorded on flipchart sheets. At the end of the workshop we structured
knowledge about each pattern in the background facet. We also developed an i*

246 N. Dourdas et al.

Strategic Dependency (SD) model of the system actors and dependencies described in
the pattern.

Prior to the second workshop – pattern definition – we sent each pattern
description from the first workshop to the DaimlerChrysler engineers for comment
and correction. During the workshop itself we worked with the engineers to develop
the i* SR models, gathering data to complete one model for each pattern using
brainstorming to discover concepts and laddering to decompose soft goal concepts.
We used the i* SR models to decompose modeled tasks into sub-tasks that could be
undertaken by remote software services. After the workshop we elaborated the i*
models to generate the other 3 facets of each pattern: (i) the problem facet, expressed
as classes of behaviour and requirements expressed in a use case specification; (ii) the
solution facet, expressed as the use case extended with descriptions of classes of
behaviour specific to service-centric applications; (iii) the service classes facet
expressed using SeCSE’s faceted service specification structure [Sawyer et al. 2005],
that was the basis for generating new service queries.

In the third workshop – pattern evaluation – we formally reviewed then evaluated
each pattern with the DaimlerChrysler engineers.

3.2 Results

During the first workshop we developed and collected a large number of informal
artifacts such the mind maps shown in Figure 2. These artifacts provided the basis for
pattern definition in the second workshop. All patterns in the language made reference
to onboard vehicle boxes that deliver software services to the driver, software servers
that DaimlerChrysler supports to deliver services to vehicles, and service providers
from whom services are discovered and deployed. Raw data collected from the 3
workshops is reported in Dourdas [2005].

Fig. 2. The mind maps developed for Vehicle box update (on the left) and Negotiation (on the
right)

 Discovering Remote Software Services that Satisfy Requirements 247

At the end of the third workshop the language contained 7 core patterns:

1. Communication initialization: Initializing processes prior to data exchange,
taking into account requirements from the driver and server;

2. Authentication: Determining identities of actors for legal, billing and security
purposes, exploring the trade-offs between user-friendliness and security;

3. Emergency administration: An administrator accessing the vehicle box to
recover from malfunctions;

4. Vehicle box update: Updating in response to developer requests and new
software versions, taking into account billing and safety requirements;

5. Language selection: Services are offered in different languages chosen by the
driver, making use of specialized translation services;

6. Vehicle status sending: Exploiting vehicle-related services (e.g. detection of
the next service station) to transmit data such as position and mileage, trading
off keeping information current and up-to-date and communication costs;

7. Negotiation: Offering an unlimited amount of service may result in price
negotiations with the driver that can lead to usability problems.

Each pattern was described using the background, problem description, solution
description and service class facets described earlier. To demonstrate these patterns
and the facets, we report the final version of the Negotiation pattern.

3.3 The Negotiating Pattern

Background Facet: Drivers use different services from their vehicles, many of which
must be paid for. Different service price models and ranges exist, depending on
service availability and quality, and the final price must be negotiated by the driver.
Pre-defined price preferences speed up the service selection and negotiation but
restrict service choice and can lead to driver choice not being met, whilst service
providers do not provide transparent and comparable pricing systems. Furthermore,
because the driver must accept the price, driver authentication is needed. This leads to
a trade-off between the automation of service selection and wider service selection –
drivers who accept service prices can benefit from more available services, but this
requires more interaction.

Fig. 3. The i* SD model for the Negotiating pattern

248 N. Dourdas et al.

The SD model in Figure 3 shows two-way dependencies between the driver and
server actors, and between the server and service provider actors. The supporting SR
model, not shown due to lack of space, also models driver tasks such as providing
authentication and interacting in negotiations, and service provider soft goals such as
maximising sale of services.

Problem Facet: EDDiE matches a service query to the use case and requirement
specification in Table 1. Specification terms were selected to minimize the number
of possible senses, for example the term authentication has just one sense in
WordNet. Terms with more than one sense were tagged with WordNet word senses
to support query expansion, for example price is tagged as a noun with the sense the
amount of money needed to purchase something. Other service-centric computing
term senses were specified in the UCaRE lexicon. One example is service, which in
WordNet has 15 possible senses as a noun, none of which describe the sense
intended in the pattern.

Table 1. Description of the pattern problem for the Negotiation pattern

Use case
normal
course

1. The driver requests a service.
2. The server offers a suitable service.
3. The driver pays for the service.
4. The driver uses the service.

Requirements • The driver shall authenticate him/herself before using chargeable services.
• The driver shall be able to accept different prices for services.
• The services shall be categorised into different price groups.
• The driver shall state the price preferences.
• The driver shall not directly interact with the services providers.
• The server shall be responsible for the B2B negotiations with service providers.

Solution Facet: Table 2 specifies how the service-centric application will negotiate
service prices, in the form of a use case specification. Remote software service actions
that EDDiE will need to discover are highlighted in bold. For example, services will
be needed to compare service prices and qualities, as specified in action 6.2. However
action descriptions on their own are insufficient for discovering solution services, so
the fourth facet, service classes, was specified.

Table 2. Description of the pattern solution for the Negotiation pattern

Use
case

1. The driver requests a service.
2. The vehicle box transmits the service request to the server.
3. The server requests service information.
4. The server retrieves the driver's maximum price preferences.
5. The server compares the price preferences with the service price.
6. If the service price is higher than the preferred maximum price,

6.1. The server searches for alternative services from other service providers.
6.2. The server compares the prices, quality and availability of other services.

7. If the service price is higher than the preferred maximum price,
7.1. The server requests the driver's confirmation.
7.2. The driver confirms the higher price.
7.3. The server requests the driver's authentication.
7.4. The driver enters the driver ID and PIN.
7.5. The server validates the authentication data.

8. The server invokes the web service.

 Discovering Remote Software Services that Satisfy Requirements 249

Service Class Facet: EDDiE generates new service queries from service classes of
the behaviour depicted in bold in Table 2 to discover concrete services from service
registries. Table 3 describes one such class – DriverVehicleAdministration – to
implement behaviour specified in use case actions 6.1, 6.2 and 7.5. The SeCSE
service discovery algorithm matches attributes of this facet to equivalent attributes of
SeCSE’s service description facet in service registries [Sawyer et al. 2005]. Other
pattern service classes, for example ServiceInformation, are not described in this
paper due to lack of space.

Table 3. Description of the DriverVehicleAdministration service class

Service DriverVehicleAdministration
Service
Description

The service is able to manage/administrate drivers and vehicles and provides
verification/validation of their identification/authentication details.

Service
Goal

Provided with the driver's ID and PIN, the service checks the validity of these
details. In case of new drivers, the service can register them and provide identify-
cation details. The service is also capable of managing vehicles by using their unique
vehicle ID. Linking drivers to certain vehicle enables further levels of authentication.

Service
Rationale

In order to avoid many different types of authentication, the service manages drivers
and vehicles for the server, and equally important, for all different service providers.
Otherwise, every single service provider would be responsible for the user
authentication and the drivers would be confronted with different authentication
procedures when using different services.

Service
Consumers

Server, Administrator, Service Provider

Service
Operations

Validate driver
Validate vehicle
Provide driver identification details
Manage driver – vehicle combinations

The language’s other 6 patterns were structured and described in the same manner
[Dourdas 2005]. DaimlerChrysler engineers accepted and signed off the 7 patterns as
the basis for a first pattern language with which to evaluate SeCSE’s pattern extension
to service discovery. The next section demonstrates how service discovery can be
enhanced with a simple example that exploits the Negotiation pattern.

4 Demonstrating Pattern-Based Service Discovery

In the example requirements analysts use SeCSE’s web-based UCaRE tool to specify
requirements of service consumers – Mercedes drivers - for an onboard application
that provides them with route planning using up-to-date information about traffic
conditions. These requirements are expressed as the use cases and VOLERE
requirements shown in Figure 4. Each assumes no solution knowledge about journey
planner and other services. It is expressed in terms of the problem domain.

EDDiE generates XML service queries from elements in the requirement
specification. The query follows an XML schema that defines its structure, content
and semantics. EDDiE disambiguates and expands query terms using the components
shown in Figure 1 [Zachos & Maiden 2005]. A fragment of the generated XML query
with expanded problem domain terms is shown in Figure 5. The first part lists original
query terms with their WordNet word types and senses whilst the second lists

250 N. Dourdas et al.

Fig. 4. Use case précis and one requirement for the onboard route planner application,
expressed in UCaRE

<?xml version="1.0"?>
<Query queryID="459">
 <SubQuery subQueryID="3">
 <UseCase useCaseID="118">
 <Precis>
 <TermStructure>
 <SingleTerm>
 <Term termID="1" occurrence="1" pos="NN" wnsn="1">destination</Term>
 <Term termID="2" occurrence="1" pos="NN" wnsn="1">company</Term>
 <Term termID="3" occurrence="1" pos="NN" wnsn="1">payment</Term>
 <Term termID="24" occurrence="1" pos="VBN" wnsn="1">require</Term>
 <Term termID="26" occurrence="1" pos="JJ" wnsn="1">important</Term>
 …….
 <Term termID="27" pos="NN" refTerm="1" expType="synonym" expWeight="1.3">finish</Term>
 <Term termID="28" pos="NN" refTerm="1" expType="synonym" expWeight="1.3">goal</Term>
 <Term termID="29" pos="NN" refTerm="4" expType="synonym" expWeight="1.3">arrival time</Term>
 <Term termID="30" pos="NN" refTerm="4" expType="synonym" expWeight="1.3">time of arrival</Term>
 ………

Fig. 5. Part of the generated XML query from the use case in Figure 4, showing original terms
and their WordNet word types and word senses (e.g. destination) and expanded terms (e.g.
finish and goal) and expansion weightings

expanded terms and expansion weightings. EDDiE matches original and expanded
terms to terms that describe pattern problem facets.

SeCSE’s pattern catalogue is implemented in eXist, an Open Source native XML
database featuring index-based XQuery processing, automatic indexing, and tight
integration with XML development tools. EDDiE queries the catalogue using
XQuery, a query language designed for processing XML data. XML queries are
transformed into one or more XQueries that are fired at the problem description facets
of patterns in the catalogue. Figure 6 shows part of the XML describing the
Negotiation problem facet. Not shown, again due to lack of space are the tagged word
senses (e.g. WordNet sense 1 is tagged to driver – the operator of a motor vehicle),

 Discovering Remote Software Services that Satisfy Requirements 251

whilst other terms are inter-changeable with more generally-applicable WordNet
hypernyms, for example request with communicate, and offer with supply.

In our example EDDiE retrieves the Negotiation pattern reported in Section 3 using
the generated XQueries. Matched terms include <chauffer, driver>, <journey
planner, service> and <authenticate, authenticate>. As the match to the
Negotiation pattern is greater than a pre-specified match threshold, EDDiE’s query
reformulator automatically generates new XML queries and XQueries from
information in the ServiceInformation and DriverVehicleAdministration service
classes specified in the facet. A fragment of the XML query for
DriverVehicleAdministration is shown in Figure 7. In contrast with original query
terms in Figure 5, terms describe relevant software behaviour to match to terms
describing concrete services in registries.

<?xml version="1.0" encoding="utf-8" ?>
<Patterns>
 <Pattern patternID="7" patternName="The Negotiating Pattern">
 <Problem>
 <UseCase>
 <Action acID="1">The driver requests a service.</Action>
 <Action acID="2">The server offers a suitable service.</Action>
 <Action acID="3">The driver pays for the service.</Action>
 <Action acID="4">The driver uses the service.</Action>
 </UseCase>
 <Requirements>
 <Requirement reqID="1" reqType="Functional">
 The driver shall authenticate him/herself before using chargeable services.
 </Requirement>
 <Requirement reqID="2" reqType="Functional">
 The driver shall be able to accept different prices for services…..

Fig. 6. Partial XML specification of the Negotiation pattern’s problem facet

<?xml version="1.0"?>
<Query queryID="460">
 <SubQuery subQueryID="3">
 <UseCase useCaseID="P7">
 <Precis>
 <TermStructure>
 <SingleTerm>
 <Term termID="1" occurrence="1" pos="NN" wnsn="1">identification</Term>
 <Term termID="2" occurrence="1" pos="NN" wnsn="1">validation</Term>
 <Term termID="3" occurrence="1" pos="NN" wnsn="1">register</Term>
 …….

Fig. 7. Part of the reformulated XML query in Figure 5

Next, two things happen. Firstly, UCaRE proposes the pattern solution facet to the
requirements analysts to extend the original use case specification shown in Figure 4.
Secondly EDDiE fires the reformulated XQuery at the service description facets of
services in SeCSE service registries using the existing EDDiE algorithm [Zachos &
Maiden 2005]. The reformulated XQueries include new terms not included in the
original query, such as verification, validation, identification, authentication, vehicle
identifier, and register. Analysts browse and select between retrieved services using
SeCSE’s service explorer component.

252 N. Dourdas et al.

5 Implementation, Discussion and Future Work

We have implemented the vehicle fleet management pattern catalogue as a local
SeCSE service registry without implementations of the specified service classes. Each
pattern facet is described using an XML data structure in an eXist database. This
implementation is the basis for answering our second question in the future – to
explore the utility of pattern-based query reformulation in EDDiE.

Results reported in this paper provided an emphatic answer to the first research
question, whether a pattern language for service-centric applications can be elicited.
Three workshops, each lasting less than one day with 2 DaimlerChrysler engineers,
were sufficient to elicit and describe patterns that elaborate on 7 important service-
centric design decisions. After the third workshop, DaimlerChrysler signed off the
language as an accurate representation of domain knowledge about software services
for vehicle fleet management. In this regard, these results supported earlier results
[Pavan et al. 2003] that support use of a workshop-based elicitation strategy. An
initial analysis of the patterns, demonstrated with the reported example, revealed that
service classes linked to each problem class have the potential to reformulate EDDiE
service queries with new terms indicative of service ontologies. In the future, an
evaluation of EDDiE with service queries for vehicle fleet management based on real
automotive requirements is planned to determine the relative effectiveness of
EDDiE’s pattern-based extension. In particular we will explore different pattern
configurations, for example the effectiveness of tagging different terms with WordNet
senses, and different hypernym terms to use to express the more abstract pattern. We
hope to report results in the near future.

Results gave rise to important discussion points. Although the pattern language
was developed for remote software services for vehicle fleet management in
DaimlerChrysler, some of the patterns have the potential to generalize beyond both
the organization and the domain. The reported Negotiation pattern describes classes
of candidate service that can reformulate queries in all consumer payment domains
including in-car services using more general hypernym relationships, namely driver
is-a purchaser. Similar claims can be made for other patterns in the language, for
example Authentication, Emergency administration and Language selection. This
raises important questions about which levels of abstraction afford best pattern
matching and reuse [Sutcliffe & Maiden 1998]. Melloul & Fox [2004] report the need
for patterns to describe all service invocation contexts, which is neither plausible nor
desirable in SeCSE patterns. However deciding what information is needed to
describe and discover patterns effectively remains an open question – for example
should EDDiE also expand and disambiguate background facet descriptions, and
should reformulated queries still include original query terms? During evaluation of
EDDiE’s pattern-based extension, we will explore these questions with modified
pattern versions to other SeCSE domains including telecommunications with other
industrial partners Telecom Italia and Telefonica. Finally, the link between the pattern
language and emerging standards for semantically enhanced service descriptions such
as OWL-S and WSMO warrants some discussion. The language reported in this paper
describes DaimlerChrysler expertise using as structured natural language independent
of representations needed for implementation in service registries. This is because the
design decisions that the engineers make are independent of standards used to

 Discovering Remote Software Services that Satisfy Requirements 253

represent services. During evaluation of the implemented pattern language we will
explore whether use of WordNet as a weak ontology or more formal approaches such
as WSDL-S improve the representation, discovery and exploitation of patterns.

The related work revealed that our use of patterns in service discovery is unique in
service-centric computing. We plan to advance this work by extending patterns with
knowledge about service-centric architectures related to each service class that is
expressed using UML message sequence charts and OCL constraints describing
service operations and query constraints. This will enable more precise behaviour-
based service matching [Spanoudakis et al. 2005] directly from problem requirements
expression in UCaRE, potentially shortening the time needed to develop service-
centric applications.

Acknowledgements

The work reported in this paper is funded by the EU Framework VI 511680 SeCSE
Integrated Project. We wish to thank all partners for their inputs and feedback so far.

References

Alexander C., 1979, ‘The Timeless Way of Building’, NY: Oxford University Press.
Baeza-Yates, R. & Ribiero-Neto, B., 1999 ‘Modern Information Retrieval’, Addison-Wesley

1999.
Crowe M.,2005, http://opensource.ebswift.com/WordNet.Net
Dourdas N., 2005, ‘A Pattern Language for Vehicle Fleet Management in DaimlerChrysler’,

MSc Thesis, Department Information Science, City University, London, September, 2005.
Gamma E., Helm R., Johnson R. & Vlissides J., 1995, ‘Design Patterns – Elements of Reusable

Object-Oriented Software’, Addison-Wesley.
Jackson M., 1995, ‘Software Requirements and Specifications’, Addison-Wesley.
Jacobson I., Booch G. & Rumbaugh J., 2000, The Unified Software Development Process,

Addison-Wesley-Longman.
Jones S.V., Maiden N.A.M., Zachos K. & Zhu X., 2005, ‘How Service-Centric Systems

Change the Requirements Process’, Proceedings REFSQ’2005 Workshop, in conjunction
with CaiSE’2005, 13-14 2005, Porto, Portugal.

Leavitt N., 2004, ‘Are Web Services Ready to Deliver?’, IEEE Computer, 37(11), 14-18.
Massonet, P. & van Lamsweerde, A., 1996, ‘Formal refinement patterns for goal-driven

requirements elaboration’, Proceedings of FSE-4 - 4th ACM Symposium on the Foundations
of Software Engineering, San Fransisco, ACM Press (1996), 179–190.

Melloul L., Fox A. “Reusable Functional Composition Patterns for Web Services”, Second
International Conference on Web Services (ICWS04), San Diego, CA, July 6-9, 2004.

Miller K., 1993, ‘Introduction to WordNet: an On-line Lexical Database’ Distributed with the
WordNet software

Mijake N., 1986, ‘Constructive Interaction and the Iterative Process of Understanding’,
Cognitive Science 10, 151-177.

Pärssinen J, Koponen, T. and Eronen P. “Pattern Language for Service Discovery”, In
Proceedings of the 9th European Conference on Pattern Languages of Programs (EuroPLoP
’04), 645-660, Irsee, Germany, July 2004.

254 N. Dourdas et al.

Pavan P., Maiden N.A.M. & Zhu X., 2003, ‘Towards a Systems Engineering Pattern Language:
Applying i* to Model Requirements-Architecture Patterns’, STRAW’2003, 2nd
International Software Requirements and Architectures Workshop, ICSE’2003, May 2003.

Robertson S. & Robertson J., 1999, Mastering the Requirements Process, Addison-Wesley
Sawyer P., Hutchinson J., Walkerdine J. & Sommerville I., 2005, ‘Faceted Service

Specification’, Proceedings SOCCER (Service-Oriented Computing: Consequences for
Engineering Requirements) Workshop, at RE’05 Conference, Paris, August 2005.

Schmid K., Eisenbarth M. & Grund M., 2005, ‘From Requirements Engineering to Knowledge
Engineering: Challenges in Adaptive Systems’, Proceedings SOCCER (Service-Oriented
Computing: Consequences for Engineering Requirements) Workshop, at RE’05 Conference,
Paris, August 2005.

Schütze H. and Pedersen, J.O., 1995 “Information retrieval based on word senses”, in Proceedings
of the Symposium on Document Analysis and Information Retrieval, 4: 161- 175, 1995.

Spanoudakis G., Zisman A., Kozlenkov A.: 2005, ‘A Service Discovery Framework for Service
Centric Systems’, to appear in IEEE International Conference on Services Computing, IEEE
Computer Society Press, 251-259.

Sutcliffe A.G. & Maiden N.A.M., 1998, ‘The Domain Theory for Requirements Engineering’,
IEEE Transactions on Software Engineering, 24(3), 174-196.

Tut M. T. & Edmond, D. 2002 “The Use of Patterns in Service Composition”, Revised Papers
International Workshop on Web Services, E-Business, and Semantic Web, 28–40, 2002

Yu E. & Mylopoulos J.M., 1994, ‘Understanding “Why” in Software Process Modelling,
Analysis and Design’, Proceedings, 16th International Conference on Software Engineering,
IEEE Computer Society Press, 159-168.

Zachos K. & Maiden N.A.M., 2006, ‘Discovering Services During Requirements Processes’,
Technical Report, Centre for HCI Design, City University London.

Zhu H., Maiden N.A.M., Jones S.V., Zachos K., 2005, “Applying Patterns in Service
Discovery”, Proceedings SOCCER (Service-Oriented Computing: Consequences for
Engineering Requirements) Workshop, at RE’05 Conference, Paris, August 2005.

E. Dubois and K. Pohl (Eds.): CAiSE 2006, LNCS 4001, pp. 255 – 269, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Library of OCL Specification Patterns for Behavioral
Specification of Software Components

Jörg Ackermann and Klaus Turowski

Chair of Business Informatics and Systems Engineering,
University of Augsburg, Universitätsstr. 16, 86135 Augsburg, Germany

{joerg.ackermann, klaus.turowski}@wiwi.uni-augsburg.de

Abstract. One important aspect in building trusted information systems is the
precise specification of systems and system parts. This applies even more for in-
formation systems built from COTS components. To specify behavioral aspects of
software components the UML Object Constraint Language (OCL) is well suited.
One current problem in component specifications comes from the fact that editing
OCL constraints manually is time consuming and error-prone. To simplify con-
straint definition we propose to use specification patterns for which OCL
constraints can be generated automatically. In this paper we outline this solution
proposal and present a library of reusable OCL specification patterns.

Keywords: Component-Based Information Systems, Software Component
Specification, OCL Specification Patterns.

1 Introduction

One important aspect in building trusted information systems is the precise specification
of systems and system parts: the specification can help to close the (frequently be ob-
servable) gap between the expected and the actual behavior of a system. Specifications
become even more important if information systems are built from COTS components
acquired from a variety of vendors [23]. A precise and reliable specification of COTS
components supports sound selection and trust in its correct functioning [10]. Moreover,
component specifications are a prerequisite for a composition methodology and tool
support [20]. For these reasons the specification of software components is of utmost
importance for building trusted information systems out of components.

To specify the behavioral aspects of software components the UML Object Con-
straint Language (OCL) [18] is frequently employed (see Sect. 2). Using a formal
language like OCL, however, causes one of the current problems in component speci-
fications: Editing OCL constraints manually is time consuming and error-prone (see
Sect. 3). To simplify constraint definition we propose to utilize specification patterns
for which OCL constraints can be generated automatically (see Sect. 4). For that we
present a library of OCL specification patterns (Sect. 5) and discuss a technique to
describe and formally specify them (Sect. 6). We conclude with discussion of related
work (Sect. 7) and a summary (Sect. 8). The contribution of the project is the simpli-
fication of component specification by utilizing reusable OCL specifications. The

256 J. Ackermann and K. Turowski

results were developed for software components but are general enough to be interest-
ing for anyone using OCL to specify information systems.

2 Behavioral Specification of Software Components

The appropriate and standardized specification of software components is a critical
success factor for building component-based information systems. With specification
of a component we denote the complete, unequivocal and precise description of its
external view - that is which services a component provides under which conditions
[22]. Various authors addressed specifications for specific tasks of the development
process as e.g. design and implementation [8,9], component adaptation [24] or com-
ponent selection [14]. Approaches towards comprehensive specification of software
components are few and include [7,20,22]. Objects to be specified are e.g. business
terms, business tasks, interface signatures, behavior and coordination constraints and
non-functional attributes.

Fig. 1. Interface specification of component SalesOrderProcessing

Behavioral specifications (which are topic of this paper) describe how the compo-
nent behaves in general and in borderline cases. This is achieved by defining
constraints (invariants, pre- and postconditions) based on the idea of designing appli-
cations by contract [16]. OCL is one of the most used techniques to express such
constraints – cf. e.g. [8,9,20,22].

To illustrate how behavioral aspects of software components are specified we in-
troduce a simplified exemplary component SalesOrderProcessing. The business task
of the component is to manage sales orders. This component is used as example
throughout the rest of the paper.

Fig. 1 shows the interface specification of SalesOrderProcessing using UML [19].
We see that the component offers the interface ISalesOrder with operations to create,
check, cancel or retrieve specific sales orders. The data types needed are also defined
in Fig. 1. Note that in practice the component would have additional operations and

 A Library of OCL Specification Patterns for Behavioral Specification 257

might offer additional order properties. For sake of simplicity we restricted ourselves
to the simple form shown in Fig. 1 which will be sufficient as example for this paper.

To specify the information objects belonging to the component (on a logical level)
one can use a specification data model which is realized as a UML type diagram and
is part of the behavioral specification [5]. Fig. 2 displays such a model for the compo-
nent SalesOrderProcessing. It shows that the component manages sales orders (with
attributes id, date of order, status, customer id) and sales order items (with attributes
id, quantity, product id) and that there is a one-to-many relationship between sales
orders and sales order items.

Fig. 2. Specification data model for component SalesOrderProcessing

Note that operation parameters for software components are usually value-based
(no object-oriented instances are passed). As a consequence the coupling between
interface definition (cf. Fig. 1) and specification data model (cf. Fig. 2) is only loose.
The operation ISalesOrder.check e.g. is semantically an instance method in the sense
that it manipulates one specific sales order. Technically, however, the operation is
called for the component (and not a sales order instance) and the sales order to be
checked is identified by the parameter orderId. Therefore the consequences of opera-
tion calls on the specification data model must be specified explicitly.

The behavioral specification of a component is based on its interface specification
and on its specification data model and consists of OCL expressions that constrain the
components operations – for an example see Fig. 3. The first constraint is an invariant
for type SalesOrder: It guarantees that different sales orders always differ in the value
of their id – that is the attribute id is a semantic key for sales orders. By defining an
invariant this constraint needs only to be formulated once and does not need to be
repeated in several pre-and postconditions. The remaining constraints in Fig. 3 con-
cern the operation ISalesOrder.create: The precondition demands that the field cus-
tomerId of parameter orderHeader must not contain an empty string when calling the
operation. The first postcondition guarantees that an instance of class SalesOrder
(which id equals the value of the output parameter orderId) was created by the opera-
tion. The second postcondition assures that the newly created sales order instance is in
status new. Note that Fig. 3 shows only some constraints and does not contain a com-
plete behavioral specification.

258 J. Ackermann and K. Turowski

context SalesOrder
inv: SalesOrder.allInstances()->forAll(i1, i2 |

i1 <> i2 implies (i1.id <> i2.id))

context ISalesOrder::create(orderHeader: OrderHeaderData, order-
Item: OrderItemData, orderId: string, orderStatus: OrderStatus)

pre: orderHeader.customerId <> ‘’
post: let inst: SalesOrder = SalesOrder.allInstances()

->select(i1 | (i1.id = orderId))->any(true) in
 inst.oclIsNew

post: let inst: SalesOrder = SalesOrder.allInstances()
->select(i1 | (i1.id = orderId))->any(true) in

 inst.status = OrderStatus::new

Fig. 3. Exemplary behavioral constraints for component SalesOrderProcessing

3 Problems in Behavioral Specification of Components

Most component specification approaches recommend notations in formal languages
since they promise a common understanding of specification results across different
developers and companies. The use of formal methods, however, is not undisputed.
Some authors argue that the required effort is too high and the intelligibility of the
specification results is too low – for a discussion of advantages and liabilities of for-
mal methods compare [13].

The disadvantages of earlier formal methods are reduced by UML OCL [18]: The
notation of OCL has a comparatively simple structure and is oriented towards the
syntax of object-oriented programming languages. Software developers can therefore
handle OCL much easier than earlier formal methods that were based on set theory
and predicate logic. This is one reason why OCL is recommended by many authors
for the specification of software components.

Despite its advantages OCL can not solve all problems associated with the use of
formal methods: One result of two case studies specifying business components [1,2]
was the insight that editing OCL constraints manually is nevertheless time consuming
and error-prone. Similar experiences were made by other authors that use OCL con-
straints in specifications (outside the component area), e.g. [12,15]. They conclude
that it takes a considerable effort to master OCL and use it effectively.

It should be noted that behavioral aspects (where OCL is used) have a great impor-
tance for component specifications: In the specification of a rather simple component
in case study [2], for example, the behavioral aspects filled 57 (of altogether 81)
pages and required a tremendous amount of work. For component specifications to be
practical it is therefore mandatory to simplify the authoring of OCL constraints.

4 Solution Proposal: Utilizing OCL Specification Patterns

Solution strategies to simplify OCL specifications include better tool support (to re-
duce errors) and an automation of constraint editing (to reduce effort) – the latter can
e.g. be based on use cases or on predefined specification patterns (compare Sect. 7).

 A Library of OCL Specification Patterns for Behavioral Specification 259

To use specification patterns seems to be particularly promising for the specifica-
tion of business components: When analyzing e.g. case study [2] one finds that 70%
of all OCL constraints in this study can be backtracked to few frequently occurring
specification patterns.

Fig. 4. Selection screen for generating an OCL constraint

Under (OCL) specification pattern we understand an abstraction of OCL con-
straints that are similar in intention and structure but differ in the UML model ele-
ments used. Each pattern has one or more pattern parameters (typed by elements of
the UML metamodel) that act as placeholder for the actual model elements. With
pattern instantiation we denote a specific OCL constraint that results from binding
the pattern parameters with actual UML model elements.

As an example let us consider the pattern Semantic Key Attributes: It represents the
situation that one or more attributes of a class (in the specification data model – cf.
Fig. 2) play the semantic role of a key – that is any two instances of the class differ in
at least one value of the key attributes. Pattern parameters are the class and the list of
key attributes. A pattern instantiation (for the class SalesOrder and its attribute id) can
be seen in the upper part of Fig. 3.

260 J. Ackermann and K. Turowski

If such OCL specification patterns are collected, formally described and integrated
into a specification tool the specification can be simplified in the following way: Sup-
pose the person who specifies our exemplary component is in the middle of the speci-
fication process and wants to formulate the invariant from Fig. 3. He checks the
library of predefined specification patterns (which is part of his specification tool) and
finds the pattern for semantic key attributes (compare section 1 of Fig. 4). After se-
lecting this pattern the tool will show him the pattern description and an associated
template OCL constraint (showing the pattern parameters in italic).

Fig. 5. Display of the generated OCL constraint

The user has to select model elements for the parameters (in section 3 of Fig. 4) –
in our example the class SalesOrder and its attribute id are selected. Note that the tool
can be built in such a way that it restricts the input to those model elements that are
allowed for a pattern – in section 3 of Fig. 4 for instance you can see that the tool only
offers the attributes of class SalesOrder for selection.

After providing pattern and parameter values the user can start the generation. The
tool checks the input for consistency and then generates the desired OCL constraint
(compare section 3 of Fig. 5) which can be included into the component specification.

Applying this approach has the following advantages: For the specification pro-
vider maintenance of specifications is simplified because it becomes faster, less error-
prone and requires less expert OCL knowledge. For a specification user the

 A Library of OCL Specification Patterns for Behavioral Specification 261

understanding of specifications is simplified because generated constraints are uni-
form and are therefore easier recognizable. Moreover, if the patterns were standard-
ized, it would be enough to specify a pattern and the parameter values (without the
generated OCL text) which would make recognition even easier.

5 A Library of OCL Specification Patterns

In this section we introduce a list of OCL specification patterns that are useful for
behavioral specification of software components. To obtain this list we first studied
several case studies (dealing with business components) and publications about com-
ponent specifications and identified frequently occurring patterns [3]. In a second step
we analyzed the preliminary list and identified additional patterns that are useful but
could not be found in the first step. (Reasons to include additional patterns were for
instance extending patterns to other relevant UML metamodel elements or symmetry
considerations like including a constraint for deleted instances if there is one for cre-
ated instances.) As result we obtained a library of altogether 18 OCL specification
patterns which are subdivided into four categories. The categories and their assigned
patterns are shown in Tables 1-4 – the table columns are pattern number (for easier
reference), constraint type and pattern name. Note that it is conceivable that the pat-
tern list might be extended in future.

Table 1. Specification patterns concerning only interface specifications

No. Constraint type Pattern name

1 Precondition Value Specification of Input Parameter

2 Postcondition Value Specification of Output Parameter

3 Precondition Value Specification of Input Parameter Field

4 Postcondition Value Specification of Output Parameter Field

5 Precondition Value Specification of Input Table Parameter Fields

6 Postcondition Value Specification of Output Table Parameter Fields

The behavioral specification of software components refers to the interface specifi-
cation (cf. Fig. 1) and the specification data model (cf. Fig. 2). The first pattern cate-
gory (cf. Table 1) contains patterns that only concern the interface specification.

Pattern 3 (Value Specification of Input Parameter Field) for instance is a precondi-
tion that allows restricting the value of a field of a structured input parameter of an op-
eration. Pattern parameters are an operation, a parameter, a parameter field, one of the
operators (=, <>, <, <=, > or >=) and a value (corresponding to the type of the field).
Using this pattern one can e.g. demand that the field must be greater than zero or contain
a specific element of an enumeration. An instantiation of this pattern is shown in the
precondition of Fig. 3 which requests that the field customerId of input parameter or-
derHeader (of operation ISalesOrder.create) must not be the empty string.

262 J. Ackermann and K. Turowski

Analogous preconditions can be formulated for a simple, unstructured input pa-
rameter (using pattern 1) and for a field of an input table parameter (pattern 5).
Patterns 2, 4 and 6 are similar but represent postconditions assuring that an output
parameter (field) has a certain value or value range.

Table 2. Specification patterns concerning only specification data models

No. Constraint type Pattern name

7 Invariant Semantic Key Attributes

8 Invariant Value Specification of Class Attribute

9 Invariant Relationship between Class Attribute Values

The second category (cf. Table 2) features patterns that only concern the specifica-
tion data model. They are independent from operation calls and thus all invariants.

An example is pattern 7 (Semantic Key Attributes) which was already discussed be-
fore. Pattern parameters are a class and a list of its attributes – a pattern instantiation
is given by the invariant in Fig. 3. Note that the pattern is intended for one or more
attributes – this is the reason for not using the operator isUnique which would be
rather constructed for more than one attribute. Additionally it shall be mentioned that
the presented patterns are rather static – they allow substituting UML model elements
but do not allow structural changes. For structural variations on the pattern (e.g. the
attribute id of class SalesOrderItem in Fig. 2 is only unique in the context of a specific
instance of class SalesOrder) one has to define additional patterns.

The other patterns in Table 2 allow specifying the value of a class attribute (pattern
8) or the relationship between two attributes of the same class (pattern 9). A possible
extension for the last pattern would be the relationship between two attributes of dif-
ferent classes which are connected by an association.

In difference to the patterns presented so far the remaining patterns (in Tables 3
and 4) address the relationship between interface specification and specification data
model and are rather specific for software components (more precise: specific for
value-based operation calls).

Table 3. Specification patterns concerning the existence of class instances for operation calls

No. Constraint type Pattern name

10 Precondition Class Instance Existing

11 Precondition Class Instance Not Existing

12 Postcondition Class Instance Created

13 Postcondition Class Instance Deleted

 A Library of OCL Specification Patterns for Behavioral Specification 263

The third pattern category (cf. Table 3) contains patterns that deal with the exis-
tence of specific class instances for an operation call.

As an example we consider pattern 12 (Class Instance Created). This pattern de-
scribes a postcondition which specifies that an instance of a class (in the specification
data model) was created by an operation call. The pattern parameters are the class cl
for which an instance was created, the calling operation op, and two ordered sets
keyList, kparList of elements identifying the class instance. The parameter keyList
contains a list of those attributes of cl that form together the semantic key of cl (com-
pare pattern 7). The parameter kparList contains those parameters or parameter fields
of op in which the key values to identify the required instance are passed. Note that
keyList and kparList must have the same number of elements and must be ordered in
such a way, that corresponding entries stand at the same position within keyList and
kparList. A pattern instantiation is given by the first postcondition in Fig. 3 which
assures that operation ISalesOrder.create created a new instance of class SalesOrder
which id equals the value of parameter orderId. To make the OCL constraint easier to
understand first a local variable inst is defined for the instance in question and then
the actual constraint is formulated in the context of inst (cf. Fig. 3).

The other patterns in Table 3 are similar (and have the same pattern parameters) as
pattern 12 and can be used to request that a certain instance exists (pattern 10) or does
not exist (pattern 11) before the operation call and to assure that a specific instance
was deleted (pattern 13) by the operation.

Table 4. Specification patterns integrating interface specification and data model

No. Constraint type Pattern name

14 Precondition Precondition on an Instance Attribute

15 Postcondition Postcondition for an Instance Attribute

16 Postcondition Relationship to an Instance of another Type

17 Postcondition Equivalence of Parameter (Field) Value and Attribute
Value

18 Postcondition Equivalence of Multiline Parameter (Field) Values
and Attribute Values

The fourth pattern category (cf. Table 4) collects further patterns that allow speci-
fying prerequisites from model instances for an operation call and consequences of
operation calls for model instances.

Pattern 15 (Postcondition for an Instance Attribute) describes a postcondition that
can be used to assure that an attribute of a given class instance has a certain value (or
value range) at the end of an operation call. The second postcondition in Fig. 3 e.g.
states that the attribute status of the newly created instance of SalesOrder (having as
id the value of orderId) has the value new at the end of calling ISalesOrder.create.
Pattern 15 has pattern parameters for two purposes: On one hand there are the pa-
rameters cl, op, keyList and kparList which are used to identify the desired class in-
stance (for more details compare pattern 12 as described above). On the other hand

264 J. Ackermann and K. Turowski

the pattern has as parameters the attribute, one of the operators (=, <>, <, <=, > or >=)
and a value (corresponding to the type of the attribute) to specify the value or value
range of the attribute (compare also pattern 3 described above). Looking at the post-
conditions in Fig. 3 one might notice that the instance variable inst is defined in both
conditions. Behavioral specifications could be simplified if it were possible to reuse
local variables like inst in several pre- and postconditions. UML OCL, however, only
allows declaring reusable variables (via the define statement) for invariants and not
for operation calls.

Pattern 14 is similar to pattern 15 but represents a precondition which can be used
to demand that a class instance attribute has a certain value when calling an operation.
Pattern 17 can be used to express that the value of a class instance attribute equals the
value of a parameter (or parameter field). Such a condition is useful for create or
update operations to show how class instance attributes are filled from parameters or
for read operations to show how parameters are filled from instance attributes. To
avoid the need to formulate many such constraints if the class has many attributes
pattern 17 allows specifying the constraint for a list of attributes and parameters (or
parameter fields). Pattern 18 is similar in intention but addresses operation parameters
and instance properties of multiplicity greater than one. Pattern 16 is also similar and
enables to specify how a parameter (or parameter field) is connected to an instance of
a second class which is associated to the first class.

6 Description of OCL Specification Patterns

The specification patterns identified in Sect. 5 need to be described precisely in order
to be reusable for component specifications. For that we propose to use on one hand a
description scheme and on the other hand a formal specification. The formal specifi-
cation is done by using OCL itself and addresses OCL experts and tool builders who
wish to implement constraint generators. The description scheme addresses users of
specification patterns – for this it contains all relevant specification details in a more
informal way. To confront a pattern user with the full OCL specification would con-
tradict the goal to support specifications by non-OCL experts as well. In this section
we present both description approaches.

Based on the ideas of [3] we developed for pattern users a description scheme that
allows displaying all relevant pattern details in a structured and uniform way. As an
example Table 5 shows the description scheme for pattern number 7 (Semantic Key
Attributes).

The first characteristic is the pattern name that identifies the pattern and serves as a
short semantic explanation. The characteristic pattern intent contains a short statement
about intention and rationale of the pattern. The characteristic pattern parameter lists
the parameters of the pattern together with their type. Parameters can be of elementary
type (like String) or are elements from the UML metamodel (layer M2 in the four-layer
metamodel hierarchy of UML [17]). Parameters of pattern 7 are the class cl (of type
Class) and the list of key attributes keyList (of type ordered set of Property). The char-
acteristic restrictions denotes what conditions the pattern parameters must fulfill. In our
case it is required that all elements of keyList are attributes of cl.

 A Library of OCL Specification Patterns for Behavioral Specification 265

Table 5. Description scheme for pattern Semantic Key Attributes

Characteristic Description

Pattern name Semantic Key Attributes

Pattern intent Specifies that a set of attributes are a semantic key for a
class

Pattern parameter cl: Class; keyList: Property [1..*]

Restrictions Each element of keyList is an attribute of cl

Constraint type Invariant

Constraint context cl

Constraint body cl.name.allInstances()->forAll(i1,i2 |
i1 <> i2 implies
(i1.keyList[1].name <> i2.keyList[1].name)
and
(i1.keyList[2].name <> i2.keyList[2].name))

The remaining three characteristics describe the OCL constraint the pattern repre-
sents. With constraint type we denote if the constraint is an invariant, pre- or postcon-
dition. The characteristic constraint context stands for the OCL context of the
constraint and is always one of the pattern parameters (in our example class cl). The
final characteristic constraint body shows how the OCL expression to be generated
looks like. For that the OCL expression is kept generic: subexpressions in normal
typesetting can be left as they are (in our example e.g. ‘.allInstances()’) but
subexpressions in italic stand for text that needs to be substituted by a parameter value
or a parameters model name (as cl.name in Table 5 – because cl is a UML meta-
model element of type Class we need to access its property name to retrieve its actual
name.) Note that the chosen notation for the characteristic constraint body is suffi-
cient to give an idea of the generated OCL expression but has its limitations if pat-
terns are variable: In pattern 7 e.g. an arbitrary number of attributes can be used – in
Table 5 the constraint is shown exemplary for two attributes. In this way the use of
more complicated constructs (like loop or iterate) can be avoided which helps in
keeping the description easily understandable. Note that the formal pattern description
(as discussed below) is powerful enough to enable a precise specification.

Beside the informal pattern description each OCL specification pattern is formally
specified. This formal pattern specification is necessary to avoid misunderstandings
and is prerequisite for tool builders implementing constraint generators.

The basic idea how to formally describe the specification patterns is as follows:
For each OCL specification pattern a specific function (called OCL pattern function)
is defined. The pattern parameters are the input of the pattern function. Result of the
pattern function is a generated OCL constraint which is returned and (if integrated
with the specification tool) automatically added to the corresponding UML model
element. The OCL pattern functions themselves are specified by OCL – from this
specification one can determine the constraint properties (e.g. invariant) and its

266 J. Ackermann and K. Turowski

textual representation. All pattern functions are assigned as operations to a new class
OclPattern which logically belongs to the layer of the UML metamodel.

As an example we consider again the pattern Semantic Key Attributes. For this pat-
tern we define the OCL pattern function Create_Inv_SemanticKeyAttributes. Input of
the function are the class cl and the set of attributes keyList – all understood as UML
model elements. Result is a UML model element of type Constraint. The complete
specification of this pattern function is shown in Fig. 6.

context OclPattern::Create_Inv_SemanticKeyAttributes (cl: Class,
keyList: orderedSet(Property)): Constraint

(1) pre: keyList->forAll(key | key.class = cl)

(2) post: result.oclIsNew
(3) post: result.namespace = result.context
(4) post: result.specification.isKindOf(OpaqueExpression)
(5) post: result.specification.language = ‘OCL’

(6) post: result.stereotype.name = ‘invariant’
(7) post: result.context = cl
(8) post: result.name = ‘Semantic Key Attributes’
(9) post:
 let lastKey: Property = keyList->any() in
 let keyList1: Set(Property) = keyList->excluding(lastKey) in

 result.specification.body = OclPattern.Multiconcat
 (cl.name,
 ‘.allInstances()->forAll(i1, i2 | i1 <> i2 implies ’,
 keyList1->iterate(key, acc: string ‘’ |
 OclPattern.Multiconcat
 (acc, ‘(i1.’, key.name, ‘ <> i2.’, key.name, ‘) and ’)),

 ‘(i1.’, lastKey.name, ‘ <> i2.’, lastKey.name, ‘))’)

Fig. 6. Specification of pattern function Create_Inv_SemanticKeyAttributes

The specification for each pattern consists of three parts: pattern specific precondi-
tions (1), general postconditions (2)-(5) and pattern specific postconditions (6)-(9).

The function specific preconditions describe which restrictions must be fulfilled
when calling the pattern function. These preconditions must assure that the actual
parameters conform to the specification pattern. The precondition (1) demands for
instance that each element of keyList is an attribute of cl.

The general postconditions (2)-(5) are identical for all OCL pattern functions and
represent in a way the main construction details. These postconditions (together with
the functions signature) establish the following: The return of each pattern function is
a UML model element of type Constraint. This constraint is added to the model (2)
and is assigned to the model element which is the context of the constraint (3). The
actual specification of the constraint is of type OpaqueExpression (4) and is edited in
the language OCL (5).

The function specific postconditions (6)-(9) establish the following: (6) describes
the constraint type (invariant, pre- or postcondition) of the returned constraint. (7)
defines the context of the constraint (in our example the operation cl). The attribute

 A Library of OCL Specification Patterns for Behavioral Specification 267

name of Constraint is used in (8) to assign the pattern name to the constraint. The
textual OCL representation of a constraint can be found in the attribute body of the
constraint specification. Postconditions like (9) specify this textual representation by
combining fixed substrings (e.g. ‘.allInstances()’) with the name of model
elements which were supplied as pattern parameter values (e.g. cl.name). Note that
we used in (9) a help function OclPattern.Multiconcat which concatenates a sequence
of strings.

By defining OCL pattern functions for the specification patterns it became possible
to formally specify the patterns completely and quite elegantly: the pattern parameters
can be found as function parameters and the function specification (which uses again
OCL) describes the prerequisites to apply the pattern and the properties of the con-
straint to be generated. One big advantage is that this approach only uses known
specification techniques and does not require the invention of new ones. There is only
one new class OclPattern that encapsulates the definition of all patterns. A more de-
tailed description of the pattern specification, a comparison to other approaches and a
discussion about the relationship to the UML metamodel can be found in [4].

7 Related Work

Due to its importance component specifications are discussed by many authors (e.g.
[8,9,10,20,22] – for an overview compare e.g. [20]). Most current specification ap-
proaches identify the need for behavioral specifications and propose to use pre- and
postconditions based on OCL [18]. Problems related with using OCL were so far only
reported in the case studies [1,2] and the authors are not aware of any solution to this
problem in the area of component specifications.

There are several publications outside the component area discussing the problems
of editing OCL constraints manually [6,12,15]. There exist several approaches to
simplify constraint writing: [12] develops an authoring tool that supports a developer
with editing and synchronizing constraints in formal notation (OCL) and informal
notation (natural language). [15] discusses an approach how to generate OCL expres-
sions automatically. They constrain themselves, however, to the single use case of
connecting two attributes within a UML model by an invariant. [11] discusses strate-
gies to textually simplify OCL constraints that were generated by some algorithm.
[21] develops an algorithm that allows in the analysis phase to transform use cases
into class diagrams and OCL specifications. The author suggests that generation of
OCL constraints might be possible but gives no details for it. [6] proposes a mecha-
nism to connect design patterns with OCL constraint patterns which allows instantiat-
ing OCL constraints automatically whenever a design pattern is instantiated. This idea
is very similar to ours but its realization can not be employed for specifying compo-
nents (for details cf. [4]).

8 Summary

The paper discussed one of the current problems in component specifications: editing
OCL constraints manually is time consuming and error-prone. As solution we pro-
posed to utilize specification patterns for which OCL constraints can be generated

268 J. Ackermann and K. Turowski

automatically. For that we identified a collection of OCL specification patterns and
presented a way to describe and formally specify these patterns. Such well-defined
and formally specified patterns can be reused in component specification tools.
Direction of future research include to gain further experience with the identified
specification patterns (and extend the library if necessary) and with their usage in our
component specification tool.

References

1. Ackermann, J.: Fallstudie zur Spezifikation von Fachkomponenten. In: Turowski, K. (ed.):
2. Workshop Modellierung und Spezifikation von Fachkomponenten. Bamberg (2001)
1-66 (In German)

2. Ackermann, J.: Zur Spezifikation der Parameter von Fachkomponenten. In: Turowski, K.
(ed.): 5. Workshop Komponentenorientierte betriebliche Anwendungssysteme (WKBA 5).
Augsburg (2003) 47-154 (In German)

3. Ackermann, J.: Frequently Occurring Patterns in Behavioral Specification of Software
Components. In: Turowski, K.; Zaha, J.M. (eds.): Component-Oriented Enterprise Appli-
cations. Proceedings of the COEA 2005. Erfurt (2005) 41-56

4. Ackermann, J.: Formal Description of OCL Specification Patterns for Behavioral Specifi-
cation of Software Components. In: Baar, T. (ed.): Proceedings of the MoDELS'05 Con-
ference Workshop on Tool Support for OCL and Related Formalisms - Needs and Trends.
Montego Bay, Jamaica (2005) 15-29

5. Ackermann, J., Turowski, K.: Specification of Customizable Business Components. In:
Chroust, G.; Hofer, S. (eds.): Euromicro Conference 2003. Belek-Antalya, Turkey (2003)
391-394

6. Baar, T.; Hähnle, R.; Sattler, T.; Schmitt, P.H.: Entwurfgesteuerte Erzeugung von OCL-
Constraints. In: Softwaretechnik-Trends 3 (2000) (In German)

7. Beugnard, A.; Jézéquel, J.-M.; Plouzeau, N.; Watkins, D.: Making Components Contract
Aware. In: IEEE Computer 7 (1999) 38-44

8. Cheesman, J.; Daniels, J.: UML Components. Addison-Wesley, Boston (2001)
9. D'Souza, D.F.; Wills, A.C.: Objects, Components, and Frameworks with UML: The Ca-

talysis Approach. Addison-Wesley, Reading (1998)
10. Geisterfer, C.J.M., Ghosh, S.: Software Component Specification: A Study in Perspective

of Component Selection and Reuse. In: Proceedings of the 5th International Conference on
COTS Based Software Systems (ICCBSS). Orlando, USA (2006)

11. Giese, M.; Hähnle, R.; Larsson, D.: Rule-Based Simplification of OCL Constraints. In:
Workshop on OCL and Model Driven Engineering at UML’2004. Lisbon (2004)

12. Hähnle, R.; Johannisson, K.; Ranta, A.: An Authoring Tool for Informal and Formal Re-
quirements Specifications. In: Kutsche, R.-D.; Weber, H. (eds.): Fundamental Approaches
to Software Engineering, 5th International Conference FASE. Grenoble (2002) 233-248

13. Hall, A.: Seven Myths of Formal Methods. In: IEEE Software 5 (1990) 11-19
14. Hemer, D.; Lindsay, P.: Specification-based retrieval strategies for module reuse. In:

Grant, D.; Sterling, L. (eds.): Proceedings 2001 Australian Software Engineering Confer-
ence. IEEE Computer Society. Canberra (2001) 235-243

15. Ledru, Y.; Dupuy-Chessa, S.; Fadil, H.: Towards Computer-aided Design of OCL Con-
straints. In: Grundspenkis, J.; Kirikova, M. (eds.): CAiSE Workshops 2004, Vol. 1. Riga
(2004) 329-338

16. Meyer, B.: Applying "Design by Contract". In: IEEE Computer 10 (1992) 40-51

 A Library of OCL Specification Patterns for Behavioral Specification 269

17. OMG (ed.): Unified Modeling Language: UML 2.0 Infrastructure Specification, 2004-10-
16 URL: http://www.omg.org/technology/documents, Date of Call: 2005-09-09 (2004)

18. OMG (ed.): Unified Modeling Language: UML 2.0 OCL Specification, 2005-06-06. URL:
http://www.omg.org/technology/documents, Date of Call: 2005-09-09 (2005)

19. OMG (ed.): Unified Modeling Language: UML 2.0 Superstructure Specification, 2005-07-04.
URL: http://www.omg.org/technology/documents, Date of Call: 2005-09-09 (2005)

20. Overhage, S.: UnSCom: A Standardized Framework for the Specification of Software
Components. In: Weske, M.; Liggesmeyer, P. (eds.): Object-Oriented and Internet-Based
Technologies, Proceedings of the 5th Net’Object Days. Erfurt (2004)

21. Roussev, B.: Generating OCL specifications and class diagrams from use cases: A newto-
nian approach. In: Proceedings of 36th Annual Hawaii International Conference on Sys-
tem Sciences (HICSS’03). Big Island (2003)

22. Turowski, K. (ed.): Standardized Specification of Business Components: Memorandum of
the working group 5.10.3 Component Oriented Business Application Systems. University
of Augsburg (2002). URL: http://www.fachkomponenten.de. Date of Call: 2005-09-09

23. Wallnau, K.C.; Hissam, S.A.; Seacord, R.C.: Building Systems from Commercial Compo-
nents. Addison-Wesley (2002)

24. Yellin, D.; Strom, R.: Protocol Specifications and Component Adaptors. In: ACM Trans-
actions on Programming Languages and Systems 19 (1997) 292–333

Workflow

Data–Driven Process Control
and Exception Handling

in Process Management Systems

Stefanie Rinderle1 and Manfred Reichert2

1 Dept. DBIS, University of Ulm, Germany
rinderle@informatik.uni-ulm.de

2 IS Group, University of Twente, The Netherlands
m.u.reichert@utwente.nl

Abstract. Business processes are often characterized by high variabil-
ity and dynamics, which cannot be always captured in contemporary pro-
cess management systems (PMS). Adaptive PMS have emerged in recent
years, but do not completely solve this problem. In particular, users are
not adequately supported in dealingwith real–world exceptions.Exception
handling usually requires manual interactions and necessary process adap-
tations have to be defined at the control flow level. Altogether, only expe-
rienced users are able to cope with these tasks. As an alternative, changes
on process data (elements) can be more easily accomplished, and a more
data–driven view on (adaptive) PMS can help to bridge the gap between
real–world processes and computerized ones. In this paper we present an
approach for data–driven process control allowing for the automated ex-
pansion and adaptation of task nets during runtime. By integrating and
exploiting context information this approach further enables automated
exception handling at a high level and in a user–friendly way. Altogether,
the presented work provides an added value to current adaptive PMS.

1 Introduction

For several reasons companies are developing a growing interest in improving
the efficiency and quality of their internal business processes and in optimizing
their interactions with customers and partners. Following this trend, in recent
years there has been an increasing adoption of business process management
(BPM) technologies as well as emerging standards for process orchestration and
process choreography [1]. In particular, BPM technologies enable the definition,
execution and monitoring of the operational processes of an enterprise.

Currently, one can observe a big gap between computerized workflows and
real-world processes [2, 3, 4]. This gap is even increasing during runtime, thus
leading to unsatisfactory user acceptance. One reason for this drawback is the
inability of existing PMS to adequately deal with the variability and dynamics of
real–world processes. For many applications (e.g., logistics, healthcare) process
execution cannot be fixed in every detail at buildtime [2, 5]. Regarding a delivery
process, for example, the concrete tour for the truck is not known beforehand.

E. Dubois and K. Pohl (Eds.): CAiSE 2006, LNCS 4001, pp. 273–287, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

274 S. Rinderle and M. Reichert

Instead, it should be possible to model the processes only at a coarse–grained
level and to dynamically evolve these process skeletons (which set out the rough
execution during runtime) at the process instance level.

Another drawback arises from the fact that current PMS do not adequately
capture (physical) context data about the ongoing process instances. In particu-
lar, real–world data is needed for providing (automated) exception handling sup-
port. Due to this missing support in exceptional situations, however, users often
have to bypass the PMS. As a consequence, computerized processes do not longer
(completely) reflect the real-world processes. For dynamic applications like lo-
gistics or healthcare, as mentioned, this fact can quickly lead to a non-negligible
(semantic) gap between the processes at the system level and those taking place
in the real world. To overcome the discussed limitations one of the greatest
challenges is to provide automatic support for expanding and adapting ongoing
process instances at runtime by avoiding user interactions as far as possible.

In this paper we provide a formal framework for the automated and data–
driven evolution of processes during runtime. This includes data–driven expan-
sion of process task nets as well as data–centered exception handling, i.e., process
adaptations necessary to deal with exceptional situations are carried out by mod-
ifying data structures (e.g., a delivery list of goods). This data change is then
propagated to the running process by the concept of data–driven expansion,
and not by directly applying (user–defined) changes on the control flow schema
of the concerned process instance. This requires availability of data about real–
world processes in order to provide automated support. Particularly, we also have
to integrate and exploit process context information (e.g., data about physical
objects) in order to automatically derive exception handling strategies at a se-
mantically high level. This paper completes our previous work on the ADEPT
framework for adaptive process management [6, 7]. On top of this framework we
introduce the concepts mentioned above. However, the described approach could
be applied in connection with other adaptive PMS as well (e.g., WASA [8]).

In Section 2 we present a motivating example stemming from the logistics
domain. A formal framework for data–driven task net expansion is given in
Section 3. In Section 4 we discuss exception handling strategies followed by
architectural considerations in Section 5. Section 6 discusses related work. We
close with a summary and an outlook in Section 7.

2 Motivating Example (and Basic Concepts)

In this section we introduce our running example used throughout the paper in
order to illustrate our approach.

2.1 Example Description

As usual, we distinguish between buildtime and runtime aspects of a business
process. This is reflected by the separation of process specifications at the type
level (buildtime) and the instance level (runtime).

Data–Driven Process Control and Exception Handling in PMS 275

Process Description at Type Level: We use a logistics process, namely the
delivery of a set of furnitures to a number of customers by one truck. Let us
assume that a planning component has already determined the list of customers
who shall be visited by the truck, and that the order of the list sets out the
sequence in which the goods are to be delivered to the customers. Consider this
information as input to the logistics process depicted in Fig. 1 (via external data
element cust list). Based on it a delivery list is built up containing the data
needed for delivering the goods (customer name & address, list of the goods to
be delivered which have been previously scanned via their bar code). In parallel
to this, the truck is prepared. Throughout the processes, the truck position (data
element truck pos) is provided by an external tracking component, whose data
are continuously updated by a GPS system – we denote this process data element
therefore as external. In general, such process context information is stemming
from physical objects related to the associated process. Examples for physical
objects are truck or good with their associated context information location (by
GPS system) or barcode.

The delivery list is handed to the truck driver responsible for the tour who
then loads the truck correspondingly. The associated load truck activity is
a multiple instance activity, i.e., at runtime it has to be expanded into sev-
eral activity instances of which each represents the loading of the items for a
certain customer (cf. Fig. 2). The number of running instances and the tour
itself (described by multiple instance activity deliver goods at type level) are
also figured out during runtime according to the order set out by data element
cust list, i.e., this activity is expanded into several activities each of them
describing a single customer delivery. We call this data–driven approach expan-
sion. Note that, in addition, deliver goods is a complex activity (cf. Fig. 2).
This results in a runtime expansion into subprocesses each of them consisting of
a sequence of the two activities unload goods and sign delivery report (cf.
Fig. 2). Finally, when the truck driver has finished his tour he is supposed to
summarize all single delivery reports collected during the tour in order to create
a tour delivery report. Afterwards the truck is returned to the truck company.

Process Expansion at Instance Level: Regarding the expansion of the de-
scribed multiple instance activities load truck and deliver goods (see
Fig. 1), several issues arise. The first one refers to expansion time, i.e., the time
when the multiple instance activities are expanded during instance execution (at
process instance level). Basically there are two possibilities: either the expansion
takes place when the process instance is started or when the multiple instance
activity becomes activated. In Fig. 2, for example, in both cases, the expansion
time is set to activity activation time. Therefore, for process instance I1, load
truck has been expanded into three activity instances according to the content
of the delivery list. These activity instances describe loading the goods for three
customers 1, 2, and 3. By contrast, deliver goods has not been expanded yet.
For process instance I2, however, the expansion of activities load truck and
deliver goods (for customer 1 and 2) has already taken place. When expand-

276 S. Rinderle and M. Reichert

Process Type Level

Process Type Schema S

Start AND-
Split

Prepare
goods

Prepare
truck

Load
truck

Create
delivery
report

Return
truck

End And-
Join

truck_pos

delivery_list

cust_list

Unload
goods

Sign
delivery

cust_list

single
instance
activity

multiple
instance
activity

complex
activity

delivery_list

Deliver
goods

List data
element

Data
 element

control flow

data flow

Fig. 1. Logistics Process at Type Level

ing deliver goods two activity sequences (consisting of basic activities Unload
goods and Sign delivery) have been inserted at the instance level.

In addition to sequential expansion (as for process instances I1 and I2 in
Fig. 2) parallel expansion will be possible as well if the single activity instances
shall be organized in parallel. In addition to this, it is further possible to specifiy
in which order the data elements are fetched from the list element responsible
for the expansion. Two standard strategies (FIFO and LIFO) are considered in
this paper, but others are conceivable as well. More advanced strategies could
depend on planning algorithms (especially within the logistics area).

Changes of the process context and the data structures often require pro-
cess adaptations. The approach of activity expansion during runtime integrates

Process Instance Level:

Process Instance I1

Process Instance I2

Load
cust1

Load
cust2

Load
cust3

Unload / sign
cust 1

Unload / sign
cust 2

Load
cust1

Load
cust2

Process Type
Level:

Process Instance I1

Process Instance I2

Completed

Activatedexpansion of load truck

expansion of deliver goods

Delivery_list:
1) cust1
2) cust2
3) cust3

Delivery_list:
1) cust1
2) cust2

cust1 cust2 cust3

cust1 cust2

Fig. 2. Expansions of Logistics Process at Instance Level

Data–Driven Process Control and Exception Handling in PMS 277

buildtime flexibility into the process meta model1. In the logistics process, for
example, an additional delivery can be realised by inserting the associated data
into the delivery list before activation time of load truck and deliver goods.
This results in the desired process structure and is based on the expansion
mechanism and not on the application of an end–user defined control flow
change.

2.2 Exceptional Cases

User acceptance can be further increased by strengthening the data–centered
view on processes. In addition to data–driven expansion of activities our ap-
proach includes process context information, about ”physical objects” (e.g.,
bar code of the goods to be delivered or the truck position determined by
a GPS system). Context information can be extremely helpful when dealing
with exceptional situations. Assume that a truck crashes during delivery. Then
a solution for this problem can be figured out using the context information
about the truck position. Other examples for exceptions comprise a wrong truck
load or a rejection of the delivery by the customer (e.g., because of quality
problems).

Generally, the provision of automatic exception handling strategies is highly
desirable for application processes which are ”vulnerable” to exceptions. In ad-
dition, it must be possible to define such automatic strategies at a semantically
high level in order to increase user acceptance. So far, it has been either not
possible to deal with exceptional situation at all or users have been obliged to
interfere by adapting the affected process instances. However, such modifications
require a lot of knowlegde about the process. Using the concept of data–driven
expansion instead, exception handling can be (partially) based on the data (e.g.,
by changing the customer order within the delivery list). Consequently, the sys-
tem is enabled to automatically transform these modifications into changes of
the process structure.

For finding such auomated, high–level exception handling strategies the ability
to exploit context data is indispensable. Consider, for example, process instance
I2 depicted in Fig. 2. Assume that during the delivery of goods to customer 2 the
truck has a breakdown. In this situation it would be not desirable to interrupt
the process and roll it back to the starting point since the other customer(s)
have been served properly so far. Exploiting context information, in particular
truck positions, it could be a more favorable solution to send an alternative
truck to the troubled one, pick up the goods, and deliver them to customer 2.
Generally, physical context information is helpful for this (and must therefore be
somehow respresented at process type level and be gathered at process instance
level). Other examples for exceptional situations during execution of the logistics
process comprise an incomplete or incorrect loading / unloading of goods, quality
defects (e.g., wrong colour of furniture) resulting in such customer refusal, or
absence of the customer when the goods are delivered.
1 We also offer the possibility to adapt process instances ad–hoc by applying instance–

specific changes (cf. Section 3).

278 S. Rinderle and M. Reichert

2.3 Requirements

Altogether, we need a runtime system which allows for a data–driven process
management. In detail, it must be possible to

– dynamically expand task nets in a data–driven way
– increase process flexibility by automatically translating data structure

changes to corresponding process instance adaptations
– integrate context data within the process model
– make use of context information in order to automatically derive exception

handling strategies

3 Framework for Dynamically Evolving Process
Structures

In this section we present a formal framework for automatically evolving process
instances during runtime. The formal foundation is needed in order to present an
algorithm for task net expansion, which automatically ensures the correctness of
the resulting task net as well as properly working exception handling strategies.

3.1 Process Type Schema

We enrich the standard definition of task nets (like, e.g., activity nets) by intro-
ducing the concepts of list–valued data elements and the concept of expansion
of multiple instance activities.

Definition 1 (Process Type Schema). A tuple S = (N, D, CtrlE, DataE,
EC, Exp) is called a process type schema with:

– N is a set of activities
– D is a set of process data elements. Each data element d ∈ D has a type T ⊆
A ∪ L, where A denotes the set of atomic data types (e.g., String, number,
etc.) and L denotes the set of list data types

– CtrlE ⊂ N × N is a precedence relation (note: nsrc → ndest ≡ (nsrc, ndest) ∈
CtrlE)

– DataE ⊆ N × D × NAccessMode is a set of data links between activities and
data elements (with NAccessMode = {read, write})

– EC: CtrE �→ Conds(D) ∪ {Null} assigns to each control edge an optional
transition conditions where Conds(D) denotes the set of all valid transition
conditions on data elements from D

– Exp ⊆ N × D × {SEQ, PAR} × {LIFO, FIFO} × Time denotes the subset
of multi instance activities from N (expanded during runtime based on the
specified configuration parameters). For e = (n, d, mode, str, time) ∈ Exp:
• n ∈ N, d ∈ D with dataType(d) ⊆ L
• mode ∈ {SEQ, PAR} denotes the multi instantiation mode, i.e., whether
the activity instances created at expansion time are carried out in sequence
or in parallel.

Data–Driven Process Control and Exception Handling in PMS 279

• str ∈ {LIFO, FIFO} denotes the strategy in which list data elements are
picked (which is relevant if mode = SEQ holds), and
• time ∈ Time denotes the point in time at which the multi instantiation
is carried out; possible configurations are, for example, time = actTn or
time = sT . While the former indicates that expansion takes place when
activity n becomes activated, the latter configuration states that expansion is
done already at process start time. (More configurations are conceivable, but
are outside the scope of this paper).

Data elements can be gathered manually or by exploiting context information,
e.g., the barcode of goods (cf. Fig. 1). It is also possible to have context data
elements which are continuously adapted (but not read) during process execution
(e.g., the truck position obtained by a GPS system in Fig. 1). This context
data may be used in order to figure out an exception handling strategy (cf.
Sect. 4). The process type schema depicted in Fig. 1 comprises multi instance
activites Load truck and Deliver goods, i.e., we obtain Exp = {(Load truck,
delivery list, SEQ, FIFO, actT), (Deliver goods, delivery list, SEQ,
FIFO, actT)}. Note that the specification whether a LIFO or FIFO strategy is
used only makes sense if the expansion strategy is set to sequential mode.

In addition, we need a set of change operations defined on task nets with pre-
cise semantics in order to provide exception handling strategies as, for example,
sending a new truck after a truck crash (what would be carried out by inserting
an activity send truck into the affected task net). Table 1 presents a selection
of such change operations. As shown in [6, 2] these change operations all have
formal pre– and post–conditions based on which the correctness of a task net is
automatically ensured when applying the modifications.

3.2 Process Instances

Based on a process type schema S process instances can be created and started
at runtime. Due to the dynamically evolving process structure the particular
process instance schema may differ from the process type schema the instance
was started on. This is reflected by a set ΔE containing change operations (cf
Tab. 1) which may have been applied at different points in time during instance
execution and reflect the instance–specific dynamic expansion of S. Furthermore
a set of change operations ΔI is stored which reflects the ad–hoc modifications
applied to process instance I (by users) so far. In order to obtain instance–specific
schema SI the merge of the so called change histories ΔE and ΔI is applied to
S by considering the particular time stamp of each single change operation.

Definition 2 (Process Instance Schema). A process instance schema SI is
defined by a tuple (S, ΔE, ΔI) where

– S denotes the process type schema I was derived from
– ΔE denotes an ordered set of change operations which reflect the expansion

of S depending on the specified activation time (cf. Fig. 3)
– ΔI = (op1, .., opn) comprises instance–specific change operations(e.g., due to

ad-hoc deviations).

280 S. Rinderle and M. Reichert

Table 1. A Selection of High-Level Change Operations on Activity Nets

Change Operation Δ Effects on Schema S
Applied to Schema S

insertAct(S, X, Mbef , Maft) insertion of activity X between activity sets Mbef , Maft

Subtractive Change Operations

deleteAct(S, X) deletes activity X from schema S

Order-Changing Operations

moveAct(S, X, A, B) moves activity X from current position
to position between activities A and B

Data Flow Change Operations
addDataElements(S, dElements) adds set of data elements dElements to S
deleteDataElement(S, d) deletes data element d from S
addDataEdge(S, (X, d, mode)) adds data edge (X, d, mode) to S (mode ∈ {read, write})
deleteDataEdge(S, dL)) deletes data edge dL from S
relinkDataEdge(S, (d, n, [read|write]), n’) re–links read/write data edge from/to data element d

from activity n to activity n’

List Data Change Operations
addListElement(S, d, dnew, di, di+1) adds element di to list data d between elements di and di+1
deleteListElement(S, d, ddel) deletes element ddel from list data d
moveListElement(S, d, dmove, di) moves dmove within list data d after list element di

The activity set, data set, and edge sets of SI (i.e., SI := (NI , DI , CtrlEI ,
DataEI)) are determined during runtime.

Process instance information consists of the process instance schema and the
process instance state expressed by respective activity markings. In Def. 3 we
add the runtime information (instance state) to the instance schema and present
an expansion algorithm based on the process instance state. As described in Def.
2 the deviation of a process instance I from its original process type schema
S is reflected by the merge of change histories ΔE and ΔI . In particular, the
application of the change operations contained in ΔE to S results in the expanded
process instance schema. How ΔE is determined is described in the following
definition. In addition, there may be instance–specific changes ΔI , for example,
applied to overcome exceptional situations. We include these instance–specific
changes within Def. 2 since we want to present semantic exception handling
strategies which are mainly based on such ad–hoc changes. As provided in the
ADEPT framework certain state conditions have to hold when applying change
operations at the process instance level in order to ensure a correct instance
execution in the sequel. These conditions mainly preserve the history of the
previous instance execution. It is forbidden, for example, to delete an already
completed activity. For details we refer to [6].

Definition 3 (Process Instance). A process instance I is defined by a tuple
(SI , NSI , ValSI) where:

– SI := (NI , DI , CtrlEI , DataEI) denotes the process instance schema of I
which is determined by (S, ΔE, ΔI) during runtime (see Fig. 3 below).

Data–Driven Process Control and Exception Handling in PMS 281

– NSSI describes activity markings of I:
NSSI : NI → {NotAct, Act, Run, Comp, Skipped}

– V alSI denotes a function on DI , formally: ValSI : DI �→ DomDI ∪ {Undef}.
It reflects for each data element d ∈ DI either its current value from domain
DomDI (for list data elements we assign a list of data values respectively) or
the value Undef (if d has not been written yet).

ISI denotes the set of all instances running according to S.

Applying the following algorithm (cf. Fig. 3) leads to the expansion of multi
instantiation activities during runtime according to the associated data struc-
tures. First of all, we determine all multi instantiation activities. For those with
expansion at instance start the expansion is executed immediately (lines 7, 8)

1 input: S, MSI output: ΔE

2 Initialization:
3 ΔE = ∅;
4 ExpsT:= {(n, ..., sT) ∈ Exp};
5 ExpactT:= {(n, ..., act)} ∈ Exp};
6 n= is start activity of S;
7 // expansion at process instance start
8 NSSI(n=) = Act ⇒ expInst(S, ΔE, ExpsT);
9 // expansion during at activation time
10 while (∃ e := (n,d,[SEQ|PAR],LIFO|FIFO],actT)∈ExpactT with NSSI(n)= NotAct){
11 if (∃ e := (n,d,[SEQ|PAR],[LIFO|FIFO],actT) ∈ NactT with state transition
12 NSSI(n) = NotAct ⇒ NSSI(n) = Act) {
13 expInst(S, ΔE, {e});
14 }
15 }
16 // ----------- Activity Expansion method expInst(S, �E, N’) ------------
17 Δ = ∅;
18 for e := (n,d,[SEQ|PAR],[LIFO|FIFO], …) ∈ N’ do {
19 d:= [d1, …, dk]; // d is of list type acc. to definition
20 Δ = Δ ∪ addDataElements{S, {d1, …, dk});
21 nsucc, npred: direct successor / predecessor of n in S;
22 DEin:= {(d, n, read) ∈ DataE} \ {d};
23 DEout:= {(d, n, write) ∈ DataE};
24 // sequential expansion
25 if e:= (n,d, SEQ,[LIFO|FIFO], …){
26 for i = 1, …, k do {
27 ni:= n;
28 Δ = Δ ∪ {insertAct(S, ni, {ni-1}, {nsucc})};
29 // FIFO strategy
30 if e:= (n,d,seq,FIFO, …){
31 Δ = Δ ∪ {addDataEdge(S,(di, ni, read)})};
32 // LIFO strategy
33 if e := (n,d,seq,LIFO,…) {
34 Δ = Δ ∪ {addDataEdge(S,di,nk-i+1},read)})};
35 }
36 }
37 // parallel expansion
38 if e:= (n,d,PAR, …) {
39 for i = 1, …, k {
40 Δ = Δ ∪ {insertAct(S, ni, {npred}, {nsucc})};
41 }
42 }
43 for dE = (d,n,read) ∈ DEin {
44 for i = 1, …, k {
45 Δ = Δ ∪ {addDataEdge(S, (d,ni,read))};
46 }
47 }
48 for dE = (d,n,write) ∈ DEout {
49 for i = 1, …, k {
50 Δ = Δ ∪ {addDataEdge(S, (d,ni,write))};
51 }
52 }
53 ΔE = ΔE ∪ Δ;}

Fig. 3. Algorithm: Activity Expansion during Runtime

282 S. Rinderle and M. Reichert

whereas for activities with expansion at activation time method expInst(S, ..)
is called when their state changes to Act (lines 23 – 27). Method expInst(S,
..) itself (starting line 16) distinguishes between sequential and parallel expan-
sion. For sequential expansion, moreover, the fetch strategy for data elements
(LIFO, FIFO) is taken into account. The expansion itself is realized by adding
change operations (cf. Tab. 1) to change transaction ΔE .

As an example consider process instance I2 (cf. Fig. 2). At first, it is de-
termined that activities Load truck and Deliver goods are to be expanded
at their activation time (what is specified by {(Load truck, delivery List,
SEQ, FIFO, actT), (deliver Goods, delivery List, SEQ, FIFO, actT)}).
Assume that data element delivery List = [cust1, cust2] contains data for
customers 1 and 2. When the state transition NSSI (Load truck) = NotAct
−→ NSSI (Load truck) = Act is taking place (i.e., the activation time of load
Truck is reached), this activity is expanded by a sequential insertion of activities
Load truck using a FIFO strategy. Using the algorithm the changes necessary to
realize the expansion are automatically calculated based on the available change
operations (cf. Tab. 1):

ΔE := ΔE ∪ {insertAct(SI2, load Truck, {AndJoin}, {Deliver goods}),
addDataEdges(SI2, {(cust1, load Truck, read)}),
insertAct(SI2, load Truck, {load Truck}, {deliver Goods},

addDataEdges(SI2, {(cust2, load Truck, read)}),
addDataEdges(SI2, {(delivery List, load Truck, write),

(delivery List, load Truck, write)})}
The expansion of activity Deliver goods is carried out accordingly when the

activity state of Deliver goods changes from not activated to activated.

4 Intelligent Exception Handling

As discussed in Sect. 2.2 backward process recovery (e.g., [9, 10, 11]) is not always
desirable when an exceptional situation occurs. Therefore we want to exemplarily
discuss two alternatives for such backward strategies. The first approach refers
to data–driven exception handling, the second one is based on exploiting process
context information.

4.1 Data–Driven Exception Handling

The expansion of multi instance activities is based on the input data of the
particular activity, i.e., a data list setting out the number and order of the
activities to be inserted and executed during runtime. This concept provides
flexibility since certain process instance changes can be adopted by modifying the
input data of multi instance activities what leads, in turn, to changed expansion
and execution during rutime. One example is depicted in Fig. 4: Currently, for
process instance I the truck is on the way to deliver the goods of customer2 (the
goods for customer1 have been already delivered). Then an exceptional situation
is arising since customer2 is not present at home wherefore the goods cannot be

Data–Driven Process Control and Exception Handling in PMS 283

unloaded. After receiving the truck driver’s call the headquarter figures out to
solve the problem by first delivering the goods for customer3 and then try to
deliver the goods for customer2 again. This solution elaborated at a semantically
high level can now be easily brought to process instance I: Changing the order
of a data list associated with customer2 and customer3 (by applying change
operation moveListElement (SI, ...)) leads to an automatic adaptation of
the delivery order within the process (cf. Fig. 4). Note that this is solely based
on data flow changes; i.e., by re–linking the connected data elements cust2 and
cust3 the delivery order is automatically swapped.

Process Instance I on SI = S + �E
(Before Exception):

Deliver goods1 Deliver goods2 Deliver goods3

EXCEPTION: customer2 not at home

Deliver goods1 Deliver goods2 Deliver goods3

Process Instance I on SI = S + �E + �I

(After Exception Handling):

Swap order of customers in delivery_list

Delivery_list:

1) customer1, address1, itemList1
2) customer2, address2, itemList2
3) customer3, address3, itemList3

�I = (moveListElement(SI, Delivery_list, customer2, customer3),
relinkDataEdge(SI, (cust2, Deliver goods2, read), Deliver goods3),
 relinkDataEdge(SI, (cust3, Deliver good3, read), Deliver goods2))

cust1 cust2 cust3

cust1 cust2 cust3

�

Fig. 4. Data–Driven Change of Delivery Order

For all change operations on data lists like adding, deleting, and moving data
elements (cf. Tab. 1), the associated data flow changes (adding and deleting
data elements in conjunction with adding, deleting, and moving data edges)
can be determined. In this paper, we have exemplarily presented the data flow
change operation associated with swapping data list elements. Note that data
list modifications as any other change operation can only be correctly applied
if certain state conditions hold. For example, for the scenario depicted in Fig. 4
it is not possible to move the list data element for customer1 since associated
activity deliver goods1 has been already (properly) completed. Nevertheless
the mechanism of data list adaptations and expansion during runtime provides
a powerful way for user–friendly exception handling.

4.2 Exception Handling Using Context Information

In addition to data–driven exception handling, context information can be also
useful for dealing with exceptional situations. More precisely, context

284 S. Rinderle and M. Reichert

information can be used in order to derive a reasonable forward recovery strategy,
i.e., the application of certain ad–hoc changes to the concerned process instance.
Assume, for example, the scenario depicted in Fig. 5 where the truck has a crash
during the delivery of the goods for customer 2. Cancelling the instance exe-
cution (followed by a rollback) is not desired since the goods for customer 1
have been already delivered properly. Therefore a forward strategy is figured out
making use of context data truck position which is constantly updated by a
GPS system. The truck position can be used to send a new truck to the position
of the troubled one what can be expressed by dynamic instance change ΔI (cf.
Fig. 5) comprising the insertion of new activity send truck. The new truck then
continues the delivery for customer 2 and the execution of process instance I can
be finished as intended. Due to lack of space we omit further details.

Process Instance I
(on SI = S + �E + �I)

Unload / sign cust1

truck_pos

delivery_list

Unload / sign cust2

Process Instance I
(on SI = S + �E)

Deliver goods
(customer1)

truck_pos

delivery_list
EXCEPTION:
truck crash!

Deliver goods
(customer2)

Semantic Exception Handling: Send another truck, deliver goods to customer 2

send truck

�I = (insertAct(SI, send_truck, {unload_cust2}, {sign_cust2}),
deleteAct(S, unload_cust2))

Fig. 5. Exception Handling Using Context Information after Truck Crash

5 Architectural Considerations

We sketch the basic components of our overall system architecture (cf. Fig. 6):
Basic to the described features is an adaptive process engine which we have
realized in the ADEPT project. It allows for flexible process adaptation at run-
time (cf. [12]). In particular, it offers powerful programming interfaces on top of

Data–Driven Process Control and Exception Handling in PMS 285

Process Monitor

Process Data

Tracking
Components

Process Management System

Adaptive Engine

Data-Driven
Process Control

Data-Driven
Exception Handling

Process Control Process Changes

Tracking Data

Barcode

GPS

Fig. 6. System Architecture

which data-driven expansion of task nets and automated exception handling can
be realized. The former feature requires an extended process execution engine
(e.g., implementing the expansion algorithm), the latter one requires additional
mechanisms for exception detection and handling.

As illustrated determining the position of a physical object is highly relevant
for logistics processes. The incorporation of this kind of context information re-
quires an integrated tracking system. Currently, there are various technologies
available which can help to trace the position of an object, such as GPS, GSM,
RFID, WiFi and more recently UWB [13]. They have different strengths and
weaknesses in terms of resolution, availability, cost etc. Moreover, they differ in
how the location is being represented, and in environment applicability. An inte-
grated tracking component must abstract from such details and enable seamless
and technology-independent tracking outside and inside buildings.

6 Discussion

Multi instantiation of activities has been addressed by workflow pattern ap-
proaches [14, 15]. The most similar patterns are the multi instantiation pat-
terns with and without a priori runtime knowledge as defined in [14].
Although, in [15] the authors suggest a function to compute the number of
times an activity is to be instantiated (sequentially or in parallel) the concrete
specification of such a function is missing. Therefore the approach presented
in this paper can be seen as a first implementation of the multi instantiation
pattern without a priori runtime knowledge in practice, i.e., based on associ-
ated data structures.

An increase of process flexibility based on a data–centered perspective is
offered by the case–handling paradigm [16]. Case–handling enables early re-
view and editing of process data, thus providing a higher degree of flexibil-
ity when compared to pure activity-centered approaches. However, it is not
possible to dynamically expand process instances during runtime and to use
this mechanism for supporting exception handling. A buildtime approach for
the automatic generation of processes based on product structures has been

286 S. Rinderle and M. Reichert

presented in [17]. However, no concepts for process expansion during runtime
are provided.

Application–specific approaches for automated process changes have been pre-
sented in AgentWork [3, 18], DYNAMITE [19], and EPOS [20]. AgentWork
[3, 18] enables automatic adaptations of the yet unexecuted regions of running
process instances as well. Basic to this is a temporal ECA rule model which
allows to specify adaptations independently of concrete process models. When
an ECA rule fires, temporal estimates are used to determine which parts of
the running process instance are affected by the detected exception. Respec-
tive process regions are either adapted immediately (predictive change) or - if
this is not possible - at the time they are entered (reactive change). EPOS [20]
automatically adapts process instances when process goals themselves change.
Both approaches apply planning techniques (e.g., [4, 21]) to automatically ”re-
pair” processes in such cases. However, current planning methods do not provide
complete solutions since important aspects (e.g., treatment of loops or data flow)
are not considered. DYNAMITE uses graph grammars and graph reduction rules
for this [19]. Automatic adaptations are performed depending on the outcomes
of previous activity executions. Both DYNAMITE and EPOS provide build-in
functions to support dynamically evolving process instances.

Context–awareness is also a hot topic in the area of mobile systems, ad–hoc
networks, and ambient intelligence (smart surroundings). These approaches can
be used as valuable inspiration and input for future research.

7 Summary and Outlook

We have presented a framework for data–driven process control and exception
handling on top of adaptive PMS. This approach is based on two pillars: dynamic
expansion of task nets and automated support for exception handling using data–
driven net adaptation and exploiting context information. The framework for
dynamic task net expansion has been formally defined and illustrated by means
of an example from the logistics domain. In particular, our expansion mechanism
provides a sophisticated way to implement process patterns representing multi-
ple instances with or without a priori runtime knowledge (cmp. Patterns 14 and
15 in [14]). We have also shown how the presented concepts can be used for auto-
mated exception handling by adapting data structures. This allows us to handle
certain exceptions in a very elegant and user–friendly manner. Finally, further
strategies for exception handling based on context information have been dis-
cussed. Future research will elaborate the concepts of exception handling based
on context information. In particular we will analzye the question how exception
handling strategies can be automatically derived and suggested to the user. Fur-
thermore we want to extend the research on a more data–driven view on process
control and exception handling in order to bridge the gap between real–world
applications and computerized processes.

Data–Driven Process Control and Exception Handling in PMS 287

References

1. Dumas, M., v.d. Aalst, W., ter Hofstede, A.: Process–Aware Information systems.
Wiley (2005)

2. Reichert, M., Dadam, P.: ADEPTflex - supporting dynamic changes of workflows
without losing control. JIIS 10 (1998) 93–129

3. Müller, R.: Event-Oriented Dynamic Adaptation of Workflows. PhD thesis, Uni-
versity of Leipzig, Germany (2002)

4. Berry, P., Myers, K.: Adaptive process management: An al perspective. In: Proc.
Workshop Towards Adaptive Workflow Systems (CSCW’98), Seattle (1998)

5. Herrmann, T., Just-Hahn, K.: Organizational learning with flexible workflow man-
agement systems. In: WS on Organizational Learning, CSCW96. (1996) 54–57

6. Rinderle, S., Reichert, M., Dadam, P.: Flexible support of team processes by
adaptive workflow systems. Distributed and Parallel Databases 16 (2004) 91–116

7. Rinderle, S., Reichert, M., Dadam, P.: Correctness criteria for dynamic changes in
workflow systems – a survey. DKE 50 (2004) 9–34

8. Weske, M.: Formal foundation and conceptual design of dynamic adaptations in a
workflow management system. In: HICSS-34. (2001)

9. Elmagarmid, A.: Database Transaction Models for Advanced Applications. Morgan
Kaufman (1992)

10. Schuldt, H., Alonso, G., Beeri, C., Schek, H.: Atomicity and isolation for transac-
tional processes. TODS 27 (2002) 63–116

11. Leymann, F., Roller, D.: Production Workflow. Prentice Hall (2000)
12. Reichert, M., Rinderle, S., Kreher, U., Dadam, P.: Adaptive process management

with adept2. In: ICDE’05. (2005) 1113–1114
13. Steggles, P., Cadman, J.: White paper: ”a comparison of RF tag location products

for real-world applications” (2004)
14. Aalst, W.v., ter Hofstede, A., Kiepuszewski, B., Barros, A.: Workflow patterns.

DPD 14 (2003) 5–51
15. Guabtni, A., Charoy, F.: Multiple instantiation in a dynamic workflow environ-

ment. In: CAiSE’04. (2004) 175–188
16. v.d. Aalst, W., Weske, M., Grünbauer, D.: Case handling: A new paradigm for

business process support. DKE 53 (2004) 129–162
17. v.d. Aalst, W.: On the automatic generation of workflow processes based on prod-

uct structures. Computer in Industry 39 (1999) 97–111
18. Müller, R., Greiner, U., Rahm, E.: AgentWork: A workflow-system supporting

rule-based workflow adaptation. DKE 51 (2004) 223–256
19. Heimann, P., Joeris, G., Krapp, C., Westfechtel, B.: DYNAMITE: Dynamic task

nets for software process management. In: ICSE’96, Berlin (1996) 331–341
20. Liu, C., Conradi, R.: Automatic replanning of task networks for process model

evolution. In: ESEC’93. (1993) 434–450
21. Wilkins, D., Myers, K., Lowrance, J., Wesley, L.: Planning and reacting in uncer-

tain and dynamic environments. Experimental and Theoret. AI 7 (1995) 197–227

Workflow Exception Patterns�

Nick Russell1, Wil van der Aalst2,1, and Arthur ter Hofstede1

1 School of Information Systems, Queensland University of Technology,
GPO Box 2434, Brisbane QLD 4001, Australia

{n.russell, a.terhofstede}@qut.edu.au
2 Department of Technology Management, Eindhoven University of Technology,

PO Box 513, NL-5600 MB, Eindhoven, The Netherlands
w.m.p.v.d.aalst@tm.tue.nl

Abstract. This paper presents a classification framework for workflow
exception handling in the form of patterns. This framework is indepen-
dent of specific modelling approaches or technologies and as such provides
an objective means of delineating the exception-handling capabilities of
specific workflow systems. It is subsequently used to assess the level of
exceptions support provided by eight commercial workflow systems and
business process modelling and execution languages. On the basis of
these investigations, we propose a graphical, tool-independent language
for defining exception handling strategies in workflows.

1 Introduction

Business process management continues to receive widespread focus by tech-
nology-enabled organisations offering them a means of optimising their current
organisational business processes in a way that aligns with top-level business
objectives. In many cases, workflow systems serve as the enabling technology for
mission-critical business processes. They offer a means of streamlining such pro-
cesses by mapping out the key activities, decision points and work distribution
directives and then automating much of the overhead that is often associated
with managing the various activities which form part of a business process.

Workflow systems are generally based on a comprehensive process model (of-
ten depicted in graphical form) that maps out all of the possible execution paths
associated with a business process. This ensures that the work activities which
comprise each of the likely execution scenarios are fully described. Whilst this
approach to specifying business process works well for well-behaved cases of a
process i.e. those that conform to one of the expected execution paths, it is less
successful in dealing with unexpected events encountered during execution.

Deviations from normal execution arising during a business process are often
termed exceptions in line with the notion of exceptions which is widely used in the
� This work was partially supported by the Dutch research school BETA as part of the

PATINT program and the Australian Research Council under the Discovery Grant
Expressiveness Comparison and Interchange Facilitation between Business Process
Execution Languages.

E. Dubois and K. Pohl (Eds.): CAiSE 2006, LNCS 4001, pp. 288–302, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Workflow Exception Patterns 289

software engineering community. Because it is difficult to characterise all of the
unanticipated situations that may arise during the execution of a program, the
notion of exceptions was developed where unexpected events are grouped into
classes which are related by similarities that they possess in terms of the condi-
tions under which they might arise. Exception handlers can then be defined in
the form of programmatic procedures to resolve the effects of specific events as
they are detected. At the lowest level, exceptions can be defined for events such
as divide by zero errors and appropriate handling routines can be defined. For
business processes, this level of detail is too fine-grained and it is more effective
to define exceptions at a higher level, typically in terms of the business process
to which they relate.

In this paper, we investigate the range of issues that may lead to excep-
tions during workflow execution and the various ways in which they can be
addressed. This provides the basis for a classification framework for workflow
exception handling which we subsequently define in the form of patterns. The
patterns-based approach to exception classification is a continuation of previ-
ous research conducted as part of the Workflow Patterns Initiative which has
identified “generic, recurring constructs” in the control-flow [22], data [18] and
resource [19] perspectives of workflow systems. These patterns have proven to
be extremely intuitive to both practitioners and researchers alike and have been
widely utilised for a variety of purposes including tool evaluation and selection,
business process modelling, workflow design and education1. They also provide
the conceptual foundations for the YAWL system [21], an open-source reference
implementation of a workflow system.

In line with the broader Workflow Patterns Initiative, the motivation for this
paper is to provide a conceptual framework for classifying the exception han-
dling capabilities of workflow systems and process-aware information systems
more generally in a manner that is independent of specific modelling approaches
or technologies. This approach is distinguished from other research activities in
this area which seek to extend specific process modelling formalisms and work-
flow enactment technologies to provide support for expected and unexpected
events by incorporating exception detection and handling capabilities. Instead
of directly proposing a concrete implementation, we first provide an overview of
relevant exception patterns, then we evaluate existing products and languages on
the basis of these, and finally we propose a graphical, tool-independent language
for exception handling.

2 Related Work

The need for reliable, resilient and consistent workflow operation has long been
recognised. Early work in the area [8, 24] was essentially a logical continuation
of database transaction theory and focussed on developing extensions to the
classic ACID transaction model that would be applicable in application areas
requiring the use of long duration and more flexible transactions. As the field
1 Further details are available at www.workflowpatterns.com.

290 N. Russell, W.M.P. van der Aalst, and A.H.M. ter Hofstede

of workflow technology matured, the applicability of exceptions to this prob-
lem was also recognised [20] and [7] presented the first significant discussion on
workflow recovery which incorporated exceptions. It classified them into four
types: basic failures, application failures, expected exceptions and unexpected
exceptions. Subsequent research efforts have mainly concentrated on the last two
of these classes. Investigations into expected exceptions have focussed previous
work on transactional workflow into mechanisms for introducing exception han-
dling frameworks into workflow systems. Research into unexpected exceptions
has established the areas of adaptive workflow and workflow evolution [17].

Although it is not possible to comprehensively survey these research areas in
the confines of this paper, it is worthwhile identifying some of the major contri-
butions in these areas that have influenced subsequent research efforts and have
a bearing on this research initiative. Significant attempts to include advanced
transactional concepts and exception handling capabilities in workflow systems
include WAMO [6] which provided the ability to specify transactional proper-
ties for tasks which identified how failures should be dealt with, ConTracts [16]
which proposed a coordinated, nested transaction model for workflow execution
allowing for forward, backward and partial recovery in the event of failure and
Exotica [2] which provided a mechanism for incorporating Sagas and Flexible
transactions in the commercial FlowMark workflow product. OPERA [10] was
one of the first initiatives to incorporate language primitives for exception han-
dling into a workflow system and it also allowed exception handling strategies
to be modelled in the same notation as that used for representing workflow
processes. TREX [23] proposed a transaction model that involves treating all
types of workflow failures as exceptions. A series of exception types were delin-
eated and the exception handler utilised in a given situation was determined by
a combination of the task and the exception experienced. WIDE [4] developed
a comprehensive language – Chimera-Exc – for specifying exception handling
strategies in the form of Event-Condition-Action (ECA) rules.

Other important contributions include [13] which identified the concepts of
compensation spheres and atomicity spheres and their applicability to workflow
systems, [3] which proposed modelling workflow systems as a set of reified objects
with associated constraints and conceptualising exceptions as violations of those
constraints which are capable of being detected and managed and [15] which first
identified the pivot, retriable and compensation transaction concepts widely used
in subsequent research.

Identifying potential exceptions and suitable handling strategies is a signif-
icant problem for large, complex workflows. Recent attempts [9, 11] to address
this have centred on mining execution logs to gain an understanding of previ-
ous exceptions and using this knowledge to establish suitable handling strategies.
[12] proposes a knowledge-based solution based on the establishment of a shared,
generic and reusable taxonomy of exceptions. [14] uses a case-based reasoning
approach to match exception occurrences with suitable handling strategies.

Until recently the area of unexpected exceptions has mainly been investigated
in the context of adaptive or evolutionary workflow [17] which centre on dynamic

Workflow Exception Patterns 291

change of the process model. A detailed review of this area is beyond the scope
of this paper, however two recent initiatives which offer the potential to address
both expected and unexpected exceptions simultaneously are ADOME-WFMS
[5] which provides an adaptive workflow execution model in which exception
handlers are specified generically using ECA rules providing the opportunity for
reuse in multiple scenarios and user-guided adaptation where they need refine-
ment, and [1] which describes a combination of “worklets” and “ripple-down
rules” as a means of dynamic workflow evolution and exception handling.

3 A Framework for Workflow Exception Handling

In this section we consider the notion of a workflow exception in a general sense
and the various ways in which they can be triggered and handled. The assump-
tion is that an exception is a distinct, identifiable event which occurs at a specific
point in time during the execution of a workflow and relates to a unique work
item2. The occurrence of the exception is assumed to be immediately detectable
as is the type of the exception. The manner in which the exception is handled
will depend on the type of exception that has been detected. There are a range
of possible ways in which an exception may be dealt with but in general, the
specific handling strategy centres on three main considerations:

– how the work item will be handled;
– how the other work items in the case will be handled; and
– what recovery action will be taken to resolve the effects of the exception.

We discuss the range of possible exception types and the options for handling
them in the following sections.

3.1 Exception Types

It is only possible to specify handlers for expected types of exception. With this
constraint in mind, we undertook a comprehensive review of the workflow liter-
ature and current commercial workflow systems and business process modelling
and execution languages in order to determine the range of exception events that
are capable of being detected and provide a useful basis for recovery handling.
These events can be classified into five distinct groups.

Work Item Failure: Work item failure during the execution of a workflow
process is generally characterised by the inability of the work item to progress
any further. This may manifest itself in a number of possible forms including a
user-initiated abort of the executing program which implements the work item,
the failure of a hardware, software or network component associated with the
work item or the user to whom the work item is assigned signalling failure to
2 We recognise that exceptions may also be bound to groups of tasks, blocks or even

entire cases, and in these situations we assume that the same handling considerations
apply to all of the encompassed tasks.

292 N. Russell, W.M.P. van der Aalst, and A.H.M. ter Hofstede

the workflow engine. Where the reason for this failure is not captured and dealt
within the process model, it needs to be handled elsewhere in order to ensure that
both later work items and the process as a whole continue to behave correctly.

Deadline Expiry: It is common to specify a deadline for a work item in a
workflow process model. Usually the deadline indicates when the work item
should be completed, although deadlines for commencement are also possible.
In general with a deadline, it is also useful to specify at design time what should
be done if the deadline is reached and the work item has not been completed.

Resource Unavailability: It is often the case that a work item requires access
to one or more data resources during its execution. If these are not available to
the work item at initiation, then it is usually not possible for the work item to
proceed. Similarly, workflow systems are premised on the fact that work items
are usually allocated to resources (typically human) who execute them. Problems
with work item allocation can arise if: (1) at distribution time, no resource can
be found which meets the specified allocation criteria for the work item or (2) at
some time after allocation, the resource is no longer able to undertake or complete
the work item. Although the occurrence of these issues can be automatically
detected, they often cannot be resolved within the context of the executing
process and may involve some form of escalation or manual intervention. For
this reason, they are ideally suited to resolution via exception handling.

External Trigger: Triggers from sources external to a work item are often used
as a means of signalling the occurrence of an event that impacts on the work item
and requires some form of handling. These triggers are typically initiated by non-
linked work items (i.e. work items that are not directly linked to the work item in
question by a control edge) elsewhere within the process model or even in other
process models or alternatively from processes in the operational environment in
which the workflow system resides. Although a work item can anticipate events
such as triggers and provision for dealing with them can be included at design-
time, it is not predictable if or when such events will occur. For this reason, the
issue of dealing with them is not suited to normal processing within the work
item implementation and is better dealt with via exception handling. Generally
signals or some other form of processing interrupt indicate that an out-of-bound
condition has arisen and needs to be dealt with. A general consequence of this
is that the current work item needs to be halted, possibly undone and some
alternative action taken.

Constraint Violation: Constraints in the context of a workflow system are
invariants over elements in the control-flow, data or resource perspectives that
need to be maintained to ensure the integrity and operational consistency of
the workflow process is preserved. Ongoing monitoring is generally required to
ensure that they are enforced. The implementation of routines to identify and
handle constraint violations detected within the context of a workflow is similar
to the issue of dealing with external triggers. Typically the construct that will
detect and need to deal with the violation is a work item although there is no
reason why the constraint could not be specified and handled at block or process

Workflow Exception Patterns 293

level. As constraints may be specified over data, resources or other work items
within a process model, the approach chosen for handling them needs to be as
generic as possible to ensure that it has broadest applicability.

3.2 Exception Handling at Work Item Level

In general an exception will relate to a specific work item in a case. There are a
multitude of ways in which the exception can be handled although the specific
details will depend on the current state of execution of the work item. Before
looking at these options, we first review the execution lifecycle for a work item.
Figure 1 illustrates as solid arrows the states through which a work item pro-
gresses during normal execution. It is initially offered to one or more resources
for execution. A resource issues an allocate command to indicate that it wishes
to execute the work item at some future time, the work item is then allocated to
that resource. Typically this involves adding the work item to the resource’s work
queue and removing any references to the work item that other resources may
have received, either on their work queues or via other means. When the resource
wishes to commence the work item, it issues a start command and the state of the
work item changes to started. Finally, once the work item is finished, the resource
issues a complete command and the state of the work item is changed to com-
pleted. Note that there are two possible variations to this course of events shown
as dotted arcs in Figure 1: (1) where a work item offered to a resource is selected
by another resource, it is withdrawn from the first resource’s worklist and (2)
where an executing work item is detected as having failed, its state is changed ac-
cordingly. This lifecycle map also provides the basis for determining what options
exist for handling a work item in a given state when an exception is detected.

force−complete−a

started

failed

complete

fail

force−complete

force−fail

restart

allocated startallocate

reoffer

continue−offer continue−allocation continue−execution

reoffer−a

reoffer−s

reallocate−s

offered

force−fail−a

force−fail−o

withdrawn

completed

force−complete−o

reallocate

withdraw

Fig. 1. Work item lifecycle

Figure 1 illustrates fifteen strategies as dashed arcs from one work item state
to another. There are subtle differences between each of these transitions, and
in order to distinguish between them, we briefly describe each of them:

294 N. Russell, W.M.P. van der Aalst, and A.H.M. ter Hofstede

1. continue-offer (OCO) – the work item has been offered to one or more
resources and there is no change in its state as a consequence of the exception;

2. reoffer (ORO) – the work item has been offered to one or more resources
and as a consequence of the exception, these offers are withdrawn and the
work item is once again offered to one or more resources (these resources may
not necessarily be the same as those to which it was offered previously);

3. force-fail-o (OFF) – the work item has been offered to one or more re-
sources, these offers are withdrawn and the state of the work item is changed
to failed. No subsequent work items on this path are triggered;

4. force-complete-o (OFC) – the work item has been offered to one or more
resources, these offers are withdrawn and the state of the work item is
changed to completed. All subsequent work items are triggered;

5. continue-allocation (ACA) – the work item has been allocated to a spe-
cific resource that will execute it at some future time and there is no change
in its state as a consequence of the exception;

6. reallocate (ARA) – the work item has been allocated to a resource, this
allocation is withdrawn and the work item is allocated to a different resource;

7. reoffer-a (ARO) – the work item has been allocated to a resource, this
allocation is withdrawn and the work item is offered to one or more re-
sources (this group may not necessarily include the resource to which it was
previously allocated);

8. force-fail-a (AFF) – the work item has been allocated to a resource, this
allocation is withdrawn and the state of the work item is changed to failed.
No subsequent work items are triggered;

9. force-complete-a (AFC) – the work item has been allocated to a resource,
this allocation is withdrawn and the state of the work item is changed to
completed. All subsequent work items are triggered;

10. continue-execution (SCE) – the work item has been started and there is
no change in its state as a consequence of the exception;

11. restart (SRS) – the work item has been started, progress on the current ex-
ecution instance is halted and the work item is restarted from the beginning
by the same resource that was executing it previously;

12. reallocate-s (SRA) – the work item has been started, progress on the
current execution instance is halted and the work item is reallocated to a
different resource for later execution;

13. reoffer-s (SRO) – the work item has been started, progress on the current
execution instance is halted and it is offered to one or more resources (this
group may not necessarily include the resource that was executing it);

14. force-fail (SFF) – the work item is being executed, any further progress
on it is halted and its state is changed to failed. No subsequent work items
are triggered; and

15. force-complete (SFC) – the work item is being executed, and further
progress on it is halted and its state is changed to completed. All subsequent
work items are triggered.

Workflow Exception Patterns 295

3.3 Exception Handling at Case Level

Exceptions always occur in the context of one or more cases that are in the
process of being executed. In addition to dealing with the specific work item to
which the exception relates, there is also the issue of how the case should be
dealt with in an overall sense, particularly in regard to other work items that
may currently be executing or will run at some future time. There are three
alternatives for handling workflow cases:

1. continue workflow case (CWC) – the workflow case can be continued,
with no intervention occurring in the execution of any other work items;

2. remove current case (RCC) – selected or all remaining work items in the
case can be removed (including those currently executing); or

3. remove all cases (RAC) – selected or all remaining work items in all cases
which correspond to the same process model can be removed.

In the latter two scenarios, a selection of work items to be removed can be
specified using both static design time information relating to the corresponding
task definition (e.g. original role allocation) as well as relevant runtime informa-
tion (e.g. actual resource allocated to, start time).

3.4 Recovery Action

The final consideration in regard to exception handling is what action will be
taken to remedy the effects of the situation that has been detected. There are
three alternate courses of action:

1. no action (NIL) – do nothing;
2. rollback (RBK) – rollback the effects of the exception; or
3. compensate (COM) – compensate for the effects of the exception.

Rollback and compensation are analogous to their usual definitions (e.g. [15]).
When specifying a rollback action, the point in the process (i.e. the task) to
which the process should be undone can also be stated. By default this is just
the current work item. Similarly with compensation actions, the corresponding
compensation task(s) must also be identified.

3.5 Characterising Exception Handling Strategies

The actual recovery response to any given class of exception can be specified as a
pattern which succinctly describes the form of recovery that will be attempted.
Specific exception patterns may apply in multiple situations in a given process
model (i.e. for several distinct constructs), possibly for different types of exception.
Exception patterns take the form of tuples comprising the following elements:

– how the task on which the exception is based should be handled;
– how the case and other related cases in the process model in which the

exception is raised should be handled; and
– what recovery action (if any) is to be undertaken.

296 N. Russell, W.M.P. van der Aalst, and A.H.M. ter Hofstede

Table 1. Exceptions patterns support by exception type

Work Item
Failure

Work Item
Deadline

Resource
Unavailable

External
Trigger

Constraint
Violation

OFF-CWC-NIL OCO-CWC-NIL ORO-CWC-NIL OCO-CWC-NIL SCE-CWC-NIL
OFF-CWC-COM ORO-CWC-NIL OFF-CWC-NIL OFF-CWC-NIL SRS-CWC-NIL
OFC-CWC-NIL OFF-CWC-NIL OFF-RCC-NIL OFF-RCC-NIL SRS-CWC-COM
OFC-CWC-COM OFF-RCC-NIL OFC-CWC-NIL OFC-CWC-NIL SRS-CWC-RBK
AFF-CWC-NIL OFC-CWC-NIL ARO-CWC-NIL ACA-CWC-NIL SFF-CWC-NIL
AFF-CWC-COM ACA-CWC-NIL ARA-CWC-NIL AFF-CWC-NIL SFF-CWC-COM
AFC-CWC-NIL ARA-CWC-NIL AFF-CWC-NIL AFF-RCC-NIL SFF-CWC-RBK
AFC-CWC-COM ARO-CWC-NIL AFF-RCC-NIL AFC-CWC-NIL SFF-RCC-NIL
SRS-CWC-NIL AFF-CWC-NIL AFC-CWC-NIL SCE-CWC-NIL SFF-RCC-COM
SRS-CWC-COM AFF-RCC-NIL SRA-CWC-NIL SRS-CWC-NIL SFF-RCC-RBK
SRS-CWC-RBK AFC-CWC-NIL SRA-CWC-COM SRS-CWC-COM SFF-RAC-NIL
SFF-CWC-NIL SCE-CWC-NIL SRA-CWC-RBK SRS-CWC-RBK SFC-CWC-NIL
SFF-CWC-COM SCE-CWC-COM SRO-CWC-NIL SFF-CWC-NIL SFC-CWC-COM
SFF-CWC-RBK SRS-CWC-NIL SRO-CWC-COM SFF-CWC-COM
SFF-RCC-NIL SRS-CWC-COM SRO-CWC-RBK SFF-CWC-RBK
SFF-RCC-COM SRS-CWC-RBK SFF-CWC-NIL SFF-RCC-NIL
SFF-RCC-RBK SRA-CWC-NIL SFF-CWC-COM SFF-RCC-COM
SFC-CWC-NIL SRA-CWC-COM SFF-CWC-RBK SFF-RCC-RBK
SFC-CWC-COM SRA-CWC-RBK SFF-RCC-NIL SFF-RAC-NIL
SFC-CWC-RBK SRO-CWC-NIL SFF-RCC-COM SFC-CWC-NIL

SRO-CWC-COM SFF-RCC-RBK SFC-CWC-COM
SRO-CWC-RBK SFF-RAC-NIL
SFF-CWC-NIL SFC-CWC-NIL
SFF-CWC-COM SFC-CWC-COM
SFF-CWC-RBK
SFF-RCC-NIL
SFF-RCC-COM
SFF-RCC-RBK
SFC-CWC-NIL
SFC-CWC-COM

For example, the pattern SFF-CWC-COM specified for a work item failure
exception indicates that if a failure of a work item is detected after it has started,
then the work item should be terminated, have its state changed to failed and
the nominated compensation task should be invoked. No action should be taken
with other work items in the same case. From the various alternatives identified
for each of these elements in Sections 3.2 – 3.4, there are 135 possible patterns.
Not all patterns apply to a given exception type however, and Table 1 identifies
those which apply to each of the exception types identified in Section 3.1.

4 Workflow Exception Handling in Practice

The exception patterns identified in Section 3 were used to assess the exception
handling capabilities of eight workflow systems and business process modelling
languages. The results of this survey3,4 are captured in Table 2. They provide
a salient insight into how little of the research into exception handling has been
implemented in commercial offerings. Only deadline expiry enjoys widespread
support although its overall flexibility is limited in many tools. Only two of the

3 Full evaluation details are contained in report BPM-06-04 at www.BPMcenter.org
4 Combinations of patterns are written as regular expressions e.g. (SFF|SFC)-CWC-

COM represents the two patterns SFF-CWC-COM and SFC-CWC-COM.

Workflow Exception Patterns 297

Table 2. Support for exception patterns in commercial offerings

Offering
Exceptions

Work Item
Failure

Work Item
Deadline

External
Trigger

Constraint
Violation

Staffware
Process Suite v9

OCO-CWC-COM OCO-CWC-NIL
ACA-CWC-COM ACA-CWC-NIL
OFF-CWC-COM SCE-CWC-NIL
AFF-CWC-COM SCE-CWC-COM
SCE-CWC-COM

WebSphere MQ
3.4 (IBM)

OCO-CWC-NIL
ACA-CWC-NIL
SCE-CWC-NIL

FLOWer 3.1
(Pallas Athena)

AFC-CWC-NIL AFC-CWC-NIL
SFC-CWC-NIL SFC-CWC-NIL

AFC-CWC-COM
SFC-CWC-COM

COSA 5.1
(Transflow)

SFF-CWC-RBK OCO-CWC-COM OCO-CWC-COM
ACA-CWC-COM ACA-CWC-COM
SCE-CWC-COM SCE-CWC-COM

iPlanet Integ.
Server 3.1 (Sun)

(OFF|OFC|AFF|AFC|SRS|SFC|SFF)-
(CWC|RCC)-(NIL|COM)

XPDL 2.0
(WfMC)

SFF-CWC-COM SCE-CWC-COM SFF-CWC-COM SFF-CWC-COM
SFF-CWC-NIL SCE-CWC-NIL SFF-CWC-NIL SFF-CWC-NIL
SFF-RCC-COM SFF-CWC-COM SFF-RCC-COM SFF-RCC-COM
SFF-RCC-NIL SFF-CWC-NIL SFF-RCC-NIL SFF-RCC-NIL

SFF-RCC-COM
SFF-RCC-NIL

BPEL 1.1

SFF-CWC-COM SCE-CWC-COM SCE-CWC-COM
SFF-CWC-NIL SCE-CWC-NIL SCE-CWC-NIL
SFF-RCC-COM SFF-CWC-COM SFF-CWC-COM
SFF-RCC-NIL SFF-CWC-NIL SFF-CWC-NIL

SFF-RCC-COM SFF-RCC-COM
SFF-RCC-NIL SFF-RCC-NIL

BPMN 1.0
(BPMI)

SFF-CWC-COM SFF-CWC-COM SFF-CWC-COM SFF-CWC-COM
SFF-CWC-NIL SFF-CWC-NIL SFF-CWC-NIL SFF-CWC-NIL
SFC-CWC-COM SFC-CWC-COM SFC-CWC-COM SFC-CWC-COM
SFC-CWC-NIL SFC-CWC-NIL SFC-CWC-NIL SFC-CWC-NIL
SRS-CWC-COM SRS-CWC-COM SRS-CWC-COM SRS-CWC-COM
SRS-CWC-NIL SRS-CWC-NIL SRS-CWC-NIL SRS-CWC-NIL
SFF-RCC-COM SFF-RCC-COM SFF-RCC-COM SFF-RCC-COM
SFF-RCC-NIL SFF-RCC-NIL SFF-RCC-NIL SFF-RCC-NIL

workflow systems examined provide support for handling work items failures –
generally via user-initiated aborts. There was also minimal support for external
triggers and constraint violation management amongst the workflow tools with
only Staffware and COSA, and FLOWer respectively supporting these exception
classes. The business process languages (XPDL, BPEL and BPMN) provide
better support across most areas although only for active work items. None
of the offerings examined provided exception support for managing resource
unavailability (and as a consequence this column has been omitted from Table 2
– this reflects other research findings [19] on the lack of support for the resource
perspective in current commercial products.

5 Considerations for a Workflow Exception Language

The insights gained in the previous sections in relation to the identification
and handling of workflow exceptions provide the basis for a general workflow

298 N. Russell, W.M.P. van der Aalst, and A.H.M. ter Hofstede

exception handling language. In this section, we propose a set of primitives for
addressing exceptions that might arise during workflow execution and present a
mechanism for integrating these primitives with the process model more gener-
ally. We then demonstrate the applicability of this approach to exception han-
dling through a working example.

The conceptual model presented in Section 3 identified three key dimensions
to handling an exception. These dimensions provide the basis for the primitives
in the graphical exception language illustrated in Figure 2. Symbols 1–4, 8 and
12–14 are derived from the actions for dealing with the current work item from
Figure 1, symbols 5–7 and 9–11 are derived from the options for dealing with
other work items currently active in the same and other cases and symbols 15
and 16 correspond to the two forms of recovery action that can be undertaken.
These primitives can be assembled into sequences of actions that define exception
handling strategies. These sequences can also contain standard YAWL constructs
[21] although we do not illustrate this capability here.

C

or thread

2. Suspend current work item

1. Remove current work item

3. Continue current work item

R
16. Rollback task

15. Compensation task

14. Reoffer current work item

13. Reallocate current work item

4. Restart current work item 12. Force fail current work item8. Force complete current work item

items in current case

5. Remove selected/all work

6. Suspend selected/all work

7. Continue selected/all work

9. Remove selected/all work

10. Suspend selected/all work

items in current case items in all cases

items in all cases

items in all cases
11. Continue selected/all work

items in current case

Fig. 2. Exception handling primitives

The interlinkage of exception handling strategies based on these primitives
and the overall process model is illustrated in Figure 3. A clear distinction is
drawn between the process model and the exception handling strategies. This is
based on the premise that the process model should depict the normal sequence
of activities associated with a business process and should aim to present these
activities precisely without becoming overburdened by excessive consideration of
unexpected events that might arise during execution. Exception handling strate-
gies are able to be bound to one of five distinct workflow constructs: individual

Workflow Exception Patterns 299

process definition

take order

check credit organise shipping

pick order

produce invoice

despatch order

update account

complete order

print picking slip

C

exception handling definition

constraint violation

deadline expiry

work item failure

<deadline>

<constraint>

Fig. 3. Exception handling in relation to workflow processes

tasks, a scope (i.e. a group of tasks), a block, a process (i.e. all of the tasks in
a process model) and a workflow (i.e. all of the process models in a given work-
flow environment). The binding is specific to one particular type of exception
e.g. work item failure or constraint violation. It may also be further specialised
using conditions based on elements from the data perspective e.g. there may be
two exception handling strategies for a task, one for work items concerned with
financial limits below $1000, the other with limits above that figure.

Exception handling strategies defined for more specific constructs take prece-
dence over those defined at a higher level e.g. where a task has a work item failure
exception strategy defined and there is also a strategy defined at the process-level
for the same exception type, then the task-level definition is utilised should it
experience such an exception. In order to illustrate the application of these con-
cepts, we present an example based on the order fulfillment process illustrated
in Figure 4 using the YAWL process modelling notation. In this process, orders
are taken from customers, and a picking slip for the required items is prepared
and subsequently used to select them from the warehouse. At the same time,
the customer’s credit is checked and shipping is organised for the order. When
all of these tasks are complete an invoice is prepared for the customer and the
goods are then packed and despatched whilst the customers account is updated
with the outstanding amount. The order details are then finalised and filed.

print picking slip

take order

check credit organise shipping

pick order

produce invoice

despatch order

update account

complete order

Fig. 4. Order despatch process

300 N. Russell, W.M.P. van der Aalst, and A.H.M. ter Hofstede

Figure 5(A) illustrates two alternate exception handling strategies for the
check credit work item. If the credit required is less than $100, the current work
item is suspended and the next work item is started. Where it is $100 or more,
the current work item is suspended, the execution point is rewound to the begin-
ning of the work item and it is recommenced. Figure 5(B) shows the exception
handling strategy for the pick order work item where its completion deadline
is not met. Recovery involves suspending the current work item, reassigning it
to another resource, running a compensation task that determines if the order
can be despatched within 48 hours (and if not applies a small credit to the
account), then the pick order work item is restarted with the new resource.
Figure 5(C) illustrates the resource unavailable handling strategy. Where the
required resource is a data resource, this involves stopping the current work
item and restarting it from the beginning. This strategy is bound to the process
model i.e. by default, it applies to all work items. Where the unavailable resource
is a human resource (i.e. the person undertaking the work item), the recovery
action involves suspending the work item, reassigning it to another person and
then restarting it from the beginning. Figure 5(D) indicates the approach to
handling an account frozen trigger received by one of the tasks in the current
process.

credit required >= $100

A. Work item failure − check credit task B. Deadline expiry − pick order task

D. Trigger received − order despatch process

E. Constraint violation − take order task

C. Resource unavailable − order despatch process.

account_frozen trigger

credit required < $100

data resource unavailable

human resource unavailable

constraint: order value < customer credit limit − current account balance

C

R

Fig. 5. Exception handling strategies – order despatch process

In this situation, the recovery action is to stop all work items in the case
and to undertake a rollback action undoing all changes made since the case
started. In other words, any work that has been undertaken on despatching
goods to the customer is completely undone. Finally, Figure 5(E) illustrates
the recovery action that is taken when the order value constraint is exceeded
for the take order task. This involves stopping all work items associated with
the process.

Workflow Exception Patterns 301

6 Conclusions

This paper has presented a patterns-based classification framework for char-
acterising exception handling in workflow systems. The framework has been
used to examine the capabilities of eight workflow systems and business process
modelling and execution languages and has revealed the limited support for ex-
ception management in these offerings. As a consequence of the insights gained
from these investigations, we have proposed a graphical, technology-independent
language for defining exception handling strategies in workflows. This language
offers the potential to assist in defining and managing deviations from normal
process execution and will be the subject of further research in the context of
exception handling in the YAWL reference implementation.

References

1. M. Adams, A.H.M. ter Hofstede, D. Edmond, and W.M.P. van der Aalst. Facili-
tating flexibility and dynamic exception handling in workflows through worklets.
In O. Belo, J. Eder, O. Pastor, and J. Falcao é Cunha, editors, Proceedings of
the CAiSE’05 Forum, volume 161 of CEUR Workshop Proceedings, pages 45–50,
Porto, Portugal, 2005. FEUP.

2. G. Alonso, D. Agrawal, A. El Abbadi, M. Kamath, G. Gunthor, and C. Mohan.
Advanced transaction models in workflow contexts. In Proceedings of the 12th
International Conference on Data Engineering, pages 574–581, New Orleans, USA,
1996.

3. A. Borgida and T. Murata. Tolerating exceptions in workflows: A unified framework
for data and processes. In D. Georgakopoulos, W. Prinz, and A.L. Wolf, editors,
Proceedings of the International Joint Conference on Work Activities Coordination
and Collaboration (WACC’99), pages 59–68, San Francisco, USA, 1999.

4. F. Casati, S. Ceri, S. Paraboschi, and G. Pozzi. Specification and implementation
of exceptions in workflow management systems. ACM Transactions on Database
Systems, 24(3):405–451, 1999.

5. D.K.W. Chiu, Q. Li, and K. Karlapalem. ADOME-WFMS: Towards cooperative
handling of workflow exceptions. In Advances in Exception Handling Techniques,
pages 271–288. Springer-Verlag, New York, NY, USA, 2001.

6. J. Eder and W. Liebhart. The workflow activity model (WAMO). In S. Laufmann,
S. Spaccapietra, and T. Yokoi, editors, Proceedings of the Third International Con-
ference on Cooperative Information Systems (CoopIS-95), pages 87–98, Vienna,
Austria, 1995.

7. J. Eder and W. Liebhart. Workflow recovery. In Proceedings of the First IFCIS
International Conference on Cooperative Information Systems (CoopIS’96), pages
124–134, Brussels, Belgium, 1996. IEEE Computer Society.

8. A. Elmagarmid, editor. Database Transaction Models for Advanced Applications.
Morgan Kaufmann, San Mateo, CA, USA.

9. D. Grigori, F. Casati, U. Dayal, and M.C. Shan. Improving business process qual-
ity through exception understanding, prediction, and prevention. In P. Apers,
P. Atzeni, S. Ceri, S. Paraboschi, K. Ramamohanarao, and R. Snodgrass, edi-
tors, Proceedings of the 27th International Conference on Very Large Data Bases
(VLDB’01), pages 159–168, Rome, Italy, 2001. Morgan Kaufmann.

302 N. Russell, W.M.P. van der Aalst, and A.H.M. ter Hofstede

10. C. Hagen and G. Alonso. Exception handling in workflow management systems.
IEEE Transactions on Software Engineering, 26(10):943–958, 2000.

11. S.Y. Hwang and J. Tang. Consulting past exceptions to facilitate workflow excep-
tion handling. Decision Support Systems, 37(1):49–69, 2004.

12. M. Klein and C. Dellarocas. A knowledge-based approach to handling exceptions
in workflow systems. Journal of Computer-Supported Collaborative Work, 9(3-4):
399–412, 2000.

13. F. Leymann and D. Roller. Workflow-based applications. IBM Systems Journal,
36(1):102–123, 1997.

14. Z. Luo, A. Sheth, K. Kochut, and J. Miller. Exception handling in workflow sys-
tems. Applied Intelligence, 13(2):125–147, 2000.

15. S. Mehrotra, R. Rastogi, H.F. Korth, and A Silberschatz. A transaction model
for multidatabase systems. In Proceedings of the 12th International Conference
on Distributed Computing Systems (ICDCS’92), pages 56–63, Yokohama, Japan,
1992. IEEE Computer Society.

16. A. Reuter and F. Schwenkreis. ConTracts – a low-level mechanism for build-
ing general-purpose workflow management-systems. Data Engineering Bulletin,
18(1):4–10, 1995.

17. S. Rinderle, M. Reichert, and P. Dadam. Correctness criteria for dynamic changes
in workflow systems – a survey. Data and Knowledge Engineering, 50:9–34, 2004.

18. N. Russell, A.H.M. ter Hofstede, D. Edmond, and W.M.P. van der Aalst. Workflow
data patterns: Identification, representation and tool support. In L. Delcambre,
C. Kop, H.C. Mayr, J. Mylopoulos, and O. Pastor, editors, Proceedings of the
24th International Conference on Conceptual Modeling (ER 2005), volume 3716 of
LNCS, pages 353–368, Klagenfurt, Austria, 2005. Springer.

19. N. Russell, W.M.P. van der Aalst, A.H.M. ter Hofstede, and D. Edmond. Workflow
resource patterns: Identification, representation and tool support. In O. Pastor
and J. Falcao é Cunha, editors, Proceedings of the 17th Conference on Advanced
Information Systems Engineering (CAiSE’05), volume 3520 of Lecture Notes in
Computer Science, pages 216–232, Porto, Portugal, 2005. Springer.

20. D.M. Strong and S.M. Miller. Exceptions and exception handling in computerized
information processes. ACM Transactions on Information Systems, 13(2):206–233,
1995.

21. W.M.P. van der Aalst and A.H.M. ter Hofstede. YAWL: Yet another workflow
language. Information Systems, 30(4):245–275, 2005.

22. W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros.
Workflow patterns. Distributed and Parallel Databases, 14(3):5–51, 2003.

23. R. van Stiphout, T.D. Meijler, A. Aerts, D. Hammer, and R. Le Comte. TREX:
Workflow transaction by means of exceptions. In H.-J. Schek, F. Saltor, I. Ramos,
and G. Alonso, editors, Proceedings of the Sixth International Conference on Ex-
tending Database Technology (EDBT’98), pages 21–26, Valencia, Spain, 1998.

24. D. Worah and A.P. Sheth. Transactions in transactional workflows. In S. Jajodia
and L. Kerschberg, editors, Advanced Transaction Models and Architectures, pages
3–34. Kluwer Academic Publishers, 1997.

E. Dubois and K. Pohl (Eds.): CAiSE 2006, LNCS 4001, pp. 303 – 318, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Dynamic Workflow Modeling and Verification

Jiacun Wang and Daniela Rosca

Department of Software Engineering,
Monmouth University,

West Long Branch, NJ 07762, USA
{jwang, drosca}@monmouth.edu

Abstract. The dynamic nature of incident command systems and their require-
ment for high flexibility raise a challenge to the research and implementation of
workflows. The significance of applying formal approaches to the modeling and
analysis of workflows has been well recognized and several such approaches
have been proposed. However, these approaches require users to master consid-
erable knowledge of the particular formalisms, which impacts their application
on a larger scale. To address these challenges, we developed an intuitive, yet
formal approach to workflow modeling, enactment and validation. In this pa-
per, we further develop a set of theorems to support dynamic modeling, modifi-
cation and on-the-fly verification of the workflows. A prototype has been
implemented to demonstrate the feasibility of the theoretical approach.

1 Introduction

The business environment today is undergoing rapid and constant changes. The way
companies do business, including the business processes and their underlying busi-
ness rules, ought to adapt to these changes rapidly with minimum interruption of the
ongoing operations [9, 13]. This flexibility becomes of a paramount importance in
applications such as incident command systems (ICS) that support the allocation of
people, resources and services in the event of a major natural or terrorist incident.
These systems have to deal with a predominantly volunteer-based workforce and
frequent changes in the course of execution of their workflows, dictated by unplanned
incoming events [19].

Dealing with these issues generates many challenges for a workflow management
system (WFMS). The necessity of making many ad-hoc changes calls for an on-the-
fly verification of the correctness of the modified workflow. This cannot be achieved
without an underlying formal approach of the workflow, which does not leave any
scope for ambiguity and sets the ground for analysis. Yet, since our main users will be
volunteers from various backgrounds, with little computer experience, we need to
provide an approach with highly intuitive features for the description and modifica-
tion of the workflows.

A number of formal modeling techniques have been proposed in the past decades
for modeling processes and business rules [5, 15, 1, 3, 9]. Petri nets are one of the
most widely used approaches because of its formal semantics as well as graphical
nature [2]. However, they model the loops implicitly, making the decision of whether

304 J. Wang and D. Rosca

a cycle is desired in the workflow, or it is a deadlock, a NP-hard problem. Other than
Petri Nets, techniques such as state charts have also been proposed for modeling
WFMS [12]. Although state charts can model the behavior of workflows, they have to
be supplemented with logical specification for supporting analysis. Singh et al [16]
use event algebra to model the inter-task dependencies and temporal logic. Attia et al
[7] have used computational tree logic to model workflows.

As indicated in [3], it is desirable that a business process model can be understood by
the stakeholders as straightforwardly as possible. Unfortunately, a common major
drawback of all the above formal approaches is that only users who have the expertise in
these particular formal methods can build their workflows and dynamically change
them. For example, in order to add a new task to a Petri-net based workflow, one must
manipulate the model in terms of transitions, places, arcs and tokens, which can be done
correctly and efficiently only by a person with a good understanding of Petri-nets. This
significantly affects the application of these approaches on a large scale. To address this
issue, we introduced a new Workflows Intuitive Formal Approach (WIFA) for the mod-
eling and analysis of workflows, which, in addition to the abilities of supporting work-
flow validation and enactment, possesses the distinguishing feature of allowing users
who are not proficient in formal methods to build up and dynamically modify the work-
flows that address their business needs [19]. In this paper, we further develop a set of
theorems to guide the dynamic, well-formed workflow modeling, modification and
verification. Since WIFA is a result of the desire of modeling the ICS, it does not make
the distinction between workflow schemas and workflow instances. There is only one
person executing a dedicated workflow at a particular time in an ICS. However, after
undertaking the modeling of other applications, we have noticed the need of introducing
this distinction. The discussion of workflow instance migration to new schemas during
the workflow execution is outside the scope of this paper.

Although WIFA was designed with a high degree of usability in mind, it has not sac-
rificed expressive power. As such, WIFA is able to model sequential and concurrent
execution of tasks, conflict resolution, synchronization, mutual exclusion and loops.
MILANO [6], another tool that claims “simplicity” of use, has sacrificed some expres-
sive power, such as the representation of loops, for the flexibility during enactment. The
same deficiency can be noticed in WASA [20]. WIDE [8] proposed a complete and
minimal set of primitives that allow the correct transformation of an old workflow
schema to a new one. Based on that minimal set, other change primitives can be de-
rived, for both modifying workflow schemas and migrating instances to new schemas.
TRAM [11], uses a versioning approach for the modification of workflow schemas.
They use a principle similar to WASA’s for migrating workflow instances to new
schemas, e.g. verifying whether the instance can continue from its current state accord-
ing to the new schema. In [5], the author proposes an approach where schema modifica-
tions should not be migrated to instances that are executed on “change regions”.
Currently, WIFA does not handle data flow control, as in WASA, Flow Nets [10],
ADEPT [14], and other systems. This represents a dimension that needs to be added to
our work.

The paper is organized as follows: Section 2 briefly introduces the new workflow
formalism WIFA and its state transition rules. A detailed presentation can be found in
[19]. Section 3 presents the definition of well-formed workflows and a set of theo-
rems which help build well-formed workflows and dynamically validate workflows

 Dynamic Workflow Modeling and Verification 305

after various types of modifications. In Section 4, an example is used to illustrate the
use of these theorems. Section 5 presents a brief description of the prototype that
supports the WIFA approach, as well as a discussion of the findings of a usability
study conducted to assess WIFA’s intuitiveness. Finally, Section 6 presents conclu-
sions and ideas for the continuation of this work.

2 The WIFA Workflow Model

In general, a workflow consists of processes and activities, which are represented by
well-defined tasks. Two tasks are said to have precedence constraints if they are con-
strained to execute in some order. As a convention, we use a partial-order relation <,
called a precedence relation over the set of tasks, to specify the precedence con-
straints among tasks. A classic way to represent the precedence constraints among
tasks in a set T is by a directed graph G = (T, <), in which each vertex represents a
task in T, and there is a directed edge from vertex Ti to vertex Tj if Ti is an immediate
predecessor of Tj. The graph is called a precedence graph.

The preset of a task Tk is the set of all tasks that are immediate predecessors of the
task, denoted by *Tk; the postset of Tk is the set of all tasks that are immediate succes-
sors of the tasks, denoted by Tk*. If |Tk*| ≥ 1, then the execution of Tk might trigger
multiple tasks. Suppose {Ti, Tj} ⊆ Tk*. There are two possibilities: (1) Ti and Tj can be
executed simultaneously, and (2) only one of them can be executed, and the execution
of one will disable the other, due to the conflict between them. We denote the former
case by cij = cji = 0, and the latter case by cij = cji = 1.

If |*Tk| ≥ 1, then based on the aforementioned classic precedence model, the execu-
tion of Tk won’t start until all of its immediate predecessors are executed. This prece-
dence constraint is called AND precedence constraint. An extension to this classic
precedence model is to allow a task to be executed when some of its immediate
predecessors are executed. This loosens the precedence constraints to some extent,
and the loosened precedence constraint is called OR precedence constraint. Obvi-
ously, the OR precedence model provides more flexibility than the classic AND
precedence model in describing the dependencies among tasks. In this paper, the OR
precedence model is adopted. The AND precedence model can be viewed as a special
case of the OR precedence model.

2.1 WIFA Workflow Definition

In WIFA, a workflow is defined as a 5-tuple: WF = (T, P, C, A, S0), where

1) T = {T1, T2, …, Tm} is a set of tasks, m 1.
2) P = (pij)mxm is the precedence matrix of the task set. If Ti is the immediate prede-

cessor of Tj, then pij = 1; otherwise, pij = 0.
3) C = (cij)mxm is the conflict matrix of the task set. cij ∈ {0, 1} for i = 1, 2, …m and j

=1, 2, … m.
4) A = (A(T1), A(T2), …, A(Tm)) defines pre-condition set for each task. ∀Tk ∈ T,

A(Tk): *Tk → kT*2 . Let set A’ ∈ A(Tk). Then Ti ∈ A’ implies pik = 1.
5) S0 ∈ {0, 1, 2, 3}m is the initial state of the workflow.

306 J. Wang and D. Rosca

A state of the WF is denoted by S = (S(T1), S(T2), …, S(Tm)), where S(Ti) ∈ {0, 1,
2, 3}. S(Ti) = 0 means Ti is not executable at state S and not executed previously; S(Ti)
= 1 means Ti is executable at state S and not executed previously; S(Ti) = 2 means Ti is
not executable at state S and executed previously; and S(Ti) = 3 means Ti is executable
at state S and executed previously.

By the above definition of state values, at any state, only those tasks whose values
are either 1 or 3 can be selected for execution. Suppose task Ti at state Sa is selected
for execution, and the new state resulted from the execution of Ti is Sb, then the exe-
cution of Ti is denoted by Sa(Ti)Sb.

At the initial state S0, for any task Ti ∈ T, if there is no Tj such that pji = 1, then
S0(Ti) = 1; otherwise S0(Ti) = 0.

Note that tasks that have no predecessor do not need to wait for any other task to
execute first. In other words, these tasks are executable immediately. We assume that
there are always such tasks in a workflow. They are the initial triggers or “starting”
tasks of workflows.

Fig. 1 shows a workflow model with seven tasks, T = {T1, T2, … T7}, in which T1
is the starting task of the workflow. The execution of T1 triggers both T2 and T3, which
do not conflict with each other, i.e., c23 = c32 = 0. T2 can be triggered by either T1 or T6,
i.e., A(T2) = {{T1}, {T6}}. The execution of T5 triggers both T6 and T7, which conflict
with each other, i.e., c67 = c76 = 0. T7 is executable only if both T3 and T5 are executed,
i.e., A(T7) = {{T3}, {T5}}. The initial state is S0 = (1, 0, 0, 0, 0, 0, 0). After the execu-
tion of T1, the new state will be S1 = (2, 1, 1, 0, 0, 0, 0). If in the next step we select T2
for execution, the new state will be S2 = (2, 2, 1, 1, 0, 0, 0).

Fig. 1. A seven-task workflow

2.2 State Transition Rules

The dynamics of a WIFA workflow can be captured by state transitions. The state
transitions are guided by the following rules:

If Sa(Ti)Sb, then ∀ Tj ∈ T,

1) If Tj = Ti then Sb(Tj) = 2;
2) If Tj Ti then the state value of Tj at new state Sb depends on its state value at state

Sa. We consider four cases:
Case A – Sa(Tj) = 0:

If pij = 1 and ∃A ∈ A (Tj) such that Sb(Tk) = 2 for any Tk∈A, then Sb(Tj) = 1; oth-
erwise Sb(Tj) = 0.

T1

T2

T3

T6

T4

T5

T7

 Dynamic Workflow Modeling and Verification 307

Case B – Sa(Tj) = 1
If cij = 0 then Sb(Tj) = 1; otherwise Sb(Tj) = 0.

Case C – Sa(Tj) = 2
If pij = 1 and ∃A ∈ A (Tj) such that Sb(Tk) = 2 for any Tk∈A, then Sb(Tj) = 3; oth-
erwise Sb(Tj) = 2.

Case D – Sa(Tj) = 3
If cij = 0 then Sb(Tj) = 3; otherwise Sb(Tj) = 2.

According to the above state transition rules, for example, a task’s state value at a
given state other than the initial state is 0 iff one of the following is true:

1) Its state value is 0 in the previous state and it is not a successor of the task which is
just executed.

2) Its state value is 0 in the previous state, and it is the successor of the task which is
just executed, but for each of its precondition sets there is at least one task that is
not executed.

3) Its state value is 1 in the previous state but it conflicts with the task which is just
executed.

Note that a state value can increment from 0 to 1, from 1 to 2 or from 2 to 3; it can
also decrement from 1 to 0 or from 3 to 2. But it cannot decrement from 2 to 1.

3 Well-Formed Workflow Definitions

In this section, we introduce well-formed workflows which have no dangling tasks and
are guaranteed to finish. We particularly discuss confusion-free workflows, which are
a class of well-formed workflows and have some distinguishing properties. We dem-
onstrate how to build confusion-free workflows, and how to ensure a workflow re-
mains confusion-free when it is changed.

3.1 Well-Formed Workflow Definitions

Definition 1 (execution path). An execution path is a sequence of tasks that are ex-
ecutable starting from a given state. Denote all possible execution paths starting from
a state S by Σ(S).

Definition 2 (reachable set). A state Sk of a workflow is reachable from the initial
state S0 if and only if there exists σ ∈ Σ(S0) such that the execution of σ leads the
workflow to state Sk. denoted by S0(σ)Sk. The set of all reachable states, including the
initial state, is called the reachable set of a workflow, denoted by .

Definition 3 (well-formed workflow). A workflow is well-formed if and only if the
following two behavior conditions are met:

1) ∀Ti ∈T, ∃ S ∈ such that S(Ti) = 1. (i.e. there is no dangling task.)
2) ∀ Si∈ , ∃σ ∈ Σ(Si) and Se∈ , where Se(Ti) ∈ {0, 2} for ∀Ti ∈ T, such that

Si(σ)Se. (i.e., given any reachable state, there is always a path leading the
workflow to finish.)

R

R
RR

308 J. Wang and D. Rosca

The example workflow given in Section 2.1 is well-formed, because based on
Fig. 1, every task in this workflow is executable, and from each state there is an exe-
cution path leading the workflow to one of the two ending states. In general, the vali-
dation of a workflow being well-formed requires the reachability analysis of the
workflow. Below we introduce confusion-free workflows, which are a class of well-
formed workflows with some restrictions imposed on their structure.

Definition 4 (confusion-free workflow). A well-formed workflow is confusion-free if
and only if the following two structural conditions are met:

1) ∀Tk ∈ T with |Tk* | 3, if ∃ Ti, Tj ∈ Tk* such that cij = 1 (or cij = 0), then for ∀Ta,
Tb ∈ Tk* cab = 1 (or cab = 0) (i.e., either all tasks triggered by the task are in con-
flict, or no pair of them are in conflict. In the former case, the task is called an
AND-out task; in the latter case, it is called a XOR-out task.)

2) ∀Tk ∈T with *Tk = {Tk1, Tk2, …, Tkn}, n 2, either

A(Tk) = {{ Tk1, Tk2, …, Tkn}}, (1)

or

A(Tk) = {{Tk1}, {Tk2}, …, {Tkn}} (2)

(i.e., Tk becomes executable either when all of its predecessor tasks are exe-
cuted, or when any one of them is executed. In the former case, the task is
called an AND-in task; in the latter case, it is called a XOR-in task.)

Based on this definition, the example workflow of Fig. 1 is confusion-free. As will be
described next, it is easy to construct and validate a confusion-free workflow.

From the perspective of triggering conditions and relations among triggered tasks,
we can classify the tasks in a confusion-free well-formed workflow into four types:
AND-in-AND-out, AND-in-XOR-out, XOR-in-AND-out and XOR-in-XOR-out.

Without loss of generality, a task with only one or no immediate predecessor is
treated as an “AND-in” task, and a task with only one or no immediate successor
treated as an “AND-out” task. We denote by TAP the set of all AND-in-AND-out
tasks, TAC all AND-in-XOR-out tasks, TOP all XOR-in-AND-out tasks, and TOC all
XOR-in-XOR-out tasks. For example, for the workflow of Fig. 1, TAP = {T1, T3, T4,
T6, T7}, TAC = {T5}, TOP = {T2}, and TOC = ∅.

Since the definition of well-formed workflows has a concern over infinite task
loop, we formally define a task loop as follows:

Definition 5 (loop). Tasks T1, T2, …, Ts forms a loop L iff ps,1 = pi,i+1 = 1 for i = 1,
2, …, s-1. Let T(L) = { T1, T2, …, Tk}. A task Tk ∈ T \ T(L) is said to be an entry of L
iff pkj = 1 for some Tj ∈ T(L). A task Tk ∈ T \ T(L) is said to be an exit of L iff pjk = 1
for some Tj ∈ T(L).

In the workflow of Fig. 1, for example, there is a loop L where T(L) = {T2, T4, T5, T6}.
For this loop, T1 is the only entry task, while T7 the only exit task. It is obvious that if
a loop has no entry task, then all tasks in the loop are dangling tasks; if a loop has no
exit task, then the loop is an infinite loop, and the workflow will never be finished. In
the rest of the paper, a loop with at least one entry task and one exit task is called a
healthy loop. Otherwise, the loop is called an unhealthy loop.

 Dynamic Workflow Modeling and Verification 309

Discussion: WIFA engine in general allows us to build any control pattern of work-
flow constructs as mentioned in [4]. However, a well-formed confusion-free WIFA
model can only be composed of the five simple control patterns, namely sequence,
parallel split, synchronization, exclusive choice and simple merge.

3.2 Build a Well-Formed Workflow

Lemma 1: Given a workflow WFA = (T, P, C, A, S0) with Tk ∈ T. As shown in Fig. 2,
WFB = (T’, P’, C’, A’, S’0) is obtained by replacing Tk with Tk1 and Tk2, such that

1) *Tk1 = *Tk, Tk2* = Tk*, Tk1* = {Tk2} and *Tk2 = {Tk1},
2) A’ (Tk1) = A(Tk), i.e., Tk1 has the same pre-condition set in WFB as that of Tk in

WFA;
3) C’(Ti, Tj) = C(Ti, Tj) for ∀Ti, Tj ∈ Tk*, i.e, the conflict property among all Tk’s

immediate successors remain unchanged in WFB.
Then WFB is confusion-free well-formed iff WFA is confusion-free well-formed.

Proof
Necessity: Assume WFA is well-formed. Then there exists an execution path which
results in reachable state sequence S0S1S2…Sa-1Sa with WFA such that:

Si(Tk) = 0, i = 0, 1, … a-1;

Sa(Tk) = 1.

Fig. 2. WFA and WFB in Lemma 1

Based on the definition of WFB, we know there is a corresponding state sequence
S’0S’1S’2…S’a-1S’a with WFB such that:

S’i = Si U {Si(Tk1)} U {Si(Tk2)} \{Si(Tk)}, i = 0, 1, … a;

S’i(Tk1) = S’i(Tk2) = 0, i = 0, 1, … a-1;

S’a(Tk1) = 1, S’a(Tk2) = 0.

After the execution of Tk1 at S’a, task Tk2 becomes executable. Then based on condi-
tions 1) and 3), it is obvious that the behavior of WFB after the execution of task Tk2

will be the same as that of WFA after the execution of task Tk. So WFB is also
well-formed.

Sufficiency: Assume WFB is well-formed. Then there exists an execution path which
results in reachable state sequence S’0S’1S’2…S’a-1S’aS’a+1 with WFB such that:

WFA

Tk

WFB

 Tk1 Tk2

310 J. Wang and D. Rosca

S’i(Tk1) = S’i(Tk2) = 0, i = 0, 1, … a-1;

S’a(Tk1) = 1, S’a(Tk2) = 0.

S’a+1(Tk1) = 2, S’a+1(Tk2) = 1.

Based on the relationship between WFA of WFB, there exists a corresponding state
sequence S0S1S2…Sa-1Sa with WFA such that:

Si = S’i U {Si(Tk)} \ {Si(Tk1)} \ {Si(Tk2)}, i = 0, 1, … a;

Si(Tk) = 0, i = 0, 1, … a-1;

Sa(Tk) = 1.

According to conditions 1) and 3), the behavior of WFA after state Sa will be the
same as that of WFB after S’a+1. So WFA is also well-formed.

The lemma is proved.

Lemma 2: Let WFA = (T, P, C, A, S0) be a well-formed confusion-free workflow with
Tk1, Tk2∈ T, Tk1* = *Tk2 = ∅, and Tk2 is not a predecessor of Tk1. As shown in Fig. 3,
WFB = (T’, P’, C’, A’, S’0) is obtained by introducing precedence constraint between
Tk1 and Tk2 such that Tk1 is an immediate predecessor of Tk2. Then WFB is also well-
formed and confusion-free.

Fig. 3. WFA and WFB in Lemma 2

Proof: Since WFA is well-formed, so Tk1 is executable. Also because Tk2 is not a
predecessor of Tk1, there exists an execution path which results in reachable state
sequence S0S1S2…Sa-1Sa with WFA such that:

Si(Tk1) = 0, i = 0, 1, … a-1;

Sa(Tk1) = 1;

Si(Tk2) = 0, i = 0, 1, … a.

Based on the definition of WFB, for each such a sequence with WFA, we know there is
a corresponding state sequence S’0S’1S’2…S’a-1S’a with WFB such that:

S’i(Tk1) = 0, i = 0, 1, … a-1;

S’a(Tk1) = 1;

S’i(Tk2) = 0, i = 0, 1, … a.

After the execution of Tk1 at S’a, task Tk2 becomes executable, and all Tk2’s successor
tasks in WFB are executable as they are in WFA. Because Tk2 is not a predecessor of

WFB

Tk1 Tk2

WFA

 Tk1 Tk2

 Dynamic Workflow Modeling and Verification 311

Tk1, no new loop is introduced, so there won’t be any infinite loop in WFB, thus WFB
can always finish. This means WFB is well-formed and confusion free.

The lemma is proved.

Theorem 1: Given a confusion-free well-formed workflow WF = (T, P, C, A, S0), by
adding a new task Tk to it, the obtained new workflow is denoted by WF’ = (T’, P’,
C’, A’, S0’). Then WF’ is also a confusion-free workflow if it matches one of the fol-
lowing cases:

1) *Tk = Tk* = ∅, i.e., p’ki = p’ik = 0 for all Ti ∈ T’ \ {Tk}.
2) *Tk = ∅, Tk* ∅, and ∀Ti ∈ Tk*, if Tk is an AND-in task in WF, then Ti is also an

AND-in task in WF’; If Ti is an XOR-in task in WF, then Ti is also an XOR-in task
in WF’.

3) *Tk ∅, Tk* = ∅. If Tk is an all-in task in WF, then there exists a Sa ∈ (WF) such
that Sa(Ti) = 2 for all Ti ∈ *Tk; If Tk is an or-in task in WF, then there exists a Sa ∈

(WF) such that Sa(Ti) = 2 for some Ti ∈ *Tk. In addition, ∃Ti ∈ *Tk, if Ti triggers
two or more conflicting tasks, then Tk conflicts with each of these tasks, otherwise,
ckj = 0 for any Tj ∈ Ti*.

4) *Tk ∅, Tk* ∅, with all other conditions appear in 2) and 3). Besides, ∀Ti ∈
Tk*, if Ti is also a predecessor of Tk (i.e., Tk introduces a loop), then Ti can only be
an XOR-in task, and the loop is a healthy loop.

Proof
Case 1): Tk is an isolated task. Based on Definition 3, Tk will not be in any other task’s
pre-condition set, so it has no impact to the original workflow WF, and the two struc-
tural conditions of confusion-free workflows are all met in WF’. Because Tk has no
predecessors, so it is executable in S’0. Since WF is well-formed, there must be an
ending state Sq∈ (WF), then state S’q = Sq U {S(Tk) = 2} is an ending state of WF’.
Therefore, WF’ is confusion-free.
Case 2): In this case, Tk has no predecessors, so it is executable in S’0. We need to
make sure that all tasks that are successors to Tk are still executable after adding in Tk.
As shown in Fig. 7(b), ∀Ti ∈ Tk*, if Ti is an and-in task in WF’, then that WF is con-
fusion-free indicates that there is a state Sa in WF such that all tasks in *Ti have state
value of 2. Because Tk is unconditionally executable, so there must be a corresponding
state Sa’ in WF’ such that Sa’ = Sa U {Sa’(Ti) =2}. Thus Ti is still executable in WF’.
On the other hand, if Ti is an or-in task in WF’, then the execution of any task in *Ti in
WF’ can still trigger Ti as it does in WF, and Tk is just an additional task that triggers
Ti. Thus Ti is still executable in WF’.

Now consider the second condition of being well-formed workflows. Since WF is
well-formed, ∀ Si∈ (WF), ∃σ ∈ Σ(Si) and an ending state Se∈ (WF), such that
Si(σ)Se. If Ti has no occurrence in σ, then for WF’ we have

SiU{S(Tk) = 0} (σTk) SeU{S(Tk) = 2},

where SiU{S(Tk) = 0} is the state in WF’ which is the Si extended with the state of Tk,
SeU{S(Tk) = 2} the state in WF’ which is the Se extended with the state of Tk, and σTk
the execution path of WF’. If Ti has one occurrence in σ, let σ be σ1Tiσ2. Then for
WF’ we have

R

R

R

R R

312 J. Wang and D. Rosca

SiU{S(Tk) = 0} (σ1TkTiσ2) SeU{S(Tk) = 2},

If Ti has multiple occurrences in σ, we can use the same way to construct the execu-
tion path for WF’ which leads it to finish.
Case 3): In this case, Tk has no successors. The other conditions already guarantee
that task Tk is executable, and the two structural conditions of confusion-free work-
flows are also met. We only need to prove that the introduction of Tk won’t cause
other tasks to become non-executable. It is easy to understand that the state transition
behavior of WF’ from any state S’ in which S’(Tk) = 0 is not affected due to the intro-
duction of Tk. Suppose that at state Sa’ we have Sa’(Tk) = 1 and Tk is triggered by Ti (Ti

∈ *Tk). If all tasks triggered by Ti are able to execute in parallel with Tk (ckj = 0 for
any Ti ∈ Ti*), then Tk has no impact to the execution of other triggered tasks. The
other possibility is that Tk is in conflict with any other task triggered by Ti. In this
case, if Tk is not chosen for execution, the state transition behavior from S’ will be just
like the case in state S = S’ \ { S’(Tk) = 1} of WF. All these suggests that WF’ is also a
confusion-free workflow.
Case 4): This case can be viewed as a combination of Case 2 and Case 3. If Tk doesn’t
introduce a loop to the workflow, then we can add Tk1 and Tk2 to WF first, where Tk1
satisfies condition 3) and Tk2 satisfies condition 2). The obtained workflow is like the
WFA shown in Fig.5 and it is well-formed and confusion free as we just proved in
Case 2 and Case 3. Then by connecting Tk1 and Tk2 and applying Lemma 2, we know
obtained workflow, which is illustrated as WFB in Fig. 5, is well-formed and confu-
sion free. Merging Tk1 and Tk2 and applying Lemma 1, we conclude that WF’, which
is illustrated as WFA in Fig. 4, is also well-formed and confusion free.

In case Tk introduces a loop to the workflow, since we already restrict that Ti be an
or-in task, Ti can be triggered as it is without Tk in place. Adding Tk simply introduces
one more trigger to Ti. So the loop does not cause any task un-executable. Moreover,
because the loop is healthy, the workflow can finish.

The theorem is proved.

Theorem 1 can serve as a rule in building a well-formed and confusion-free work-
flow. At the beginning, the task set is empty. When the first task is introduced, the
workflow is well-formed, because this single task has no predecessors and successors
and it is executable. Then we add a second task. This second task can either be an
isolated one (Case 1 of Theorem 1), or be a successor of the first task (Case 2 of
Theorem 1), or be a predecessor of the first task (Case 3 of Theorem 1), or even be
both a predecessor and successor to the first task (Case 4 of Theorem 1). Since the
first task is the only possible successor or predecessor to the second task, the new
workflow (with these two tasks) is still confusion-free. When we continue to intro-
duce more tasks to the workflow, as long as we make sure each new task is added in
such a way that it satisfies the conditions defined in one of the four cases, then the
new workflow is guaranteed to be confusion-free.

3.3 Modify a Well-Formed Workflow

Modifying a workflow can be conducted in three ways: adding new tasks to the work-
flow, deleting tasks from the workflow, and changing business rules defined on the
workflow by adding or deleting precedence arcs between tasks. Theorem 1 considered

 Dynamic Workflow Modeling and Verification 313

the case of adding new tasks to a workflow. Now we consider the last two types of
modifications. We first discuss deleting a precedence arc from a workflow, then delet-
ing a task, and then adding precedence arcs.

Theorem 2: Let WF = (T, P, C, A, S0) be a confusion-free well-formed workflow with
Ti, Tj ∈ T and pij = 1. WF’ is obtained by deleting the precedence arc between Ti and
Tj, i.e. setting pij to 0. Then WF’ is confusion-free well-formed iff the deletion does
not introduce any unhealthy loop.

Proof: Because WF is confusion-free well-formed, so Tj is executable in WF. Also
because in WF’ the precondition of Tj is loosened compared with it is in WF, so Tj is
executable in WF’ as well. This means the executability of Tj and all its successors are
not affected by deleting removing the precedence relation between Ti and Tj. Also
because the precedence arc deletion does not introduce any unhealthy loop, the work-
flow is guaranteed to finish. Therefore, WF’ is also confusion-free well-formed.

The theorem is proved.

Theorem 3: Given a confusion-free well-formed workflow WF = (T, P, C, A, S0),
deleting a task Tk ∈ T and all precedence arcs starting from or ending up to Tk, the
obtained new workflow is denoted by WF’ = (T’, P’, C’, A’, S0’). If the deletion of
does not cause an unhealthy loop, then WF’ is also a confusion-free well-formed
workflow.

Proof: Since the deletion does not cause an unhealthy loop, the workflow is guaran-
teed to finish. We only need to prove all tasks in the new workflow are executable,
Consider the following four cases:

Case 1): *Tk = Tk* = ∅.
In this case, Tk is an isolated task, so its presence or absence has no impact on the
execution of the rest of the workflow.

Case 2): *Tk = ∅, Tk* ∅.
In this case, Tk has no predecessors, so we only need to prove that all tasks that are
immediate successors of Tk are still executable after removing in Tk.

Suppose Ti ∈ Tk*. If Ti is an AND-in task in WF, then that WF is well-formed im-
plies that Ti is executable, i.e. there is a state Sa in WF such that all tasks in *Ti have
state value 2. If ∀Tj ∈ *Ti\{Tk}, Tj is not a (either immediate or not) successor of Tk,
then Tj is executable in WF’, then there must be a corresponding state Sa’ in WF’ such
that Sa’ = Sa \ {Sa’(Ti) =2}, which means Ti is still executable in WF’. If ∃Tj ∈
*Ti\{Tk}, Tj is a successor of Tk, then we can always find a task Tl such that Tl ∈ Tk

*
and Tj is a successor of Tl. Without loss of generality, we assume that there is no other
task that is also an immediate successor of Tk and sits in between Tl and Tj. We have
already proved that Tl is executable after removing Tk. So Tj is also executable after
removing Tk, which further indicates that Ti is executable in WF’.

Now we consider the case that Ti is an XOR-in task in WF. Again, WF is well-
formed implies that Ti is executable, and it also implies that all of its s are executable.
So, removing Tk has no impact to the executability of Ti. In other words, Ti is still
executable in WF’.

314 J. Wang and D. Rosca

Case 3) *Tk ∅, Tk* = ∅.
In this case, Tk has no successors, so removing Tk has no impact to the executability of
Ti. Since WF is well-formed, all tasks in T \ {Tk} are executable in WF. Thus all tasks
in WF’ are also executable. Moreover, if Sq is an ending state of WF, then S’q = Sq \
{S(Tk) = 2} is an ending state of WF’. Therefore, WF’ is confusion-free well-formed.
Also, it is obvious that the two structural properties of confusion-free workflow are
not affected by removing Tk. So WF’ is also confusion free.

Case 4) *Tk ∅, Tk* ∅.
This case can be viewed as a combination of Case 2 and Case 3. We first split Tk into
Tk1 and Tk2, where Tk1and Tk2 are connected as shown in WFB of Fig. 2, Tk1 satisfies
condition 3) and Tk2 satisfies condition 2). According to Lemma 1 we know the ob-
tained workflow is well-formed and confusion free. Then we remove the precedence
constraint between Tk1 and Tk2, and the obtained workflow, like the WFA of Fig. 2, is
also well-formed and confusion free according to Theorem 2. Finally, applying the
proof for Case 2) and Case 3) results in that the obtained workflow after removing Tk1
and Tk2, which is WF’ stated in this theorem, is well-formed and confusion free.

The theorem is proved.

Theorem 3 shows a distinguishing feature of confusion-free workflows. That is, when
we delete any task and its associated precedence arcs from a workflow, as long as it
does not cause any unhealthy loop, the remaining workflow is still well-formed and
confusion-free. However, it should be pointed out that, if the task to be deleted is not
an isolated task, then deleting it will cause changes to the precedence relations among
the remaining tasks. So in most cases, after we delete a task, we need to adjust the
precedence relations among those tasks that are s or immediate successors.

When adding a precedence arc between two tasks, say Ti and Tj, the relationship
between these two tasks in the original workflow has an impact to the well-
formedness of the resultant workflow. More specifically, if Tj is not a predecessor of
Ti, then setting pij = 0 will not cause a loop. Otherwise, a loop will be introduced. In
the latter case, if Ti is an “AND-in” task, then Ti will never be executable because of
the existence of deadlock: Ti is not executable until Tj is executed; meanwhile Tj is not
executable until Ti is executed. In addition, as a general rule, one should not introduce
a precedence arc between two exclusive tasks, because it violates logic consistency.
The following theorem addresses adding precedence constraint to a workflow. Due to
space limitation, we only give proof sketch to this theorem.

Theorem 4: Let WF = (T, P, C, A, S0) be a well-formed confusion free workflow with
Ti, Tj ∈ T where pij = 0 and Ti and Tj are not mutual exclusive. WF’ is obtained by
adding a precedence arc between Ti and Tj, i.e. setting pij to 1. Then WF’ is confusion-
free well-formed if it matches one of the following cases:

1) Ti is of the same type in both WF and WF’, so is Tj.
2) If the addition introduces a loop, then the loop must be healthy.

Proof sketch: Condition 1) ensures confusion free and task executability. Condition
2) guarantees the new workflow to finish.

The importance of the above theorems is that they allow a progressive workflow well-
formedness verification, which significantly reduces the complexity of large-scale

 Dynamic Workflow Modeling and Verification 315

model analysis. This is particularly useful in modeling and enacting incident com-
mand systems where timing is so critical to mission success. In the next section we
will show how to apply these theorems.

4 Example

We illustrate the use of the five theorems through changes to the workflow model
shown in Fig. 1.

Suppose that the model is incomplete. Now we add task T8 to the model such that
T8 is the immediate successor of T7 and it has no successors. The new model is shown
in Fig. 4. Based on Theorem 1, Case 3, the workflow of Fig. 4 is well-formed and
confusion-free.

Fig. 4. Add task T8 Fig. 5. Delete task T6

Fig. 6. Delete precedence arc between T3 and T4 Fig. 7. Add precedence arc between T1 and T7

The workflow in Fig. 5 is obtained by deleting task T6 from Fig. 4. Because the
workflow of Fig. 4 is well-formed and confusion-free, based on Theorem 2, the work-
flow of Fig. 5 is also well-formed and confusion-free. Note that deleting T7 from Fig. 4
is not allowed, because it will make the loop of T3, T4, T5 and T6 unhealthy – no exit.

Fig. 6 shows a case where a precedence arc between two tasks that are in a loop is
deleted. After deleting the arc between T3 and T4, T4 becomes unconditionally

T1

T2

T3
T4

T5

T6

T8 T7

T1

T2

T3

T4

T5

T6

T8 T7 T1

T2

T3

T4

T5

T8 T7

T1

T2

T3

T4

T5

T6

T8 T7

316 J. Wang and D. Rosca

executable. It is not hard to find that there is no dangling task in this model, and the
workflow, depending on T6 or T7 is chosen to execute, will either end at state (2, 2, 2,
2, 2, 2, 0, 0) or state (2, 2, 2, 2, 2, 0, 2, 2), respectively. So the workflow is well-
formed and confusion-free. This conclusion can be drawn immediately by applying
Theorem 3, because T3 is a XOR-in task.

In Fig. 7, a precedence arc between T1 and T7 is added, and it is important
that T1 remain as an AND-in task and T7 remain as an AND-in task. Then based on
Theorem 4, the workflow is well-formed and confusion-free.

Note that a change to a workflow may take several atomic steps, and the well-
formedness may be violated before the change is complete. We allow this to happen
as long as the model after the change is still well-formed.

5 Tool Support

We have implemented a prototype that supports the WIFA approach [17]. It has been
applied to an incident command system exercise for training purposes.

The central tool component is the model constructor, which handles the visual dis-
plays, UI functionality, organization of objects in a workflow, and access to the vali-
dation and simulation functions (see Fig. 8). The workflow editor has a wide range of
drag-and-drop features that allow users to easily build workflows following an intui-
tive process. Pre-built workflow components can be used to speed up the editing
process. As soon as the workflows are built they can be validated using the validator
component of the tool, in order to assess that the workflow follows the well-formed
workflow definitions presented earlier. In addition, the validation process produces
two separate outputs. One output is the validation report which includes errors in the
workflow design and suggestions on how to fix them. The second output is the work-
flow reachable states that can be analyzed later.

Once the workflows are validated they can be executed using the simulator compo-
nent. The simulation can be done either manually or by specifying a time interval.
Throughout the simulation the user has the option of stepping back, pausing, and
stopping. During these simulations the users can still adjust their workflows, by
interactively making modifications and validating them, as it was described earlier in
the paper. All workflows are stored as XML files.

Since intuitiveness is of paramount importance for this tool, a usability assessment
was done on the workflow editor at Monmouth University in order to assess both
users’ perceptions of the tool and their behavior while actually creating workflows.
Fifteen participants underwent an approximately 45-minute testing session that con-
sisted of three phases. Participants ranged from undergraduate sophomores with no
programming expertise to more experienced software engineering graduate students.
Afterwards, participants were asked to complete a questionnaire. The results of the
questionnaire suggest that, in general, the workflow editor was considered useful and
that its usability was acceptable. The only aspect that was considered less intuitive
was the four types o tasks that we defined in WIFA. In order to avoid this drawback,
we have since incorporated into the tool the capability of using abstract task types that
don’t require the users to specify the task types. Other minor findings of the usability
study are currently being included in the prototype.

 Dynamic Workflow Modeling and Verification 317

Fig. 8. WIFA prototype

6 Concluding Remarks

In this paper we explored the dynamic properties of the WIFA workflow engine.
More specifically, we developed a set of theorems to guide the dynamic modeling,
modification and verification of well-formed workflows. The importance of this work
relies in these theorems that allow a progressive workflow well-formedness verifica-
tion, which significantly reduces the complexity of large-scale model analysis. This is
particularly useful in modeling and enacting incident command systems where timing
is so critical to mission success.

We are also working on extending WIFA with the data dimension, and with capa-
bilities for inter-organizational workflow modeling and analysis, to be able to repre-
sent the interactions between different people and organizations that need to work
together for achieving different business goals.

References

1. W.M.P. van der Aalst, “Verification of Workflow Nets”, Proceedings of Application and
Theory of Petri Nets, LNCS, Volume 1248, pp. 407-426, 1997.

2. W.M.P. van der Aalst, “Three Good Reasons for Using a Petri Net-Based Workflow Man-
agement System”, Proceedings of the International Working Conference on Information
and Process Integration in Enterprises (IPIC’96), pp. 179–201, Nov 1996.

3. W.M.P. van der Aalst, A.H.M. ter Hofstede, and M. Weske, “Business Process Manage-
ment: A Survey.” International Conference on Business Process Management (BPM
2003), LNCS, volume 2678, pages 1-12. Springer-Verlag, Berlin, 2003.

318 J. Wang and D. Rosca

4. W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros, “Work-
flow Patterns,” Eindhoven University of Technology, Eindhoven, 2000.

5. N. R. Adam, V. Atluri and W. Huang, “Modeling and Analysis of Workflows Using Petri
Nets”, Journal of Intelligent Information Systems, pp. 131-158, March 1998.

6. Agostini A. and G. DeMichelis, “A light workflow management system using simple proc-
ess models”, International Journal of Collaborative Computing (16), 2000, pp. 335-363.

7. P. C. Attie, M. P. Singh, A. Sheth and M. Rusibkiewicz, “Specifying Interdatabase Depend-
encies,” Proc. 19th International Conf. on Very Large Database, pp.134-145, 1993.

8. F. Casati, S. Ceri, B. Pernici, G. Pozzi, “Workflow evolution”, Data and Knowledge Engi-
neering Journal, Elsevier, vol. 24 (3), 1998, pp. 211-238.

9. P. Dourish, “Process Descriptions as Organizational Accounting Devices: The Dual use of
Workflow Technologies”, Paper presented at GROUP'01, (ACM), Sept. 30-Oct. 3, 2001,
Boulder, Colorado, USA.

10. C. Ellis, K. Keddara, “A workflow Change is a workflow”, Proceedings BPM’00, LNCS,
vol. 1806, 2000, pp. 516-534.

11. M. Kradolfer, A. Geppert, “Dynamic workflow schema evolution based on workflow type
versioning and workflow migration”, Proceedings of CoopIS’99, Edinburgh, 1999, pp.
104-114.

12. P. Lawrence, editor, “Workflow Handbook 1997, Workflow Management Coalition”, John
Wiley and Sons, New York, 1997.

13. D.C. Marinescu, Internet-Based Workflow Management: Towards a Semantic Web, Wiley
Series on Parallel and Distributed Computing, vol. 40, Wiley-Interscience, NY, 2002.

14. M. Reichert, P. Dadam, “ADEPT flex – supporting dynamic changes of workflows with-

out losing control”, Journal of Intelligent Information Systems, 10 (2), 1998, pp.93-129.
15. D. Rosca, S. Greenspan, C. Wild, “Enterprise Modeling and Decision-Support for Auto-

mating the Business Rules Lifecycle”, Automated Software Engineering Journal, Kluwer
Academic Publishers, vol.9, pp.361-404, 2002.

16. M.P. Singh, G. Meredith, C. Tomlinson, and P.C. Attie, “An Event Algebra for Specifying
and Scheduling Workflows,” Proceedings 4th International Conference on Database Sys-
tem for Advance Application, pp. 53-60, 1995.

17. M. Stoute, J. Wang, and D. Rosca, “Workflow Management Tool Support for an Incident
Command System”, accepted for publication in the Proceedings of ICNSC’06, Miami, FL,
2006

18. J. Wang, Timed Petri Nets: Theory and Application, Kluwer Academic Publishers, 1998,
ISBN: 0-7923-8270-6.

19. J. Wang, D. Rosca, W. Tepfenhart, A. Milewski and M. Stoute, “An Intuitive Formal Ap-
proach to Dynamic Workflow Modeling and Analysis,” Proceedings of the 3rd Conference
on Business Process Management, Nancy, France, Sept. 6-8, 2005.

20. M. Weske, “Formal Foundation and Conceptual Design of dynamic adaptations in a work-
flow management system”, Proceedings of HICSS-34, 2001.

Business Modelling

E. Dubois and K. Pohl (Eds.): CAiSE 2006, LNCS 4001, pp. 321 – 335, 2006.
© Springer-Verlag Berlin Heidelberg 2006

On the Notion of Value Object

Hans Weigand1, Paul Johannesson2, Birger Andersson2, Maria Bergholtz2,
Ananda Edirisuriya2, and Tharaka Ilayperuma2

1 Tilburg University, P.O. Box 90153,
5000 LE Tilburg, The Netherlands

H.Weigand@uvt.nl
2 Royal Institute of Technology,

Department of Computer and Systems Sciences, Sweden
{pajo, ba, maria, si-ana, si-tsi}@dsv.su.se

Abstract. It is increasingly recognized that business models offer an abstraction
that is useful not only in the exploration of new business networks but also for
the design and redesign of operational business processes. Among others, they
can be used as input for a risk analysis that is crucial in cross-organizational
business process design. However, the notion of value object is up till now not
clearly defined. In this paper we investigate the notion of value, value objects
and the activities involved when transferring value objects between business
actors. We illustrate the proposed value object model by applying it on the well-
known conference case.

1 Introduction

Meeting changing customer demands and creating new opportunities makes it
necessary for businesses to constantly re-invent themselves. This is often done by
changing the processes that produce the goods or services that an organization offers
to the market. The changes may take many forms, e.g., the products offered may
change, the ways in which the products are produced are changed, or the organization
that produces the products may change.

There is an increased recognition that when creating models of new business
processes or redefining old ones, the right point of departure in the analysis is not the
business processes themselves but notions at a higher level of abstraction. The
abstraction can be achieved by focusing on the essential communicative acts [3]
rather then the specific message exchanges, on functional and non-functional goals
rather than the way they are achieved [13], on commitments and obligations [7] rather
than the way these are fulfilled, or on the business models behind a process. In this
paper, the point of departure is one kind of business model, the e3value model
introduced by Gordijn [4]. A value model shows the exchanges of values that takes
place, for instance, when actors trade goods and services for money. Value models
have a special characteristic in that they are formulated declaratively with little or no
concern for the order of activities taking place or other forms of dependencies.

When value models are used in the design of business processes, somehow a link
must be made between the value model and the process model. A value model focuses

322 H. Weigand et al.

on high level and timeless objects like value objects, actors, and value exchanges. In
contrast, a process model focuses on procedural details including messages and
activities as well as control and data flow. So when moving from one type of model
to the other, a significant ontological gap has to be bridged. A problem the arises
specifically when using e3value as a starting point is that the notion of value object in
e3value is defined in general terms only. This may be sufficient when the model is
used in discussing business models, but we need to know more about the internal
structure of value objects if we want to make the step to the design of operational
processes.

The objective of our research is to find a rigorous way of identifying value objects
in business models and to explore how these value objects can be used to derive
process models in a systematic way. Results of this research will be useful for
practitioners, that is, business process analysts and designers who currently lack
abstraction mechanisms or, if they do use one like e3value, lack a systematic way of
producing executable process models (e.g. expressed in BPEL [14]). The theoretical
relevance is that the research clarifies the relationships between different models used
in business process design.

The second part of our research objective is addressed in a separate paper [11].
This paper contributes to the first part by addressing the following research questions:

• What is exactly a value object?
• What is the relationship between value object and value activities?

In the paper, we provide tentative answers to these questions, using the well-known
conference example as test case. In section 2, we will introduce the notion of value
models and our general approach. Section 3 provides answers to our main research
questions. In section 4, our answers are applied to the test case, which raises some
new questions, and we conclude with a summary and directions for future research.

2 Background

In this section, we first explain the main concepts from the e3value model and then
present our general framework for the transformation of value models to process
models.

2.1 The e3-value Model

e3value [4] is a modeling approach that is originally aimed at supporting the
explorations of new business networks. For these explorations, process details are not
relevant. What is important is whether a collaboration can be set up that provides
value to all participants. Recently, e3value has also been applied for other purposes,
such as business/IT alignment [12]. We briefly introduce the basic concepts. An actor
is an economically independent entity and is often, but not necessarily, a legal entity.
Examples: enterprises, end-consumers. A value object is something that is of
economic value for at least one actor. Examples: cars, Internet access, stream of
music. A value port is used by an actor to provide or receive value objects to or from
other actors. A value port has a direction, in (e.g., receive goods) or out (e.g., make a

 On the Notion of Value Object 323

payment) indicating whether a value object flows into or out of the actor. A value
interface consists of in and out ports that belong to the same actor. Value interfaces
are used to model economic reciprocity. A value exchange is a pair of value ports of
opposite directions belonging to different actors. It represents one or more potential
trades of value objects between these value ports. A value activity is an operation that
could be carried out in an economically profitable way for at least one actor.

Fig. 1. e3value model of the conference case

An example of an e3value model for the well-known conference case is given in
Fig. 1, where actors are shown by rectangles, value activities by rounded rectangles,
value ports by triangles, value interfaces by oblong rectangles enclosing value ports,
and value exchanges as lines between value ports with names of value objects as
labels. For example, we see that the value object the reviewer offers is the reviewing –
something valuable to both the Conference and the Author, and that she gets
acknowledgement in return. The conference itself has several value activities, and
corresponding value interfaces. First of all, this means that some value activities that
are currently performed by the conference organization could be delegated to other
parties as well. For example, the reviewing could be delegated completely to a PC,
and the publishing to a commercial publisher. Secondly, the value interfaces could be
opened separately to other actors. For example, the conference registration may not be
limited to authors, but also to other participants.

324 H. Weigand et al.

2.2 From Value Model to Process Model

When constructing the process model, a number of design decisions have to be taken
concerning the ordering and decomposition of activities. Process patterns can be used
here to suggest possible transformations. We claim that the design decisions are based
on three different aspects of a business case: resource management, communication
design, and risk:

• Resource management aspect. This aspect concerns the physical flow of
resources (logistics) and their capacity planning.

• Communicative design. This aspect concerns the coordination between
customers and providers that is needed to initiate and complete value
exchanges by means of communicative actions.

• Risk aspect. This aspect concerns risks that may result in value transactions not
being completed or only partially completed, and the various ways to mitigate
risks ([2][9]).

All three aspects have to be dealt with and influence the resulting process model.
Although the aspects are not completely independent, it is useful to distinguish them.
They provide a separation of concerns, thereby facilitating design and traceability of
the process model. The approach is summarized in Fig. 2.

Fig. 2. From value model to process model

3 On the Notion of Value Object

There exists a huge body of knowledge in the area of economics regarding the
concept of value. It is commonly defined as “The worth or desirability of something
expressed as an amount of money” [15]. This something is often an asset or property

 On the Notion of Value Object 325

of someone. Some assets can quite easily be given a monetary value, e.g., cash and
stock, whereas others, like intellectual property or brand value, are harder to measure.
The definition highlights the quantitative aspect of value, which is of course quite
important from a business perspective. However, it does not say anything about the
subjective value experience nor about the internal structure of the value object. In
economics, a categorization of what can be described as a tradable property (has a
value) is the following list: a) personal property, e.g., cars or tools, b) real property,
e.g., buildings or land, c) intangible property, e.g., patents or copyrights.

According to [4], a value object is “a service, a product, or even an experience
which is of economic value for at least one of the actors involved”. This definition
makes clear that value objects are not restricted to goods or money exchanged, but it
is rather open. In the work of Holbrook [6] to which Gordijn refers, the focus is on
consumer value, and in this framework, anything can be of value, as consumer value
is supposed to reside in the consumption experience rather than in the product or
service itself. Consequently, Holbrook remains vague about the internal structure of
value objects, but he does offer an interesting framework of consumer values, such as
efficiency, aesthetics and status.

3.1 Towards a Value Object Model

We can learn something from the examples of value objects identified in Gordijn’s
examples such as the Free Internet Provider: “a fee”, “internet access”, “interconnection”,
“termination” and “termination possibility”. In the contact ad example, we find the
value objects: “submitted ad”, “possible contact”, and “read contact ad” [5]. We refer to
the original work for the full description of these examples.

Products and money are obvious value object candidates, although we should
realize that the value exchange should not be equated with the logistic transfer:
basically, what one acquires when one buys a product is the ownership of the product.
Ownership can be conceived as a bundle of rights, and other rights can be value
objects as well. For example, when borrowing a book from a library, one gets the
right to keep and read the book for a certain period of time, and on the Internet, one
could acquire the right to use a certain piece of software for a limited number of users.

On the basis of examples like these, we may tentatively identify a value object with a
certain right on some resource. A right of one party means obligations for the other
party. The customer should be enabled to use the right. For example, a transfer of
ownership of a product should be accompanied by a delivery of the product, or at least
the customer should get the possibility to pick up the product somewhere. So we may
define a value object as a certain right on some resource (of the provider) and the
enabling to use that right (a working access route or means to exercise the right on the
value object). This definition works not only for goods and money, but also for services
mentioned above such as “internet access” (the right to send and receive data to and
from Internet, where availability of the network is assumed), or “read ad” (the right to
read a contact ad, typically including the right to contact the sender somehow).

We have found that this first definition works for many cases, but not for all. Think
for example of services like hairdressing and transportation. What is characteristic of
these cases is that some action is performed on an object belonging to the customer
that adds value. I prefer myself with my hair cut, or prefer my kid being at school in

326 H. Weigand et al.

the morning. Let us call such an action a value transformation. In the Free Internet
Example above, “termination” falls in this category: when the internet provider picks
up the phone (terminates a call), he does something to the telephone network, owned
by the telecompany, that increases its value to its owner, as he can charge costs to the
caller. More precisely, the network becomes more valuable to consumers because
they can use it now to connect to the Internet provider, and so access the Internet, and
therefore it becomes more valuable to the telephone company since the marginal costs
of a connection are very low. On the basis of examples like these, an alternative
definition of value object is: “the value transformation of some object belonging to (or
at least of interest to) the customer”. Note that we assume a relationship between the
customer and the object in question, and in most cases, including the ones above, this
is a relationship of “belonging”, but it can be more general. For example, “restoring
my town” or even “reducing pollution of my planet” can be viewed as value
transformations on things in which I have an interest (my town, my planet), and the
fact that I value them can be inferred indirectly from the fact that I may be willing to
donate money to a party like Greenpeace that claims to provide this value. To avoid
confusion with the term “value object”, we will use the term “value subject” for the
thing whose value is increased by some transformation process.

Fig. 3. Value object model

Note that in this second definition, the focus is on the value transformation of the
value subject, but this does not exclude that some resource of the provider is involved
as well. For example, the transportation service involves the use of a bus or some
other vehicle, and the hairdressing service involves the use of a chair and the
dedication of a hairdresser for a certain period of time. More generally, the value
transformation of the value subject belonging to the customer often involves a right

 On the Notion of Value Object 327

(and the enabling thereof) on some resource owned by the provider. This suggests a
unification of the two definitions. In this unified model, we distinguish both a
resource and a value transformation in which the resource is instrumental. When the
focus is on the resource, the value transformation is not explicit, but still it can be
found in many cases. For example, one could say that the borrowed book is used for
reading, to teach something, or provide pleasure. However, the value exchange, as
economic event in this case, focuses on the resource provided, and leaves unspecified
what the customer does with it.

Figure 3 summarizes our value object model. Provider P transfers a value object to
customer C when P brings in a resource R for the purpose of a transformation of some
subject S in which C has an interest such that the transformation has value for C.
“Bringing in” the resource means that P transfers C some right on R and makes R
available (enables C to execute the right). The value that C gets could be characterized
further by Holbrook’s value framework (e.g. status, aesthetic pleasure). Given this
background, the value object can be defined as an aggregation of value transformation
and the right transfer, where usually but not necessarily both are present.

3.2 Some Remarks on the Value Object Model

We analyze the value object model in some more detail by addressing a couple of
issues.

An Experience is Not a Value
Customer and value subject are roles that may be filled by the same entity, such as in
the hairdresser case. Similarly, the provider may be a resource himself. Note that the
value that the customer gets of the value transformation should be distinguished
conceptually from the experience of the value subject, even if the customer is the
subject. For example, in the case of watching a movie the value could be the pleasure
of having watched a good movie, and the experience consists of the emotions that the
movie imposes (e.g. pity). The experience (as a special case of value transformation)
provides value, but is not a value.

Value Exchange Implies Value Transformation
The value transformation in the centre of our value object model is not an isolated
activity, but can be integrated with the value chains of both customer and provider.
According to [8] the value chain is a chain of activities, which are the building blocks
by which a firm creates a product valuable to its buyers. The resource made available by
the provider is either made or bought; if it is made, the provider should perform one or
more value transformations that depend on other resources. At the customer’s side
(either a firm or an individual consumer), the value subject may itself be a resource for
another value transformation. For example, a consumer may acquire a hammer, besides
other things, to ameliorate his house. Value subjects that are used to raise value
somewhere else are called extrinsic value objects by Holbrook, as opposed to intrinsic
ones. Note that our model allows us to link the value object directly to the value
activities in the e3value model. A value activity is defined as an operation that could be
carried out in an economically profitable way for at least one actor. However, in the
value model logic, economic profit is only possible if the activity has some value to
some actor in the first place, so a value activity (disregarding for the moment the

328 H. Weigand et al.

possibility of allowing coordination activities to be value activities) will also be a value
transformation, although not every value transformation is necessarily a value activity –
it might be impossible to exploit it profitably. Below in section 4, we will argue that a
value transformation model may be useful to complement the current e3value model; the
contribution of our current analysis of the value object is that it shows how value
transfer and value activity are linked through the notion of value transformation.

In our model, it is not specified who performs the value transformation. In the
hairdresser case, the provider, or one of the assistants, is the agent. In other cases,
such as the borrowed book, the customer is the agent, as she is the one who does the
reading. The more or less active contribution from the customer (Holbrook talks about
active versus reactive value) is an interesting distinctive feature, but not so relevant
for modeling the provider’s responsibilities, as his involvement in the value
transformation can be seen as an extension of “making resource available”.

The transfer of ownership (goods, money) reappears in this model as a special case
where subject and resource coincide: the resource provided by the provider is not only
used but disappears as such, and it reappears as a value subject belonging to the
customer. The value transfer as such is not a value transformation (it does not add value
in the economic sense – note that supporting activities like transport can be value
transformations, but the value transfer is not the physical transport). The question can be
raised whether this case should be seen as a transfer of rights only, without a value
transformation. An argument pro is that the customer can use the acquired resource in
many unspecified ways (so it is hard to indicate what the value transformation is) and it
falls out of the scope of the value transfer. An argument con is that in many cases, the
resource has a specific goal, which sometimes is part of the value transfer or of the
value proposition. An example of the former is when the customer buys clothes, these
are for wearing (a value transformation of her body); if for some reason the value
transformation does not succeed, this can be a reason for rolling back the value
transaction – the customer returns the clothes. Examples of the latter are when phone
companies sell phones with the slogan “be connected” or educational institutes sell a
course with the slogan “improve yourself”. So the preliminary answer that we want to
give to the question is that the value transformation need not be included, but can be
seen as part of the value object when this is deemed relevant.

Value Object is Not Value Proposition
The value object model can be used to analyze value objects, and gives a rather
objective basis to the value object identification. However, we should keep in mind
that the value proposition of a provider is a particular view offered on a value transfer,
and hence may highlight certain elements, repress others, and even add elements, such
as the indirect value the customer may get in a later stage. The value proposition is
extremely important in marketing, but less informative for the design of the
operational processes.

A Symbolic Value Object is Different from the Value Object It Points At
The transfer of ownership of symbolic objects needs some special attention. For
example, if I buy a ticket for a football match, what is the value object I acquire? Is it
the legitimate access to the match (as resource)? Or is it the ticket itself that I can use
to get access to the match but that I could also profitably resell to others? Evidently,

 On the Notion of Value Object 329

there are many symbolic value objects (tickets, stamps, vouchers – also money itself).
It is part of the choices to be made in the overall value model whether to introduce
symbolic value objects or not. We propose the following rule: only when there is
some unique (mostly physical) symbolic token of a transferable right – a right that
is not bound to a specific agent but for which it holds that the legal owner of the token
is the holder of the right, then this token may be treated as a value object in the same
way as physical goods. So a football match ticket may be a value object, as is money,
but an airline ticket is not (which may explain partly why airline tickets are
disappearing nowadays). Whether it should be modeled as a value object is another
question. If the token is only used for control purposes (like a cinema ticket), it is

3.3 A General Format of Value Object Description

Using our analysis of the value object, we propose to use the following general format
for describing a value object. The value object is something the actor offers, so we
always start with “A offers B”

A offers B that a value subject is transformed (by means of giving B |
including) the right to use a value resource

An alternative format is to focus on the customer’s value. In that case, the sentence
would be something like “ For B it has value that <value transformation> (by means
of getting | including) the right to <use value resource>”. In the case of doubt about a
value object, this alternative may be used as a test.

The difference between the two variants “by means of giving” and “including” has
to do with the role of the value resource. If the value resource exists before the value
transformation, then the first phrase is appropriate. It is also possible that the value
resource is created during the value transformation, and in such a case the second
phrase is appropriate.

 When the formula is instantiated, A and B will be actors and use will express a
certain way of using or having access to a resource, e.g., own, lend, read, and copy.
This formula captures the two aspects of a value object, i.e., the resource an actor gets
access to as well as the transformation of some value subject in which the actor has an
interest. When only the transformation is of interest, the second half of the formula
can be omitted, while the first part is omitted if only the transfer of resources is of
interest (However, we recommend that this should be done only if the other part is
really out of the scope). Some examples:

A offers B that his hair is cut
A offers B the right to read a contact ad
A offers B that he is entertained by means of giving B the right to access
the entertainment park

As we said in the above, the transfer of ownership is a special case. Using the
format above, it would be expressed like:

A offers B that he can spend money by means of giving B the right to get
that money from him
A offers B that he uses product X by means of giving B the right to get that
product X from him

330 H. Weigand et al.

In some cases, the “use” of the product can be made more specific, as we argued
above. However, we also allow a shorthand notation in case details are not deemed to
be relevant:

A offers B a value resource

For example, “A offers B money”, “A offers B product X”. Note that this
abbreviation should be used only when there is really transfer of ownership. It should
not be used, for example, for the selling of digital goods, where the buyer only
acquires a right to use a copy of the product; and not in the case A only has an
intermediary role, like a broker that helps someone to buy a house which is not the
broker’s property.

4 Application and Discussion

In this section, we apply our value object analysis to a larger case, not for thorough
validation but for illustration and to deepen our understanding. We also explore how
to model the notions of value resource and value transformation graphically.

4.1 The Conference Case

As an illustration of our analysis of value objects, we have considered the well-known
conference case. The e3value model [4] for this example is shown in figure 1 in
Section 2. The numbers in the list below correspond to the numbers on the labels in
the e3value model in Fig. 1.

1. The Author offers the Conference the right to consider publishing her paper
Value resource = paper

2. The Conference offers the Author that her Paper is evaluated including the
right to read the evaluation report

Value resource = evaluation report
Value subject = paper

3. The Reviewer offers the Conference that a Paper is reviewed by him
including the right to use the review report for evaluation and include it in the
evaluation report

Value resource = review report
Value subject = paper

4. The Conference offers the Reviewer that he is acknowledged for his
Contribution

Value subject = Reviewer
5. The Author offers the Conference the right to publish/copy her Paper

Value resource = paper
6. The Conference offers the Author that her Paper is published in the

Proceedings
Value resource = paper

7. The Author offers the Conference Money
Value resource/subject = money

8. The Conference offers the Author the right to participate in the Conference
Event

Value resource = conference event

 On the Notion of Value Object 331

9. The Author offers the Conference that the conference program is augmented
by means of giving it the right to include the presentation of her paper

Value resource = presentation
Value subject = conference program

10. The Conference offers the Author a copy of the Proceedings
Value resource/subject = copy of the proceedings

11. The Conference offers the Steering Committee that it is acknowledged for its
contribution by means of the right to be mentioned in the proceedings

Value resource = proceedings
Value subject = Steering Committee

12. The Conference offers the Steering Committee that its conference event is
organized

Value subject = conference event
13. The Steering Committee offers the Conference Money

Value resource/subject = money

The analysis that we give here is not necessarily the only right one. What we do
claim is that our analysis and the format that we use makes the identification process
more rigid. However, there is not one unique value model for all conferences. In some
cases, the authors get paid for a presentation, whereas in other cases, they have to pay.
The Steering Committee may provide financial resources, but it may also try to
acquire them. Ultimately, it is not the designer but the stakeholders in the business
collaboration who decide on what the value objects are.

Sentence 3 exemplifies a complex right: the Conference not only can use the review
report for its evaluation of a paper, but also has the right to include it in the evaluation
report, that is, to forward it to the author. Again, conferences may handle review reports
in different ways, but our analysis forces the stakeholders to be explicit about the rights
rather than posit an unqualified value object “review report”. It is our claim that this is
valuable for the business network negotiations and also when the value model is used as
input for process design. Another interesting question raised by the initial analysis is:
what are the resources that are used in the value transformation “organization of the
conference event” (sentence 12)? In a further analysis, it may turn out that more parties
need to be identfied, such as a conference hotel.

Sentence 4 and 11 exemplify the situation that an actor is also a value subject: the
public acknowledgement of the Reviewer and Steering Committee, respectively, adds
value to themselves.

4.2 Sourcing

The example of the conference case urges us to say something about the effect of
sourcing. Sourcing, or delegation is present here in the form of reviewers performing
some task on behalf of the Conference, and would be possible also for other value
activities, like the publishing of the papers. Sourcing complicates the value object
model because the provider may delegate some of his tasks to a third agent. In that
case, the agent has a double orientation [10]: it offers value to the provider’s
customer, on behalf of the provider, and (thereby) provides value to the provider. To
work out the effects of sourcing is beyond the scope of this paper; we limit ourselves
to the remark that if necessary, the two value objects the agent provides should be
distinguished carefully, and that the B in our format (the one for whom the value

332 H. Weigand et al.

object has value) is not necessarily the customer of A but may also be the customer of
the agent’s principal.

4.3 Modeling Value Transformations

Our analysis of the value object has revealed value resources, value subjects and
value transformations - concepts are currently not in the e3value model. Rather than
overload this model, we propose that these concepts are dealt with in a complimentary
model. Where the e3value model focuses on value exchanges, and centers the model
around the actors, the complimentary model should focus on value transformations,
centering value resources and repressing the actors. A possible candidate for this
model is the Activity Dependency Model described in [1] that aims at being half-way
between value models and process models. Its purpose is to describe, on a high level,
the activities needed for carrying out the value transfers. For that purpose, it includes
coordination activities and assignment activities, among others, and flow dependencies. It
highlights the activities, corresponding partly to value transformations, but it does not
contain the objects on which these activities work. For a graphical representation of the
value object sentences, the Activity Dependency Model is not appropriate

It would be possible to define a new graphical format for this purpose, but a more
practical solution is to use a combination of standard UML diagrams. More in particular,
we can use Class Diagrams for modeling the value resources and Activity Diagrams to
model the life cycle of value resources in terms of the value transformations that they
undergo. Figs. 4 and 5 contain the initial models for the conference case.

Fig. 4. Class diagram for the Value Resource Model of the conference case

 On the Notion of Value Object 333

In the class diagram, we include all value subjects and value resources (something
can be a value subject in one value transformation and a value resource in another – to
simplify, we propose to use the term Value Resource model). In the operation boxes,
the operations found in “use rights” parts of the value object sentences are included.
For example, in sentence 2 the right of reading the evaluation report is mentioned. If
this right is provided to somebody, then it must also be enabled, that is, “read” must
be an operation (method) of the class “evaluation report”. The named associations
should be interpreted as value subject/value resource relationships: that is, the
resource plays a role in the named value transformations of the value subject. There
are also unnamed associations for the relationship between an object and the actor that
brings it in. All in all, the Value Resource Model integrates the information that is
known about the value resources and presents it in a concise way.

The Value Resource Model can also be used for validation and further exploration.
For example, in our conference example, there is the value transformation “acknowledge”
for the subject “reviewer”, but no resource was mentioned. In fig. 4, we have filled in
this gap by allocating this job to the Proceedings. We have also included some
aggregation relationships that were implicit in the sentences, and identified a
superclass of author and Steering Committee. We have not added multiplicities yet,
but this can also be useful (for example, can a paper have multiple authors?). If our
goal is to transform the value model to a process model, the Value Resource Model is
an important input for the resource management analysis that has to make choices on
e.g. the logistics of papers, review reports, money etc.

In the example above, we have tried to be faithful to the sentences, in order to
show that the value resource model is not a result of design but of analysis only. We
made an exception with the class Money, as this would lead to a conflict with the OO
assumption of identifiable discrete instances, and modeled it as Money account.

The activity diagram (Fig. 5) focuses on the value transformations per value subject.
It allows the designer to order them and it may also have a heuristic value, for example,
as it leads to the question what is the birth event of the object. In this case, it allows the
designer to add the value transformation “write paper” that was not recognized

Fig. 5. Activity Diagram (object life cycle) for the Value Transformation Model of the value
subject “Paper”

334 H. Weigand et al.

yet as a value transformation. The ordering of the value transformations is to be added
by the designer, although some part can be derived from the value subject/value
resource relationships. The Value Transformation Model might be useful for deriving
flow dependencies in the Activity Dependency Model.

5 Concluding Remarks

The objective of this paper was to analyze the notion of value object, as it has been
defined up till now in general terms only as “a goods, a service or even an experience
that is of value”. We have analyzed that in the case of goods, the value exchange is in
fact a transfer of ownership. In the case of a service, we have defined this service
more precisely as a value transformation on something (the value subject) that
belongs to the customer or is of interest to him. In some cases, the provider only
contributes to the value transformation indirectly by providing an access right to some
value resource that plays a role in the value transformation. In our analysis, we
distinguish value object from value experience (the value the customer gets from the
value object). However, it is quite well possible that the customer is also the value
subject and that the value transformation consists in offering him some experience.

Our analysis of the value object has brought us to the introduction of the notions of
value resource and value subject as roles in a value transformation. We propose to add
these concepts to the e3value model ontology. We have also suggested to model these
concepts graphically using UML class diagrams and activity diagrams.

The results of this paper might be useful for designers using the e3value model as it
allows them to define value objects in a more rigorous way. The additional models
may also have heuristic value during the design. These suggestions need to be
validated in practice of course, which is still to be done.

To achieve the research objective that we described in the introduction, our next
step is to work on the mapping from value model to process model, via the three
aspect analyses. Besides other things, this work will make clear whether the analysis
of the value object presented in this paper is instrumental to the process model
mapping or not.

References

[1] Andersson, B., Bergholtz, M., Edirisuriya, A., Ilayperuma, T., Johannesson, P., “A
Declarative Foundation of Process Models”, Proc. CAISE’05, Springer-Verlag, LNCS,
2005.

[2] Bergholtz, M., Grégoire, B., Johannesson, P., Schmitt, M., Wohed, P., Zdravkovic, J.
“Integrated Methodology for linking business and process models with risk mitigation”,
Proc. REBNITA 05, 2005.

[3] Dietz, J.L.G. “Enterprise Ontology – theory and methodology”, Springer-Verlag
Heidelberg, Berlin, New York 2005.

[4] Gordijn J., Akkermans J.M. and Vliet J.C. van, “Business Modeling is not Process
Modeling”, Conceptual Modeling for E-Business and the Web, LNCS 1921, Springer-
Verlag pp. 40-51, 2000.

 On the Notion of Value Object 335

[5] Gordijn, J., H. Akkermans, and H. van Vliet, "Value based requirements creation for
electronic commerce applications", in Proceedings of the 33rd Hawaii International
Conference On System Sciences, IEEE, 2000.

[6] Holbrook, M. B. “Consumer Value – A Framework for Analysis and Research”,
Routledge, New York, NY, 1999.

[7] McCarthy W. E., “The REA Accounting Model: A Generalized Framework for
Accounting Systems in a Shared Data Environment”, The Accounting Review ,1982.

[8] Porter, M. “Competitive Advantage”, New York, Free Press, 1985.
[9] Schmitt, M., Grégoire, B. “Risk Mitigation Instruments for Business Models and Process

Models”, Proc. REBNITA 05.
[10] Weigand, H. and De Moor, A. “Workflow Analysis with Communication Norms”. Data

& Knowledge Engineering, 47(3), pp.349-369, 2003.
[11] Weigand, H., Johannesson, P., Andersson, B., Bergholtz, M., Edirisuriya, A., Ilayperuma,

T. “Value Modeling and the transformation from value model to process model”, Proc.
INTEROP-ESA’06, (fc).

[12] Wieringa, R.J., J. Gordijn, “Value-Oriented Design of Service Coordination Processes:
Correctness and Trust”. 20th ACM Symposium on Applied Computing, pp. 1320–1327.
ACM Press, March 13-17 2005

[13] Yu E., “Modelling Strategic Relationships for Process Reengineering”. PhD thesis,
University of Toronto, Department of Computer Science, 1995.

[14] “Business Process Execution Language (BPEL) Resource Guide”, Accessed November
2005, http://www.bpelsource.com/

[15] Global Investor Glossary, http://www.finance-glossary.com/pages/home.htm Accessed
November, 2005

E. Dubois and K. Pohl (Eds.): CAiSE 2006, LNCS 4001, pp. 336 – 350, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Inter-organisational Controls as Value Objects in
Network Organisations

Vera Kartseva1, Jaap Gordijn2, and Yao-Hua Tan1

1 Information Science, Management and Logistics, Vrije Universiteit,
De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands

{vkartseva, ytan}@feweb.vu.nl
2 Computer Science, Business Informatics, Vrije Universiteit,
De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands

gordijn@cs.vu.nl

Abstract. Inter-organizational controls are measures to ensure and monitor that
networked enterprises do not commit a fraud and behave as agreed. Many of
such controls have, apart from their control purpose, an inherent economic
value component. This feature requires controls to pop-up into business value
models, stating how actors create, trade and consume objects of economic
value. In this paper, we provide guidelines that can be used to decide whether
organizational controls should be part of a value model or not. We demonstrate
these guidelines by a case study on the Letter of Credit procedure.

Keywords: inter-organizational controls, value modelling, trust.

1 Introduction

Due to the popularity and widespread use of the world-wide-web, information
technology (IT) services increasingly become commercial services to final customers,
rather than just enabling technical interoperability (e.g. using UDDI, SOAP, WSDL,
etc) between multi-enterprise software components. Examples include the iTunes
store of Apple, and Windows Live. Additionally, many commercial IT services are
offered by a partnership of enterprises rather than just one enterprise. Many customer
needs are in fact reasonably complex; therefore competencies of a series of companies
are needed to satisfy them. It is actually the Internet itself that enables enterprises to
work closely together on satisfying a complex consumer need.

Obviously, developing and deploying commercial IT-intensive services requires
information systems that span multiple enterprises, assuming that such services are
offered by a partnership. It is then important to understand first which enterprises are
involved in the first place, and what they exchange of economic value with each other,
before starting with a requirements engineering and software design phase for
developing information systems, enabling and supporting these value exchanges. To
this end, we have proposed the e3value methodology and ontology (see [11], [12] for
an overview). Using this methodology results in a value model, stating actors
(enterprises and final customers) exchanging objects of economic value, as well as an

 Inter-organisational Controls as Value Objects in Network Organisations 337

analysis whether these exchanges result in profit for all actors involved. We assume
that sustainable profit for all actors is important for a successful value model.

The notion of value object is a key concept in value models. A value object is
created, traded, and consumed by actors, and is of economic value for at least one of
the actors involved. In many cases, value objects can be found quite easily. For
instance, a good obtained by a customer to satisfy his needs is a value object, as well
as the money he pays for obtaining this value object. However, when we model inter-
organizational controls [5], [17], [19], [20], [22], it is sometimes difficult to decide
when something is a value object or not. Controls are measures to ensure that actors
behave honestly: they can be used to prevent fraudulent behavior or can be used to
discover that a fraud has been committed afterwards. Controls are of importance to
create and enhance trust in execution of value exchanges.

Evidence documents often play an important role in inter-organizational controls;
we call them control documents. It is argued in [5], [24] that one way to reduce
uncertainty in the behavior of trading parties is to exchange such documents. Many of
such control documents have elements of economic value. For instance, consider a
cinema ticket. A cashier sells the visitor a ticket which is checked by a controller to
enter the theatre. The control purpose here is to prevent that the cashier allows free
entrance to the cinema, which is accomplished by checking whether the amount of the
tickets obtained by the controller corresponds to the total amount of money collected
by the cashier. In this case, a ticket is a control document. Additionally, this ticket can
be sold by the visitor to others, and the visitor can even earn money by doing so, if he
resells the ticket for a higher price than he paid for it. Because of the reselling
possibility the control document (the ticket) becomes also a value object.

It is, however, sometimes difficult to decide whether a control document is a value
object. Consider e.g. a non-transferable plain-ticket. It is a control document, but is it
a value object too? To answer this question, we investigate the notion of a value
object. We extend the value object ontology into two directions. First, we take an
economic perspective on the notion of value object. The economic perspective is of
importance because value objects possess economic value for some actors, and thus
show why a value model may work at the first place. Second, we take a legal
perspective. We argue that control documents have properties of a value object, if
they represent an element of a right, which can be traded and is of value. We suggest
that there is a need to distinguish between (1) possession of a value object, (2)
ownership rights on a value object, and (3) control documents that represent these
rights. In addition, we argue that transfer of possession is not a value exchange, since
the fact of possession cannot provide an economic value for someone who has no
ownership rights. Finally, we present how our revised conceptualization of ‘value
object’ is of use in a case on the Letter of Credit procedure, a rather complex service
for securing payments.

2 The e3-value Ontology

In earlier work [11], [12] we have proposed the e3-value ontology to model and
analyze value networks consisting of actors exchanging objects of value. Below, we
briefly review the e3-value ontology, using the cinema example as explained in the

338 V. Kartseva, J. Gordijn, and Y.-H. Tan

introduction. Fig. 1 (a) shows a visitor who wants to see a cinema-movie and offers
money in return. This can be conceptualized with the following e3-value constructs (in
bold). Actors, such as the visitor and the cinema are economically independent
entities. Actors transfer value objects (movie, money) by means of value exchanges.
For value objects, someone should be willing to pay, which is shown by a value
interface being part of an actor. An interface models the principle of economic
reciprocity: only if you pay, you can obtain the goods and vice versa. A value
interface consists of value ports, which represent that value objects are offered to and
requested from the actor’s environment. Actors may have a consumer need, such as
the need to view a movie, which when following a path of dependencies, results in
the exchange of objects through a value interface. Exchanges through a value
interface may result in other exchanges through another interface of the same actor, or
may result in a boundary element. The latter means that we do not consider
additional value exchanges.

(a) A visitor sees a movie at a cinem a (b) A visitor sees a movie at a cinema and obtains ticket s

Legend
Value

Exchange
Value
port

Value
interface

Consumer
need

Connect.
element

Actor

Boundary
element

OR
dep.

AND
dep.

ActivityMarket�
segment

Fig. 1. A visitor going to a cinema in e3-value

According to the e3-value ontology [12], a value object is a good, service outcome,
or experience, which is of economic value for at least one of the actors in the value
model. This is fine for regular value models, but in some cases, it is not so easy to
decide whether something is a value object or not. Specifically, consider Fig. 1 (b).
Here, we model an organizational control. The purpose of an organizational control is
that enterprises cannot commit a fraud. In the cinema example, we want to prevent
that a cashier grants entrance to the theatre for free (e.g. for friends). Typically, this is
solved by creating a conflict of interest [20], [22]. A cashier sells a ticket, and this
ticket is needed to enter the cinema. A controller at the theatre entrance obtains the
ticket from the visitor. At the end of the day, the cashier counts the money, and the
controller counts the tickets obtained. Obviously, there should be a correspondence
between the total amount of money and the number of tickets. Note that the cashier
and controller do not show up as actors in the value model, because they are just
employees of the cinema and not profit and loss responsible entities.

 Inter-organisational Controls as Value Objects in Network Organisations 339

A modeling question is if we show the tickets as value objects. On the one hand,
tickets are just controls, and part of e.g. the business process of a cinema, and should
perhaps therefore not be in a value model, but in a process model, which shows how a
value model is put into operation. On the other hand, we can argue that tickets indeed
show up in the value model, because the ticket is of value for its owner (the ticket can
e.g. be resold). A similar example can be worked out for personalized airplane tickets,
which cannot be resold: are these tickets value objects or not?

3 Extending the e3-value Ontology

The aim of this paper is to provide guidelines that help to decide whether a document,
used for organizational control purposes, is a value object or not. To do so, we first
extend the e3-value ontology, and more specifically the part dealing with ‘value
object’ (see Fig. 2). This extension includes two perspectives. First, we utilize the
original economic value perspective, which already exists in the e3-value ontology.
One of the aims of using e3-value is to understand how economic value is created,
distributed and consumed in a network of enterprises. Additionally, we extend the
ontology with a rights perspective. Many organizational controls are rights [16],
which sometimes can be traded. This motivates the legal perspective on value objects.

3.1 An economic value Perspective on the Notion of Value Object

In a value model, objects are only shown if they are of economic value to
stakeholders. In a process model (putting the value model into operation), objects are
shown if they serve as required inputs of activities or are produced as outputs. As a
consequence, not all objects that are part of a process model need to appear in a value
model, because some objects may not be of direct value to someone.

Regular Value Object. We distinguish various kinds of value objects. The concepts
‘good’, ‘service outcome’, and ‘experience’ are already covered by the original e3-
value ontology. A good is a physical product, a service outcome is product of an
intangible nature [14], although a service has in most cases some physical evidence
(e.g. a seal – physical evidence - on the toilet of our hotel after it has been cleaned – a
service). If there is no physical evidence at all, the value object is an experience.
Obviously monetary instruments such as ‘money’ are also value objects. We have
added the notion of ‘evidence’ as a potential value object which represents a control
evidence document. This decision will become clear in the following sections.

Willingness to Pay. To answer the question when an object is a value object, we first
look at what is meant by economic value. In economics, value is human driven (i.e., it
is anthropocentric), meaning that goods and services are not considered to have value
unless humans place value on them [1], [21]. This refers to the concept of willingness
to pay. In the e3-value terms, the expression ‘willingness to pay’ can be interpreted as
some actor is willing to exchange a value object in return for another value object
(including money).

The willingness to pay is for every person is subjective [15]. Every actor values
the same object differently. The subjective component of value makes the value

340 V. Kartseva, J. Gordijn, and Y.-H. Tan

context-dependent. For example, a person in a desert values a bottle of water more
than a person who has unlimited access to water. Thus, in value model design, an
object can be of value or not, depending on the context being modeled. To summaries
all the abovementioned arguments, we suggest the following guideline to identify a
value object:

Guideline 1. An object can be considered a value object for a given value model, if
there exists at least one actor, who depending on his context, has a need for this
value object and is willing to exchange this object in return for another value object.

3.2 A rights Perspective on the Notion of Value Object

In some case studies [16], [17], [18], [19] in the non-profit sector, evidence and other
control documents are proved to be useful value objects. For example, documentary
evidence is useful to model when a service is provisioned by a supplier to a customer
(e.g. a healthcare service to a patient), but is paid by a party different than a customer.
The supplier (a hospital) has then to prove to the paying party (a government or a
representative) that the service has actually been delivered. Since the hospital needs
evidence of service delivery to obtain its money, it can be argued that this evidence is
of value to the hospital. Further, we look at control documents in more detail.

In simple cases, a physical transfer of an object triggers an exchange of
corresponding rights. For example, if you buy bread you receive the loaf of bread
(you possess it), and you receive all the rights on it: e.g. you can use it, resell it, etc.
In more complicated cases, the possession of a value object is transferred separately
from its rights. Suppose that in a local newspaper there are coupons, which give you a
right for getting free loaf of bread on Sunday mornings by the local bakery. If you buy
the newspaper, you get a coupon that entitles you to all the rights for the bread, but
not the bread itself. You can only have the bread, if you present the coupon to the
person in the bakery. The coupon in this case is a control document, which represents
rights for bread. In addition, you can resell your control document ‘coupon’ to
someone else, which results in a transfer of the bread rights from you to the buyer, but
also makes the coupon a value object for you, because you receive something in
return. For capturing the value of such a control documents, we suggest to distinguish
between possession of an object and rights related to the object.

Thinking about the concept of rights leads us to property rights theory. Coase [5],
whose work is considered as a start of property rights theory in economics, suggests
that each asset relates to a vector of rights (or a bundle of rights). Conventionally,
property rights include use rights, which define the potential uses of an asset, income
rights, and rights to transfer a value object permanently to another party [1], [8].
Someone who has rights for a value object has it in ownership. We speak of divided
ownership, if two or more actors (people or organisations) own ‘different’ rights for
the ‘same’ asset [1]. In this case, rights for the same asset can be traded separately
from each other (e.g. stocks for company assets). In fact, since the fore mentioned
rights may comply with our first guideline (willingness to pay for subjective value),
on deciding whether something is a value object or not, they each can be seen as a
value object.

Physical possession of an asset is not the same as ownership. A person may have
rights for an asset (ownership), but may not possess it (as in the coupon example). In

 Inter-organisational Controls as Value Objects in Network Organisations 341

property rights theory the concept of possession is omitted [7]; they argue that even if
a law defines the ownership, the value of an asset is till available to many others. On
the other hand, from legal perspective, if a person possesses an object, but does not
have any rights on it (e.g. cannot resell it), the person cannot legally derive value of
this object [3]. We chose to take the latter perspective, because it is more realistic for
models we made so far, especially when we model fraudulent behavior. Thus, we
argue that the transfer of possession alone is not a value exchange, while the transfer
of rights is.

Fig. 2. Extension of the e3-value ontology

In Fig. 2 we extend the e3-value ontology based on property rights theory. We
introduce the concept of ‘Right’. Following property rights theory, rights of
ownership can be ‘use rights’, ‘income rights’, and ‘rights to transfer’. This is not an
exhaustive set of rights. For example, there are intellectual property rights, such as
copyright, which also can be modeled as rights in this ontology. A right is a property
of a ‘Regular Value Object’. ‘Transfer right’ has a relation permits transfer with
‘income right’ and ‘use right’. A transfer right is seen as a right that is needed to
transfer other rights (use right and income right) from one actor to another. Thus, the
transfer right enables a transfer of rights, not a regular value object. Note that in
economic literature this distinction is not made explicit: as it is understood in the
property rights theory, transfer rights belong to a group of property rights [1], [8].

A right is also a value object itself. This makes it possible to have rights on rights,
like, for example, the derivatives financial instruments are rights to buy or sell stocks,
while stocks represent rights to companies’ assets.

In graphical models, to distinguish rights from regular value objects, we name
them differently. Rights are named as properties of the value object they relate to. For
example, an income right for a house is stated as house:income right.

342 V. Kartseva, J. Gordijn, and Y.-H. Tan

4 Documentary Controls as Value Objects

Documentary controls can play various roles in value exchanges. To start with,
documents can represent evidence of rights. These documents are used in two ways.
First, a document may enable the transfer of rights. Second, a document may enable
claiming (execution of) rights, which results in a transfer of possession. In addition,
there are documents that do not represent any rights, but are just outcomes of a service
(e.g. a certificate). Below we discuss every type in detail.

Rights Evidence Documents. In many cases documents ‘carry’ a value. Such
documents are related to rights. For example, there is a definition of securities in the
legal domain (in Dutch securities are: ‘waardepapieren’, which literally means ‘value
document’). In the Dutch law, the security documents have the following
characteristics: 1. to be a certain form of legal document with a signature 2. deliver
evidence about a right, and 3. by means of the document, the right can be transferred
[23]. However, there exist many other documents that represent rights, which are not
securities in legal terms (e.g. they do not have a signature); such as the examples
above about coupons in a local newspaper or a ticket to the cinema. In earlier times
money was also a kind of a right document: a banknote gave a right for golden coins
from the Dutch Central Bank. In general, the distinctive feature of such documents is
that they are an evidence of rights, and therefore they enable the exchange of value
these rights represent.

There are two types of exchanges, with respect to the purpose of the rights
evidence documents: (1) exchanges where the document enables the transfer of
rights, and (2) exchanges where the document enables the execution of rights. If the
document fulfils the first function, we call it a transfer document, and if the
document fulfils the second function, we call it an executing document.

We argue that an exchange where the rights are transferred is a value exchange,
and an exchange where the rights are executed is not a value exchange, because it
implies the transfer of possession of the related value object, and we have argued that
that possession is not of value (see section 3). However, in other exchanges, where no
transfer or execution occurs, an executing document can be a value object, if it
complies with the definition of a value object (guideline 1).

A document transfers rights in an exchange, if in this exchange, actor A transfers
the document to actor B, which triggers that actor A gives up or issues the rights for
some value object, and B acquires the rights. In Figure 1, if the visitor buys a ticket
from the cinema, the rights for viewing a movie are transferred to the visitor; in this
exchange, the ticket is a transfer document. The rights for a movie are of value to the
visitor. We argue that the exchange when the rights are transferred by means of a
document in return for a value object is a value exchange, because the rights are
always of value:

Guideline 2 (rights transfer value exchange). An exchange is a value exchange if (1)
it includes an exchange of a value object (see guideline 1) in return for a document,
which represents a set of rights for some other regular value object, and (2) in this
exchange a transfer of the rights occurs: the actor who has this document as an
outgoing object looses its rights, and some other actor acquires them.

 Inter-organisational Controls as Value Objects in Network Organisations 343

When the visitor transfers the ticket to the cinema, it does not transfer any rights, but
enables execution of the rights for movie. In this exchange the ticket is an executing
document. The execution of rights triggers a transfer of possession for some good, or,
in case of Movie, the transfer of access to a service. Because the possession or access
alone is not a value object, we consider that the exchange of execution document in
return for a transfer of possession should not be a part of a value model. Basically, we
suggest that the exchange of Ticket and Movie in Fig. 1 is an invalid value exchange.
The following guideline is suggested:

Guideline 3 (transfer of possession). An exchange, where the document enables an
execution of rights, and its exchange results only in a transfer of possession or access
to a value object, is not a value exchange.

Should an executing document be modeled as a value object in other value exchanges,
where it does not fulfill the executing function? For example, a bank may use stocks
of a customer as collateral in giving a credit (the customer and the bank exchange the
stocks for a credit). In this exchange the rights for the stocks are not transferred to
the bank, neither they are executed: the bank does not have a right to get income from
the stocks (trade them), unless the customer defaults (does not pay). But is this a value
exchange? We argue that in such cases the document (stocks) is also of value, because
there are other potential exchanges (e.g. in case of defaulting), which creates a
willingness to pay for the document. So, we suggest the following guideline:

Guideline 4. An executing document can also be a value object in value exchanges,
where it does not fulfill an executing function, as long as it fully complies with
guideline 1 (willingness to exchange).

What type of value object is a right evidence document? Is it good, money, service
outcome or experience? In the cinema example in Fig. 1, a service for what the visitor
is paying is a movie, not a ticket. To our understanding, the ticket and other rights
evidence documents are a separate type of regular value objects, which we call
evidence (see Fig 2).

Documents as Service Outcomes. Some documents are produced as outcomes of
(commercial) services (e.g. a certification service), they are value objects, but they do
not transfer or enable an execution of rights. Therefore, we introduce the following
guideline:

Guideline 5. If a document is not a transfer or execution document, it can only be a
value object if this document is a service outcome, and if it complies with guideline 1.

In the following section we demonstrate the ontology extension and the corresponding
guidelines by modeling the “Bill of Lading” from a value perspective.

5 Case “Bill of Lading”

Suppose we have a seller in Hong Kong and a buyer in the Netherlands. The actors
are geographically far apart, and the goods have to be transported by a carrier from
the seller to the buyer (we assume by sea). On the one hand, the seller does not want

344 V. Kartseva, J. Gordijn, and Y.-H. Tan

to ship the goods onto the carrier’s vessel (and thereby lose control over them)
without first receiving payment from the buyer. On the other hand, the buyer does not
want to pay the seller (and thereby lose control over the money) before the goods
have been shipped. In international trade, the risk of non-payment and non-delivery
can be prevented by accommodating such an instrument as the document/letter credit
procedure (LoC). To secure the risk of non-payment, a contract (Letter of Credit)
between the seller, the buyer, and the bank is made, in addition to the sales contract
between the buyer and the seller.

Fig. 3. Time sequence diagram for the Letter of Credit procedure

In Fig. 3, we explain the LoC procedure in detail by using a sequence diagram. In
the LoC agreement is stated that that the bank will pay to the seller as soon as the
seller will provide the accompanying documents. Normally, in international trade
goods are accompanied with documents, for example, a Certificate of Origin or Bill of
Lading (BoL). These documents are very important control components for the whole
process. The bank receives the documents (BoL) from the seller (#11), and in case the
documents are fine and comply with the requirements in the LoC, the bank will pay
the seller (#12). Further, the buyer has to pay the bank (#13), and the bank then has to
transfer the documents to the buyer (#14). The buyer presents the documents (and
probably also the LoC and the sales contract) to the carrier (#15), and after that
becomes the owner of the goods (#16).

The bank takes the risk that, after the money is paid to the seller, the buyer may
default or refuse to pay. Therefore, the bank has to ensure that the money will be
always reimbursed. The assessment of the customer’s capability to complete the
payment is confined to the general reputation of the customer, the type, complexity,
and magnitude of the contract, and the country where the contract is to be performed
[1]. When it concerns substantial deals, banks require other securities, for example,
additional counter-guarantees from other banks. In this model, a BoL plays a role of

 Inter-organisational Controls as Value Objects in Network Organisations 345

both accompanying documents, and plays a role as security. In the situation when the
buyer refuses to accept the BoL, for whatever reason, the bank can use the BoL to
obtain the goods. In this specific case study, we consider the situation when the BoL
is a tradable, or also called negotiable, document not ‘on name’, which means that the
person who owns the BoL has the rights on the underlying goods.

5.1 A First Value Model for the Letter of Credit

Unlike the time sequence perspective, the value perspective models only the
exchanges of objects of value. There is no notion of time at all. First, we construct a
so-called ideal value model (see [16], [17]). An ideal value model supposes a
perfectly honest world: in e3-value this means that all actors respect the atomicity of
the value interfaces (if you get something, you offer something in return). The value
model in Fig. 4 shows a simple situation: a customer wants to buy a good and
provides money in return.

Fig. 4. A customer buys a good from a seller

Second, we now relax the assumption that all actors behave ideally. Instead, actors
can behave sub-ideally, like not paying for a delivered good (the extension of sub-
ideality to e3-value is called e3-control and is in detail discussed in [16], [17]). This is
where the Letter of Credit (LoC) comes in: to secure that the supplier gets its money,
even if the customer defaults. This situation is expressed in Fig. 5. Note that we not
consider LoC and BoL themselves; they show up in Fig. 6. The customer need begins
at the Customer, and the OR-fork splits the path into two paths: an ideal path and a
sub-ideal path. The ideal path is when the buyer pays to the seller, and receives goods
in return. The sub-ideal path considers the situation when the buyer does not pay to
the seller. Sub-ideality is indicated by the dashed money exchange between the buyer
and seller, representing that this exchange does not happen. As was described above,
according to the LoC procedure, the seller will be paid by the bank and the bank
receives the goods due to the defaulting of the customer to pay the fee for the goods.
(Actually, the bank can never use the goods, but will have to sell them, but we do not
model it here, for simplicity reasons).

The LoC procedure is a control mechanism to reduce the risk for the seller. The
seller also gets money immediately upon presenting the documents (see Fig. 3, #11 &
#12). Note that, we are aware of other sub-ideal situations, for example, when the
buyer receives damaged goods. From the buyer’s perspective, this procedure is more
secure, because he is able to determine, through the LoC, which documents he
requires to prove the seller’s performance. However, this procedure does not
guarantee the buyer that the goods will be delivered. Another control mechanism
should be in place, like insurance. We do not consider these situations in his paper
due to lack of space.

346 V. Kartseva, J. Gordijn, and Y.-H. Tan

Fig. 5. The Letter of Credit: securing the fee for the supplier

5.2 Introducing the Bill of Lading and the Letter of Credit

The model in Fig. 5 does not present the exchange of the BoL and LoC themselves,
and therefore does not yet give a complete picture of control mechanisms from an
economic value perspective. In Fig. 5, we model the LoC procedure in more detail.

First, the Letter of Credit (LoC) is a service, provided by the bank to the buyer. In
return, the buyer pays the bank money. There is also a document, named Letter of
Credit. However, the transfer of the document LoC does not result in an execution of
the LoC service. The LoC service consists of many other transfers, and is executed if
the BoL is transferred to the buyer by the bank. Thus, the LoC document does not
represent the outcome of LoC service and does not comply with guideline 5. We do
not model LoC document as a value object. Instead, we model the LoC service
outcome as a value object.

According to the ontology of value objects, Goods is a regular value object, which
has the following rights as properties: use rights, income right, and transfer right. The
BoL is a rights evidence document, which enables both transfer and execution of the
rights for the goods. The BoL is a regular value object of type evidence.

Fig. 6. Document credit procedure with Bill of Lading

 Inter-organisational Controls as Value Objects in Network Organisations 347

The supplier obtains the BoL from the carrier as a part of exchange of Transportation
Fee and Transportation, same as in Fig. 5. In this exchange, also the BoL is issued as
evidence that the seller has rights for the goods. This is needed because in this
exchange the possession of Goods is transferred to the carrier. We consider the BoL
in this exchange is a transfer document (see guideline 2). Formally speaking, the
seller initially has all the rights for the goods. However, because the carrier obtains
the possession of goods, the BoL is issued as evidence of rights. Furthermore, we do
not model the transfer of possession of the goods here.

In the exchange where the seller exchanges the BoL with the bank in return for a
payment, the BoL is a value object, because it transfers rights and thus, complies with
guideline 2. At this point, the seller gives up his rights for goods, which indicates that
in this exchange the rights are transferred. According to the LoC agreement, the bank
is not allowed to sell the BoL or exchange it for the goods. This means, that although
the BoL is transferred physically to the bank, the bank does not receive the rights for
the goods. The income, use, and transfer rights Good:{Income, Use, Transfer Rights}
are received by the buyer. At the buyer, the value object Good:{Income, Use, Transfer
Rights} is in the same interface as the LoC. This way, we also model that these rights
are a necessary component of the customer to get the LoC: they guarantee a
creditworthiness of the buyer, and play a collateral role.

This example provides an extension to guideline 2, demonstrating that a transfer
document may enable a transfer of rights, between actors different from those
exchanging the document physically. If the rights were transferred between the seller
and the bank, exactly between actors exchanging the BoL, the rights would not be
modelled explicitly, only the BoL that represents them would be modelled.

In the exchange between the bank and the buyer, the bank transfers the BoL to the
buyer after the latter pays (see process model #15). No rights are transferred or
executed here. However, in this exchange the BoL is presented as value object,
because it complies with guideline 4: the buyer needs the BoL to claim the goods,
because BoL is an execution document.

In the value model, we do not model the exchange, where the buyer exchanges the
BoL with the carrier in return for goods (see #15, #16 in Fig.3). In this exchange, the
BoL plays a role of the executing document. According to guideline 3, because
the executing document BoL is exchanged in return for a transfer of possession of the
goods, this exchange is not modelled as a value exchange.

A Sub-ideal Scenario. In Fig. 7, we model the scenario when the buyer refuses to
accept the BoL from the bank or when the buyer defaults. This scenario corresponds
to the sub-ideal path as explained in Fig. 5.

In case the buyer refuses to pay, the value exchange Money between the bank and
the buyer does not occur. Because the bank does not transfer the BoL before the
payment by the buyer (see the process model), the value exchange BoL also does not
happen (between the bank and the buyer). Hence, according to the process model, we
model these exchanges as sub-ideal value exchanges.

If the buyer does not pay, the rights for the goods are transferred to the bank. In the
same value exchange as the not transferred credit and BoL, we model that
Good:{Income, Use, Transfer Right} is exchanged from the buyer to the bank. This
corresponds to the sub-ideal exchange of Money between the seller and the bank in

348 V. Kartseva, J. Gordijn, and Y.-H. Tan

Fig. 5. Note that here the rights are transferred without an exchange of the BoL.
Again, we do not model the exchange of Goods and the BoL between the bank and
the carrier, because it is a transfer of possession.

Fig. 7. Document credit procedure with Bill of Lading, sub-ideal scenario

6 Related Research

There are several proposals in the literature that are related to our work. With regards
to e3-value ontology, there have been a few other ontological approaches on business
modeling and requirements engineering, among the most related are Tropos, REA,
and BMO. Tropos [6] is a methodology that provides an extensive set of tools,
including goal modelling, to facilitate early requirements engineering. However, it is
not specifically focused on value modelling. Ontologically REA [9] is very similar to
e3-value. From a methodological point of view, REA is not an approach for business
development, whereas e3-value provides a methodology for doing so, e.g. by value
model construction and reconstruction, and by profitability-based sensitivity analysis.
The BMO ontology was compared with e3-value ontology in [13], where the merge of
the two ontologies was proposed. The main difference is that BMO focuses on one
actor, while e3-value has a focus on the network of actors. The extensions proposed in
e3-control concerning modelling sub-ideality, and the extensions in this paper, with
regards to distinguishing legal and economic perspectives, and the relation between
value objects, rights, and evidence documents, to our knowledge, have not been
proposed until recently.

7 Conclusions and Future Research

In network organisations, the transfer of rights for a value object often occurs apart
from the value object itself. Such a transfer is enabled by evidence documents that
represent rights, which also play a role of control mechanisms. From the general
definition of a value object in the e3-value ontology, it is not clear when these
documents are objects of value. In this paper, we formulated five guidelines that can
be used to decide if an evidence document is a value object. We demonstrated the

 Inter-organisational Controls as Value Objects in Network Organisations 349

approach with a case study of Letter of Credit procedure. We proposed an extension
of the e3-value ontology with a concept of ‘right’, and a more precise definition of a
concept of value. Value is subjective by nature, and an actor considers an object to be
of value depending on needs of the actor. Thus, an evidence document can be of value
for those actors who are willing to exchange this evidence for another value object.
With regards to rights, we argue that in some cases, when an evidence document has
properties of a value object, there is a need to distinguish between modeling (1)
possession of a value object, (2) rights on this value object, and (3) control documents
that represent the rights. To support this, we extend the ontology of a value object
with concepts ‘right’ and ‘evidence’. Furthermore, we distinguish between evidence
documents that are outcomes of a service, and documents that represent rights. Within
the second type, we distinguish two types of documents: the document that enables
the transfer of rights and that enables the execution of rights. We argue that the
transfer of rights is always a value exchange, while the execution is not, because it
triggers the transfer of possession of a good or an access to a service, while an actor
cannot derive value legally from a possessed object without having ownership rights.
Note that we suggest using this approach of modeling the rights explicitly only if the
notion of a value object is not sufficient to represent the value of control documents.

Acknowledgements. The authors wish to thank Hans Weigand and Paul Johannessson
for the fruitful discussion on the topic of value objects. This research was funded by
EDP Audit Education of VUA and by the BSIK Freeband Project FRUX.

References

1. Barbier, E. B., Acreman, M. C., Knowler, D.: Economic valuation of wetlands: a guide for
policy makers and planners. Ramsar Convention Bureau. Gland, Switzerland (1996).

2. Barzel, Y.: Economic analysis of property rights. Cambridge University Press. Cambridge
(1989)

3. Bell, Abraham and Parchomovsky, Gideon, A Theory of Property. U of Penn, Inst. for
Law & Econ Research Paper 04-05 (2004) Available at SSRN: http://ssrn.com/
abstract=509862 or DOI: 10.2139/ssrn.509862

4. Bertrams, F. R.: Bank guarantees in international trade: the law and practice of independent
(first demand) guarantees and standby letters of credit in civil law and common law
jurisdictions. ICC Publishing; Kluwer Law International. Paris The Hague (1996)

5. Bons, R.W.H.; Lee, R.M.; and Wagenaar, R.W. Designing trustworthy inter-organizational
trade procedures for open electronic commerce, Global Business in Practice, In Gricar, J.,
Pucihar, T. (eds.), Proceedings of the Tenth International Bled Electronic Commerce
Conference. Moderna Organizacija, Kranj (1997)

6. Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J., Perini, A.: Tropos: An Agent-
Oriented Software Development Methodology. Journal of Autonomous Agents and Multi-
Agent Systems. Kluwer Academic Publishers (2004)

7. Coase, Ronald H.: The Problem of Social Cost. Journal of Law and Economics, Vol. 3
(1960) 1-44

8. Foss, K., Foss, N:. Assets, Attributes and Ownership. International Journal of the
Economics of Business, Taylor and Francis Journals, Vol. 8(1) (2001) 19-37

350 V. Kartseva, J. Gordijn, and Y.-H. Tan

9. Geerts, G., McCarthy, W. E.: An accounting object infrastructure for knowledge-based
enterprise models. IEEE Intelligent Systems and Their Applications (1999) 89–94

10. Gordijn, J., Akkermans, J.M., van Vliet, J.C.: Business Modelling is not Process
Modelling. Conceptual Modeling for E-Business and the Web. Lecture Notes in Computer
Science, Vol. 1921. Springer-Verlag. ECOMO 2000, October 9-12, 2000 Salt Lake City,
USA (2000) 40-51

11. Gordijn, J., Akkermans, J.M.: e3-value: Design and Evaluation of e-Business Models.
IEEE Intelligent Systems, Special Issue on e-Business, Vol. 16(4) (2001) 11-17

12. Gordijn, J., Akkermans, J.M.: Value based requirements engineering: Exploring
innovative e-commerce idea. Requirements Engineering Journal, Vol 8(2). Springer
Verlag, Berlin Heidelberg New York (2003) 114-134

13. Gordijn, J., Osterwalder, A., Pigneur, Y.: Comparing two Business Model Ontologies for
Designing e-Business Models and Value Constellations. Proceedings of the 18th BLED
conference (e-Integration in Action), D. R. Vogel, P. Walden, J. Gricar, G. Lenart (eds.).
University of Maribor, CDrom (2005).

14. Gronroos. C.: Service Management and Marketing: A Customer Relationship Management
Approach. 2nd edition. John Wiley & Sons, Chichester (2000)

15. M. Holbrook.: Consumer value — A Framework for analysis and research. Routledge,
New York (1999)

16. Kartseva, V., Gordijn,J., Tan, Y.-H.: Towards a Modelling Tool for Designing Control
Mechanisms in Network Organisations. To be published in the International Journal of
Electronic Commerce (2005)

17. Kartseva, V., Gordijn,J., Tan, Y.-H.: Designing Control Mechanisms for Value Webs: The
Internet Radio Case Study. In Vogel, D.R., Prikko, W., Gricar, J., Lenart, G. (eds.),
Proceedings of the Eighteenth International Bled Electronic Commerce Conference (2005)
on CD-ROM

18. Kartseva, V. and Tan, Y.-H.: Towards a Typology for Designing Inter-Organisational
Controls in Network Organisations. Proceedings of the 38th Annual Hawaii International
Conference on System Sciences, IEEE Computer Society Press (2005)

19. Kartseva, V. Tan Y.-H.: Designing Controls for a Marketplace of Health Care services: a
Case Study. Proceedings of the 12th Research Symposium on Emerging Electronic
Markets, Amsterdam (2005)

20. Starreveld, R.W., de Mare, B., Joels, E.: Bestuurlijke Informatieverzorging (Part 1). 4th
edition. Samsom, Alphen aan den Rijn (1994)

21. Ramsay, J.: The real meaning of value in trading relationships. International Journal of
Operations and Production Management, Vol. 25(6) (2005) 549-565

22. Ronmey, M.B. and Steinbart, P.J.: Accounting Information Systems. 9th edition. Prentice
Hall, Upper Saddle River (2003)

23. Van Emplel G., Huizink ,J.B.: Betaling, waardepapier en documentair credit. Deventer,
Kluver (1991)

24. Willams Jr., C.A., Smith, M.L., Young, P.C.: Risk Management and Insurance. 7th
edition. McGraw-Hill, New York (1995)

Landscape Maps for Enterprise Architectures

Leendert van der Torre1, Marc M. Lankhorst2, Hugo ter Doest2,
Jan T.P. Campschroer3, and Farhad Arbab4

1 University of Luxembourg, Luxembourg
2 Telematica Instituut, Enschede, The Netherlands

3 Ordina, The Netherlands
4 CWI, Amsterdam, The Netherlands

Abstract. Landscape maps are a technique for visualizing enterprise architec-
tures. They present architectural elements in the form of an easy to understand
2D ’map’. A landscape map view on architectures provides non-technical stake-
holders, such as managers, with a high-level overview, without burdening them
with technicalities of architectural drawings. In this paper we discuss the use of
and techniques for landscape maps. A formal model for landscape maps is in-
troduced as the basis of visualization and interaction techniques. Moreover, we
show how a landscape map can be generated from its underlying model. Finally
we show several interaction techniques, for example to build a landscape map
from scratch, independently of an underlying model, or to change a landscape
map together with its underlying model.

1 Introduction to Landscape Maps

The IEEE 1471-2000 standard [11] promotes the use of viewpoints for architectural de-
scription, and it presents as examples the structural, behavioural, physical connect, and
the link bit error rate viewpoint. Moreover, to relate to other standards, it includes dis-
cussions on the decomposition and allocation, enterprise, information, computational,
engineering, and technology viewpoint. Many other viewpoints have been proposed.
Also others, such as Finkelstein et al. [5], and Lassing et al. [9], and Nuseibeh et al. [10],
have advocated the use of viewpoints for describing architectures.

In this paper we discuss so-called landscape map viewpoints used in decision support
of, e.g., information planning. Decision support viewpoints help managers in decision
making by offering insight into cross-domain architectural relations. Typically, this is
accomplished through projections and intersections of underlying models, but analyti-
cal techniques also play a role in construction of landscape maps. Such manipulations
of architectural models typically result in lists, tables, matrices and reports. As such,
decision support viewpoints create high-level, coherent overviews of enterprise archi-
tectures, providing the ‘big picture’ required by decision makers.

Landscape map viewpoints are used for example to publish an overview for man-
agers and process or system owners, or they are employed by architects as a convenient
tool for the analysis of changes or to find patterns in the allocation of resources. A
landscape map, as defined by Van der Sanden and Sturm [14], is a matrix that depicts
a three-dimensional coordinate system representing architectural relations. Figure 1 is

E. Dubois and K. Pohl (Eds.): CAiSE 2006, LNCS 4001, pp. 351–366, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

352 L. van der Torre et al.

Customer

Relations

& Sales

Claims

Processing

Contracting

Liability

Insurance

Car

Insurance

Legal Aid

Insurance

Web portal

Customer relationship

management system

Home & Away

Policy

administration
Legal Aid

backoffice

system

Legal Aid

CRM

Home & Away

Financial

application

Business

Functions

Products

Car insurance

application

Fig. 1. Example of a landscape map

an example of a landscape map that shows which information systems support the op-
erations of an insurance company. The vertical axis represents the companys business
functions; the horizontal axis shows its insurance products. An application rectangle
covering one or more cells means that this particular function/product pair is supported
by the application, e.g., contracting of a legal aid insurance is supported by the legal aid
backoffice system.

The dimensions of the landscape maps can be freely chosen from the architecture
that is being modeled. In practice, dimensions are often chosen from different architec-
tural domains, for instance business functions, products and applications, etc. In most
cases, the vertical axis represents behavior like business processes or functions; the hor-
izontal axis represents ‘cases’ for which those functions or processes must be executed.
These ‘cases’ can be different products, services, market segments, or scenarios. The
third dimension represented by the cells of the matrix is used for assigning resources
like information systems, infrastructure, or human resources. The value of cells can be
visualized by means of colored rectangles with text labels.

We propose to use landscape maps as a presentation format (modality) of enterprise
architecture models expressed in the ArchiMate language [6, 8]. However, our approach
is not restricted to this particular modeling language. In this paper we illustrate how
ArchiMate models can be mapped to landscape maps, and how landscape maps can be
used as an interactive medium for architecture design. For instance, the landscape map
in Figure 1 relates business functions (customer relation and sales, etc.) and products
(liability insurance, etc.) to systems (web portal, etc.). The relation between business
functions and products is directly supported by the assignment relation. The relation
between products and systems is indirectly supported: products are assigned to pro-
cesses (or functions), which in turn use systems.

The layout of this paper is as follows. In Section 2 we introduce our running example,
in Section 3 we give our formal model of landscape maps. In Section 4 we discuss the
visual aspects of landscape maps, and we show how a landscape map can be constructed

Landscape Maps for Enterprise Architectures 353

from an underlying model. In Section 5 we discuss interaction with landscape maps,
where we distinguish between editing a landscape map from scratch, without reference
to an underlying model, and changing the landscape map while simultaneously chang-
ing its underlying model as well.

2 Running Example

To illustrate the concept of landscape maps, we introduce an example to be used in the
remainder of this paper. Our example involves ArchiSurance, an imaginary though rea-
sonably realistic insurance company. ArchiSurance, originally in the business of home
and travel insurance, has merged with PRO-FIT (car insurance) and LegallyYours (legal
aid). As a result of this merger, the companys main products are now in home, travel,
car, liability, and legal aid insurance. To create high-level insight in ArchiSurances pri-
mary operations, the company is described in terms of its main business functions:
Customer Relations & Sales, Contracting, Premium Collection, Claims Processing, and
Document Processing. Post-merger integration is in full swing. The first step in the in-
tegration process has been the creation of a single department for Customer Relations
and Sales. However, behind this front office are still three separate back offices:

– Home & Away: this department was the original pre-merger ArchiSurance, respon-
sible for home and travel insurance.

– Car: this department is the core of the old PRO-FIT and handles car insurance,
including some legal aid.

– Legal Aid: this is the old LegallyYours, except for the part that has now moved to
the Customer Relations & Sales department.

As in many recently merged companies, IT integration is a problem. ArchiSurance
wants to move to a single CRM system, separate back-office systems for policy ad-
ministration and finance, and a single document management system. However, Home
& Away still has separate systems for claims handling, premium collection, and pay-
ment, and uses the central CRM system and call center. The Car department has its own
monolithic system, but uses the central CRM system and call center. The Legal Aid
department has its own back- and front office systems (Figure 2).

An important prerequisite for the changes in ArchiSurance’s IT is that the IT integra-
tion should be ‘invisible’ to ArchiSurance’s clients: products and services remain the
same. However, this is not a straightforward requirement. To illustrate the complex re-
lationships among organization, products, business processes and IT support, Figure 3
shows the relations among the Damage Claiming process, its IT support, and the organi-
zation. Note that this figure shows these relations for only a single business process. In
general, many business processes within the back office link the external products and
services with the internal systems. E.g., Figure 3 shows the ‘travel insurance’ product,
comprised of a number of services realized by different business processes.

This web of relations creates a major problem if we want to create insight in the
IT support of ArchiSurance. Many systems used by many processes realizing various
products and services comprise too much detail to display in a single figure. This is a
typical example of where landscape maps can help. As shown in Figure 4, a landscape

354 L. van der Torre et al.

Home

&

Away

Car
Legal

Aid

Customer Relations & Sales

Document Processing SSC

HRM
Product

Development

Asset

Management

ArchiSurance

Home

&

Away

Car

Legal

Aid

Customer Relations & Sales

Document Processing SSC

Home & Away

Policy

administration

Home & Away

Financial

application

Car

Insurance

application

Legal Aid

backoffice

system

Web

portal

Call center

application

CRM system
Legal Aid

CRM

Document

management

system

Fig. 2. Actor diagram showing ArchiSurance departments; Applications used by departments

Travel Insurance

Claim

registration

service

Customer

information

service

Claims

payment

service

Insurance policy

Insurance

application

service

Premium

payment

service

Customer

data mutation

service

Customer

Fig. 3. Relations among Damage Claiming process, its IT support, and the organization; The
’travel insurance’ product

Customer

Relations

& Sales

Claims

Processing

Contracting

Document

Processing

Liability

Insurance

Car

Insurance

Travel

Insurance

Home

Insurance

Legal Aid

Insurance

Web portal

Call center application

Customer relationship management system

Home & Away

Policy administration

Legal Aid

backoffice

system

Legal Aid

CRM

Document management system

Home & Away

Financial application

Business

Functions

Products

Premium

Collection

Car insurance

application

Fig. 4. Landscape map of ArchiSurance

Landscape Maps for Enterprise Architectures 355

map of ArchiSurance’s IT applications in relation to its business functions and products
provides a high-level overview of the entire IT landscape of the company.

From this figure, it is apparent that there is an overlap in ArchiSurance’s IT support,
both in the Car insurance application and in the Legal Aid CRM system. This insight
is difficult to obtain from the previous figures. It requires the composition of relations
such as ‘product contains business service’, ‘business service is realised by business
process’, ‘business process is part of business function’, ‘business process uses appli-
cation service’, and ‘application service is realised by application’.

3 Definition of Landscape Maps

In this section we give a formal definition of landscape maps, which is used to facilitate
the construction of landscape maps from underlying architectural models, the interaction
between the visual part of a landscape map and its underlying model, and the analysis
of landscape maps. So far landscape maps have been used as a notation without formal
underpinnings. Though visualization and interaction techniques can also be developed
without a formal model in the background, we believe that the uniform and abstract view
on landscape maps given by our formal definition facilitates their design and realization.

The formal definition of a landscape map is based on a well-defined relation to an
underlying architectural model and on our notion of the signature of a landscape map,
which in turn is loosely based on the notions of architectural description informally
defined in the IEEE 1471-2000 standard document [11]. In the subsection below we
explain what we mean by a signature of a landscape map. Next, we distinguish sym-
bolic and semantic models, based on this signature. Finally, we discuss landscape map
viewpoints, and the distinction between views and visualizations. This terminology is
borrowed from formal methods [15], and the use of this terminology in enterprise ar-
chitecture is discussed in more detail in [3].

3.1 The Signature of a Landscape Map

Intuitively, architectural descriptions such as landscape maps visualize a set of generic
concepts and relations. A concept is interpreted as a set, and elements of this set are
called concept instances. Of course, in many cases concepts like function and applica-
tion in our running example are interpreted as objects, not as sets. In such cases we have
to add the constraint that the set is a singleton set. Representing concepts by sets is the
most general approach, and applied in most modelling languages.

There is a set of concepts on the X-axis (categories, e.g., products), a set of concepts
on the Y-axis (functions, e.g., business functions), and one or more sets of concepts
displayed on the matrix (e.g., applications). Moreover, there is a ternary relation that
represents a landscape map. Thus, the ArchiSurance example contains the following
concepts and one relation. Note that the set of concepts does not make explicit which
concepts occur on the X-axis, the Y-axis or on the plane.

C = CA ∪ CX ∪CY ∪ CZ R = {use}
CA = {product, function, application} CX = {home ins, travel ins, . . .}
CY = {customer rel, claim processing, . . .} CZ = {web portal, call center, . . .}

356 L. van der Torre et al.

Furthermore, we assume an implicit ‘is-a’ or subset relation on the concepts, since
each element of CX is a product, each element of CY is a function, and each element
of CZ is an application.

home ins ⊆ product, travel ins ⊆ product, . . .

Finally, the relevant information in the landscape map in Figure 4, e.g., that web
portal is used by customer relations & sales, but not contracting, can be represented
in two ways. First, we may say that the relation is defined on the set of concepts, i.e.,
use ⊆ C × C × C. We have product on the X-axis and function on the Y-axis, i.e. use
⊆ CX×CY ×CZ . Under this interpretation of the relation, the landscape map in Figure
4 can be represented by the following relation.

use ={〈 home ins, customer rel, web portal〉, 〈 home ins, customer rel, call center〉,
〈 home ins, customer rel, crm〉, 〈 travel ins, customer rel, web portal〉, . . .

Alternatively, inspired by the notion of signature in formal methods [15, 3], we can
interpret relations on concept instances use ⊆ product × function × application. More
precisely, the relation can be interpreted as follows.

use ⊆ home ins × customer rel × web portal ∪ home ins × customer rel × call center
∪ home ins × customer rel × crms ∪ travel ins × customer rel × web portal . . .

In this paper we use the latter option, which is analogous to the notion of typing in-
formation in signatures of formal languages [15]. For the techniques developed in this
paper both options could be used, but for other techniques such as analysis and simula-
tion of enterprise architectures, the latter option is preferred [3]. The difference is that
in the second case, the relation is not defined on the concepts, but on the concept in-
stances. Consequently, the relation between concepts may be called typing information
of the landscape map. This is explained in more detail in the following section, when
we discuss the interpretation of a signature, and semantic models. A further discussion
can also be found in [3].

The combination of a set of concepts together with the pre-defined is-a relation, and
the relation together with typing information, is called the signature of a landscape map.

3.2 Semantic and Symbolic Models

The notion of an architectural model is notoriously ambiguous. The ambiguity becomes
clear when we use our formal machinery. First, we have to distinguish between semantic
and symbolic (syntactic) models of an architecture. The former are an abstract descrip-
tion of the structure and ‘meaning’ of the architecture itself; the latter are its denotation,
i.e., part of the architectural description. This distinction between the architecture and
its description is also made in the IEEE 1471 standard.

A semantic model consists of a domain and an interpretation function. In such
a model, each concept is interpreted as a set from a domain, which represents that
concepts are generic. The ternary landscape map relation is defined on the concepts

Landscape Maps for Enterprise Architectures 357

instances, not on the concepts themselves. For example, the following describes a sim-
ple model. Assume that all concepts that are not mentioned are empty sets. In this
example, use is defined on instances of concepts like h1 and c1.

home ins = {h1, h2, h3},
customer rel = {c1, c2, c3},
web portal = {w1, w2, w3}
use = {〈h1, c1, w1〉, 〈h1, c2, w3〉}

Second, the notion of architectural model in the IEEE 1471 standard corresponds to
what we call symbolic models, which are logical theories based on a signature. Sym-
bolic models are part of the architectural description, and thus they can describe ele-
ments of an architecture. In our formal model, an architectural description is more than
just a signature that can be visualized in a view: it also contains constraints and actions
which play an important role in analysis and interaction.

Landscape map constraints are logical expressions expressed in terms of the land-
scape map signature. They further describe the architectures (the semantic models) that
fit the signature of the landscape map. For example, there may be constraints that each
concept is non-empty, or that concepts are singleton sets. Examples of such constraint
languages are OCL for UML [7] and description logics for first-order models [1].

Landscape map actions are descriptions of how a view can be modified, for example
due to interaction with the user or as triggered through another view. An action specifies
both the interaction dialogue with the user (which kind of information must be obtained
from the user when he clicks a button), as well as the consequence of the interaction
(e.g., whether and how the underlying model must be modified after interaction with
the user).

3.3 Viewpoints, Views and Vizualizations

In the IEEE-1471 standard [11] a view is a representation of a whole system from the
perspective of a related set of concerns, that may consist of one or more architectural
(i.e., symbolic) models. A viewpoint is a specification of the conventions for construct-
ing and using a view.

In our formal model of landscape maps we abstract away from stakeholders and their
concerns, because they are notoriously hard to formalize. Moreover, we distinguish
between a view and its visualization. A landscape map viewpoint contains a partial
mapping from the signature of the architecture to the landscape map signature, and a
landscape map view is the result of applying this mapping to an underlying model.
Moreover, the landscape map viewpoint contains a mapping from the view to visual
structures.

The visual structure can be formalized in many ways, for example by a signature that
expresses in a mathematical way that there is an X-axis, a Y-axis, a plane and rectangles
in this plane. Under this formalization, the landscape map viewpoint contains a partial
bijective mapping between the signature of the landscape map and the signature of
the vizualization. Such a mapping is partial because some elements of the architecture
will not be visualized and some elements of the visualization (e.g., colors) may have

358 L. van der Torre et al.

a meaning outside of the model. However, visual structures can also be formalized in
other ways, and we do not constrain ourselves to this particular formalization.

Summarizing, in our model we see a landscape map as a composition of a symbolic
model and a visual structure, together with a partial bijective mapping of the model on
the visual structure. This is less ambiguous than the informal IEEE standard.

4 Visual Aspects of Landscape Maps

The goal of a landscape map is to give an overview of and insight into some architec-
tural relations. In general, a landscape map represents two relations in one map: on the
one hand the relation between the entities along the vertical axis and the entities in the
plane, and on the other hand the relation between the entities along the horizontal axis
and again the entities in the plane. Through the entities in the plane, an indirect relation
is established between the two dimensions of the axes. For instance, if an application
supports some business function in relation to a certain product, then the business func-
tion can be said to support that product.

4.1 The Axes

An intuitive and easy to understand choice for the axes is essential for landscape maps
to be useful. In the infrastructural approach of Ordina [13], the axes are chosen as fol-
lows. The vertical axis represents business functions, i.e., business behavior categorized
with regard to results and independent of resource or deployment choices. The horizon-
tal axis represents cases, which still can be specialized to different types of entities.
For instance, products or services can be considered as cases business functions add
value.

To be useful for managing and designing for change, it is important that the choice
of axes is stable, i.e., that the same axes can be used for different usages of the map, and
for representing different situations over time. Another requirement is that the choice
of axes results in a useful decomposition of the domain. The map is useless if all entries
are assigned the same value, or if the matrix becomes sparse in all situations.

The axes themselves allow some freedom in how columns (or rows) are ordered.
Sometimes this freedom can be used for arranging columns such that the plane consists
of nice rectangular regions like in Figure 4. In other cases, there are semantic con-
straints, like ordering of business functions in time or an ordering according to priority.

Finally, it is possible to add a hierarchical structure to an axis. For business functions
or processes this is an obvious approach to allow more detail in a landscape map.

4.2 The Cells

The cells of a landscape map, which are the third dimension of the landscape map,
depend on the purpose of the landscape map. If the map is to be used for enterprise
application integration, the cells will represent applications or systems; see, for instance,
the landscape map in Figure 4. If the purpose is to give insight into the use of data
elements, the cells will hold references to data types.

Landscape Maps for Enterprise Architectures 359

The landscape map in Figure 4 is a view on an underlying model, with its own
signature. For example, it may be based on the same sets of concepts, but with two
other relations:

C = CA ∪ CX ∪CY ∪ CZ R = {support, realize}
CA={product, function, application} CX = {home ins, travel ins, . . .}
CY = {customer rel, claim processing, . . .} CZ = {web portal, call center, . . .}

Figure 2 illustrates how an application supports a business process that spans a num-
ber of business functions, and assumes, moreover, that the underlying model specifies
how an application realizes a product. Now we have: support ⊆ CY × CZ and realize
⊆ CZ ×CX . In this particular case, we can directly find the use relation as the product
of support and realize. To be precise, combining support and realize leads to a relation
CY ×CZ ×CX , so we still have to reshuffle the order of the parameters to find the use
relation. Moreover, as explained in Section 3.1, support, realize and use are defined on
concept instances, not on concepts themselves. use = support× realize

Note that in this case, because the ternary use relation of the landscape map is con-
structed as a cross product of two binary relations, its components can always be vi-
sualized as a rectangle. That is, if there is an application say z, for (x1, z, y1), and
(x2, z, y2), then there are also components for (x1, z, y2) and (x2, z, y1).

At the first sight, it may seem that the visualization in Figure 4 of the three dimen-
sional use relation is straightforward. However, a closer inspection reveals that several
choices must still be made. First, the three dimensional relation does not specify in
which order the items on the axes are presented.

Second, the three dimensional relation does not specify how applications are ordered
within a cell of the matrix. Consider for example the top right cell, which visualizes the
applications used for Customer Relations & Sales, and Legal Aid Insurance. There are
four application components in this cell: Web portal, Call center application, Customer
relationship management system, and Legal Aid CRM. However, the relation does not
specify that the web portal must be on top, that it is bigger than the two others below,
etc. This is what we call visual information, which must be deduced and/or produced
by a layout algorithm.

4.3 Automatic Layout of Landscape Maps

An important condition for landscape maps to be effective for problem identification
is that the visualization must be intuitive and easy to understand. To a large extent, the
choice of the axes and the ordering of the rows and columns determine the layout of a
landscape map. If adjacent cells in the plane have the same value assigned, they can be
merged to form a single shape. If there are no other criteria for ordering the axes such as
time or priority, the ordering can be applied to optimize the layout of shapes the plane,
and also to limit their number.

Creating the layout of a landscape map can be seen as a search process. We must
define the search space, what it means to have a ‘good’ or ‘nice’ layout, and we must
find smart ways to search.

360 L. van der Torre et al.

For the search space, a cell that has multiple values assigned can be visualised by
multiple combinations of overlaps and ways to split the cell. The input for an automatic
layout algorithm is an empty matrix with a per-cell list of values. A cell that has multiple
values assigned may be visualised by using overlaps and/or cell splitting. For instance,
the top right cell of Figure 4 has four values assigned and is visualised by splitting the
cell in three rows of which the bottom one is overlapped by the fourth value. A layout
algorithm should be able to derive such a visualisation (semi-)automatically. Examples
of rules that can be used to evaluate possible layouts are to minimize the number of
objects on the plane, minimize the number of corners on the objects. maximize the
convexity of the objects. make the smallest object as large as possible. We must define
also the precedence of the rules in cases of conflict.

For the order of searching the search space, we must find some good heuristics be-
cause the search space is huge, already for a simple example as in Figure 4. For instance,
assume that a cell has four values assigned, i.e., four applications are used by a partic-
ular combination of a product and a business function. The basic layout of this cell can
be chosen from 168 possible options:

– 4 overlaps, no cell splitting −→ 4*3*2 (top bottom order!)
– 4 subcells, no overlaps−→ 4*3*2 = 24
– 2 subcells with 2x2 overlap−→ 4*3*2 = 24
– 2 subcells, one with 3 overlaps−→ 4*3*2 = 24
– 3 subcells, one with 2 overlaps−→ 4*3*2 = 24
– 3 subcells, one overlapping two −→ 24
– 3 subcells, one overlapping three−→ 24

Clearly, the total number of possible visualizations for a landscape map grows ex-
ponentionally. Therefore, the search space must be constrained by rules. Some rules to
guide the search process are to consider only applications that are allowed by the model,
for subcells at the border of a cell, choose applications that also occur in neighboring
cells, start with borders, then go for corners, and finally choose centers of cells.

A particular kind of search process works as follows. We first try to find a good initial
layout and thereafter we try to improve this initial layout. In this case, it is important to
find a good initial layout, since improvement is slow. Here we can use variants of the
search heuristics mentioned above. The landscape map of Figure 4 has been generated
using the following set of rules:

– Choose applications for borders.
– Choose applications for corners.
– For applications that occur only in one cell, put the application in the center of the

cell (e.g., top right corner).
– Fill rows and columns (e.g., top three rows of applications).
– Fill neighbors in a ‘smart’ way.

In the particular case of Figure 4, these construction rules directly yield the presented
landscape map without the need for any improvement rules. However, in general there
will be room for improvement. Examples of improvement rules are to enlarge one ap-
plication in a cell, as long as it does not exclude another application from the cell, or to

Landscape Maps for Enterprise Architectures 361

swap two subcells in a cell. The improvements are again measured by the same kind of
rules as in the previous case. Now, the additional possibility is not to search the whole
search space in an exhaustive way, but to randomly apply the improvement rules, as in
evolutionary learning techniques.

5 Interaction with Landscape Maps

So far, landscape maps have been used as a static one-way presentation format, and
landscape map tools contain only editors that allow architects to create landscape maps,
with no provisions to relate them to more formal underlying architectural models. We
use landscape maps as an interactive medium. Landscape maps are used as a starting
point for more detailed models and specifications and they can be used for entering
relations between the chosen dimensions. Changes in the landscape map can also be
analyzed for impact on other elements of the map.

We have developed new techniques to define interactive landscape maps. In this
section we discuss the notion of landscape map action, which has already been defined
in Section 3.2 as a description of how a view can be modified, for example due to
interaction with the user or as triggered through another view.

We say that landscape map actions create new views and visualizations from existing
ones, and can therefore be formally described as mappings between views and their
vizualizations. At this abstract level, they have something in common with our notion
of viewpoint. However, intuitively they are clearly different in important ways, and this
is reflected also in our formal definition.

First, when we change the landscape map view we may also have to change the un-
derlying model, and vice versa. For example, consider a stakeholder that works with
multiple views at the same time, or multiple stakeholders with multiple viewpoints. In
such cases, we visualize the changes directly in all views (with the problem of calcu-
lating new visual attributes). On the contrary, when we create a new view from a view-
point, then existing views do not change. Actions that change the underlying model
necessarily have a strict semantics, whereas actions that change only the visualization
of a model in a view can be used to make a landscape map more ‘suggestive’, e.g., by us-
ing colors and sizes of objects to signify their relative importance. Although important
in practice, we do not discuss visual and psychological aspects of landscape maps here.

Second, actions may be interpreted in different ways, depending on the stakeholder
and its viewpoint. For example, some stakeholders may change the underlying model,
while others may not. For this reason, we represent actions explicitly in views, in the
sense that viewpoints or landscape map actions can also modify the landscape map ac-
tions. In this, we use an extended notion of ‘view’ compared to the IEEE 1471 standard,
in which views only relate to the architecture itself.

Third, actions typically require some interaction with the user, before they can be
executed. We therefore extend the notion of action by associating an interaction protocol
with it. Thus, an action specifies both the interaction dialogue with the user (which kind
of information must be obtained from the user when he clicks a button), as well as the
consequence of the interaction (e.g., whether and how the underlying model must be
modified after interaction with the user).

362 L. van der Torre et al.

In this section we discuss two kinds of interactions. In Section 5.1 we describe the
creating and navigating a landscape map. In Section 5.2 we discuss the more complex
case in which the underlying model can be changed by editing the landscape map.

5.1 Creating and Navigating a Landscape Map

The first contours of a landscape map are usually drawn on a white-board, flip-over
or piece of paper. Together with the stakeholders the architect tries to address their
concerns. The map should be such that it concentrates on the choices that must be made.
The drawing must also be such that consequences are visible. In this interaction the
architect chooses the concepts on the axes and on the plane, the level of detail, leaving
out the facts that are less important. For the sake of readability, understandability, and
acceptance the architect juggles a little bit with the (unwritten) rules of the landscape
map. With pen and paper this can obviously be done.

Back at the desk and using the tool we envisage, the landscape map must be con-
structed in a more formal way. First, the architect needs to select the type of concepts
used on the X-axis, on the Y-axis, and on the plane (see Figure 5). In our ArchiSurance
example, the X-axis contains products, the Y-axis signifies business functions, and the
plane holds applications.

Next, the objects on these axes must be chosen (the X1, . . . , Xm and Y1, . . . , Yn in
the figure). If a landscape map is used to define a new architecture, these objects can be
freely chosen (of course conforming to the type of the axes). Alternatively, if an existing
architecture model is visualized they may be selected from this model. By choosing the
concepts for the axes the field of play is defined.

After this, the architect must choose the type of assertions that are made by putting
an object Zk somewhere on the plane, i.e., the relations R1 and R2. In our example,
he chooses business functions on the vertical axis, products on the horizontal axis and
applications on the plane. The most obvious, intuitive assertion is that an application is

Y1

Y
n

Y
j

X1 X
i

X
m

Y-axis

X-axis

Z
k

R2

R1

Fig. 5. Elements of a landscape map

Landscape Maps for Enterprise Architectures 363

used by activities required within the business function in realizing the product, giving
us R1 = support and R2 = realize. For every object the architect places on the plane,
these relations between Xi, Yj , and Zk are instantiated.

Furthermore, if the rectangle of the application Zk is not exactly aligned within
a row and/or column, then the relations with the X and Y elements are in a sense
‘incomplete’. For example, an application may deliver only some of the functionality
needed to support a business function.

In a similar fashion, an existing landscape map can be used as a starting point for
navigation. In this case, relevant interactions include:

– Open a rectangle: detailed specifications or detailed models are shown in a separate
window.

– Close detailed specification or detailed models.
– Change granularity of an axis; for instance, business processes can be changed to

business activities.
– Link two rectangles by a relation supported by the underlying concept. For instance,

if rectangles represent systems, use or composition can be used.

5.2 Changing a Landscape Map

If an architect or stakeholder wishes to change an existing landscape map, the effects
of this change on the underlying architecture model need to be assessed. Some changes
may be purely ‘cosmetic’ in nature, e.g., changing the color of an object. Other changes
need to be propagated to the underlying model, e.g., if an object is added or deleted.

Mapping a seemingly simple change to the map onto the necessary modifications of
the model may become quite complicated. Since a landscape map abstracts from many
aspects of the underlying model, such a mapping might be ambiguous: many different
modifications to the model might correspond to the same change of the landscape map.
Human intervention is required to solve this, but a landscape map tool might suggest
where the impact of the change is located.

In the example of Figure 4, the architect may, for instance, want to remove the seem-
ingly redundant Legal aid CRM system by invoking a ‘remove overlap’ operation on
this object. This operation influences both the visualization and the architectural model.
Figure 6 illustrates the effects of the operation on the underlying model.

First, the architect selects the object to be removed, in this case the Legal Aid CRM
system. The envisaged tool colors this object and maps it back onto the underlying
object in the architecture model (an element of the set CZ as defined in Section 3.1).

Next, the relations connecting this object to its environment are computed (the sec-
ond part of Figure 6). Here, this concerns the relations of Legal Aid CRM with the Web
portal and the Legal Aid backoffice system. These relations will have to be connected to
one or more objects that replace the objects that are to be removed. Since we have cho-
sen a ‘remove overlap’ operation, the landscape tool computes with which other objects
Legal Aid CRM overlaps, in this case the CRM system. The relations formerly con-
necting Legal Aid CRM are then moved to the other CRM system, unless these already
exist (e.g., the relation with the Web portal).

Naturally, this scenario presents an ideal situation with minimal user intervention. In
reality, a tool cannot always decide how a proposed change is to be mapped back onto

364 L. van der Torre et al.

the model, and may only present the user with a number of options. For example, if the
functionality of the Legal Aid CRM system would overlap with more than one other
system, remapping its relations requires knowledge about the correspondence between
these relations and the functions realized by these other systems.

ArchiSurance

Home
&

Away

Car

Legal
Aid

Customer Relations & Sales

Home & Away
Policy

administration

Home & Away
Financial

application

Car
Insurance
application

Legal Aid
backoffice

system

Web
portal

Call center
application

CRM system Legal Aid
CRM

ArchiSurance

Home
&

Away

Car

Legal
Aid

Customer Relations & Sales

Home & Away
Policy

administration

Home & Away
Financial

application

Car
Insurance
application

Legal Aid
backoffice

system

Web
portal

Call center
application

CRM system Legal Aid
CRM

Fig. 6. Editing a landscape map

6 Conclusions and Future Work

In this paper we introduce landscape maps for enterprise architectures, which is an in-
strument that has proven its value in the architecture and consultancy practice of Ordina.
The landscape map is an easy-to-read informative format that provides overview of and
insight into architecture relations between different domains. We define a formal se-
mantics for landscape maps based on a mapping to and from the ArchiMate language.
We show how landscape maps can be automatically derived from enterprise architec-
tural models and explain how they can be automatically visualised. Finally, we explain
how interaction with landscape maps is realised by propagating changes back to the
underlying model by means of actions.

The development of landscape maps in this paper carefully balances formalization
and informal discussion. Enterprise architectures are often informal, because they must
not constrain the architect. However, to provide the architect with useful tools, some
formal definitions are necessary. In this paper we only adopt a minimal formalization
in terms of the signature of a landscape map, but we do not constrain for example the

Landscape Maps for Enterprise Architectures 365

visual structures, or the landscape map actions. The minimal formalization has been
sufficient to define the visualization and interaction techniques.

Based on the formalization of landscape maps presented in this paper, we have de-
veloped a prototype that illustrates the added value of the formal semantics of landscape
maps and the benefits of interactive landscape maps (based on actions). The prototype
serves as a proof of concept of the formalization of, automatic layout of, and interaction
with landscape maps. Furthermore, it illustrates to members of the ArchiMate Forum
the tool support that we envisage for enterprise architecture. Some of the ideas have
been incorporated by BiZZdesign in their ArchiMate-compliant Architect tool.

The use of viewpoints for architecture-level impact analysis (see, e.g., [13, 4, 2,
12]) is a subject for further research. The type of editing illustrated in this paper tends
toward this type of analysis. By propagating changes to the landscape map through the
architectural model, a high-level impression of the effects of a change can be obtained.
Landscape maps can also be used to visualise the results of other types of analysis. For
example, a cost or performance analysis may yield quantitative results. Several visual
techniques such as colors, line styles, and fonts can be used to highlight these effects
within the landscape map.

References

[1] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and editors P. F. Patel-Schneider.
Description Logic Handbook: Theory, Implementation and Applications. Cambridge Uni-
versity Press, 2002.

[2] F. de Boer, M. Bonsangue, L. Groenewegen, A. Stam, S.Stevens, and L. van der Torre.
Change impact analysis of enterprise architecture. In Proceedings of IEEE International
Conference on Information Reuse and Integration (IRI’05), 2005.

[3] F. de Boer, M. Bonsangue, J. Jacob, A. Stam, and L. van der Torre. A logical viewpoint on
architectures. In Proceedings of EDOC’04, pages 73–83. IEEE, 2004.

[4] F. de Boer, M. Bonsangue, J. Jacob, A. Stam, and L. van der Torre. Enterprise architecture
analysis with xml. In Proceedings of 38th Hawaii international conference on system
sciences (HICSS’05), 2005.

[5] A. Finkelstein, J. Kramer, B. Nuseibeh, L. Finkelstein, and M. Goedicke. Viewpoints:
A framework for multiple perspectives in system development. International Journal of
Software Engineering and Knowledge Engineering, 2(1):31–57, 1992.

[6] H. Jonkers, M.M. Lankhorst, R. van Buuren, S. Hoppenbrouwers, M. Bonsangue, and
L. van der Torre. Concepts for modelling enterprise architectures. International Journal of
Cooperative Information Systems, 13(3):257–287, 2004.

[7] A. Kleppe and J. Warmer. The object constraint language and its application in the UML
metamodel. In Proceedings UML’98 Beyond the Notation, Mullhouse, France, 1998.

[8] M. Lankhorst et al. Enterprise Architecture At Work. Springer, 2005.
[9] N. Lassing, D. Rijsenbrij, and H. van Vliet. Viewpoints on modifiability. International

Journal of Software Engineering and Knowledge Engineering, 11(4):453–478, 2001.
[10] B. Nuseibeh, S. Easterbrook, and A. Russo. Making inconsistency respectable in software

development. Journal of Systems and Software, 56(11), 2001.
[11] IEEE Computer Society. IEEE Std 1472-2000: IEEE Recommended Practice for Architec-

tural Description of Software-Intensive Systems. 2000.
[12] A. Stam, J. Jacob, F. de Boer, M. Bonsangue, and L. van der Torre. Using xml transforma-

tions for enterprise architectures. In Proceedings of ISOLA’04, 2004.

366 L. van der Torre et al.

[13] W.A.M. van der Sanden, P. Bergman, J.T.P. Campschroer, and H.R. de Reus. Realisatie van
flexibele informatievoorziening (in dutch). Informatie, 41:58–65, 1999.

[14] W.A.M. van der Sanden and B.J.A.M. Sturm. Informatiearchitectuur, de infrastructurele
benadering (in dutch). 2000.

[15] J. van Leeuwen, Ed. Handbook of Theoretical Computer Science, vol. B: Formal Methods
and Semantics. Amsterdam, 1994.

Configuration and
Separation

Model-Driven Enterprise Systems Configuration

Jan Recker1, Jan Mendling2, Wil van der Aalst1,3, and Michael Rosemann1

1 Queensland University of Technology,
126 Margaret Street, Brisbane QLD 4000, Australia

{j.recker, w.vanderaalst, m.rosemann}@qut.edu.au
2 Vienna University of Economics and Business Administration,

Augasse 2-6, 1090 Vienna, Austria
jan.mendling@wu-wien.ac.at

3 Eindhoven University of Technology,
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

w.m.p.v.d.aalst@tm.tue.nl

Abstract. Enterprise Systems potentially lead to significant efficiency
gains but require a well-conducted configuration process. A promising
idea to manage and simplify the configuration process is based on the
premise of using reference models for this task. Our paper continues along
this idea and delivers a two-fold contribution: first, we present a generic
process for the task of model-driven Enterprise Systems configuration
including the steps of (a) Specification of configurable reference models,
(b) Configuration of configurable reference models, (c) Transformation of
configured reference models to regular build time models, (d) Deployment
of the generated build time models, (e) Controlling of implementation
models to provide input to the configuration, and (f) Consolidation of
implementation models to provide input to reference model specification.
We discuss inputs and outputs as well as the involvement of different
roles and validation mechanisms. Second, we present an instantiation
case of this generic process for Enterprise Systems configuration based
on Configurable EPCs.

1 Enterprise Systems and Reference Modeling

Over the last years, Enterprise Systems (ES) have evolved to comprehensive
IT-supported business solutions that presumptively support and enhance orga-
nizations in their business operations. This, however, only holds true for such
systems that are well-aligned with organizational requirements. As Enterprise
Systems are developed in a generic manner in order to provide benefits to a
wide variety of organizations, industry sectors and countries, their implementa-
tion entails the problem of aligning business and IT. Alignment, however, implies
extensive configuration and customization efforts in the implementation process
and may lead to significant implementation costs that exceed the price of soft-
ware licenses by factor five to ten [1].

ES vendors are aware of these problems and try to increase the manageability
of the implementation process. One respective measure is to deliver ES products

E. Dubois and K. Pohl (Eds.): CAiSE 2006, LNCS 4001, pp. 369–383, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

370 J. Recker et al.

along with extensive documentation and specific implementation support tools.
Reference models play a central role within such documentation. Vendors pro-
vide a set of process models as reference models of their software package [2].
The SAP reference model as such an example includes a large number of process
models representing the system processes [3]. However, research shows that refer-
ence models still are only of limited use to the ES configuration process [4]. This
is mainly due to a lack of conceptual support for configuration in the underlying
modeling language. In this context, a configurable modeling language should at
least support the structured modification and exclusion of model elements or
whole parts of a model as well as the definition of constraints on configurability
[5]. This is of particular importance for leveraging the main objective of refer-
ence models, i.e., streamlining the adaptation of ES. Beyond conceptual support
in terms of flexible or configurable modeling languages, see e.g. [5, 6], there is a
need for a clearly structured configuration procedure. ES configuration based on
configurable reference models is a multi-facetted task requiring guidance to the
overall process. It comprises in particular model configuration, validation, trans-
lation, deployment, controlling, and consolidation; with each of these subtasks
demanding not only profound knowledge of configurable reference modeling but
also of the processes of the organization. A dedicated approach is needed to
manage the process of model-driven Enterprise Systems configuration all the
way from model design to deployment.

Following this line of argumentation this paper reports on the development
and application of a generic engineering process for the design and usage of
configurable reference models in a model-driven approach towards Enterprise
Systems configuration. To be more concise, the contribution of our paper is
two-fold: First, we introduce an engineering process covering the tasks of speci-
fication, configuration, transformation and deployment of configurable reference
models and the two feedback loops of controlling and consolidation. The engi-
neering process will be described on a generic level to allow for wider uptake in
ES contexts beyond the limits of any given modeling language. Second, as an
instantiation case, we report on the deployment of this generic engineering pro-
cess in the development and application of Configurable EPCs (C-EPCs) [5, 7]
in the context of model-driven ES configuration. We proceed as follows: Section
2 presents the generic engineering process for configurable reference models.
Section 3 then reports on the application of the engineering process based on
C-EPCs. After discussing related research in Section 4, we conclude the paper
in Section 5.

2 A Generic Configurable Reference Modeling Process

This section defines a process for engineering and deploying configurable refer-
ence models in the context of Enterprise Systems implementation. This process
is generic in that it is not dependent on a specific modeling technique or method.
However, a requirement for the application of our engineering process is that the
reference modeling language used throughout the process must be configurable

Model-Driven Enterprise Systems Configuration 371

as defined in Section 1. Subsection 2.1 gives an overview of the process while sub-
sections 2.2 to 2.7 introduce the six steps of model specification, configuration,
transformation, deployment, controlling, and consolidation.

2.1 Overview of the Process

Reference model configuration contrasts with the traditional software develop-
ment process: during implementation, the scope of the ES system is continuously
narrowed down to finally meet the requirements of the organization. This process
starts with the overall system capabilities which are then reduced to a relevant
subset. Reference models can be used as semi-formal descriptions of such over-
all capabilities [2] and a configurable reference modeling language provides the
means to express configuration alternatives. The lifecycle model introduced by
Rosemann and van der Aalst [5] illustrates this continuous ‘narrowing down’ pro-
cess by defining different “time” notions: At design time the overall capabilities
of the ES are captured as a (configurable) reference model. At configuration time
capabilities that are deemed desirable before the background of organizational
requirements are selected from the reference model. This means that irrelevant
parts of the model are excluded. At build time the configured model is deployed
on an ES to serve as a ‘template’ for how the system support for business will
look like during execution. Finally, at run time single instances are created for
specific cases. Our generic process for model-driven ES configuration is related to
these “time” notions, however, we extend this lifecycle with feedback loops as de-
scribed below. The overall process defines four major stages comprising reference
model specification, configuration, transformation, and deployment (see Fig. 1).

(2) Configuration
Configured
Reference

Model

(1) Specification
Configurable

Reference
Model

(4) Deployment

Implementation
Model

(3) Transformation

Enterprise
Model

(A) Controlling (B
) Conso

lid
at

io
n

Fig. 1. Engineering process for model-driven ES configuration

The four stages need to be continuously assessed as to their contribution to-
wards fulfilling organizational requirements, which in turn may be subjected to
modification due to internal or external changes. As reference models capture

372 J. Recker et al.

knowledge in the form of current best practice descriptions, they form part of an
organizational learning cycle by (a) being affected by changes within the organi-
zational setting and (b) effectuating such changes via technological or organiza-
tional developments. Organizational learning in general can be differentiated in
single- and double-loop learning [8]. Single-loop learning can be understood as
error minimization in accordance to given objectives and assumptions. Double-
loop learning includes a reflection upon these assumptions and may result in com-
pletely new objectives, processes and outcomes. Applying these insights to the
task of model-driven configuration of Enterprise Systems, we argue that single-
loop learning comprises the reflection on a configuration as to its contribution to
given organizational requirements. Double-loop learning then is the reflection on
the presupposed best practice knowledge captured in the reference models as to
whether or not it sufficiently enables organizations to fulfill their objectives. In
order to facilitate single- and double-loop learning with configurable reference
models, our generic process is extended by two feedback mechanisms, namely
controlling and consolidation. Controlling is understood as the reflection on the
implementation of the “best practice” knowledge described in the reference mod-
els within the organizational setting, viz., a diagnosis of how well the selected
configuration aligns with organizational requirements. Controlling in this sense
provides a means to facilitate single-loop learning. Consolidation is understood
as a reflection on the specification of the “best practice” knowledge described
in the reference models based on current implementation in several organiza-
tional settings, viz., a diagnosis of whether the reference model itself (and the
ES described within) has to be subjected to refinement or extension due to evo-
lution of technological and/or organizational factors in its domain. Based on this
understanding consolidation provides a means to facilitate double-loop learning.

The different stages and loops are explained in the following subsections. In
contrast to the lifecycle model used by Rosemann and van der Aalst [5] that
merely offers a conceptual distinction of the phases, our engineering process
provides guidance for those involved in an ES configuration project by giving
detailed recommendations for each of the four stages and the feedback loops. In
particular, we will describe for each stage the inputs and outputs, the different
steps, responsibilities, and validation mechanisms.

2.2 Step (1): Specification of Configurable Reference Models

The first step is concerned with model development. The goal is to produce
a configurable reference model as an output. This configurable reference
model captures system functionality, capabilities and structure on a conceptual
level (as does a traditional reference model) [2] and furthermore defines variation
points within the model that capture configurable aspects of an ES. A variation
point captures the place of a configuration decision together with the related pos-
sible choices and consequences, and thereby serves the concept of variability [9],
which empowers constructive model reuse and facilitates the derivation of model
variants from the initial model. Concerning input there are basically two options:
(1) Development from scratch. This means selecting an appropriate configurable

Model-Driven Enterprise Systems Configuration 373

modeling technique to develop the reference models. As to methodical guidance,
traditional reference model engineering approaches may be followed. The only
additional concern here is to place emphasis on the conceptual description of
variation points and configuration-related information within the models. (2) Ex-
tension of existing models. This option refers to the fact that, often, reference
models are already available. As an example, the SAP reference model (Version
4.6) [3] covers more than 1,000 business processes. Such existing reference models
are, however, usually depicted using traditional reference modeling techniques
that do not allow for the description of configuration-related information, for in-
stance the highlighting and selection of different process alternatives [5]. Hence,
a configurable modeling language is needed to extend the existing model in order
to express variation points and configuration information. It is efficient to stick to
the language in which the reference model is expressed and to extend it by anno-
tating the model with configuration concepts, rather than redefining the model
in (yet) another modeling language. A potential solution for re-engineering the
existing reference model based on process mining techniques is described in [7].

D
es

ig
n

tim
e

A B X

C

D

C
on

fig
ur

at
io

n
tim

e

A B X

C

D

A B D

C

D

C
on

fig
ur

at
io

n
tim

e

A B X

C

D
Variation point Desired setting

Decision point

Reference Model Specification(1) Reference Model Configuration(2)

Fig. 2. Specification and configuration of reference model

Part (1) of Fig. 2 illustrates how input and output of the specification step
are related. If there is a reference model available, configurable aspects of the
system being modeled have to be made obvious in the model by extending it
with variation points. In Fig. 2, we exemplarily highlighted such a configurable
element by a grey background color.

Concerning responsibilities, the specification step has to rely on ES experts
who are familiar both with the functionality of the ES and the support capabil-
ities for an organization’s business processes it provides. Furthermore, expertise
is required in terms of reference modeling. Usually, such experts are employees of
the ES vendor who are responsible for system documentation. If such documenta-
tion is not provided by the ES vendor itself, a configurable reference model of an
ES might be defined by a consulting company or by an organization using the ES.

Concerning validation mechanisms, existing model quality frameworks (e.g.,
[10]) can be used in order to ensure the quality of the configurable reference
model. This early step and the quality of its output is of crucial importance
since as conceptual models used in the requirements specification phase of a
system development process determine the acceptability and usability of the

374 J. Recker et al.

product to be built [11]. Not only the configuration alternatives have to be
made explicit, but also constraints in terms of interrelations between certain
configuration alternatives. Due to this delicate nature, it definitely calls for a
deeper investigation in terms of methodical guidance, which in turn we must
consider out of scope for this paper. We nevertheless suggest that the result of
this task should be validated by at least a second domain expert.

2.3 Step (2): Configuration of Configurable Reference Models

The second step deals with the configuration of a configurable reference model.
Taking the reference model defined in the previous step as input, this task defines
a set of configuration decisions for all configuration aspects of the model and
yields a configured reference model as an output. Hence, in the configurable
reference model for each configurable node a decision on the desired setting has
to be taken. Each variation point in the configurable reference model defines a
decision point at which the reference model user has to specify a configuration
parameter while adhering to potential constraints and requirements. Part (2) of
Fig. 2 demonstrates this problem in a simple example. The configurable refer-
ence model depicts two mutually exclusive alternatives of conducting business,
depicted by a circled X for a logical either-or split: either the sequence A−B−C
or A−B−D is allowed. A particular organization has to select one of these two
alternatives of conducting their business processes via the Enterprise System.
Hence, the X split in this case represents a decision point, e.g., to select the
option A−B −D (highlighted by changing the circled X to a circled D), with
the consequence of excluding C from the model.

Concerning responsibilities, this configuration step builds on the knowledge
of ES experts who are familiar both with the functionality of the ES, the re-
quirements of the organization, and the configuration of reference models. In
this context, these are most likely members of a configuration/implementation
project team involving consultants and experts of the organization itself.

Concerning validation mechanisms, at this stage, the desired configuration
needs to be validated against the constraints defined in the configurable reference
model. If these constraints have been specified in a formal manner, this task can
be conducted automatically. Consider the following example: an organization
chooses for its sales & distribution software package not to offer credit card
payment to customers. Conclusively, the accounting software package neither
needs to provide functionality for credit card authorization and payment. The
first configuration decision has a consequence onto the second variation/decision
point in that it restrains the possible set of configuration alternatives. Hence,
validation at this stage refers to the evaluation of configuration decisions against
constraints or configuration requirements.

2.4 Step (3): Transformation of Configured Reference Models

The third step is concerned with the transformation of a configured reference
model as input to an enterprise model as output. This enterprise model de-
scribes conceptually the way the organization will conduct business with the

Model-Driven Enterprise Systems Configuration 375

support of the Enterprise System once implemented and running. In short, a
“traditional” individual model has to be derived from the configured reference
model. If the configuration semantics of the configurable reference modeling lan-
guage have been defined in a formal way and the activities are supported by
applications, this task can be automated by a transformation program. Other-
wise, the transformation has to be done manually by an ES expert with modeling
expertise. It is recommended to automate the transformation, as a manual execu-
tion of this task is both time-consuming and error-prone. Furthermore, instead of
validating the enterprise model against the configured model, a validation of the
correctness of the transformation program is sufficient, which is much more effi-
cient. As an example, modeling languages that are specified via an XML schema
can easily be validated and transformed. Still, at least one ES and business ex-
pert should inspect the resulting models to validate that the models (still) meet
the requirements of the organization. An automated transformation is especially
beneficial when both the configuration decisions have to be translated to the
output model and the re-establishment of syntactical correctness of the model
becomes necessary [12]. For illustration purposes, consider the example given in
Part (3) of Fig. 3. It is assumed that an organization has chosen to implement
the sequence A−B−D instead of implementing the sequence A−B−C. Thus,
the option C - which still exists in the configured reference model - needs to be
excluded from the enterprise model. Furthermore, the decision point has to be
excluded from the model in order to re-establish syntactical correctness.

B
ui

ld
 ti

m
e

A B D

C

D

R
un

 ti
m

e

A B D

A B D

A B D

Executed model instances

Enterprise modelConfigured reference model

Enterprise -individual model

A B D
A3 B3 D3

Enterprise Model Deployment(4)Reference Model Transformation(3)

Fig. 3. Transformation to and deployment of enterprise model

2.5 Step (4): Deployment of Enterprise Model

The fourth step is concerned with the deployment of the enterprise model and
yields an implement and running enterprise system (which can be understood as
an implementation model) as output. Part (4) of Fig. 3 shows the principle.
There are basically two questions that are important in this context.

First, does a process engine or similar system exist that is able to execute
models, in particular the enterprise model, given the modeling language used? It
would be desirable if a reference process model that has been transformed to an
enterprise model would be directly executable in a workflow engine. A popular
example for such an executable process specification is BPEL4WS [13]. If the

376 J. Recker et al.

model is not directly executable, the enterprise model has to be transformed to
a modeling language that runs on a dedicated execution engine. If the semantics
of the used modeling language are defined in a formal way, this task can be
automated by a transformation program. Otherwise, the transformation has to
be done manually by an ES or IT expert with modeling expertise.

Second, does the enterprise model already include run time information about
data flow and interfaces to applications? If not, the enterprise model or the trans-
formed enterprise model need to be enriched with technical information, and can
only be deployed afterwards. Depending on how much technical information still
needs to be added to the model, the deployment has to be done by an IT expert or
may also be done by an ES expert. Furthermore, testing of the enterprise models
is of crucial importance before deployment, especially when run time information
is manually added by IT experts. The implementation models are supposed to be
instantiated in order to support the operations of the organization. Accordingly,
errors in the models may have a direct impact on business performance.

2.6 Loop (A): Controlling of Instance Models

The single-learning feedback loop stems from the notion of process monitoring
and controlling. For the purpose of this paper, process monitoring deals with
the collection of data about workflow instances at run time, mostly in audit trail
logs, i.e., an observation of the processes as they are executed in the organi-
zation at hand [14]. Process controlling, also referred to as process mining [15]
or business process intelligence [16], deals with the ex-post analysis of logged
audit trail data of process enactment. It aims at reviewing process performance
as to whether and how processes fulfill organizational requirements and support
organizational objectives. As process performance is determined by the support
provided by the implemented Enterprise System, we argue here that poor pro-
cess performance is an indicator for an Enterprise System configuration that
does not entirely support all organizational requirements and objectives. Based
on noted deviations in process performance, the process, as it is being supported
or enacted by the ES, needs to be re-configured in order to improve overall per-
formance. Hence, the feedback loop of controlling provides ex-post evaluation of
the customized implementation of the Enterprise System based on actual process
enactment performance.

To support the single-loop learning feedback look we use recent achievements
in process mining [15]. To illustrate the relationship between process mining and
reference models we refer to Fig. 4. Essential for process mining is the presence
of an event log (also referred to as audit trail or transaction log), which log refers
to some event, e.g., the start or completion of some activity. The event may bear
a timestamp or refer to the person/application executing it. The event may also
hold data, e.g., the outcome of a decision activity. Clearly, an information system
that is supporting or controlling an operational process is able to monitor such
events. We distinguish between two forms of process mining: process discovery
and conformance checking (see Fig. 4).

Model-Driven Enterprise Systems Configuration 377

enterprise
information

system

operational
process

configured
reference
models

event
logs

pr
oc

es
s

di
sc

ov
er

y

co
nf

or
m

an
ce

ch
ec

ki
ng

records

(4) Deploy

enacts/
controls

configurable
 reference

models
(2) Configure

enterprise
models

(3) Transform

(1) Specify

(A
)

C
o

n
tr

o
lli

n
g

(B
) C

on
so

lid
at

io
n

co
nf

or
m

an
ce

ch
ec

kin
g

pr
oc

es
s

dis
co

ve
ry

Fig. 4. Process mining approach and relation to configurable reference models

The goal of process discovery is to extract knowledge from event logs in the
form of models. These may be process models, e.g., an EPC or Petri net, but
also other models such as social networks or time-charts describing the perfor-
mance (e.g., flow times). Process discovery does not require an a-priori model
(such as a reference model), however, the discovered model may be used for
delta analysis, i.e., comparing the mined model representing the actual process
with the reference model representing the predefined process. Delta analysis can
be used to find parts of the process that are never used or find parts where
users deviate from the prescribed procedure. Moreover, the discovered models
may refer to other aspects such as time, data and resources. For example, the
discovered model may highlight the bottlenecks in the process, reveal the social
network (e.g., which people are working together on a frequent basis), or relate
properties of cases to their execution (e.g., cases involving more than 1000 euro
and handled by the team in Paris tend to be late).

Unlike process discovery, conformance checking does require an a-priori model
to which it compares the observed behavior as recorded in the log. Using confor-
mance checking one can detect discrepancies but it is also possible to see which
parts of the process are really used, where bottlenecks are etc. Clearly, this is
very useful for measuring (and quantifying) the “fit” between the real process
and some reference model and to pinpoint typical deviations.

To actually measure conformance and to discover a variety of models, we
have developed the ProM framework1. In the context of this framework, several
process discovery tools have been developed, e.g., the well-know alpha algorithm
[15]. Moreover, the framework offers a Conformance Checker, a Social Network
Analyser, and a variety of other analysis tools.

The dashed lines in Fig. 4 refer to the steps identified in Fig. 1. First, the
reference models are specified and then for a particular context (organization
and process) they are configured. The configured model is then transformed and
deployed. The configured reference model can be compared with the derived
models (process discovery) or directly with the event logs (conformance check-

1 Both documentation and software can be downloaded from www.processmining.org

378 J. Recker et al.

ing). This way it is possible to find different types of problems that may lead to
a re-configuration. For example, analysis may show that in reality, the execution
of the process does not match with the configured reference process model. This
may imply an incorrect implementation, office workers not following the proper
procedures, or a misalignment that needs to be addressed by reconfiguring the
system. The analysis may also highlight parts of the configured reference model
that are rarely active (or over-active), which, too, indicates a suboptimal configu-
ration of the system. Moreover, conformance checking may pinpoint bottlenecks
and other performance-related issues. These diagnostics may assist in improving
the configuration of the reference model.

Responsibilities for this task are multi-fold. The monitoring step of this stage
is best performed by IT experts that capture relevant process performance data
in audit trails and have experience in applying process mining techniques. The
actual analysis should be done by an analyst having knowledge of process mining
and the application domain. It is definitely possible to automate this analysis
and offer a kind of “business cockpit” to managers and end-users. Then, the
step of controlling is a rather managerial task and merely includes decisions
as to how to re-configure the processes in order to increase their performance.
Still, based on the assumption that process performance is determined by the
support provided by the Enterprise System, an ES expert is recommended to
be consulted for this task in order to elicit possible alternatives for supporting
existing processes through alternative ES configurations.

2.7 Loop (B): Consolidation of Instance Models

The single-loop learning approach focuses on a specific context (i.e., a given orga-
nization and process) and can only result in a reconfiguration. Therefore, it does
not aim at improving “best practice” in a broader setting, i.e., it does not reflect
on the qualities of the configurable reference model. The double-loop learning
approach that we refer to as consolidation has a wider scope than controlling.
The input of the consolidation feedback loop is a set of instances originating from
different configurations, i.e., experiences from multiple applications of the refer-
ence model are used as a starting point for the analysis of the reference model
itself and not (just) one selected configuration. The result of this analysis can be
used to modify the reference model itself. For example, analysis may show that
although it is possible to configure a variation point in multiple ways, in real-
ity always the same configuration decision is taken, thus leading to unnecessary
configuration work. It is also possible that analysis shows that certain problems
(e.g., performance or quality issues) typically occur when a certain configuration
is being used. This knowledge can be used to revise the original reference model
and the variation points within.

The consolidation phase consists of three smaller steps. First, process mining
techniques as described in Section 2.6 are applied in a variety of situations where
the reference model has been configured and deployed. For example, situations
in different organizational units in the same enterprise or in comparable orga-
nizational units across different organizations may be used as input. For each

Model-Driven Enterprise Systems Configuration 379

situation, process mining techniques are used to do process discovery and/or
conformance checking. This gives insights into the way the system is really be-
ing used, helps to identify problems and is used to quantify the performance
of the process. Each of these aspects is linked to the selected configuration and
external factors such as load and resource availability. Note that compared to
Section 2.6 these results are more likely at an aggregate level. The second step
uses the results of this first step and compares all situations to discover pat-
terns. This can be done in a qualitative way (“It seems that configuration A
only works properly if combined with configuration B.”) or in a quantitative
way (“There is a positive correlation between the flow time and a particular
configuration setting.”). In the third and final step these patterns are used to
modify the reference model (see Fig. 4). Note that the structure of the refer-
ence model may change. However, we envision that more changes will be made
to relationships between the different configuration decisions. Moreover, the use
of soft constraints in addition to hard constraints seems to be important. Soft
constraints can serve as guidelines based on empirical evidence gained from the
feedback loop of consolidation.

The responsibility of this task lies with the developers of the reference models
guided by input from the organizations involved.

3 An Instantiation Case Using Configurable EPCs

So far, we outlined a generic process that covers the overall reference model
lifecycle and applies it to the area of Enterprise Systems configuration. In the
following, we will illustrate the technical feasibility of this process by applying
it to the case of C-EPCs in the context of ES configuration. C-EPCs have been
developed with the clear intention in mind to facilitate a model-driven approach
towards ES configuration. In the following, we assume the reader to have some
basic knowledge of EPCs. For an introduction, refer to [17].

Event-Driven Process Chains (EPCs) are a frequently used business process
modeling language, especially for describing processes on a conceptual level.
EPCs have been developed in a joint project by University of Saarland and
SAP [17] and SAP has used them as a modeling language for their SAP R/3
reference model [3]. Configurable EPCs (C-EPCs) [5] extend EPCs to allow for
the specification of variation points, configuration requirements and configura-
tion guidelines in a reference model, including configurable functions that can
be switched on , off or optional ; configurable connectors that subsume possible
build time connector types, which are less or equally expressive; configuration
requirements (must-constraints) and guidelines (should-constraints); and an or-
der relation over the configurable nodes [5]. EPCs have been chosen because
they facilitate the usage of the SAP model in step 1 for the specification of
configurable reference models. Respective tool support is available as the ARIS
Toolset of IDS Scheer AG is shipped with the SAP model. As a basis for steps
2 to 4, an XML representation of (a) configurable EPCs and (b) configured
EPCs based on the EPC Markup Language (EPML) [18] has been specified [19].

380 J. Recker et al.

This EPML extension serves as an input format for a C-EPC validation tool
that has been implemented as a prototype [19]. This tool generates a report on
whether a configurable EPC is correct with respect to the C-EPC definition,
and whether configuration requirements and guidelines are met. The formal C-
EPC definition allows the automation of the validation and, therefore, supports
the configuration step (step 2). The transformation of C-EPCs to EPC process
models bears some challenges which are specific to the syntax and semantics of
EPCs [12]. An algorithm has been defined in [20] and implemented to automate
this transformation step (step 3). This is supposed to speed up the development
and grant the correctness of the resulting models. This algorithm is driven by
a minimality criterion in order to generate an EPC with as little structure as
necessary [20]. In the beginning, it had been an assumption that the generated
EPC models can be directly deployed on the ES (step 4). As this might not
always be the case, a transformation concept from EPCs to executable BPEL
[13] process definitions has been developed [21]. As BPEL is a generic language
for Web Service composition, this step can only be automated if the data flow
and the Web Service endpoints are made explicit in the EPC model. Basically,
such information can be included in the configurable model and preserved in
the transformation step, so it is still available for deployment. The two feedback
loops can both be supported by process mining techniques. The ProM frame-
work introduced in Section 2.6 is able to rebuild EPC models from SAP event
logs. Also, in [7] it has been shown how process mining can be used to generate
C-EPCs from running workflows for controlling or consolidation purposes.

The C-EPC case illustrates that respective tool support for each step of the
engineering process has already been established on a prototype basis. The next
challenge is to combine the different implementations into a comprehensive con-
figuration framework that can be used by practitioners.

4 Related Work

A number of academic contributions discussing issues related to Enterprise Sys-
tems aim at understanding the challenges of ES configuration. For instance, a
number of contingencies that potentially impact such projects have been revealed
in critical success factor models [22]. Other research claims that ES implemen-
tation project failures are likely due to difficulties arising while using specified
requirements in the implementation process [23]. Empirical studies, too, tell fail-
ure stories [1].

While vendors aim at increasing the chance of ES implementation success by
distributing reference models as part of system documentation, these models are
at best partly deployed in the configuration of Enterprise Systems. Daneva [4]
measured the level of reuse of the SAP reference models in a number of case
studies and indicated that full reuse was not achieved in any of them, although
sometimes the level of reuse was quite substantial. Some research has focused
the field of configurable modeling, good collections of related approaches can be
found in [5] and [24]. Some of the discussed approaches are closely related to our

Model-Driven Enterprise Systems Configuration 381

ideas of configurable modeling; worthwhile mentioning here is the approach by
Reinhartz-Berger et al. [25], who leverage the re-use of reference models for do-
main engineering using model specialization mechanisms based on generalization
and UML stereotypes.

Concerning limitations, model-driven configuration is well suited for deploy-
ment of commercial-off-the-shelf software packages but not as a general approach
to software engineering, which cannot entirely be described as a ‘scoping’ exer-
cise. Also, the notion of re-usable models in the software engineering discipline
refers to the employment of building blocks of software fragments in multiple
contexts rather than the depiction of best practice patterns. There is, however,
some related work. As an example, Haugen et al. [26] present an approach to
leverage configurable models for system family engineering. In order to cap-
ture model variability, they utilize mechanisms of UML 2.0 composite structures
and UML association multiplicities. Yet, their approach focusses more on the
derivation of individual software systems from system families than on deriving
variants from a given models.

5 Contributions and Limitations

This paper reported on the development and application of a generic engineer-
ing process for configurable reference modeling. We first presented a process for
model-driven Enterprise Systems configuration consisting of the steps specifica-
tion, configuration, transformation, and deployment, as well as the feedback loops
controlling and consolidation. The second contribution of this paper was the ap-
plication of this generic process to the development and application of C-EPCS
for the purpose of configuring Enterprise Systems. We showed how C-EPCs con-
ceptually facilitate a model-driven configuration process in all of our stages.

Our research has a few limitations. First, our approach needs to be empirically
validated with business practitioners. This task is currently being conducted.
We have already conducted a pilot laboratory experiment with postgraduate IT
students on the perceived usefulness and perceived ease of use of C-EPCs in com-
parison to EPCs, showing that C-EPCs are in fact perceived as more useful and
easier to use for the task of reference model configuration [27]. Second, our ap-
proach does not strongly consider the challenge of linking configurable models to
Enterprise Systems functionality, i.e., how to link model configurations to actual
modifications of programmed code. Third, we applied our generic engineering
process to a configurable process modeling approach. It would be interesting to
link it other perspectives such as a data view, refer, for instance, to [28].

Future work will concentrate on (a) an evaluation of our approach via case
study application and (b) the development of a sophisticated configuration
framework based on our proof-of-concept implementations. The ultimate goal
is then to provide comprehensive tool support towards model-driven systems
configuration.

Acknowledgement. The research on C-EPCs has been partly funded by SAP
Research and Queensland University of Technology with the Strategic Link with

382 J. Recker et al.

Industry project “Modelling Configurable Business Processes”. SAP is a trade-
mark of SAP AG, Germany.

References

1. Davenport, T.H.: Mission Critical: Realizing the Promise of Enterprise Systems.
Harvard Business School Press, Boston, MA (2000)

2. Rosemann, M.: Using Reference Models within the Enterprise Resource Planning
Lifecycle. Australian Accounting Review 10 (2000) 19–30

3. Curran, T., Keller, G., Ladd, A.: SAP R/3 Business Blueprint: Understanding the
Business Process Reference Model. Enterprise Resource Planning Series. Prentice
Hall PTR, Upper Saddle River, NJ (1997)

4. Daneva, M.: Practical Reuse Measurement in ERP Requirements Engineering.
In Wangler, B., Bergmann, L., eds.: 12th International Conference on Advanced
Information Systems Engineering. Volume 1789 of Lecture Notes In Computer
Science., Stockholm, Sweden, Springer (2000) 309–324

5. Rosemann, M., van der Aalst, W.: A Configurable Reference Modelling Language.
Information Systems In Press, also available from www.BPMCenter.org (2006)

6. Soffer, P.: Scope Analysis: Identifying the Impact of Changes in Business Process
Models. Software Process Improvement and Practice 10 (2005) 393–402

7. Jansen-Vullers, M.H., van der Aalst, W., Rosemann, M.: Mining Configurable
Enterprise Information Systems. Data and Knowledge Engineering 56 (2006) 195–
244

8. Argyris, C., Schön, D.: Organizational Learning II. Theory, Method, and Practice.
Addison-Wesley, Reading, MA et al. (1996)

9. Halmans, G., Pohl, K.: Communicating the Variability of a Software-Product
Family to Customers. Software and Systems Modeling 2 (2003) 15–36

10. Lindland, O.I., Sindre, G., Sølvberg, A.: Understanding Quality in Conceptual
Modeling. IEEE Software 11 (1994) 42–49

11. Lauesen, S., Vinter, O.: Preventing Requirement Defects: An Experiment in Pro-
cess Improvement. Requirements Engineering 6 (2001) 37–50

12. Recker, J., Rosemann, M., van der Aalst, W., Mendling, J.: On the Syntax of
Reference Model Configuration. Transforming the C-EPC into Lawful EPC Models.
In Bussler, C., Haller, A., eds.: Business Process Management Workshops. Volume
3812 of Lecture Notes in Computer Science. Springer, Berlin, Germany et al. (2006)
497–511

13. Andrews, T. et al.: Business Process Execution Language for Web Services. Version
1.1 (2003)

14. zur Muehlen, M.: Workflow-based Process Controlling. Foundation, Design and
Application of workflow-driven Process Information Systems. Logos, Berlin, Ger-
many (2004)

15. van der Aalst, W., Weijters, A., Maruster, L.: Workflow Mining: Discovering Pro-
cess Models from Event Logs. IEEE Transactions on Knowledge and Data Engi-
neering 16 (2004) 1128–1142

16. Grigori, D., Casati, F., Castellanos, M., Dayal, U., Sayal, M., Shan, M.: Business
Process Intelligence. Computers in Industry 53 (2004) 321–343

17. Keller, G., Nüttgens, M., Scheer, A.W.: Semantische Prozessmodellierung auf der
Grundlage “Ereignisgesteuerter Prozessketten (EPK)”. Technical Report 89, Insti-
tut für Wirtschaftsinformatik der Universität Saarbrücken, Saarbrücken, Germany
(1992)

Model-Driven Enterprise Systems Configuration 383

18. Mendling, J., Nüttgens, M.: EPC Markup Language (EPML) - An XML-
Based Interchange Format for Event-Driven Process Chains (EPC). Informa-
tion Systems and e-Business Management In Press, also available from
wi.wu-wien.ac.at/home/mendling (2006)

19. Mendling, J., Recker, J., Rosemann, M., van der Aalst, W.: Towards the In-
terchange of Configurable EPCs: An XML-based Approach for Reference Model
Configuration. In Desel, J., Frank, U., eds.: Enterprise Modelling and Informa-
tion Systems Architectures. Volume P-75 of Lecture Notes in Informatics. German
Informatics Society, Klagenfurt, Austria (2005) 8–21

20. Mendling, J., Recker, J., Rosemann, M., van der Aalst, W.: Generating Correct
EPCs from Configured CEPCs. In: 21st Annual ACM Symposium on Applied
Computing, Dijon, France, ACM (2006) forthcoming

21. Ziemann, J., Mendling, J.: EPC-Based Modelling of BPEL Processes: a Pragmatic
Transformation Approach. In: 7th International Conference MITIP 2005, Genova,
Italy (2005)

22. Holland, C.P., Light, B.: A Critical Success Factors Model for ERP Implementa-
tion. IEEE Software 16 (1999) 30–36

23. Rolland, C., Prakash, N.: Bridging The Gap Between Organisational Needs And
ERP Functionality. Requirements Engineering 5 (2000) 180–193

24. Puhlmann, F., Schnieders, A., Weiland, J., Weske, M.: Variability Mechanisms
for Process Models. PESOA-Report TR 17/2005, DaimlerChrysler Research and
Technology and Hasso-Plattner-Institut, Ulm and Potsdam, Germany (2005)

25. Reinhartz-Berger, I., Soffer, P., Sturm, A.: A Domain Engineering Approach to
Specifying and Applying Reference Models. In Desel, J., Frank, U., eds.: Enterprise
Modelling and Information Systems Architectures. Volume P-75 of Lecture Notes
in Informatics. German Informatics Society, Klagenfurt, Austria (2005) 50–63

26. Haugen, Ø., Møller-Pedersen, B., Oldevik, J., Solberg, A.: An MDA-based Frame-
work for Model-driven Product Derivation. In Hamza, M.H., ed.: Software Engi-
neering and Applications, Cambridge, MA, ACTA Press (2004) 709–714

27. Recker, J., Rosemann, M., van der Aalst, W.: On the User Perception of Con-
figurable Reference Process Models - Initial Insights. In: 16th Australasian Con-
ference on Information Systems, Sydney, Australia, Australasian Chapter of the
Association for Information Systems (2005)

28. Rosemann, M., Shanks, G.: Extension and Configuration of Reference Models for
Enterprise Resource Planning Systems. In Finnie, G., Cecez-Kecmanovic, D., Lo,
B., eds.: Proceedings of the 12th Australasian Conference on Information Systems.
Southern Cross University, Coffs Harbour, Australia (2001) 537–546

Configuration Management
in a Method Engineering Context

Motoshi Saeki

Dept. of Computer Science, Tokyo Institute of Technology,
Ookayama 2-12-1, Meguro-ku, Tokyo 152, Japan

Tel.: +81-3-5734-2192; Fax: +81-3-5734-2917
saeki@se.cs.titech.ac.jp

Abstract. Method Engineering is the discipline for exploring techniques
to build project-specific methods for information system development
and Computer Aided Method Engineering (CAME) is a kind of comput-
erized tool for supporting the processes to build them. In such method
engineering environments, version control and change management for
both model descriptions and method descriptions should be seamlessly
combined. In addition, when the method being used is changed during a
project, we should check whether the current version of a model is still
consistent with the newer version of the adopted method. This paper
proposes a technique to solve the issues on version control and change
management in method engineering processes.

1 Introduction

Development methods for information systems (methods hereafter) and their
supporting tools are one of the most significant key factors to success in de-
velopment projects. To enhance the effect of methods used in a development
project, we need to adapt them or build new ones so that they can fit the project.
Method Engineering is the discipline for exploring techniques to build project-
specific methods for information system development, called situational
methods. Computer Aided Method Engineering (CAME) is a kind of computer-
ized tools for supporting the processes to build them [6].

Although we can have a powerful situational method, another difficulty origi-
nating from frequent changes of a product still remains. A product is frequently
changed due to various reasons, e.g. customer’s requirements change, even dur-
ing its development. Developers should have various versions of a product and
manage them in their project. In this situation, the techniques for version control
and change management, i.e. for configuration management, are significant to
support their tasks by using computerized tools. In [9], we have developed a ver-
sion control system for model descriptions that are represented in diagrammatic
form such as UML diagrams.

In method engineering environments, as well as changes of a model descrip-
tion, the description of the adopted methods may be changed. Therefore the
support for version control and change management of methods themselves is

E. Dubois and K. Pohl (Eds.): CAiSE 2006, LNCS 4001, pp. 384–398, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Configuration Management in a Method Engineering Context 385

necessary. In [10], the changes of methods were classified into a set of pat-
terns, but it did not mention any support for the version control of methods
themselves.

In change management, there exist the dependencies among the components
of an artifact, and a change of a component may be propagated to other compo-
nents dependent on it, in order to keep consistency. This kind of change manage-
ment should be done 1) on model descriptions (product hereafter), 2) on method
descriptions (methods or method fragments hereafter) and 3) on both of them.
The third case is as follows; when the adopted method is changed, the change is
propagated to the model description that was developed with the older version
of the method. Model management systems such as Coral [3] and UML reposi-
tory systems [7, 11] are only for meta models and only for products respectively.
They do not consider the support for version control and change management
sufficiently from method engineering context, i.e. from both side of products and
methods.

To solve above issues, this paper discusses a technique to implement a con-
figuration management mechanism in our CAME tool combined with Version
Control System for software diagrams, both of which have been developed be-
fore independently [9, 12]. We have two key techniques; the first one is a three-
dimensional model to conceptualize the difference between product and method
version control [13]. The second is “operation based approach”, where change
operations that were performed on an artifact1 are recorded and applied in order
to recover a current version of the artifact. The rest of the paper is organized
as follows. Our CAME tool and Version Control System is introductorily sum-
marized in the next section. In addition, we illustrate the details of the issues
on version control and change management in method engineering context. In
section 3, by using a simple example, we discuss the three-dimensional model
for conceptualizing version control, it is very useful for getting the solutions to
the issues mentioned above. Section 4 discusses how to achieve the change man-
agement to maintain consistency in artifacts and clarifies how our technique can
solve the issues mentioned in section 2.

2 CAME Tool and Version Control System

2.1 CAME Tool

Our CAME tool is based on a reuse technique similar to the other existing CAME
tools such as Decamerone [6], Mentor [14] and MetaEdit+ [8]. Reuse technique
is characterized by using reusable method portions, called method fragments or
method chunks, which can be extracted from several existing methods. Method
fragments are stored in a specific database called method base, and a special
engineer, called method, engineer obtains suitable fragments from the method
base and assembles them into a new project-specific method. The method engi-
neer, for building a project-specific method, uses a method editor to manipulate
1 We use the term “artifact” for products and methods.

386 M. Saeki

method fragments and assemble them into a new method. The method editor is
a kind of diagram editor which allows the method engineer to easily edit method
fragments. The method description is called meta model, and we use a Class
Diagram to describe it. Our CAME tool generates from a meta model, 1) a dia-
gram editor for supporting inputting and editing products, e.g. a Class Diagram
editor, and 2) the schema of a repository to which the generated editors store
the developed products. Software engineers may then develop a model of an in-
formation system following the project-specific method, by using the generated
editors. An example of a meta model of simplified version of Class Diagram is
shown in Figure 1. As shown in the figure, the method fragment “ClassDia-
gram” has the concepts “Class”, “Operation” and “Attribute” and all of them
are defined as classes on a meta model. These concepts (called method concepts)
have associations (called method associations) representing logical relationships
among them. For instance, the concept “Class” has “Feature” (a super class of
Attribute and Operation), so the association between “Class” and “Attribute”
denotes a has relationship. We simply call both method concepts and method
associations method elements.

In addition, we should consider constraints on the products. Suppose that we
define the method “ClassDiagram” as shown in Figure 1. In any class diagram
(any instance of “ClassDiagram”), we cannot have different classes having the
same name. In order to keep consistency of products, we specify this constraint
on the meta model, by using OCL (Object Constraint Language). The OCL
expression in the right bottom window “CAMEPackage” of Figure 1 represents
the constraint “different names must be attached to different classes”.

Fig. 1. An Example of Method Fragments

Configuration Management in a Method Engineering Context 387

A generated diagram editor deals with a product conceptually as a graph
consisting of nodes and edges. Thus we should provide information using which
the method concepts in a meta model can be represented with nodes or edges
of the graph. The method engineer provides two types of this information; one
is the correspondence of method concepts to the elements of the graph, i.e. nodes,
edges and text within the nodes or on the edges, and another is notational infor-
mation of the nodes and edges. Suppose that she or he tries to generate a class
diagram editor from “ClassDiagram”. The concept Class in the “ClassDiagram”
conceptually corresponds to nodes in a graph, while Generalization, Aggrega-
tion and Association correspond to edges. She or he provides this information as
stereotypes attached to the method concepts in our CAME tool. The right top
window “MetaCase” in Figure 1 includes the information for the generator. The
readers can find the stereotypes�entity and�relationship ” attached to the
classes in the meta model of Figure 1. For example, the classes Generalization,
Aggregation and Association in the figure have the stereotype �relationship .
The stereotype �entity corresponds to a node and �relationship corre-
sponds to an edge. In our example of the figure, an occurrence of Class in a class
diagram corresponds to a node from the viewpoint of the graph, while an occur-
rence of Generalization, Aggregation or Association between Classes corresponds
to an edge. Note that a generated editor automatically includes commands for
creating and deleting the method concepts corresponding to the nodes or the
edges.

In addition, the method engineer should specify which figures, e.g. rectangle,
circle, oval, dashed arrow etc. are to be used for expressing method elements on
the editor screen. Basic figures such as ones used in UML diagrams are built-in
and their drawing programs are embedded as Java classes into the generator. In
the example in Figure 1, the method engineer tries to use a rectangle (ClassShape)
as a figure for Class. Our generator produces a diagram editor by embedding the
above information and Java classes into a diagram editor framework.

2.2 Scenario Example

In this sub section, we have the following simple scenario of a development as an
example, which will be used throughout this paper. It is very useful to clarify the
issues of version control and change management in a method engineering context.

A method engineer constructs a new method by assembling Class Diagram
(CI#1) and Sequence Diagram (CI#2) of UML by adding a method association
“instance of” as shown in Figure 2. Each meta model can be considered as a unit
of configuration management, i.e. configuration item of method level. Following
this new method, a software engineer constructs a class diagram of the system to
be developed, and then develops the sequence diagrams, each of which defines a
scenario of the interactions among objects belonging to the classes appearing in
the class diagram. Figure 3 illustrates a part of Lift Control System developed
following this method. Each diagram is a configuration item of product level.

The engineer completes the diagram shown in the left part of Figure 3, and
commits it to the repository as version 0. After that, the engineer adds the

388 M. Saeki

CI#1

CI#2

Class Diagram

Sequence Diagram

���������	

���������

������	

�����

�����

��������	
�

�������

����

������

����

Fig. 2. Assembling Method Fragments

object “Door” to the sequence diagram as shown in the right part of Figure 3, and
commits it as version 1. When the engineer adds an object to a sequence diagram,
its class should exist in the class diagram in method M0. In this example, since
“Door” class does not appear in version 0 of the class diagram, the engineer adds
it manually for version 1, as shown in Figure 3. The supporting tool hopefully
guides the engineer for this kind of change propagation, and change propagations
depend on methods and method assembly.

We continue the example. See Figure 4. The engineer finds that Lift Con-
trol System has real-time property, and extends the current method so that the
engineer can model timing constraints in sequence diagrams. The engineer mod-
ifies the meta model of the Sequence Diagram (M0 : version 0 of the method)
by adding the method concept “Timing Constraint”, and gets a new version
1 (M1). Although we need the version control of meta models, it is the same
as the version control of products, because our meta model is represented with
Class Diagram as mentioned in section 2.1. The version control of meta models
is called “method version control” to distinguish it from usual version control
of products (called “product version control”). Now, the engineer continues her
or his activities following the new method M1. Since this change to M1 was
adding a new method concept only, it has not impacted the current version of
the product, version 1. We continue our example further. As shown in the top
part of Figure 4, the engineer adds a timing constraint “b-a< 2 min.” (the lift
should arrive within 2 minutes after pushing the request button). Suppose that
the engineer returns back to the older method M0 after that. Since M0 does
not include “Timing Constraint”, the existence of “b-a<2min.” in the current
product causes inconsistency. Thus whenever a current method is changed, we
need to check if the new version of the method is consistent with the current
version of the product that was made following the older method.

Suppose another change on the method M0 in Figure 2 is applied. What is
going to happen in case the engineer deletes the method association “instance of”
and tries to commit it as a new version of the method? As a result, the engineer
will get the two isolated methods each of which is the same as the already
existing method, i.e. Class Diagram and Sequence Diagram, and this result is
not meaningful. We should avoid constructing such meaningless versions of the

Configuration Management in a Method Engineering Context 389

method, and by applying method assembly rules we can check if the resulting
method is meaningless or not [5].

To summarize the above discussions, we can categorize our issues on change
management into three; 1) for products, 2) for method fragments and 3) for
both. How to solve these three issues will be discussed in section 4.

����
�������	

���
��	��

�
���	

�
����

����
���

�
���	 ����
��� ����
����	

����
�	��	������
������
�����������	

�	���

����������	��	���

������
���
��� �!�

"��#���!#�

$���
�	����������

Configuration Item #1

Configuration Item #2

����
�������	

���
��	��

�
���	

�
����

����
���

Configuration Item #1 Ver.1

%���

Version Up

Configuration Item #2 Ver.1

�
���	 ����
��� ����
����	

����
�	��	������
������
�����������	
�	���

����������	��	���

������
���
��� �!�

"��#���!#�

$���
�	����������

%���

$�����	

Version #0
Version #1

����
�������	

���
��	��

�
���	

�
����

����
���

�
���	 ����
��� ����
����	

����
�	��	������
������
�����������	

�	���

����������	��	���

������
���
��� �!�

"��#���!#�

$���
�	����������

�
���	 ����
��� ����
����	

����
�	��	������
������
�����������	

�	���

����������	��	���

������
���
��� �!�

"��#���!#�

$���
�	����������

Configuration Item #1

Configuration Item #2

����
�������	

���
��	��

�
���	

�
����

����
���

Configuration Item #1 Ver.1

%���%���

Version Up

Configuration Item #2 Ver.1

�
���	 ����
��� ����
����	

����
�	��	������
������
�����������	
�	���

����������	��	���

������
���
��� �!�

"��#���!#�

$���
�	����������

%���

$�����	

Version #0
Version #1

Fig. 3. Lift Control System

2.3 Version Control System

In our version control system, we adopt a technique to store differences between
two versions in a repository like CVS [1] and Subversion [2], etc. so that we can
recover the older versions that were previously produced. The state of the artifact
at a certain time is considered as a baseline, and the version control system stores
to the repository the difference between this baseline and each version. To extract
a difference between two adjacent versions efficiently, we focus on the developer’s
activities of editing a product by using an editor. In other words, we generate
an element of the difference from an execution of an editor operation such as
“create” and “delete” a component. The sequence of such editing operations
that developer is performing is captured in real-time during her or his editing
activity using the editor. The acquired operation sequence can be considered as
the difference between versions, and is stored in the repository. Our CAME tool,
which automatically generates a diagram editor from the meta model descrip-
tion, should automatically embed the functions for acquiring performed editing

390 M. Saeki

��������		
��

����

�����	�

��
�

��������	��
��	

���������
������

��		
��

����

�����	�

��
�

���������

����� �������� ����

�����

���������������
�������	����	�����

�����

 ����	�����������

!������	�
���"�#�

$��
���#
�

%���������������

&���

%������

����� �������� ����

�����

���������������
�������	����	�����

�����

 ����	�����������

!������	�
���"�#�

$��
���#
�

%���������������

&���

%������

a

b
b-a < 2min.

...

Ver.0 (M0) Ver.1 (M1)

��������		
��

����

�����	�

��
�

��������	��
��	

���������
������

��		
��

����

�����	�

��
�

���������

������
��		
��

����

�����	�

��
�

���������

����� �������� ����

�����

���������������
�������	����	�����

�����

 ����	�����������

!������	�
���"�#�

$��
���#
�

%���������������

&���

%������

����� �������� ����

�����

���������������
�������	����	�����

�����

 ����	�����������

!������	�
���"�#�

$��
���#
�

%���������������

&���

%������

����� �������� ����

�����

���������������
�������	����	�����

�����

 ����	�����������

!������	�
���"�#�

$��
���#
�

%���������������

&���

%������

����� �������� ����

�����

���������������
�������	����	�����

�����

 ����	�����������

!������	�
���"�#�

$��
���#
�

%���������������

&���

%������

a

b
b-a < 2min.

...

Ver.0 (M0) Ver.1 (M1)

Fig. 4. Version Up of A Method

operations in real-time and for transforming them to difference data, when it
generates the editor. The details of this mechanism were discussed in [9].

Our CAME tool can export the XML document that represents logical infor-
mation of a diagram in XMI-compliant format [4]2. For simplicity, the represen-
tation of differences is based on XMI, and we use XMI.update operations. They
are used for informing about the differences of XMI-compliant documents when
the documents are exchanged. We have three operations; XMI.add for adding
a component to the older document, XMI.delete for deleting an existing com-
ponent, and XMI.replace for replacing an existing component element with a
new one. Figure 5 illustrates how to represent differences with XMI. A software
engineer adds a “Door” class and then an aggregation from “Lift” to it. These
change operations performed in the editor are transformed into two XMI.add oc-
currences and the occurrences are stored as a difference from Version 0 to Version
1. To check-out Version 1 from Version 0, our version control system applies the
XMI.add occurrences successively to the XMI document of Version 0.

Our version control system supports version branching and merging branched
versions. Suppose that our software engineer produces a new version Ver. 2 by
adding a subclass of “Door” to Ver.1 in Figure 3, at the same time the engineer
also creates a branched version Ver.1.1 by deleting the class “Door” from Ver.1.
When he tries to merge Ver. 2 to Ver. 1.1, a conflict occurs. Since Ver. 1.1
does not have “Door” class any longer, adding automatically the subclass of

2 For comprehensiveness, the XML documents in this paper are made simpler than
the real XMI-compliant format.

Configuration Management in a Method Engineering Context 391

Fig. 5. Representing with XML

“Door” by applying the difference from Ver.1 to Ver. 2, is impossible. In this
case, our system asks the engineer to take the alternative of adding “Door” by
hand to continue this merge operation, or cancel it. To detect this conflict, each
recorded change operation has the pre condition that should be checked before
applying it. In XMI.delete, its pre condition is that the object to be deleted
should exist in the product. In the above example, the operation “<XMI.add>
<Association xmi.id =...> <name> Generalization </name>...</XMI.add>”
(adding a Generalization from Door class to a subclass) requires a source object
and a destination of the association as a pre condition, i.e. “Door” is required to
execute this operation. Pre conditions are automatically generated and attached
to change operations to be stored as a difference. Pre conditions maintain con-
sistency not only for merging branched version but also for change propagation,
as will be mentioned later in sections 4.2 and 4.3.

3 Conceptual Model for Version Control

In this section, we show a three-dimensional model to conceptualize our version
control technique [13] and how to use it. We have “products” and “method
fragments” as targets of version control, and each target consists of configuration
items. Thus, we can consider version space to have three axes; product, method

392 M. Saeki

(fragment) and configuration item as shown in Figure 6. Each lattice point in
the figure represents a version of a product to be managed.

In our version control system, an engineer has a local working space, and per-
forms check-out and check-in operations between her or his working space and
the repository. When the engineer checks out from the repository version n of a
product which has been developed by method M, a working space for version n+1
is allocated locally and an editor for M is invoked. The version n of a product is
loaded into the working space. The engineer uses the editor to modify version n,
and after completing the modification, stores it as version n+1 into the repository
(check-in). A working space is generated and allocated for each adopted method.
In the case that the engineer uses methods M0 and M1, both the working space
for M0 and the working space for M1 are generated. Note that our repository
has two levels: one is for storing products and the other is for meta models.

Following the scenario of Figures 3 and 4, consider what operations our en-
gineer performs on our version control system. The engineer’s activities are il-
lustrated in Figure 7. The engineer selects method M0 and generates an empty
working space by using the “new” command at first. As shown in Figure 3,
method M is the result of assembling Class Diagram and Sequence Diagram, de-
veloped using two types of diagrams, each created with its own diagram editor
(2:input & edit). Let the two diagrams be C0 and S0 respectively. The engineer
checks them in to the repository (3:check-in), so they are stored as version 0
(P0). Consequently, the engineer adds the “Door” object to the sequence dia-
gram S0 (4: edit) and gets version 1 (S1). If the engineer tries to check it in to
the repository, she or he fails because the current P0 is not satisfied with the
constraint “for each object in the sequence diagram, its class must be included
in the class diagram”. To get consistency, the engineer adds the Door class to
the class diagram C0 and successfully checks it in (5: check-in). The new product
comes in the repository as version 1 (P1).

Furthermore, the engineer tries to extend the method M0 to M1 as shown in
Figure 4, and checks out M0 from the meta-level part of the repository (6: check-
out). The engineer can have a working space for constructing M1, and M0 is loaded
in to the space. By using a method editor, as shown in Figure 4, the engineer adds
the method concept “Timing Constraint” to M0 (7:edit) and then checks it in as
version 1 (M1) to the repository (8:check in). To continue the task by using the
new version M1, he or she creates an empty working space for P2 on M1 (9: new),
and checks out P1 to this space (10: check-out). After that, the engineer adds a
timing constraint “b-a< 2 min.” (11: edit) and checks in the resulting product (12:
check-in). This product is registered into the repository as version 2 (P2).

Next, suppose that for some reason, the engineer wants to return the used
method back to the older version M0. The engineer tries to import M0 into
the current working space (13: import). When importing M0, the system checks
consistency of the current product with M0 and the import operation succeeds if
the consistency check is passed. In our example, since the difference between M0
and M1 includes <XMI.delete> ... “Timing Constraint” ... </XMI.delete> and
the current product has its instance “b-a<2 min.”, the engineer is notified of the

Configuration Management in a Method Engineering Context 393

P
ro

du
ct

 V
er

si
on

C
on

fi
gu

ra
ti

on
It

em

M
et

ho
d

V
er

si
on

do
or

7:
op

en

do
or

7:
op

en

do
or

7:
op

en

b-
a

<
 2

 m
in

.

do
or

7:
op

en

P
ro

du
ct

 V
er

si
on

M
et

ho
d

V
er

si
on

V
er

.0
 (P

0)
V

er
.1

 (P
1)

V
er

.3
 (P

3)
V

er
.4

 (P
4)

V
er

.2
 (

P2
)

V
er

.0
 (M

0)

V
er

.1
 (M

1)

di
ff

er
en

ce
 =

 {
 }

di
ff

er
en

ce
 =

{
de

le
te

b-
a

<
2m

in
.}

�
�
��
�
�

�
�
	
	

�
�

�
�
�
�

��
�
�
�	
�

�
�

��
�
�
�
��
�
�
	
��

�
�	

�

��
��
��

��

�
�
��
�
�

�
�
	
	

�
�

�
�
�
�

��
�
�
�	
�

�
�

�

�

��
��
��

��

V
er

.0
 (

M
0)

V
er

.1
 (

M
1)

1)
2)

ve
rs

io
n

up

C
on

fi
gu

ra
ti

on
 I

te
m

 (
C

I)

Pr
od

uc
t V

er
si

on

do
or

7:
op

en

V
er

.1
 (

P1
)

V
er

.0
(P

0)

C
I#

1

C
I#

2

do
or

do
or

7:
op

en
di

ff
er

en
ce

=
 {

 ,

}

do
or

1)
2)

P
ro

du
ct

 V
er

si
on

C
on

fi
gu

ra
ti

on
It

em

M
et

ho
d

V
er

si
on

do
or

7:
op

en

do
or

7:
op

en

do
or

7:
op

en

b-
a

<
 2

 m
in

.

do
or

7:
op

en

P
ro

du
ct

 V
er

si
on

M
et

ho
d

V
er

si
on

V
er

.0
 (P

0)
V

er
.1

 (P
1)

V
er

.3
 (P

3)
V

er
.4

 (P
4)

V
er

.2
 (

P2
)

V
er

.0
 (M

0)

V
er

.1
 (M

1)

di
ff

er
en

ce
 =

 {
 }

di
ff

er
en

ce
 =

{
de

le
te

b-
a

<
2m

in
.}

�
�
��
�
�

�
�
	
	

�
�

�
�
�
�

��
�
�
�	
�

�
�

��
�
�
�
��
�
�
	
��

�
�	

�

��
��
��

��

�
�
��
�
�

�
�
	
	

�
�

�
�
�
�

��
�
�
�	
�

�
�

�

�

��
��
��

��

V
er

.0
 (

M
0)

V
er

.1
 (

M
1)

1)
2)

ve
rs

io
n

up

C
on

fi
gu

ra
ti

on
 I

te
m

 (
C

I)

Pr
od

uc
t V

er
si

on

do
or

7:
op

en

V
er

.1
 (

P1
)

V
er

.0
(P

0)

C
I#

1

C
I#

2

do
or

do
or

7:
op

en
di

ff
er

en
ce

=
 {

 ,

}

do
or

1)
2)

Fig. 6. Three Dimensional Model

394 M. Saeki

inconsistency. The engineer deletes “b-a<2 min.” according to the notification
and then imports M0 again. Now, the engineer succeeds in importing M0 and
checks in the current product as version 3 (P3) to the repository (14: check-in).
Figure 6 includes projections of this simple scenario in the 3 dimensional cube,
and the readers can trace a trajectory of the engineer’s activities in the cube.

4 Solving Issues on Change Management

4.1 Change Propagation on Products

Consider again the example scenario in section 2.2. Our software engineer added
the “Door” object to the sequence diagram and checked it in to the repository,
as shown in Figure 3. However, this adopted method consisting of Class Diagram
and Sequence Diagram requires the addition of “Door” class to the class dia-
gram in order to maintain consistency in the product. This is a typical change
propagation on configuration items in product level. The supporting tool hope-
fully guides the engineer for this kind of change propagation, and it depends on
methods and method assembly. In our CAME tool, we can specify the constraints
with OCL as shown in the right bottom window of Figure 1. In fact, we put the
constraint “for each object in the sequence diagram, its class must be included in
the class diagram” with OCL when assembling Class Diagram and Sequence Di-
agram into the example method. We can realize this type of change management
on configuration items by means of consistency checking using an OCL evaluator.

4.2 Change Propagation on Methods

As for change management on method fragments, we can consider two categories.
The first one is quite similar to the consistency checking on configuration items
of product level, which was mentioned in the section 4.1. Since our method frag-
ments are defined as class diagrams and activity diagrams, consistency checking
on them is possible by using constraints written with OCL in the same way as
consistency checking on products. The constraints are not defined by method
engineers, unlike the product level, but defined as method assembly rules in
advance. For example, we have a method assembly rule “at least one method
concept and/or method association that connects the method fragments to be
assembled should be newly added”, which says that when we assemble method
fragments, we should logically connect them by using newly added method ele-
ments [5]. Suppose that our method engineer deletes a method association “in-
stance of” between “Class” of method fragment “Class Diagram” and “Object”
of “Sequence Diagram” in Figure 2, as illustrated in section 2.2. This deletion
operation violates the above method assembly rule and causes logical isolation
of these two method fragments in the resulting method. Checking consistency is
performed by using the method assembly rules represented with OCL, and it is
the same technique in the section 4.1.

The second one is the propagation to the other methods that use the changed
method fragments. See Figure 8 and suppose that we have two methods M#1

Configuration Management in a Method Engineering Context 395

M0

1:new Working Space for P1 on M0

P0

C0

S0

3:check-in

2: input & edit

S1

4: edit

5: check-in

P1

M0

6:check-out

Working Space
for P2 on M0

P0 C1

S1

P1

M0

Working Space for M1

7:edit

M1

8:check-in

M1

Repository

C1

M0

1:new Working Space for P1 on M0

P0

C0

S0

3:check-in

2: input & edit

S1

4: edit

5: check-in

P1

M0

6:check-out

Working Space
for P2 on M0

P0 C1

S1

P1

M0

Working Space for M1

7:edit

M1

8:check-in

M1

Repository

C1

M0

9:new

Working Space
for P2 on M0

P0 C1

S1

P1

Working Space for P2 on M1

10:check-outM1
C1

S1

S2
11:edit

p2 12:check-in

M0 Working Space
for P2 on M0

P0 C1

S1

P1

M1
C3

S3

P2

Working Space for P3 on M0
13:import

P3
14:check-in

: Direction of Version Up

M0

9:new

Working Space
for P2 on M0

P0 C1

S1

P1

Working Space for P2 on M1

10:check-outM1
C1

S1

S2
11:edit

p2 12:check-in

M0 Working Space
for P2 on M0

P0 C1

S1

P1

M1
C3

S3

P2

Working Space for P3 on M0
13:import

P3
14:check-in

: Direction of Version Up

Fig. 7. Version Control System

396 M. Saeki

and M#2; M#1 is composed from Class Diagram and Sequence Diagram, and
M#2 is from State Diagram and Sequence Diagram. The method engineer up-
dates the fragment MF#3 (Sequence Diagram) by adding “Timing Constraint”
concept as shown in Figure 4. After this version-up, what happens to the exist-
ing methods M#1 and M#2 of version 1? It is desirable that M#1 and M#2
are automatically updated to their newer versions having the new Sequence Di-
agram fragment Ver.1. The difference from Ver.0 to Ver.1 of Sequence Diagram
is automatically applied to Ver.0 of M#1 and M#2 so as to get their newer
versions Ver.1. As a result, the method engineer gets the newer versions that
have “Timing Constraints” concept in the Sequence Diagram part in M#1 and
M#2. During the application, the pre conditions of the change operations in-
cluded in the difference are verified so as to avoid inconsistency, same as in
merging branched versions mentioned in section 2.3. After finishing the appli-
cation, the generated newer versions, i.e. Ver.1 of M#1 and M#2, are verified
whether method assembly rules are satisfied or not.

M#1 M#2

MF#1

(Class Diagram)

MF#2

(State Diagram)

MF#3

(Sequence Diagram)

MF#3

(Sequence Diagram

for Real-time Systems)

Ver.1

M#1 M#2

Ver.1
Ver.1

Ver.0 Ver.0 Ver.0

Ver.0

Ver.0

automatically

updated

Fig. 8. Change Propagation on Methods

4.3 Change Propagation Between Products and Methods

Consider again the example scenarios in section 2.3 and what we should do to
maintain consistency, when the method is changed back from M1 to M0, i.e.
deleting “Timing Constraints” concept, as shown in Figures 6 and 7. By using
the forward difference for the version-up from M0 to M1, we can get the backward
difference from M1 to M0 as follows.

<XMI.delete>

<Class xmi.id="102">

<name> Timing_Constraints </name>

</Class>

</XMI.delete>

<XMI.delete>

<Association xmi.id="103">

<name> aggregation </name>

...

</XMI.delete>

Configuration Management in a Method Engineering Context 397

It is easy to automatically obtain the above difference, by replacing the occur-
rences of “add” with “delete” and vice versa in the recorded difference from M0
to M1. In the case that the method engineer deletes a method concept or associa-
tion from a method fragment and commits it as a new version, we get a difference
including “XMI.delete”. All that we should do for consistency check of the cur-
rent method is to look for “XMI.delete” in the difference from the last version to
the current one, and extract the method elements included in XMI.delete. And
then, in a product we detect the instances whose types are the extracted method
elements. In our example, we extract the method element “Timing Constraints”
appearing in the above XMI.delete fragment, and then look for those instances,
e.g. “b-a<2 min.” of the type “Timing Constraints” in the sequence diagram.
If the components detected are in the current version of the product, our tool
informs the engineer that inconsistency has occurred on account of changing the
method. The technique for detecting this kind of inconsistency focuses on the
occurrences of XMI.delete in the difference of a method change.

5 Conclusion and Future Work

This paper discussed the problems of configuration management, especially ver-
sion control and change management in method engineering environments, and
proposed an integrated technique to solve them. In particular, in section 4, we
clarified various types of change propagations in the method engineering context,
and showed that we could solve their issues by our proposed technique.

Although we have implemented basic commands mentioned in section 4 so
that our CAME can generate diagram editors having these commands, we need
more functions, in particular browsing the repository, displaying the status of
products (consistent or not, the newest version or not, etc.), and retrieving a
specific version not only by version number but also other, more practical means
e.g. tags. And more case studies are necessary to assess our technique and the
CAME tool together with version control functions. The support for cooperative
tasks by a team is also considered as future work.

Acknowledgements

The author would like to thank Rodion Moiseeiv for his valuable comments to
the earlier version of this paper.

References

1. Concurrent Versions System. http://www.cvshome.org/.
2. Subversion. http://subversion.tigiris.org/.
3. The Coral Metamodeling Toolkit. http://mde.abo.fi/tools/Coral/.
4. XML Metadata Interchange. http://www.omg.org/.

398 M. Saeki

5. S. Brinkkemper, M. Saeki, and F. Harmsen. Meta-Modelling Based Assembly
Techniques for Situational Method Engineering. Information Systems, 24(3):
209–228, 1999.

6. F. Harmsen. Situational Method Engineering. Moret Ernst & Young Management
Consultants, 1997.

7. R. Keller, J.-F. Bedard, and G Saint-Denis. Design and Implementation of a UML-
Based Design Repository. In Lecture Notes in Computer Science (CAiSE2001),
volume 2068, pages 448–464, 2001.

8. S. Kelly, K. Lyytinen, and M. Rossi. MetaEdit+ : A Fully Configurable Multi-User
and Multi-Tool CASE and CAME Environment. In Lecture Notes in Computer
Science (CAiSE’96), volume 1080, pages 1–21, 1996.

9. T. Oda and M. Saeki. Generative Technique of Version Control Systems for Soft-
ware Diagrams. In Proc. of the 21st IEEE Conference on Software Maintenance
(ICSM’05), pages 515–524, 2005.

10. J. Ralyte, C. Rolland, and R. Deneckere. Towards a Meta-tool for Change-Centric
Method Engineering: A Typology of Generic Operators. In Lecture Notes in Com-
puter Science (Proc. of CAiSE’2004), pages 202–218, 2004.

11. N. Ritter and H.-P. Steiert. Enforcing Modeling Guidelines in an ORDBMS-based
UML-Repository. In Proc. of International Resource Management Association
Conference (IRMA2000), pages 269–273, 2000.

12. M. Saeki. Toward Automated Method Engineering: Supporting Method Assembly
in CAME. In Engineering Methods to Support Information Systems Evolution
(EMSISE’03 in OOIS’03). http://cui.unige.ch/db-research/EMSISE03/, 2003.

13. M. Saeki and T. Oda. A Conceptual Model of Version Control in Method Engi-
neering Environment. In Proc. of CAiSE Short Paper 2005, pages 89–94, 2005.

14. S. Si-Said, Rolland C., and G. Grosz. MENTOR : A Computer Aided Requirements
Engineering Environment. In Lecture Notes in Comupter Science (CAiSE’96),
volume 1080, pages 22–43, 1996.

E. Dubois and K. Pohl (Eds.): CAiSE 2006, LNCS 4001, pp. 399 – 413, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Why Software Engineers Do Not Keep to the Principle
of Separating Business Logic from Display: A Method

Rationale Analysis∗

Malin Häggmark and Pär J. Ågerfalk

Dept of Computer Science and Information Systems, University of Limerick,
Limerick Ireland; and Dept of Informatics (ESI), Örebro University,

SE-701 82 Örebro, Sweden
malin.haggmark@ul.ie, par.agerfalk@ul.ie

Abstract. This paper presents an investigation into why software engineers do
not keep to the principle of separating business logic from display. The concept
of method rationale is used to establish what is supposed to be achieved by
following the principle. The resulting model is then contrasted with results from
in-depth interviews with practicing engineers about what they want to achieve.
The difference between what the principle advocates and what engineers
consider beneficial holds the answer to why the principle of separating business
logic from display is not maintained. The results suggest that many espoused
benefits of the principle do not appeal to engineers in practice and the principle
is tailored to make it more useful in particular contexts. Tailoring the principle
also brought about other benefits, not explicated by the principle, thus
reinforcing the idea that method tailoring is crucial to the successful enactment
of information systems engineering methods.

1 Introduction

The mantra of most experienced software engineers is the same: thou shalt separate
business logic from display [19]. Theory maintains that by separating business logic
from display, systems will be easier to scale, extend, update and maintain. Also,
engineers with different skill sets can work on different parts of a system
independently, thus optimizing tasks for each competence. This way of structuring
systems, typically with business logic and display structured in different tiers, also
facilitates new types of clients to be added with little extra effort [9, 14, 16, 19, 23].

The principle of separating business logic from display can be found in a wide
range of information systems engineering (ISE) methods. In general, methods are
used in ISE as a means of expressing and communicating knowledge about good
(effective and efficient) ISE practice. This way methods encapsulate knowledge of
good engineering practice, and by utilizing this, engineers can be more effective,
efficient and confident in their work [2]. Basically, a method is a proposed pattern of

∗ This work has been financially supported by the Science Foundation Ireland Principal

Investigator projects B4-STEP and Lero, and the EU FP6 Project COSPA.

400 M. Häggmark and P.J. Ågerfalk

activities, expressed as a set of prescriptions for action – a.k.a. method prescriptions
[3]. When the principle of separating business logic from display is part of an ISE
method, keeping to this principle involves following a set of such prescriptions, i.e.
following a method. Of course, this principle alone does not provide sufficient
support for successful ISE. The point is rather that we can choose to view it as a
method fragment [4] – as a set of method prescriptions – in order to draw on previous
research on method use in ISE practice. Specifically, this research suggests that if
engineers are to follow a method, the method must first and foremost be useful [22],
that is, enable them to be more productive and achieve higher levels of performance
in their job. For someone to regard a method as useful the knowledge must be
possible to rationalize, i.e. the person needs to be able to make sense of it and
incorporate it into their own view of the world [2]. It has been stressed that departure
from methods is conscious and inevitable in the real world, and that rigorous use of a
method does not pay back [6, 25]. Engineers tailor methods to suit their needs in
particular situations with awareness of the benefits and drawbacks this causes [6].

By entangling business-logic with display the development time may be shortened,
but may disadvantageously result in a harder and more tedious maintenance-process.
This suggests that engineers emphasize short-term benefits [19]. Research has shown
that students have difficulties learning how to structure applications [5], suggesting that
engineers do not keep to the principle because they have not fully understood how to
use it. A possible solution would be to enforce the principle of separation in, for
example, the template-engine; leaving no possibility to entangle business logic with
display [19]. It can be questioned whether enforcement is appropriate, and hence a more
thorough investigation of why engineers do not keep to the principle is necessary.

To summarize: A method (or any of its parts) has to be useful for engineers to keep
to it [22]. Furthermore, engineers must be given the freedom to tailor the method to
make it useful in their particular situation [6, 25]. Engineers may not tailor methods in
a way that is beneficial for the software produced, but rather to ease and speed up the
process of software-development, thus, deteriorating the quality of the product (the
software) in favour of the personal process goals [19]. Their rationale is rarely
explained; they make design decisions with no clear statement of why they do things
the way they do [18]. The principle of separating business logic from display does not
seem to be an exception from the rule that methods need to be tailored. The principle
is espoused as ideal in theory, but practice seems to be a different story altogether
[19]. This paper is an empirical enquiry into why engineers do not keep to the
principle of separating business-logic from display. Answering this question also
increases our understanding of the more fundamental question of how and why
engineers choose to tailor ISE methods in general.

The contribution of this paper is thus threefold. First, the essence of the principle of
separating business logic from display is captured and expressed as a set of method
prescriptions. Second, why software engineers do not keep to this principle is
investigated. Finally, the usefulness of method rationale as an analytic tool to
understand method tailoring is explored.

The paper proceeds as follows. Section 2 covers rationality of methods, and how
this can be used to analyse methods. It sets the foundation for the research method,
outlined in Section 3. The result of the investigation is presented and analysed in
Section 4, preceded by conclusions in Section 5.

 Why Software Engineers Do Not Keep to the Principle 401

2 Methods and Their Rationale

A method is always grounded in a way of thinking [7, 10, 12], which constitutes the
foundation for the reasons and arguments behind it. These reasons and arguments can
be referred to as method rationale [1, 2, 24]. Using method rationale to understand the
enactment of ISE methods can be facilitated by discussing it in terms of public and
private rationality [26].

Public rationality is about creating an inter-subjective understanding (about the
reasons and arguments) of the method. This is a sort of knowledge that is shared by
several people as part of their inter-subjective beliefs. Public rationality can be
externalized and communicated through written method-descriptions (e.g. a method
handbook). Public rationality is expressed in an ideal typical method [2] or method-in-
concept [15]. Private rationality, on the other hand, is personal and cannot be
externalized in every respect. Private rationality can be found in a person’s ‘skills and
professional ethical and aesthetic judgements’ [26]. Private rationality is expressed in
a method-in-action [2, 15]. In an ideal situation, public and private rationality fully
overlap [13]. If so, the method prescription can be carried out to a tee since the
engineer fully understands and agrees with everything suggested by the method. This
overlap, referred to as rationality resonance [26], is depicted in Fig. 1.

Public
rationality

Private
rationality

Rationality
resonance

Fig. 1. Rationality resonance [13]

The non-overlap gives rise to a method usage tension [15] – a tension between
what ought to be done (according to the method creator) and what is actually done.
Analysing rationality-resonance requires that both private and public rationality are
made as explicit as possible to enable comparison [13]. Fig. 2 provides a visual
overview of method rationale by showing how its constituent concepts relate.

Divides into

Together form

Method rationale =
reasons and arguments

behind the method

Private rationality
(method-in-action)

Public rationality
(method-in-concept)

Rationality resonance +
method usage tension

Fig. 2. The constituents of method rationale

402 M. Häggmark and P.J. Ågerfalk

2.1 Public Rationality Analysis Through Goals and Values

A methods’ public rationality can be analysed with respect to the goals and values it
implements. The reasons behind a method-prescription can be understood in terms of
the goals the prescription is supposed to realize. This way, each method prescription
can be related to one or more goals, even though these are not always well articulated
in the method descriptions. A goal can be defined as a result, towards which
behaviour is consciously or unconsciously directed [3].

Ultimately, public rationality lies in the heads of the people who have developed a
method [24]. Accordingly, goals are manifestations of the method-creator’s value
base – all goals are anchored in values. A value can be understood as an ethical
judgement like an expression of feeling and attitude and can therefore not be judged
as true or false. Goals can be related to each other in goal hierarchies; for example,
when a goal is as a means to achieve another (higher) goal. Similarly, values can be
anchored in other values. These two properties of method rationale are referred to as
goal-achievement and value anchoring, respectively. In addition to goal achievement,
there is a possibility that goals contradict rather than complement each other – hence
there is an additional goal-contradiction relation defined over the set of goals.
Similarly there is a value-contradiction relation defined over the set of values. Fig. 3
depicts how every method prescription is related to at least one goal, and each goal is
related to at least one value. [3] See Section 4.1 for concrete examples.

*

*

*

*

*

1..*

1..**

*

Value anchoring

*

*

*

Value contradictionGoal contradiction

Goal achievement

Goal Value

Method
prescription

Fig. 3. Method-rationale as constituted by goals, values and their relationships [3]

How an engineer chooses to use a particular method-prescription depends on the
goals this prescription helps to achieve. Whether or not a goal appeals to an engineer
depends on whether or not they subscribe to the value in which the goal is anchored;
i.e. whether or not rationality-resonance can be achieved [3].

2.2 Modelling Public Rationality

The directed graph in Fig. 4 gives a visual representation of how method prescriptions,
goals and value are related. It shows that Goal 1 is achieved by following the Method
Prescription. Goal 2 is a goal on a higher level, which Goal 1 is a means to achieve
[11]. Goal 1 is anchored in Value 1 and Value 2, which in turn are anchored in Value
3 and Value 4. Goal 2 is anchored in Value 5.

 Why Software Engineers Do Not Keep to the Principle 403

Value 1

Value 3 Value 4

Value 2

Method
prescription

Method
prescription

Value 5

Goal 1Goal 1 Goal 2Goal 2

Fig. 4. Visual representation of public rationality through goals and values

3 Research Method

A qualitative research approach with structured interviews [20] was used in this
research. A visual presentation of the adopted research approach is shown in Fig. 5
and explored in the remainder of this section.

Model of public
rationality
(graph with

goals and values)
Section 3.1

Model of public
rationality
(graph with

goals and values)
Section 3.1

Questionnaire
used for

interviews with
engineers

Section 3.2

Questionnaire
used for

interviews with
engineers

Section 3.2

Method prescriptions
expressing public

rationality
Section 3.1

Method prescriptions
expressing public

rationality
Section 3.1

Private rationality
explicated
Section 3.2

Private rationality
explicated
Section 3.2

Basis
for

Why don’t developers
(strictly) keep to the

principle of separating
logic from display?

Section 3.3

Why don’t developers
(strictly) keep to the

principle of separating
logic from display?

Section 3.3

Initial questionnaire
used for interviews with

senior engineers
Section 3.2

Initial questionnaire
used for interviews with

senior engineers
Section 3.2

Interviews
lead to

Iteration

Iteration

Basis
for

Interviews lead toComparison of public and
private rationality answers

Fig. 5. Research design

3.1 Capturing Public Rationality

As described above, expressed method-prescriptions are the foundation for the ideal
typical method-in-concept and as such are expressions of public rationality. By
analysing these, the goals1 and values that underpin them can be explicated. The
analysis results in a graph, such as the one in Fig. 4. The method-in-concept is in our

1 These are the goals of the method creator(s), which they aim to communicate through method

prescriptions [2].

 engineers

404 M. Häggmark and P.J. Ågerfalk

case rather generic since the principle of separating business-logic from display does
appear, as mentioned above, in many methods. Hence, we need to capture the essence
of the principle by arriving at a synthesis from sources that represents frameworks
widely used (see Section 4.1). This synthesis constitutes the foundation for
elaborating prescriptions, goals, values and their interrelationships, arriving at a
model depicting the public rationality (visualized in Fig. 6 and Fig. 7).

3.2 Capturing Private Rationality

The next step is then to test which of the ‘public rationality values’ that are in
accordance with the engineers’ values, thus elaborating the private rationality by
identifying how they use the method prescriptions. Asking questions that capture
those values illuminate the engineers’ value base. As explained above, this value base
is the foundation for their goals, so focusing the values during interviews will
implicitly extend to the goals.

The goal-value-model is the input for designing a questionnaire used in the
interviews. One or several questions capture each value in the model. For example,
the value ‘It is easier to locate and determine problems/bugs in applications composed
of well demarcated parts’, is captured by the question: ‘Do you consider it easier or
harder to track down problems/bugs when the application separates logic from
display?’ Repeating this step to cover each value results in a questionnaire suitable for
structuring the interviews. To clarify which question(s) captures which value(s), a
table, such as Table 1, is used2. The actual values identified are presented in Fig. 6
and Fig. 7 in Section 4.1.

Table 1. Values and the corresponding questions

Value Question
V1 Q1-Q4 Q10
V2 Q5 Q8
V3 Q3-Q6
… …

The private rationality was explicated by performing (and recording) semi-
structured open-ended interviews [20, 28]. This approach gives the opportunity to get
a focused, thorough, insightful understanding of the engineers’ perspective on tier-
based development3, enabling the engineers to speak freely about their work. The
selection of respondents was inspired by the ethnographic principle of selecting a
representative individual for initial enquiry who then suggests further respondents.
The number of respondents is then increased until saturation is achieved – that is,
until the marginal utility of further interviews are deemed insignificant. Such an
approach avoids researcher bias and allows for more objective results. Initially a
group interview was carried out with two highly experienced senior engineers/project
managers. The questionnaire was here used as a guide, but the aim of this interview
was primarily to find weaknesses and improve it for further interviews. This interview

2 For the complete questionnaire and value-question-table used in this research see http://

www.csis.ul.ie/staff/paragerfalk/CAiSE2006-Q-V.pdf
3 Separating business logic from is typically implemented by structuring the software into tiers.

 Why Software Engineers Do Not Keep to the Principle 405

resulted in a questionnaire with more sub-questions and less ambiguity. The improved
questionnaire was then used to interview a total of five engineers individually. All
respondents were notified of the study in advance, but did not get the questions
beforehand. The interviews lasted for 30–50 minutes each.

3.3 Analysing Rationality Resonance

The differences in values (i.e. the method-creators’ values versus the engineers’ values)
lead to an understanding of why these engineers do not keep to the principle, thus
revealing information about the method usage tension in terms of rationality-resonance.
Comparing each ‘public rationality value’ from the model with the ‘private rationality
values’ from the interviews shows which values differ, thus answering the question why
engineers do not follow the principle of separating business-logic from display.

3.4 Organizational Context for the Interviews

The interviews took place in the IT department of Statistics Sweden – the Swedish
public authority responsible for all official statistics. The IT department provides the
organization with applications for gathering and processing data. Typically, data is
gathered via web-based clients, which is later processed in windows-based clients.

The organization has previously mainly developed small systems. An application
with 1–10 users (method statisticians) has been the most common application.
Increasing demands for larger applications, and for integration of various systems, has
led the-organization to leave their regular Visual Basic environment in favour of the
object oriented (OO) multi-tier based .NET-framework. The respondents were all
experienced engineers with good knowledge of both environments.

4 Results and Analysis

This section gives a theoretical presentation of the principle of separating business
logic from display, explicating the reasons behind the method prescriptions. The goals
and values of the method prescriptions are then analysed and presented in Fig. 6 and
Fig. 7, followed by the result from the interviews. All references to specific method
prescriptions (P), goals (G) and values (V) in this section refer to those figures.

4.1 The Pros and Cons of Separating Business Logic from Display

A most straightforward way to develop a system could be to interweave the display
with the business logic. This is probably not a bad idea if the application is relatively
small, supports a single type of client, and is not expected to be considerably extended
or updated. Dividing an application into different tiers will increase its complexity
since extra classes will be required to handle the separation of display and business
logic [14, 19, 23, 27].

The idea behind structuring a system in tiers is to achieve separation of concerns
(G3, G6, G7, V3–V5, V7, V13); it is much more difficult to change the display if it
depends on and is built into the business logic, and vice versa [8, 16, 21]. Separation
of these areas of concern generally results in more flexible systems, with the ability to

406 M. Häggmark and P.J. Ågerfalk

support multiple types of clients (G1–G2, V1–V2) [16, 17]. From this reasoning, the
method prescriptions P1 and P2 become apparent.

Dividing the application into separate parts is a kind of encapsulation that enhances
the manageability and maintenance [8, 9, 17]. Because each task is contained within
its own object, it is easy to locate and determine where a problem exists (G3, V5)
[14, 19]. Designers can develop/update the display without the need to contact
programmers (V6–V10) [14, 19]. Thus, labour is divided according to different skill
sets (G4), as recommended by P4. This encapsulation and breaking down of large
tasks into smaller ones also provide for component reuse (G5, V2, V11–V13), either
within the project, or in other similar projects, giving rise to P3.

In general, the benefits of tier-separation arise when [14, 19, 27]:

1. The application will support multiple types of clients. Since the display is separated,
all that is needed is to create a new type of client, and let it access the business logic.

2. The business logic is likely to be updated or extended throughout its lifecycle.
3. The display is likely to be updated or extended throughout its lifecycle, for

example with new ‘skins’, to improve the looks.
4. The development team develops/maintains more than one application; components

can be reused between (but also within) projects.
5. The development team is composed of individuals with different skill sets.

Fig. 6 and Fig. 7 depict a graph representation of the goals and values of the
principle of separating business logic from display and how they are related, i.e. it
depicts an explicit model of the public rationality.

P1
Construct

applications that
are able to support
multiple types of

clients

P1
Construct

applications that
are able to support
multiple types of

clients

V3
Applications

do get
extended/
updated

V1
It is worth the
extra effort to

prepare an
application for

extensions/updates

P2
Compose

applications of
well demarcated

parts

P2
Compose

applications of
well demarcated

parts

V4
Applications

composed of well-
demarcated parts
are easy to extend
(scale) and update

V5
It is easy to locate

and determine
problems/bugs in

applications
composed of well
demarcated parts

V2
Engineers think in

long-term

G1
Applications

support
multiple
types of
clients

G1
Applications

support
multiple
types of
clients

G2
Applications are
prepared to be
extended for

future support of
multiple types of

clients

G2
Applications are
prepared to be
extended for

future support of
multiple types of

clients

G3
Problems/bugs
are easy to find

G3
Problems/bugs
are easy to find

G6
Applications
are easy to

update/extend

G6
Applications
are easy to

update/extend

G7
Applications are

built with a
standardized

coherent
architecture

G7
Applications are

built with a
standardized

coherent
architecture

V13
Standardization is
good for common
understanding and

collaboration

V7
Demarcation

enhances
understanding

Fig. 6. Goals and values for the principle of separating business logic from display

 Why Software Engineers Do Not Keep to the Principle 407

P3
Reuse components

within and
between projects

P3
Reuse components

within and
between projects

V11
Reusing a
component

is less
work than
building a
new one

from
scratch

V12
Reusing components

leads to
standardization

V13
Standardization is
good for common
understanding and

collaboration

P4
Divide labour
according to

different skill sets.

P4
Divide labour
according to

different skill sets.

V9
Members of a

development team do
have different skills

V10
Members of a

development team
can’t accomplish
each others tasks

V6
Applications
composed by

demarcated parts
divides the

application into
different parts

suiting each skill set

V8
It is important to

demark
what is relevant

to each competence

V7
Demarcation

enhances
understanding

G4
Team members

divide labour
between them

G4
Team members

divide labour
between them

G5
Team members

Reuse components

G5
Team members

Reuse components

V2
Engineers think in

long-term

Fig. 7. Goals and values for the principle of separating business logic from display (continued)

4.2 Results from Interviews – Public Versus Private Rationality

This section is a synthesis of the result from the interviews. It is structured along the
four method prescriptions (see above) focusing differences and similarities (i.e. method
usage tension and rationality resonance) of what is found in the interviews (private
rationality) and what the theory/method-in-concept tells us (public rationality).

P1: Construct Applications that are Able to Support Multiple Types of Clients
The organization uses two-types of clients, windows clients and web clients in their
applications. It is always known beforehand if the application shall have windows
clients, web clients or both; a system has never been extended with a new type of
client afterwards. It is more common to build two applications instead of one
application with two types of clients. They do reuse components in the two different
applications. Their aim is to integrate applications, thus having different clients access
the same business logic, but so far this has not been achieved. The following goal
contradiction came up during the interviews:

‘Theoretically, it is possible just to add an extra client to an existing application. In
reality-though, you need to structure the application differently if it is a windows or
web application. With a windows application you can do a lot more, for example, you
can keep a big object with a lot of attributes in memory the whole time, there will
always be enough memory for this. In a-web application you need to be more careful
with the resources (like memory), since it is on a server (perhaps a web hotel), and
you don’t know how many will be using it simultaneously. If you choose-to adjust all
windows applications for web use, these applications will be a bit “handicapped”,
and not as advanced as they could be. The windows application functionality will then
not be fully utilized.’

408 M. Häggmark and P.J. Ågerfalk

Security issues-make it more complicated to add web clients to systems, since web
clients are not allowed direct access to the ‘inner’ servers. Data has to-be replicated
on special ‘outer’ servers in these-occasions.

As indicated above, the public rationality goals G1 (Applications support multiple
types of clients) and G2 (Applications are-prepared to be extended for future support
of multiple types of clients) were not really the goals of the organization. It was more
common to do a separate application for each client. This had partly to do with
security issues. The engineers also claimed that an application has to be structured
differently depending on what kind of client it will be used for; optimizing for one
type gives drawbacks for another, etc. G1 and G2 are not achieved in this
organization.

Value V1 (It is worth the extra effort to prepare an application for extensions/
updates), does not seem to hold the answer to why G1 and G2 is not fulfilled. The
answer lies in what is described above about structuring applications differently
depending on which types of clients it will have. The-engineers pretty-much say that
(this part of) the theory is too good to be true; it is impossible to put into practice. It
is-beyond this investigation to analyse this further, but there is a possibility that the
engineers had not fully understood the-method-in-concept. V2 (Engineers think in
long-term) is a succession of V1, and is therefore not possible to evaluate in this
context. However, it will be touched upon in the next section. The-value V3
(Applications do get extended/updated (in this case with additional types of clients)),
is not consistent with the values in the organization, since the systems were not to be
extended with new types of clients.

P2: Compose Applications of Well Demarcated Parts
P2 can be viewed at different granularities: on the higher granularity, there are the
different tiers, which constitute the well-demarcated parts. Within each tier (a lower
granularity), there is code, preferable well-demarcated pieces of code, for example
components. This is actually how the engineers structure their code; in predefined
tiers, and in each tier, different components.

The engineers found that the main gain of structuring applications in tiers is that
everyone will work and structure the application in a similar way. This results in
coherent, homogeneous and stable applications, leading to easier maintenance. The
biggest asset is the standardization benefit, namely that it is predefined where
different type of code is located, thus enhancing collaboration (like quickly get into
each others’ applications).

The statement ‘it is easier to program if some logic is put into the display tier’, from
one of the interviewees, may imply that full understanding of the benefits of tier
separation has not been achieved. It is difficult to say though, because other engineers
had a more conscious departure from the strict tier-separation, with clear arguments of
why they did what they did. They expressed that they would place input controls, such
as checking that correct values are filled out in a form, as well as event handling in the
display tier. This reduces transfer over the network and increases performance.
Sometimes they would do the input controls twice, both in the display and in the
business tier, to have all the logic gathered in the same place, and for extra security. A
third-part component demanded some logic to be put in the presentation tier; it was not
possible to solve it otherwise. This shows that they have done conscious adjustments of

 Why Software Engineers Do Not Keep to the Principle 409

the method prescription to achieve some articulated benefits. If there are drawbacks, and
whether the engineers are aware of these is beyond the scope of this investigation. For
example, if one starts to add logic into the display-tier, it will not be possible to use a
designer without programming experience any longer. Since there is no designer role
assigned, this drawback is probably not prominent in their situation.

The learning threshold appeared to be the main drawback with tier-based
development. The topic came up a few times in each interview when addressing issues
of understanding, updating and extending applications. The engineers experienced the
learning process as incremental, and in the beginning it was more difficult to understand
systems structured in tiers (a necessity for making updates and extensions). It took about
a year to achieve proficiency in extending and updating applications using the
separation principle. Most engineers thought it would take about the same amount of
time to create a tier-based application as one where display and business logic is
entangled. They found it a little difficult to compare though, since they had usually
developed smaller systems before. As one engineer expressed it ‘larger systems require
much more planning and structure, especially if they are being updated later on’. There
seems to be a common opinion that the benefits of tier separated applications mainly
appears when building larger systems.

The engineers found both advantages and disadvantages with regards to error
handling. If it was obvious in which tier the bug was, the tier structure was advantageous,
otherwise you have to run up and down in the tiers, actually taking more time, making it
a disadvantage.

The engineers apparently aim to fulfil the goals attached to this method prescription,
i.e. there is a foundation for rationality resonance. A closer look at the goals shows that
the engineers did aim for G3 (Problems/bugs are easy to find), but did not think tier
separation always helps achieving it. Tier separation did help achieving G6
(Applications are easy to update/extend). The main gain was G7 (Applications are built
with a standardised coherent architecture).

The underlying values also match: The fact that applications did get extended/updated
(V3) may have contributed to the engineers’ interest in building general reusable
components, and their positive attitude to the ones that had been developed so far. They
kept to the tier-separation in most cases, even though it took some extra work. This
indicates they do think it is worth the extra effort to prepare an application for
extensions/updates (V1) and that they do think in long-term (V2). The engineers were of
the opinion that applications composed of well-demarcated parts are easy to extend
(scale) and update (V4). The largest application developed in this organization so far has
a couple of hundred users. Scaling is therefore not relevant to talk about since the
applications are too small. When it comes to locating and determining problems/bugs
(V5), tier-based applications had both advantages and disadvantages. The main gain of
tier-based architecture was considered the standardization benefit, which underpinned
common understanding and collaboration (V13) and that demarcation enhances
understanding (V7).

P3: Reuse Components Within and Between Projects
This prescription is very closely coupled with the previous one, so the interview
findings from the above section contributes to the understanding of this section too.

410 M. Häggmark and P.J. Ågerfalk

The engineers experienced that updating the application often led to partly
rebuilding it. At this stage they often realized that things could be done in a more
general manner. Through this type of development, general reusable components
emerged, creating a library of components within the organization. This was a
conscious process led by a project group, with the aim to create their own standard.

The engineers definitely aim to reuse components (G5). They certainly also
believed that reusing a component is less work than building a new one from scratch
(V11). Developing a general component does take a little more time than developing
one for a particular application, but is paid back in the next application. It is clear that
reuse of components leads to standardization (V12), which is good for common
understanding and for collaboration (V13).

P4: Divide Labour According to Different Skill Sets
The engineers had general competence in the different types of skills needed for
developing applications. The demarcations into different skill sets appear on the
component level, not on the tier level (as in display-designer versus programmer) as the
method-in-concept advocates. Some engineers were slightly more specialized in
database programming, while others had a bit more feel for user interface programming.
There are no designers without programming experience within the organization, so the
benefit of being able to use them to create the display-tier could not be explored.

Goal G4 (team members divide labour between them according to different skill
sets) is not really a goal of this organization. The values associated with it do not
correspond to the engineers’ values either. Since the members of the development
team do not have different skills (V9), it is not important to demark what is relevant to
each competence (V8) and members of a development team actually can accomplish
each other’s tasks (V10). This is, of course, specific to this organization.

Value V6 (Applications composed by demarcated parts divides the application into
different parts, suiting each skill set) must (just as above) be discussed on the two
different granularity levels. On the component level, this is partly true, but on the tier
level there is no division into skill sets. The same reasoning applies to V7
(Demarcation enhances understanding).

4.3 Discussion

From the above we can see that the engineers in most cases did conscious departures
from the method, which is in line with previous research [6, 25]. The method
prescriptions did not make sense in their strict form and were therefore not useful,
which is a must for successful method tailoring [2, 22].

The statement ‘it is easier to program if some logic is put in the display-tier’ may
imply that there is a lack of understanding (as suggested in [5]), and also a sign of
short-term thinking [19]. This can be viewed as a goal contradiction – that the
personal process goal (easy to program) is favoured before the quality of the product
(software); aiming for one goal, gives negative results for another. This issue, to
actually put logic into the display-tier is a bit contradictive to the result that the main
gain of structuring applications this way is that you know where different type of code
is located. The actual rules about what should be put where were appreciated since it
made it easier to understand each other’s applications. Perhaps the idea about

 Why Software Engineers Do Not Keep to the Principle 411

enforcing separation [19] would increase this gain even further? The idea that
engineers think in short-term does not apply to the bigger picture of this study though.

The fact that the engineers had to balance different factors and prioritized, e.g.
security and performance above keeping to the principle is not surprising. The
existence of contradictory goals in ISE is well-known, and the trade-offs between the
goals and values brought to the fore in this study and other ISE goals and values
would be interesting to explore further. Although this is beyond the scope of this
study, the same analytic framework could likely be useful in such an endeavour.

5 Conclusion

Generally speaking, engineers do not keep to the principle of separating business
logic from display because in some respects it does not help achieving their goals. In
these cases, engineers make conscious departures from the method prescriptions, thus
tailoring the method to suit their needs.

This study also revealed more specific reasons for tailoring the principle: Business
logic was sometimes placed in the display-tier because ‘it made it easier to program’,
‘it improved performance’, and ‘a third part component demanded it’. All engineers
in the study had similar skill sets, so this caused no misunderstandings. Multiple types
of clients hardly ever occurred in the study. The engineers were confident that an
application could be efficiently optimized for one type of client; a benefit that is lost
in case of systems with multiple types of client. This issue is not mentioned in the
literature, thus indicating either that the drawbacks are not explicated, or that the
engineers have not understood the method-in-concept. If the drawbacks are
suppressed in the method-in-concept, this may be the first and foremost answer to
why engineers choose not to follow it.

The principle of separating business logic from display is used in a wide range of
software engineering efforts today. It is also well known that engineers are ‘cheating’
with it, thus potentially deteriorating the quality of the software [19]. This investigation
contributes to our understanding of why engineers do this, hence holds the key to how
this can be overcome. Non-strict use of the principle gave other benefits, not explicated
by the method-in-concept, showing that method tailoring is important. The study also
shows that the concept of method rationale is a useful tool for addressing these issues.

This qualitative study provides examples of why developers do not keep to the
principle of separating-business logic from display – and, in line with previous
research, suggests that departure from the principle is often conscious and well-
motivated. Given the small scale of the study, hard conclusions are obviously difficult
to draw. For more generalizable results, a larger study including several more
engineers would be required. It would also be interesting to explore to what extent the
same results would appear in a different development environment. Perhaps the
results from this study are particular for the .NET-environment, whereas other issues
could be connected to other development environments. For example, the principle
obviously relates to the Model View Controller (MVC) pattern which is widely used
(it can indeed be seen as subset of the MVC pattern). In order to understand the
influence of contradictions between higher level goals, the interplay between this
principle and other software engineering principles needs to be studied as well.

412 M. Häggmark and P.J. Ågerfalk

References

1. Ågerfalk, P. J., Åhlgren, K.: Modelling the Rationale of Methods. In: M. Khosrowpour,
(ed.): Proceedings of the 10th Information Resources Management Association
International Conference. (1999) 184-190

2. Ågerfalk, P. J., Fitzgerald, B.: Methods as Action Knowledge: Exploring the Concept of
Method Rationale in Method Construction, Tailoring and Use. In: T. Halpin, J. Krogstie,
and K. Siau, (eds.): Proceedings of EMMSAD'05. (2005) 413-426

3. Ågerfalk, P. J., Wistrand, K.: Systems Development Method Rationale: A Conceptual
Framework for Analysis. In: Proc. 5th International Conference on Enterprise Information
Systems (ICEIS 2003) 185–190

4. Brinkkemper, S., Saeki, M., Harmsen, F.: Meta-Modelling Based Assembly Techniques
for Situational Method Engineering. Information Systems 24 (1999) 209-228

5. Dewan, P.: Teaching Inter-Object Design Patterns to Freshmen. In: Proc. SIGCSE'05
(2005)

6. Fitzgerald, B.: The Use of Systems Development Methodologies in Practice: A Field
Study. Information Systems Journal 6 (1997) 201-212

7. Fitzgerald, B., Russo, N. L., Stolterman, E.: Information Systems Development: Methods
in Action. McGraw-Hill, Berkshire, UK (2002)

8. Forsberg, C., Sjöström, A.: Pocket PC Development in the Enterprise. Addison Wesley,
London, UK (2002)

9. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns, Elements of Reusable
Object-Oriented Software. Addison-Wesley (1995)

10. Goldkuhl, G.: Design Theories in Information Systems: A Need for Multi-Grounding.
Journal of Information Technology Theory and Application 6 (2004) 59-62

11. Goldkuhl, G., Röstlinger, A.: Joint Elicitation of Problems: An Important Aspect of
Change Analysis. In: D. E. Avison, J. E. Kendall, and J. I. DeGross, (eds.): IFIP WG8.2
on Human, Social, and Organizational Aspects of Information Systems Development.
(1993) 107–125

12. Jayaratna, N.: Understanding and Evaluating Methodologies. McGraw-Hill, London
(1994)

13. Karlsson, F.: Method Configuration, Method and Computerized Tool Support. Doctoral
Dissertation. University of Linköping (2005)

14. Levi, N.: Java 2 Web Developer Cerification Study Guide. SYBEX inc., Alameda,
California, USA (2003)

15. Lings, B., Lundell, B.: Method-in Action and Method-in-Tool: Some Implications for
CASE. In: Proc. 6th International Conference on Enterprise Information Systems (ICEIS
2004) 623-628

16. Nash, M.: Java Frameworks and Components: Accelerate Your Web Application
Development. Cambridge University Press, Cambridge, UK (2003)

17. Parnas, D. L.: On the Criteria to Be Used in Decomposing Systems into Modules.
Communications of the ACM 15 (1972) 1053-1058

18. Parnas, D. L., Clements, P. C.: A Rational Design Process: How and Why to Fake It. IEEE
Transactions on Software Engineering 12 (1986) 251-257

19. Parr, T.: Enforcing Strict Model-View Separation in Template Engines. In: Proc.
WWW2004, ACM (2004)

20. Patton, M. Q.: Qualitative Evaluation and Research Methods. SAGE Publications,
Newbury Park California, USA (1990)

 Why Software Engineers Do Not Keep to the Principle 413

21. Pree, W.: Design Patterns for Object-Oriented Software Development. Addison-Wesley
(1995)

22. Riemenschneider, C. K., Hardgrave, B. C., Davis, F. D.: Explaining Software
Development Acceptance of Methodologies: A Comparison of Five Theoretical Models.
IEEE Transactions on Software Engineering 28 (2002) 1135-1145

23. Rogue Wave Software, I.: Distributed MVC: An Architecture for Windows DNA
Applications. Boulder, Colorado USA (1999)

24. Rossi, M., Ramesh, B., Lyytinen, K., Tolvanen, J.-P.: Managing Evolutionary Method
Engineering by Method Rationale. Journal of the Association for Information Systems 5
(2004) 356-391

25. Russo, N. L., Stolterman, E.: Exploring the Assumptions Underlying Information Systems
Methodologies. Information Technology & People 13 (2000) 313-327

26. Stolterman, E., Russo, N. L.: The Paradox of Information Systems Methods: Public and
Private Rationality. In: Proc. The British Computer Society 5th Annual Conference on
Methodologies (1997)

27. Sun Microsystems, I. Java Blueprints: Model-View-Controller. Sun Microsystems, Inc
[Online]. Available: http://java.sun.com/blueprints/patterns/MVC-detailed.html

28. Yin, R. K.: Case Study Research, Design and Methods, 2nd Edition. SAGE, London
(1994)

Business Process Modelling

Translating Standard Process Models to BPEL�

Chun Ouyang, Marlon Dumas, Stephan Breutel, and Arthur ter Hofstede

Faculty of Information Technology,
Queensland University of Technology,

GPO Box 2434, Brisbane QLD 4001, Australia
{c.ouyang, m.dumas, sw.breutel, a.terhofstede}@qut.edu.au

Abstract. Standardisation of languages in the field of business process
management has long been an elusive goal. Recently though, consensus
has built around one process implementation language, namely BPEL,
and two fundamentally similar process modelling notations, namely UML
Activity Diagram (UML AD) and BPMN. This paper presents a tech-
nique for generating BPEL code from process models expressed in a
core subset of BPMN and UML AD. This model-to-code translation is
a necessary ingredient to the emergence of model-driven business pro-
cess development environments based on these standards. The proposed
translation has been implemented as an open source tool.

1 Introduction

Over the past two decades, developments in the field of workflow and business
process management have been hindered by the lack of a lingua franca for de-
scribing business processes, whether at the design or at implementation stages
of the software lifecycle. Standardisation efforts during the 90s, led by the Work-
flow Management Coalition (WfMC), failed to be widely adopted for a number
of reasons [1]. Recently however, consolidation has led to a single language for
business process implementation: the Business Process Execution Language for
Web Services (BPEL) [3]. In parallel, two process modelling notations, namely
the Unified Modelling Language “Activity Diagram” (UML AD) [10] and the
Business Process Management Notation (BPMN) [12], have attained some level
of maturity and adoption.

There exist a number of business process execution engines that support
BPEL, either natively or through import and export functions. Similarly, a large
number of tools provide support for UML modelling, in particular using Activity
Diagram, while BPMN, despite being a recent proposal, is already supported by
about a dozen tools [5]. It appears however that support for translating models
in UML AD and BPMN into BPEL code has received little attention relative
to the amount of tools supporting these languages separately. Tools such as
Telelogic’s System Architect support the generation of BPEL code from BPMN
diagrams but only for a limited subset of BPMN. More generally, proposed map-
pings from UML AD to BPEL [9] and from BPMN to BPEL [12] fail to address
some difficult issues as discussed below.
� Supported by an Australian Research Council (ARC) Discovery Grant (DP0451092).

E. Dubois and K. Pohl (Eds.): CAiSE 2006, LNCS 4001, pp. 417–432, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

418 C. Ouyang et al.

Both BPMN and UML AD share a common set of core constructs and for
practical purposes, can be treated as variants of the same kernel language. This
kernel is essentially an extension of flow charts with parallel splits (fork nodes)
and synchronisation points (join nodes). As in flow charts, nodes in BPMN and
UML AD (version 2.0) can be linked in arbitrary topologies, making it possible to
write models with unstructured cycles. Meanwhile BPEL, which is essentially an
extension of structured programming languages, only supports structured loops.
Work in the field of structured programming [11] has shown that it is possible to
translate from unstructured to structured flow charts and from there to generate
code in structured programming languages including “sequence”, “if-then-else”,
and “while” constructs. It turns out however that after adding forks and joins
to the flow chart notation these results no longer hold [7].

This paper takes on the challenge of designing a technique for translating
BPMN and UML AD models with arbitrary topologies, which we term Standard
Process Models or SPMs, into BPEL code. We consider this translation as being
necessary to improve the connection between tools supporting process modelling
and tools supporting process execution, thus enabling model-driven approaches
to business process development based on standard and widely supported lan-
guages. The basic idea of the translation is to exploit an underused construct in
BPEL, namely event handlers. This is the only construct in BPEL that allows
one to capture processes with unbounded concurrency (i.e. processes with an
unbounded number of threads running concurrently) without having to break
down the process into several smaller ones, which may potentially lead to main-
tenance issues. Since some unstructured cycles in BPMN and UML AD may lead
to unbounded concurrency, we argue that using event handlers is the only way
to achieve a full translation from any SPM to a self-contained BPEL process. In
this respect, the proposed translation goes beyond those in [9] and [12] which
are essentially limited to structured models.

The rest of the paper is structured as follows. Sect. 2 gives an overview of
BPEL and SPMs (the chosen abstraction of BPMN and UML AD) and reviews
related work. Sect. 3 presents an initial approach to translate SPMs into BPEL.
This mapping is then illustrated through a case study in Sect. 4. Sect. 5 de-
scribes an improvement to the initial translation approach which leads to more
structured BPEL code. Finally, Sect. 6 concludes and outlines future work.

2 Background and Related Work

A Standard Process Model (SPM), also known as Standard Workflow Model [6],
is constructed from a set of process elements and transitions connecting process
elements. The process elements can be further divided into activities and con-
trol nodes which are AND-Split, XOR-Split, OR-Split, AND-Join and XOR-Join.
Splits have exactly one incoming transition and at least one outgoing transition,
and joins have exactly one outgoing transition and at least one incoming transi-
tion. For any split, each of its outgoing transitions has either an explicit guard
(i.e. boolean expression) or an implicit “true” guard if none is explicitly given.

Translating Standard Process Models to BPEL 419

Activities have at most one incoming transition and one outgoing transition,
and this implies that the use of implicit control nodes is not allowed. Activities
with no incoming transitions are initial activities, and those with no outgoing
transitions are final activities . Each SPM has exactly one initial activity and
one final activity. It can be described using a process modelling notation such as
BPMN or UML AD. In other words, SPMs can be seen as an abstraction of a
subset of BPMN and UML AD, wherein constructs corresponding to advanced
workflow patterns, e.g. deferred choice and cancellation [2], are not included.

BPEL [3] is essentially an extension of imperative programming languages
(e.g. Pascal, C) with constructs related to the implementation of web service-
oriented processes. A BPEL process definition relates a number of activities .
Activities are split into two categories: basic activities and structured activities.
Basic activities correspond to atomic actions such as: invoke, invoking an oper-
ation on some web service; receive, waiting for a message from a partner; reply,
replying to a partner; assign, assigning a value to a variable; exit , terminating
the entire process instance; empty, doing nothing; and etc. Structured activities
impose behavioural and execution constraints on a set of activities contained
within them. These include: sequence, for defining an execution order; flow ,
for parallel routing; switch, for conditional routing; pick , for capturing a race
between timing and message receipt events; while, for structured looping; and
scope, for grouping activities into blocks to which event, fault and compensation
handlers (see below) may be attached.

Event , fault and compensation handlers are another family of control flow con-
structs in BPEL. In particular, event handlers are the only construct in BPEL
that allows to have multiple simultaneously active instances within a single pro-
cess instance (initiated by a single case). An event handler is an event-action
rule associated with a scope. An event handler is enabled when its associated
scope is under execution and may execute concurrently with the main activity
of the scope. When an occurrence of the event associated with an enabled event
handler is registered (and this may be a message receipt or a timeout), the body
of the handler is executed. The completion of the scope as a whole is delayed
until all active event handlers have completed. Fault and compensation handlers
are designed for exception handling and are not used further in this paper.

SPMs can easily capture control-flow patterns, such as multi-merge and ar-
bitrary cycles, for which BPEL does not offer direct support [13]. It may also
have the facility for spawning multiple independent instances of activities within
the context of a single case, and so far there has been no solution for mapping
such a process to a single BPEL process. Hence, translating a process like one
of the above into BPEL is not trivial. Below, we discuss this in detail using as
an example the mapping from BPMN to BPEL proposed by White [12].

Figure 1 depicts four SPMs described using BPMN. The first three SPMs in
Fig. 1(a) to Fig. 1(c) show fundamental issues and limitations in the mapping
proposed in [12]. The SPM in Fig. 1(d) involves a livelock and will be mentioned
at the end of this section. Note that in BPMN parallel (forking/joining) gateways

420 C. Ouyang et al.

(a) (b)

(d)(c)

Activity

Parallel Gateway

Data-based
Exclusive Gateway

BPMN Elements:

A B C D

A B C D

A D

A

B

C

D

Fig. 1. Four SPMs (described using BPMN) which contain (a) a multiple merge, (b)
arbitrary loops, (c) arbitrary loops with a facility spawning multiple independent in-
stances of activities without synchronization, and (d) a livelock

correspond to AND-Splits/Joins, and data-based exclusive (decision/merge)
gateways correspond to XOR-Splits/Joins.

In Fig. 1(a), an XOR-Join following an upstream AND-Split captures a multi-
merge pattern. In this process, activity D is executed twice: once when activ-
ity B completes and another time when activity C completes. In White’s ap-
proach, a parallel gateway is always mapped to a BPEL “flow” activity and a
data-based exclusive gateway to a “switch” activity [12]. This mapping assumes
that for each AND-split there is a corresponding AND-join and for each XOR-
split a corresponding XOR-join. However, in the scenario at hand, the outgoing
branches of the AND-split lead to an XOR-Join, thus making White’s mapping
unapplicable.

In Fig. 1(b), there is a cycle with one entry point before activity B and
two exit points – one after activity B, the other after activity C. This scenario
cannot be mapped directly to a BPEL “while” activity as the “while” activity
only captures structured cycles (i.e. loops with one entry point and one exit
point). In [12], White considers only two types of cycles: structured loops and
interleaved loops . Interleaved loops are a particular form of unstructured loops
wherein two distinct loops can be identified which are not nested one inside the
other. The basic idea to map such interleaved loops is to separate the original
process into “one or more derived processes that are spawned from a main process
and will also spawn or call each other”. As a result, the original process will be
mapped onto multiple BPEL processes rather than a single BPEL process. The
synchronisation between the derived BPEL processes and the main process is
achieved through message exchange1. While this is an interesting translation, it
is not general enough: the scenario in Fig. 1(b) is neither a structured loop nor
an interleaved loop (as it is not possible to distinguish two distinct loops on it),
so its mapping is not covered by White’s approach.
1 A proposed extension to BPEL (http://www-128.ibm.com/developerworks/
webservices/library/specification/ws-bpelsubproc) includes constructs for
defining and invoking sub-processes. These constructs can be used to define multiple
inter-related BPEL processes in a single module. However, there are no near-term
plans of including these constructs in the BPEL standard. If these constructs were
included, they could be used as an alternative to event handlers in our mapping.

Translating Standard Process Models to BPEL 421

Fig. 1(c) illustrates yet another scenario not covered by White’s approach.
This model differs from the one in Fig. 1(b) in that there is an AND-Split
(Fig. 1(c)) rather than an XOR-Split (Fig. 1(b)) between activities B and C.
Since this AND-Split is located in a loop and also has another branch leading to
activity D outside the loop, it provides a way for spawning multiple instances
of D, all of which are independent of each other and no synchronisation is needed.
As a new instance of activity D will be created each time the cycle is taken, the
number of instances of D becomes unbounded. This captures the pattern of mul-
tiple instances without synchronisation [2]. Wohed et al. [13] proposes a solution
for capturing this pattern in BPEL. The basic idea is to define another process
containing activity D, and to invoke this “auxiliary” process multiple times thus
spawning multiple instances of D. Again, the original process will be mapped
onto multiple BPEL processes. In [12], White proposes a similar solution for
mapping a subclass of parallel multiple-instance loops (without synchronisation)
onto BPEL, which however does not cover the above scenario.

Sometimes, arbitrary cycles can be converted into structured cycles and these
structured cycles can then be mapped directly onto BPEL “while” activities.
However, not all non-structured cycles can be converted into structured ones
when AND-splits and AND-joins are involved. An analysis of possible conver-
sions and an identification of some situations where they are unapplicable can
be found in [7,8]. For example, in Fig. 1(b) it is possible to unfold the arbitrary
loops to structured ones, whereas in Fig. 1(c) the arbitrary cycles generate un-
bounded concurrency (i.e. they may spawn an unbounded number of concurrent
instances of an activity) and do not have an equivalent structured form.

In the sequel, we present a technique to translate any SPM into a single
BPEL process by exploiting the “event handler” construct in BPEL. The tech-
nique can be applied to any SPM so long as it does not involve a livelock (also
called divergence in the concurrency theory literature) such as the one shown in
Fig. 1(d). Livelocks can be detected using model-checking techniques and thus
such undesirable SPMs could be excluded during a pre-processing step.

3 From Standard Process Models to BPEL

This section presents an initial approach for translating SPMs to BPEL. The
translation focuses on control-flow perspective, and is conducted in three steps.
We first generate so-called precondition sets for all activities in an SPM. Each
precondition set is associated with an activity and encodes a possible way of
enabling the activity. Next, all the precondition sets with their associated activ-
ities, are transformed into a set of Event-Condition-Action (ECA) rules. Finally,
we translate this set of ECA rules into BPEL.

3.1 Translating Control-Flow Constructs into Precondition Sets

The term “precondition” is used to capture a conjunction of events and con-
ditions that lead to the execution of an activity in a process. Thus, for each

422 C. Ouyang et al.

AllPreCondSets(p: Process):
Al let {a1, ..., an} = Activities(p) in
Alllet return {PreCondSet(a1), ..., PreCondSet(an)}
PreCondSet(x: Element):
Pre if IncomingTrans(x) = ∅ /∗ initial element ∗/
Preif return {ProcessInstantiation(Process(x))}
Pre else let {t1, ..., tn} = IncomingTrans(x) in /∗ non-initial elements ∗/
Preelse let return PreCondSetTran(t1) ∪ ... ∪ PreCondSetTran(tn)

PreCondSetTran(t: Transition)
Pre let x = Source(t)
Prelet if ElementType(x) = “Activity”
Prelet if return {Completion(x)}
Prelet else if ElementType(x) ∈ {“AND-Split”,“XOR-Split”,“OR-Split”}
Prelet else if let c = Guard(t),
Prelet else if let {prc1, ..., prcn} = PreCondSet(x) in
Prelet else if let return {c ∧ prc1, ..., c ∧ prcn}
Prelet else if ElementType(x) = “XOR-Join”
Prelet else if let {t1, ..., tn} = IncomingTrans(x) in
Prelet else if let return PreCondSetTran(t1) ∪ ... ∪ PreCondSetTran(tn)
Prelet else if ElementType(x) = “AND-Join”
Prelet else if let {t1, ..., tn} = IncomingTrans(x),
Prelet else if let {< prc1,1, ..., prc1,n >, ..., < prcm,1, ..., prcm,n >} =
Prelet else if let PreCondSetTran(t1) × ... × PreCondSetTran(tn) in
Prelet else if let return {prc1,1 ∧ ... ∧ prc1,n, ..., prcm,1 ∧ ... ∧ prcm,n}

Fig. 2. Algorithm for deriving precondition sets from an SPM

activity in an SPM, we can compute a precondition set that encapsulates all
possible ways of reaching that activity. Fig. 2 shows an algorithm2 for gener-
ating a set of precondition sets for all activities in an SPM. The algorithm is
sketched using a functional programming notation. It defines three functions.
The first one, namely AllPreCondSets, generates the above set of precondition
sets for a process by relying on a second function named PreCondSet. This func-
tion takes as parameter a process element (i.e. an activity or a control node).
If the element is an initial activity, i.e. it has no predecessors, the function re-
turns a singleton set containing a process instantiation event, indicating that
the corresponding activity will be executed when a new instance of the process
must be started. Otherwise, function PreCondSet generates a precondition set
for each of the non-initial elements in the process by relying on a third function
named PreCondSetTran. This third function produces the same type of output
as PreCondSet but takes as input a transition rather than an element in the
process. Before moving on, we introduce the following notations used in the
algorithm.

2 This is a variant of an algorithm designed in the context of a method for flexible
execution of process-oriented applications [4].

Translating Standard Process Models to BPEL 423

– Activities(p) is the set of activities in process p (defined as an SPM).
– IncomingTrans(x) is the set of transitions whose target is element x.
– Process(x) is the process to which element x belongs.
– ProcessInstantiation(p) is the event signaling to start an instance of process p.
– Source(t) is the source element of transition t.
– ElementType(x) is the type of element x (e.g. “Activity”, “AND- Split”, etc.).
– Completion(x) is the event signaling that activity x has completed.
– Guard(t) is the guard (i.e. boolean expression) on transition t.

The definition of PreCondSetTran operates based on the type of the source of
the transition, which may be an activity or a control node. If the transition’s
source is an “Activity”, a set is returned containing a single completion event
for the activity. Intuitively, this means the transition in question may be taken
when the activity has completed. Otherwise, if the source of the transition is a
control node, the algorithm keeps working backwards through the process model,
traversing other control nodes, until reaching activities. In the case of a transition
originating from one of the “Split” nodes (“AND-Split”, “XOR-Split”, or “OR-
Split”), which is generally labeled by a guard (or an implicit “true” guard if no
guard is explicitly given), this condition is added as a conjunct to all the elements
in the resulting precondition set. Finally, in the case of a transition originating
from a “XOR-Join” (resp. a “AND-Join”), the function is recursively called for
each of the transitions leading to this control node, and the resulting precondition
sets are combined to capture the fact that when any (all) of these transitions is
(are) taken, the corresponding XOR-Join (AND-Join) node may fire.

3.2 Translating Precondition Sets into ECA Rules

An ECA rule consists of three parts: event , which causes the rule to be triggered;
condition, which is checked when the rule is triggered, and action, which is
executed when the rule is triggered and its condition is true. An ECA rule can
be written in the form of E[C]A: E is a single event or a conjunction of single
events (namely a composite event); C is a condition; A is a list of actions that can
be executed in sequence (denoted as a1;a2), in parallel (a1||a2), in conditional
branches (if-then-else), in loops (while), or in a combination of any of these
block-structured constructs. If an ECA rule allows the use of single events only,
it is called a simple ECA rule; otherwise, it is a composite ECA rule.

It is possible to translate a precondition into an ECA rule. To this end, we
use two auxiliary functions GetEvent and GetCond, which extract respectively
the events and conditions of a precondition. GetEvent takes as input a precon-
dition prc, and gives as output a composite event equal to the conjunction of
all the events appearing in prc (there is always at least one single event in prc).
GetCond takes prc as input and gives as output a condition equal to the conjunc-
tion of all the conditions appearing in prc (it returns a value of TRUE if there is
no condition in prc). A precondition prc for an activity a can be translated into
the following ECA rule:

GetEvent(prc) [GetCond(prc)] {do a; invoke Completion(a)}

424 C. Ouyang et al.

In the general case, this leads to a composite ECA rule. However, BPEL
only supports simple ECA rules. To address this issue, when GetEvent(prc) is a
composite event, say e1 ∧ ... ∧ en, we translate the above rule into the following
simple ECA rule:

e1 [TRUE] {receive e2 || ... || receive en;

e1 [TRUE] if GetCond(prc)
e1 [TRUE] then do a; invoke Completion(a)
e1 [TRUE] else empty}

The rule specifies that when occurrences for all events e1 to en have been reg-
istered, the condition GetCond(prc) can be evaluated. If it evaluates to true,
activity a is executed; otherwise, no action is performed.

By applying the above transformation to each precondition in a precondition
set, we can translate a precondition set into a set of simple ECA rules. From
there, we can generate a set of ECA rules for a given SPM by performing the
union of the sets of ECA rules generated for each of the activities in the SPM.
However, some of these rules may end up competing for the same event, which
may lead to non-deterministic behaviour. For example, in the case of a Split node
preceded by activity a1 and followed by two activities a2 and a3, the precondition
sets for a2 and a3 will both contain event Completion(a1) and thus the resulting
rules will compete for this same event. To avoid this problem, before transforming
the precondition sets derived from an SPM into ECA rules, we rename the events
shared by more than one precondition to eliminate any overlap between events.
For example, the following set of precondition sets:

{{ProcessInstantiation(p)}, {Completion(a1)∧c1}, {Completion(a1)∧c2},
{{Completion(a3)}, {Completion(a3), Completion(a1)∧c3},
{{Completion(a2), Completion(a4)∧c4, Completion(a4)∧c5∧Completion(a5)}}

can be renamed to:

{{ProcessInstantiation(p)}, {Completion(a1)(1)∧c1}, {Completion(a1)(2)∧c2},
{{Completion(a3)(1)}, {Completion(a3)(2), Completion(a1)(3)∧c3},
{{Completion(a2), Completion(a4)(1)∧c4, Completion(a4)(2)∧c5∧Completion(a5)}}

Due to this renaming process, we need to ensure that upon completion of an
activity a, one occurrence of each of the completion events associated to a is pro-
duced. Coming back in the example above, instead of performing a single action
“invoke Completion(a1)” following the execution of activity a1, we perform the
following actions:

invoke Completion(a1)
(1) || invoke Completion(a1)

(2) || invoke Completion(a1)
(3)

3.3 Translating ECA Rules into BPEL

A simple ECA rule se[C]A can be realised by a BPEL event handler (onEvent)
sketched in Fig. 3(a). As soon as an occurrence of event se is registered, the

Translating Standard Process Models to BPEL 425

event handler starts with a switch activity in which condition C is evaluated. If
C evaluates to true, the activity A is carried out; otherwise, nothing can be done.
This event handler may be simplified if C is a boolean constant TRUE. In this
case, the switch activity with its conditional branches (drawn in shaded boxes)
can be omitted, and activity A is executed once the occurrence of event se is
registered. Fig. 3(b) sketches a BPEL event handler capturing a simple ECA rule
which is transformed from a composite ECA rule as discussed in Sect. 3.2. Since
the rule has a condition TRUE, the event handler executes the sequence of actions
immediately upon registering the occurrence of event e1. This sequence starts
with a flow of receive activities waiting for occurrences of events e2 to en, and a
switch activity for conditional routings based on evaluation of the condition given
by function GetCond(prc). Similarly to Fig. 3(a), if GetCond(prc) is a boolean
constant TRUE, the switch activity can be omitted, and once the occurrences
of events e1 to en are registered, the event handler executes action a and the
activity for invoking a single occurrence of event Completion(a).

 onEvent se

 switch

 case C otherwise

emptydo A

(a) (b)

 onEvent e1

 flow "receiveEvent"

receive e2 receive en

...

 switch

 case GetCond(prc)

invoke Completion(a)

do a

otherwise

empty

(do A)

Fig. 3. Translating a simple ECA rule into a BPEL event handler

Based on the above, we now translate the set of simple ECA rules derived
from the original SPM into a BPEL process. We first introduce some notations.
Given a process p, {a1, ..., an} is the set of activities in p, and the function
InitialActivity(p) returns the initial activity of p. Let m+1 be the total number
of ECA rules derived from process p, {se1, ..., sem} ⊆ {Completion(a1), ...,
Completion(an)} is the set of (single) events for triggering each of these ECA rules
except the one associated with the initial activity. The ECA rule for execution
of the initial activity is triggered upon occurrence of the process instantiation

BPEL Process

onEvent sem

...

receive ProcessInstantiation(p)

do InitialActivity(p)

invoke
Completion(InitialActivity(p))

onEvent se1

.

.

.

...

...

 mainActivity

partnerLink i
(between

process & itself)

partnerLinks

.

.

.

Fig. 4. A BPEL process derived from the set of ECA rules of an SPM

426 C. Ouyang et al.

event (ProcessInstantiation(p)). The SPM of process p can be translated into the
BPEL process sketched in Fig. 4. The main activity of this process is a sequence
of three actions which corresponds to the ECA rule associated with the initial
activity of p. Then each of the other (m) ECA rules are mapped onto totally m
event handlers within the process. The whole process completes after its main
activity and all active event handlers have completed.

The completion events Completion(a1) to Completion(an) are produced by
performing a BPEL invoke action via a local partner link between process p and
itself. A local partner link which allows a process to send a message to itself, can
be defined as follows:

<partnerLink name="local" partnerLinkType="localLT"

myRole="localService"/>

</partnerLink>

<partnerLinkType name="localLT">

<role name="localService" portType="localPT"/>

</partnerLinkType>

In a BPEL invoke activity, one needs to specify, in addition to a partner link, a
port type and an operation which are defined in a WSDL description. Accord-
ingly, we define a single port type “localPT” and as many operations in this port
type as there are completion events in the generated set of ECA rules. In the case
of the example in Sect. 3.2, the operations over “localPT” for three completion
events of activity a1 can be defined as: “completion a1 1”, “completion a1 2”
and “completion a1 3”. These operations serve only to signal the completion of
activities and do not carry any data. Their definition is thus trivial. For example,
the production of event Completion(a1)(1) is captured in BPEL as follows:

<invoke partnerLink="local" portType="localPT"

operation="completion a1 1"/>

Likewise, completion events are consumed by event handlers and receive ac-
tivities, referring to the local partner link, port type and the operations described
above. For example, the event handler corresponding to event Completion(a1)(1)

can be defined as follows:

<onEvent partnerLink="local" portType="localPT"
operation="completion a1 1"/>

We have implemented the above approach in a tool called SPM2BPEL, which
supports automated translation from SPMs into BPEL. It is available under an
open-source license at http://www.bpm.fit.qut.edu.au/projects/babel/tools.

4 Case Study

Consider the process for handling complaints shown in Fig. 5. It is described us-
ing BPMN. First the complaint is registered (activity register), then in parallel a

Translating Standard Process Models to BPEL 427

questionnaire is sent to the complainant (send questionnaire) and the complaint
is processed (process complaint). In the upper parallel path, the questionnaire
is processed (process questionnaire) after it is returned from the complainant
(receive questionnaire). In the lower parallel path, the complaint is evaluated
(evaluate). Based on the evaluation result, the processing is either done or con-
tinues to activity check processing. If the check result is not ok, the complaint
requires re-processing. After the complaint has been successfully processed, the
complainant is notified of the result. Finally, activity archive is executed. Note
that the labels DONE, NEED-CHECK, OK and NOK on the outgoing transitions
of each XOR-Split, are abstract representations of guards on these transitions.

register

 send
questionnaire

 receive
questionnaire

 process
questionnaire

archive

a1

a2 a3 a4

a9

evaluate

check
processing

OK

NOK

process
complaint

DONE

NEED
CHECK

a5 a6

a7

notify
result

a8

Fig. 5. A complaint handling process described using BPMN

Following the algorithm presented in Sect. 3, we now translate the above
process into a BPEL process with event handlers. For simplicity, we assign each
activity an activity identifier (placed above an activity rectangle in Fig. 5), and
use these identifiers to refer to activities in the following translation.

Step 1: Generating Precondition Sets. Let p denote the process in Fig. 5, then
Activity(p)={a1, ..., a9}. The precondition sets for each of these activities are:

PreCondSet(a1) = {ProcessInstantiation(p)}
PreCondSet(a2) = {Completion(a1)}
PreCondSet(a3) = {Completion(a2)}
PreCondSet(a4) = {Completion(a3)}
PreCondSet(a5) = {Completion(a1), Completion(a7)∧NOK}
PreCondSet(a6) = {Completion(a5)}
PreCondSet(a7) = {Completion(a6)∧NEED-CHECK}
PreCondSet(a8) = {Completion(a6)∧DONE, Completion(a7)∧OK}
PreCondSet(a9) = {Completion(a4)∧Completion(a8)}

Step 2: Generating ECA Rules. The completion events for activities a1, a6 and
a7, each appears twice in the above precondition sets. Thus, it is necessary to
rename these events. After the renaming process, all the precondition sets for
process p can be translated into the set of simple ECA rules listed below, where
“for ai” is a shortened form of “for execution of activity ai”.

For a1: ProcessInstantiation(p)[TRUE]
For a1: {do a1; invoke Completion(a1)(1) || invoke Completion(a1)(2)}
For a2: Completion(a1)(1)[TRUE]{do a2; invoke Completion(a2)}
For a3: Completion(a2)[TRUE]{do a3; invoke Completion(a3)}

428 C. Ouyang et al.

For a4: Completion(a3)[TRUE]{do a4; invoke Completion(a4)}
For a5: Completion(a1)(2)[TRUE]{do a5; invoke Completion(a5)}
For a5: Completion(a7)(1)[NOK]{do a5; invoke Completion(a5)}
For a6: Completion(a5)[TRUE]
For a6: {do a6; invoke Completion(a6)(1) || invoke Completion(a6)(2)}
For a7: Completion(a6)(1)[NEED-CHECK]
For a7: {do a7; invoke Completion(a7)(1) || invoke Completion(a7)(2)}
For a8: Completion(a6)(2)[DONE]{do a8; invoke Completion(a8)}
For a8: Completion(a7)(2)[OK]{do a8; invoke Completion(a8)}
For a9: Completion(a4)[TRUE]{receive Completion(a8);
For a9: Completion(a4)[TRUE]{do a9; invoke Completion(a9)}

Step 3: Deriving the BPEL Process. The above ECA rules can be translated into
a BPEL process of which the XML code is sketched in Fig. 6. The rule for execu-
tion of activity a1 is mapped to the last sequence activity, i.e. the main activity
of the process, and the rest of the rules are mapped to event handlers. All the
events are identified in an abstract way. Intuitively, the arrival of a complaint
from a client will initiate a new instance of the process, and thus can be treated
as a process instantiation event. The production and consumption of each com-
pletion event can be defined in a similar way as that of event Completion(a1)(1)

described in Sect. 3.3. The receive activity waiting for the process instantiation
event, is the “start activity” of the process and thus has the createInstance
attribute set to yes. Activity “register” (a1) or “archive” (a9) may be mapped
to a BPEL assign activity for recording the relevant information into variables.
Activity “sendQuestionnaire” (a2) corresponds to an invoke activity for sending
the questionnaire to the client. For space reasons, we do not describe the map-
ping in further detail. The interested reader may refer to the testing example
of SPM2BPEL (on the tool’s website) for a complete list of the BPEL code
generated from the complaint handling process in Fig. 5.

5 Improving the Translation Approach

The previous approach in Sect. 3 treats each activity of an SPM as a single
unit for translation. This can be improved by taking advantage of structured
activities defined in BPEL. For example, in the complaint handling process in
Fig. 5, three activities a2, a3 and a4 can be directly mapped onto a “sequence”
activity. Hence, if we cluster them into one activity block as a single unit for
translation, the complexity of translation can be reduced with less precondition
sets, less ECA rules and less event handlers, and the resulting BPEL process will
become more compact. However, it is not always the case that a number of ac-
tivities clustered into an activity block can be directly mapped onto a structured
activity in BPEL. Coming back in the example in Fig. 5, the process elements
on the lower parallel path constitute an unstructured workflow which cannot be
mapped directly onto a structured activity (e.g. a “while” activity). To improve
our approach further, we would like to transform unstructured activity blocks to
structured ones which can then be mapped onto structured activities. Workflows

Translating Standard Process Models to BPEL 429

<process name="complaintHandling">
<partnerLinks>

<partnerLink name="local" partnerLinkType="localLT" ... />
... </partnerLinks>

<variables> ... </variables>

<eventHandlers>
<onEvent Completion(a1)

(1)/>
<sequence>

<invoke name="sendQuestionnaire" ... /> <!--do a2-->
<invoke Completion(a2)/>

</sequence> </onEvent>
...
<onEvent Completion(a4)/>

<sequence>
<receive Completion(a8)/>
<assign name="archive"> ... </assign> <!--do a9-->
<invoke Completion(a9)/>

</sequence> </onEvent> </eventHandlers>

<sequence>
<receive ProcessInstantiation(p) createInstance="yes"/>
<assign name="register"> ... </assign> <!--do a1-->
<flow>

<invoke Completion(a1)
(1)/>

<invoke Completion(a1)
(2)/>

</flow> </sequence> </process>

Fig. 6. An abstract view of the BPEL code for complaint handling process in Fig. 5

that do not contain parallelism have similar semantics as elementary flow charts
that are commonly used for procedural program specification. Work in the field of
structured programming [11] has shown that any unstructured flow chart can be
transformed to a structured one and from there one can generate code in struc-
tured programming languages including “sequence”, “if-then-else”, and “while”
constructs. Based on this, we propose to cluster those connected process elements
except AND-Splits and AND-Joins into an activity block. Since each activity
block will later be treated as a single unit for translation, it cannot have more
than one entry point nor more than one exit point. Below, we define Clusterable
Activity Blocks based on the concept of Weakly Connected Component (from
MathWorld http://mathworld.wolfram.com/WeaklyConnectedComponent.html).

Definition 1. A Weakly Connected Component (WCC) is a maximal subgraph
of a directed graph such that for every pair of vertices u, v in the subgraph, there
is an undirected path from u to v and a directed path from v to u.

Definition 2. A Clusterable Activity Block (CAB) is a WCC that has at most
one entry point and one exit point in an SPM. It is made up of activities, con-
trol nodes except AND-Splits and AND-Joins, and transitions connecting these
process elements, such that: ∀x ∈ Elements(CAB),

– ElementType(x) ∈ {Activity, XOR-Split, OR-Split, XOR-Join};
– let Ti =

⋃
x∈Elements(CAB) IncomingTrans(x), |Ti\Transitions(CAB)| � 1; and

– let To =
⋃

x∈Elements(CAB) OutgoingTrans(x), |To\Transitions(CAB)| � 1.

430 C. Ouyang et al.

Before translating an SPM into BPEL, we pre-process the model by clustering
all the original activities into CABs. We start with an arbitrary unclustered ac-
tivity in the process, then move backwards and forwards from that activity with-
out traversing AND-Splits/Joins (i.e. stop when reaching an AND-Split/Join),
and finally cluster all the traversed elements and transitions into a single CAB.
This procedure is repeated until no unclustered activities are left in the process.
Next, we replace the “Activity” elements with “CAB” elements in the previ-
ous algorithm defined in Sect. 3, and apply this updated algorithm to the above
pre-processed model. Finally, we map each CAB onto BPEL activities. This may
also include transformation from unstructured to structured workflow before the
mapping. Note that in the worst case a CAB contains only a single activity.

Example. We apply the improved approach to the translation of the complaint
handling process in Fig. 5. Fig. 7 depicts a pre-processed model for this process
where the previous nine activities with four XOR-Splits/Joins are clustered into
four CABs. CAB1, which contains just the initial activity a1, is the initial item,
and CAB4, which consists of only the final activity a9, is the final item.

notify
result

register

 send
 questionnaire

 receive
 questionnaire

 process
 questionnaire

evaluate

check
processing

archive

OK

NOK

process
complaint

DONE

NEED
CHECK

a1

a2 a3 a4

a5 a6

a7

a9

CAB3

CAB2

CAB1 CAB4

a8

Fig. 7. Pre-processed complaint handling process in Fig. 5

The precondition sets for each of the four CABs in Fig. 7 are:

PreCondSet(CAB1) = {ProcessInstantiation(p)}
PreCondSet(CAB2) = {Completion(CAB1)}
PreCondSet(CAB3) = {Completion(CAB1)}
PreCondSet(CAB4) = {Completion(CAB2)∧Completion(CAB3)}

The set of simple ECA rules derived from these precondition sets are:

For CAB1: ProcessInstantiation(p)[TRUE]
For CAB1: {do CAB1; invoke Completion(CAB1)(1)||invoke Completion(CAB1)(2)}
For CAB2: Completion(CAB1)(1)[TRUE]{do CAB2; invoke Completion(CAB2)}
For CAB3: Completion(CAB1)(2)[TRUE]{do CAB3; invoke Completion(CAB3)}
For CAB4: Completion(CAB2)[TRUE]{receive Completion(CAB3);
For CAB4: Completion(CAB4)[TRUE]{do CAB4; invoke Completion(CAB4)}

The above ECA rules, except the first one for execution of the initial item CAB1,
can be translated into three event handlers. As a comparison, our previous ap-
proach yields ten event handlers for the same process.

Translating Standard Process Models to BPEL 431

Finally, the improved approach requires an additional step of mapping CABs
onto structured activities in BPEL. This does not apply to CAB1 and CAB4
as both contain a single activity. CAB2 can be directly mapped to a sequence
activity. CAB3 exhibits an unstructured workflow which can be transformed into
an equivalent structured form shown in Fig. 8. The transformation is done by
introducing an auxiliary boolean variable (Q) to carry the evaluation result of
the guard represented by OK (∼Q for NOK). Three activities a10, a11 and a12 are
also added to assign appropriate values to Q. The resulting workflow in Fig. 8
has a structured loop which can be directly mapped to a while activity. Each
loop starts if Q has a value of false, otherwise the loop will be exit. The main
activity of the loop is a sequence of a5, a6 and a conditional choice between two
branches – one for the guard represented by DONE, the other for NEED-CHECK.

evaluate

check
processing

Q

~Q

process
complaint

DONE

NEED
CHECK

a5 a6

a7

assign
(Q:=false)

a10

assign
(Q:=OK)

a12

assign
(Q:=true)

a11

notify
result

a8

Fig. 8. A structured form of the original unstructured workflow in CAB3

6 Conclusions

Capturing workflow patterns such as multi-merge, arbitrary cycles and multi-
ple instances in BPEL is problematic. On the other hand, these patterns can
be directly captured in standard process modelling notations (i.e. BPMN and
UML AD). This mismatch hinders the definition of automated translations from
process models to process implementations when using these standards. This
paper has presented a technique to translate models captured in a core subset of
BPMN or UML AD into BPEL. The technique exploits an interesting and often
underused BPEL construct, namely “event handler”.

To the best of our knowledge, this is the first attempt at tackling the above
patterns in a systematic translation from BPMN or UML AD to BPEL. The
proposal has been validated through the implementation of a tool (SPM2BPEL)
that automatically translates Standard Process Models into BPEL code. The
paper also sketched possible improvements to the technique by clustering activ-
ities into activity blocks that can be mapped onto BPEL structured activities,
thereby reducing the number of event handlers in the resulting BPEL process.

Ongoing work aims at designing and implementing an algorithm for the im-
proved translation technique. We then plan to extend the technique to cover
other workflow patterns, e.g. deferred choice and cancellation. Since the deferred
choice captures a race condition between events, the translation algorithm pre-
sented in this paper, which excludes race conditions, will need to be revisited. In-
vestigating the expressiveness of BPEL’s “pick” and “fault handler” constructs,
which allow one to capture race conditions and cancellation in structured set-
tings, may provide a foundation for designing this extended translation.

432 C. Ouyang et al.

References

1. W.M.P. van der Aalst. Don’t go with the flow: Web services composition standards
exposed. IEEE Intelligent Systems, 18(1):72–76, 2003.

2. W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A. P. Barros.
Workflow Patterns. Distributed and Parallel Databases, 14(3):5–51, July 2003.

3. A. Arkin, S. Askary, B. Bloch, F. Curbera, Y. Goland, N. Kartha, C. K. Liu,
S. Thatte, P. Yendluri, and A. Yiu, editors. Web Services Business Process Exe-
cution Language Version 2.0. Working Draft. WS-BPEL TC OASIS, May 2005.

4. M. Dumas, T. Fjellheim, S. Milliner, and J. Vayssiére. Event-based coordination
of process-oriented composite applications. In Proceedings of the International
Conference on Business Process Management (BPM2005), volume 3649 of Lecture
Notes in Computer Science, pages 236–251. Springer-Verlag, 2005.

5. P. Harmon. Standardizing business process notation.
URL: http://www.bptrends.com, November 2003.

6. B. Kiepuszewski, A.H.M. ter Hofstede, and W.M.P. van der Aalst. Fundamentals
of control flow in workflows. Acta Informatica, 39(3):143–209, 2003.

7. B. Kiepuszewski, A.H.M. ter Hofstede, and C. Bussler. On structured workflow
modelling. In Proceedings of 12th International Conference on Advanced Informa-
tion Systems Engineering (CAiSE 2000), volume 1789 of Lecture Notes in Com-
puter Science, pages 431–445. Springer-Verlag, 2000.

8. R. Liu and A. Kumar. An analysis and taxonomy of unstructured workflows.
In Proceedings of the International Conference BPM2005, volume 3649 of Lecture
Notes in Computer Science, pages 268–284. Springer-Verlag, 2005.

9. K. Mantell. From UML to BPEL. URL: http://www.ibm.com/developerworks/
webservices/library/ws-uml2bpel, September 2005.

10. OMG. Unified Modeling Language: Superstructure. UML Superstructure Specifi-
cation v2.0, formal/05-07-04. OMG, August 2005.

11. G. Oulsnam. Unravelling unstructured programs. Computer Journal, 25(3):
379–387, 1982.

12. S. A. White. Business Process Modeling Notation (BPMN) Version 1.0. Business
Process Management Initiative, BPMI.org, May 2004.

13. P. Wohed, W.M.P. van der Aalst, M. Dumas, and A.H.M. ter Hofstede. Analysis
of Web services composition languages: The case of BPEL4WS. In Proceedings of
22nd International Conference on Conceptual Modeling (ER 2003), volume 2813
of Lecture Notes in Computer Science, pages 200–215. Springer-Verlag, 2003.

E. Dubois and K. Pohl (Eds.): CAiSE 2006, LNCS 4001, pp. 433 – 446, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Semantic Annotation Framework to Manage
Semantic Heterogeneity of Process Models

Yun Lin, Darijus Strasunskas, Sari Hakkarainen, John Krogstie, and Arne Sølvberg

Norwegian University of Science and Technology,
7491 Trondheim, Norway

{yunl, dstrasun, sari, krogstie, asolvber}@idi.ntnu.no

Abstract. Effective discovery and sharing of process models within and/or
across enterprises are important in process model management. A semantic an-
notation approach has been applied for specifying process semantic heterogene-
ity in the semantic process model discovery in our previous work. In this paper,
the approach is further developed into a complete and systematic semantic an-
notation framework. Four perspectives are tackled in our framework: basic de-
scription of process models (profile annotation), process modeling languages
(meta-model annotation), process models (model annotation) and the purpose of
the process models (goal annotation). Ontologies, including modeling ontology,
domain specific ontology and goal ontology, are used for annotation of process
models to achieve semantic interoperability. A set of mapping strategies are de-
fined to guide users to annotate process models.

1 Introduction

A considerable amount of business knowledge is put into process models and scat-
tered within and across organizations. Therefore, the possibility to efficiently retrieve
and reuse this knowledge is limited. A research problem in process model manage-
ment is to how cope with semantic heterogeneity of both process models and process
modeling languages. The problem of semantic heterogeneity is even more critical in a
situation of extensive cooperation and interoperation between distributed systems
across different enterprises. The heterogeneity makes it difficult to manipulate the
distributed process models in a centralized manner. Ontologies and semantic metadata
provide a means to tackle this problem. Thus, we are using ontology-based semantic
annotation to tackle the heterogeneous semantics of distributed process models.

In our previous work [10, 11], the semantic heterogeneity problems of process
models have been analyzed and the ontology-based semantic annotation approach has
been applied in example applications to test the feasibility of the approach. In this
paper, the semantic annotation approach is further developed and refined in a seman-
tic annotation framework, which contains profile annotation, meta-model annotation,
model annotation and goal annotation.

In order to differentiate process models, we specify a set of metadata to annotate
the significant characteristics of process models, terming this the profile. Ontology
provides an alignment of the different terminology and conceptualization used in the

434 Y. Lin et al.

models and in modeling languages. Thus, we use ontologies to relate constructs
across different modeling languages, as well as to align domain specific terminology
used in models. In this way we are able to solve semantic heterogeneity in model
management. Furthermore, in order to facilitate goal-driven process model reuse we
annotate process models using a goal ontology. This allows discovery of process
models used for achieving certain (business) goals.

The contribution of this paper is as follows. First, an extended and refined General
Process Ontology (GPO) is presented that constitutes a semantic annotation frame-
work. Second, a process semantic annotation model (PSAM) is developed and pre-
sented formally. This explicitly defines all necessary annotation elements. Third,
mapping strategies and rules for process model annotation are described to provide a
better guidance in model annotation.

The rest of the paper is organized as follows. In section 2, the theoretical basis on
modeling and ontology of process models is discussed. Then, the semantic annotation
framework and mapping strategies are described in details in section 3. In section 4,
we define a process semantic annotation model and formalize it. In section 5 we com-
pare the approach with the related work. Finally, we conclude this paper and outline
our future work in section 6.

2 Theoretical Basis of Modeling and Ontology

In this section we will discuss the relationship between process models and ontologies
in the context of semantic interoperability and semantic annotation.

Fig. 1. Relationship between ontology, model, meta-model and modeling language

We adapt the semantic triangle [14] to define the relationships between model,
meta-model, modeling language and ontology (see Fig. 1). A model is a conceptuali-
zation of referents and it is represented as a set of model denotations in a certain mod-
eling language. Model denotations are signs which signify concepts in the model. The
model is an instance of a meta-model, and the meta-model defines a modeling lan-
guage. Typically, a same concept can refer to different referents in different models.
In order for the machine to understand the heterogeneous semantics of the models
(e.g. various signs of referents referring to the same concepts or synonymic signs of
referents referring to different concepts), a common understanding of concepts has to

 Semantic Annotation Framework to Manage Semantic Heterogeneity 435

be formulized in a machine-interpretable way. An ontology is created for this pur-
pose. Here, concepts are conceptualized as an ontology.

A meta-model is also a model – a model of the modeling language. Thus, a meta-
model is the conceptualization of modeling referents referred by modeling concepts,
and it can be concretized and represented as a specific modeling language. The mod-
eling ontology is a kind of methodology ontology which contains a vocabulary of the
modeling concepts (constructs). According to Leppanen’s OntoFrame [9], the meta-
model can be adapted from the modeling ontology. Accordingly, the heterogeneous
modeling languages can be aligned through annotating the meta-model by the model-
ing ontology.

3 Semantic Annotation Framework

In this section, we will describe our semantic annotation framework for process mod-
els in details. Four main annotation sets constitute the framework: namely, profile
annotation, meta-model annotation, model annotation and goal annotation. They are
discussed in more detail as follows.

3.1 Profile Annotation

The basic and characteristic features of a process model are described by a set of
metadata in the profile annotation. We categorize metadata elements for profile anno-
tation according to the types of metadata – administrative, descriptive, preservation,
technical and use [4].

Fig. 2. Profile annotation metadata elements

We reuse some metadata elements from the Dublin Core metadata standard with pre-
fix ‘dc’ and create also additional metadata with prefix ‘profileAnno’ to describe the
profile of a process model. These metadata elements are classified in Fig. 2.

3.2 Meta-model Annotation

In the meta-model annotation, we use a process modeling ontology as metadata to
annotate the semantics of constructs in a modeling language. Therefore, we first

436 Y. Lin et al.

introduce our process modeling ontology, and then describe the way of annotating the
semantics of meta-models of process modeling languages.

3.2.1 Process Modeling Ontology – GPO
The process modeling ontology is used to align the heterogeneous meta-models of
process models. The process modeling ontology should provide a common conceptu-
alization of the concepts typically used in existing process meta-models or process
modeling languages. In [10, 11], we built a General Process Ontology (GPO) accord-
ing to the investigation of some process ontologies and process modeling languages
includeing PSL, TOVE, PIF-CORE, CPR, EEML, BPMN and BPML. The visual
GPO model is represented in RML (Referent Modeling Language) [17] in Fig. 3.
RML is a conceptual modeling language, which can be used to visualize an ontology
model.

⊆

⊆

Fig. 3. Visualization of GPO

In our GPO (see Fig. 3 for visual model represented in RML (Referent Modeling
Language) [17]), we include the following concepts which are usually modeled as
modeling constructs in most process modeling languages: Activity, Artifact, Actor-
role, Input, Output, Precondition, Postcondition, Exception and WorkflowPattern.

 Semantic Annotation Framework to Manage Semantic Heterogeneity 437

Compared with our previous work [10, 11], GPO is updated here by changing the
relations between Precondition, Postcondition and Activity into the relations between
Precondition, Postcondition and Input, Output. Such update is made because the pre-
or post- conditions are directly related to inputs and outputs of activities. It is not
necessary to make an indirect relationship between pre- or post-condition and input or
output through the connection of activity. Another extension of GPO in this paper
includes refinement of WorkflowPattern into several more specific patterns according
to van der Aalst’s workflow patterns [19], such as Choice (Exclusive Choice, Multi-
pleChoice, ParallelSpit), Merge (SimpleMerge, MultipleMerge, Synchronization) and
Sequence, which are basic control workflow patterns supported by most process mod-
eling languages with logical symbols like AND, OR and XOR. The aim of including
workflow patterns in GPO is for the user to navigate the preceding, succeeding, syn-
chronizing and exclusive activities, because those workflow patterns denote the se-
mantics of process orders.

GPO is implemented as an ontology using Protégé according to the graphical GPO
model in Fig. 3. The concepts in GPO will be mapped with meta-models of process
modeling languages.

3.2.2 Mapping Rules in Meta-model Annotation
GPO is a mediator for the semantics of process concepts and it should not be seen as a
new process modeling language, but a means to annotate the process modeling constructs.

Meta-model annotation has to be done manually by experts who know the process
modeling language to be annotated. The procedure of meta-model annotation is actu-
ally to set mapping rules between process modeling language constructs or meta-
model elements and GPO. The mapping rules consist of both one-to-one and
one-to-many correspondences between GPO concepts and modeling language con-
structs or meta-model elements. There may be more complicated cases: a correspon-
dence between a GPO concept and a combination of some modeling language
constructs or meta-model elements. To define the mapping rules for different cases,
we categorize three types of modeling constructs – AtomicConstruct, Enumerated-
Construct and ComposedConstruct. Each single modeling language construct is an
AtomicConstruct, an EnumeratedConstuct is an enumeration set of several Atomic-
Constructs, and a ComposedConstruct is composed of several AtomicConstructs.

Mapping Rules:

• One-to-one mapping: a GPO concept (e.g. GPO:Activity) is referred by an At-
omicConstruct (e.g. EEML:Task);

• One-to-many mapping: a GPO concept (e.g. GPO:Artifact) can be referred re-
spectively by several modeling language constructs (e.g. EEML:Information
Object and EEML:Material Object) which are enumerated in an Enumerated-
Construct;

• One-to-combination mapping: a GPO concept (e.g. GPO:WorkflowPattern) is
referred by the combination of those modeling language constructs (e.g.
EEML:Flow and EEML:Decision Point) in a ComposedConstruct.

A namespace metaAnno is used to encode meta-model annotation in these three
mapping cases:

438 Y. Lin et al.

<metaAnno:AtomicConstruct rdf:ID=”CONSTRUCT_ID”>
<metaAnno:refers_to

rdf:resource=”&GPO_ONTOLOGY#MODELING_ONTOLOGY_CONCEPT”/>
<metaAnno:modeling_language_construct
 rdf:resource=”&MODELNG_LANGUAGE#LANGUAGE_CONSTRUCT”/>

</metaAnno:AtomicConstruct>

<metaAnno:EnumeratedConstruct rdf:ID=”CONSTRUCT_ID”>

<metaAnno:refers_to
rdf:resource=”&GPO_ONTOLOGY#MODELING_ONTOLOGY_CONCEPT”/>

 <metaAnno:has>
 <metaAnno:AtomicConstruct rdf:resource=”#CONSTRUCT_ID”>

 …
 </metaAnno:has>

</metaAnno:EnumeratedConstruct>

<metaAnno:ComposedConstruct rdf:ID=”CONSTRUCT_ID”>

<metaAnno:refers_to
rdf:resource=”&GPO_ONTOLOGY#MODELING_ONTOLOGY_CONCEPT”/>

 <metaAnno:composed_of>
 <metaAnno:AtomicConstruct rdf:resource=”#CONSTRUCT_ID”>

 …
 </metaAnno:composed_of>

</metaAnno:ComposedConstruct>

Once the mapping rules are defined for a certain process modeling language, the
process models in that process modeling language can be described by the GPO con-
cepts, i.e. the GPO concepts are used as metadata to annotate the process semantics.
We call the process models described by the GPO metadata as GPO-annotated proc-
ess model. The GPO-annotated process model will be formulized in the process se-
mantic annotation model (PSAM) in Section 4.

3.3 Model Annotation

When a process model is described by the semantic process annotation model, the
process model looks similar to a Web service described by OWL-S. The semantics of
the process can be interpreted by machine. However, the contents in the semantic
process annotation model are only annotated with very abstract concepts like artifact,
activity, actor-role, etc. The concrete domain information in the contents needs to be
related with domain specific ontology in order to deal with the semantic heterogeneity
of model contents. For example, two process models are both about travel booking
domain. In one model, a concept called ‘client’ is annotated as an actor-role; while the
concept named ‘customer’ is also annotated as actor-role in another model. If we map
those two concepts to one concept in the travel booking domain ontology (in this case
identifying them being synonyms), the machine will know how these two concepts
are related, which helps to discover the related process model fragments. Therefore,
we need to further annotate the model with domain specific ontologies. The model
annotation facilitates the semantic discovery and navigation of process model frag-
ments, which are parts of process models.

3.3.1 Model Annotation Scope
The model annotation can be accomplished with the help of meta-model annotation,
because the models related to domain information are usually artifacts, actor-roles,

 Semantic Annotation Framework to Manage Semantic Heterogeneity 439

activities and exceptions in the semantic process annotation models. Artifacts and
actor-roles are usually static concepts. Those concepts are defined in a local domain
model which provides the context of those concepts. The model annotation is to map
the concepts in the local domain model to the concepts defined in the domain specific
ontology. If the concepts are not defined in a local domain model, the mapping has to
be defined by the user manually. The activities and exceptions are usually related to
the task ontology in certain domains. Currently, most domain specific ontologies
consist of only static concepts including few concepts about activities or tasks. Task
ontologies can be seen as reference processes. One example is SCOR1 supported by
SAP. Another example of task ontology is ontology of Laboratory Procedures from
[8]: A LaboratoryProcedure is a subclass of the class of Health Care Activities and a
Chemical is a subclass of the class of Substances; a Laboratory Procedure analyzes a
Chemical and a Chemical is analyzed by a Laboratory Procedure.

If the task ontology in a certain domain is available, the activities and exceptions
can be annotated by concepts defined in the task ontology. If such task ontology can
not be found, we can leave this part to the goal annotation, in which a set of prede-
fined goals are linked to the processes or activities.

3.3.2 Mapping Strategies
Different mapping strategies can be used between concepts in the model and the do-
main specific ontology. It can be simple ones which are applied in meta-model anno-
tation – by referring specific modeling constructs to corresponding domain concepts.
It can also be more complicated through refined semantic relationships between con-
cepts used in models and concepts defined in domain ontology.

Simple Reference. If the simple mapping by reference is applied, it assumes that almost
all concepts in the model have equal or approximately equal concepts in the ontology.
The semantic relationship of mapping can be defined as one type – refers_to. We have
adopted such mapping strategy in the meta-model annotation to build the correspon-
dences of concepts between modeling languages and the GPO. In the model annotation,
users can choose this strategy provided the concepts in the models are very close to the
concepts defined in the domain specific ontology. The strategy of simple reference is
easy to apply to map the concepts and also make it easy for the machine to infer the
mapping relationships without complicated algorithms.

Refined Semantic Relationships. Concepts used in process models are variously
defined initially for different projects. Therefore, it might be difficult to find equally
defined concepts in the domain specific ontology for process models. However, they
are still within one domain, there must be some semantic relationships between con-
cepts in models and concepts in ontology. In order to represent the semantic relation-
ships precisely, we define some refined semantic relationships to link the concepts
between models and ontologies for the model annotation.

As described in section 3.3.1 the contents related to artifacts, actor-roles, activities
and exceptions are those to be annotated by domain specific ontology concepts. Se-
mantic relationships and the corresponding annotation denotations generally used for
the model annotation are listed in Table 1.

1 SCOR(Supply-Chain Operations Reference-model), see www.supply-chain.org

440 Y. Lin et al.

Table 1. Semantic relationships and corresponding annotation denotations

Semantic Relationship Annotation Denotation
Synonym alternative_name (terminology_level)

same_as (concept level)
Polysemy different_from
Hypernym kind_of
Hyponym superConcept_of
Meronym part_of (Artifact)

member_of (Actor-role)
phase_of (Activity)
partialEffect_of (Exception)

Holonym compositionConcept_of

Both synonym and polysemy relationships are symmetrical. Hypernym and hyponym
are inverse relationships. Concepts in the ontology are more general, while model con-
cepts are relatively concrete for specific projects. Thus, kind_of is more often used than
superConcept_ of when annotating model concepts with ontology concepts. We provide
more human sense expressions of meronymic relationship for artifacts, actor-roles,
activities and exceptions respectively. For artifacts, we use part_of, e.g. ‘Engine’ is a
part of ‘Airplane’; for actor-roles, we use member_of, e.g. ‘Airline’ is a member of ‘Air
Alliance’; for activities, we use phase_of, e.g. ‘Flying’ is a phase of ‘Travelling’; for
exceptions, we use partialEffect_of, e.g. ‘Payment is cancelled’ is a partial effect of
‘Booking has failed’. The inverse relationship of meronym is holonymic relationship,
which is seldom used in this framework because of the similar reason described for the
hyponym relationship.

We focus on the type level process models in this research, the relationship be-
tween instance and class is not included in the framework. We assume that instances
are already defined by type-level model constructs in each process model. The con-
tents to be annotated are consequently on the type-level.

Since after the meta-model annotation the model can be described as a GPO-
annotated process model, the model annotation can be done directly in the GPO-
annotated process model instead of original models. Thereby, the model annotation
notations and markup annotation language will be formulized in the process semantic
annotation model in section 4.

3.4 Goal Annotation

Each process described in a process model is oriented towards achievement of certain
goals. Goal analysis is initially separated from process modeling. Nonetheless, there
is a relationship between goals and activities. As discussed in [12]: “Goals (desired
states of the world) and activities (actions performed to achieve a particular state) are
clearly different. However, analyzing activities and goals together makes clear the
parallel between decomposing a goal into subgoals to be achieved and decomposing it
into primitive activities to be performed”.

Some process modeling languages and tools support goal modeling as part of process
modeling, such as EEML [7] implemented in the Metis tool2. Thus, a set of goals may

2 http://www.troux.com/

 Semantic Annotation Framework to Manage Semantic Heterogeneity 441

be already modeled locally and linked to process models. Having an ontology of goals
(global goals) will enable to build the relations between local goals and global goals.

In order to unify the semantics of the links between goals and process models and
the relationships between local goal and global goal defined in goal ontology, we
extend the annotation framework by additional links as follows. Achieves_lGoal rela-
tionship between an activity and a local goal and achieves_gGoal relationship be-
tween an activity and a global goal are used to denote that the activity can achieve the
goal. Two types of relationships – supports and contradicts are defined for relation-
ships between a local goal and a global goal. Supports means the achievement of the
local goal will help to achieve the global goal; while contradicts discloses that achiev-
ing the local goal will prevent the realization of the global goal. The above relation-
ships are formalized for the goal annotation in the process semantic annotation model
in the following section.

4 Process Semantic Annotation Model

As discribed earlier, a process model is represented by GPO concepts in the meta-
model annotation. The content annotation and the goal annotation are applied on this
GPO represented model. In this section, we formalize the GPO-annotated model to-
gether with the content annotation and the goal annotation as a process semantic an-
notation model.

Definition 1. Process Semantic Annotation Model (PSAM) contains concepts of GPO,
domain specific ontology and goal ontology and is defined as follows.

),,,,,,,,,,,(glpospre PGGPDEOIWPAFARAVPSAM ΘΘ= . (1)

Where AV is a set of activity composing a process, AR is a set of actor-roles interact-
ing with a process, AF is a set of artifacts participating in a process, WP is a set of
workflow patterns, and each workflow pattern denotes an ordering of activities. I is a
set of input parameters, O is a set of output parameters, preΘ is pre-conditions when a
process starts, posΘ is post-conditions when a process ends, E is a set of possible ex-
ceptions occurring during a process. PD is a subset of domain ontology (D) concepts,
i.e. DPD ⊆ , including static ontology concepts and task ontology concepts. lG is a set

of local goals and gPG is a subset of goal ontology (gG), i.e. gg GPG ⊆ .

Definition 2. An activity can be considered as a simple process. Therefore an anno-
tated activity is described as follows.

 AVi =(id, model_fragment, name, alternative_name, has_Actor-role,
 has_Artifact, has_Input, has_Output, is_in_WorkflowPattern_of,
 has_Precondition, has_Postcondition, has_Exception,
 subActivity_of, same_as, different_from, kind_of, superConcept_of,
 phase_of, compositionConcept_of, achieves_lGoal, achieves_gGoal).

(2)

Each element in PSAM has id and name to uniquely identify the element.
Model_fragment is the model fragment id in the original process model for keeping
the link between the annotated model fragment and its annotation information. Alter-
native_name provides synonym of the name from terminology level. Elements

442 Y. Lin et al.

has_Actor-role, has_Artifact, has_Input, has_Output, is_in_WorkflowPattern_of,
has_Precondition, has_Postcondition, has_Exception, subActivity_of denote the rela-
tionships between the activity and other related elements according to the GPO defini-
tion. The ids of the related elements are used in those relationships. We use same_as,
different_from, kind_of, superConcept_of, phase_of, compositionConcept_of to anno-
tate the activities with domain ontology, i.e. using semantic relationship mapping an
activity with concepts defined in domain ontology. Achieves_lGoal is to link the ac-
tivity to the id of a local goal and Achieves_gGoal links the activity to a global goal
defined in the goal ontology. Ontology concepts are denoted by URI (Uniform Re-
source Identifier) in the process semantic annotation model.

Definition 3. An actor-role is the person, agent or organization that interacts with an
activity. The annotated actor-role is represented as follows.

 ARi =(id, model_fragment, name, alternative_name, same_as, different_from,
 kind_of, superConcept_of, member_of, compositionConcept_of). (3)

Definition 4. An artifact is the thing consumed, used or produced in an activity.

 AFi =(id, model_fragment, name, alternative_name, same_as, different_from,
 kind_of, superConcept_of, part_of, compositionConcept_of). (4)

Definition 5. A workflow pattern represents the type of the ordering of activities.

WPi =(id, model_fragment, name, alternative_name). (5a)

Refined workflow patterns are defined as follows.

 Choicei =(id, model_fragment, name, alternative_name, has_inActivity,
 has_outActivity, has_logicConnector). (5b)

Where the cardinality of has_inActivity is 1. The has_logicConnector element of
Exclusive Choicei, Multiple Choicei and ParallelSpliti has value ‘XOR’, ‘OR’ or ‘AND’
respectively.

 Mergei =(id, model_fragment, name, alternative_name, has_inActivity,
 has_outActivity, has_logicConnector). (5c)

Where the cardinality of has_outActivity is 1. The has_logicConnector element of
Simple Mergei, Multiple Mergei, and Synchronizatione has value ‘XOR’, ‘OR’ or ‘AND’
respectively.

 Sequencei =(id, model_fragment, name, alternative_name, has_inActivity,
 has_outActivity). (5d)

Where the cardinalities of both has_inActivity and has_outActivity are 1.

Definition 6. Input and output are defined as parameters of an activity, which include
value and data type. They are usually related to artifacts participating in the activity.

Ii =(id, model_fragment, name, alternative_name, data_type, related_artifact) ,

Oi =(id, model_fragment, name, alternative_name, data_type, related_artifact) .
(6)

 Semantic Annotation Framework to Manage Semantic Heterogeneity 443

If a same artifact related with both input parameter and output parameter of an activ-
ity, the state of the artifact must be changed through this activity. We call it
transformation.

Definition 7. Precondition and postcondition are presented by expressions to con-
strain input and output. The constraints are usually used as contract in services or
process composition.

pre
iΘ =(id, model_fragment, name, alternative_name, related_input) ,

pos
iΘ =(id, model_fragment, name, alternative_name, related_output) .

(7)

Definition 8. Exception happens in an activity and it can be handled by an activity.

 Ei =(id, model_fragment, name, alternative_name, handler_Activity, same_as,
 different_from, kind_of, superConcept_of, partialEffect_of,
 compositionConcept_of).

(8)

Exception will be annotated using predefined exception types in domain ontology.
The activity handling the exception is pointed out by handler_activity.

Definition 9. Local goals are sometimes defined together with local process models
and linked to activities in the process model.

 l
iG =(id, model_fragment, name, alternative_name, supports, contradicts). (9)

The relationships between a local goal and activities are defined in activity element.
Here we only annotate the relationships between a local goal and a global goal with
supports and contradicts.

Domain ontology (D) and goal ontology (gG) are defined in current Web Ontol-
ogy Languages, such as OWL. With the semantic process annotation model, the proc-
ess semantics of different models can be caught and represented by the concepts of
GPO, domain ontology and goal ontology which harmonize the semantic heterogene-
ity of process modeling languages, models and process goals. Based on the above
formalizations, we define a markup process semantic annotation language with name-
space psam by extending GPO ontological definitions in OWL using Protégé. Con-
sequently, the extension includes adding a concept LocalGoal and properties for all
concepts. An example of this markup annotation language of representing an anno-
tated Artifact is below:

<psam:Artifact rdf:ID=”ID”>
<psam:model_fragment rdf:resource=”&MODEL_NAMESPACE#MODEL_ID”/>
<psam:name>NAME</psam:name>
<psam:alternative_name>ALTERNATIVE_NAME</psam:alternative_name>
<psam:same_as

rdf:resource=”&DOMAIN_ONTOLOGY#DOMAIN_ONTOLOGY_CONCEPT”/>
<psam:different_from

rdf:resource=”&DOMAIN_ONTOLOGY#DOMAIN_ONTOLOGY_CONCEPT”/>
<psam:kind_of

rdf:resource=”&DOMAIN_ONTOLOGY#DOMAIN_ONTOLOGY_CONCEPT”/>
<psam:superConcept_of

rdf:resource=”&DOMAIN_ONTOLOGY#DOMAIN_ONTOLOGY_CONCEPT”/>
<psam:part_of

rdf:resource=”&DOMAIN_ONTOLOGY#DOMAIN_ONTOLOGY_CONCEPT”/>

444 Y. Lin et al.

<psam:compositionConcept_of
rdf:resource=”&DOMAIN_ONTOLOGY#DOMAIN_ONTOLOGY_CONCEPT”/>

</psam:Artifact>

5 Related Work

Semantic interoperability is an active research area caused by the semantic heteroge-
neity in current information systems. Semantic interoperability is the ability to inte-
grate data sources developed using different vocabularies and different perspectives
on data [16]. To achieve semantic interoperability, the semantics of data have to be
machine-understandable.

The most popular approach to tackle the semantic interoperability problem is to
apply domain ontology. The domain ontology approach uses a machine understand-
able definition of concepts and relationships between concepts so that there is a
shared common understanding within a community [16]. Semantic annotation is a
way of linking domain ontology and data to align the semantics defined heterogene-
ously into agreed machine-understandable semantics. It is initially applied in annotat-
ing unstructured Web content and digital documents e.g. Web pages, digital texts or
images with formally defined semantic metadata. The semantic annotation helps to
achieve more precise and efficient information retrieval on the Web or from Digital
Libraries. Later on, the concept of annotation is extended to the structured Web Ser-
vices to envision the Semantic Web Services. Semantically described services will
enable better service discovery and allow easier interoperation and composition of
Web Services [15]. The widely used Semantic Web Services Ontology Languages are
DAML-S [1] and OWL-S [13] based on a W3C standard. Another emerging proposal
for Semantic Web Services is from DERI3 which comprises WSMO4 (Web Services
Modeling Ontology) and WSML (Web Services Modeling Language). Semantics of
services content can be added to the services described either by syntactic Web Ser-
vice standards or ontology-based description language. The common factor in most of
these approaches is relating concepts in Web Services to domain specific ontologies
[15], so called the semantic annotation approach.

The semantic annotation approach has been applied and tested on both unstruc-
tured and structured artifacts to achieve semantic interoperability. Seldom work is
done on the semi-structured artifact, e.g. enterprise/business process models. In tradi-
tional information system development the process models were usually defined and
used for a specific project within an enterprise. They were seldom reused in other
projects or interoperated and integrated with other external process models. It is diffi-
cult to reuse models because of lacking of knowledge about the context of models,
modeling methodologies, standards of modeling languages and also because of the
semantic heterogeneity problem.

Some ongoing European projects like INTEROP [6] and ATHENA [2] aim to
achieve the interoperability of heterogeneous systems and applications across networked
enterprises. The interoperability of enterprise models is one of important issues dealt
with in both projects. They share a common objective of Enterprise Modeling, i.e. pro-

3 http://www.deri.org/
4 http://www.wsmo.org/

 Semantic Annotation Framework to Manage Semantic Heterogeneity 445

viding a set of core modeling methodology elements or a shared language for support-
ing collaborative enterprise design and management. In the INTEROP project, a com-
mon enterprise modeling language – UEML 2.1 adapted from the UEML project [18] is
under development. The UEML comprises languages and techniques that can be used
for exchanging information between enterprise modeling tools [3]. Similarly, the POP*
methodology is proposed in ATHENA project including a set of common and basic
modeling constructs to support model interchange. Although those two proposals are
not directly associated with semantic annotation, both UEML and POP* provides com-
mon semantic definitions of modeling constructs primarily for model exchange between
tools and not for reusing existing models [5].

Our method deals with the heterogeneous semantic definitions of different process
modeling languages by meta-model annotation through the General Process Ontology
(GPO). Although GPO looks like UEML or POP*, it is defined as an ontology only
concerning the process dimension not a modeling language covering all perspectives
in the enterprise domain. GPO is defined in OWL in order to make use of semantic
Web technology to create a computer-interpretable semantic markup language for
process modeling in the Web environment. As a whole, our semantic annotation
framework intends to achieve the semantic discovery of process models but not to
focus on the enterprise model translation as UEML or POP* mainly do. Therefore,
current UEML or POP* methodology only deals with semantic heterogeneity on mod-
eling language level. We have to address the semantic heterogeneity problem on both
model and modeling language levels. Additionally the context of process models is
also considered in our semantic annotation approach by employing the profile an-
notation and goal annotation.

6 Conclusions and Future Work

Based on our previous work, we have proposed a semantic annotation framework to
manage the semantic heterogeneity of process models from the following perspec-
tives: basic description of process models (profile annotation), process modeling
languages (meta-model annotation), process models (model annotation) and the pur-
pose of the process models (goal annotation). Three ontologies are used for annota-
tion purposes: General Process Ontology used for meta-model annotation, domain
ontology for model annotation and goal ontology for process goal annotation. Fur-
thermore, we have defined a set of mapping strategies for guiding users to annotate
models. Nevertheless, the formal process semantic annotation model (PSAM) is the
main contribution of this paper.

Further we are going to elaborate on the goal annotation part of the framework. A
semantic annotation tool based on the framework is under development. We are look-
ing at the possibility to make it as a Plug-in for Metis, a powerful tool for enterprise
modeling and meta-modeling. The techniques of integrating or importing ontologies
into modeling tools are a primary interest. The validity of the mapping in meta model
annotation and model annotation will be checked using DL (Description Logic) based
reasoning mechanisms. The framework is going to be further evaluated by imple-
menting semantic process model discovery applications, and using this on selected
case studies.

446 Y. Lin et al.

References

1. Ankolekar, A., Burstein, M., Hobbs, J., Lassila, O., Martin, D., McDermott, D., Mcllraith,
S., Narayanan, S., Paolucci, M., Payne, T., Sycara, K.: DAML-S: Web service Description
for the Semantic Web. In Proc. of the 1st Int’l. Semantic Web Conf., LNCS 2343,
Springer-Verlag (2002) 348-363.

2. ATHENA Project (IST-2003-2004). http://www.athena-ip.org (2005) (Last accessed: 2006
02 15).

3. Bourrieres, J.P., Missikoff, M., Berre, A., Doumeingts, G., Piddington, C.: Deliverable
D4.2 INTEROP 2nd Workplan. http://interop-noe.org/deliv/d4.2/attach/D4.2%20V1.pdf
(2005) (Last accessed: 2006 02 15).

4. Gill, T., Gilliland-Swetland, A., Baca, M.: Introduction to Metadata: Pathways to Digital
Information. Baca, M. (Ed.) Getty Information Institute, Los Angeles, USA (2000).

5. Grangel, R., Chalmeta, R.: A Methodological Approach for Enterprise Modeling of Small
and Medium Virtual Enterprises based on UML: Application to a Tile Virtual Enterprise.
In Proc. of Doctoral Symposium in the 1st Int’l Conf. on Interoperability of Enterprise
Software and Applications, Geneva, Switzerland (2005).

6. INTEROP Project. http://interop-noe.org (2006) (Last accessed: 2006 02 15).
7. Krogstie, J., Jørgensen, D.H.: Interactive Models for Supporting Networked Organisations.

In Proc. 16th Intl. Conf. on Advanced Information Systems Engineering, LNCS 3084,
Springer-Verlag (2004) 550-562.

8. Kumar, A., Ciccarese, P., Smith, B., Piazza, M.: Context-Based Task Ontologies for Clini-
cal Guidelines. In Pisanelli, D.M. (Ed.) Ontologies in Medicine, Proc. of Workshop on
Medical Ontologies. Amsterdam: IOS Press (2004) 81-94.

9. Leppanen, M.: An Ontological Framework and a Methodical Skeleton for Method Engi-
neering: A Contextual Approach. PhD Thesis at University of Jyvaskyla, Finland (2005).

10. Lin, Y., Strasunskas, D.: Ontology-based Semantic Annotation of Process Templates for
Reuse. In Castro, J. and Teniente, E. (Eds.): Proc. of the CAiSE’05 Workshops Vol.1
(EMMSAD Workshop). Porto, Portugal (2005) 593-604.

11. Lin, Y., Ding, H.: Ontology-based Semantic Web Annotation for Semantic Interoperability
of Process Models. In Proc. of the Int’l Conf. on Computational Intelligence for Modeling,
Control and Automation, Vienna, Austria (2005).

12. Malone, T.W., Crowston, K., Herman, G.A.: Organizing Business Knowledge: The MIT
Process Handbook. The MIT Press (2003).

13. Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., Mcllraith, S., Narayanan,
S., Paolucci, M., Parsia, B., Payne, T., Sirin, E., Srinivasan, N., Sycara, K.: OWL-S: Se-
mantic Markup for Web Services. http://www.w3.org/Submission/OWL-S/ (Last ac-
cessed: 2006 02 15).

14. Ogden, C., Richards, I.: The Meaning of Meaning. London: Kegan Paul (1923).
15. Patil, A., Oundhakar, S., Sheth, A., Verma, K.: METEOR-S Web Service Annotation

Framework. In Proc. of the 13th Int’l. World Wide Web Conf., ACM Press (2004) 553-562.
16. Ram, S., Park, J.: Semantic Conflict Resolution Ontology (SCROL): An Ontology for De-

tecting and Resolving Data and Schema-Level Semantic Conflicts. IEEE Transactions on
Knowledge and Data Engineering 16(2), (2004) 189-202.

17. Solvberg, A.: Data and What They Refer To. In Chen, P., Akoka, J., Kangassalo, H., Thal-
heim, B. (Eds.): Conceptual Modeling: Current Issues and Future Trends. LNCS 1565.
Springer-Verlag (1999) 211-226.

18. UEML Project (IST-2001-34229). http://www.ueml.org (2005) (Last accessed: 2006 02 15).
19. van der Aalst, W.M.P, Barros, A.P., ter Hofstede, A.H.M., Kiepuszewski, B.: Advanced

Workflow Patterns. In Proc. of the 7th Int’l. Conf. on Cooperative Information Systems,
LNCS 1901, Springer-Verlag (2000) 18-29.

E. Dubois and K. Pohl (Eds.): CAiSE 2006, LNCS 4001, pp. 447 – 461, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Study of the Evolution of the Representational
Capabilities of Process Modeling Grammars

Michael Rosemann1, Jan Recker1, Marta Indulska2, and Peter Green2

1 Faculty of Information Technology,
Queensland University of Technology,

Brisbane, Australia
{m.rosemann, j.recker}@qut.edu.au

2 UQ Business School,
University of Queensland,

Ipswich, Australia
{m.indulska, p.green}@business.uq.edu.au

Abstract. A plethora of process modeling techniques has been proposed over
the years. One way of evaluating and comparing the scope and completeness of
techniques is by way of representational analysis. The purpose of this paper is
to examine how process modeling techniques have developed over the last four
decades. The basis of the comparison is the Bunge-Wand-Weber representation
model, a benchmark used for the analysis of grammars that purport to model the
real world and the interactions within it. This paper presents a comparison of
representational analyses of several popular process modeling techniques and
has two main outcomes. First, it provides insights, within the boundaries of a
representational analysis, into the extent to which process modeling techniques
have developed over time. Second, the findings also indicate areas in which the
underlying theory seems to be over-engineered or lacking in specialization.

1 Introduction

While the general objectives and methods of Business Process Management (BPM)
are not new, BPM has only recently received a significant amount of attention and is
now perceived to be a main business priority [1]. However, the actual modeling of
business processes still presents major challenges for organizations. As graphical
presentations of current or future business processes, business process models serve
two main purposes. First, intuitive business process models are used for scoping the
project, and capturing and discussing business requirements and process improvement
initiatives with subject matter experts. A prominent example of such a business
modeling technique is the Event-driven Process Chain (EPC). Second, business
process models are used for process automation, which requires their conversion into
executable languages. These automated techniques have higher requirements in terms
of expressive power. Examples include Petri nets or the Business Process Modeling
Notation (BPMN), a new Business Process Execution Language for Web Services
(BPEL4WS)-conform notation.

448 M. Rosemann et al.

Overall, a high number of process modeling techniques have been proposed since
Carl Petri published his initial ideas on Petri nets in 1962 [2], and process modeling
has become one of the most popular reasons for conceptual modeling [3]. Clearly, a
theoretical basis is required to assist in the evaluation and comparison of available
process modeling techniques. Given the existence of such theory, it would not only be
possible to evaluate these techniques, but also to determine if the discipline of process
modeling is building on previous knowledge, and if new techniques denote an actual
improvement. A promising candidate of such theories, the Bunge-Wand-Weber
(BWW) representation model, uses the principles of representational analysis for an
investigation of a modeling technique’s strength and weaknesses. The BWW
representation model denotes a widespread means for evaluating conceptual modeling
grammars for information systems analysis and design. We will employ this model as
a benchmark and filter through which we will assess comparatively the most popular
process modeling techniques. Thus, our research is motivated in several ways:

1. to provide theoretical guidance in the evaluation and comparison of available
process modeling techniques;

2. to propose a measure of development of process modeling over time;
3. to highlight representations that process modeling languages do not appear to

address; and
4. to add to the development of the BWW theoretical models.

The aim of this paper then is to study the development of process modeling
techniques over time. As a measurement for the development of these techniques we
selected ontological completeness, defined as the coverage of constructs as proposed
by the Bunge-Wand-Weber representation model. We are very much aware that
ontological completeness is not the only relevant criterion for the evaluation of the
capabilities of a modeling technique. Thus, the focus on the set of BWW constructs
leads to a specific scope in the evaluation. The study of modeling technique
development is based on a review of previous published BWW analyses of process
modeling techniques. In order to report on a reasonably complete set of modeling
techniques, we also conducted our own analysis of two additional prominent
modeling techniques, viz., Petri nets and BPMN. Overall, this paper considers twelve
common process modeling techniques and extracts the similarities and differences in
terms of the ontological completeness of these techniques. The consolidated findings
point to common shortcomings of modeling techniques, but also they highlight the
main differentiating features. As part of this work, the BWW representation model is
also evaluated in terms of appropriateness of its specification within the business
process modeling domain.

This paper is structured as follows. The next section provides an overview of the
Bunge-Wand-Weber set of models and its previous applications in the area of process
modeling, including our analyses of Petri nets and BPMN. Section 3 presents and
discusses the findings of the comparison of process modeling techniques from the
viewpoint of ontological completeness. Also, it reports on potential issues of the
BWW set of models with respect to their application to the area of process modeling.
The paper concludes in section 4 with a discussion of results, limitations, and future
research.

 A Study of the Evolution of the Representational Capabilities 449

2 Related Work and Background

2.1 Representation Theory in Information Systems

Over the last few decades many conceptual modeling techniques, used to define
requirements for building information systems, have emerged with limited theoretical
foundation underlying their conception or development [4]. Concerned that this
situation would result in the development of information systems that were unable to
capture completely important aspects of the real world, Wand and Weber [5-7]
developed and refined a set of models for the evaluation of the representational
capability of the modeling techniques and the scripts prepared using such techniques.
These models are based on an ontology defined by Bunge [8] and are referred to as
the Bunge-Wand-Weber (BWW) models. Generally, ontology studies the nature of
the world and attempts to organize and describe what exists in reality, in terms of the
properties of, the structure of, and the interactions between real-world things [9]. As
computerized information systems are representations of real world systems, Wand
and Weber suggest that a theory of representation based on ontology can be used to
help define and build information systems that contain the necessary representations
of real world constructs including their properties and interactions. The BWW
representation model is one of three theoretical models defined by Wand and Weber
[7] that make up the Representation Theory. Its application to information systems
foundations has been referred to by a number of researchers [10]. Some minor
alterations have been carried out over the years by Wand and Weber [6, 7] and Weber
[11], but the current key constructs of the BWW model can be grouped into the
following clusters: things including properties and types of things; states assumed by
things; events and transformations occurring on things; and systems structured around
things (see Appendix 1 for a complete list).

Weber [11] suggests that the BWW representation model can be used to analyze a
particular modeling technique to make predictions on the modeling strengths and
weaknesses of the technique, in particular its capabilities to provide complete and
clear representations of the domain being modeled. He clarifies two main evaluation
criteria that may be studied according to the BWW model: Ontological Completeness
and Ontological Clarity. The focus of our study is ontological completeness only, i.e.,
the analysis of the extent to which a process modeling technique covers completely
the set of constructs proposed in the BWW representation model.

Among other theories that have been proposed as a basis for representational
analysis of conceptual modeling in information systems, the approaches of Chisholm
[12] and Guizzardi et al. [13] are to be regarded as closest to the ideas of Wand and
Weber. These upper-level ontologies have been built for similar purposes and seem to
be equally expressive [14] but have not yet achieved the popularity and dissemination
of the BWW models.

2.2 Previous Representational Analyses of Process Modeling Techniques

Only limited research efforts have been made to compare process modeling
techniques based on an established theoretical model, refer, for instance, to [15].
However, these proposals neither appear to have been widely adopted in practice nor

450 M. Rosemann et al.

do they have an established track record. On the contrary, the BWW representation
model has been used in over twenty-five research projects for the evaluation of
different modeling techniques (see [10] for an overview), including data models,
object-oriented models and reference models. It also has a track record in the area of
process modeling, with contributions coming from various researchers. In this section,
we briefly summarize these studies that focused on process modeling techniques.

Keen and Lakos [16] determined essential features for a process modeling scheme
by using the BWW representation model to evaluate the degree of ontological
completeness of six process modeling techniques in a historical sequence. Empirical
studies to validate the results have not been conducted. The process modeling
techniques examined include the ANSI flowchart notation, the ISO Conceptual
Schema Model (ISO/TC97) [17], the Méthode d'Etude et de Réalisation Informatique
pour les Systèmes d'Entreprise (MERISE) [18], the Data Flow Diagram (DFD)
notation [19], the Integrated Definition Method 3 Process Description Capture
Method (IDEF3) [20], and the Language for Object-Oriented Petri nets (LOOPN++)
[21]. From their analysis, Keen and Lakos concluded that, in general, the BWW
representation model facilitates the interpretation and comparison of process
modeling techniques. They propose the BWW constructs of system, system
composition, system structure, system environment, transformation, and coupling to
be essential process modeling technique requirements. As our analysis will show,
however, these findings are not entirely reflected in the leading process modeling
techniques we consider.

Green and Rosemann [22] used the BWW representation model to analyze the
Event-Driven Process Chain (EPC) notation [23], focusing on both ontological
completeness and clarity. Their findings have been empirically validated through
interviews and surveys [24]. Confirmed shortcomings were found in the EPC notation
with regard to the representation of real world objects, in the definition of business
rules, and in the thorough demarcation of the analyzed system.

Green et al. [25] also examined the Electronic Business using eXtensible Markup
Language Business Process Specification Schema (ebXML BPSS) v1.01 [26] in terms
of ontological completeness and clarity. While the empirical validation of results has
not yet been performed, the analysis shows a relatively high degree of ontological
completeness.

Green et al. [27] examined the ontological completeness of four leading standards
for enterprise system interoperability, including BPEL4WS v1.1 [28], Business
Process Modeling Language v1.0 (BPML) [29], Web Service Choreography Interface
v1.0 (WSCI) [30], and ebXML v1.1 [26]. In addition, a minimal ontological overlap
(MOO) analysis [7, 11] has been conducted in order to determine the set of modeling
standards with a minimum number of overlapping constructs but with maximal
ontological completeness (MOC), i.e., maximum expressiveness, between the selected
standards. The study identified two sets of standards that, when used together, allow
for the most expressive power with the least overlap of constructs, viz., ebXML and
BPEL4WS, and, ebXML and WSCI. The results of the analysis remain to be tested
empirically.

While there has been further work that concentrates on the representational
analysis of dynamic modeling techniques (see, for example, [31, 32]), these particular
techniques are not considered in our research. For example, modeling techniques

 A Study of the Evolution of the Representational Capabilities 451

relying on an object-oriented paradigm (like UML, OML, OPM, or LOOPN++) have
not been included in this study. These techniques, applied in software engineering
rather than process management contexts, have different or extended requirements in
terms of representation capabilities and are, therefore, limited in comparability to
‘pure’ process modeling notations. We believe that the inclusion of such techniques
would limit the comparability of the results to process modeling languages that focus
on control flow.

2.3 Representational Analysis of Petri nets and BPMN

While the previous representational analyses of process modeling techniques covered
the main techniques, we felt that the field should be further extended by at least two
more prominent techniques, viz., Petri nets and BPMN.

We conducted our own representational analysis of Petri nets in its original and
most basic form [2], as we perceive it to be the intellectual birthplace of more
rigorous and disciplined process modeling. Petri nets are composed of places,
transitions, tokens, and arcs together with an initial state called the initial marking. As
places and arcs may be assigned a certain weight of tokens, the notation allows for
quite extensive modeling purposes. Special attention is, for example, paid to its
capability of business process simulation. Additionally, due to the underlying strict
formal foundation, Petri nets provide the capabilities for mathematical analyses and
means to be directly executed [33]. Due to this rigorous, yet flexible, specification we
found that although the notation originally merely consists of seven constructs, its
ontological completeness is quite high. While this apparent flexibility in the
interpretation of the Petri net constructs resulted in more than the seven expected
mappings, Petri nets still lack ontological completeness. For example, there is no
support for the modeling of systems structured around things. Hence, it is problematic
to define thoroughly and demarcate the modeled system, a deficit that in turn causes
understandability problems in terms of the scope as well as subparts and
interrelationships of system elements. Even though our study is based on the notion of
ontological completeness, it is important to point out that the same flexibility that
affords Petri nets a higher ontological completeness, also results in extensive
construct overload [11]. For example, a place construct in a Petri net can be used to
represent a thing, class, or state. Such flexibility, while seemingly an advantage, can
result in models that are harder to interpret. This weakness can result in ambiguity of
the models as extra-model knowledge is required to understand what is meant when a
particular construct is used in a model, e.g., whether a place in a given model
represents a thing, a class of things, or a state of a thing.

The Business Process Modeling Notation (BPMN) [34] is a recently proposed
standard that stemmed from the demand for a graphical notation that complements the
BPEL4WS standard for executable business processes. Although this gives BPMN a
technical focus, it has been the intention of the BPMN designers to develop a
modeling technique that can be applied for typical business modeling activities as
well. The BPMN specification defines thirty-eight distinct language constructs plus
attributes, grouped in four basic categories of elements, viz., Flow Objects,
Connecting Objects, Swimlanes and Artefacts [34]. For example, nine distinct event
types and three different event dimensions are included.

452 M. Rosemann et al.

As the focus of this paper is on the comparison of different process modeling
techniques, we only provide a reduced summary of the outcomes of this analysis. A
more complete analysis is discussed in detail in [35]. Our analysis shows that the
specification provides a relatively high degree of ontological completeness. However,
BPMN is not ontologically complete. For example, states assumed by things cannot
be modeled with the BPMN notation. This situation can result in a lack of focus in
terms of state and transformation law foundations for capturing business rules. Also,
systems structured around things are under-represented. For example, as there is no
representation of system structure, problems will arise when information needs to be
obtained about the dependencies within a modeled system.

3 Comparison of Representational Analyses

3.1 Research Design and Overview

We reviewed and compared analyses of twelve process modeling techniques with the
focus being on the ontological completeness of these techniques. As we are aware that
many available process modeling techniques have been designed for distinct
purposes, we placed special emphasis on ensuring comparability of the analyses. In
order to ensure a reasonably holistic overview of this area, our analysis covered a
wide selection of modeling techniques for different purposes, ranging from mere
illustration methods (e.g., Flowcharts) to integrated techniques (e.g., EPC), and also
covering more recent techniques capable of both process description and execution
(e.g., ebXML and BPEL4WS).

As the prior analyses were independently conducted by different research groups
and since the representational analyses referred to varied research purposes, effort
was put into making the individual analyses comparable. We did neither question nor
review the mapping results as proposed by the different research groups. So, our study
consolidates existing analyses instead of revising or extending previous research
work. The results of our comparison are shown in Table 1, where each tick indicates
that the specified BWW construct can be represented by the analyzed technique.

However, due to varying sets of BWW representation model constructs included in
the analyses, we had to generalize some constructs of the BWW model in order to
stabilize the comparison of the evaluations:

• As some analyses did not entirely differentiate between property types, these types
were generalized here to the super-type ‘property’. Therefore, if a mapping was
found for a sub-type of ‘property’, then the mapping was recorded as belonging to
the super-type ‘property’.

• Similarly, as some analyses did not consider the constructs of stability condition
and corrective action in the context of the lawful transformation construct, we
generalized mappings of these to a mapping of the lawful transformation construct.

• As the construct process [22] was not specified in the BWW representation model
as defined in [6, 7, 11] we did not consider it in our comparison.

 A Study of the Evolution of the Representational Capabilities 453

Table 1. Comparison of representational analyses of process modeling techniques

Language

THING

CLASS

KIND

PROPERTY

STATE

CONCEIVABLE
STATE SPACE

STATE LAW

LAWFUL STATE
SPACE

STABLE STATE

UNSTABLE STATE

HISTORY

EVENT

CONCEIVABLE
EVENT SPACE
LAWFUL EVENT
SPACE

EXTERNAL EVENT

INTERNAL EVENT

WELL-DEFINED
EVENT
POORLY DEFINED
EVENT

TRANSFORMATION

LAWFUL
TRANSFORMATION

ACTS ON

COUPLING

SYSTEM

SYSTEM
COMPOSITION
SYSTEM
ENVIRONMENT
SYSTEM
STRUCTURE

SUBSYSTEM

SYSTEM
DECOMPOSITION

LEVEL STRUCTURE

Version
Year

ANSI
Flow-
charts DFDPetri net

ISO
TC87 Merise EPC IDEF3 ebXML BPML WSCI BPEL4WS BPMN

1.0

20042003

1.11.0

20022002

1.01.01

20011995199219921982197919701962

12 / 29 8 / 292 / 29 7 / 29 11 / 29 11 / 29 11 / 29 22 / 29 10 / 29 15 / 29 15 / 29 19 / 29Representational
Coverage

C
on

st
ru

ct
 C

ov
er

ag
e

5 / 12

6 / 12

8 / 12

1 / 12

7 / 12

1 / 12

5 / 12

2 / 12

2 / 12

2 / 12

1 / 12

10 / 12

1 / 12

1 / 12

8 / 12

9 / 12

7 / 12

5 / 12

12 / 12

9 / 12

5 / 12

2 / 12

6 / 12

7 / 12

8 / 12

4 / 12

2 / 12

3 / 12

4 / 12

BWW Construct

3.2 Issues in Process Modeling Techniques: Findings and Propositions

The notion of ontological completeness of a particular process modeling technique
serves as an indication of its representational capabilities, being the extent to which
the techniques are able to provide complete descriptions of a real-world domain.

The consolidation of previous representational analyses with our analyses of Petri
nets and BPMN leads to several interesting results. A longitudinal study of the

454 M. Rosemann et al.

ontological completeness shows an obvious increase in the coverage of BWW
constructs that can be interpreted as a sign of increasing representational development
over time. Fig. 1 visualizes this trend over time, as measured by the number of BWW
constructs covered by each technique. We can see that, while the original Petri net
specification did not provide exceptionally good representational coverage1 (41%) as
defined by the BWW representation model, it still performed better than more recent
grammars such as DFD (28%) or IDEF3 (38%). A noticeable spike in Fig. 1 depicts
the high level of development (in terms of ontological completeness) of the ebXML
standard (76%). It is interesting to note that ebXML is specified in UML, with a semi-
formal construct definition and description, whereas BPEL4WS, WSCI, and BPMN,
for example, have textual specifications supplemented by diagrams of examples. As
such, the ebXML specification is less subjective in its possible interpretations.

Petr
i n

et
(19

62
)

ANSI F
low

ch
art

s (
19

70
)

DFD (1
97

9)

IS
O/TC97

 (1
98

2)

MERIS
E (1

99
1)

EPC (1
99

2)

ID
EF3 (

19
95

)

eb
XML 1

.01
 (2

00
1)

BPML 1
.0

(20
02

)

W
SCI 1

.0
(20

02
)

BPEL4
W

S 1.
1 (

20
03

)

BPMN 1.
0 (

20
04

)

Fig. 1. Comparison of representation mapping analyses

BPMN also appears to perform very well (66%) and hence appears to be quite
mature in terms of representation capabilities. This higher level of ontological
completeness can perhaps partly be explained by the fact that previous approaches,
including EPC and Petri nets, influenced the development of BPMN [34]. Also, this
finding is not only supported by the number of identified mappings to BWW
constructs, but also by the specialization of the constructs. For example, BPMN has
sub-types of event and transformation that allow a more rigorous and expressive
model to be defined. However, this strength can potentially also be its weakness as
the varied sub-types of transformation and event will require thorough understanding
by the user in order to appropriately represent the right types of transformations and
events, respectively.

It appears that techniques that focus on describing process flow from a business
perspective (for instance DFD and IDEF3) are less ontologically complete than those

1 The degree of representational coverage (DrC) is here calculated as the number of BWW

constructs found to be represented by language constructs #L divided by the number of
constructs defined in the BWW representation model #M = 29. Note here that each BWW
construct has the same weight.

 A Study of the Evolution of the Representational Capabilities 455

that have to cater for more syntactical rigor due to their focus on executability or
translatability into executable languages (such as BPEL4WS or ebXML).

In terms of the coverage of BWW constructs, Table 2 shows some occurrences of
mappings of BWW representation model constructs within the considered analyses of
process modeling techniques.

Table 2. Analysis of construct occurrences

Most supported BWW constructs

Construct

TRANSFORMATION

Occurrence ratio (%)

EVENT

LAWFUL TRANSFORMATION

INTERNAL EVENT

PROPERTY

COUPLING

EXTERNAL EVENT

STATE

SYSTEM

WELL-DEFINED EVENT

100

83

75

75

67

67

67

58

58

58

Least supported BWW constructs

Construct

KIND

Occurrence ratio (%)

HISTORY

CONCEIVABLE STATE SPACE

CONCEIVABLE EVENT SPACE

STABLE STATE

LAWFUL STATE SPACE

LAWFUL EVENT SPACE

UNSTABLE STATE

SYSTEM ENVIRONMENT

SUBSYSTEM

8

8

8

8

8

17

17

17

17

17

As can be expected in a BPM domain, each of the analyzed techniques has the
ability to represent the BWW construct transformation – one of the core concepts in
process modeling [36]. Seventy-five percent of these techniques also allow
differentiation between all possible transformations and a lawful transformation that
is allowed under the business rules in a given case. It is also interesting to note that
while transformation has full support, neither event nor state have the same
occurrence, with state being represented in under sixty percent of the modeling
techniques. This situation is surprising, given the importance of events and states in
process modeling [36].

There is divided support for the cluster things including properties and types of
things. Closer inspection of Table 1 shows that while earlier process modeling
techniques provided a construct for a specific thing (overall support: 42%), more
recent standards have representation capabilities for class (overall support: 50%)
rather than thing. Therefore, it would appear that, in general, there has been a move to
model classes of things rather than actual things, i.e., instances. It is also interesting to
note that only BPMN is able to cover all aspects of things, including properties and
types of things (see Table 1). In this respect, BPMN appears to denote a considerable
improvement compared to other techniques.

Throughout the BPM domain, a lack of support for business rule definitions can be
observed (see also [22, 35]). Because conceivable and lawful event spaces as well as
state spaces are under-represented – none of these constructs has support of more than
seventeen percent – state and transformation modeling is unclear for the modeler who
may encounter confusion when determining which set of events and states can occur
in the system and which events and states are possible but should not be allowed. A
closer look at Table 1 reveals that most techniques achieve a very low degree of

456 M. Rosemann et al.

representational coverage in the cluster of states assumed by things, except for
ebXML (100% in this cluster) and – interestingly – Petri nets (52% in this cluster).
This situation suggests that the modeling of business rules is heavily dependant on
rigorous state and state law specification. The mathematical specification of Petri nets
seems to be advantageous in this aspect.

Also, there appears to be inconsistent support for systems structured around things.
From the list of seven BWW constructs grouped in this cluster, five are represented in
under thirty-four per cent of the modeling techniques. Thus, appropriate structuring
and differentiation of modeled things, such as business partners, is not well supported,
a fact we find quite problematic, especially in light of collaborative business
processes and interoperability. Table 1 suggests that DFD, IDEF3 and BPMN models
perform best in representing systems structured around things. All these grammars
have in common dedicated constructs for decomposing process models into
interlinked subsets.

3.3 Focusing the Underlying Theory

A representational analysis of modeling techniques has two facets. On the one side, it
provides a filtering lens that facilitates insights into potential issues with a modeling
technique. On the other side, it can also contribute to the further development of the
selected theoretical basis. In fact, our findings from the longitudinal analysis of
process modeling techniques align with some of the previous criticisms of BWW
representation model-based analyses [37, 38].

The fact that even the most developed process modeling technique (ebXML)
supports only 76% of the BWW constructs suggests that the selected theory of
representation might be too demanding. With regard to this potential lack of relevance
of the BWW representation model, we suggest the development and use of a
specialized BWW model for the domain of business process modeling. The current
BWW representation model needs to be investigated in order to determine areas that
need further specialization, extension, deletion, or renaming. For example, events and
transformations occurring on things may require further specialization. BPMN
distinguishes between nine event types, representing a differentiation scheme that is
not covered by the BWW constructs of event and its subtypes. The same situation can
be seen in standards such as ebXML, BPEL4WS, BPML, and WSCI. A similar
situation holds for the transformation construct that we often found to be susceptible
to construct redundancy. For example, in BPML there are ten language constructs
representing different types of transformations. A similar situation exists in standards
like BPEL4WS and ebXML. This situation implies that, just as ‘properties’ in the
BWW representation model are specialized, perhaps transformations should also be
specialized for the domain of BPM.

It is interesting also to note that throughout the analyses of process modeling
techniques, control flow mechanisms such as logical connectors, selectors, gateways
and the like are regarded as construct excess as they do not map to any construct of
the BWW model. However, these constructs are deemed to be essential to the BPM
domain (for empirical evidence supporting this proposition refer, for example, to
[35]). Consequently, we are considering how the BWW model might be extended to
better reflect such control flow concepts important to the BPM domain.

 A Study of the Evolution of the Representational Capabilities 457

Taking a methodological viewpoint to the BWW representation model-based
analysis, we found the lack of objectivity issue persisting. Significant effort had to be
applied in objectifying the different analyses in terms of finding a comparable set of
BWW constructs. This situation highlights the need for the use of meta-models in
conducting analyses. A meta-model allows for a clearer description of the source
representation model constructs as well as less subjective evaluation of the target
grammar, partially through pattern matching, assuming the meta-model and the
grammar are specified in the same notation. A BWW meta-model has been developed
[39] for such a purpose and its use for evaluating grammars with meta model-based
specifications has been promoted and discussed in [14, 37].

4 Conclusions, Limitations and Future Research

This paper presents the first comprehensive longitudinal study comparing previous
representational analyses of process modeling techniques. The innovative
comparative study also includes our outcomes of the initial representational analyses
of Petri nets and the new proposed modeling standard, BPMN. The findings clearly
show signs of a developing modeling discipline, measured by an increased
ontological completeness of process modeling techniques over time. The results also
identify the common core constructs of process modeling techniques (for example,
transformation, properties, events) as well as their key differentiators (for example,
subsystem, system environment, lawful state space). Furthermore, the findings provide
valuable insights for the future application of the BWW representation model as a
benchmark for such analyses of modeling techniques. As shown in Table 2, there are
some constructs of the BWW representation model that are supported by only one
technique of the chosen twelve, for example the constructs kind and history. While
this might indicate an area for improvement in the representation power of process
modeling techniques, it might also indicate that, perhaps, the particular BWW
construct is not necessary for modeling in the domain of BPM. Such issues require
further empirical testing (currently under way) in order to determine whether the
theory of representation requires pruning and specialization or whether the techniques
require refinement and extensions in order to be able to model what is represented by
the BWW construct. Such research might also motivate other researchers to conduct a
similar study for data or object-oriented modeling techniques.

Furthermore, the outcomes will be of interest to the developers and users of
process modeling techniques. Developers of process modeling techniques should be
motivated to examine representational analyses of currently used process modeling
tools in order to build upon these grammars and counteract any weaknesses in the
newly developed techniques or technique extensions. On the other hand, users of
process modeling techniques might be motivated to use ontological completeness as
one potential evaluation criterion for the selection of a more appropriate modeling
technique.

We identify some limitations in our research. Most notably, we based our study on
previous representational analyses that have been conducted by different researchers.
Therefore, there may exist issues related to the comparability of the analyses due to
the impact of the subjective interpretations of the researcher [37]. Second, we

458 M. Rosemann et al.

constrained the considered representational analyses to analyses based on the BWW
representation model that in turn limits the generalization of the results and also the
number of techniques we were able to consider. We believe, however, that the
selected set of techniques is representative of the most popular techniques in the BPM
field. It also enables us to focus our work and to avoid the necessity to translate
between different theoretical bases. Third, we focused on ontological completeness,
thereby giving a one-dimensional view of modeling technique development over time.

In our future research, we will extend this analysis to include also ontological
clarity as an evaluation criterion. We will then use the outcomes of this study and the
extended study to develop a process modeling-specific version of the BWW
representation model. This work will be divided into four steps. First, based on the
BWW representation model, we will eliminate those constructs that seem to be of no
or limited relevance for process modeling. Second, some BWW constructs may need
to be renamed so that they better reflect common terminology in the domain of
process modeling (for example, activity instead of transformation). Third, we will
extend the BWW representation model by specializing those constructs that are
perceived as having too high a level of granularity. Fourth, we may, in exceptional
cases, introduce new constructs.

In a related stream of research, the outcome of this research is also used to continue
work on a weighted scoring model for the interpretation of the levels of criticality of
the results of representational analyses [14, 37].

References

1. Gartner Group: Delivering IT’s Contribution: The 2005 CIO Agenda. Gartner, Inc,
Stamford, Connecticut (2005)

2. Petri, C.A.: Fundamentals of a Theory of Asynchronous Information Flow. In: Popplewell,
C.M. (ed.): IFIP Congress 62: Information Processing. North-Holland, Munich, Germany
(1962) 386-390

3. Davies, I., Green, P., Rosemann, M., Indulska, M., Gallo, S.: How do Practitioners Use
Conceptual Modeling in Practice? Data & Knowledge Engineering (In Press)

4. Floyd, C.: A Comparative Evaluation of System Development Methods. In: Olle, T.W.,
Sol, H.G., Verrijn-Stuart, A.A. (eds.): Information System Design Methodologies:
Improving the Practice. North-Holland, Amsterdam, The Netherlands (1986) 19-54

5. Wand, Y., Weber, R.: An Ontological Model of an Information System. IEEE
Transactions on Software Engineering 16 (1990) 1282-1292

6. Wand, Y., Weber, R.: On the Ontological Expressiveness of Information Systems Analysis
and Design Grammars. Journal of Information Systems 3 (1993) 217-237

7. Wand, Y., Weber, R.: On the Deep Structure of Information Systems. Information
Systems Journal 5 (1995) 203-223

8. Bunge, M.A.: Treatise on Basic Philosophy Volume 3: Ontology I - The Furniture of the
World. Kluwer Academic Publishers, Dordrecht, The Netherlands (1977)

9. Shanks, G., Tansley, E., Weber, R.: Using Ontology to Validate Conceptual Models.
Communications of the ACM 46 (2003) 85-89

10. Green, P., Rosemann, M.: Applying Ontologies to Business and Systems Modeling
Techniques and Perspectives: Lessons Learned. Journal of Database Management 15
(2004) 105-117

 A Study of the Evolution of the Representational Capabilities 459

11. Weber, R.: Ontological Foundations of Information Systems. Coopers & Lybrand and the
Accounting Association of Australia and New Zealand, Melbourne, Australia (1997)

12. Chisholm, R.M.: A Realistic Theory of Categories: An Essay on Ontology. Cambridge
University Press, Cambridge, Massachusetts (1996)

13. Guizzardi, G., Herre, H., Wagner, G.: On the General Ontological Foundations of
Conceptual Modeling. In: Spaccapietra, S., March, S.T., Kambayashi, Y. (eds.):
Conceptual Modeling - ER 2002. Lecture Notes in Computer Science, Vol. 2503.
Springer, Tampere, Florida (2002) 65-78

14. Davies, I., Green, P., Milton, S., Rosemann, M.: Analysing and Comparing Ontologies
with Meta Models. In: Krogstie, J., Halpin, T., Siau, K. (eds.): Information Modeling
Methods and Methodologies. Idea Group, Hershey, Pennsylvania (2005) 1-16

15. Söderström, E., Andersson, B., Johannesson, P., Perjons, E., Wangler, B.: Towards a
Framework For Comparing Process Modelling Languages. In: Pidduck, A.B., Mylopoulos,
J., Woo, C.C., Ozsu, M.T. (eds.): 14th International Conference on Advanced Information
Systems Engineering. Lecture Notes in Computer Science, Vol. 2348. Springer, Toronto,
Canada (2002) 600-611

16. Keen, C.D., Lakos, C.: Analysis of the Design Constructs Required in Process Modelling.
In: Purvis, M. (ed.): Proceedings of the International Conference on Software Engineering:
Education and Practice. IEEE Computer Society, Dunedin, Ireland (1996) 434-441

17. van Griethuysen, J.J.: Concepts and Terminology for the Conceptual Schema and the
Information Base. ISO/TC97/SC5 Report N695. International Organization for
Standardization, Geneva, Italy (1982)

18. Tardieu, H.: Issues for Dynamic Modelling through Recent Development in European
Methods. In: Sol, H.G., Crosslin, R.L. (eds.): Dynamic Modelling of Information Systems
II. North-Holland, Amsterdam, The Netherlands (1992) 3-23

19. Gane, C., Sarson, T.: Structured Systems Analysis: Tools and Techniques. Prentice-Hall,
Englewood Cliffs, California (1979)

20. Mayer, R.J., Menzel, C.P., Painter, M.K., de Witte, P.S., Blinn, T., Perakath, B.:
Information Integration For Concurrent Engineering (IICE) IDEF3 Process Description
Capture Method Report. Interim Technical Report AL-TR-1995-XXXX. Logistics
Research Division, College Station, Texas (1995)

21. Keen, C.D., Lakos, C.: Information Systems Modelling using LOOPN++, an Object Petri
Net Scheme. In: Sol, H.G., Verbraeck, A., Bots, P.W.G. (eds.): Proceedings of the 4th
International Working Conference on Dynamic Modelling and Information Systems. Delft
University Press, Noordwijkerhout, The Netherlands (1994) 31-52

22. Green, P., Rosemann, M.: Integrated Process Modeling. An Ontological Evaluation.
Information Systems 25 (2000) 73-87

23. Keller, G., Nüttgens, M., Scheer, A.-W.: Semantische Prozessmodellierung auf der
Grundlage "Ereignisgesteuerter Prozessketten (EPK)" (in German: Semantic Modeling of
Processes based on Event-driven Process Chains). Working Paper 89. Institut für
Wirtschaftsinformatik der Universität Saarbrücken, Saarbrücken, Germany (1992)

24. Green, P., Rosemann, M.: Ontological Analysis of Integrated Process Models: Testing
Hypotheses. The Australian Journal of Information Systems 9 (2001) 30-38

25. Green, P., Rosemann, M., Indulska, M.: Ontological Evaluation of Enterprise Systems
Interoperability Using ebXML. IEEE Transactions on Knowledge and Data Engineering
17 (2005) 713-725

26. OASIS: ebXML Business Process Specification Schema Version 1.01. UN/CEFACT and
OASIS (2001), available at: http://www.ebxml.org/specs/ebBPSS.pdf

460 M. Rosemann et al.

27. Green, P., Rosemann, M., Indulska, M., Manning, C.: Candidate Interoperability
Standards: An Ontological Overlap Analysis. Technical Report University of Queensland,
Brisbane, Australia (2004)

28. Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu, K.,
Roller, D., Smith, D., Thatte, S., Trickovic, I., Weerawarana, S.: Business Process
Execution Language for Web Services. Version 1.1. BEA Systems, International Business
Machines Corporation, Microsoft Corporation, SAP AG and Siebel Systems (2003),
available at: http://xml.coverpages.org/BPELv11-May052003Final.pdf

29. Arkin, A.: Business Process Modeling Language. BPMI.org, (2002), available at:
http://www.bpmi.org/

30. Arkin, A., Askary, S., Fordin, S., Jekeli, W., Kawaguchi, K., Orchard, D., Pogliani, S.,
Riemer, K., Struble, S., Takacsi-Nagy, P., Trickovic, I., Zimek, S.: Web Service
Choreography Interface (WSCI) 1.0. BEA Systems, Intalio, SAP, Sun Microsystems
(2002), available at: http://www.w3.org/TR/wsci/

31. Opdahl, A.L., Henderson-Sellers, B.: Ontological Evaluation of the UML Using the
Bunge-Wand-Weber Model. Software and Systems Modeling 1 (2002) 43-67

32. Soffer, P., Golany, B., Dori, D., Wand, Y.: Modelling Off-the-Shelf Information System
Requirements. An Ontological Approach. Requirements Engineering 6 (2001) 183-199

33. Murata, T.: Petri Nets: Properties, Analysis and Applications. Proceedings of the IEEE 77
(1989) 541-580

34. BPMI.org, OMG: Business Process Modeling Notation Specification. Final Adopted
Specification. Object Management Group (2006), available at: http://www.bpmn.org

35. Recker, J., Indulska, M., Rosemann, M., Green, P.: Do Process Modelling Techniques Get
Better? A Comparative Ontological Analysis of BPMN. In: Campbell, B., Underwood, J.,
Bunker, D. (eds.): Proceedings of the 16th Australasian Conference on Information
Systems. Australasian Chapter of the Association for Information Systems, Sydney,
Australia (2005)

36. Soffer, P., Wand, Y.: On the Notion of Soft-Goals in Business Process Modeling. Business
Process Management Journal 11 (2005) 663-679

37. Rosemann, M., Green, P., Indulska, M.: A Reference Methodology for Conducting
Ontological Analyses. In: Lu, H., Chu, W., Atzeni, P., Zhou, S., Ling, T.W. (eds.):
Conceptual Modeling – ER 2004. Lecture Notes in Computer Science, Vol. 3288.
Springer, Shanghai, China (2004) 110-121

38. Rosemann, M., Green, P., Indulska, M.: A Procedural Model for Ontological Analyses. In:
Hart, D., Gregor, S. (eds.): Information Systems Foundations: Constructing and
Criticising. ANU E Press, Canberra, Australia (2005) 153-163

39. Rosemann, M., Green, P.: Developing a Meta Model for the Bunge-Wand-Weber
Ontological Constructs. Information Systems 27 (2002) 75-91

 A Study of the Evolution of the Representational Capabilities 461

Appendix

Appendix 1. Constructs in the BWW representation model, assigned to cluster groups. Adapted
from [6, 11] with minor modifications.

Th
in

gs
 in

cl
ud

in
g

pr
op

er
tie

s
an

d
ty

pe
s

of

th
in

gs
St

at
es

 a
ss

um
ed

 b
y

th
in

gs
Ev

en
ts

 a
nd

 tr
an

sf
or

m
at

io
ns

 o
cc

ur
rin

g
on

 th
in

gs
Sy

st
em

s
st

ru
ct

ur
ed

 a
ro

un
d

th
in

gs

Agent Orientation

From Stakeholder Intentions to
Software Agent Implementations

Loris Penserini, Anna Perini, Angelo Susi, and John Mylopoulos

ITC-IRST, Via Sommarive 18, I-38050, Trento, Italy
{penserini, perini, susi}@itc.it, jm@cs.toronto.edu

Abstract. Multi-Agent Systems have been proposed as a suitable conceptual
and technological framework for building information systems which operate in
open, evolving, heterogeneous environments. Our research aims at proposing de-
sign techniques and support tools for developing such complex systems. In this
paper we address the problem of better linking requirements analysis to detailed
design and implementation in the Tropos agent-oriented methodology with the
aim to address adaptability issues. In particular, we revisit the definition of agent
capability in Tropos and refine the development process in order to point out
how capability specification can result from the integration of various analysis
strategies. We also show how fragments of an implementation can be generated
automatically from an agent capability specification.

1 Introduction

Nowadays, distributed information systems need to operate in open, evolving,
heterogeneous environments. Trust in these systems by their owners and users en-
tails ever-increasing expectations for robustness, fault tolerance, security, flexibility and
adaptability. Multi-Agent Systems (MAS) have been proposed as a suitable conceptual
framework for building such information systems [3, 5, 10, 15, 12]. In this framework,
an information system is conceived as an open network of software agents who inter-
act with each other and human/organizational agents in their operational environment
in order to fulfill stakeholder objectives. Agent-oriented software engineering projects
have been developing novel design techniques and support tools for complex informa-
tion systems [10]. In particular, the Tropos methodology [3, 5] captures early require-
ments through an analysis of stakeholder goals and strategic dependencies among them.
System requirements and design is then derived in a systematic way. System design
includes both architectural and detailed design, and is followed by system implementa-
tion. Our research is conducted within the context of the Tropos project.

In this work, we refine the Tropos software development methodology proposed else-
where [3, 5] by focusing on the concept of agent capability. Agent capability has been
defined in agent-oriented programming [20] as the ability of an agent to achieve a goal.
This definition has been revised in recent work [15] into a refined notion based on the
philosophical idea that ‘can’ implies both ability and opportunity. This suggest that
the lack of either ability or opportunity implies ‘cannot’. More specifically, [15] uses
the concept of “capability for a given goal” meaning that the agent has at least one plan
—the ability— that can fulfill a given goal. This plan constitutes a necessary condition

E. Dubois and K. Pohl (Eds.): CAiSE 2006, LNCS 4001, pp. 465–479, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

466 L. Penserini et al.

for achieving the goal, while the sufficient condition (i.e. the opportunity) is defined in
terms of the pre-conditions or the context that can trigger the plan.

In this paper, we illustrate how the above capability definition can be naturally ac-
commodated with the goal and plan concepts. More precisely, as detailed in [17], an
actor capability is always related to a leaf-goal after goal analysis has been completed.
Moreover, we revise the Tropos design process in order to make capability modelling
and analysis more explicit and systematic. This extension allows us to better exploit
information on the environment captured during early and system requirements analy-
sis, while conducting design and implementation of a MAS. Our ultimate objective is
to define a systematic process for designing software agents able to adapt and extend
their capability at run time, through composition mechanisms analogous to those used
in web services [21].

In this work, we adopt Model-Driven Architecture (MDA) guidelines and standards
proposed by OMG’s [14]. Along with an extended Tropos development process, we
are developing specific tools that support the proposed methodology by facilitating the
construction, analysis, and transformation of models.

The rest of the paper is structured as follows. Section 2 recalls background notions
of Tropos and of MDA guidelines and standards. Section 3 introduces an example we
use to illustrate our approach. Section 4 introduces our definition of capability and
proposes a systematic process for capability design. Section 5 presents a toolset for
implementing capability in JADE (Java Agent Development Framework [2]) through
an automatic transformation of a platform independent model to a platform specific
one, while Section 6 describes capability implementation. Section 7 presents related
work and Section 8 offers concluding remarks.

2 Background

We adopt the Tropos agent-oriented methodology [3, 5] which rests on a model-driven
software development process, i.e. it guides the software engineer in building a concep-
tual model, which is incrementally refined and extended, from an early requirements
model to system design artifacts and then to code. The methodology uses a modelling
language based on a multi-agent paradigm named i* [22], which provides concepts of
actor, goal, plan, softgoal, resource and capability. The i* modelling framework also
includes relationships between actors and goals. In addition, the framework provides a
graphical notation to depict views of a model, such as actor diagrams, which point out
dependencies between a set of actors and goal diagrams, which depict how actor goals
can be decomposed into subgoals1.

The Tropos methodology also includes various analysis techniques which are tool
supported2 and a structured software development process which has been specified
in terms of a non-deterministic concurrent algorithm [3]. This process starts with the
identification of critical actors (“stakeholders”) in a domain along with their goals, and

1 The Tropos modelling activities are supported by the TAOM4E tool [18] (see
http://sra.itc.it/tools/taom).

2 The Tropos formal analysis, goal-reasoning and security analysis techniques are supported by
the T-Tool, the GR- Tool and ST-Tool respectively (see http://www.troposproject.org).

From Stakeholder Intentions to Software Agent Implementations 467

proceeds with the analysis of goals from the perspective of each actor. In particular,
given a goal, the software engineer may decide to delegate it to an actor already existing
in the domain or to a new actor. Such delegations result in a network of dependency
relationships among actors. Moreover the software engineer may decide to analyze a
goal producing a set of subgoals. Goal analysis generates a goal hierarchy where the
leaves in various combinations represent concrete solutions to the root goal. Finally the
software engineer may decide that a certain actor is able to satisfy the goal via a plan
the actor is able to execute; in this case the goal is assigned to that actor (with no further
delegations). The process is complete when all goals have been dealt with.

This iterative process is organized in four main requirements analysis and design
phases, each characterized by specific objectives. In particular, during Early Require-
ments the environment (i.e. the organizational setting) is modelled and analyzed; during
Late Requirements, the system-to-be is introduced and its role within the environment
is modelled; during Architectural Design the system architecture is specified in terms
of a set of interacting software agents; Detailed Design is concerned with the speci-
fication of software agent capabilities and interactions and provides the input to code
generation.

In refining the modelling process algorithm and building tools which can support
it [19], we adopted ideas and standards from MDA. MDA conceives system develop-
ment in terms of a chain of model transformations, namely, from a domain model (Com-
putationally Independent Model — CIM) to a Platform Independent Model (PIM), and
from a PIM to a Platform Specific Model (PSM), from which code and other develop-
ment artifacts can then be straightforwardly derived. In this paper we focus on how to
build a PIM for a MAS generic platform in Tropos and on how to automatically trans-
form it into a PSM; we consider here the JADE programming platform [2] metamodel.
Our framework is compliant with the MDA metamodelling standard called Meta Object
Facility (MOF) [13], which defines a set of modelling constructs supporting metamod-
elling. Moreover, we exploit a Frame Logic-based approach described in [6] to deal
with metamodel to metamodel transformations.

3 Example

An example is taken from the on-line selling shop application3 domain. According to
Tropos, the early requirements analysis has to define the social actors and their inten-
tions in terms of social dependencies, commitments, and responsibilities among stake-
holders. While, the late requirements phase introduces the system-to-be —e.g. the actor
Retailer System— relating it to the other stakeholders of the domain. In this case,
as depicted by the Fig. 1, some of the Customer needs are delegated to the Retailer
System —i.e. softgoals search for the desired product automatically, flexible and
automatic payment, and fast delivery— in order to correctly design the system func-
tionalities. For the sake of simplicity, the figure does not depict all the elements a why
dependency is composed of. Each time a Customer asks for product details, Retailer
System can fulfill such a request by achieving the goal provide product info. As il-
lustrated by the goal diagram of Fig. 1, there are two possible (means-ends) alternatives

3 The scenario used is an idealization, intended solely for illustration purposes.

468 L. Penserini et al.

sell
product

offer delivery
alternatives

endow with
on-line
services

provide
product info

provide
payment
facilities

provide
order set currier

type
shop

delivery

use
DHLprocess

credit-card
form

show bank
transfer

info
browse
catalog solve

query fast
delivery

flexible and
automatic
payments

search for the
desired product
automatically

_
+

+
_

+

_

Retailer
System

Customer

fast
delivery

flexible and
automatic
payments

search for the
desired product
automatically

product quickly
available

++

++

Actor goal

softgoal

taskresource

goal dependency

dependeedepender

dependum

LEGEND of Tropos concepts

decompositions

OR AND

contribution
(++;+;-;--)

means-end

why

why
why

Fig. 1. Late Requirements: Fragment of Retailer System Goal Analysis

to deals with such a goal: browse catalog and solve query. Moreover, in our case,
the goal diagram models a class of Customers that need to search for product details
as much as possible automatically, i.e. by the softgoal search for the desired product
automatically. This non-functional requirement can be used by the Retailer System to
drive the plan selection according to the contribution link analysis. Specifically, as illus-
trated by Fig. 1, the plan solve query gives a positive contribution (+), while browse
catalog gives a negative contribution (-) to this softgoal.

Given a characterization of the system-to-be inside its operating environment, e.g.
Fig. 1, the methodology allows the designers soft attention to Architectural and Detailed
Design. In our case, Fig. 2.(A) depicts a fragment for the Architectural Design phase
where the main system components have been identified, i.e., Web Server, Order
Manager, and Search Manager. The fulfillment of some of the previous functional
and non-functional requirements have been delegated to such actors (hereafter agents).
For example, as depicted in Fig. 2.(A), the goal provide product info has to be fulfilled
by the agent Search Manager. Again, the plan process credit-card form has been
delegated to the external actor Credit Authority. Therefore, architectural design results
in a multi-agent system consisting of agents, dependencies among them, as well as
environmental constraints these agents have to cope with.

The Detailed Design deals with specification details for each agent, showing and
describing how an agent concretely behaves in order to execute a plan or to satisfy a
goal. For example, as illustrated by Fig. 2.(B), in order to fulfill the plan solve query,
the agent Search Manager relies on three sub-plans interpret ACL performatives,
deal with cooperation, and provide results. For the sake of simplicity, only the plan
deal with cooperation has been further detailed in three atomic sub-plans search for
new acquaintances, get the query, and deal with matching. In our case, to get
the query, this agent depends on the actor Web Server responsible for interfacing the

From Stakeholder Intentions to Software Agent Implementations 469

Retailer
System

endow with
on-line services

provide
order

provide
product info

provide
payment
facilities

process
credit-card

formOrder
Manager

Search
Manger

Credit
Authority

Web
Server

provide
the user
interface

(A) (B)

provide
product info

solve
query

Search
Manger browse

catalog

interpret ACL
performatives

deal with
cooperation

get the
query

search for new
acquaintances

Web
Server

provide a
good service

specify
a service

provide
requested

service

provide
results

research for the
desired product
automatically

+

_

Customer

deal with
matching

research for the
desired product
automatically

Fig. 2. (A) Architectural Design: fragment of the Retailer System sub-actors definition; (B)
Detailed Design: fragment of the Goal Analysis for the agent Search Manager

system-to-be with external users or other agents (Customer). Therefore, Customer,
who models both human users and software agents, depends on the system through the
component Web Server for the goal provide requested service. Moreover, softgoals
may model stakeholders needs that may be only achieved by means of specific system
actor capabilities. Hence, also softgoals (Fig. 1) have to be delegated to specific system
components, e.g. Customer depends on Search Manager to satisfy search for the
desired product automatically.

To effectively deal with the agent behavior at run-time, the methodology has also
to address the dynamic aspects that affect agent activities. This important phase is dis-
cussed in detail in the next sections.

4 Capability Design

While we adopt the Tropos definition of capability, we propose to extend the way
to specify it during design by explicitly describing not only the dynamic part, but
also its descriptive and context part. For this, we revise the Tropos definition of ca-
pability to include both ability and opportunity, as detailed in [17]. In particular, the
ability part is described via the Tropos means end relationship between a goal and
a plan, while the opportunity is described in Tropos via plan/softgoal contributions,
〈plan, softgoal, metric〉 (metric ∈ {+,−, ++,−−}) and environmental constraints
(e.g. temporal constraints between sub-plans) that are specified by model annotations.
More formally, the definition of capability is given in terms of a set of basic building
blocks that a designer can use to represent its several aspects, namely:

Cap = 〈means end(goal, plan),∪icontribution(plan, softgoali, metric),
{A1, . . . , An}〉

470 L. Penserini et al.

where contribution(plan, softgoali, metric) is the set of contribution relationships
of the plan plan to the softgoals softgoali —according to a specific metric metric—
and {A1, . . . , An} is a set of model annotations that describe domain constraints. Our
work adopts the Formal Tropos language [8], a first order temporal logic language, to
specify constraints on the model elements4. The annotations contain also information
that concern dynamic aspects of a capability. In our approach, these dynamic aspects
are modelled by AUML activity and interaction diagrams, see Fig. 3. In this approach,
each root-level plan may be described by an activity diagram, where leaf-level plans
are modelled as activities. Indeed, the Tropos AND/OR decomposition comes out with
leaf-level plans suitable to model atomic agent actions.

Actorsoftgoal

goal

plan
Activity

Agent_1 Agent_2

msg_1

msg’_2

msg"_2

msg’_3

msg"_3

Activityplan

(A) (B)

a

...
b

...

...

...

request

(C)

a

+

Activity

Fig. 3. Focusing on the dynamic dimensions of a capability: (A) actor’s view in Tropos notation,
(B) control-flow structure of the ability plan, and (C) agent-interaction for a part of the ability
fulfillment, i.e. activity Activitya

Fig. 3.(A) shows the elements and the relationships that characterize a capability
from early requirements to detailed design. Fig. 3.(B) describes the activity diagram for
the plan, while Fig. 3.(C) gives the representation of agent interactions for just one of
the activities of the plan —Activitya. We can find this pattern in the example shown
in Fig. 1; focusing on the goal provide product info the ability part of the capability is
given by the means ends relationship with the plan solve query. The ability part only
gives a partial description of the capability, that is, it does not provide any informa-
tion on the influence of the environment on the behavior of the system at run-time. The
second part of the definition describes the opportunity for the capability, can be given
via “softgoal contributions”, e.g related to the softgoal search for the desired prod-
uct automatically that our customer requires. As an example, in Table 1, for Cap2,

4 We are exploring the possibility to integrate different approaches dealing with the agent
intelligence representation, such as, declarative annotations in OWL-S [21, 16], or belief-
desire-intention concepts for agent behavior characterization [4, 15]. Therefore, the annota-
tions A1, ..., An, could represent further details of a capability expressed in one of several
specification languages.

From Stakeholder Intentions to Software Agent Implementations 471

we specify an annotation named A1 that is associated with a BDI based semantics as
detailed in the next Section.

In order to support the capability design activity, we added a new step to the Tropos
algorithm described in [3]. The details of a revised version of the proposed algorithm
for the Tropos design process can be found in [17]. In particular, during the initializa-
tion of the design process, the set of stakeholders and goals is added to the model; goals
are then assigned to actors, and therefore become the root goals for those actors. During
the analysis, for every goal in the model, a goal Analysis step is carried out, in order
to delegate the goal, expand it into subgoals or operationalize each goal, associating it
one or more plans, thereby discovering a required capability for the system. Accord-
ing to this strategy, given a certain goal, the capability modelling procedure proposes
plans that can fulfill the goal and adds to the current model a means ends relationship
for every discovered goal/plan pair. This pair constitutes the first part of the definition
of a capability. For every discovered means ends links the algorithm collects the set of
“softgoals contribution” relationships related to the plan involved in the contribution
and discovered during the modelling process. These contributions represent conditions
from the domain for that capability. The set of annotations —such as softgoals that
model environmental constraints, related to the goals/plans involved in the capability—
feeds the “annotation” part of the capability definition, e.g. A1 for Cap2. The capability
discovery and specification process can be iterated during the whole modelling activity
in order to capture new capabilities or new components of capabilities that have been
already specified and that gradually emerge during the analysis. The output of the anal-
ysis process is a set of capabilities related to a given goal that in our case is partially
illustrated in Table 1.

Table 1. Capabilities at Architectural Design phase

Agent Capabilities Means End(goal,plan) List of Contributions Annotations
SearchManager Cap1 provide product Info, {search the desired prod. autom. -} ...

browse catalogue
Cap2 provide product Info, {search the desired prod. autom. +} A1

solve query
CreditAuthority Cap3 provide payment facilities, {flexib. and autom. pay. +} ...

process credit card
Cap4 provide payment facilities, {flexib. and autom. pay. -} ...

show bank transfer info
OrderManager Cap5 provide order, {null} ...

manage order form
...,... {...} ...

Focusing on Ability. Taking advantage from the previous capability modelling phase,
here we illustrate how the methodology effectively deals with ability aspects. Fig. 4
addresses the dynamic aspects of the capability Cap2. To effectively deal with such
aspects, we consider two dimensions: (i) the control-flow structure of the activities that
the capability is composed of, and (ii) for each activity and for each agent interaction
required by its execution, the required interaction protocols. We propose to use AUML
activity diagrams for (i) —e.g. as illustred in Fig. 4.(A)— and AUML interaction dia-
grams for (ii) —e.g. as illustrated in Fig. 4.(B). In the example, the control-flow for the
ability part of Cap2 is composed of 4 activities —i.e. Fig. 4.(A)— with the following
labels and meanings:

472 L. Penserini et al.

search for new
acquaintances

get the
query

deal with
matching

provide
results

Web
Server

Search
Manager

advertise
new product

FIPA-request
(query on product)

refuse

agree

failure

inform-doneget
query

solve
query

(A) (B)

local matching
failure?

yesno

Search
Manager

local matching
failure

FIPA-request on DF
(search for providers)

DF

n FIPA-request
(ask for the product)

Provider

n-j FIPA-cfp
(negotiate the best price)

(C)

search for
new acq.

Fig. 4. A fragment of the two dimensions for the capability Cap2 (Table 1) detailed-design: (A)
the control-flow structure and (B) the agent interactions

– get the query. As further detailed by the interaction diagram of Fig. 4.(B), Search
Manager waits for the web-user’s request that carries out partial information on the
product it is interested in, i.e. such an agent plays the responder role within a FIPA-
request. The message content carries out the information on the product to look for,
structured as follows: <product-category=..>, <product-name=..>,
<product-quantity=..>, <product-price-range=(min,max)>.

– deal with matching. Once the product specifications have been correctly inter-
preted the Search Manager checks such a product in its local repository. Notice
that, this phase does not require any external interaction, but the repository is in-
quired by Search Manager using a self FIPA-request IP.

– search for new acquaintances. This activity is performed when a failure oc-
curs during the local matching phase (deal with matching), e.g., the local stock
quantity is not sufficient for the required quantity, the current price does not fit the
range, the product does not exist, etc. Therefore, in order to overcome such failures,
the Search Manager cooperates with other providers, i.e. distributed warehouses.
This capability activity is the most complicated as depicted by Fig. 4.(C), indeed, it
is composed of three IPs: i) a FIPA-request in order to ask the Directory Facilitator
(DF) for the providers; ii) n FIPA-requests targeted to all the providers returned by
the DF in order to check the product availability in their warehouses; iii) a FIPA-cfp
in order to negotiate the best price with the n-j providers figured out at the previous
step.

– provide results. At the end, the agent communicates the obtained results by a
simple inform message that can be of two types: a failure description (no results)
or a list of retrieved products along with their detailed descriptions.

From Stakeholder Intentions to Software Agent Implementations 473

5 From Platform-Independent to Platform-Specific Model

In this section we present a technique to automatically derive the description of the ca-
pability of a JADE agent, i.e. a PSM, from the PIM model. In particular, we show how it
is possible to map AUML Activity and Interaction Diagrams to JADE structures, using
transformation techniques compliant with MDA’s Query/View/Transformation require-
ments, that have been introduced in [9]. We exploit a Frame Logics based approach
to model transformation described in [6] and implemented in the Tefkat tool5. The
language consists of three major concepts: pattern definitions, transformation rules,
tracking relationships. Pattern definitions are generated in order to identify structures

Agent Activity

Interaction
Protocol

MyAgent Partner

Interaction

AND_Msg

Message

OR_Msg

Event
Occurrence

AgentJ

Behaviour

Scheduler Message
Queue

Agent
State

1

1

1

ACL
Message

Composite
Behaviour

FSM
Behaviour

Simple
Behaviour

OneShot
Behaviour

Cyclic
Behaviour

Parallel
Behaviour

Sequential
Behaviour

1..*

1..*

1..*

1..*

1..*

0..*

0..*
1..*

1..*

1..*

(A) (B)

Fig. 5. (A) Fragment of the Interaction Diagram metamodel (part of the PIM model); (B) Frag-
ment of the JADE metamodel (the PSM)

that are frequently used in a given transformation. Transformation rules map source to
target metamodels constructs. Tracking relationships allow to maintain the traceability
between entities in source and target model instances. The syntax of rules uses clauses
such as the Forall and Where to recognize elements of the instance of the source model,
and Make and Set for building the instance of the target model.

In the following we give an example of the mapping of AUML Interaction Diagrams
to a subset of the JADE platform concepts based to the example described in the pre-
vious sections. The transformation is based on the metamodels of the two languages.
Fig. 5(A) shows a subset of the AUML Interaction Diagram metamodel as described
in [1]. From one side the agents involved in the interaction represented by the class
Agent, on the other the interaction protocol constituted by a set of interactions (repre-
sented by the class Interaction and Interaction Protocols) made of simple messages or
more complex structures like the And, Or and Xor composition of messages.

5 More details are available in http://www.dstc.edu.au/Research/Projects/Pegamento/tefkat/

474 L. Penserini et al.

A subset of the target metamodel is shown in Fig. 5(B). Here an agent is described
as an aggregation of Message Queue, Agent States and Scheduler behaviors that is an
aggregation of behaviors. A behavior can be simple or composite, allowing to specify
a composition of several behaviors. Fig. 6 illustrates an excerpt of the mapping rules

TRANSFORMATION Interaction2JADE: auml → Jade
RULE Agent2Agent()

FORALL MyAgent mya
MAKE AgentJ a
SET a.name = mya.name, a.role = mya.role;
LINKING AgentForAgent WITH agent = a, myagent = mya

RULE InteractionProtocol2Behaviour()
FORALL MyAgent a1, MyAgent a2, InteractionProtocol ip
WHERE ip.send = a1.name

AND ip.rec = a2.name
OR ip.rec = a1.name
AND AgentForAgent LINKS myagent = a1, agent=ag1
AND AgentForAgent LINKS myagent = a2, agent=ag2

MAKE Behaviour b1
SET b1.type = ip.type, b1.sender = ip.send, b1.receiver = ip.rec, b1.counter = ip.counter, b1.AgentJ = ag1

.

Fig. 6. An excerpt of the transformation from Interaction Diagram metamodel to JADE meta-
model defined in the grammar described in [6]

from the Interaction Diagram metamodel to JADE platform metamodel. They are spec-
ified in terms of a subset of the grammar described in [6]. The RULE Agent2Agent
allows for the transformation of the set of agents of the Interaction diagrams into a set
of agents (AgentJ) in the target JADE model. The rule is composed by clauses: the
clauses FORALL and WHERE retrieve the set of agents in the source metamodel; the
clauses MAKE and SET are in charge to build the set of Agents in the target platform,
simply creating a new agent for every retrieved agent in the source model. The RULE
InteractionProtocol2Behaviour refers to the mapping of the Interaction Diagrams ele-
ments, and in particular of the messages exchanged by agents in a given protocol, into
the definition of a JADE agent behavior. The target structure is created via the MAKE
directive and instantiated via the SET directive in the rule; part the resulting XMI file is
shown below.

<?xml version="1.0" encoding="ASCII"?>
<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"

xmlns:jade_conc="http:///jade_conc.ecore">
<jade_conc:AgentJ xmi:id="26990772" name="Search_Manager" role="Serch_Manager"/>
<jade_conc:AgentJ xmi:id="11552137" name="Provider" role="Provider"/>
<jade_conc:Behaviour xmi:id="10834914" type="req"

sender="Search_Manager" receiver="Provider" counter="1"/>
<jade_conc:Behaviour xmi:id="2511137" type="cfp"

sender="Search_Manager" receiver="Provider" counter="2"/>
...
</xmi:XMI>

6 Ability and Opportunity Implementation

Let’s consider one of the examples of Table 1. Cap2 is composed of an ability part —
i.e. the plan solve query— and an opportunity part —i.e. the softgoal research for the

From Stakeholder Intentions to Software Agent Implementations 475

desired product automatically. Since the opportunity aspect is related to the intel-
ligent part of an agent behavior, it naturally fits into a Belief-Desire-Intention (BDI)
agent architecture, having adopted the Jadex plug-in for JADE. Although our current
prototype only supports the automatic transformation (from detailed design to imple-
mentation) for the ability part, we have manually generated the opportunity part as
Jadex-based precondition. In this case, the goal provide product info has been assigned
specific trigger-messages (FIPA-request) that the agent can satisfy adopting one of the
abilities already specified at design-time in Fig. 2.(B) —i.e. plans browse catalog and
solve query. Notice that, these trigger-messages may also carry out information about
the user’s profile —i.e. as a precondition— that enables or disables the achievement
of specific softgoals. Specifically, such a precondition for Cap2 has been annotated in
A1 at design-time, as depicted in Table 1. Therefore, each time a user logs in, the sys-
tem classifies her/him into a predefined category that also enables or disables (true or
false) the activation of specific preconditions. For example, if the softgoal research
for the desired product automatically is enabled, at the time the agent has to achieve
the goal provide product info, the ability solve query will receive a higher selection-
priority in respect to browse catalog.

(A) (B)

Fig. 7. A fragment of the Cap2 implementation: (A) control-flow as a JADE-based automaton
implementation, (B) agent interactions as JADE-based FIPA IPs

The implementation of the ability part of a capability results from a transformation
process, previously explained, in terms of a set of Tefkat xmi files, one for each activity
of the AUML activity diagram. Consequently, as shown in Fig. 4 Cap2 is composed of
4 transformation output files that are read and interpreted in order to generate the real
Java code, i.e. our agent template for the agent Search Manager. Iteratively the same
process applied to the whole table 1 produces the MAS previously designed.

476 L. Penserini et al.

The tool component in charge of performing the last development phase —i.e. code
generation— uses very simple rules6 in order to map the semi-structured information
specified by the xmi output files into a JADE-based agent framework. Such rules drive
the mapping between the diagrammatic concepts and a flexible agent framework that
allows an agent to play different roles along with different capabilities according to
specific environmental conditions —i.e. trigger messages that represent stakeholder in-
tentions. The principal rules that have been adopted for our agent framework are the
following:

1. Each agent extends the class jade.core.Agent according to special trigger-messages
—i.e. target goals. That is, an agent can sense the environment and consequently
switch to a specific role, hence it plays a precise capability. To deliver on such an
aim, each agent owns a table that relates each capability to a set of trigger-messages
and viceversa.

2. Each capability extends the class jade.core.behaviours.FSMBehaviour, namely it
represents a final states machine (automaton). Thanks to such an implementing
choice, each single activity of an activity diagram —i.e. an atomic task of the
capability— corresponds to a single state of the automaton.

3. Each state is monitored —in terms of messages exchanged— in order to make the
agent aware about the next state-transition. Thanks to such a feature, the agent can
handle non-deterministic events at the moment they occur. Moreover, each time a
failure occurs, such a strong property may allow the agent to switch in a compen-
sation state7.

An excerpt of the ultimate Cap2 development phase is given in Fig. 7. In particular,
Fig. 7.(A) shows how is defined in JADE the automaton associated to Cap2: a states
assignment step, e.g. registerState(new Deal With Matching(),ONE STATE) and a state
transitions step, e.g. registerTransition(ONE STATE,TWO STATE,ONE TWO). Notice
that, each single activity of the activity diagram (Fig. 4.(A)) has been mapped in a
JADE jade.core.behaviours.FSMBehaviour state, while inside each state a FIPA-IP has
been mapped in an equivalent JADE FIPA-IP, as detailed by Fig. 4.(B). As illustrated
in Fig. 4.(B), the framework allows the agent to monitor the state termination, namely,
each IP (JADE behavior) saves its information on a jade.core.behaviours.DataStore
class that is periodically checked (i.e. by our dsManager). This framework property al-
lows the agent to monitor its internal behaviors and to pro-actively react against internal
failures.

7 Related Work

There are, two types of research that are relevant to our work, namely research on agent
capability and on AOSE methodologies covering agent implementation issues. Along
the first line we mention the proposal given in [15], which defines a possible formal

6 Related to the target agent framework building. Moreover, we are still investigating how many
of these rules can be delegated to the Tefkat engine.

7 This issue is not within the scope of this paper. However, we are actively investigating it.

From Stakeholder Intentions to Software Agent Implementations 477

relationship between capabilities and BDI concepts —i.e. beliefs, goals and intentions.
This work roots the concept of capability into the philosophical idea that ‘can’ implies
both ability and opportunity.

As detailed in this paper, our approach adopts the concept of capability as composed
of ability and opportunity. Moreover, our approach extends previous capability formal-
izations principally in two directions. The first one is that it considers the possibility
to have an agent ability —i.e. a plan— decomposed in sub-plans that can also be dele-
gated to other agents. While, the second extension takes into account the possibility to
have an opportunity, related to a given agent ability, composed of different opportunities
that come from other agent perspectives. Moreover by means of our methodology the
designer can trace the capability environmental constraints arisen in the early phases
down to detailed design and implementation.

An approach which attempts to link the operative part of the capability —i.e. a set
of actions embedded in the behavior concept— with the intelligence of an agent —
i.e. in terms of beliefs and intentions, is proposed in [4]. More precisely, the authors
propose an agent-oriented approach to software engineering called Behavior Oriented
Design (BOD). By means of their BOD methodology, a complex problem can be de-
composed in simple and independently modules that contain the agent actions. In par-
ticular, they consider an agent characterized principally with: goals —i.e. conditions to
be achieved—, intentions —i.e. goals and subgoals that are currently chasing—, beliefs
—i.e. the knowledge basis as partial view of the world—, and the behaviors —i.e. set
of actions it can take. Thanks to such an approach, each agent can be characterized
by behavioral modules. Even if our capability definition seems similar to this behavior
concept, the proposed framework is less flexible than our in detailing the single compo-
nents. In particular, the above mentioned approach, considers the modules as predefined
rigid blocks of actions related to specific agent goals and beliefs. On the contrary, our
approach also describes how atomic actions (sub-plans) contribute to the stakehold-
ers intentions and beliefs achievements, i.e. by the softgoal contribution link analysis
technique.

Along the second line, [11] goes in the direction of adding flexibility to agents and
proposes a component based framework that facilitates the domain experts themselves
making modification of deployed multi-agent systems with the aim of increasing the
capacity of the systems to fit the evolving needs identified in the domain. In particular
the framework is based on agent systems composed by well defined components and
gives a structured support to the user for modifying or composing existing components,
or adding new components in well defined ways; this mechanism, for example, intends
to help the experts in specifying new goals and plans for the agents starting from the
adaptation of the components that describe the existing one.

Among AOSE methodologies that describe and cover the agent implementation
phase, Passi seems to be one of the most flexible and documented [7]. In the Passi
methodology the process that guides the agent-based code generation is quite similar to
our approach. For example, such methodology adopts activity diagrams to specify agent
behaviors (i.e. Multi-Agent Behaviour Description), and it characterizes an agent role
in terms of its tasks, e.g. see Chapter IV of [10] for details. The main differences with
our approach are the followings. While Passi aims to model an agent role in terms of

478 L. Penserini et al.

its tasks (i.e. the behavior), we model capabilities in terms of interaction protocols and
internal tasks. In this way, the role is only a logical concept that arises when the agent
plays a specific set of capabilities. Hence, our agent may play several roles, namely an
agent behavior may be composed of several capabilities (composition). Passi does not
consider stakeholder intentions and social dependencies —e.g. as illustrated in this pa-
per by the Tropos softgoals— as strategic knowledge elements that the agent requires to
effectively deal with capability selection. On the contrary, by means of the opportunity
concept modelling, we are able to embed in the agent knowledge also environmental
constraints figured out at the early phases of the requirements analysis. Notice that,
such requirements cannot (easily) emerge by only considering the MAS architectural
level.

8 Conclusions and Future Work

This paper focuses on design issues for agent oriented software development, such as
requirements traceability and automated code generation. In particular, we revise the
Tropos capability definition to better trace early and late requirements —e.g. stake-
holder intentions and domain constraints— till down the MAS detailed design and im-
plementation phases. Specifically, we have illustrated through examples —supported by
prototype tools— that a MDA approach can cope with the automatic mapping between
a platform-independent agent-based conceptual model (Tropos) and a platform-specific
agent-based model (JADE). Whenever possible, our approach is based on current stan-
dards, namely, OMG’s MDA for model transformations, IEEE’s FIPA for an agent ar-
chitecture and interaction protocols, and AUML for activity and interaction diagrams.
As future work, we propose to deal with monitoring and compensation during capabili-
ties execution to validate the system behavior with respect to design-time requirements.
Further validation on real case studies will also be performed.

Acknowledgments

We would like to thank Barbara Tomasi, Loris Delpero, and Alessandro Orler for their
precious contribution to accomplish the experiments.

References

1. B. Bauer, J. P. Muller, and J. Odell. Agent uml: A formalism for specifying multiagent soft-
ware systems. International Journal of Software Engineering and Knowledge Engineering,
11(3):1–24, 2001.

2. F. Bellifemine, A. Poggi, and G. Rimassa. JADE: A FIPA Compliant agent framework. In
Practical Applications of Intelligent Agents and Multi-Agents, pages 97–108, April, 1999.

3. P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopoulos, and A. Perini. Tropos: An Agent-
Oriented Software Development Methodology. Autonomous Agents and Multi-Agent Sys-
tems, 8(3):203–236, July 2004.

4. J. Bryson and S. McIlraith. Toward behavioral intelligence in the semantic web. IEEE
Computer - Web Intelligence, 35(11):48–54, 2002.

From Stakeholder Intentions to Software Agent Implementations 479

5. J. Castro, M. Kolp, and J. Mylopoulos. Towards Requirements-Driven Information Systems
Engineering: The Tropos Project. Information Systems. Elsevier, Amsterdam, the Nether-
lands.

6. CBOP, DSTC, and IBM. MOF Query/Views/Transformations, 2nd Revised Submission.
Technical report, 2004.

7. M. Cossentino. From requirements to code with the PASSI methodology. Chapter 4, In [10],
2005.

8. A. Fuxman, M. Pistore, J. Mylopoulos, and P. Traverso. Model checking early requirements
specifications in Tropos. In IEEE Int. Symposium on Requirements Engineering, pages 174–
181, Toronto (CA), Aug. 2001. IEEE Computer Society.

9. T. Gardner, C. Griffin, J. Koehler, and R. Hauser. A review of omg mof 2.0 query / views /
transformations submissions and recommendations towards the final standard. In MetaMod-
elling for MDA Workshop, York, England, 2003.

10. B. Handerson-Seller and P. Giorgini. Agent-Oriented Metodologies. Idea Group, 2005.
11. G. Jayatilleke, L. Padgham, and M. Winikoff. A Model Driven Component-Based Develop-

ment Framework for Agents. Computer Systems Science & Engineering, 4(20), 2005.
12. N. Jennings, K. Sycara, and M. Wooldridge. A roadmap of agent research and development.

Autonomous Agents and Multi-Agent Systems, 1(1):7–38, 1998.
13. S. R. Judson, R. B. France, and D. L. Carver. Specifying Model Transformations at the

Metamodel Level, 2004. http://www.omg.org.
14. S. J. Mellor, K. Scott, A. Uhl, and D. Weise. MDA Distilled. Addison-Wesley, 2004.
15. L. Padgham and P. Lambrix. Formalizations of Capabilities for Bdi-Agents. Autonomous

Agents and Multi-Agent Systems, 10:249–271, 2005.
16. L. Penserini and J. Mylopoulos. Design Matters for Semantic Web Services. Technical

Report T05-04-03, ITC-irst, April 2005.
17. L. Penserini, A. Perini, A. Susi, and J. Mylopoulos. From Stakeholder Intentions to Agent

Capabilities. Technical report, ITC-irst, Trento, Italy, October 2005.
18. A. Perini and A. Susi. Developing Tools for Agent-Oriented Visual Modeling. In G. Linde-

mann, J. Denzinger, I. Timm, and R. Unland, editors, Multiagent System Technologies, Proc.
of the Second German Conference, MATES 2004, number 3187 in LNAI, pages 169–182.
Springer-Verlag, 2004.

19. A. Perini and A. Susi. Agent-Oriented Visual Modeling and Model Validation for Engineer-
ing Distributed Systems. Computer Systems Science & Engineering, 20(4):319–329, 2005.

20. Y. Shoham. Agent-Oriented Programming. Artificial Intelligence, 60:51 – 92, 1993.
21. K. Sycara, M. Paolucci, A. Ankolekar, and N. Srinivasan. Automated discovery, interaction

and composition of semantic web services. Journal of Web Semantics, pages 27–46, 2003.
22. E. Yu. Modelling Strategic Relationships for Process Reengineering. PhD thesis, University

of Toronto, Department of Computer Science, University of Toronto, 1995.

E. Dubois and K. Pohl (Eds.): CAiSE 2006, LNCS 4001, pp. 480 – 494, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Modeling Mental States in Agent-Oriented Requirements
Engineering

Alexei Lapouchnian1 and Yves Lespérance2

1 Department of Computer Science, University of Toronto,
Toronto, ON M5S 3G4, Canada
alexei@cs.toronto.edu

2 Department of Computer Science and Engineering, York University,
Toronto, ON M3J 1P3, Canada
lesperan@cs.yorku.ca

Abstract. This paper describes an agent-oriented requirements engineering ap-
proach that combines informal i* models with formal specifications in the mul-
tiagent system specification formalism CASL. This allows the requirements
engineer to exploit the complementary features of the frameworks. i* can be
used to model social dependencies between agents and how process design
choices affect the agents’ goals. CASL can be used to model complex processes
formally. We introduce an intermediate notation to support the mapping be-
tween i* models and CASL specifications. In the combined i*-CASL frame-
work, agents’ goals and knowledge are represented as their mental states, which
allows for the formal analysis and verification of, among other things, complex
agent interactions and incomplete knowledge. Our models can also serve as
high-level specifications for multiagent systems.

1 Introduction

Modern software systems are becoming increasingly complex, with lots of intricate
interactions. The recent popularity of electronic commerce, web services, supply
chain management and other inter-organizational systems, digital libraries, etc. con-
firms the need for software engineering methods for constructing applications that are
open, distributed, and adaptable to change. This is why many researchers and practi-
tioners are looking at agent technology as a basis for distributed applications.

Agents are active, social, and adaptable software system entities situated in some
environment and capable of autonomous execution of actions in order to achieve their
set objectives [20]. Furthermore, most problems are too complex to be solved by just
one agent — one must create a multiagent system (MAS) with several agents having
to work together to achieve their objectives and ultimately deliver the desired applica-
tion. Therefore, adopting the agent-oriented approach to software engineering means
that the problem is decomposed into multiple, autonomous, interacting agents, each
with a particular objective (goal). Agents in MAS frequently represent individuals,
companies, etc. This means that there is an underlying organizational context in MAS.
Like humans, agents need to coordinate their activities, cooperate, request help from
others, etc., often through negotiation. Unlike in object-oriented or component-based

 Modeling Mental States in Agent-Oriented Requirements Engineering 481

systems, interactions in multiagent systems occur through high-level agent communi-
cation languages, so these interactions are mostly viewed not at the syntactic level,
but at the knowledge level, in terms of goal delegation, etc. [20].

In requirements engineering (RE), goal-oriented approaches (e.g, KAOS [3]) have
become prominent. In Goal-Oriented Requirements Engineering (GORE), high-level
stakeholder objectives are identified as goals and then refined into fine-grained re-
quirements assignable to agents/components in the system-to-be or in its environment.
Their reliance on goals makes GORE methods and agent-oriented software engineer-
ing a great match. Moreover, agent-oriented analysis is central to requirements
engineering since the assignment of responsibilities for goals and constraints to com-
ponents in the system-to-be and agents in its environment is the main result of the RE
process. Therefore, it is natural to use a goal-oriented requirements engineering ap-
proach when developing MAS. With GORE, it is easy to make the transition from the
requirements to the high-level MAS specifications. For example, strategic relation-
ships among agents will become high-level patterns of inter-agent communication.
Thus, it would be desirable to devise an agent-oriented RE approach with a formal
component that supports rigorous formal analysis, including reasoning about agents’
goals and knowledge.

In the above context, while it is possible to informally analyze small systems, for-
mal analysis is needed for any realistically-sized system to determine whether such
distributed requirements imposed on each agent in a MAS are correctly decomposed
from the stakeholder goals, consistent and, if properly met, achieve the system’s over-
all objectives. Therefore, the aim of this work is to devise an agent-oriented require-
ments engineering approach with a formal component that supports reasoning about
agents’ goals (and knowledge), thereby allowing for formal analysis of the require-
ments expressed as the objectives of the agents in a MAS.

In our approach we integrate the i* modeling framework [21] with CASL [14], a
formal agent-oriented programming language supporting the modeling of agent men-
tal states. This gives the modeler the flexibility and intuitiveness of the i* notation as
well as the powerful formal analysis capability of CASL. To bridge the gap between
informal i* diagrams and formal CASL specifications we propose an intermediate
notation that can be easily obtained from i* models and then mapped into CASL.
With our i*-CASL-based approach, a CASL model can be used both as a require-
ments analysis tool and as a formal high-level specification for a multiagent system
that satisfies the requirements. This model can be formally analyzed using the
CASLve [15] tool or other tools and the results can be fed back into the requirements
model.

One of the main features of this approach is that goals (and knowledge) are as-
signed to particular agents thus becoming their subjective attributes as opposed to
being objective system properties as in many other approaches (e.g., Tropos [1] and
KAOS [3]). This allows for the modeling of conflicting goals, agent negotiation, in-
formation exchange, complex agent interaction protocols, etc.

The rest of the paper is organized as follows: Section 2 briefly describes the con-
cepts of i* and CASL; Section 3 discusses our approach in detail and Section 4 con-
cludes the paper.

482 A. Lapouchnian and Y. Lespérance

2 Background

2.1 The i* Framework

i* [21] is an agent-oriented modeling framework that can be used for requirements
engineering, business process reengineering, etc. i* centers on the notion of inten-
tional actor and intentional dependency. Actors are described in their organizational
setting and have attributes such as goals, abilities, beliefs, and commitments. In i*, an
actor can use opportunities to depend on other actors in achieving its objectives, at the
same time becoming vulnerable if those actors do not deliver. i* actors are strategic in
the sense that they are concerned with the achievement of their goals and strive to find
a balance between their opportunities and vulnerabilities. Similarly, dependencies in
i* are intentional since they appear as a result of actors pursuing their goals.

In this paper, we use a variant of the meeting scheduling problem, which has be-
come a popular exemplar in Requirements Engineering (e.g., [17]). In the context of
the i* modeling framework the process was first analyzed in [21]. We introduce a
number of modifications to the meeting scheduling process to make our models easier
to understand. For instance, we take the length of meetings to be the whole day. We
also assume that in the environment of the system-to-be there is a legacy software
system called the Meeting Room Booking System (MRBS) that handles the booking
of meeting rooms. The complete case study is presented in [7].

Fig. 1. The Meeting Scheduler in its environment

The i* framework has two main components: the Strategic Dependency (SD)
model and the Strategic Rationale (SR) model. The former describes the external
relationships among actors, while the latter focuses on exploring the rationale behind
the processes in organizations from the point of view of participating actors. SD mod-
els are networks of actors (which can be agents, positions, and roles) and dependen-
cies. Depending actors are called dependers and depended-upon actors are called
dependees. There can be four types of dependencies based on what is being delegated
– a goal, a task, a resource, or a softgoal. Softgoals are related to the notion of non-
functional requirements [2] and model quality concerns of agents.

Fig. 1 is an SD diagram showing the computerized Meeting Scheduler (MS) agent
in its environment. Here, the role Meeting Initiator (MI) depends on the MS for
scheduling meetings and for being informed about the meeting details. The MS, in

 Modeling Mental States in Agent-Oriented Requirements Engineering 483

turn, depends on the Meeting Participant role for attending meetings and for providing
his/her available dates to it. The MS uses the booking system to book rooms for meet-
ings. The Disruptor actor represents outside actors that cause changes in participants’
schedules, thus modeling the environment dynamics.

Fig. 2. SR model for the meeting initiator

SR models enable the analyst to assess possible alternatives in the definition of ac-
tor processes to better address their concerns. Four types of nodes are used in SR
models – goals, tasks, softgoals, and resources – and three types of links – means-
ends links, task decompositions links, and softgoal contribution links. Means-ends
links specify alternative ways to achieve goals; task decomposition links connect
tasks with components needed for their execution. For example, Fig. 2 is a simple SR
models showing some details of the MI process. To schedule meetings, the MI can
either do it manually, or delegate it to the scheduler. Softgoal contribution links spec-
ify how process alternatives affect quality requirements (softgoals), and so softgoals
such as MinimizeEffort in Fig. 2 are used to evaluate these alternatives.

2.2 The Formal Foundations: CASL

The Cognitive Agents Specification Language (CASL) [13][14] is a formal specifica-
tion language that combines theories of action [10][11] and mental states [12] ex-
pressed in situation calculus [9] with ConGolog [4], a concurrent, non-deterministic
agent-oriented programming language with a formal semantics. In CASL, agents’
goals and knowledge are modeled formally; communication actions are provided to
update these mental states and ConGolog is then employed to specify the behaviour of
agents. This combination produces a very expressive language that supports high-
level reasoning about the agents’ mental states. The logical foundations of CASL
allow it to be used to specify and analyze a wide variety of MAS including non-
deterministic systems and systems with incompletely specified initial state.

CASL specifications consist of two parts: the model of the domain and its dynam-
ics (the declarative part) and the specification of the agents’ behaviour (the procedural
part). The domain is modeled in terms of the following entities: 1) primitive actions –
all changes in the domain are due to primitive actions being executed by agents; 2)
situations, which are states of the domain that result from the execution of sequences

484 A. Lapouchnian and Y. Lespérance

of actions (there is a set of initial situations, with no predecessor, corresponding to the
ways agents think the world might be like initially); 3) fluents, which are predicates
and functions that may change from situation to situation. The fluent
Room(meetingID,date,room,s), where s is a situation parameter, models the fact
that a room has been booked on some day for some meeting in a situation s.

To specify the dynamics of an application domain, we use the following types of
axioms: 1) action precondition axioms that describe under what conditions actions
can be performed; 2) successor state axioms (SSA), which were introduced in [10] as
a solution to the frame problem and specify how primitive actions affect fluents; 3)
initial state axioms, which describe the initial state of the domain and the initial men-
tal states of the agents; 4) other axioms that include unique name axioms for actions
and domain independent foundational axioms.

Agents’ behaviour is specified using a rich high-level programming language with
recursive procedure declarations, loops, conditionals, non-determinism, concurrency,
and interrupts [4]. A special predicate Do(Program,s,s) holds if there is a successful
execution of Program that ends in situation s after starting in s.

CASL supports formal modeling of agents’ goals and knowledge. The formal repre-
sentation for both is based on a possible worlds semantics incorporated into the situation
calculus, where situations are viewed as possible worlds [12]. CASL uses accessibility
relations K and W to model what an agent knows and what it wants respectively.
K(agt,s ,s) holds if the situation s is compatible with what the agent agt knows in situa-
tion s, i.e., in situation s, the agent thinks that it might be in the situation s . In this case,
the situation s is called K-accessible. When an agent does not know the value of some
formula , it considers possible (formally, K-accessible) some situations where is true
and some where it is false. An agent knows some formula if is true in all its K-
accessible situations: Know(agt, ,s)=∀s (K(agt,s,s) ⊃ [s]). Constraints on the K
relation ensure that agents have positive and negative introspection (i.e., agents know
whether they know/don’t know something) and guarantee that what is known is true.
Communication actions such as inform are used for exchanging information among
agents. The precondition for the inform action ensures that no false information is
transmitted. The changes to agents’ knowledge due to communication and other actions
are specified by the SSA for the K relation. The axiom ensures that agents are aware of
the execution of all actions. This formal framework is quite simple and idealized. More
complex versions of the SSA can be specified, for example, to handle encrypted mes-
sages [14] or to provide belief revision [16].

The accessibility relation W(agt,s ,s) holds if in situation s an agent considers that
everything that it wants to be true actually holds in s , which is called W-accessible.
We use the formula Goal(agt, ,s) to indicate that in situation s the agent agt has the
goal that holds. The definition of Goal says that must be true in all W-accessible
situations that have K-accessible situation in their past. This ensures that, while agents
may want something they know is impossible to obtain, the goals of agents must be
consistent with what they currently know. In our approach, we mostly use achieve-
ment goals that specify the desired states of the world. We use the formula
Goal(agt,Eventually(),s) to state that agt has the goal that is eventually true. The
request and cancelRequest actions are used by agents to request services from
other agents and cancel their requests respectively. Requests are used to establish

 Modeling Mental States in Agent-Oriented Requirements Engineering 485

intentional dependencies among actors and lead to changes in goals of the requestee
agent. The dynamics of the W relation are specified, as usual, by an SSA. There are
constraints on W and K relations, which ensure that agents’ goals are consistent and
that that agents introspect their goals.

3 The i*-CASL Notation and Process

3.1 A Motivating Example

Fig. 3. A motivating example

Suppose that we are employing an approach like Tropos [1], a requirements-driven
agent-oriented software development methodology that uses the i* modeling notation,
to model a simple goal delegation involving two agents. Fig. 3 shows a goal depend-
ency where the Meeting Scheduler depends on the Meeting Participant for attending a
meeting. We would like to be able to analyze this interaction and predict how it will
affect the goals and the knowledge of these agents. Using the approach proposed in
this paper, one can develop a formal model based on the SD diagram in Fig. 3 and the
corresponding SR-level models (as will be shown later), analyze it, and conclude that,
for example, before the goal delegation, the MS has the goal AtMeeting(MP) and
knows about this fact. After the delegation (and provided that the MP did not have a
conflicting goal), the MS knows that the MP has acquired the goal, that the MP knows
that it has the goal, that the MP knows that the MS has the same goal, etc. For the
Participant agent in Fig. 3, we cannot say what its mental state was before the goal
delegation. But, after the request from the MS we know that it has the goal AtMeet-
ing(MP) and knows about it, etc. The MP also knows how it has acquired the goal
and thus will be able to trace its intention to achieve AtMeeting(MP) to the Meeting
Scheduler’s request.

Note that the change in mental state of the requestee agent is the core of goal dele-
gation. Also, in our approach, goals and knowledge are attributes of particular agents.
This allows for better models of agent conflicts, interaction, negotiation, etc.

486 A. Lapouchnian and Y. Lespérance

3.2 Increasing Precision with iASR Models

Our aim in this approach is to tightly associate SR models with formal specifications
in CASL. The standard SR diagrams are geared to informal analysis and can be very
ambiguous. For instance, they lack the details on whether the subtasks in task decom-
positions are supposed to be executed sequentially, concurrently, under certain condi-
tions, etc. CASL, on the other hand, is a precise language. To handle this precision
mismatch we use Intentional Annotated SR (iASR) models that help in bridging the
gap between SR models and CASL specifications. Our goal is to make iASR models
precise graphical representation for the procedural component of CASL specifications
while helping with the identification of axioms and definitions in the declarative one.

The starting point for developing an iASR diagram for an actor is the regular SR
diagram for that actor (e.g., see Fig. 2). It can then be appropriately transformed to
become an iASR model every element of which can easily be mapped into CASL.
The steps for producing iASR models from SR ones include the addition of model
annotations and the details of agent interactions, the removal of softgoals, the deide-
alization of goals [17], etc.

Annotations. The main tool that we use for disambiguating SR models is annota-
tions. Annotations allow analysts to model the domain more precisely and to capture
data/control dependencies among goals and other details. Annotations, proposed in
[19] for use with SR models and ConGolog, are textual constraints on iASR models
and can be of three types: composition, link, and applicability conditions. Composi-
tion annotations (specified by in Fig. 4) are applied to task and means-ends decom-
positions and specify how the subtasks/subgoals are to be combined to execute the
supertask and achieve the goal respectively. Four types of composition are allowed:
sequence (“;”), which is default for task decompositions, concurrency (“||”), priori-
tized concurrency (“»”), and alternative (“|”), which is the default for means-ends
decompositions. These annotations are applied to subtasks/subgoals from left to right.
E.g., in Fig. 4, if the ”»” annotation is applied, n1 has the highest priority, while nk
has the lowest. The choice of composition annotations is based on the ways actions
and procedures can be composed together in CASL.

Fig. 4. Composition and link annotations

Link annotations (i in Fig. 4) are applied to subtasks/subgoals (ni) and specify
how/under what conditions they are supposed to be achieved/executed. There are six
types of link annotations (corresponding to CASL operators): while loop, for loop, the
if condition, the pick, the interrupt, and the guard. The pick annotation
((variableList,condition)) non-deterministically picks values for variables in
the subtask that satisfy the condition. The interrupt (whenever(variableList,
condition,cancelCondition)) fires whenever there is a binding for the variables

 Modeling Mental States in Agent-Oriented Requirements Engineering 487

that satisfies the condition unless the cancellation condition becomes true. Guards
(guard(condition)) block the subtask’s execution until the condition becomes
true. The absence of a link annotation on a particular decomposition link indicates the
absence of any conditions on the subgoal/subtask.

The third annotation type is the applicability condition (ac(condition)). It ap-
plies to means-ends links used with goal achievement alternatives and specifies when
the corresponding alternatives are applicable (see below for an example).

Softgoals. Softgoals (quality requirements) are imprecise and thus are difficult to
handle in a formal specifications language. Therefore, we use softgoals to help in
choosing the best process alternatives (e.g., by selecting the ones with the best overall
contribution to all the softgoals in the model) and then remove them before iASR
models are produced. Alternatively, softgoals can be operationalized or metricized,
thus becoming hard goals. Also, applicability conditions in iASR models can be used
to capture the fitness of the remaining alternatives w.r.t. softgoals, which is normally
encoded by softgoal contributions in SR diagrams. For example, one can specify that
phoning participants to notify them of the meeting details is applicable only in cases
with few participants (see Fig. 8), while the email option is applicable for any number
of participants. This may be due to the softgoal “Minimize Effort”.

Fig. 5. Synchronizing procedural and declarative components of CASL specifications

Agent Goals in iASR Models. A CASL agent has a procedural and a declarative
components. iASR diagrams only model agent processes and therefore can only be
used to represent the procedural component of CASL agents. The presence of a goal
node in an iASR diagram indicates that the agent knows that the goal is in its mental
state and is prepared to deliberate about whether and how to achieve it. For the agent
to modify its behaviour in response to the changes to its mental state, it must detect
that change and synchronize its procedural and declarative components (see Fig. 5A).
Agent mental states are specified declaratively and usually change as a result of
communication acts that realize goal delegation and information exchange. Thus, the
procedural component of the agent must monitor for these changes. To do this we use
interrupts or guards with their conditions being the presence of certain goals or
knowledge in the mental state of the agent (Fig. 5B). Procedurally a goal node is in-
terpreted as invoking the means to achieve it.

In CASL, as described in [14], only communication actions have effects on the
mental state of the agents. We, on the other hand, would like to let agents change their
mental state on their own by executing the action commit(agent,), where is a
formula that the agent/modeler wants to hold. Thus, in iASR diagrams all agent goals
must be acquired either from intentional dependencies or by using the commit action.

488 A. Lapouchnian and Y. Lespérance

By introducing goals into the models of agent processes, the modeler captures the
fact that multiple alternatives exist in these processes. Moreover, the presence of goal
nodes suggests that the designer envisions new possibilities for achieving these goals.
By making the agent acquire the goals, the modeler makes sure that the agent’s men-
tal state reflects the above intention. In this way the agents would be able to reason
about various alternatives available to them or come up with new ways to achieve
their goals at runtime. Self-acquired goals add flexibility to system models by pre-
serving within the corresponding formal specifications the variability in the way goals
can be achieved and by avoiding early operationalization of goals. Self-acquired goals
can be used to “load” goal refinements and AND/OR goal decompositions, which are
abundant in GORE and AI, into the mental state of the agent if reasoning about these
refinements is required. This is unlike the approach in [19] where agent goals had to
be operationalized before being formally analyzed.

Another way of increasing the precision of the iASR model is the addition of pa-
rameters to iASR models. For example, in Fig. 6B, all of the nodes in the model have
the parameter mid (short for “meeting ID”), a unique meeting identifier. Quite fre-
quently, we replace the conditions in annotations and other model elements (they tend
to be long) with suitably named abbreviations, e.g., RequestedDateRange(mid).

Fig. 6. Adding iASR-level agent interaction details

Providing Agent Interaction Details. i* usually abstracts from modeling any details of
agent interactions. CASL, on the other hand, models high-level aspects of inter-agent
communication: requests for services or information, the selection of the course of ac-
tion upon the receipt of the information, etc. Because of the importance of agent interac-
tions in MAS, in order to formally verify multiagent system specifications in CASL, all
high-level aspects of these interactions must be provided in the corresponding iASR
models. This includes the tasks that request services or information from agents in the
system, the tasks that supply the information or inform about success or failure in pro-
viding the service, etc. We assume that the communication links are reliable.

For example, the SR model with the goal dependency RoomBooked (see Fig. 1) in
Fig. 6A is refined into the iASR model in Fig. 6B showing the details of the requests,
the interrupts with their trigger conditions referring to mental states of the agent, etc.

 Modeling Mental States in Agent-Oriented Requirements Engineering 489

3.3 Mapping iASR Diagrams into CASL

Once all the necessary details have been introduced into an iASR diagram, it can be
mapped into the corresponding CASL model, thus making the iASR model amenable
to formal analysis.

The modeler defines a mapping m that maps every element (except for intentional
dependencies) of an iASR model into CASL. This mapping associates iASR model
elements with CASL procedures, primitive actions, and formulas so that a CASL pro-
gram can be generated from an iASR model. Specifically, agents are mapped into con-
stants that serve as their names as well as into CASL procedures that specify their
behaviour; roles and positions are mapped into similar procedures with an agent pa-
rameter so that they can be instantiated by individual agents; leaf-level task nodes are
mapped into CASL procedures or primitive actions; composition and link annotations
are mapped into the corresponding CASL operators, while the annotation conditions
map into CASL formulas.

Fig. 7. Example iASR task decomposition

Mapping Task Nodes. A task decomposition is automatically mapped into a CASL
procedure that reflects the structure of the decomposition and all the annotations.
While the possibility of mapping leaf-level tasks into CASL procedures may reduce
model size and increase the level of abstraction, restricting the mapping of these tasks
to similarly named primitive actions allows the CASL procedures to be automatically
constructed from these actions based on iASR annotations.

Fig. 7 shows how a portion of the Meeting Scheduler’s task for scheduling meet-
ings can be decomposed. This task will be mapped into a CASL procedure with the
following body (it contains portions still to be (recursively) mapped into CASL; they
are the parameters of the mapping m):

proc ScheduleMeetingProc(mid)
 m(GetDateRangeFromMI(mid));
 guard m(KnowDates(mid)) do m(RemoveWeekendDates(mid))
 endGuard;
 for p: m(Ptcp(mid)) do m(GetSchedule(p)) endFor;
 guard m(KnowSchedules(mid)) do m(FindCompatibleDates(mid))
 endGuard;
 for d: m(CompatibleDate(d,mid)) do m(TryDate(d,mid)) endFor;
…
endProc

Note how the body of the procedure associated with the ScheduleMeeting task is
composed of the results of the mapping of its subtasks with the annotations providing

490 A. Lapouchnian and Y. Lespérance

the composition details. This procedure can be mechanically generated given the
mapping for leaf-level tasks and conditions.

Mapping Goal Nodes. In our approach, an iASR goal node is mapped into a CASL
formula, which is the formal definition for the goal, and an achievement procedure,
which encodes how the goal can be achieved and is based on the means-ends
decomposition for the goal in the iASR diagram. For example, a formal definition for
MeetingScheduled(mid,s) could be: ∃d[AgreeableDate(mid,date,s) ∧
AllAccepted(mid,date,s) ∧ RoomBooked(mid,date,s)]. This says that
there must be a date agreeable for everybody on which a room is booked and all par-
ticipants have accepted to meet. This seems correct, but initial formal goal definitions
are often too ideal for the goal that cannot always be achieved. Such goals must be
deidealized [17]. In order to weaken the goal appropriately, one needs to know under
what circumstances the goal cannot be achieved. Modeling an achievement process
for a goal using an iASR diagram allows us to understand how that goal can fail and
thus iASR models can be used to come up with a correct formal definition for the
goal. For example, it is not always possible to schedule a meeting. Here is one way to
deidealize the goal MeetingScheduled based on our iASR model analysis:

MeetingScheduledIfPossible(mid,s)=
//1. The meeting has been successfully scheduled
SuccessfullyScheduled(mid,s) ∨
//2. No agreeable (suitable for everybody) dates
∀d[IsDate(d) ⊃ ¬AgreeableDate(mid,d,s)] ∨
//3. For every agreeable date at least one participant declined
∀d[AgreeableDate(mid,d,s)⊃ SomeoneDeclined(mid,d,s)] ∨
//4. No rooms available
∀d[SuggestedDate(mid,d,s) ∧ AllAccepted(mid,d,s) ⊃
 ¬RoomBookingFailed(mid,date,s)]

CASL’s support for reasoning about agent goals presented us with an interesting
possibility. In the case study, we decided not to maintain schedules for
meeting participants explicitly. Instead, we relied on the presence of goals
AtMeeting(participant,mid,date,s) in their mental states as indications of
the participants’ intention to attend certain meetings on certain dates (the absence of
meeting commitments indicates an available time slot). Then, we made the partici-
pants know that they can only attend one meeting per time slot (a day in our case)
with the following initial state axiom (this can be shown to persist in all situations):

∀agt[Know(agt,∀p,mid1,mid2,date[AtMeeting(p,mid1,date,now) ∧
 AtMeeting(p,mid2,date,now) ⊃ mid1=mid2],S0)]

Thus, the consistency of participants’ schedules is automatically maintained since
meeting requests conflicting with already adopted AtMeeting goals are rejected.

The achievement procedures for goals are automatically constructed based on the
modeled means for achieving them and the associated annotations including the ap-
plicability conditions (see Fig. 8). By default, the alternative composition annotation
is used, which means that some applicable alternative will be non-deterministically

 Modeling Mental States in Agent-Oriented Requirements Engineering 491

Fig. 8. Generating achievement procedures

selected. Other approaches are also possible, e.g., one can try all appropriate alterna-
tives concurrently or in sequence. Note that the applicability condition (ac) maps into
a guard operator to prevent the execution of unwanted alternatives.

Modeling Dependencies. Intentional dependencies are not mapped into CASL per se
– they are established by the associated agent interactions. iASR tasks requesting help
from agents will generally be mapped into actions of the type re-

quest(FromAgt,ToAgt,Eventually()) for achievement goals . We add a
special abbreviation DoAL(,s,s′) (Do At Least) to be used when establishing task
dependencies. It stands for Do(||(a.a)*,s,s′), which means that the program
must be executed, but that any other action may occur. Thus, to ask an agent to exe-
cute a certain known procedure, the depender must request it with: re-
quest(FromAgt, ToAgt,DoAL(SomeProcedure)).

In order for an intentional dependency to be established we also need a commit-
ment from a dependee agent to act on the request from the depender. Thus, the de-
pendee must monitor its mental state for newly acquired goals. For example, here is
an interrupt that is used by the Meeting Participant to check for a request for the list of
its available dates:

<mid:Goal(mp,DoAL(InformAvailableDates(mid,MS),now,then) ∧
 Know(mp,¬∃s,s′(s ≤ s′ ≤ now ∧
 DoAL(InformAvailDates(mid,MS),s,s′))) →
 InformAvailDates(mid,MS)
until SystemTerminated>

Here, if the MP has the goal to execute the procedure InformAvailDates and
knows that it has not yet executed it, the agent sends the available dates. The cancella-
tion condition SystemTerminated indicates that the MP always monitors for this
goal. Requesting agents use similar interrupt/guard mechanism to monitor for re-
quested information or confirmations. When modeling agent interaction protocols in
this approach, for every incoming message an agent will have an interrupt monitoring
for it with its body specifying the appropriate response to the message. Since the in-
terrupts fire when changes in the mental state are detected, agents can execute the
protocols flexibly by, for example, self-acquiring the goal of buying some urgently
required product from a vendor and thus skipping the lengthy price negotiation part of

492 A. Lapouchnian and Y. Lespérance

the protocol. Also, cancellation conditions in interrupts allow the agents to monitor
for certain requests/informs only in particular contexts (e.g., while some interaction
protocol is being enacted). A CASL specification for a simple interaction protocol is
described in [7].

3.4 Formal Verification

Once an iASR model is mapped into the procedural component of the CASL specifi-
cation and after its declarative component (e.g., precondition axioms, SSAs, etc.) has
been specified, it is ready to be formally analyzed. One tool that can be used is
CASLve [15], a theorem prover-based verification environment for CASL. CASLve
provides a library of theories for representing CASL specifications and lemmas that
facilitate various types of verification proofs. [13] shows a proof that there is a termi-
nating run for a simplified meeting scheduler system as well as example proofs of a
safety property and consistency of specifications. In addition to physical executability
of agent programs, one can also check for the epistemic feasibility [8] of agent plans,
i.e., whether agents have enough knowledge to successfully execute their processes.

Other approaches could be used as well, for instance, simulation or model check-
ing. However, tools based on these techniques work with much less expressive lan-
guages than CASL. Therefore, CASL specifications must be simplified before these
methods can be used on them. For example, most simulation tools cannot handle
mental state specifications; these would then have to be operationalized before simu-
lation is performed. The ConGolog interpreter can be used to directly execute such
simplified specifications, as in [19]. Model checking methods (e.g. [5]) are restricted
to finite state specifications, and work has only begun on applying these methods to
theories involving mental states (e.g., [18]).

If expected properties of the system are not entailed by the CASL model, it means
that the model is incorrect and needs to be fixed. The source of an error found during
verification can usually be traced to a portion of the CASL code and to a part of the
corresponding iASR model since our systematic mapping supports traceability.

3.5 Discussion and Future Work

In the approach presented in this paper and in [7], we produce CASL specifications
from i* models for formal analysis and verification. The approach is related to the
Tropos framework in that it is agent-oriented and is rooted in the RE concepts. Our
method is not the first attempt to provide formal semantics for i* models. For exam-
ple, Formal Tropos (FT) [5], supports formal verification of i* models through model
checking. Also, in the i*-ConGolog approach [19], on which our method is based, SR
models are associated with formal ConGolog programs for simulation and verifica-
tion. Additionally, the Trust-Confidence-Distrust approach [6] combined i* and Con-
Golog to model and analyze trust in social networks. The problem with all these
methods is that goals of the agents are abstracted out and made into objective proper-
ties of the system in the formal specifications. This is done due to the fact that the
formal components of these approaches (the model checker input language for FT and
ConGolog for the other) do not support reasoning about agent goals (and knowledge).
However, most of the interactions among agents involve knowledge exchange and

 Modeling Mental States in Agent-Oriented Requirements Engineering 493

goal delegation since multiagent systems are developed as social structures. Thus,
complementing informal modeling techniques such as i* with formal analysis of agent
goals and knowledge is very important in the design of multiagent systems.

We use a version of CASL where the precondition for the inform action requires
that the information being sent by an agent be known to it (we assume that what is
known must be true). This prevents agents from transmitting false information. The
removal of this restriction allows the modeling of systems where agents are not al-
ways truthful. This can be useful when dealing with security and privacy require-
ments. However, dealing with false information may require belief revision, which
complicates the model somewhat (see [16]). Similarly, the precondition for request
makes sure that the sender does not itself have goals that conflict with the request.
Relaxing this constraint also allows for the possibility of modeling malicious agents.

Other extensions to CASL to accommodate various characteristics of application
domains are possible. For example, in many domains one needs to specify whom an
agent trusts and to whom it is helpful. In [7] we proposed a simple way to handle trust
and helpfulness in CASL. Fine-grained modeling of trust and helpfulness among
agents in our approach is future work.

We also point out that CASL assumes that all agents are aware of all actions being
executed in the system. Often, it is useful to lift this restriction, but dealing with the
resulting lack of knowledge about agents’ mental states can be challenging. In future
work, we plan to address these issues. We would also like to accommodate reasoning
about softgoals in our framework as well as to test the method on more realistic case
studies. Additionally, we are developing a toolkit to support requirements engineering
using our approach.

While the procedural component of a CASL specification accurately reflects the
corresponding iASR model, the model only hints on what has to be in the declarative
component of the specification (e.g., the axioms for actions, the definitions of annota-
tion conditions, and so on). We expect that our RE toolkit will be able to significantly
simplify the specification of the declarative component of CASL models.

4 Conclusion

In this paper, we have proposed a framework for agent-oriented requirements engi-
neering incorporating both graphical and formal notations. The graphical notation
allows for comprehensive modeling of system requirements as well as of its organiza-
tional setting including stakeholder goals and goal delegation. These models are then
gradually made more precise so that they can be mapped into formal agent specifica-
tions where goals are not removed, but are modeled formally and can be updated
following requests. This allows agents to reason about their objectives. Information
exchanges among agents are also formalized as changes in their knowledge state. In
our approach, goals and knowledge are not system-wide properties, but belong to
concrete agents. This supports the modeling of conflicting goals, agent negotiation,
information exchange, complex agent interaction protocols, etc. The generated formal
model can be used both as a requirements analysis tool and as a formal high-level
specification for the multiagent system.

494 A. Lapouchnian and Y. Lespérance

References

1. Castro J., Kolp M., Mylopoulos, J.: Towards Requirements-Driven Information Systems
Engineering: The Tropos Project. Information Systems, 27(6) (2002) 365-389

2. Chung, L.K., Nixon, B.A., Yu, E., Mylopoulos, J.: Non-Functional Requirements in Soft-
ware Engineering. Kluwer (2000)

3. Dardenne, A., van Lamsweerde, A., Fickas, S.: Goal-Directed Requirements Acquisitions.
Science of Computer Programming, 20 (1993) 3-50

4. De Giacomo, G., Lespérance, Y., Levesque, H.: ConGolog, A Concurrent Programming
Language Based on the Situation Calculus. Artificial Intelligence, 121 (2000) 109-169

5. Fuxman, A., Liu, L., Mylopoulos, J., Pistore, M., Roveri, M., Traverso, P.: Specifying and
Analyzing Early Requirements in Tropos. RE Journal, 9(2) (2004) 132-150

6. Gans, G., Jarke, M., Kethers, S., Lakemeyer, G., Ellrich, L., Funken, C., Meister, M.: Re-
quirements Modeling for Organization Networks: A (Dis-)Trust-Based Approach. Proc.
RE'01 (2001) 154-163

7. Lapouchnian, A.: Modeling Mental States in Requirements Engineering – An Agent-
Oriented Framework Based on i* and CASL. M.Sc. Thesis. Department of Computer Sci-
ence, York University, Toronto (2004)

8. Lespérance, Y.: On the Epistemic Feasibility of Plans in Multiagent Systems Specifica-
tions. Proc. ATAL-2001, Revised papers, LNAI 2333, Springer, Berlin (2002) 69-85

9. McCarthy, J., Hayes, P.: Some Philosophical Problems From the Standpoint of Artificial
Intelligence, Machine Intelligence, Vol. 4, Edinburgh University Press (1969) 463-502

10. Reiter, R.: The Frame Problem in the Situation Calculus: A Simple Solution (Sometimes)
and a Completeness Result for Goal Regression. Artificial Intelligence and Mathematical
Theory of Computation: Papers in Honor of John McCarthy, V. Lifschitz (ed.), Academic
Press (1991) 359-380

11. Reiter, R.: Knowledge in Action: Logical Foundations for Specifying and Implementing
Dynamical Systems. MIT Press, Cambridge MA (2001)

12. Scherl, R.B., Levesque, H.: Knowledge, Action, and the Frame Problem. Artificial Intelli-
gence, 144(1-2) (2003) 1-39

13. Shapiro, S.: Specifying and Verifying Multiagent Systems Using CASL. Ph.D. Thesis.
Department of Computer Science, University of Toronto (2004)

14. Shapiro, S., Lespérance, Y.: Modeling Multiagent Systems with the Cognitive Agents
Specification Language - A Feature Interaction Resolution Application. ATAL-2000, LNAI
1986, Springer, Berlin (2001) 244-259

15. Shapiro, S., Lespérance, Y., Levesque, H.: The Cognitive Agents Specification Language
and Verification Environment for Multiagent Systems. Proc. AAMAS’02, Bologna, Italy,
ACM Press (2002) 19-26

16. Shapiro, S., Pagnucco, M., Lespérance, Y., Levesque, H.: Iterated Belief Change in the
Situation Calculus. Proc. KR-2000 (2000) 527-538

17. van Lamsweerde, A., Darimont, R., Massonet, P.: Goal-Directed Elaboration of Require-
ments for a Meeting Scheduler: Problems and Lessons Learnt. Proc. RE'95, York, UK
(1995) 194-203

18. van Otterloo, S., van der Hoek, W., Wooldrige, M.: Model Checking a Knowledge Ex-
change Scenario. Applied Artificial Intelligence, 18:9-10 (2004) 937-952

19. Wang, X., Lespérance, Y.: Agent-Oriented Requirements Engineering Using ConGolog
and i*. Proc. AOIS-01 (2001) 59-78

20. Wooldridge, M.: Agent-Based Software Engineering. IEE Proceedings on Software Engi-
neering, 144(1) (1997) 26-37

21. E. Yu. Towards modeling and reasoning support for early requirements engineering. Proc.
RE’97, Annapolis, USA (1997) 226-235

E. Dubois and K. Pohl (Eds.): CAiSE 2006, LNCS 4001, pp. 495 – 509, 2006.
© Springer-Verlag Berlin Heidelberg 2006

On the Quantitative Analysis of Agent-Oriented Models

Xavier Franch

Universitat Politècnica de Catalunya (UPC),
C/Jordi Girona 1-3, UPC-Campus Nord (Omega), Barcelona, Spain

franch@lsi.upc.edu
http://www.lsi.upc.edu/~franch/

Abstract. Agent-oriented models are used in organization and information sys-
tem modelling for providing intentional descriptions of processes as a network
of relationships among actors. As such, they capture and represent goals, de-
pendencies, intentions, beliefs, alternatives, etc., which appear in several con-
texts: business process reengineering, information system development, etc. In
this paper, we are interested in the definition of a framework for the analysis of
the properties that these models exhibit. Indicators and metrics for these proper-
ties are defined in terms of the model elements (e.g., actors, dependencies, sce-
nario paths, etc.) Our approach is basically quantitative in nature, which allows
defining indicators and metrics that can be reused in many contexts. However, a
qualitative component can be introduced if trustable expert knowledge is avail-
able; the extent up to which quantitative and qualitative aspects are intertwined
can be determined in every single case. We apply our proposal to the i* notation
and we take as main case study a highly-intentional property, predictability of
model elements.

1 Introduction

Goal- and agent-oriented analysis methods and languages such as KAOS, i*, GRL or
TROPOS [1, 2, 3] are widespread in the information systems community for the re-
finement and decomposition of the customer needs into concrete goals, during the
early phase of the requirements specification [4, 5]. This kind of models represents an
organization and its processes as a network of actors and dependencies, which may be
decomposed into simpler elements.

Once built, the models can be used for different purposes. Two of the most impor-
tant ones are: analysis of the properties they exhibit, and comparison of alternatives.
In the first case, it is checked whether some properties hold in the model; some actors
or dependencies exhibit some property (either positive or not) are searched; etc. In the
second case, different models, that represent different ways of implementing organ-
izational processes or information systems, are compared with respect to properties
that have been considered as crucial. In both cases, evaluation of models is the cor-
nerstone of these analyses, and therefore some suitable metrics to rely upon are
needed.

The use of metrics with this purpose is very common in other type of models. For in-
stance, there are some suites of metrics in the field of object-oriented modeling [6, 7],
which refer to structural properties like cohesion and coupling. Properties referring to

496 X. Franch

the system itself, such as security, efficiency or cost, which mainly fall into the cate-
gory of non-functional or organizational requirements, appear when considering mod-
els of the system architecture [8]. These metrics are usually defined in terms of the
components, nodes, pipes, etc., that compose the final configuration of the system.

In the case of goal- and agent-oriented modeling, typical approaches analyse mod-
els in a qualitative way, especially in conjunction with non-functional requirements
[9], by targeting to specific properties such as availability, security and adaptability.
These target properties are decomposed into simpler criteria that may be used to
evaluate different candidate models for the system-to-be [10]. This evaluation is basi-
cally qualitative, which means that the extent up to which a criterion is fulfilled by a
candidate model is determined by expert judgement. Although qualitative analysis is a
powerful mechanism that is satisfactory in many cases, it may introduce a certain
degree of uncertainness because it relies completely on the claims that experts make.
The dichotomy among qualitative and quantitative analysis is not new and by no
means exclusive of organization or information system modelling, or even the com-
puter science discipline (see [11, p. 40] for an abridged comparison). Some research-
ers advocate that both types of analysis are exclusive [12], but others believe that they
are compatible [13] and even complementary [14]. In goal-orientation, some contribu-
tions exist that combine quantitative and qualitative analysis for finding assignment of
labels to nodes and determine its propagation in goal graphs [15, 16].

In this paper we are interested in the analysis of agent-oriented models with special
emphasis on the quantitative side. To be able to express our approach in detail, we
consider agent-oriented models written in the i* language, although we think that the
underlying concepts could be adapted to other approaches. More precisely, we want
to take profit of the networked structure of i* models to define structural indicators
that are quantitative in nature, counting actors, dependencies, and other elements;
indicators can be used to define metrics that measure model properties. Our defini-
tions will make it possible to include some expert judgement if considered necessary
to obtain more accurate results; in fact, we will see that indicators are highly custom-
izable depending on both the knowledge available on the problem (expert judgement
and current state of refinement of the model) and the effort to be invested in this proc-
ess. Due to its structural nature, our framework is expressed in terms of the OCL [17];
operators such as allInstances and select suit well for working with model
elements.

The paper is structured as follows. In section 2, we define the i* framework using
UML. In section 3, we introduce our framework for measuring i* model properties.
We analyse one particular property, predictability, in section 4, using the concepts
introduced. Finally, we provide some comparison, conclusions and future work in
sections 5 and 6.

2 A UML Definition of i*

In this section, we introduce the i* framework using the UML for defining rigorously
its concepts. We think that this section is necessary because, as reported in [18], there
are several variations in the literature for the i* notation and thus we need to make
explicit which constructs do we use in this paper and which properties do we assume.

 On the Quantitative Analysis of Agent-Oriented Models 497

Our i* framework is based on the seminal Yu’s proposal [2] with some minor sim-
plifications. Yu proposes two types of models, each corresponding to a different
abstraction level (see fig. 1): a Strategic Dependency (SD) model represents the inten-
tional level and the Strategic Rationale (SR) model represents the rational level.

A SD model consists of a set of nodes that represent actors, and a set of dependen-
cies that represent the relationships among them, expressing that an actor (depender)
depends on others (dependees) in order to obtain some objective (dependum). Alto-
gether form a network of knowledge that allows understanding “why” the system
behaves in a particular way [19]. The dependum is an intentional element that can be
a resource, task, goal or softgoal (see [2] for a detailed description).

A SR model allows visualizing the intentional elements into the boundary of an ac-
tor to refine the SD model with reasoning capabilities. Once SR models are built, the
dependencies of the SD model may be linked to the appropriate intentional elements
inside the actor boundary. According to their intentional meaning, some restrictions
apply: goal dependencies can be assigned to goals and tasks in the dependee side; the
same for task dependencies; and resource dependencies just to task dependencies.

The elements inside the SR model are decomposed accordingly to 2 types of links:

• Means-end links establish that one or more intentional elements are the means that
contribute to the achievement of an end. The “end” can be a goal, task, resource, or
softgoal, whereas the “means” is usually a task. There is a relation OR when there are
several means, which indicate the different ways to obtain the end. The possible rela-
tionships are: Goal-Task, Resource-Task, Task-Task, Softgoal-Task, Softgoal-Softgoal
and Goal-Goal. In Means-end links with a softgoal as end it is possible to specify if
the contribution of the means towards the end is negative or positive; this label may
also appear in softgoal dependencies.

• Task-decomposition links state the decomposition of a task into different intentional
elements. There is a relation AND when a task is decomposed into more than one
intentional element.

Fig. 1. Example of an i* model for an academic tutoring system

498 X. Franch

SR models have additional elements of reasoning such as routines. A routine
represents one particular course of action to attain the actor’s goal among all the exist-
ing alternatives. The concept of routine appears in [2] but no notation is provided, so
we use the similar notion of scenario path as defined in [20] based on the use case
map concept appearing in GRL [21].

In Fig. 2 we show the conceptual model in UML, corresponding to our version of
the i* language; OCL constraints are not included for the sake of brevity. It is remark-
able that dependencies are not defined as a ternary association; we have opted for
composing two binary associations to facilitate the OCL expressions that we will
write later in the metrics framework. We remark some modeling elements of interest:
the Model class (singleton), which gives a name to the model; the Node class that
provides a key to model elements; the DependableNode class, which models the in-
tentional elements for which it is possible define dependencies, that is, actors and
intentional elements of the SR model; and the MeansEndContribution and Softgoal-
Contribution classes, that differentiate means-end links and dependencies that involve
softgoals.

As an additional point, it may be argued that, in order to formulate metrics to
evaluate and eventually compare i* models, it is necessary not only to rigorously
define the semantics of the i* elements that we use, but also how the models are built,
since different people may build correct models very dissimilar in nature and of
course too much diversity would make our quantitative framework difficult to apply.
We have tackled this point in our previous work, by defining two similar, comple-
mentary methodologies for building i* models, PRiM [22] and RiSD [23], depending
on whether we create the model as a process reengineering exercise or from the
scratch, respectively. Both methodologies define rules, checkpoints and procedures to
guide model construction, therefore we may say that using them we can obtain mod-
els in a predictable and repeatable enough manner.

-sort [*] : SortType

Actor

Agent Position Roleoccupies

* *

covers

* *

*
/ plays

*

SR-Element

1
*

DependableNode Dependum

/type: IntentionalType

Dependency

dependee

depender

type: IntentionalType

Intentional Element

{ disjoint, complete }

label : String

Node

{ disjoint, incomplete }

{ disjoint, complete }

{ disjoint, complete }
head

*

tail

*

Link

MeansEnd TaskDecomposition

{ disjoint, complete }

contr : ContributionType

MeansEndContribution

Goal
Task
Resource
Softgoal

«enumeration»
IntentionalType

+
-

«enumeration»
ContributionType

boundarybelongsTo

type

dependum

1 *

TaskOrGoal

-name : String

ScenarioPath

type

1..*

*

{ord}

-name : String

Model 1

owner

1..*

-contr [0..1] : ContributionType

SoftgoalContribution
dependency.type

DependeeLink

step

Fig. 2. A UML conceptual model for i*

 On the Quantitative Analysis of Agent-Oriented Models 499

3 A Framework for Metrics on i*

In this section, we explore the use of structural indicators that can be used to define
structural metrics that measure the properties of an i* model, i.e. those properties that
depend on the form of the model and the types of its elements. Structural metrics are
valuable for both analysing a highly abstract model of a system of any kind, com-
posed basically by roles, and for comparing different feasible realizations of this ab-
stract model (which take the form of actor models too, but composed basically by
positions and agents) with respect to the most relevant criteria established in the mod-
elled world. Some examples of properties that appear in the literature are:

• Ability, workability and commitment [2].
• Predictability, security, adaptability, coordinability, modularity and others [10].
• Correctness, completeness, verifiability, modifiability and traceability [24].

For a given property object of measure, it may be the case that all its elements (actors
and dependencies) influence the indicator. However, it is also possible that just elements
of some particular type affect this property. Furthermore, some individual elements may
be identified as especially relevant for the property; in the most general case, all the
elements may have a different weight in the indicator. We need then to take into account
all these situations if we aim at having a widely applicable metrics framework.

For a given property, different indicators can be defined according to two criteria:

• Returned value. We distinguish among numerical, logical and model-element indi-
cators. Numerical indicators return a value in the interval [0, 1]; this value meas-
ures the degree of accomplishment of some criteria. Logical indicators evaluate
true or false, and are used to discern if a property is fulfilled or not. Model-element
indicators return a (set of) model element (typically, actors, scenario paths or de-
pendencies) that fulfils a property (e.g., scenario path that maximizes a given crite-
ria, or set of actors that are greater than some threshold).

• Subject of measure. We can measure the whole model, individual elements or even
groups of individual elements. In the first case we have global indicators, which
produce a single value of any type. In the second case, we have local indicators,
which compute a value for any element of a given type (actor, scenario path, etc.,
or even dependency of some type). In the third case, we talk about group indica-
tors, which compute a value for any combination according to the grouping criteria
(e.g., pairs of actors).

Therefore, given a property such as completeness, we may measure completeness of
the model, of an element (e.g., an actor) or a group of related elements (e.g., all the
actors of the model), with the purpose of deciding if they are complete or not, or to
what extent they are complete (e.g., measuring the percentage of undefined elements)
or obtaining the elements that are not complete yet. Some of the indicators can be
built on top of the others, typically (but not always): logical and model-element indi-
cators are defined in top of numerical ones; global and group metrics are defined on
top of local ones.

In the next section we develop as example indicator for one property, predictabil-
ity, following the concepts introduced in this section.

500 X. Franch

4 Analysing Predictability of i* Models

Predictability is used in [10] as one of the properties of interest when analysing or-
ganizational styles. Its interest comes from the fact that “actors can have a high degree
of autonomy depending on the way they undertake action and communication in their
domains. It can be then sometimes difficult to predict individual actor characteristics
as part of determining the behaviour of an organization at large” [10]. Therefore,
discerning up to what extent the actors of a model are predictable may be useful for
knowing more about a model.

From the several points of view we can take to analyse predictability, we opt by an
external perception, i.e. how an actor perceives predictability of other actors. To be
more precise, an actor is interested to know how predictable is the behaviour of those
actors it depends upon, and this yields to select dependencies as the main construct of
interest for defining the metrics. In the rest of the section, we first analyse predictabil-
ity of individual dependencies and then we show several indicators that may be de-
fined upon individual predictability. We will use OCL for measuring predictability on
its different forms.

4.1 Predictability of Individual Dependencies

Yu states very clearly which is the degree of freedom bound to dependencies [2]:

• Goal dependencies. The dependee is free to, and is expected to, make whatever
decisions are necessary to achieve the goal.

• Task dependencies. The depender makes the decisions, therefore the dependee
cannot take a behaviour different than expected.

• Resource dependencies. They represent the finished product of some deliberation-
action process, and it is assumed that there are no open issues to be addressed.

• Softgoal dependencies. The depender makes the final decision, but does so with the
benefit of the dependee’s know-how.

Therefore we may conclude that task and resource dependencies are totally predict-
able whilst goal and softgoal ones are not. Considering that 1 represents the highest
predictability and 0 the lowest, we may define predictability of dependencies as:

context Dependency::predictability(): Real
 post: type = Task implies result = 1.0
 post: type = Resource implies result = 1.0
 post: type = Goal implies result = goalPredictability()
 post: type = Softgoal implies result = softgoalPredictability()

To define goal and softgoal predictability we may opt among different strategies:

• To assign a fixed weight to every single goal and softgoal dependency of the
model. This is a very basic quantitative approach, with the assumption that the fac-
tor that rules predictability is the existence of a dependency, whilst its particular
meaning or hidden intentionality is not so relevant.

• To provide weights to individual dependencies by expert judgement. This option
yields to a qualitative reasoning issue appearing in the context of our quantitative
procedure, which aligns with the point of view of [14]. This is the option to choose

 On the Quantitative Analysis of Agent-Oriented Models 501

when we have just the SD model, which happens in the first stages of organization
analysis. For instance, if we apply our RiSD method [23], we build a SD model
from the scratch and then perform analysis before proceeding further on. At this
stage, we have just the most relevant elements in the model, which means that
qualitative analysis is feasible in terms of cost. Experts may use techniques such as
laddering [25] or AHP [26] as a help during their assessment.

• To find some suitable rationale for determining predictability. This alternative
makes our approach basically quantitative; in fact, it may be defined in a total
quantitative manner. This option seems the most appropriate when a SR model is
available, which may happen in two ways: a) from the starting SD model, obtained
e.g. applying RiSD, dependencies and actors are refined; b) the i* model is synthe-
sised from observation of the current organization and then the SR model exists
from the very beginning, as we do in our PRiM method [22].

Fig. 3 summarizes these possibilities. It shows how expert judgement is needed in
almost all possible combinations. Expert judgement is represented by underlined
elements, i.e. values or functions that must be provided in order to build the metrics.

We focus on the last case, which requires more decisions to take. Considering soft-
goal dependencies, we decompose their evaluation into two factors. First, a factor
bound to the depender actor, which represents how capable it is to take predictable
decisions when resolving softgoals; we consider this factor bound to actors’ ability
and not to individual softgoal dependencies. Second, a factor bound to the depend-
ency, which represents the available know-how with respect to the given dependum.
For the OCL expression, we must take into account that the depender can be an actor
or an SR element, and in the second case we obtain its owner; a let expression
makes this easier to write:

context Dependency::softgoalPredictability(): Real
pre: type = Softgoal
let ownerActor(x: DependableNode): Actor =
 if x.oclIsTypeOf(Actor) then x else x.owner in
post: result = ownerActor(depender).dependerExpertise()
 * knowHow()

Depender expertise may be dealt with by two different strategies: considering ex-
pert judgement to weight individual actors, or else to agree a given weight for all the
actors. Concerning available know-how, we may define a strategy for measuring
predictability using the SR model as follows. We define the know-how as the number
of dependees that state a contribution value to the dependum. Then, we need a func-
tion such that: 1) when the number of contributions is 0, the function is also 0 (worst
predictability because the dependees do not know how to contribute to the softgoal);
2) as the number of contributions grow, the function tends to 1 (best predictability).

An easy, problem-independent way to define the function is 1 – (slope/n+1), being
n the number of known contributions for the softgoal dependum and slope a constant
(defined as an attribute of the model) that determines the slope of the function (see
fig. 4, left). Another possibility is to define a utility function [27] such that we define
a straight line from 0 to the maximum number of dependee contributions to a softgoal
dependum that exists in the model (see fig. 4, right).

502 X. Franch

predictability of a dependency
Dependency::predictability()

fixed (= 1.0)

others
expert judgement

considered better opt ion

SR model exist s and
quant itat ive-based
approach preferred

assign a fixed weight

assign individual weights
by expert judgement

Model::goalPredictability()
post result = value

Model::softgoalPredictability()
post result = value

Dependency::predictability()
pre type = goal or type = softgoal
post result = function(self.label)

goal

softgoal
Dependency::goalPredictability()
pre type = goal
post ... -- fixed

weight computed from
possible task combinat ions

know-howdepender expert ise

assign a fixed weight assign individual weights
by expert judgement

Actor::dependerExpertise()
post result = value

Actor::dependerExpertise()
post result = function(self.label)

determine funct ion

inverse
funct ion

ut ility
funct ion

Dependency::knowHow()
post result = ... -- fixed

Model::slope = value

Dependency::knowHow()
post result = ... – fixed

Model::slope = value

Dependency::softgoalPredictability()
pre type = softgoal
post ... -- fixed

count ing considered
enough

task, resource

Fig. 3. Procedure for determining the Predictability of individual dependencies

1.0 1.0

→ ∞

→ 1.0

n

Fig. 4. 2 different possibilities of know-how functions: left, inverse function with slope = 1;
right, utility function (n = maximum number of dependee contributions to softgoal dependum)

The resulting OCL definition for the first case is:

 context Dependency::knowHow(): Real
pre: self.type = Softgoal
 let theModel: Model = Model.allInstances()->any() in
let contributionsToSoftgoalDep(d: Dependency): Integer =
 d.dependeeLink.oclAsType(SoftgoalContribution)->

 select(contr->notEmpty())->size() in
post: result = 1 – theModel.slope /

(contributionsToSoftgoalDep(self)+1)

Fig. 5 presents an example of this case. It is an excerpt of a model for a distance
learning environment. The dean has as one of her goals to achieve academic quality, and
for this goal she depends on teachers and tutors for having Good Course Dynamics.

 On the Quantitative Analysis of Agent-Oriented Models 503

Dean

D

D+ Marks Avai-
lable T ime ly

Personalized
Feedback
Provided

Group
Feedback
Provided

D

FAQsExam
Feedback
Provided

Answer
Messages

Daily

+

++

– D
D

D

D

Good Course
Dynamics

Tutor

Teacher

Fig. 5. Distance learning environment model: predictability of softgoal dependencies

There are several ways in which teachers may contribute positively to this softgoal:
publishing exams’ marks timely, answering students’ messages daily and making
FAQs lists available. An important issue that influences course dynamics in distance
learning is the feedback that teachers provide to students about their exams. There are
roughly two strategies: sending personalized messages to students commenting their
mistakes, or giving group support by making public the solution and the evaluation
criteria, and sending personalized information just on demand. The first strategy is
considered to impact positively into the dynamics of the course, but not the second.
Concerning tutors, it has not been investigated yet how they contribute to course dy-
namics. Thus, we have 5 contributions to the softgoal dependency; applying the defi-
nition above with Model.slope = 1, GoodCourseDynamics.knowHow() = 0,83.
Since the dean is a highly strategic actor, we may assume that her dependerExper-
tise() = 1,0 and GoodCourseDynamics.softgoalPredictability() = 0,83.

Concerning goal dependencies, unpredictability depends on how many ways the
dependees have to fulfil the goal. As stated in section 2, a goal dependency may have
as intentional elements on the dependee side just goals and tasks. In both cases, the
different task combinations that we may find descending by the goal or task, using
means-end and tasks decompositions, are computed: the more combinations are
found, the less predictable is the dependee with respect to that dependency. It is worth
to remark that if the dependency involves more than one dependee, unpredictability
appears from the very beginning, because this means that there are many ways to
attain the goal dependum. Also we have to deal with the case that the dependee is not
a SR element but an actor, which means that the dependency has not been assigned
yet to an intentional element and thus unpredictability is maximized (i.e., equals to 0).

Similarly to the case above, a problem-independent function can be defined as the
inverse of the number of combinations. We outline the corresponding OCL function,
not including the function that computes the number of combinations:

504 X. Franch

context Dependency::goalPredictability(): Real
pre: self.type = Goal
let nbTaskCombinations(d: Dependency) = … in
post: nbTaskCombinations(self) = 0 implies result = 0
post: nbTaskCombinations(self) > 0 implies

 result = 1 / nbTaskCombinations(self)

Fig. 6 presents an example of this case focusing on how exam evaluation feedback
is provided. The two goals introduced in fig. 5 are refined. The most general goal that
appears, Evaluation Feedback Provided, is the dependee of the student’s goal Feed-
back from Exams Acquired. Since this goal has two means-end decomposition (which
are implicitly OR-ed, see section 2), two different ways to provide feedback are being
stated. Therefore, the evaluation for this dependency is 1 / 2 = 0,5. Effects of unpre-
dictability are clear if we analyse how the elements that appear in the decomposition
relate to other model elements. For instance, Personalized Feedback Provided has a
negative contribution to the Personal Workload kept Low softgoal that the teacher
has. This contribution is stating that deciding among Personalized or Group Feedback
Provided depends on what the teacher considers a reasonable threshold for her work-
load, and since this is out of the student’s control, predictability gets damaged.

As a final remark, we would like to point out that the obtained indicator for de-
pendency predictability is highly customizable (therefore reusable and repeatable);
key points are: does the SR model exist or not?, do I really need expert judgement
or do I keep my approach purely quantitative?, if expert judgement is chosen, do I
prefer to weight individual elements or do I assign the same weight to all of them?
The procedure depicted at fig. 3 shows clearly the needed steps; there we represent
the information required during the process by underlined italics in the body of
OCL expressions.

Student

D

Personalized
Feedback
Provided

Group
Feedback
Provided

Tutor
Teacher

Exa m
Feedback
Provided

Personal Work-
load Kept Low

–

Send
Personal
Messages

Make
Cla rifications

Publish
Correct ion

Criteria

Send
Detailed

Evaluation
Write Exa m

Solution

Provide
Group

Ass istance

Feedback
fro m Exa ms

Acquired
D

Fig. 6. Distance learning environment model: predictability of goal dependencies

 On the Quantitative Analysis of Agent-Oriented Models 505

4.2 Indicators for Predictability

Next we talk about the different indicators that may be defined on top of dependency
evaluation. The dimensions presented in section 3 can be used. Of particular interest
is the dimension about the subject of measure. We present 3 feasible possibilities:
• We may analyse predictability of actors. We may adopt two different points of view:

how predictable an actor perceives its environment, and how predictable an actor
looks to its environment. In the first case, we group the dependencies in which the
actor is a depender, whilst in the second case, we group the dependencies in which an
actor is a dependee. For instance, for the first point of view we obtain:

context Actor::perceivedPredictability(): Real
 let actorDependencies(a: Actor): Set(Dependency) =
 Dependency.allInstances()->
 select(d | d.depender = a or d.depender.owner = a) in
 post: actorDependencies(self)->size() = 0 implies result = 1
 post: actorDependencies(self)->size() > 0 implies result =
 actorDependencies(self).predictability()->sum()
 / actorDependencies(self)->size()

• Another possibility is to concentrate on scenario paths as representative of business
processes. A scenario path is composed by steps that are tasks or goals. Each step
is either decomposed inside the boundaries of the actor or as depending on external
actors; these two cases rule the OCL decomposition below. In both cases, predict-
ability depends on the number of task combinations that exist to carry out the step:

context ScenarioPath::predictability(): Real
 post: result = step.predictability()->sum() / step->size()

context TaskOrGoal::predictability(): Real
 let dependsUpon(): Boolean =
 self.dependency[depender]->notEmpty() in
 post: dependsUpon() implies
 result = dependency[depender].predictability()->sum()
 / dependency[depender]->size()
 post: not dependsUpon() and nbTaskCombinations() = 0
 implies result = if type = task then 1 else 0
 post: not dependsUpon() and nbTaskCombinations() > 0
 implies result = 1 / nbTaskCombinations(self)

being TaskOrGoal::nbTaskCombinations() a function that computes the
number of task combinations for that task or goal, defined analogously to Depend-
ency::nbTaskCombinations() introduced in section 4.1.

• As done in [10], we may define predictability for the whole model, obtaining there-
fore a single value. They use this property to compare different organizational pat-
terns such as joint venture, structure in 5, and others:

context Model::predictability(): Real
 post: result =
 Dependency.allInstances().predictability()->sum()
 / Dependency.allInstances()->size()

Concerning the second dimension, we can use these numerical indicators to obtain
boolean or model elements ones, allowing e.g.: finding out if strategic actors exceed

506 X. Franch

some threshold; given two models, which one is the most predictable; ordering all the
actors in terms of predictability; checking that scenario paths are fully predictable; etc.

5 Comparison with Related Work

In the introduction we have mentioned the existence of qualitative approaches for
analysing i* models but, to the best of our knowledge, there is not much related
work from a quantitative point of view. The most remarkable proposal in this area is
part of the AGORA method [24] that provides techniques for estimating the quality
of requirements specifications in a goal-oriented setting. In fact, AGORA puts more
emphasis in the analysis of the AND/OR graph resulting from decomposition than
in the kind of analysis that has been the focus of this paper. Therefore, comparison
is not really possible and in fact, we could think of using AGORA and our approach
jointly. Also, it is worth mentioning the work by Sutcliffe and Minocha [28] which
proposes the analysis of dependency coupling for detecting excessive interaction
among users and systems. They use expert judgement to classify the dependencies
of the system in a qualitative scale and then define a metric on the model that use to
compare alternative scenario. This metric for coupling is a good example of struc-
tural metric and we can check that it is definable using our framework in a straight-
forward way.

On the other hand, we have already mentioned some work on combining quantita-
tive and qualitative analysis of i* models for finding assignment of labels to nodes
and determine its propagation in goal graphs. In [15], qualitative reasoning is based
on a sound and complete set of rules that determine backward propagation in a goal-
oriented, SR-like graph. The rules combine 4 different types of relationships among
goals, depending on whether a goal fully/partially satisfies/denies another goal. Quan-
titative reasoning consists on assigning weights to those relationships. In [16], as-
signment of labels to goals, and the use of these labels to propagate values both
forward and backwards, become the subject of study. The main difference of these
approaches with the work presented in this paper is the interest of the analysis. Whilst
[15, 16] focus on goal satisfaction, our work is more interested in the analysis of
structural properties of the model. Therefore, we can say again that both approaches
are not exclusive but complementary. The way the authors encode the qualitative
framework is a good example of how knowledge may be represented in both a simple
and accurate way, and it could be thought that this description style of qualitative
knowledge may be used also in our context.

6 Conclusions and Future Work

We have presented a framework for the definition of structural metrics for agent-
oriented models using the i* language. The metrics are bound to properties of the
system model, which usually represent correctness concerns, organizational issues or
information systems requirements. The framework considers the definition of indica-
tors organized according to two dimensions (returned value and subject of measure).
The indicators are customised to use expert judgement as considered necessary,

 On the Quantitative Analysis of Agent-Oriented Models 507

although we may say that they are basically quantitative in nature. We have shown with
an example how these indicators may be used to find out properties of the system.

The most relevant characteristics of our approach are:

• Accuracy. We have provided a UML definition of i* models that is used as a base-
line upon which we have build our framework. Indicators and metrics are ex-
pressed with the OCL. The approach is complemented with two methodologies to
drive the construction of i* models in a consistent way.

• Expressiveness. The use of the OCL allows expressing metrics both in a comfort-
able and expressive way. Comfortability comes from the easy of structuring inher-
ent to object-orientation, which has been shown in the predictability example.

• Sensitivity. Metrics can be defined more or less accurately depending on: 1) the
expert judgement available; 2) the state of refinement of the model; 3) the effort we
want to invest in model analysis. Therefore, we have a highly configurable frame-
work that allows defining metrics in several ways (see fig. 3 as an example).

• Easy tool support. The form that our framework takes allows implementation of
tool support to drive indicators definition, model edition, generation of alternatives
and evaluation of models. We have a first prototype [29] which uses metrics pat-
terns as a way to improve productivity (although it is not based in the OCL). Tool-
support may also be used to customise the indicators in a particular setting by
means of wizards that basically asks for the required information following a data
flow such as the one presented in fig. 3.

• Reusability. The indicators and metrics obtained are independent of the domain
and therefore applicable to any model.

The framework presented here has been analysed with a few properties such as the
one presented in this paper. However, a proper validation plan has not been yet exe-
cuted. A long-term goal is to apply the framework to large-scale case studies but, in
the meantime, we are validating with respect to some exemplars that are widespread
in the i* community, such as the one of predictability presented in this paper. Valida-
tion is necessary also to gain more understanding on the property being analysed and
then to define more accurately OCL formula. In our example, this kind of validation
would help to know if the strategies applied to define goal and softgoals are accurate
enough and to compare different strategies. For instance, an alternative to the defini-
tion in the case of goals would be to take into account the depth of task decomposi-
tions: the deeper the decomposition appears, the less it affects predictability. A
thorough validation plan would allow choosing which alternative is better.

It may be said that one of the limitation of our approach is the need to elicit expert
judgement at some extent. However, we should remark that the involvement of ex-
perts is highly customizable. For instance, we have shown in our case study that this
expert judgement may be kept reduced if required by prioritising the quantitative part
of our framework (see fig. 3). In any case, we do think that some degree of qualitative
reasoning is necessary to obtain information that is accurate with respect to some
departing assumptions (which encode the knowledge of the expert). We remark also
that expert judgement will usually be necessary in the context of comparison of alter-
natives that has been cited in the introduction, because given two alternatives, in the
general case some metrics will behave better in one model and some in other, there-
fore expert judgement is needed to prioritize appropriately.

508 X. Franch

We have identified several ways to proceed along in this line of research. For mak-
ing our proposal useful, we remark the following:

• Construction of a catalogue of reusable indicators and metrics. Basically in three
directions: 1) model-related properties (predictability is one example); 2) organiza-
tional-related properties (such as segregation of duties [30]); 3) properties address-
ing non-functional aspects such as security, efficiency and so on.

• Identification of patterns for indicators and metrics. We have realized that most of
the indicators and metrics definitions apply similar rules over and over. In [31] we
have identified some patterns that capture some of these situations and we plan to
enlarge the catalogue.

• Better tool-support. We plan to enlarge our current prototype and adapt it to the
OCL as the language for metrics definition.

• Integration of the framework with other proposals. In particular, we are especially
interested in using this framework in the analysis of system architectures [8, 32].
We think that metrics on goal-oriented models may provide first-cut criteria for
classifying candidate architectures.

Acknowledgements

This work has been done in the framework of the research project UPIC, ref.
TIN2004-07461-C02-01, supported by the Spanish Ministerio de Ciencia y Tec-
nología. The author wants to thank Gemma Grau for her valuable comments.

References

[1] A. Dardenne, A. van Lamsweerde, S. Fickas. “Goal-directed Requirements Acquisition”.
Science of Computer Programming, 20, 1993.

[2] E. Yu. Modelling Strategic Relationships for Process Reengineering. PhD. thesis, Univer-
sity of Toronto, 1995.

[3] J. Castro, M. Kolp, J. Mylopoulos. “Towards Requirements-Driven Information System
Engineering: The Tropos Project”. Information Systems, 27, 2002.

[4] E. Yu. “Towards Modeling and Reasoning Support for Early-Phase Requirements Engi-
neering”. Procs. 3rd Intl. Symposium in Requirements Engineering (ISRE), 1997.

[5] A. van Lamsweerde. “Goal-Oriented Requirements Engineering: A Guided Tour”. Procs.
5th Intl. Symposium on Requirements Engineering (ISRE), 2001.

[6] M. Lorenz, J. Kidd. Object-oriented software metrics: a practical guide. Prentice-Hall,
1994.

[7] S.R. Chidamber, C.F. Kemerer. “A Metrics Suite for Object-Oriented Design”. IEEE
Transactions on Software Engineering, 20(6), 1994.

[8] L. Baas, P. Clements, R. Kazman. Software Architecture in Practice, 2nd edition. Addi-
son-Wesley, 2003.

[9] L. Chung, B. Nixon, E. Yu, J. Mylopoulos. Non-Functional Requirements in Software
Engineering. Kluwer Academic Publishers, 2000.

[10] M. Kolp, J. Castro, J. Mylopoulos. ‘‘Organizational Patterns for Early Requirements
Analysis’’. Procs. 15th Intl. Conf. on Advanced Information Systems Engineering
(CAiSE), 2003.

 On the Quantitative Analysis of Agent-Oriented Models 509

[11] M.B. Mile, A.M. Huberman. Qualitative Data Analysis. Sage Publications, 1994.
[12] T.A. Schwandt. “Solutions to the Paradigm Conflict: Coping with Conflict”. Journal of

Contemporary Etnography, 17(4), 1989.
[13] M.Q. Patton. Qualitative Evaluation and Research Methods. Sage Publications, 1990.
[14] R.B. Johnson, A.J. Onwuegbuzie. “Mixed Methods Research: A Research Paradigm

Whose Time Has Come”. Educational Researcher, 33(7), 2004.
[15] P. Giorgini, J. Mylopoulos, E. Nicciarelli, R. Sebastiani. “Formal Reasoning Techniques

for Goal Models”. Procs. 21st Intl. Conference on Conceptual Modeling (ER), 2002.
[16] R. Sebastiani, P. Giorgini, J. Mylopoulos. “Simple and Minimum-Cost Satisfiability for

Goal Models”. Proceedings of 16th Conf. on Advanced Information Systems (CAiSE),
2004.

[17] Object Management Foundation (OMG). “UML 2.0 OCL Specification”, available at
www.omg.org/docs/ptc/03-10-14.pdf, 2003.

[18] C. Ayala, C. Cares, J.P. Carvallo, G. Grau, M. Haya, G. Salazar, X. Franch, E. Mayol, C.
Quer. “A Comparative Analysis of i*-Based Goal-Oriented Modeling Languages”. Procs.
Intl. Workshop on Agent-Oriented Software Development Methodology (AOSDM), 2005.

[19] E. Yu. “Understanding 'why' in software process modeling, analysis and design”. Procs.
16th Intl. Conference on Software Engineering (ICSE), 1994.

[20] L. Liu, E. Yu, J. Mylopoulos. “Analysing Security Requirements as Relationships among
Strategic Actors”. Procs. 2nd Symposium on Requirements Engineering for Information
Security (SREIS), 2002.

[21] D. Amyot. “Use Case Maps Quick Tutorial Version 1.0”. Available at
http://www.usecasemaps.org/pub/UCMtutorial/, last accessed Nov. 2005.

[22] G. Grau, X. Franch, N. Maiden. “A Goal-Based Round-Trip Method for System Devel-
opment as Business Process Reengineering”. Procs. 11th Intl. Workshop on Requirements
Engineering: Foundation for Software Quality (REFSQ), 2005.

[23] G. Grau, X. Franch, E. Mayol, C. Ayala, C. Cares, J.P. Carvallo, M. Haya, F. Navarrete,
P. Botella, C. Quer. "RiSD: A Methodology for Building i* Strategic Dependency Mod-
els". Procs. 7th Intl. Conf. on Software Engineering & Knowledge Engineering (SEKE),
2005.

[24] H. Kaiya, H. Horai, M. Saeki. “AGORA: Attributed Goal-Oriented Requirements Analy-
sis Method”. Procs. 10th Joint Conference on Requirements Engineering (RE), 2002.

[25] T.J. Reynolds, J. Gutman. “Laddering Theory, Method, Analysis and Interpretation”.
Journal of Advertising Research, vol. 28, 1988, pp. 11-31.

[26] T.L. Saaty. The Analytic Hierarchy Process. McGraw-Hill, 1990.
[27] R. Keeney, H. Raiffa. Decision with Multiple Objectives: Preferences and Value Trade-

offs. Wiley, 1993.
[28] A. Sutcliffe, S. Minocha. “Linking Business Modelling to Socio-technical System De-

sign”. Procs. 11th Intl. Conf. on Advanced Information Systems Engineering (CAiSE),
1999.

[29] G. Grau, X. Franch, N. Maiden. “REDEPEND-REACT: an Architecture Analysis Tool”.
Procs. 13th Intl. Conference on Requirements Engineering (RE), 2005.

[30] A. Burt. “Internal Controls and Segregation of Duties”. UF Bridges Project, University of
Florida, 2004.

[31] X. Franch, G. Grau, C. Quer. “A Framework for the Definition of Metrics for Actor-
Dependency Models”. Procs. 12th Intl. Conf. on Requirements Engineering (RE), 2005.

[32] P. Grünbacher, A. Egyed, N. Medvidovic. “Reconciling Software Requirements and Ar-
chitectures - The CBSP Approach”. Procs. 5th Intl. Symposium on Requirements Engi-
neering (ISRE), 2001.

Requirements Management

E. Dubois and K. Pohl (Eds.): CAiSE 2006, LNCS 4001, pp. 513 – 527, 2006.
© Springer-Verlag Berlin Heidelberg 2006

An Empirical Evaluation of the i* Framework in a
Model-Based Software Generation Environment∗

Hugo Estrada1,2, Alicia Martínez Rebollar1,3, Oscar Pastor1, and John Mylopoulos4

1 Valencia University of Technology, Valencia, Spain
{hestrada, alimartin, opastor}@dsic.upv.es

2 CENIDET, Cuernavaca, Mor. Mexico
3 ITZ, Zacatepec, Mor. Mexico

4 University of Trento, Italy
jm@cs.toronto.edu

Abstract. Organizational modelling has been found to be very effective in
facilitating the elicitation of requirements for organizational information
systems. In this context, the i* modelling framework has been used widely in
research and – some – industrial projects. However, no empirical evaluation
exists to-date to identify areas of strength as well as weaknesses of the
framework. This paper presents the results of an empirical evaluation of i*
using industrial case studies. These were conducted in collaboration with an
industrial partner who employs an object-oriented and model-driven approach
for software development. The evaluation of i* uses a feature-based framework.
The paper reports on lessons learned from this experience, both in terms of
strengths and detected weaknesses. The results of this evaluation can play an
important role in guiding extensions of the i* framework.

1 Introduction

Organizational modelling is a promising approach for early requirements analysis
during the development of organizational information systems. In this context, the i*
modelling framework [13] offers a well-founded and widely used set of concepts for
describing organizational settings made up of social actors who have freedom of
action, but also depend on other actors to achieve their goals.

The i* framework and its methodological extensions (such as GRL [4] and Tropos
[2]) have been used in a wide range of application domains, such as business modelling,
object-oriented software development, software requirements elicitation, agent-oriented
software development, modelling and analysis of non-functional requirements, security
requirements, trust and privacy requirements, and more. In all these applications, i*
concepts have been used to capture social and intentional elements of each specific
domain, thereby supporting software development. However, despite well-known
theoretical advantages of i*, there have been no empirical studies that confirm its
usefulness and identify potential weak spots.

∗ This work has been partially supported by the MEC project with ref. TIN2004-03534, the

Valencia University of Technology, Spain, Care Technologies Enterprise Inc. and the University
of Trento, Italy.

514 H. Estrada et al.

The purpose of this paper is exactly this: to present an empirical evaluation of i*,
based on industrial case studies. The case studies were conducted in collaboration with
Care Technologies Inc. (http://www.care-t.com), a software company that has adopted
the OO-Method for software development. OO-Method is a model transformation
method that relies on a CASE tool ([7]) to automatically generate complete information
systems from object-oriented conceptual models. The OO-Method can be viewed as a
computer-aided requirements engineering (CARE) method where the focus is on
properly capturing system requirements in order to manage the complete software
production process. The resulting conceptual model specifies what the system is
(problem space). Then, an abstract execution model is provided to guide the
representation of these requirements in a specific software development environment
that is focused on how the system will be implemented (solution space).

The transformation from a conceptual to an execution model (implementation) is
effected by a Conceptual Model Compiler. The compiler exploits precise transformation
rules from conceptual modelling constructs to corresponding software representations.
The execution model is based on a component-based architecture in order to deal with
the characteristics of component-based systems. The final software product’s
functionally is equivalent to the requirements specification. Figure 1 presents a
graphical representation of the OO-Method.

Problem
Space Level

Automated
Translation

Solution
Space Level

Formal SpecificationFormal Specification

Late Requirements

Repository

Uses

Conceptual Model

Functional Model

Object Model

Dynamic Model
Presentation Model

Navigational Model

Persistence Tier (SQL Server, ORACLE)

Application Tier (.NET, EJB)

Interface Tier (Visual Environments, Web, XML)

Empiricism (ESE)Empiricism (ESE)

Obtain

Care Technologies, S.A.

Problem
Space Level

Automated
Translation

Solution
Space Level

Formal SpecificationFormal Specification

Late Requirements

Repository

Uses

Conceptual Model

Functional Model

Object Model

Dynamic Model
Presentation Model

Navigational Model

Uses

Conceptual Model

Functional Model

Object Model

Dynamic Model Functional ModelFunctional Model

Object ModelObject Model

Dynamic ModelDynamic Model
Presentation Model

Navigational Model

Presentation ModelPresentation Model

Navigational ModelNavigational Model

Persistence Tier (SQL Server, ORACLE)

Application Tier (.NET, EJB)

Interface Tier (Visual Environments, Web, XML)

Empiricism (ESE)Empiricism (ESE)

Obtain

Care Technologies, S.A.

Fig. 1. The OO-Method approach for model-driven software development

Despite the major advantage of the OO-Method in automatically generating
information systems, there are disadvantages as well. Specifically, there are currently
no mechanisms for acquiring the requirements of an information system.
Accordingly, the next step in developing further the OO-Method consists of adding a
new phase of organizational modelling as a starting point to determine the correct
requirements for the information system-to-be.

 An Empirical Evaluation of the i* Framework 515

In performing the empirical evaluation, our objective was to determine possible
extensions to i* that would make it suitable for inclusion in the OO-Method
modelling and methodological framework. Consequently, the features selected
for measurement in this empirical evaluation are inspired by model-driven
approaches.

The rest of the paper is structured as follows: Section 2 presents an overview of
the i* framework. Section 3 presents related works. Section 4 describes the
evaluation framework we used to assess i*, while Section 5 presents the results of
the evaluation conducted during the case studies. Section 6 discusses issues to be
addressed in future versions of i*. Finally, Section 7 concludes and briefly discusses
future work.

2 An Overview of the i* Framework

The i* modelling framework [13] views organizational models as networks of social
actors that have freedom of action, and depend on each other to achieve their
objectives and goals, carry out their tasks, and obtain needed resources.

The i* framework is made up of two models that complement each other: the
strategic dependency model for describing the network of inter-dependencies among
actors, as well as the strategic rationale model for describing and supporting the
reasoning that each actor goes through concerning its dependencies on other actors.
These models have been formalized using intentional concepts from Artificial
Intelligence, such as goal, belief, ability, and commitment.

A strategic dependency model (SD) is a graph involving actors who have strategic
dependencies among each other. A dependency describes an “agreement” (called
dependum) between two actors: the depender and the dependee. The depender is the
depending actor, while the dependee is the actor who is depended upon. The type of
the dependency describes the nature of the agreement. Goal dependencies represent
delegation of responsibility for fulfilling a goal; softgoal dependencies are similar, but
their fulfilment cannot be defined precisely (e.g., because it is subjective and/or
partial). Task dependencies require the dependee to perform a given activity, and
resource dependencies require the dependee to provide a resource. In i* diagrams,
actors are represented as circles; goals, softgoals, tasks and resources are respectively
represented as ovals, clouds, hexagons and rectangles. Dependencies have the form
depender dependum dependee. In the SD model, the internal goals, plans, and
resources of an actor are not explicitly modelled. The focus in such models is on
external relationships among actors.

The strategic rationale model (SR) represents through means-ends relationships
how stakeholder’s goals and softgoals can actually be fulfilled through the
contributions of other actors. A strategic rationale model is a graph with four types
of nodes -- goal, task, resource, and softgoal -- and two types of links. Means-ends
links represent alternative sub-goals/tasks for fulfilling a goal/task, while
decomposition links represent necessary sub-goals/tasks for fulfilling a goal/task. A
strategic rationale graph explains and accounts for each actor's dependencies on
other actors.

516 H. Estrada et al.

3 Related Work

There have been several studies that compare the Tropos agent-oriented software
development methodology with others in the same family. Shehory and Sturm [8]
propose a feature-based framework for evaluating and comparing agent-oriented
methodologies. The framework examines various aspects of each methodology:
concepts and properties, notations and modelling techniques, processes, and
pragmatics. More recently, the same authors [11] performed an empirical evaluation
based on case studies for several agent-oriented methodologies including Tropos
(Gaia, Tropos, MaSe, and OPM/MAS). The case studies employed students taking a
computer science course. An important contribution of this work is the use of a
framework for evaluating and comparing agent-oriented methodologies that is based
on a set of pre-defined criteria (features).

Dam and Winikoff [3] also performed an evaluation of agent-oriented software
development methodologies (MaSe, Prometheus, and Tropos) using an attribute-
based evaluation framework. In this evaluation, a set of summer students developed
the same case study using different methodologies. The students then filled out a
questionnaire to give feedback about their experience in understanding and using the
methodologies based on the selected features. The authors of this evaluation also
collected comments from authors of the methodologies using the same questionnaire
that the summer students had completed. One of the interesting elements of this work
is the attempt to eliminate misconceptions by taking into account comments from the
authors of each methodology.

Along similar lines, Sudeikat et al [12] present an evaluation framework for agent-
oriented methodologies that takes platform-specific criteria into account. The specific
objective of this study was to determine how the methodologies under evaluation
(Mase, Tropos and Prometeus) match up with the Jadex agent platform.

Our empirical evaluation is somewhat different than all of the above. Firstly, our
evaluation focuses on a modelling framework rather than a software development
methodology. Secondly, the object of our study is a specific modelling framework,
rather than a comparison of several. Moreover, our evaluation studies how well i*
matches a specific software development context (model-based software generation)
in practice, rather than analyze i* in the abstract. Finally, all the studies mentioned
used students working on toy problems. This represents a major limitation of these
studies and a major point of difference from our work.

There are also reported studies that use i* for some application. In most of these
studies, the modellers were well-acquainted with i* concepts and their use. We are only
aware of one study [5] where i* was evaluated (along with other modelling techniques)
in practice by modellers who are not researchers working with i*. In our study, the
modellers were practitioners performing organizational modelling in their daily work.

4 A Feature-Based Evaluation Framework

The empirical study of i* was based on a feature-based framework. Such a framework
consists of a set of features that can be properties, qualities, attributes, or characteristics.
An evaluation was conducted by evaluators who assigned a judgment (value) of how

 An Empirical Evaluation of the i* Framework 517

well each feature was supported by the subject of the evaluation. For our study, the
features were selected on the basis of their relevance to model-driven software
generation.

The empirical evaluation was implemented using three real-life projects that were
developed in parallel by three different development teams. The composition of the
development teams was as follows: (i) Team 1 consisted of three expert analysts in
the use of advanced tools for generating conceptual schemas from requirements
models1; (ii) Team 2 included three expert analysts in the use of the CASE tool for
automatically generating information systems from conceptual models2; (iii) Team 3
included two expert analysts in the use of i* for business modelling.

The three case studies were conducted in isolation, i.e., with no exchange of
information among participant teams. This was done in order to avoid the empirical
analysis being affected by the different levels of knowledge about i* by the teams
involved.

The evaluation was conducted in five steps. The first step was devoted to the
determination of a set of features (in the context of a model-based transformational
approaches) to be measured. The second step consisted of training the three teams,
where details about the concepts and proper use of i* were given out, using original i*
sources and basic teaching support. In the third step, i* was used to develop the three
case studies. The fourth step consisted of evaluating the results of each team. To
accomplish this, each participating team evaluated i* for each relevant feature. The
final step consisted of analyzing the results and drawing conclusions about the
strengths and weaknesses of i*.

As indicated, the case studies were real industrial projects. The goal of the
development teams was to represent relevant business processes for each project
using i*. The domains of the three projects were: (i) Technical meeting management:
model business processes for organizing technical meetings; (ii) Golf tournament
management: model business processes for organizing golf tournaments; (iii) Car
rental management: model business processes for a car rental company. For the
Technical meeting management case study, the organizational environment involves a
large number of interactions among participant actors, and a relatively small number
of actors´ internal elements3. For the Golf tournament management case study, the
organizational environment concerns a large number of actors´ internal activities and
a small number of actor interactions. On the other hand, the Car rental management
case study involves an organizational context with a large number of actors’ internal
activities and actors’ interactions. As such, the case studies had rather different
organizational characteristics and ensured that our study would be biased because of
similarities in the case studies chosen.

The empirical evaluation of i* was based on a set of features that have been
considered highly relevant in the context of a model-based software development
environment. In this specific context, the modelling primitives of a model must
provide precise, bidirectional traceability with subsequent stages of the modelling

1 At the beginning of the evaluation, this team had limited knowledge of i*.
2 At the beginning of the evaluation, this team had no knowledge of i*.
3 The internal elements are those goals, plans, softgoals, and resources (represented inside an

actor´ boundary) that account for the actor's behavior.

518 H. Estrada et al.

process. It is important to note that the experiment was designed for practicing
analysts who are used to dealing with software production concepts such as model-
driven architectures, code generation, object-oriented analysis and late (conventional)
software requirements specifications, rather than analysts who are familiar with early
requirements. After all, we expect that this will be the normal scenario for i* use in
software production companies. Therefore the determination of relevant features for
the study was perhaps the most critical step in the whole evaluation process.

The features chosen were based on three earlier studies comparing agent-oriented
methodologies ([6], [10], [3]). By including features used in three different studies,
we have tried to avoid biases that arise from using a single set of features that might
be well suited for i*.

The evaluation considered two main aspects of i*: (i) Modelling Language
(Refinement, Modularity, Repeatability, Complexity Management, Expressiveness,
Traceability, and Reusability), and (ii) Pragmatics of the Modelling Method (Scalability
and Domain Applicability). The features selected for these aspects are listed below.

• Refinement: This feature measures the capability of the modelling method to refine
a model gradually through stages until the most detailed view is reached [1]. This is
a relevant feature because it allows analysts to develop and fine-tune design
artefacts at different levels of granularity during the development process [3].

• Modularity: the degree to which the modelling language offers well-defined building
blocks for building model. The building blocks should allow the encapsulation of
internal structures of the model in a concrete modelling construct. This characteristic
ensures that changes in one part of the model won’t have to be propagated to other parts.

• Repeatability: the degree to which the modelling technique generates the same
output (i.e., same models), given the same problem. This is a very relevant feature in
the context of model-driven approaches, where each modelling element during a
specific step of the modelling process corresponds to a modelling element in
subsequent steps. Repeatability ensures that a correct result is obtained when a
transformation between models is applied. We use this feature to evaluate whether we
obtain the same i* model when the same domain is modelled by different modellers.

• Complexity Management: This feature measures the capability of the modelling
method to provide a hierarchical structure for its models, constructs and concepts.
Model management is a fundamental problem in industrial project settings.

• Expressiveness: the degree to which the application domain is represented precisely
in terms of the concepts offered by the modelling technique. More concretely, this
feature measures the degree to which the modelling technique allows us to represent
static, dynamic, intentional and social elements of the application domain.

• Traceability: the capability to trace modelling elements through different stages of
the modelling process. This feature is important because it allows the user to verify
that all elements of one model (e.g., capturing requirements) have corresponding
elements during the analysis and design stages, and vice versa. Traceability makes
it possible for the analyst to move back and forth between models corresponding to
different development stages [3].

• Reusability: the degree to which models can be reused. As with software code, this
feature is causally related to modularity. If the modelling technique allows the
definition of modules, general cases (patterns) can be defined for reuse.

 An Empirical Evaluation of the i* Framework 519

• Scalability: the degree to which the modelling framework can be used to handle
applications of different sizes. Scalability also measures the degree to which the
inclusion of new modelling elements leaves unaffected the understandability of
models (also known as extensibility). This feature is causally related to refinement
and modularity.

• Domain Applicability: the degree to which the modelling framework matches
modelling requirements for a particular application domain.

It is true that, for some of the features chosen, one can evaluate i* (or any other
modelling framework, for that matter) on theoretical grounds alone. However, in our
study of i*, we wanted to include a practical evaluation as confirmation of any
preliminary theoretical suppositions. Moreover, clearly the chosen features interact.
For instance, better modularity management, obviously contributes to easier
complexity management. Likewise, reusability contributes to scalability. We are
studying such correlations and hope to integrate them in the evaluation framework for
future studies. For this work, we focus on the application of the proposed set of
features in evaluating i* in practice.

5 Evaluation Results

The evaluation was conducted over a 9-month period. The average size of the models
generated by the three teams had as follows: (i) Technical meeting management: 12
actors, 55 dependencies, 70 actors´ internal activities; (ii) Golf tournament
management: 8 actors, 42 dependencies, 103 actors´ internal activities; (iii) Car rental
management: 13 actors, 143 dependencies, 219 actors´ internal activities.

The evaluation assigned one of three possible values (Well supported, Not well
supported, and Not supported) to each feature. Another output of the evaluation was a
list of reasons given by the analysts for a judgement passed. In order to make the
evaluation consensual, a meeting was held at the end of each case study. In these
meetings, produced diagrams and personal evaluations were presented and discussed.
The meetings included in-depth discussions for each feature in order to reach
consensus and a final judgement.

One interesting result of the evaluation concerns the differences in the models
produced by the participating teams. The members of team 1 were experienced in
requirements modelling, although not used to modelling in terms of goals, actors and
dependencies. They understood well the concepts underlying i* (after all, requirements
concepts match well i* modelling), and were enthusiastic about using i* in practice. In
this case, resulting models were partially compliant with i* philosophy. Moreover, the
analysts of this team detected several areas where i* lacked mechanisms to guarantee
the usefulness of organizational models in generating system requirements.

In Team 2, the analysts were used to working with class diagrams, state and
functional models as part of their on-going modelling activities. In this case, i* social
and intentional concepts were rather unfamiliar and the analysts tried to use the
concepts in the same way they used the concepts they were accustomed to. In this
case, resultant models were less compliant with i* modelling philosophy. Moreover,
these analysts had a lot to say about the lack of precise definitions for i* concepts, and
guidelines for generating i* models.

520 H. Estrada et al.

The analysts for Team 3 were experienced i* modellers. In this case, resulting
models were completely compliant with i* modelling philosophy. However, these
models were often too abstract for generating software requirements.

Table 1 presents a summary of the results obtained from the evaluation. The first
column indicates the type of each feature, the second column lists the feature itself,
while the third column indicates the judgement passed on each feature.

Table 1. Results of the empirical evaluation

Evaluation Criteria Evaluated issue Evaluation
1 Refinement Not Well Supported
2 Modularity Not Supported
3 Repeatability Not Well Supported
4 Complexity management Not well Supported
5 Expressiveness Well Supported
6 Traceability Not Well Supported

Modelling Language

7 Reusability Not supported
8 Scalability Not supported Pragmatics
9 Domain applicability Well Supported

In the following, we present the evaluation and justification for each feature.

1) Feature: Refinement. Evaluation: Not Well Supported
Explanation: There are two types of refinement supported by i*: (i) refinement of

strategic dependency models in terms of a more detailed strategic rationale model,
where one can see why actors depend on each other; (ii) 2) refinement of actor goals
into more concrete subgoals. However, the literature using i* includes many examples
where a rationale model is not the result of a refinement of a dependency model. This
kind of refinement can be performed in the boundaries of an actor model.

These types of refinement are useful when analyzing small case studies. However,
they have severe limitations when the model grows in size and complexity. The
dependency model is too concrete to serve as starting point for the analysis of a large
enterprise. In such cases, it may contain many actors with a large number of
dependencies corresponding to different business processes, whose union constitutes
a very complicated model to manage.

The current version of i* does not include modelling primitives that allow one to
start the modelling process of an enterprise with abstract concepts. These concepts
would allow us to incrementally add more detail -- using other, more specific,
modelling primitives -- until we reach concrete models of business processes and their
actor dependencies. There are also no concepts to structure the different functional
units of a complex organization. As a consequence of this absence of high-level
refinement facilities, the modelling of complex systems that involve a large number of
dependencies among many different actors is problematic for i*.

2) Feature: Modularity. Evaluation: Not Supported
Explanation: Based on the empirical evaluation, it was concluded that modularity is

not supported in i*. This is the case because i* doesn't have mechanisms for using
building blocks that can be logically composed to represent different organizational
fragments (e.g., business processes). In this context, if a new organizational process is
added, this may affect all models constructed so far.

 An Empirical Evaluation of the i* Framework 521

The lack of modularity mechanisms in i* can be viewed as a consequence of its
focus on actor modelling rather than on business process modelling. The modelling
mechanisms of i* are oriented towards the definition of the behaviour of the
organizational actors (to satisfy their goals and dependencies) rather than being
oriented to the definition of high-level views of the organizational business processes.

Due to this the lack of modularity, rationale models represent a monolithic view
where all elements of an enterprise are represented at the same abstraction level without
considering any sort of hierarchy. Figure 2 shows an example for the Technical Meeting
Management case study where the goal dependency “obtain quality reviews” and other
dependencies associated with this goal (the task dependency: “send reviews on time”,
and the resource dependency: “review”) are represented at the same abstraction level.
This makes it impossible to distinguish the hierarchical level of these concepts, which
are represented as dependencies in the same diagram.

reviews

send
notifications
and reviews

PcChair sort papers
resolve

critical cases

send notifications
and reviews

obtain
notification

Author

Reviewer

PcMember
To do quality

reviews

assign
qualifications assign

comments
assign

evaluation

send
reviews

send reviews
on time

reviews
send

reviews

to do quality
reviews

assign
qualifications

assign
comments assign

evaluation

send
reviews

obtain quality
reviews

obtain quality
reviews

to do quality
reviews notification

obtain quality
reviews

Goal 2

Activities
associated

to Goal 2

send
notifications
and reviews

reviews

send
notifications
and reviews

PcChair sort papers
resolve

critical cases

send notifications
and reviews

obtain
notification

Author

Reviewer

PcMember
To do quality

reviews

assign
qualifications assign

comments
assign

evaluation

send
reviews

send reviews
on time

reviews
send

reviews

to do quality
reviews

assign
qualifications

assign
comments assign

evaluation

send
reviews

obtain quality
reviews

obtain quality
reviews

to do quality
reviews notification

obtain quality
reviews

Goal 2

Activities
associated

to Goal 2

send
notifications
and reviews

Fig. 2. Representing concepts at same abstraction level

3) Feature: Repeatability. Evaluation: Not Well Supported
Explanation: One of the key points for ensuring repeatability in a modelling

method is the definition of a precise, formal semantics for the modelling constructs. In
principle, the modelling constructs of i* have been defined using formal descriptions
and meta-modelling diagrams. These definitions are useful for expert analysts in early
requirements. However, for those who are not experts in i*, these definitions do not
provide the necessary, precise support to determine which modelling construct to use
when. This problem can also be noted in the i* literature. There are several examples
where very similar settings have been modelled using different primitives.

It is also possible to find in the literature examples of dependencies that do not
satisfy the basic semantics of an actor dependency (vulnerable actor, actor who
decides how to fulfil the dependency, type of dependum). For example, we found
cases where the dependee of a dependency was incorrectly used as the vulnerable
actor, instead of the depender. In another example, we found cases where the

522 H. Estrada et al.

dependee of a dependency was incorrectly treated as the actor who prescribes the
actions to perform for a delegated task (task dependency), instead of following the
guidelines of always placing the depender as the actor that prescribes a task
dependency. As a consequence of these situations, it is difficult to ensure that a
reasonable degree of repeatability is achievable with i*.

Figure 3 shows an example of these repeatability problems. In this example, taken
from the Golf tournament management case study, the process for “Pay for
registration of in tournament” was represented in two different ways by the
participating analysts: either as a task dependency, where the focus was placed on the
activity to be executed; or as a resource dependency, where the focus was placed on
the payment, which was viewed a concrete resource relating the actors involved.

payment

Register in the
Tournament

Golfer
Participate in

the Tournament

Pay for
the register

Obtain
payment

Register Golfers
Participate in

the Tournament

Register

GTO Golfer

Pay for the
registration

Register Golfers GTO

Obtain
payment payment

Register in the
Tournament

Golfer
Participate in

the Tournament

Pay for
the register

Obtain
payment

Register Golfers
Participate in

the Tournament

Register

GTO Golfer

Pay for the
registration

Register Golfers GTO

Obtain
payment

Fig. 3. Example of two different representations for a given single process

4) Feature: Complexity Management. Evaluation: Not Well Supported
Explanation: In the current version of i*, it is possible to analyze an enterprise model

using two different viewpoints: the strategic dependency model and the strategic
rationale model. These viewpoints are useful for small cases, but they are not adequate
for dealing with large and complex problems. There are no mechanisms for defining a
high-level view of the whole process executed in the enterprise. This high-level view
would be properly decomposed following a model-within-a-model strategy, where
lower level descriptions are created separately, incorporating all relevant detail.

The limitation in the mechanisms that are provided for managing the system
complexity make modelling in i* unnecessarily complicated. The lack of hierarchies
leads to problems such as: a) it is difficult to determine where to start the analysis; b)
it is difficult to determine the elements of the model that correspond to each
organizational process and/or unit. The lack of hierarchies produces models where
several business processes are represented and mixed all together in the same
diagram, without any indication of the ownership of each low-level activity nor any
information about the boundaries of each individual process (Figure 4).

5) Feature: Expressiveness. Evaluation: Well Supported
Explanation: There was unanimous agreement among all participants in this

experiment that i* indeed provides a very interesting set of conceptual primitives that
make it possible to build pure organizational models on top of conventional
requirements ones (mostly, use case-based models). Analysts also agreed on the
importance of linking early requirements and late requirements, as a way of connecting
software engineering practices with organizational design tasks that are too often
performed in isolation by consultants.

 An Empirical Evaluation of the i* Framework 523

The i* framework was deemed adequate for capturing the relevant concepts of the
enterprise, providing mechanisms for representing: a) the social structure of the
enterprise, b) the intentional aspects of the organizational actors, c) the activities
needed to satisfy the goals of the business actors, d) the relevant resources in the
business processes, e) the ability to represent roles, positions and agents to describe
the organizational actors, f) the architecture of the enterprise and g) the interaction
between the system and external agents.

Organizational
Process 1

Organizational
Process 2

Organizational
Process 3

…

Actor

Actor

Actor

Actor

Organizational
Process 1

Organizational
Process 2

Organizational
Process 3

…

Actor

Actor

Actor

Actor

Fig. 4. Representation of different processes in the same diagram

These conclusions account for the difference between i* and other modelling
techniques, which are not as well equipped to represent the social and intentional
reasons that underlie the operation of an enterprise. The empirical evaluation allowed
us to demonstrate that building an i* organizational model is very useful for detecting
the following problems:

Bottlenecks: This is the case when an actor concentrates a large number of incoming
dependencies from other organizational actors. In this case, a failure or delay in this
organizational actor could cause a chain reaction in the entire enterprise. The
bottleneck problem could be detected by analyzing the dependencies where an actor
plays the role of dependee of several dependency relationships. We are not aware of
other modelling frameworks that account for this kind of analysis.

Vulnerabilities: One of the key advantages of i* is the explicit representation of
vulnerabilities of organizational actors. In this case, if an actor participates in too
many dependencies as depender, this actor could then become vulnerable if any of the
dependee actors fail to deliver on their respective dependencies.

Critical Responsibilities: This is the case where an actor concentrates many goal
dependencies, which indicate that the actor has many critical responsibilities in the
business process. In this case, it may be that the actor has excessive responsibilities
and needs help, or at least monitoring.

The explicit representation of these organizational situations is the basis for
performing a useful business process reengineering analysis.

524 H. Estrada et al.

6) Feature: Traceability. Evaluation: Not Well Supported
Explanation: i* provides modelling flexibility for adding elements to individual

dependency and/or rational models. This means that new dependencies can be added to
a rationale model that were not previously considered in the corresponding dependency
model (Figure 5), and vice versa. This is sometimes useful with respect to modelling
flexibility. However, it is also true that this could have negative effects for model-driven
approaches, where the elements of a model must have counterparts in previous models.
We conclude that i* does not have precise guidelines for deriving each element of the
dependency model from corresponding elements in the rationale model4.

ActorActor

…

Actor

Actor

…

…
…

Actor

Actor

Actor

??

??

??

??

ActorActor

…

Actor

ActorActor

…

Actor

Actor

…

…
…

Actor

Actor

Actor

??

??

??

????

??

??

??

??

Fig. 5. Representation of problems of traceability

7) Feature: Reusability. Evaluation: Not Supported
Explanation: i* does not offer clear mechanisms for properly managing reusability

of parts of an organizational model. As mentioned earlier, the lack of good reusability
capabilities is a consequence of the absence of mechanisms for modularization. The
lack of conceptual building blocks with the required granularity makes it very
complicated to reuse certain fragments of a model. Moreover, i* lacks view definition
mechanisms (in the sense of database views) for selecting parts of a monolithic model
that capture new viewpoints.

As a consequence of this weakness, modelling projects using i* must too often start
from scratch, without taking advantage of previous projects for similar domains.

8) Feature: Scalability. Evaluation: Not Supported
Explanation: This is probably the best-known and widely acknowledged problem

of i*. There are simply no clear mechanisms for managing the scalability of strategic
models in i*.

For small problems i* clearly works fine. However, when the modelling problem
grows in size and complexity, the large number of elements represented in the same
diagram makes their systematic use and analysis very complicated, when not
completely impossible. The scalability problem is also a direct consequence of the
lack of mechanisms for modularization, and the inability to put together an abstract
view of the high-level business processes of an enterprise. Consequently, all
modelling elements for representing the semantics of a specific business process must

4 Tropos [2] supports such a process that ensures that each element of every dependency model

has counterparts in some rational model, and vice versa.

 An Empirical Evaluation of the i* Framework 525

be placed in the same diagram. Figure 6 shows an example of the high number of
modelling elements in a diagram for only a fragment of a business process. And this
is a very small fragment of the case study.

In summary, the lack of mechanisms for managing scalability is one of the greatest
problems for the real applicability of i* modelling.

9) Feature: Domain applicability. Evaluation: Well Supported
Explanation: i* has an ontology and a corresponding notation that we found well

suited for organizational modelling. It is also appropriate for the analysis of late
requirements. The conceptual primitives are expressive enough to be applied in
different domains, and they are appropriate for expressing properties that an
organizational model must include. The semantics of the social concepts could also be
applied, for example, to present dependencies within and between communities of
systems, or even to represent the dependencies between an information system and its
stakeholders.

acceptation/
rejection

customer
dataanalyze the

client data

analyze
customer

credit
reference

notification of
the client

bank credit

client
data

communicate
the result

wait for
the result

analyze the own
preconditions

register the
car rented

delivery
invoice

register the
payment

car can
be rented

borrow car to
other offices

analyze car
availability

obtain
rent data

inform the
availability

analyze car
availability

analyze
availability in
the office

analyze
availability
In other
offices

obtain
car data

data

answer for
availability

delivering
the car

deliver
car keys

deliver
the car

obtain
date

car

car
keys

invoice

payment

Car data

renting
dates

rent a
car

provide
data

provide
car data

obtain
invoice

pay

Select
company

determine
date for
renting

select
a car

obtain
the car

receive
car keys

receive
car

analyze
alternatives

provide
data for
renting

provide
date

rent a
car

Rental
car

Company

Bank

Customer

Associated
Branches

obtain Bank
credit

reference

renting a car
without

reservation

formalize
the renting

acceptation/
rejection

customer
dataanalyze the

client data

analyze
customer

credit
reference

notification of
the client

bank credit

client
data

communicate
the result

wait for
the result

analyze the own
preconditions

register the
car rented

delivery
invoice

register the
payment

car can
be rented

borrow car to
other offices

analyze car
availability

obtain
rent data

inform the
availability

analyze car
availability

analyze
availability in
the office

analyze
availability
In other
offices

obtain
car data

data

answer for
availability

delivering
the car

deliver
car keys

deliver
the car

obtain
date

car

car
keys

invoice

payment

Car data

renting
dates

rent a
car

provide
data

provide
car data

obtain
invoice

pay

Select
company

determine
date for
renting

select
a car

obtain
the car

receive
car keys

receive
car

analyze
alternatives

provide
data for
renting

provide
date

rent a
car

Rental
car

Company

Bank

Customer

Associated
Branches

obtain Bank
credit

reference

renting a car
without

reservation

formalize
the renting

Fig. 6. Fragment of the car renting process in the Car Rental Management case study

6 Discussion

The main conclusion of this empirical evaluation is that i* needs to be extended with
mechanisms that manage granularity and refinement in models, as discussed below:

Granularity: Many of the negative results in the evaluation of i* are related to the
lack of mechanisms for defining granules of information at different abstraction
levels, and composition mechanisms for composing these granules. This problem
becomes evident when the modelling problem grows in size and complexity. In these
cases, non-expert i* users have difficulties with the scalability of their model. The
result of this scenario is usually an overloaded monolithic model that contains all

526 H. Estrada et al.

relevant detail of a social and intentional setting. Any activity that tries to extend,
analyze, adapt or reuse parts of such a model is bound to be complicated and error-
prone. To avoid this problem, it is necessary to provide precise conceptual constructs
representing building blocks that break the monolithic structure of i* models, as well
as composition mechanisms. Then, encapsulated model units could be created,
analyzed and reused in an independent way. The practical implication of the
granularity solution is the introduction of viewpoints that go beyond the actor
viewpoint. For example, process viewpoints could give an orthogonal view for an
organizational model. Note that for this extension, no modifications are needed to the
original set of i* modelling constructs.

Refinement: Apart from the definition of abstract primitives as building blocks, analysts
must be provided with guidelines that allow them to structure a complete enterprise model.
One way to achieve this consists of using concrete specification units to create the models
following a refinement-based approach. In this way, the modelling process starts with a
high-level view of the enterprise. Then, each element of this high-level view is refined into
more concrete model. Viewpoint mechanisms are a very promising direction to help
manage the complexity of modelling activities. A viewpoint on a system involves a
perspective that focuses on specific concerns regarding the system, while suppressing
irrelevant details [9]. A promising strategy towards this direction would be to guide the
organizational modelling process using selected viewpoints. The refinement process
enables us to join the advantages of social modelling with a compositional approach to
create the organizational models in an incrementally way.

7 Conclusions

The i* modelling framework is widely used for organizational modelling. The
framework focuses on strategic relationships between actors in order to capture the
social and intentional context of an enterprise. The main contribution of this paper
consists of an empirical evaluation of i*, using a feature-based evaluation framework
and three industrial case studies. The evaluation has demonstrated that there is a set of
issues that need to be addressed by the i* modelling framework to ensure its successful
application within industrial software development projects. These issues boil down to a
lack of modularization mechanisms for creating and structuring organizational models.

We propose to extend i* in order to address the weaknesses reported in this paper.
Specifically, we are working on a solution for the problems of refinement, modularity,
complexity management, reusability and scalability. Our solution is founded on the
concept of a Business Service Architecture where organizational units can be
encapsulated can only participate in actor dependency networks through well-defined
interfaces. Along a different direction, we are developing a proposal to characterize i*
modelling primitives based on a multidimensional framework. This makes it possible
to clearly differentiate the modelling primitives of i*, so that modellers get better
guidance on what primitives to use in different situations. With the proposed
modifications, our intention is to overcome the current limitations that practitioners
face when using i* in its current state. In fact, these modifications are intended to both
solve the problems that were detected and to make the practical application of the

 An Empirical Evaluation of the i* Framework 527

method easier. It certainly is necessary to evaluate whether these conclusions can be
generalized in practice, and this is the direction of our current empirical work.

References

1. Bergenti, F., Gleizes., and Zambonelli, F. Methodologies and Software Engineering for
Agent Systems. Kluwer Academic Publishing, 2004.

2. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., and Mylopoulos, J. TROPOS: an
agent-oriented software development methodology. Journal of Autonomous Agents and
Multiagent Systems, 8 (3): 203-236, July 2004.

3. Dam, K., and Winikoff, M. Comparing Agent-Oriented Methodologies. Proceedings of the
Fifth International Bi-Conference Workshop on Agent-Oriented Information System
(AOIS 2003), pages 78-93. Melbourne, Australia, July, 2003.

4. Liu, L., and Yu, E. Designing Information Systems in Social Context: A Goal and
Scenario Modelling Approach. Information Systems Journal, 29(2): 87-203, 2003.

5. Mavin A., and Maiden N.A.M., 2003, Determining Socio-Technical Systems Requirements:
Experiences with Generating and Walking Through Scenarios, Proceedings of the 11th
International Conference on Requirements Engineering, pages 213-222, California, USA,
September, 2003.

6. Padgham, L., Shehory, O., Sterling, L., and Sturm, A. “Methodologies for Agent-Oriented
Software Engineering”. Seventh European Agent System Summer School (EASSS 2005),
Utrecht, the Netherlands, 2005.

7. Pastor, O., Gómez, J., Infrán, E., and Pelechado, V. The OO-Method approach for
information systems modeling: from object-oriented conceptual modeling to automated
programming. Information Systems, 26(7): 507-534, 2001.

8. Shehory, O., and Sturm, A. Evaluation of modeling techniques for agent-based systems.
Proceedings of the Fifth International Conference on Autonomous Agents, pages 624-631.
Montreal, Canada, May, 2001.

9. Sinan, S. Understanding the Model Driven Architecture (MDA). From
http://home.comcast.net/~salhir/UnderstandingTheMDA.PDF. October, 2003.

10. Sturm, A., and Shehory, O. A Framework for Evaluating Agent-Oriented Methodologies,
Proceedings of the Fifth International Bi-Conference Workshop on Agent-Oriented
Information System (AOIS 2003). Melbourne, pages 94-109. Australia, July 2003.

11. Sturm, A., Dori, D., and Shehory, O. A Comparative Evaluation of Agent-Oriented
Methodologies, to appear in Methodologies and Software Engineering for Agent Systems,
Federico Bergenti, Marie-Pierre Gleizes, Franco Zambonelli (eds): Kluwer Academic
Publishers.

12. Sudeikat, J., and Braubach, L., and Pokahr, A & Lamersdorf, W. “Evaluation of Agent-
Oriented Software Methodologies Examination of the Gap between Modeling and
Platform”. Workshop on Agent-Oriented Software Engineering (AOSE-2004). New York,
USA, pp. 126-141, July, 2004.

13. Yu, Eric. “Modelling Strategic Relationships for Process Reengineering”. Published
Doctoral dissertation, University of Toronto, Canada, 1995.

E. Dubois and K. Pohl (Eds.): CAiSE 2006, LNCS 4001, pp. 528 – 543, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Towards an End-User Development Approach for Web
Engineering Methods

Pedro Valderas, Vicente Pelechano, and Oscar Pastor

Department of Information System and Computation,
Technical University of Valencia, Spain

Cami de Vera s/n 46022
{pvalderas, pele, opastor}@dsic.upv.es

Abstract. End-users who are nonprogrammers create web applications by using
advanced web development tools. However, these tools are not supported by any
methodological process which produces that web applications are of low quality.
This paper presents an approach to bring web engineering principles to the end-
user community. We complement the web engineering method OOWS with tools
that allow end-users to develop web applications by: (1) describing web
applications in terms of the end-users’ knowledge about the application domain,
(2) automatically obtaining a web application prototype by means of the OOWS
code generation strategy, and (3) personalizing the web application look and feel
by simply selecting a design template. To achieve this, an ontology-based strategy
is introduced to support end-users throughout the web application development.
We also introduce a strategy that allows us to define domain-independent
presentation templates.

1 Introduction

Many advanced web-development tools are continuously being put on sale in the
software marketplace. In this context, the creation of web applications has ceased to
be an activity for web professionals only. End-users who are nonprogrammers are
becoming web developers and are creating web applications. End-user tools [3] allow
users with little or no programming knowledge to create web applications by means
of mechanisms that facilitate the creation of common web page components (at the
design level). However, there is no methodological process behind these tools, and end-
users do not have the necessary training and experience to develop web applications.
Therefore, their web applications are of low quality. W. Harrison refers to this problem
as “The Danger of End-User Programming” [4]. In addition, end-users do not have the
ability to identify correct and complete web application requirements, which generates
web applications that do not always support real end-user needs. All these problems are
caused, in part, because the web engineering community [1] does not properly consider
end-user development (although authors such as G. Fisher consider it the future of
software development [5]). We believe that the web engineering foundations can be
brought to the end-user community with an appropriate method and the right tools,

 Towards an End-User Development Approach for Web Engineering Methods 529

preserving the intrinsic complexity of a web application development process, but
making it possible for end-users to participate adequately in such a process.

In this work, we present an approach to give support to the end-user development from
a web engineering perspective. This approach allows end-users with no programming
knowledge and with no web design expertise to develop small and medium-size web
applications according to web engineering principles. We define a development process
for end-users based on the web engineering method OOWS [6] [7]. This method is
based on the principles defined by the Model-Driven Development (MDD) [8] and
allows us to automatically obtain fully operative web application prototypes from a
requirements specification. We complement the OOWS method with tools that allow
end-users to develop web applications by: (1) describing web applications in terms of
the end-users’ knowledge about the application domain, (2) automatically obtaining
an OOWS requirements specification from their description and then generating a
web application prototype and (3) personalizing the web application look and feel by
simply selecting the most suitable design template from a list of predefined ones. To
achieve this, an ontology-based strategy is introduced to give support to end-users
throughout the task of developing web applications. We also introduce a strategy that
allows us to define domain-independent presentation templates.

Thus, the contributions of this work are:

(1) We properly introduce end-users in a web engineering development process.
This provides them with the benefits of the development that is based on
engineering principles.

(2) We provide support for developing web applications to those end-users that are
experts at a web application domain but have neither programming knowledge
nor web design expertise.

(3) We also provide end-users with a method for automatic prototyping (based on
the OOWS code generation strategy) that allows them to achieve tasks of testing
(over the prototype obtained by the OOWS method).

The rest of the paper is organized as follows: Section 2 presents the related work in
web engineering and end-user development. Section 3 introduces an end-user
development method based on OOWS. Sections 4, 5 and 6 introduce the tools that
give support to this method as well as the OOWS code generation strategy. Finally,
conclusions and further work are comment on in Section 6.

2 Related Work

Two different research areas that are focused on web application development are
studied. On the one hand, the web engineering community has proposed many
different semi-formal approaches (see e.g. OOHDM [10], WSDM [12], WebML [14])
and others based on more formal foundations (see e.g. Schewe et al. [15]) to provide
methodological solutions for web application development. These approaches provide
analysts with different models to define web applications at a high level of abstraction.
Most of these approaches have implemented tools to support their methods. The
problem of web engineering approaches is that they provide several abstractions that
are difficult for non-professional web developers to understand.

530 P. Valderas, V. Pelechano, and O. Pastor

On the other hand, several commercial tools such us Microsoft Frontpage [16]
Macromedia Dreamweaver [17] or CodeCharge [18] have been developed to allow
end-users to design web applications. Most of these end-user tools present problems
when a novice wants to use them. For instance, simple tasks such as implementing the
look and feel of the web application become difficult when they have to use HTML-
flow-based positioning instead of the more intuitive pixel-based positioning. In
addition, none of these tools addresses the entire process of web application
development since they mainly focus on graphical design tasks. In order to solve
these problems, several approaches that define end-user development as a new
research topic have emerged. Tools such us WebFormulate [19], FAR [20],
WebSheets [21] or Click [22] provide end-users with mechanisms that facilitate the
task of creating a web application. These mechanisms are mainly based on drag and
drop techniques as well as spreadsheet concepts or rule-based programming.
However, although these tools make the creation of web applications easier, they still
require experienced end-users.

3 An End-User Development Method Based on OOWS

We propose an end-user development process based on OOWS, a web engineering
method. The OOWS development process is based on the principles defined by MDD
and allows us to automatically obtain fully operative web application prototypes from
the requirements specification (See [6] and [7] for detailed information).

Fig. 1. The end-user development process based on OOWS

The OOWS development process is automatically achieved, and we think that it
can be fully transparent to end-users if we provide them with the right tools. Thus, in
this work we complement OOWS with the following end-user tools (see Figure 1):

− End-user requirements elicitation: This tool queries end-users by means of a guided
process to systematically obtain what they want and specify it (transparently) as an
OOWS requirements specification. Next, a web application prototype is automatically
obtained from this specification by following the OOWS development process.

− End-user look and feel design: This tool allows end-users to define the aesthetic
aspects (such as colours, font size and face, or element positions) of the web

 Towards an End-User Development Approach for Web Engineering Methods 531

application prototype obtained by the OOWS method. To do this the tool allows
end-users to select the most suitable presentation template (according to their
preferences) from a set of templates stored in a repository. Next, the selected
presentation template is applied in the web application prototype to obtain the final
web application.

The main benefits of this end-user development process are the following:

- Programming knowledge and web design experience are not required for end-users.
The End-user requirements elicitation tool hides the complexity of programming
software. The look and feel design tool allows end-users to apply pre-designed
presentation templates.

- The OOWS automatic code generation strategy avoids what W. Harrison calls “The
Danger of End-User Programming” [4]: software of low quality is obtained when
people with little or no experience use the web programming languages that are in
“fashion” (such as PHP, ASP or Perl).

- Web applications are implemented according to web engineering principles
(following the OOWS development process).

- Proximity to the end-user mental model. End-users develop web applications by
describing what they want (the requirements of the system) which is closer to the
user’s own experiences and goals.

- Clear separation of layout and behaviour. End-users can focus first on what the
system must do and then on what the application look and feel must be.

- Easy to extend. If users require a new functionality, they simply need to describe
the new requirements by means of the requirements elicitation tool.

4 The End-User Requirements Elicitation Tool

The End-user requirements elicitation tool targets end-users who want to develop
small and medium-size web applications and who have neither programming
knowledge nor web design experience. This tool hides the complexity of defining an
OOWS requirements specification from end-users by means of the following steps:

1. Web Application Type Recognition. The requirements elicitation tool requests
end-users to briefly describe the web application using natural language. Next,
the tool attempts to recognize the web application type from this description. The
tool extracts information from the end-user description and matches the
information against known type ontologies to find the proper ontology.

A type ontology defines concepts and relationships between concepts that
describe the main features of web applications of a specific type (such as
E-commerce applications, web portals, directories, etc). These features represent
general features that are shared by every web application of the same type (e.g. E-
commerce applications must allow users to purchase products).

2. Web Application Description. There exists information that is needed to obtain a
full web application description and cannot be systematically extracted from type
ontologies. This information is related to domain-dependent features such as the
kinds of products that must be on sale in an E-commerce application (e.g. CDs,
DVDs, Books, etc.).

532 P. Valderas, V. Pelechano, and O. Pastor

3. The tool checks the recognized web application ontology to detect this missing
information and asks end-users for it by means of questions patterns. A question
pattern defines an abstract interface to query end-users about domain-dependent
information. Question patterns are type-independent and can be used with any
type ontology. The set of applied question patterns defines a wizard that end-
users interact with to describe the web application.

4. Requirements Specification Generation. First, the tool defines a preliminary
version of the requirements specification from the features defined in the type
ontology. Next, this specification is progressively refined from the end-user
information. To do this, we propose a generation strategy that is based on a set of
high-level operations defined from the elements of the OOWS requirements
specification meta-model.

4.1 Web Application Type Recognition

The goal of this step is to determine what type of web application must be developed.
As commented above, we use type ontologies to achieve this goal. These ontologies
are presented in Section 4.1.1. Section 4.1.2 introduces the strategy to determine
which ontology matches the end-user’s web application description.

4.1.1 Type Ontology
A type ontology specifies the concepts and the relationships between concepts that
represent a web application of a specific type (E-commerce applications, web portals,
directories, etc). To determine the different web application types, we have used the
categorization proposed in [24]. We use the OWL language [2] to define a type
ontology. Figure 2 shows a partial view of the type ontology for E-commerce
applications1. This ontology defines concepts such as On-Line Purchase, Shopping
Cart, or Products (concepts that characterize E-commerce applications).

To define ontologies of this kind, we use the approach presented by Al-
Muhammed et al [9]. According to this approach, two kinds of concepts can be
defined, namely lexical concepts (enclosed in dashed rectangles) and nonlexical
concepts (enclosed in solid rectangles). A concept is lexical if its instances are
indistinguishable from their representation. Date (see Figure 2) is an example of
lexical concept because its instances (e.g. “21/05/2005” and “04/09/2004”) represent
themselves. A concept is nonlexical if its instances are object identifiers, which
represent real-world objects. User (see Figure 2) is an example of nonlexical concept
because its instances are identifiers such as “ID1”, which represents a particular
person in the real world who is a user. The main concept in a type ontology is marked
with “->•”. We designate the concept On-line Purchase in Figure 2 as the main
concept because it represents the main purpose of an E-commerce application.

1 In practice, we would need a richer ontology for E-commerce Applications. For instance,

other kinds of on-line purchases such as second hand purchase must also be defined.
Relationship restrictions must also be defined (i.e. we must be sure that a user has a shopping
cart assigned only in the case of a direct purchase). We have limited our ontology to those
concepts that allow us to introduce a representative example.

 Towards an End-User Development Approach for Web Engineering Methods 533

Fig. 2. Type ontology for E-commerce Applications

Figure 2 also shows a set of relationships among concepts, represented by
connecting lines, such as Product has Property. The arrow connection represents a
one-to-one relationship or a many-to-one relationship (the arrow indicates a
cardinality of one), and the non-arrow connection represents a many-to-many
relationship. For instance, Auction offers Item is a many-to-one relationship (i.e. in
each auction only an item can be offered but an item can be offered in several
auctions) and Product has Property is a many-to-many relationship (i.e. a product can
have several properties, and a property can be defined for several products). A small
circle near the source or the target of a connection represents an optional relationship.
For instance, it is not obligatory for a category to belong to another category. A
triangle in Figure 2 defines a generalization/specialization with a generalization
connected to the apex of the triangle and a specialization connected to its base. For
instance, Direct Purchase is a specialization of On-Line Purchase.

Finally, we have extended this notation by introducing abstract concepts. An
abstract concept is a concept that depends on the domain of the web application and
must be instantiated by end-users. For instance, Product is an abstract concept
because we know that every E-commerce application must allow users to purchase
products; however, we do not know what kind of products they are (they can be CDs,
Books, software, etc.). This information depends on the E-commerce application
domain and must be instantiated by end-users. These concepts are marked with a
vertical line on the right side (see Figure 2, concepts Product, Property and
Category).

4.1.2 Recognising Type Ontologies from End-User Descriptions
In order to describe a web application, as a first step, the requirements elicitation tool
requests end-users to introduce a brief description (in natural language) of the web

534 P. Valderas, V. Pelechano, and O. Pastor

application. Figure 3 shows the description of a small E-commerce application like
Amazon (which is used as a running example in the rest of the paper).

The tool uses this description to determine which type ontology matches the web
application that end-users want to develop. To do this, we use a technique based on
data frames [13]. The data frame approach allows us to describe information about a
concept by means of its contextual keywords or phrases, which may indicate the
presence of an instance of the concept. Although the data frame approach proposes
the specification of other information (such as external and internal representations,
operations that transform between internal and external representations, etc.) to fully
describe a concept, it is not necessary for our purpose (to recognise the web
application type).

Fig. 3. Brief description of a Web application

We define data frame contextual information for web application types. The tool
uses this contextual information to recognize the web application type and select the
proper ontology. For instance, Figure 4 shows the contextual keywords and phrases
that we associate to E-commerce applications. The tool can determine that end-users
want to develop an E-commerce application if words such as on-line sale, product, or
shopping cart appear in the end-user description.

E-commerce
...
context keywords/phrases: on-line purchase | on-line sale | on-line shopping |

add to cart | purchase order | user can buy | shopping cart |...
...
end

Fig. 4. Context information for the E-commerce type recognition

4.2 Web Application Description

Once the type ontology has been identified, we know the main features of the web
application. However, to obtain a full web application description, the tool needs
information that cannot be systematically extracted from a type ontology. This
information must be introduced by end-users and is the following:

 Towards an End-User Development Approach for Web Engineering Methods 535

− Abstract concepts. As commented above, abstract concepts must be instantiated by
end-users (e.g. we define that an E-commerce application must allow users to
purchase products, but we do not define the kind of products).

− Relationships between abstract concepts. If a relationship connect two abstract
concepts, end-users must indicate which instances are related (after instantiate both
abstract concepts).

− Specialized concepts. Specializations define different kinds of a same concept. For
example, in the E-commerce ontology (see Figure 2), an E-commerce application
can provide two kinds of on-line purchases, direct purchases or auctions. The tool
does not have enough information to decide which option use. End-users must take these
decisions.

Fig. 5. A question pattern and the HTML interface obtained from it

To ask end-users for this missing information, the tool checks the selected type
ontology and looks for abstract concepts, relationships between abstract concepts, and
specialized concepts. When the tool finds one of these elements, it selects the proper
question pattern. A question pattern defines an abstract interface to ask end-users for
the missing information. We have defined question patterns for query end-users about
abstract concepts, relationships between abstract concepts, and specialized concepts.
To do this, we use a strategy based on the Abstract Data View (ADV) design
approach [25]. Figure 5A shows the definition of the question pattern associated to
specialized concepts. According to this pattern, the tool must provide end-users with a
list of options (the different specializations) in order to allow them to select one
(check list). Notice that this pattern attaches an example to each specialization in
order to help end-users to take the decision. To allow the tool to work with these
definitions, they are stored in XML documents.

The tool uses the selected question patterns to automatically implement a wizard
that end-users interact with to describe the web application. We have developed a
strategy that allows the tool to automatically obtain HTML-Based wizards from
question patterns (see Figure 5B). First, the tool reads each question pattern from the
XML document. Second, the tool instantiates the question patterns to the corresponding
type ontology concept (question pattern terms that are represented between brackets
are replaced by ontology concepts). Third, the tool applies an XSL transformation to

536 P. Valderas, V. Pelechano, and O. Pastor

obtain HTML code. Finally, the tool executes the wizard to allow end-users to
introduce information. The entire process is completely transparent to end-users.

Figure 5B shows the HTML interface that allows us to select the on-line sale type
of the running example. It has been implemented by instantiating the concept On-Line
Sale into the question pattern associated to specialized concepts (see Figure 5A). To
fully describe the E-commerce application of the running example, we must answer
additional questions, such as what products must be on sale, what properties each
product must have, what kind of identification must be implemented, whether or not
products must be categorized, etc.

This wizard allows end-users to introduce features that depend on the specific web
application domain. This information, together with the features of the application
type (defined in the type ontology), allows the tool to obtain a full description of the
web application. This description is defined as a view over the selected type ontology
where abstract concepts (e.g. Product, see Figure 2) are replaced by their
instantiations (e.g. CD, see Figure 6) and relationships among abstract concepts are
replaced by relationships among instantiations (e.g. Product has Property has been
replaced by CD has Title, see Figures 2 and 6). Moreover, specialized concepts (e.g.
On-line Purchase, see Figure 2) are replaced by the selected specializations (e.g.
Direct Purchase, see Figure 6). The specializations that have been rejected
(e.g. Auction, see Figure 2) are pruned. Their relationships (e.g. Auction has Property
see Figure 2) and the concepts related to them by means of arrow connections (e.g.
Item, see Figure 2) are also pruned.

Figure 6 shows a partial view of the description that we obtain from our running
example. According to this figure, our E-commerce application allows users to purchase
CDs and books through a direct purchase. A shopping cart is available, and users must
identify themselves before proceeding with the payment (checkout identification).

Fig. 6. Final description (partial) of the running example

4.3 Requirements Specification Generation

In this section, we introduce the requirements specification generation step. In this step,
the tool obtains an OOWS requirements specification from an end-user web application
description. First, we briefly explain the main elements of an OOWS requirements
specification. Next, we explain the strategy to obtain it from the end-user description.

 Towards an End-User Development Approach for Web Engineering Methods 537

4.3.1 Understanding an OOWS Requirements Specification
To define an OOWS requirements specification we must create first a task taxonomy
(see Figure 7, zone 1). The task taxonomy specifies in a hierarchical way the tasks
that users should achieve when interacting with the web application.

Fig. 7. An OOWS requirements specification

Once the task taxonomy is defined, each leaf task is described by analyzing the
interaction that users require from the web application. To do this, a strategy based on
activity diagrams is proposed (see Figure 7, zone 2). Each activity diagram is defined
from system actions (nodes depicted by dashed lines) or interaction points (nodes
depicted by solid lines) that represent the moments during a task where the system
and the user exchange information.

Finally, we must specify a set of information templates where the information that
the system must store is described (see Figure 7, zone 3). We also use these templates
to describe the information exchanged in each interaction point in detail. See [26] for
more detailed information about the OOWS requirements specification.

4.3.2 Obtaining an OOWS Requirements Specification
To obtain an OOWS require-ments specification we extend our type ontologies by
augmenting each concept with a generation action. A generation action describes a
sequence of high-level operations what are based on the elements of the OOWS
requirements specification meta-model. Taking into account that OOWS requirement
specifications are stored in XML documents, these operations allow us to create OOWS
requirements specification by generating the proper XML code. We have defined
operations such as createTaxonomy, decomposeTask, addIP, createTemplate, etc.

Generation actions are associated to type ontology concepts in order to give
support to any web application of a specific type. For instance, the type ontology for
E-commerce applications presents concepts whose generation action gives support to
buy products by means of auctions as well as by means of a direct purchase.
However, final web application descriptions do not present every feature defined in
the type ontology. For example, the E-commerce application of our running example

538 P. Valderas, V. Pelechano, and O. Pastor

must only provide support to the direct purchase. Thus, in order to obtain a correct
OOWS requirement specification not all generation actions of a type ontology must
be achieved. The tool must decide which generation action is considered from the
final web application description. Taking into account that web application
descriptions are defined as views over type ontologies (see Figure 6), the tool follows
these rules:

- Generation actions of concepts that have been pruned in the final description are not
considered. For example, the generation action of the concept Auction (see Figure
2) is not relevant because this concept has been pruned (see Figure 6).

- Concepts that replace a specialized concept inherit the generation action of the
specialized concept and extend it. For instance, the generation action of the concept
Direct Purchase (see Figure 6) is defined from the high-level operations of the
concept On-Line Purchase (specialized concept, see Figure 2) plus new ones.

- Concepts that represent end-user instantiations adapt the abstract concept generation
action. For example, the generation action of the concept CD (see Figure 6) is
defined from the same high-level operations as the abstract concept Product (see
Figure 2); however, it adapts the operations to use the concept CD instead of the
concept Product.

Figure 8 shows the generation actions associated to the concepts Direct Purchase,
Checkout Identification, Shopping Cart, Book and CD. For each generation action,
Figure 8 only shows the high-level operations that progressively define the task
taxonomy of the running example. The operations that define both the information
templates and the activity diagrams have been omitted due to problems of space.

Fig. 8. Generation action examples

From the concept Direct Purchase, the tool creates the task taxonomy and the
taxonomy root (operations inherited from the specialized concept On-Line Purchase).
This generation action also defines how users must purchase products (collecting
them first, and then making the checkout). From the concept Checkout Identification,
the tool makes users login before handling the payment (in the checkout). The
concept Shopping Cart indicates that the web application must provide users with a
shopping cart. Then, products are collected by adding them to the shopping cart.
Users can also inspect the shopping cart while they are collecting products. Finally,
from the concepts CD and book, the tool knows which products can be added to the
shopping cart.

 Towards an End-User Development Approach for Web Engineering Methods 539

5 Obtaining a Web Application Prototype

As commented above, the OOWS method allows us to automatically obtain a web
application prototype from a requirement specification. First, different model-to-
model transformations are achieved to derive the web application conceptual schema
from the requirements specification. The OOWS conceptual schema is defined from
several models that describe the different aspects of a web application: The system
static structure and the system behaviour are described in three models (class diagram
and dynamic-and functional models) that are borrowed from an object-oriented
software production method called OO-Method [23]. The navigational aspects of a
Web application are described in a navigational model [6].

Next, a strategy of automatic code generation is applied to the web conceptual
schema to obtain code. The information and functionality of the web application is
generated by the Olivanova Tool [11] from the OO-Method models (structural and
behavioural model). The navigational structure of the Web application is generated by
the OOWS case tool following directives specified in design templates [6].

The OOWS development process is automatically achieved, and then, it is fully
transparent to end-users. The web application prototype is generated according to the
information provided by end-users (by means of the end-user requirement elicitation
tool). The aesthetic properties of this prototype are extracted from a default
presentation template. The next section introduces a tool that allows end-users to
easily change the web application look and feel.

6 The End-User Look and Feel Design Tool

The End-user look and feel design tool allows end-users without web design expertise
to define the aesthetic aspects of a web application. To do this, the tool is based on the
area-based OOWS code generation strategy. Thus, before presenting the tool itself,
we briefly introduce this strategy.

6.1 The Area-Based OOWS Code Generation Strategy

The OOWS code generation strategy allows us to obtain a fully operative web
application prototype from a task-based requirements specification. This prototype is
made up of a set of interconnected web pages. OOWS divides each web page into
three main logical areas (see Figure 9A as an example):

− The information area presents the data that is provided to users (see box number 1).
− The navigation area provides navigation meta-information. It is divided into the

next sub-areas:
• Location (see box number 2): Shows the situation of the user (the web page that

is currently being shown).
• Followed Path (see box number 3): Shows the navigational path that has been

followed to reach that page.

540 P. Valderas, V. Pelechano, and O. Pastor

• Navigational Links (see box number 4): Provides links to the web pages that can
be accessed by users.

- The corporative area provides information about the organization such as the name,
the contact email, logo, etc. (see box number 5).

Fig. 9. Logical areas of a web page

Figure 9A shows a web page that provides information about a CD. This page has
been implemented from the requirements specification that we have obtained in
Section 4. Figure 9B shows the HTML code that implements the information area of
this page. This code is based on the <div> label. Each area is defined by means of a
div block. In addition, each div block is divided into sub-blocks that provide us
with a great control to define the aesthetic aspects of web applications. The
information_area block in Figure 9B is divided into two sub-blocks: data, which
defines the properties of the selected CD and operations, which define the operations
that users can activate. Finally, each property is implemented by means of two blocks:
one that defines the property alias (for instance, “Year”) and another that defines the
property value (for instance, “1993”).

The area-based strategy allows us to define general CSS templates. By general
templates, we mean CSS templates whose styles are defined without considering the
web application domain. Styles are not defined by means of domain-specific terms
such as CD, client, or invoice. Styles are defined by means of area-based terms such
as information area, data, or operations. Then, these presentation templates can be
applied to any web application developed by following the OOWS method.

6.2 Allowing End-Users to Define the Web Application Look and Feel

End-users can easily associate presentation templates (defined by means of area-based
terms) to their web applications (developed by means of the end-user requirements
elicitation tool) by means of the End-user look and feel design tool.

Figure 10A shows a snapshot of the End-user look and feel design tool. This tool is
divided into three frames. Frame 1 shows the page tool. This tool provides users with
a list of web pages (depicted by rectangles with the file name) that make up the

 Towards an End-User Development Approach for Web Engineering Methods 541

loaded web application. Frame 2 shows the template tool. This tool provides users
with the list of presentation templates that are stored in a template repository.
Currently, we have defined more than fifty templates that provide end-users with
different presentations. Frame 3 is the rendering zone. In this zone, users can see the
page selected in the page tool with the aesthetic aspects defined by the template
selected in the template tool.

Fig. 10. Look and Feel Design Tool

Thus, the aesthetic aspects of a web application are defined as follows: (1) End-
users load the web application into the End-user look and feel design tool. (2) End-
users select the different presentation templates from the template tool. To see the
look and feel of each web page, they can select it from the page tool. (3) Once the
end-users have decided on a presentation template, the tool automatically associates it
to each web page. Figure 10B shows a web page, which provides a list of movies,
with different look and feel designs.

7 Conclusions and Further Work

We have presented an approach that is based on the OOWS method to bring the web
engineering principles to the end-user community; it focuses specifically on those
end-users that have neither programming knowledge nor web design expertise.

To do this, we have complemented the OOWS method with two end-user tools: (1)
The end-user requirements elicitation, which allows end-users to obtain an OOWS
requirements specification from the description of the application they want, and (2)
the end-user look and feel design, which allows end-users to define the aesthetic
aspects of the web application by simply selecting a presentation template.

As further work, we are studying different kinds of web applications to improve
our type ontologies. We are also defining more templates to provide end-users with a

542 P. Valderas, V. Pelechano, and O. Pastor

wider selection of presentations. Finally, we are extending our approach to define a
multidisciplinary method where end-users can work together with web professionals.

References

1. Muruguesan, S., Desphande, Y. Web Engineering. Software Engineering and
WebApplication Development. Springer LNCS - Hot Topics (2001).

2. OWL Web Ontology Language. W3C Recommendation 10 February 2004. http://www.w3.org/
TR/owl-features/

3. Rode, J., Howarth, J., Perez-Quiñones, M, Rosson M.B. An End-User Development
Perspective on State-of-the-Art Web Development Tools. Virginia Tech Computer Science
Tech Report #TR-05-03.

4. Harrision, W. From the Editor: The Dangers of End-User Programming. IEEE Software
2004, vol. 21 (4). pp 5-7.

5. Fischer, G., et al. Meta Design: A Manifesto for End-User Development, in
Communications of the ACM. 2004. p. 33-37.

6. Fons J., Pelechano V., Albert M., and Pastor O. Development of Web Applications from
Web Enhanced Conceptual Schemas. In ER 2003, vol. 2813 of LNCS. Springer

7. Valderas P., Fons J. and Pelechano V. Transforming Web Requirements into Navigational
Models: An MDA Based Approach. In ER 2005, vol. 3716 of LNCS. Springer.

8. Mellor, S.J., Clark, A.N. and Futagami, T. Model-driven development - Guest editor's
introduction. IEEE Software, 20 (5):14- 18, Sept.-Oct. 2003.

9. AL-Muhammed, M., Embley, D.W., and Liddle, S. Conceptual Model Based Semantic
Web Services. In ER 2005, volume 3716 of LNCS. Springer.

10. D. Schwabe, G. Rossi, and S. Barbosa. Systematic Hypermedia Design with OOHDM. In
ACM Conference on Hypertext, Washington, USA, 1996.

11. Olivanova Model Execution System. Care technologies (www.care-t.com).
12. O. De Troyer and C. Leune. WSDM: A User-centered Design Method for Web sites. In

World Wide Web Conference, 7th International Conference, WWW'97, pages 85-94, 1997.
13. Embley D.W. Programming with Data Frames for every Items. Proceedings of AFIPS

Conference, Anheim, California (1980). 301-305
14. S. Ceri, P. Fraternali, A. Bongio. Web Modeling Language (WebML): a Modeling

Language for Designing Web Sites. In Proc. of the 9th WWW, Elsevier (2000) 137-157.
15. K.-D. Schewe and B. Thalheim. Conceptual modelling of web information systems. Data

and Knowledge Engineering, 2005.
16. Microsoft Front Page 2003. Http://www.microsoft.com/frontpage/.
17. DreamWeaver 8. Http://www.macromedia.com/software/dreamweaver/.
18. CodeCharge Studio. Http://www.yessoftware.com.
19. Ambler, A. and J. Leopold (1998). Public programming in a web world. Visual Languages,

Nova Scotia, Canada.
20. Burnett, M., Chekka S.K., Pandey R. FAR: An end-user language to support cottage e-

services. IEEE Symposia on Human-Centric Computing Languages and Environments,
2001.

21. Wolber, D., Y. Su and Y. T. Chiang (2002). Designing dynamic web pages and persistence
in the WYSIWYG interface. IUI 2002, San Francisco, CA.

22. Rode, J., Bhardwaj, Y., Perez-Quiñones, M, Rosson M.B, Howarth, J. As Easy as “Click”:
End-User Web Engineering. In ICWE 2005, vol. 3579 of LNCS. Springer. 478-488.

 Towards an End-User Development Approach for Web Engineering Methods 543

23. Pastor O., Gomez J., Insfran E., Pelechano V. The OO-Method Approach for Information
Systems Modelling: From Object-Oriented Conceptual Modeling to Automated
Programming. Information Systems 26 (2001) 507-534

24. Ginige, J.A., De Silva B., Ginige A. Towards End User Development of Web Applications
for SMEs: A Component Based Approach. In ICWE 2005, vol. 3579 of LNCS. 489-499.

25. Cowan D.D. and Lucena C.J.P. Abstract Data Views, An Interface Specification Concept
to Enhance Design for Reuse. IEEE Transactions on Software Engineering, Vol. 21(3),
March 1995.

26. Valderas, P., Fons J. and Pelechano V. Developing E-Commerce Application From Task-
Based Descriptions. EC-Web 2005, volume 3590 of LNCS. Springer. 65-75

E. Dubois and K. Pohl (Eds.): CAiSE 2006, LNCS 4001, pp. 544 – 558, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Modeling Volatile Concerns as Aspects

Ana Moreira1, João Araújo1, and Jon Whittle 2

1 CITI/Dept. Informática, FCT, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
{amm, ja}@di.fct.unl.pt

2 ISE Dept., George Mason University, 4400 University Drive, Fairfax VA 22030, USA
jwhittle@ise.gmu.edu

Abstract. A rapidly changing market leads to software systems with highly
volatile requirements. These must be managed in a way that reduces the time
and costs associated with updating a system to meet these new requirements. By
externalizing volatile concerns, we can build a stepping-stone for future man-
agement of unanticipated requirements change. In this paper, we present a
method for handling volatile concerns during early lifecycle software modeling.
The key insight is that aspect-oriented techniques can be applied to modularize
volatility and to weave volatile concerns into the base software artifacts.

1 Introduction

Modern systems should be able to cope gracefully with changes in requirements. A
key barrier to the success of these systems is the time required to deal with require-
ments volatility. As Firesmith [7] says: “The more volatile the requirements, the more
important it becomes for the requirements process to support the quick and easy
modification and addition of requirements.” This paper proposes a novel modeling
method that copes with requirements change by explicitly externalizing volatile con-
cerns. The key insight is that volatility can be handled in the same way as aspects. In
general, volatile concerns may or may not be crosscutting but techniques for modeling
aspects may be reused because both aspects and volatile concerns share the same
basic needs – independency, modular representation and composition with a base
description. By representing volatile concerns using aspect-oriented techniques, vola-
tility is modularized and requirements modifications can be rapidly composed into an
existing system, leading to efficiency gains in handling requirements creep.

Crosscutting concerns (such as security and logging) are properties whose imple-
mentation is scattered among several implementation modules, producing tangled
systems that are tough to understand, difficult to maintain and hard to evolve. Aspect-
oriented software development (AOSD) aims at handling crosscutting concerns by
proposing means to their systematic identification, modularization and composition.

In our approach, both volatile and crosscutting concerns are modeled as aspects by
using extended pattern specifications and are composed using specialized techniques
for pattern specification composition. Pattern specifications (PSs) were proposed in
[8] as a way to formalize reuse of models. Volatile concerns can be modeled as PSs
and then instantiated and composed with base modeling artifacts in a number of

 Modeling Volatile Concerns as Aspects 545

different ways. Requirements change amounts to replacing a pattern specification and
reapplying the composition strategy.

The major contribution of this paper is to demonstrate the value of early externali-
zation of volatile business rules and constraints to support evolution using aspects.
This is achieved by proposing an evolutionary model that includes the concepts of
aspect-orientation and its advantages [10]. This facilitates the introduction and re-
moval of business rules because it is easier to add a new aspect to a running system
than to add a new class or a new method.

The remainder of this paper is structured as follows. Section 2 introduces some
background work. Section 3 gives an overview of our method for modeling volatile
concerns. Section 4 applies the method to a case study. Section 5 evaluates the pre-
sented method according to general and specific criteria. Section 6 discusses related
work and Section 7 concludes the work and suggests directions for further research.

2 Background

Pattern Specifications (PSs). PSs [8] are a way of formalizing the reuse of models. The
notation for PSs is based on the Unified Modeling Language (UML) [13]. A pattern speci-
fication describes a pattern of structure or behavior defined over the roles which partici-
pants of the pattern play. Role names are preceded by a vertical bar (“|”). A PS can be
instantiated by assigning concrete modeling elements to play these roles. A role is a spe-
cialization of a UML metaclass restricted by additional properties that any element fulfill-
ing the role must possess. Hence, a role specifies a subset of the instances of the UML
metaclass. A model conforms to a PS if its model elements that play the roles of the PS
satisfy the properties defined by the roles. Thus, a conforming diagram must instantiate
each of the roles with UML model elements, multiplicity and other constraints. Note that
any number of additional model elements may be present in a conforming diagram as long
as the role constraints are maintained. As in [14], we extend the notion of pattern specifi-
cation from that of [8] by allowing both role elements and concrete modeling elements in
a PS. This provides greater flexibility in reuse as often one may wish to reuse a partially
instantiated model rather than a model only containing role elements.

The Role of Roles. Our approach uses roles to typify concerns in terms of their vola-
tility, genericity and aspectuality. Volatile concerns represent business rules that the
stakeholders would like to be able to change quickly, at any time, depending on the
market demands. Examples of such volatile business rules are “Customers whose
transactions amount to at least five million euros annually are awarded a position on
the company executive board” or “Off-peak customers get a 5% discount”. In tradi-
tional software development approaches, the specification, and consequent implemen-
tation, of these volatile requirements is hard-wired to core modules that cannot be
changed without having to recompile the application. By externalizing these volatile
concerns and specifying them as role elements (or, more generally, role models) we
are offering a mechanism to instantiate each business rule differently whenever
needed (genericity). For example, a volatile concern can be given as a use case role
and later be instantiated to a concrete use case.

Roles are also used to represent crosscutting concerns. The advantage is that the re-
sulting role model can be instantiated and composed differently depending on which

546 A. Moreira, J. Araújo, and J. Whittle

model it crosscuts. In general, both volatile and crosscutting concerns can be modeled
as a PS, and this can be done at multiple levels of abstraction – e.g., a crosscutting use
case can be refined into an APS.

Crosscutting Models. We define an aspect-oriented model to be a model that cross-
cuts other models at the same level of abstraction. This means, for example, that a
requirements model is an aspect if it crosscuts other requirements models; a design
model is an aspect if it crosscuts other design models. In particular, a use case is not
necessarily an aspect. Although a use case always cuts across multiple implementa-
tion modules, it is only an aspect if it cuts across other use cases.

In this paper, we restrict the definition of an aspect-oriented model further and say
that a model is an aspect only if it crosscuts other models written from the same per-
spective. For example, a model showing global component interactions does not,
according to our definition, crosscut a model showing internal component behavior.
Although the models are defined at the same level of abstraction, they are written
from different perspectives – a global and a local perspective. In terms of UML, this
means that we are only interested in crosscuts defined over diagrams of the same type.
We therefore do not consider, for example, sequence diagrams that crosscut state
machines or use cases that crosscut class diagrams.

Composition Models. Keeping separate the definition of the rules that indicate how
base and aspect models are weaved together is as important as representing crosscut-
ting models in a modular fashion. Separating aspects is good for improved modulari-
zation and evolution, and composition is necessary to facilitate reuse of both base and
aspectual models, to understand the overall picture and to reason about the necessary
tradeoffs between conflicting properties.

Composition is achieved through composition rules. These rules weave together
compatible models by means of specific operators. Compatible models are those at
the same level of abstraction and that were built from the same perspective. Composi-
tion operators function as the glue that keeps together aspectual and base models.
They are similar to advices (before, after and around) in AspectJ [10] except that here
operators are specific to UML diagrams.

3 Modeling Volatility

Volatile requirements are business rules that the stakeholders would like to be able to
change quickly, at any time. The key insight is that volatility can be handled in the
same way as aspects, since both concepts share the same basic needs – independency,
modular representation and composition with a base description. By representing
volatile requirements using aspect-oriented techniques, volatility is modularized and
requirements modifications can be rapidly instantiated and composed into an existing
system. Therefore, the process we propose focuses on requirements evolution, where
classification, composition and instantiation form the most important tasks to achieve
the adequate flexibility needed for evolvable systems (see Fig. 1).

The process starts with the identification of the main problem domain concerns (step
1). A concern refers to a matter of interest that the future system needs to address to
satisfy the stakeholders’ needs. Each concern is then classified (step 2) in terms of being

 Modeling Volatile Concerns as Aspects 547

either a service or a constraint and either enduring or volatile. Each concern is described
in terms of its main elements in a template as shown in Tables 1 and 2. Classification
and description of concerns may lead to their refactoring (step 3). Concerns may there-
fore be iteratively identified, classified, described and refactored.

Concerns are represented (step 4) using UML diagrams or pattern specifications.
Enduring services are modeled using UML in the usual way. During this task, cross-
cutting elements in a model, or crosscutting models can be identified. Volatile con-
cerns, crosscutting concerns and constraints are defined as role elements in the
representation models. The representation of these concerns as roles requires that the
original concern definition is modified to become non-specific, thus allowing several
concrete instantiations (step 5).

Concern evolution (step 7) allows new concerns to be identified, classified, refac-
tored and represented, iteratively. At this stage, the outcome of the process is a speci-
fication where core concerns and concern roles are kept separate. Instantiation and/or
composition (steps 5 and 6) can take place at the level of granularity of elementary
concerns or models. While instantiation offers the opportunity to make concrete deci-
sions regarding volatile concerns, which have been marked as role elements, composi-
tion serves to weave the instantiated concerns into a base model consisting of
enduring services. Composition can act as a basis for identifying conflicts solved by
means of trade-off analysis. In this paper we will ignore conflict analysis and focus on
composition using a set of generic directives and a technique similar to the one in [8].

Concern
Identification (1)

Concern Classification
& Description (2)

Concern
Representation (4)

Concern
Evolution (7)

Concern
Refactoring(3)

Model
Instantiation (5)

Model
Composition (6)

Fig. 1. Aspect-oriented evolutionary model for volatile concerns

We now illustrate the process outline in Fig. 1 using an automated transport sys-
tem1 in which transport contractors bid to fulfill passenger transport orders.

3.1 Concern Identification

The identification of concerns starts with the identification of the stakeholders and
follows by inspecting existing documents that describe the problem, existing cata-
logues [2], stakeholders’ interviews transcripts and searching techniques [11].

1 Shuttle system description found at http://scesm04.upb.de/case-study-1/ShuttleSystem-Case

Study-V1.0.pdf

548 A. Moreira, J. Araújo, and J. Whittle

For example, in the automated transport system, passenger orders can be bid on by
all transport contractors and the lowest bid wins. In the event of two lowest bids, the
first arriving bid wins. Successful completion of an order results in a monetary reward
for the shuttle involved. In case an order has not been completed in a given amount of
time, a penalty is incurred. The following two concerns can be identified from this ex-
ample: (C1) Passenger orders can be bid for by all transport contractors and the lowest
bid wins. In the event of two lowest bids, the first arriving bid wins. (C2) Successful
completion of an order results in a monetary reward for the shuttle involved. In case an
order has not been completed in a given amount of time, a penalty is incurred.

3.2 Concern Classification and Description

Concerns are classified according to their type. This depends on two factors: (i) lon-
gevity, which can be enduring or volatile and (ii) conceptual nature, which can be
services or constraints. Enduring concerns are “relatively stable requirements which
derive from the core activity of the organization and which relate directly to the do-
main of the system” [12]. Volatile concerns “are likely to change during the system
development or after the system has been put into operation” [12]. Constraints are
properties that the system must satisfy. Services define functionalities that the system
must offer. This information is collected in a bi-dimensional table (see Table 4) where
each cell contains the list of concerns that satisfy a combination of those two factors.

For example, concern C1 above is a service that might be classified as both endur-
ing and volatile. While the first sentence refers to something stable as it is likely that
shuttles will always have to bid for business in this system, the second implies a
choice process which is likely to change depending on organization policies. This
leads to a natural refactoring of this concern into two separate concerns – one to cap-
ture the enduring part and one to capture the volatile part (cf. section 3.3 below).

Each concern is described in more detail using a template that collects its contex-
tual and internal information. Tables 1 and 2 illustrate the templates for concern C1
(refactored into C1a and C1b). The row “Interrelationships” lists the concerns that a
given concern relates to. (The reader can see [2, 6] on several kinds of relationships.)
A responsibility is an obligation to perform a task, or know certain information.

3.3 Concern Refactoring

Attempts to assign the enduring/volatility categorization lead to a refactoring of the
requirements, thus increasing the granularity. For example, in the automated transport
system example, the concern “(C1) Passenger orders can be bid for by all transport
contractors and the lowest bid wins. In the event of two lowest bids, the first arriving
bid wins.” could instead be represented as two separate concerns – one for the bidding
(C1a) and one for the decision on who wins in the event of two equal lowest bids
(C1b). Identified volatile concerns may be redefined to represent a more generic con-
cern. For example, C1b if originally defined as Choosing From Equal Bids, can be
generalized to Choose Bid. Such a generalization promotes evolution since you may
want to change the bidding policies in the future.

The classification process helps to refactor the list of concerns into a list with con-
sistent granularity level. This is because increased granularity is often needed to be
able to specify the fact that part of a concern is enduring or volatile. As an example,

 Modeling Volatile Concerns as Aspects 549

for concern (C1) above, one would like to say that the first part of the concern (the
bidding process) is enduring whereas the second part (dealing with two lowest bids) is
volatile – one might, for example, later wish to use a different selection strategy in
which bidders with strong performance histories win equal bids. Such a classification
would lead naturally to splitting concern (C1) into two concerns (C1a) and (C1b).
Applying a classification strategy consistently across a set of concerns leads to a con-
sistent level of granularity in concern representation.

Table 1. Order Handling description

Concern # C1a
Name Order Handling
Classification Enduring service
Stakeholders Shuttle, Passenger

Interrelationships C1b, C2

List of pre-conditions
(1) There is a new order
List of responsibilities

(1) Broadcast order
(2) Receive bids
(3) Store bids

Table 2. Choose Bid description

Concern # C1b
Name Choose Bid
Classification Volatile service
Stakeholders Shuttle
Interrelationships C1a

List of pre-conditions
(1) There should be at least one order

List of responsibilities
(1) Get offers
(2) Select winning bid
(3) Store Choice
(4) Make decision known

3.4 Concern Representation

Our approach represents concerns using UML use case and activity models. Elements
in a model representing crosscutting concerns or volatile constraints and services are
marked as roles and the model becomes a pattern specification model. Thus, we may
use Use Case Pattern Specification (UCPS) and Activity Pattern Specifications
(APSs).

Build Use Case Models. A UCPS is a modified use case model with use case roles, each
one representing volatile constraints and services. It incorporates use case roles, where
concerns are mapped into use cases, volatile constraints and services are mapped into use
case roles, stakeholders are mapped into actors and interrelationships help in identifying
relationships between use cases. Fig. 2 summarizes the process of building a UCPS.

Most use case relationships are given in the usual manner (with <<include>> and
<<extend>>). Those that are derived from constraints will, however, be related with
other use cases by using the new relationship <<constrain>>, meaning that the origin
use case restricts the behavior of the destination use case. (Origin and destination are
indicated by the direction of the arrow representing the relationship.) Some of the use
cases derived from constraint concerns are typically global properties, such as
non-functional requirements. Fig. 3 illustrates an example of a UCPS for the trans-
port system, where C1a (described in Table 1) and C1b (described in Table 2) are
represented by use cases. Note how C1b is given as a role use case, pointing out the
clear distinction between enduring and volatile concerns – a reader of the model can
immediately see where the volatility lies.

550 A. Moreira, J. Araújo, and J. Whittle

Input: a list of stakeholders and classified concerns
Output: a UCPS
For each concern C:

Create a new use case or use case role corresponding to C
If C is enduring, describe C as a concrete use case
If C is volatile, describe C as a use case role
If C is crosscutting, describe C as a use case role

If C has a relationship, R, to concern C’ in its template descrip-
tion, create a relationship between the use cases or use case
roles corresponding to C and C’

If C is a constraint, attach the <<constrain>> stereotype to
this relationship

Map Stakeholders that interact with the new use cases into actors

Order Handling

Choose Bid

Passenger
Shuttle <<include>>

Fig. 2. Guidelines to map concerns to a UCPS Fig. 3. Transport UCPS

Identify Crosscutting Concerns. Crosscutting concerns are those that are required
by several other concerns. This information can be found in the concerns’ templates,
or by analyzing the relationships between use cases in the UCPS. For example, one
use case that is included by several other use cases is crosscutting.

Build Activity Models. Activities describe use cases and activity roles describe use case
roles or crosscutting use cases. Fig. 4 gives the process for creating an activity pattern
specification from the UCPS. Each responsibility listed in the concern’s template corre-
sponds to an activity in an activity diagram or an activity role in an APS. The nature of
the concern (crosscutting, enduring or volatile) decides whether activities or activity roles
are used. For example, C1b is volatile; therefore, one or more of its responsibilities will
correspond to activity roles in the activity diagram. Activity roles are those that corre-
spond to the responsibilities that are primarily responsible for making the concern vola-
tile. In this case, responsibility 2 of C1b will correspond to a role activity (Fig. 5).

Input: a UCPS and the list of concern templates
Output: an APS for each use case role or crosscutting use case;

an activity diagram for each use case
For each use case U corresponding to a concern C:

If U is a use case, create a new activity diagram:
U’s activity diagram is a set of activities, one for
each responsibility in C, connected by appropriate
transitions

If U is a use case role or crosscutting use case, create
an APS:

U’s APS is a set of activities and activity roles that
represent responsibilities in C, connected by ap-
propriate role transitions

Broadcast order

Receive bids

Store bids

Get offers

Select winning bid

Store choice

Make decision known

 (a) (b)

Fig. 4. Guidelines to map UCPS to activity diagrams
or APSs

Fig. 5. Order Handling (a) and
Choose Bid APS (b)

3.5 Model Instantiation

Model elements can be instantiated by a rule of the form:
<step #.> Replace |<modelElement A>
 with <modelElement B>

 Modeling Volatile Concerns as Aspects 551

This means that modelElement A is eliminated and substituted by modelElementB,
including its context. Instantiation is done for each particular configuration of the
system. For example, consider our concern (C1b), represented in the UCPS as
|Choose Bid. The instantiation rule is as follows:

1. Replace |Choose Bid
with Choose From Bids (Equal Bids Choice Based On Arrival Time)

An instantiation for APS in Fig. 5 (b) is:
2. Replace |Select Winning Bid

with Select Lowest Bid (Equal Bids Choice Based On Arrival Time)

Note that only volatile concern roles will need instantiation. The remaining roles
elements might be used as “join points” for composition (section 3.6).

3.6 Model Composition

For the purpose of this paper we define two basic composition operators: insert and re-
place. The insert operator can be used together with the two clauses after and before,
meaning that a particular model element can be inserted after or before a certain point in
the base model, respectively. The replace operator, on the other hand, can be used to-
gether with the simple with clause, meaning that a model element replaces another (simi-
lar to an instantiation), together with a choice ([]) clause, meaning that more than one
alternative is possible, together with a par (||) clause, meaning parallelism, etc. The
clause Compose encapsulates a composition rule (c.f section 4.3 for concrete examples).

Composition and instantiation can be applied independently from each other in an in-
cremental fashion, leading to consecutive refinements of abstract requirements models
into more concrete analysis models, supported by a set of guidelines and heuristics.
Composition is achieved by defining composition rules that explicitly specify how two
or more models of the same type (e.g. activity diagrams and APSs) are weaved together.
In a more traditional aspect-oriented view, only crosscutting concerns would be com-
posed with base modules. Here, we use composition to weave aspectual or volatile
models to base models. A composition rule consists of a set of instantiation steps, where
PS elements are replaced with concrete elements or other PS elements:

Compose <PS A> with <PS B>
 <step #.> Replace |<A> with
 <step #.> Insert <A> {after, before}
 <step #.> Insert <A> {after, before}

where <statement>

where “A” and “B” may be model elements (or models in the case of the Insert opera-
tor). A composition rule can, of course, be more complex than this, involving, for
example, decision and parallel operators. The full description of a composition lan-
guage is beyond the scope of this paper, and we leave it for future work.

For our example, an obvious composition rule is to put together the activity dia-
gram Order Handling and the APS Choose Bid (Fig. 6(left)). The resulting model is
illustrated in Fig. 6 (right) where transitions (1) and (2) represent the effect of the two
insert operators. In this particular case, the choice of a particular method for choosing
the winning bid would be performed after this composition. When the requirements
change (i.e., volatile concerns change), composition can be used to update the model
in an efficient and modular way.

552 A. Moreira, J. Araújo, and J. Whittle

Compose OrderHandlingAPS with ChooseBid
1. Insert GetOffers after StoreBids
2. Insert MakeDecisionKnown before FinalState

BroadcastOrder

ReceiveBids

StoreBids

GetOffers

SelectWinningBid

StoreChoice

MakeDecisionKnown

(1)

(2)

Fig. 6. Composition rule (left); Resulting composed (right)

3.7 Concern Evolution

Evolution should cope with changes in concerns that are already part of the system
and with new functionalities or constraints not yet part of the existing system. In the
former, the system is prepared to handle the change, by either defining a new instan-
tiation rule, or else by changing one or more composition rules. For example, a
change in the process used to select the winning bid (C1b) is easily handled at all
levels by choosing different rules (i.e. rule 1 for the UCPS and rule 2 for the APS):

1. Replace |Choose Bid
with Choose From Bids (Equal Bids Choice Based On History)

2. Replace |Select Winning Bid
with Select Lowest Bid (Equal Bids Choice Based On History)

In cases where we have to remove a concern, we need to remove all dependencies
on this concern from all the composition rules. Coping with new requirements or
constraints requires the reapplication of the method to identify the corresponding new
concerns. These are integrated with the existing system by adding or changing exist-
ing composition rules.

4 Case Study

This section validates the approach described in the previous section by means of a
case study based on the Washington subway system, described as follows:

“To use the subway, a client uses a card that must have been credited with some
amount of money. A card is bought and credited in buying machines available in
subway stations. The card is used in an entering machine to initiate a trip. When the
destination is reached, the card is used in an exit machine that debits it with an
amount to be paid. If the card has not enough credit the gate will not open.”

4.1 Concerns Identification

Client and passenger are the final users of the system (client is a potential passenger).
There are, however, other important stakeholders that provide key information about
the system. These are, for example, the owner and the system administrators. The
concerns discovered (C1, C3-C5) are listed in Table 3. Each one reflects a set of co-
herent sub-requirements that the future system must perform and were extracted

 Modeling Volatile Concerns as Aspects 553

directly from the short description above. C2, on the other hand, is a security concern
needed to access the subway: we must guarantee that the card is a valid one and also
that it is the right type of card. This is information we get from the knowledge we
have from other application domains that use cards for similar purposes.

Table 3. List of concerns for the subway system

Concern # Concern description
C1 A client buys a card in a buying machine
C2 A client must own a valid card
C3 Clients credit cards with minimum amounts of money in buying machines
C4 A client enters a subway station using a card in an entry machine
C5 A client leaves the subway station using his card in an exit machine that debits it with

the cost of the trip. If the card has not enough credit the gate will not open
C6 The system is used for several passengers simultaneously
C7 The system needs to react in time to avoid delaying passengers while they are entering

or leaving the subway, or crediting their cards
C8 The system must be available for use

During the development process of requirements discovery, modeling, design and
implementation, a developer needs to assess the quality conditions, or constraints,
under which the services of the system will function. Stakeholders that have organiza-
tional goals in mind will give most of these “quality attributes” that need to be satis-
fied by the system. Therefore higher-level stakeholders, such as system administrator
and owner, are good sources to identify broadly scoped properties. For example, it is
common knowledge that subways have opening and closing hours. Therefore, our
system must be available at least during that period. This is guaranteed by C8. An-
other important characteristic is to serve several passengers at the same time. This is
covered by C6. Finally, another condition for the good use of the system is to avoid
long queues of passengers. Concern C7 handles this issue. Of course, other concerns
may appear later, during the next stages of the development.

The number of concerns identified depends on the decomposition criteria used. For
example, instead of C1-C5 we could have one concern to handle each machine (entry
machine, exit machine and buying machine).

4.2 From Classification to Refactoring

Concerns in Table 3 are classified according to characteristics defined in Table 4.
Constraints impose conditions on services. For example, constraints C6-C8 are global
properties that C1-C5 must satisfy. Note that C3 appears in two cells of the table and
C5 appears in two cells. C3 is classified both as enduring service and volatile con-
straint while C5 is classified as enduring and volatile service, and also as volatile
constraint. This leads to a refactoring of the list of concerns, which divides C3 and C5
into separate concerns:

• C3A (enduring service): Clients credit cards in buying machines
• C3B (volatile constraint): Check if card is credited with a minimum amount

554 A. Moreira, J. Araújo, and J. Whittle

• C5A (enduring service): Client leaves the subway station using his card in an exit
machine that debits it. If the card has not enough credit the gate will not open

• C5B (volatile service): Exit machines calculate trip fare to be debited in cards

The reason why we are externalizing the minimum amount (C3B) and the formula to
calculate fares (C5B) is because those represent behaviors that we may want to change
in the future. For example, to calculate the cost of the trip there are several options,
which range from fixed prices to a prices depending on number of zones traveled to
special discounts if promotions are available to encourage the usage of the system dur-
ing periods of low usage. By delaying such a decision, we do not have to “hard wire”
the formula that calculates the amount to a certain entity of the system. Instead, we are
free to instantiate the behavior with whatever is appropriate at deployment time. Table 5
gives the refactored list of concerns with their identifications and names.

Table 4. System concerns’ classification

 Enduring Volatile
Services C1, C2, C3, C4, C5 C5

Constraints C6, C7, C8 C3

Table 5. Refactored list of concerns

Concern # Concern name
C1 Buy card
C2 Validate card
C3A Credit card
C3B Check minimum amount
C4 Enter subway
C5A Exit subway
C5B Calculate fare
C6 Multi-access
C7 Response time
C8 Availability

Table 6. Template for “Exit
subway”

Concern # C5A

Name Exit subway
Classification Enduring service
Stakeholders Passenger
Interrelationships C2,C5B,C6-C8

List of pre-conditions
(1) Card is valid

List of responsibilities
(1) Check balance
(2) Debit card
(3) Register trip
(4) Open gate
(5) Eject card

Table 7. Template for “Vali-
date card”

Concern # C2

Name Validate
card

Classification Enduring
service

Stakeholder Passenger
Interrelationships C3A,C4,C5A,

C6-C8
List of responsibilities

(1) Insert card
(2) Read card
(3) Check card

Table 8. Template for “Cal-
culate fare”

Concern # C5B

Concern name Calculate
fare

Classification Volatile
service

Stakeholder
Interrelationship C6-C8

List of responsibilities
(1) Get entry station
(2) Get exit station
(3) Calculate price

In earlier iterations, the requirement “If the card has not enough credit the gate will
not open” of C5 was classified as volatile constraint, since it seems to be a pre-
condition on C5. Later we realized that it was not worth to externalize such a prop-
erty, as we could not devise a situation where the owner of the system could see (or

 Modeling Volatile Concerns as Aspects 555

want) this condition changed. It seems common sense to admit that the client will
always have to pay for the trip. If, for some reason, we want to let him/her travel for
free, that is another possible instantiation of C5B.

Concerns are described using templates (Section 3.3). From now on, we will use
the three concerns C5A, C5B and C2 (tables 6-8) to illustrate our discussions.

4.3 Concern Representation

Build the Use Case Models. A UCPS is obtained by applying the guidelines offered
in Fig. 2. Fig. 7 illustrates part of the resulting model.

BuyCard
Client

Availability

<<constrain>>

Passenger

CreditCard
<<constrain>>

CheckMinimumAmount

<<constrain>>

ValidateCard

<<include>>

CalculateFare

ExitSubway

<<include>>

<<constrain>>

Passenger

EnterSubway

<<constrain>>

<<include>>

<<include>>

Fig. 7. Partial UCPS

By analysing all the concerns’ templates we can identify that ResponseTime,
Multi-access, Availability and ValidateCard are crosscutting. This is so since the first
three concerns have to be satisfied by several other concerns (e.g., ExitSubway,
EnterSubway, CreditCard). On the other hand, ValidateCard is crosscutting because it
is included by several use cases.

Build Activity Models. Following the rules given in Fig. 4, activity diagrams and
APSs can be derived from use cases and use case roles. Fig. 8 shows one activity
diagram each for ExitSubway, ValidateCard and CalculateFare. Fig. 8(b) corresponds
to the template defined in Table 7. The three first activities correspond to the respon-
sibilities listed therein. The last two role activities represent the two potential returns
after the condition.

4.4 Instantiation and Composition

The UCPS use case role |CalculateFare, for example, can be instantiated with a rule
of the type:

Replace |CalculateFare
with CalculateFareBasedOnZones

But it could also be instantiated at a finer granularity level by using a similar rule for
the APS activity role |CalculatePrice.

556 A. Moreira, J. Araújo, and J. Whittle

Composition can be accomplished using the replace and insert operators to bring
together APSs and/or activity diagrams. An example of a composition rule joining
ExitSubway with ValidateCard is:

Compose ExitSubway with ValidateCardAPS
1. Insert InsertCard after InitialState
2. Replace |CardOk with CheckBalance
3. Replace |CardNotOk with EjectCard

The resulting composed model (Fig. 9) can be automatically generated. If needed,

the composition process can be applied again to join more models to this resulting
model until all models are joined to form a unique model of the full system. For ex-
ample, we could add to this composed model CalculateFare with the rule:

Compose ExitSubwayValidCard with CalculateFareAPS
1. Insert CalculateFareAPS before CheckBalance

CheckBalance

DebitCard

RegisterTrip

OpenGate

EjectCard

[balanceOk]
InsertCard

ReadCard

CheckCard

|CardOk |CardNotOk

[ok] [NotOk]

GetEntryPoint

GetExitPoint

| CalculatePrice

a) b) c)

Fig. 8. (a) ExitSubway activity diagram; (b)
ValidateCard APS; (c) CalculateFare APS

Fig. 9. Composed activity model

5 Method Evaluation

The evaluation criteria used here were proposed in [15]. There, four general compari-
son criteria are defined (evolvability, composability, traceability and scalability) as
well as five other specific criteria (homogeneity concern treatment, trade-off analysis,
verification and validation, handling functional and non-functional crosscutting re-
quirements, mapping requirements to later stages) for assessing requirements engi-
neering approaches.

General Criteria. The main drive to define our method was to offer improved sup-
port for evolution. Volatile concerns cannot be disregarded as time-to-market is a
major concern of leading companies when developing their systems. Our instantia-
tions and compositions facilitate rapid changes in requirements (see Section 3.7). By
using aspect-oriented concepts combined with role-based models, composability is
assured at several different levels of abstraction (concern, use case and activity levels)
through the definition of simple composition rules. Traceability is supported by con-
cern templates and model derivation guidelines. Finally, the modeler has to specify

 Modeling Volatile Concerns as Aspects 557

the instantiations and compositions and these will be, in the worse case, different for
each base model crosscut by the aspect. We are now studying how to overcome this
scalability problem by, for example, reusing instantiations and compositions.

Specific Criteria. Core, volatile, or aspectual concerns are all treated homogeneously
by using the same set of techniques. While identifying, describing and classifying
concerns, we do not distinguish between functional requirements, non-functional
requirements, and crosscutting requirements. The method provides several guidelines
that support mappings across several models. As we follow a UML-based ap-
proached, most of the resulting artifacts have a direct map to the analysis phase.
However, we need to invest more on this, maybe basing our research on MDD.
Trade-off analysis has been addressed in our previous work, but not here. Verification
and validation techniques are not handled in this paper.

6 Related Work

Our pattern specifications are based on [8], where an aspect is defined through role
models to be composed into UML diagrams. However, the approach does not allow
concrete modeling elements in role models. In this paper, we define a model that
integrates UCPSs and APSs in a systematic way, allowing similar composition rules
for concrete and role elements.

Jacobson agrees that use case extensions are a way to handle aspects during re-
quirements [9]. However, his work does not include broadly scoped properties nor
does he handle evolution through volatile services.

Clarke describes composition patterns [3] to deal with crosscutting concerns as pat-
terns at the design level. Pattern binding is used, and sequence and class diagrams
illustrate compositions. The compositions, however, are rigid as they concentrate on
pattern instantiations.

The idea to externalize volatile concerns is in some respects similar to the notions
of product line architectures [4] and generative programming [5]. They model a fam-
ily of related applications and then configure particular instances. Our work is similar
but focuses on volatility. Although our work is less general, it does not require the
huge investment associated with modeling a related family of application.

7 Conclusions and Future Work

Volatile concerns and aspects share the need for independency, modular representa-
tion and composition. Along the paper we discussed why those three characteristics
were important to support evolution, which is constrained by volatile requirements,
and how aspect-orientation and pattern specifications can help in handling it. To ad-
dress this we proposed the externalization and consequent modularization of con-
straints and volatile services to cope with change on requirements. This is supported
by an evolutionary method, where concern classification, requirements refactoring,
model instantiation and model composition play a major role. Composition and
instantiation can be applied independently from each other in an incremental manner,

558 A. Moreira, J. Araújo, and J. Whittle

where guidelines drive subsequent refinements of abstract requirements models into
more concrete analysis models.

For future work we plan to (1) create a specification language to define composi-
tion rules; (2) address conflicting emergent behavior that may appear when two or
more candidate aspects are allowed to co-exist; (3) handle the scalability problems
identified; and (4) develop a tool that supports the identification of concerns, their
specification and composition.

Acknowledgments

This work has been partially supported by the Portuguese FCT Grant POSC/EIA/
60189/2004.

References

1. E. Baniassad, S. Clarke, “Theme: An approach for aspect-oriented analysis and design”,
ICSE’04, Scotland, 2004.

2. L. Chung, B. Nixon, E. Yu, J. Mylopoulos, Non-Functional Requirements in Software En-
gineering, Kluwer Academic Publishers, 2000.

3. S. Clarke and R. J. Walker, “Composition Patterns: An Approach to Designing Reusable
Aspects”, ICSE’01, 2001.

4. P. Clements and L. Northrop, Software Product Lines: Practices and Patterns, Addison
Wesley, 2002.

5. K. Czarnecki and U. Eisenecker, Generative Programming,”Addison Wesley, 2000.
6. Å. Dahlstedt and A. Persson, “Requirements Interdependencies - Moulding the State of

Research into a Research Agenda”, REFSQ’03, Austria, pp 71-80, 2003.
7. D. G. Firesmith, “Creating a Project-Specific Requirements Engineering Process”, in Jour-

nal of Object Technology, vol. 3, no. 5, 2004, pp. 31-44.
8. R. France, D. Kim, S. Ghosh and E. Song, “A UML-Based Pattern Specification Tech-

nique,” IEEE Transactions on Software Engineering, Volume 30(3), 2004.
9. I. Jacobson, P. Ng, Aspect-Oriented Software Development with Use Cases, Addison-

Wesley, 2005.
10. G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. Griswold, “An overview

of AspectJ”, ECOOP’01, Budapest, Hungary, 2001, pp. 327–353.
11. A. Sampaio, R. Chitchyan, A. Rashid, P. Rayson, "EA-Miner: A Tool for Automating As-

pect-Oriented Requirements Identification", ASE’05, IEEE Computer Society, 2005.
12. I. Sommerville, Software Engineering, Addison-Wesley, 7th edition, 2004.
13. UML Specification, version 2.0, August 2005, in OMG, http://www.omg.org
14. J. Whittle, J. Araújo, “Scenario Modeling with Aspects”, in IEE Proceedings Software,

Vol. 151, no. 04, 2004, pp. 157-172.
15. “Survey on Aspect-Oriented Analysis & Design Approaches”, http://www.aosd-europe.net/

Author Index

Abelló, Alberto 127
Ackermann, Jörg 255
Ågerfalk, Pär J. 399
Al-Muhammed, Muhammed J. 223
Andersson, Birger 321
Araújo, João 544
Arbab, Farhad 351

Bergholtz, Maria 321
Breutel, Stephan 417
Brogneaux, Anne-France 205
Bryl, Volha 33

Cabot, Jordi 81
Campschroer, Jan T.P. 351
Cheng, James 157
Constantine, Larry L. 20

Dourdas, Nektarios 239
Dumas, Marlon 417

Edirisuriya, Ananda 321
Embley, David W. 223
Englebert, Vincent 205
Estrada, Hugo 513

Flesca, Sergio 175
Fox, Jorge 48
Franch, Xavier 495

Garruzzo, Salvatore 175
Gordijn, Jaap 336
Green, Peter 447
Grossniklaus, Michael 63

Häggmark, Malin 399
Hainaut, Jean-Luc 205
Hakkarainen, Sari 433
Heuser, Carlos Alberto 111

Ignat, Claudia-Lavinia 190
Ilayperuma, Tharaka 321
Indulska, Marta 447

Johannesson, Paul 321
Jones, Sara 239
Jürjens, Jan 48

Kartseva, Vera 336
Koutrika, Georgia 142
Kritis, Vassily 18
Krogstie, John 433

Lankhorst, Marc M. 351
Lapouchnian, Alexei 480
Lau, Ho Lam 157
Lespérance, Yves 480
Lin, Yun 433

Maiden, Neil 239
Malinowski, Elzbieta 96
Marotta, Adriana 127
Mart́ınez Rebollar, Alicia 513
Masciari, Elio 175
Massacci, Fabio 33
Mendling, Jan 369
Mergen, Sérgio Luis Sardi 111
Moreira, Ana 544
Mouratidis, Haralambos 48
Mylopoulos, John 33, 465, 513

Ng, Wilfred 157
Norrie, Moira C. 63, 190

Ouyang, Chun 417

Pastor, Oscar 513, 528
Pelechano, Vicente 528
Penserini, Loris 465
Perini, Anna 465
Petrovic, Milivoje 63
Piedrabuena, Federico 127

Ramdoyal, Ravi 205
Recker, Jan 369, 447
Reichert, Manfred 273
Rinderle, Stefanie 273
Rosca, Daniela 303

560 Author Index

Rosemann, Michael 369, 447
Russell, Nick 288

Saeki, Motoshi 384
Simitsis, Alkis 142
Sølvberg, Arne 433
Strasunskas, Darijus 433
Susi, Angelo 465
Sutcliffe, Alistair 3

Tagarelli, Andrea 175
Tan, Yao-Hua 336
Teniente, Ernest 81
ter Doest, Hugo 351
ter Hofstede, Arthur 288, 417
Turowski, Klaus 255

Valderas, Pedro 528
van der Aalst, Wil 288, 369
van der Torre, Leendert 351
Vilz, Julien 205

Wang, Jiacun 303
Weigand, Hans 321
Whittle, Jon 544

Yang, Yin 157

Zachos, Konstantinos 239
Zannone, Nicola 33
Zhu, Xiaohong 239
Zimányi, Esteban 96

	Frontmatter
	Keynotes
	Trust: From Cognition to Conceptual Models and Design
	Dealing with Trust in eGov Services
	Trusted Interaction: User Control and System Responsibilities in Interaction Design for Information Systems

	Security
	Designing Security Requirements Models Through Planning
	Towards a Comprehensive Framework for Secure Systems Development
	Role-Based Modelling of Interactions in Database Applications

	Conceptual Modelling
	Incremental Evaluation of OCL Constraints
	Object-Relational Representation of a Conceptual Model for Temporal Data Warehouses
	Data Translation Between Taxonomies

	Queries
	Managing Quality Properties in a ROLAP Environment
	Comprehensible Answers to Pr\'{e}cis Queries
	An Efficient Approach to Support Querying Secure Outsourced XML Information

	Document Conceptualisation
	Wrapping PDF Documents Exploiting Uncertain Knowledge
	Supporting Customised Collaboration over Shared Document Repositories
	Data Conceptualisation for Web-Based Data-Centred Application Design

	Service Composition
	Resolving Underconstrained and Overconstrained Systems of Conjunctive Constraints for Service Requests
	Discovering Remote Software Services that Satisfy Requirements: Patterns for Query Reformulation
	A Library of OCL Specification Patterns for Behavioral Specification of Software Components

	Workflow
	Data--Driven Process Control and Exception Handling in Process Management Systems
	Workflow Exception Patterns
	Dynamic Workflow Modeling and Verification

	Business Modelling
	On the Notion of Value Object
	Inter-organisational Controls as Value Objects in Network Organisations
	Landscape Maps for Enterprise Architectures

	Configuration and Separation
	Model-Driven Enterprise Systems Configuration
	Configuration Management in a Method Engineering Context
	Why Software Engineers Do Not Keep to the Principle of Separating Business Logic from Display: A Method Rationale Analysis

	Business Process Modelling
	Translating Standard Process Models to BPEL
	Semantic Annotation Framework to Manage Semantic Heterogeneity of Process Models
	A Study of the Evolution of the Representational Capabilities of Process Modeling Grammars

	Agent Orientation
	From Stakeholder Intentions to Software Agent Implementations
	Modeling Mental States in Agent-Oriented Requirements Engineering
	On the Quantitative Analysis of Agent-Oriented Models

	Requirements Management
	An Empirical Evaluation of the {\itshape i}* Framework in a Model-Based Software Generation Environment
	Towards an End-User Development Approach for Web Engineering Methods
	Modeling Volatile Concerns as Aspects

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037002e000d00500072006f00640075006300650073002000500044004600200062006f006f006b00200069006e006e006500720077006f0072006b002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

