

Lecture Notes in Computer Science 4006
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Luís Miguel Pinho
Michael González Harbour (Eds.)

Reliable
Software Technologies –
Ada-Europe 2006

11th Ada-Europe International Conference
on Reliable Software Technologies
Porto, Portugal, June 5-9, 2006
Proceedings

13

Volume Editors

Luís Miguel Pinho
Polytechnic Institute of Porto
School of Engineering (ISEP)
Rua Dr. António Bernardino de Almeida, 431, 4200-072 Porto, Portugal
E-mail: lpinho@dei.isep.ipp.pt

Michael González Harbour
Universidad de Cantabria
Departamento de Electrónica y Computadores
Avda. de los Castros s/n, 39005-Santander, Spain
E-mail: mgh@unican.es

Library of Congress Control Number: 2006926424

CR Subject Classification (1998): D.2, D.1.2-5, D.3, C.2.4, C.3, K.6

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-34663-5 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-34663-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11767077 06/3142 5 4 3 2 1 0

Preface

The 11th International Conference on Reliable Software Technologies, Ada-
Europe 2006, took place in Porto, Portugal, June 5-9, 2006. It was as usual
sponsored by Ada-Europe, the European federation of national Ada societies, in
cooperation with ACM SIGAda. It was organized by members of the School of
Engineering of the Polytechnic Institute of Porto, in collaboration with several
colleagues from different institutions in Europe.

Following the usual style, the conference included a three-day technical pro-
gram, during which the papers contained in these proceedings were presented,
bracketed by two tutorial days where attendants had the opportunity to catch
up on a variety of topics related to the field, at both introductory and advanced
levels. Continuing the success achieved in the previous year, the technical pro-
gram also included an industrial track, with contributions illustrating challenges
faced and solutions encountered by industrialists from both sides of the Atlantic.
Furthermore, the conference was accompanied by an exhibition where vendors
presented their products for supporting reliable-software development.

The conference presented four distinguished speakers, who delivered state-of-
the-art information on topics of great importance, both for the present and the
future of software engineering:

– Correctness by Construction: Putting Engineering into Software
by Rod Chapman (Praxis HIS, UK)

– Empirical Software Risk Assessment Using Fault Injection
by Henrique Madeira (University of Coimbra, Portugal)

– Model-Driven Technologies in Safe-Aware Software Applications
by Miguel Angel de Miguel (Technical University of Madrid, Spain)

– I Have a Dream: ICT Problems We All Face
by John L. Hill (Sun Microsystems, USA)

We would like to express our sincere gratitude to these distinguished speakers,
well known to the community, for sharing their insights with the conference
participants.

A large number of regular papers were submitted, from as many as 23 dif-
ferent countries. The Program Committee worked hard to review them, and the
selection process proved to be difficult, since many papers had received excellent
reviews. Finally, the Program Committee selected 19 papers for the conference.
The industrial track of the conference also received valuable contributions from
industrialists, and the Industrial Committee finally selected 9 of them for the
conference. The final result was a truly international program with contribu-
tions from Australia, Austria, Canada, China, France, Germany, Iran, Italy,
Japan, Portugal, Spain, the UK, and the USA, covering a broad range of topics:
real-time systems, static analysis, verification, applications, reliability, industrial
experience, compilers and distributed systems.

VI Preface

The conference also included an interesting selection of tutorials, featuring
international experts who presented introductory and advanced material in the
domain of the conference:

– Verification and validation for reliable software systems, William Bail
– The Ada 2005 Standard Container Library, Matthew Heaney
– Developing Web-Aware Applications in Ada with AWS, Jean-Pierre Rosen
– SAE Architecture Analysis and Design Language, Joyce L. Tokar
– Model-Driven Development with the Unified Modeling Language (UML)

2.0TM and Ada, Colin Coates
– Distribution in Ada 95 with PolyORB, A Schizophrenic Middleware, Jérôme

Hugues
– Requirements Management for Dependable Systems, William Bail
– Real-Time Java for Ada Programmers, Benjamin M. Brosgol

We would like to express our appreciation to these experts, for the work on
preparing and presenting this material in the conference.

Many people contributed to the success of the conference. The Program and
Industrial Committees, made up of international experts in the area of reliable
software technologies, spent long hours carefully reviewing all the papers, pre-
sentations and tutorial proposals submitted to the conference. A subcommittee
comprising Dirk Craeynest, Michael González Harbour, Laurent Pautet, Lúıs
Miguel Pinho, Erhard Plöedereder, Jorge Real, and Tullio Vardanega met in
Porto to make the final program selection. Various Program Committee mem-
bers were assigned to shepherd some of the papers. We are grateful to all those
who contributed to the technical program of the conference.

We would also like to thank the members of the Organizing Committee,
for their valuable effort in taking care of all the bits and pieces that must fit
together for a smooth run of the conference. We would like to thank Peter
Dencker for the effort in the preparation of the industrial track, to Jorge Real
for the attractive tutorial program and to José Ruiz for preparing the appealing
exhibition of the conference. Also to Dirk Craeynest, who worked very hard
to make the conference prominently visible, and to all the members of the Ada-
Europe board for helping with the intricate details of the organization. A special
thanks to Sandra Almeida, who took care of all details of the local organization.

Finally, we would like to express our appreciation to the authors of the con-
tributions submitted to the conference, and to all the participants who helped
in achieving the goal of the conference: providing a forum for researchers and
practitioners for the exchange of information and ideas about reliable software
technologies. We hope they all enjoyed the program as well as the social events
of the 11th International Conference on Reliable Software Technologies.

June 2006 Lúıs Miguel Pinho
Michael González Harbour

Organization

Conference Chair

Lúıs Miguel Pinho, Polytechnic Institute of Porto, Portugal

Program Co-chairs

Lúıs Miguel Pinho, Polytechnic Institute of Porto, Portugal
Michael González Harbour, Universidad de Cantabria, Spain

Industrial Committee Co-chairs

Peter Dencker, Aonix GmbH, Germany
Michael González Harbour, Universidad de Cantabria, Spain

Tutorial Chair

Jorge Real, Universidad Politécnica de Valencia, Spain

Exhibition Chair

José Ruiz, AdaCore, France

Publicity Chair

Dirk Craeynest, Aubay Belgium and K.U. Leuven, Belgium

Local Chair

Sandra Almeida, Polytechnic Institute of Porto, Portugal

Ada-Europe Conference Liaison

Laurent Pautet, Telecom Paris, France

Program Committee

Alejandro Alonso, Universidad Politécnica de Madrid, Spain
Lars Asplund, Mälardalens Högskola, Sweden
Janet Barnes, Praxis High Integrity Systems, UK
Guillem Bernat, University of York, UK
Johann Blieberger, Technische Universität Wien, Austria

VIII Organization

Ben Brosgol, AdaCore, USA
Bernd Burgstaller, University of Sydney, Australia
Alan Burns, University of York, UK
Dirk Craeynest, Aubay Belgium and K.U. Leuven, Belgium
Alfons Crespo, Universidad Politécnica de Valencia, Spain
Raymond Devillers, Université Libre de Bruxelles, Belgium
Michael González Harbour, Universidad de Cantabria, Spain
José Javier Gutiérrez, Universidad de Cantabria, Spain
Andrew Hately, Eurocontrol CRDS, Hungary
Günter Hommel, Technische Universität Berlin, Germany
Hubert Keller, Institut für Angewandte Informatik, Germany
Yvon Kermarrec, ENST Bretagne, France
Jörg Kienzle, McGill University, Canada
Fabrice Kordon, Université Pierre and Marie Curie, France
Albert Llamosi, Universitat de les Illes Balears, Spain
Franco Mazzanti, ISTI-CNR Pisa, Italy
John McCormick, University of Northern Iowa, USA
Stephen Michell, Maurya Software, Canada
Javier Miranda, Universidad Las Palmas de Gran Canaria, Spain
Laurent Pautet, Telecom Paris, France
Lúıs Miguel Pinho, Polytechnic Institute of Porto, Portugal
Erhard Plödereder, Universität Stuttgart, Germany
Juan A. de la Puente, Universidad Politécnica de Madrid, Spain
Jorge Real, Universidad Politécnica de Valencia, Spain
Alexander Romanovsky, University of Newcastle upon Tyne, UK
Jean-Pierre Rosen, Adalog, France
José Ruiz, AdaCore, France
Edmond Schonberg, New York University and AdaCore, USA
Joyce Tokar, Pyrrhus Software, USA
Tullio Vardanega, Università di Padova, Italy
Andy Wellings, University of York, UK
Jürgen Winkler, Friedrich-Schiller-Universität, Germany

Reviewers

Gaetan Allaert
Alejandro Alonso
Mrio Amado Alves
Wolfram Amme
Lars Asplund
Ricardo Barbosa
Janet Barnes
Johann Blieberger
Maarten Boasson
Ben Brosgol

Bernd Burgstaller
Alan Burns
Dirk Craeynest
Alfons Crespo
Garreg Lewis Dawe
Raymond Devillers
Michael González Harbour
José Javier Gutiérrez
Andrew Hately
Günter Hommel

Organization IX

Stefan Kauer
Hubert Keller
Yvon Kermarrec
Jörg Kienzle
Fabrice Kordon
Albert Llamosi
Kristina Lundqvist
Franco Mazzanti
John McCormick
Stephen Michell
Javier Miranda
Gustaf Naeser
Martin Ouimet
Laurent Pautet

Lúıs Miguel Pinho
Erhard Plödereder
Juan A. de la Puente
Jorge Real
Alexander Romanovsky
Philippe Rose
Jean-Pierre Rosen
José Ruiz
Edmond Schonberg
Joyce Tokar
Tullio Vardanega
Andy Wellings
Jürgen Winkler

Table of Contents

Real-Time Systems

Hierarchical Scheduling with Ada 2005
José A. Pulido, Santiago Urueña, Juan Zamorano, Tullio Vardanega,
Juan A. de la Puente . 1

A Comparison of Ada and Real-Time JavaTM for Safety-Critical
Applications

Benjamin M. Brosgol, Andy Wellings . 13

POSIX Trace Based Behavioural Reflection
Filipe Valpereiro, Lúıs Miguel Pinho . 27

Static Analysis

Static Detection of Access Anomalies in Ada95
Bernd Burgstaller, Johann Blieberger, Robert Mittermayr 40

One Million (LOC) and Counting: Static Analysis for Errors
and Vulnerabilities in the Linux Kernel Source Code

Peter T. Breuer, Simon Pickin . 56

Bauhaus – A Tool Suite for Program Analysis and Reverse Engineering
Aoun Raza, Gunther Vogel, Erhard Plödereder . 71

Verification

SPARK Annotations Within Executable UML
Damian Curtis . 83

Runtime Verification of Java Programs for Scenario-Based Specifications
Xuandong Li, Linzhang Wang, Xiaokang Qiu, Bin Lei,
Jiesong Yuan, Jianhua Zhao, Guoliang Zheng . 94

Applications

Secure Execution of Computations in Untrusted Hosts
S.H.K. Narayanan, M.T. Kandemir, R.R. Brooks, I. Kolcu 106

A Systematic Approach to Developing Safe Tele-operated Robots
Diego Alonso, Pedro Sánchez, Bárbara Álvarez, Juan A. Pastor 119

XII Table of Contents

Towards Developing Multi-agent Systems in Ada
G. Aranda, J. Palanca, A. Espinosa, A. Terrasa,
A. Garćıa-Fornes . 131

Reliability

A Software Reliability Model Based on a Geometric Sequence of Failure
Rates

Stefan Wagner, Helmut Fischer . 143

Adaptive Random Testing Through Iterative Partitioning
T.Y. Chen, De Hao Huang, Zhi Quan Zhou . 155

Run-Time Detection of Tasking Deadlocks in Real-Time Systems with
the Ada 95 Annex of Real-Time Systems

Jingde Cheng . 167

Compilers

Abstract Interface Types in GNAT: Conversions, Discriminants,
and C++

Javier Miranda, Edmond Schonberg . 179

Using Mathematics to Improve Ada Compiled Code
Ward Douglas Maurer . 191

Distributed Systems

Replication-Aware Transactions: How to Roll a Transaction over Failures
Mohsen Sharifi, Hadi Salimi . 203

The Arbitrated Real-Time Protocol (AR-TP): A Ravenscar Compliant
Communication Protocol for High-Integrity Distributed Systems

Santiago Urueña, Juan Zamorano, Daniel Berjón, José A. Pulido,
Juan A. de la Puente . 215

Interchangeable Scheduling Policies in Real-Time Middleware for
Distribution

Juan López Campos, J. Javier Gutiérrez,
Michael González Harbour . 227

Author Index . 241

Hierarchical Scheduling with Ada 2005�

José A. Pulido1, Santiago Urueña1, Juan Zamorano1,
Tullio Vardanega2, and Juan A. de la Puente1

1 Departamento de Ingeniería de Sistemas Telemáticos (DIT)
Universidad Politécnica de Madrid (UPM), E28040 Madrid, Spain

{pulido, suruena, jzamorano, jpuente}@dit.upm.es
2 Dipartimento di Matematica Pura ed Applicata

Università di Padova, I35131 Padova, Italy
tullio.vardanega@math.unipd.it

Abstract. Hierarchical scheduling is a basic technique to achieve tem-
poral isolation between applications in high-integrity systems when an
integrated approach is opted for over traditional federation. While com-
paratively heavyweight approaches to hierarchical scheduling have been
prevailing until now, the new scheduling features of Ada 2005 enable
lighter-weight techniques to be used. This will expectedly result in in-
creasing the efficiency and flexibility of hierarchical scheduling, thus en-
abling new ways to developing critical applications in Ada. The paper
explores the new opportunities opened by Ada 2005 and proposes some
concrete techniques for implementing hierarchical scheduling in the new
version of the language.

1 Introduction

High-integrity systems (HIS) are applications with stringent safety or security re-
quirements, in which a failure can have unacceptable consequences [1]. Such sys-
tems are usually required to exhibit a fully predictable behaviour, to which end
comprehensive verification and validation (V&V) processes must be deployed.
The particular approach and techniques that must be used in different appli-
cations are often described in domain-specific certification standards, such as
DO-178B (civil avionics), IEC 601-4 (medical systems), IEC 880 (nuclear power
plants), EN 50128 (European railways), etc. These standards define different
criticality levels (CL), as well as the V&V requirements that must be met by an
application candidate for certification at a given level. The applications in turn
must be classified into the different criticality levels, depending on the severity
of the consequences of a potential failure.

Complex systems are often composed of several applications that may be
classified at differing criticality levels. A common requirement for this kind of
systems is to isolate the most critical applications from the less critical ones, so
that a failure in the latter does not compromise the behaviour of the vital parts
� This work has been supported by the Spanish Ministry of Education, project no.

TIC2002-04123-C03-01.

L.M. Pinho and M. González Harbour (Eds.): Ada-Europe 2006, LNCS 4006, pp. 1–12, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

2 J.A. Pulido et al.

of the system. Isolation has often been achieved by building systems according
to a federated approach, i.e. by allocating different applications to different com-
puter platforms. However, the processing power of current processors eases the
adoption of more efficient, integrated architectures in which several applications,
possibly with different criticality levels, share a common computer platform. Un-
der this approach, alternate architectural mechanisms must be sought to provide
the required degree of isolation among applications. The computer platform is
divided into a number of logical partitions, each of which is allocated a share of
the available computer resources, including processor time and memory space.
Each application runs on one of the partitions, and partitions are isolated from
each other both in the temporal and spatial domains:

– Temporal isolation means that a partition cannot use processor time allo-
cated to other partitions as long as the applications running on them are
ready to execute. Temporal isolation ensures that high criticality applica-
tions are not prevented from meeting their temporal requirements by the
misbehaviour of lower-criticality applications. Indeed, the converse is also
true, although not that useful in practical situations. Since high criticality
applications are usually subject to strict validation and verification proce-
dures, in most cases it can be safely assumed that they do not incur overruns.

– Spatial isolation means that a partition cannot access memory outside its
allocated storage space. Therefore, high criticality applications can safely
assume that low criticality applications will not change any data in their
memory space by the effect of misbehaviour.

Temporal and spatial isolation collectively enable high criticality applications to
run in the same computer platform as other, lower criticality, applications whilst
preserving their integrity in the face of faults in the latter, which thus need not
be developed under the same stringent validation and verification processes.

This paper is focused on temporal isolation, for which a new architectural
approach making use of the new Ada 2005 scheduling features is presented. The
concept of hierarchical scheduling as a general approach to temporal isolation
is introduced and discussed in section 2. Section 3 introduces the proposed ar-
chitecture and shows how it can be implemented using the Ada 2005 scheduling
model. Temporal analysis and implementation issues are discussed in section 4.1.
Finally, some conclusions are presented in section 5.

2 Hierarchical Scheduling

2.1 Temporal Isolation

Depending on the granularity of partitioning, a partition contains a number of
execution tasks performing functions with the same criticality level. Appropriate
scheduling and temporal analysis methods (see e.g. [2]) can be used at design
time to ensure that threads running in a partition will not “steal” (by overrun)
processor time budgeted to other partitions. However, since temporal analysis

Hierarchical Scheduling with Ada 2005 3

is based on design assumptions that may be violated at run time, some kind of
run-time mechanisms (e.g. based on clocks and timers) must be used to warrant
isolation in the face of a possible misbehaviour of the application threads.

2.2 Hierarchical Scheduling

Hierarchical scheduling is a technique that can be used to implement isolation
between logical partitions. The main idea behind it is to use two kinds of sched-
ulers on the same computer platform:

– A global scheduler, which allocates the processor to a partition in accord with
a global scheduling policy. The partition that has the processor at a given
instant is called the active partition.

– A local scheduler, which is used to decide which task among those that
are ready to run within the active partition executes first, following a lo-
cal scheduling policy.

Several schemes are possible for global and local scheduling policies, includ-
ing static scheduling, time slicing, dynamic priorities and fixed priorities. Some
architectural patterns that have been proposed in this framework are fully parti-
tioned architectures and server-based architectures. The main properties of these
architectures are described in the next paragraphs.

2.3 Fully Partitioned Architecture

This architectural pattern entails using a completely separated global scheduler,
and as many local schedulers as logical partitions. When the global scheduler
dispatches a partition for execution, it yields control to the local scheduler in that
partition, which in turn dispatches ready tasks within the partition according
to the local scheduling policy. With this approach, different partitions may have
different local scheduling policies.

A well-known example of this model is the ARINC 653 standard [3] for avion-
ics systems (figure 1). The ARINC global scheduler is a variant of a static
cyclic executive, while the local schedulers are priority-based. Some proposals
to build systems in Ada based on this architecture have been presented in recent
years [4, 5].

The main advantage of this approach is the guarantee of timeliness and pre-
dictability. However, the approach also suffers from the same drawbacks as other
static scheduling methods, for it is rigid and inflexible. It is in fact difficult to
modify the configuration of a system by adding or changing partitions. Moreover,
the communication scheme is very rigid and the problem of allocating sporadic
tasks is hard. All in all, this model approach scales poorly to increasing levels of
architectural partitioning.

Other approaches within the same overall strategy are obviously possible,
however, under the fully partitioned architecture. For example, fixed priorities
could be employed for global scheduling, or else dynamic priorities could be used
at the local level. The strict separation between schedulers at different partitions

4 J.A. Pulido et al.

App1 App2App2 App3App3 App1 App2App2 App3App3… …
time

Global scheduler
(time slicing)

Local schedulers
(FPPS) Application 1

Thread 3

Application 2 Application 3

Thread 2

Thread 1

Thread b

Thread a

Thread z

Thread y

Thread x

Fig. 1. Fully partitioned architecture

and the global scheduler enables a rich variety of scheduling methods to be
accommodated under this architecture, although practical considerations and the
apparent need for further research on temporal analysis methods for partitioned
architectures may impair the development of mixed scheduling methods.

2.4 Served-Based Architecture

The server-based architecture goes one step further, adding flexibility to the fully
static partitioned model while preserving a high degree of robustness and staying
comparatively simple to implement. In this architecture the global scheduler is
supplemented by a set of servers (cf. figure 2), which are specialized containers
for executing application tasks. Servers have a capacity of processor time, which
can be replenished at different times. When a server is dispatched for execution,
it in turn dispatches the tasks it serves according to the local scheduling policy as
long as it retains some residual processing time from its original capacity. When
the server capacity is exhausted, it suspends its execution until the capacity is
replenished.

An example of this approach is the FIRST architecture [6], one variant of
which uses fixed-priority pre-emptive scheduling (FPPS) at the global level, and
different kinds of servers to execute the application tasks:

– A periodic server [7] is released with a fixed period. As long as there are any
tasks ready to run, they are executed until the server capacity is exhausted.
If the tasks complete and there is some capacity available, the server remains
idle in case a task is released that can use some of the remaining capacity.
The server capacity is replenished at the beginning of the next period.

– A deferrable server [8] is similar to a periodic server, except that it suspends
its execution if there are no ready tasks to be run. Its capacity is replenished

Hierarchical Scheduling with Ada 2005 5

Higher
Priority

Lower
Priority

Periodic Server

Deferrable Server

Thread 1

Periodic Server

Thread 2 Thread 3

Thread a

Thread b Thread c

Thread d

Thread 4

Thread 6 Thread 7

Thread 5

Fig. 2. Server-based architecture

at the beginning of the next period, independently of whether it has been
consumed or not.

– A sporadic server [9] is replenished only after its capacity has been ex-
hausted. The amount of capacity to be replenished and the time to do it
depend on the particular way that the tasks are scheduled.

Unlike the fully partitioned architecture, this priority-based method improves
the flexibility of the system substantially, while also keeping a reasonable degree
of timeliness and predictability. An exhaustive discussion of the schedulability
analysis issues arising from the approach has been made in [6]. One distinct
conclusion of the cited work is that periodic servers are best equipped to warrant
the deadline of hard real-time tasks, while also noting the current difficulty of
choosing optimal parameters for the servers.

3 An Architecture Based on Priority Bands

3.1 General Approach

The enhancements to the Ada tasking model included in the new Ada 2005
standard [10, Annex D] enable a new approach to hierarchical scheduling in
which the global and local schedulers are integrated in a single framework. The
new standard keeps fixed priority pre-emptive scheduling (FPPS) as the basic
scheduling mechanism, but it defines a set of new features that extend the Ada
tasking model in some significant directions:

6 J.A. Pulido et al.

Higher
Priority

Lower
Priority

Priority Band 1: Local Scheduling Policy = FPPS

Priority Band 2: Local Scheduling Policy = EDF

Priority Band 4: Local Scheduling Policy = Round Robin

Thread 1

Priority Band 3: Local Scheduling Policy = FPPS

Thread x

Thread 2 Thread 3

Thread y

Thread z

Thread 4

Thread 6 Thread 7

Thread 5

Thread a Thread b Thread c

Fig. 3. Priority band architecture

– New dispatching policies. In addition to FIFO within priorities, the new
standard includes non pre-emptive FIFO, round-robin, and earliest-deadline
first (EDF) dispatching.

The nice properties of the ceiling locking policy for protected object ac-
cess are preserved when using the new dispatching policies (including EDF)
by redefining it in such a way that it is equivalent to the stack resource
protocol [11].

– Mixed dispatching policies. The new pragma Priority_Specific_Dispatching
enables different task dispatching policies to be used within a range of prior-
ities. Again, the new definition of the ceiling locking policy ensures bounded
priority inversion even when protected objects are used by tasks running
under different dispatching policies.

This tasking model suggests an integrated hierarchical architecture in which
partitions are implemented as sets of tasks that are assigned priorities within a
priority band. The global scheduling policy is FPPS, and the local scheduling
policy is the task dispatching policy used in the priority bands assigned to the
different partitions (cf. figure 3). This has the advantage of a greater simplicity
and flexibility with respect to the server-based architecture.

Hierarchical Scheduling with Ada 2005 7

Example 1.1. Sporadic task pattern

t a sk body Event_Handler i s
−− d e c l a r a t i o n s , i n c l u d i n g D of type Data
Minimum_Separation : cons tan t Ada . Real_Time . Time_Span

:= . . . −− some a p p r o p r i a t e v a l u e
Next : Ada . Real_Time . Time ;

beg in
−− I n i t i a l i z a t i o n code
l oop

Event_Object . Wait (D) ;
Next := Ada . Real_Time . C lock + Minimum_Separation ;
−− Non−su spend ing even t h and l i n g code
de la y u n t i l Next ;−− t h i s e n su r e s minimum tempora l s e p a r a t i o n

end loop ;
end Event_Handler ;

However, relying on scheduling only for temporal isolation between tasks be-
longing to different logical partitions (and possibly with different criticality lev-
els) is not enough, as some scheduling-related assumptions might be violated at
run-time. The main sources of timing errors are:

– Violations of the arrival models of sporadic tasks (e.g. a sporadic task being
activated more often than stipulated).

– Overruns of execution time with respect to the WCET value considered in
the off-line feasibility analysis.

Both forms of run-time misbehaviour can result in an overload situation whereby
one or more tasks may miss their deadlines, which is clearly unacceptable for
high-criticality tasks. However, Ada 2005 provides some mechanisms which can
be used to detect overload situations at run time and react to them in an
appropriate way:

– Minimum inter-arrival times for sporadic tasks can be enforced, like in Ada 95,
by using a delay until statement. Example 1.1 shows a sporadic task pattern
taken from [12] that follows this approach.

– Overruns of budgeted execution time can be detected by using the execution-
time timers and group budget timers that have been introduced as novel
features in Ada 2005 [10, D14]. Example Example 1.2 illustrates the use of
these mechanisms.

Execution-time timers can be used to detect overruns at the task level, while
group budget timers can be used to limit the total execution time of a group
of tasks. This mechanism can be used to enforce temporal isolation between
partitions, as explained in the next section.

8 J.A. Pulido et al.

Example 1.2. Programming example

−− −−

−−

−−

−−

−− −−

−−

−−

−− −−

−− −−

−− −−

−− −−

−−

Hierarchical Scheduling with Ada 2005 9

3.2 Mapping Partitions to Ada 2005

The above approach can be used to map a system with several applications,
possibly with different criticality levels, to a set of Ada 2005 tasks with inter-
partition temporal isolation.

The main architectural rule is to allocate a priority band to every logical
partition. The priority band for a partition should contain as many different
priority levels as tasks in the partition, so that each task can have a distinct
base priority if required. We assume that task priorities are static, except for
priority inheritance under the ceiling locking protocol.

The way of assigning priorities to partitions should be directly linked to their
criticality levels, i.e it seems reasonable that the partitions with the higher criti-
cality levels are allocated higher priority bands than lower criticality ones. In this
way, if an overrun occurs, tasks belonging to low-criticality partitions will miss
their deadlines before tasks in higher criticality partitions do. Of course, this
priority assignment is not optimal, in contrast with other well-known priority
assignment methods [13, 14, 15]. This sub-optimality means that the achievable
processor utilization may be inferior to what could be attained with an optimal
priority allocation. In practical developments however the theoretical utilization
limits attained by the optimal methods are seldom sought and reached.

Communication between tasks in the same partition is mediated by protected
objects in the usual style. Inter-partition communication can also be realized
with protected objects, but in that case the ceiling priority of the protected
object used for it will always be in the priority band of the highest priority
partition. This ensures that the criticality level of the latter is also preserved
when executing protected operations. If any partition uses the EDF policy, the
stack resource protocol (SRP) ensures a minimal amount of blocking for the
highest criticality task too.

Temporal isolation is attained by design, confirmed by temporal analysis, and
preserved by execution-time timers at run time. A group budget is allocated
to each partition, and all tasks in the partition are added to the group. If the
budget is exhausted, a handler procedure is invoked to take corrective actions,
which in general are application-specific.

The main advantage of the priority bands architecture is the great flexibility
it offers to the designer. Contrary to the statically partitioned architecture, mod-
ifying the system is comparatively inexpensive, while communications between
partitions can be much more easily accommodated. Besides, the fact that the
facilities required for its realization are all included in the Ada 2005 standard
eases the development process and increases portability. Response time analysis
methods for this approach are discussed in the following section.

Example 1.2 illustrates a partitioned system containing three applications
with three different criticality levels. The scheduling policies are FPPS for level
A, EDF for level B, and round-robin for level C. The applications are composed of
several tasks which are allocated base priorities within priority bands in accord
with their criticality levels. There is a group budget for each priority band,
which includes tasks with the same criticality level. Each task group is attached

10 J.A. Pulido et al.

a handler that is in charge of executing the appropriate code if any of tasks in
the group should attempt to execute longer than stipulated.

4 Related Issues

4.1 Response Time Analysis

Temporal analysis is usually required as part of the verification and validation
process to be performed in high-integrity systems. The best known temporal
analysis methods are usually grouped under the term Rate-Monotonic Analysis
(RMA) [16] or Response Time Analysis (RTA) [17]. The current form of analy-
sis deals with periodic and sporadic tasks with arbitrary deadlines, precedence
relationships, communication through shared data, as well as multiprocessor
and distributed systems, using fixed-priority scheduling [18]. Similar results are
available for analysing systems based on EDF scheduling [19, 20, 21].

Hierarchical scheduling, on the other hand, is comparatively new, and signif-
icant research work has still to be performed to develop or to adapt temporal
analysis methods to new scheduling architectures. Some promising results have
already been produced [22, 6], and especially [23], but their applicability to the
proposed scheduling model is still to be explored.

4.2 Spatial Isolation

Although we regard it as outside the scope of this paper, spatial isolation is a
mandatory requirement for systems that integrate mixed criticality applications.
We are currently exploring two complementary approaches to spatial isolation
in systems with hierarchical scheduling. The first one is using SPARK and static
flow analysis, as shown in [24], to ensure that non-critical code cannot modify
critical data. The other one is based on using specialized hardware mechanisms
to enforce isolation between the storage spaces of the different applications at run
time, as it is usually done in many operating systems. However, this technique
cannot be used in some hardware platforms commonly used in the aerospace do-
main, that only have rudimentary mechanisms (e.g. fence registers) for memory
protection.

5 Conclusions

This paper has illustrated a method for scheduling tasks with mixed criticality
requirements. The proposed method can be used to enforce temporal isolation
between applications with different levels of criticality. Applications are realised
as groups of tasks with prescribed time budgets, which warrant that no single
task group may ever overrun into the processor time allocated to another group.
Each task group is assigned a band of contiguous priorities, within which specific
local dispatching policies can be enforced. This method, which protects logical
partitions by advanced use of current scheduling theory, permits to implement

Hierarchical Scheduling with Ada 2005 11

high-integrity systems following an integrated approach and therefore gain a
precious extent of design flexibility.

The concrete implementation of the proposed architectural approach is greatly
facilitated by the use of new real-time features of the new Ada 2005 standard, and
in particular: mixed scheduling policies and group budget timers. We contend
that this result is only an initial manifestation of the expressive power provided
for by the Ada 2005 standard for the construction of new-generation real-time
systems.

References

1. ISO/IEC: TR 15942:2000 — Guide for the use of the Ada programming language
in high integrity systems. (2000)

2. Vardanega, T.: Development of on-board embedded real-time systems: An engi-
neering approach. Technical Report ESA STR-260, European Space Agency (1999)
ISBN 90-9092-334-2.

3. ARINC: Avionics Application Software Standard Interface — ARINC Specification
653-1. (2003)

4. Tokar, J.L.: Space & time partitioning with ARINC 653 and pragma profile. Ada
Letters XXIII (2003) 52–54. Proceedings of the 12th International Real-Time Ada
Workshop (IRTAW 12).

5. Dobbing, B.: Building partitioned architectures based on the Ravenscar profile.
Ada Lett. XX (2000) 29–31

6. Davis, R., Burns, A.: Hierarchical fixed priority pre-emptive scheduling. Technical
Report YCS-2005-385, University of York (2005)

7. Sha, L., Lehoczky, J., Rajkumar, R.: Solutions for some practical problems in
prioritized preemptive scheduling. In: IEEE Real-Time Systems Symposium, IEEE
Computer Society Press (1986)

8. Strosnider, J., Lehoczky, J., Sha, L.: The deferrable server algorithm for enhanced
aperiodic responsiveness in hard real-time environments. IEEE Tr. on Computers
44 (1995)

9. Sprunt, B., Sha, L., Lehoczky, J.: Aperiodic task scheduling for hard real-time
systems. Real-Time Systems 1 (1989)

10. ISO SC22/WG9: Ada Reference Manual. Language and Standard Li-
braries. Consolidated Standard ISO/IEC 8652:1995(E) with Techni-
cal Corrigendum 1 and Amendment 1 (Draft 15). (2005) Available on
http://www.adaic.com/standards/rm-amend/html/RM-TTL.html.

11. Baker, T.P.: Stack-based scheduling for realtime processes. Real-Time Systems 3
(1991) 67–99

12. Burns, A., Dobbing, B., Vardanega, T.: Guide for the use of the Ada Ravenscar
profile in high integrity systems. Technical Report YCS-2003-348, University of
York (2003)

13. Liu, C., Layland, J.: Scheduling algorithms for multiprogramming in a hard-real-
time environment. Journal of the ACM 20 (1973)

14. Leung, J., Whitehead, J.: On the complexity of fixed-priority scheduling of periodic
real-time tasks. Performance Evaluation 2 (1982)

15. Audsley, N., Burns, A., Richardson, M., Tindell, K., Wellings, A.: Applying new
scheduling theory to static priority preemptive scheduling. Software Engineering
Journal 8 (1993)

12 J.A. Pulido et al.

16. Klein, M.H., Ralya, T., Pollack, B., Obenza, R., González-Harbour, M.: A Practi-
tioner’s Handbook for Real-Time Analysis. Guide to Rate Monotonic Analysis for
Real-Time Systems. Kluwer Academic Publishers, Boston (1993)

17. Audsley, N., Burns, A., Richardson, M., Wellings, A.: Hard real-time scheduling:
The deadline-monotonic approach. In Halang, W.A., Ramamrithan, K., eds.: Real
Time Programming 1991. Proceedings of the IFAC/IFIP Workshop, Pergamon
Press (1992)

18. Sha, L., Tarek Abdelzaher, Karl-Erik Årzén, Cervin, A., Baker, T., Alan Burns,
Giorgio Buttazzo, Marco Caccamo, John Lehoczky, Mok, A.: Real time scheduling
theory: A historical perspective. Real-Time Systems 28 (2004) 101–155

19. Baruah, S.K., Rosier, L.E., Howell, R.R.: Algorithms and complexity concerning
the preemptive scheduling of periodic, real-time tasks on one processor. Real-Time
Syst. 2 (1990) 301–324

20. Spuri, M., Buttazzo, G.C.: Efficient aperiodic service under earliest deadline
scheduling. In: IEEE Real-Time Systems Symposium. (1994)

21. Spuri, M.: Analysis of deadline scheduled real-time systems. Technical Report
RR-2772, INRIA, France (1996)

22. Shin, I., Lee, I.: Periodic resource model for compositional real-time guarantees.
In: Proceedings of the 24th IEEE Real-Time Systems Symposium. (2003)

23. González-Harbour, M., Palencia, J.C.: Response time analysis for tasks scheduled
under EDF within fixed priorities. In: Proceedings of the 24th IEEE Real-Time
Systems Symposium, Cancún, México (2003)

24. Amey, P., Chapman, R., White, N.: Smart certification of mixed criticality systems.
In Vardanega, T., Wellings, A., eds.: Reliable Software Technologies - Ada-Europe
2005. Volume 3555 of LNCS., Springer-Verlag (2005) 144–155

A Comparison of Ada and Real-Time JavaTM

for Safety-Critical Applications

Benjamin M. Brosgol1 and Andy Wellings2

1 AdaCore, 104 Fifth Ave., New York,
NY 10011, USA

brosgol@adacore.com
2 Dept. of Computer Science, University of York, Heslington,

York YO10 5DD, UK
andy.wellings@cs.york.ac.uk

Abstract. Ada has long been used for developing safety-critical systems, and the
upcoming Ada 2005 language revision extends this support. For various reasons
Java has not been a serious choice in this domain. However, recent work based on
the Real-Time Specification for Java promises to make Java technology a credible
alternative. This paper discusses and compares Ada and the RTSJ with respect to
the requirements for safety-critical systems, in particular how they can serve as
the basis for subsets that can be used for developing safety-certified software.

1 Introduction

Software is safety-critical if a failure can directly cause loss of human life or have
other catastrophic consequences. Correctness needs to be demonstrated with high
assurance, and regulatory agencies in safety-critical industries typically require system
providers to meet stringent certification requirements, e.g. DO-178B [1] in commercial
aviation.

A major factor affecting the development of safety-critical software is the choice of
programming language. But there is a dilemma: features with the expressive power to
make a system easier to design, implement and maintain — e.g., Object-Oriented Pro-
gramming — also bring semantic complexity that makes the resulting software harder
to certify. This is especially true for features requiring run-time support.

This conflict is resolved in practice by defining language subsets (also known as pro-
files) that exclude features that might interfere with safety certification. But this still
raises several issues. A language may have semantics with intrinsic safety certifica-
tion problems that cannot be addressed by subsetting, and there is also the difficulty of
deciding what should be in the subset, and who (the language designer, the compiler
implementor, or the programmer) should make the choices.

In practice there have been a range of approaches. Ada has proved to be a viable
basis for safety-critical subsets, as evidenced by SPARK, which emphasizes a partic-
ular approach towards demonstrating program correctness, and by various Ada com-
piler implementations targeted to the safety-critical community. C (and thus C++) are
less safe starting points, but the guidelines in MISRA-C [2] intend to avoid C’s inse-
curities and error-prone features. Java, in particular the enhanced platform known as

L.M. Pinho and M. González Harbour (Eds.): Ada-Europe 2006, LNCS 4006, pp. 13–26, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

14 B.M. Brosgol and A. Wellings

real-time Java,1 is currently attracting interest from both the research community and
from organizations using Java in systems that have safety-critical requirements.

This paper focuses on Ada2 and real-time Java, discussing how each can serve as
the basis for safety-critical subsets (specifically with respect to the certification issues
raised by the DO-178B guidelines).

2 DO-178B and Programming Language Issues

DO-178B comprises a set of 66 “guidelines” that apply to the development of software
for commercial aircraft systems.3 The document defines five increasingly stringent lev-
els of criticality, from Level E (lowest) through A (highest). Levels A and B apply to
systems whose failure may cause loss of life and are thus considered safety critical.

DO-178B’s emphasis is on ensuring the soundness of the process used to build the
software, as opposed to directly showing that the resulting software product is cor-
rect. Compliance with DO-178B involves the preparation of many certification artifacts
(generally documentation of various kinds), adherence to configuration management
and quality assurance procedures, and a focus on testing.

2.1 General Requirements

With its emphasis on process, DO-178B says very little about the programming lan-
guage that is to be used. The document likewise says very little about specific features.
Nevertheless, from those guidelines that relate to the software verification process it is
possible to infer four main requirements that must be met by a language (or language
subset) that is used for developing software for systems at levels A or B:

Reliability. The language should encourage the development of readable, reliable soft-
ware (no “traps and pitfalls”). This means early error detection, compile-time check-
ing, intuitive lexical and syntactic properties, and similar sorts of features.

Predictability. First, the programmer must be able to know the exact effect of the pro-
gram’s execution. Thus the language semantics needs to be precisely defined — no
implementation dependences or undefined behavior. Second, it must be possible to
demonstrate statically (before program execution) that time/space constraints will
not be exceeded: deadlines are met, and storage is not exhausted or fragmented.

Analyzability. Several DO-178B guidelines deal with code analyzability in connec-
tion with testing. For example, requirements- and structure-based coverage analysis
must guarantee that all software requirements are implemented and that there is no
“dead code” that is present in the system but does not correspond to requirements.
Structural coverage analysis is particularly stringent at Level A, for example requir-
ing “modified condition decision coverage” for boolean expressions, and analysis

1 We use the term real-time Java to mean the Java platform extended with real-time functionality
and predictability, as defined in the Real-Time Specification for Java [3].

2 Unless indicated otherwise, Ada in this paper refers to the Ada 2005 language revision cur-
rently in progress [4].

3 The guidelines are not specific to aircraft systems and may be used more generally on any
system where high confidence in predictability, reliability and safety is required.

A Comparison of Ada and Real-Time JavaTM for Safety-Critical Applications 15

at the object code level when there is not direct traceability from source to object.
Language features may either help or interfere with performing such analyses.

Expressiveness. Safety-critical systems almost always have real-time constraints and
deal with hardware interrupts, shared memory, and other low level issues. The pro-
gramming language (or language subset) needs to support such functionality.

2.2 Language Feature Issues

The requirements just described have tradeoffs, and advances in language technology
sometimes complicate compliance with DO-178B.

High-Level Features [Predictability, Analyzability]. Programmers use high-level con-
structs since it saves development time. For example, array slice assignment in Ada
is better than writing a loop with element-by-element assignment. However, for
the slice assignment the compiler may generate code that contains implicit loops
and conditionals. This may be problematic at Level A, for structural coverage at
the object-code level. Recursion can simplify some algorithms, at the sacrifice of
storage predictability. Subprograms as run-time objects are often useful, but they
complicate coverage analysis.

Encapsulation [Analyzability]. The “black box” principle — “clients” of a module
can access only the module’s interface and not its implementation — is a basic
tenet for robust software design. However, such “information hiding” may be in
conflict with the DO-178B guidelines for structural coverage analysis.

Object-Oriented Programming. OOP raises several serious issues with respect to
safety certification. especially with respect to traceability. For example:

• Inheritance [Reliability, Analyzability] semantics may lead to several kinds of
programming errors: accidental overloading of a method when the intent was to
override, or accidental overriding when the intent was to overload or introduce
a new method. Inheritance may also exacerbate data coupling (dependence of
subclass on fields in superclass) and complicate analysis.

• Polymorphism [Predictability, Analyzability] requires pointers and generally
involves dynamic allocation. That raises the issue of memory management /
fragmentation / garbage collection. Interface types (as in Java and Ada 2005)
complicate analysis since a variable of such a type can reference any object
from any class that implements the interface.

• Dynamic binding [Analyzability] presents serious issues for structural cover-
age analysis. Unlike a case statement, where the effect (and thus the analysis)
is known to be local to the statement itself, a dynamically bound method call
may invoke code distant from the context of the call itself.

Generics [Analyzability]. Generics (“templates”) are key to successful code reuse, but
for safety certification each instantiation must be analyzed individually. Since a
generic instance does not directly correspond to source code provided by the devel-
oper, generics can be more difficult to certify than the equivalent program with the
expanded instance explicit in the source text.

16 B.M. Brosgol and A. Wellings

Inline expansion [Predictability, Analyzability]. Inline expansion raises issues similar
to generics and also introduces implementation dependences (the compiler may or
may not expand invocations inline).

Facilities Requiring Run-Time Support [Predictability, Analyzability]. Exception
handling, concurrency, and memory management require implementation-provided
run-time libraries. Even features that are part of the “static semantics” may result in
code that was not explicitly provided by the program (for example “type support”
routines for assignment and equality). The generality of the language can make
certifiability impractical or impossible for such libraries.
The semantics of dynamic features can significantly complicate coverage analysis
for application code. With exceptions there may be “catch-all” handler code that
is not easily exercised, and throwing an exception may require dynamic allocation.
Concurrency features greatly increase the number of control paths in a program and
may introduce timing dependences that are difficult to analyze.
Coverage issues likewise arise for the Application Program Interface. Sometimes
the largest advantage of a programming language is the set of libraries that accom-
panies the implementation (math packages, etc.), but if these are not certifiable then
they cannot be used in a safety-critical program.

Compiler Optimizations [Predictability, Analyzability]. In order to improve run-time
performance, modern compilers may generate code that is not directly traceable
to the source program. Optimization also interacts with exception handling (e.g.,
if an exception is raised in an expression that has been moved) and concurrency
(caching of shared data in thread-local memory). These kinds of issues significantly
complicate coverage analysis.

These issues are receiving attention, since there is interest (especially from develop-
ers) to use many of these features in safety-critical code, and the impact on certification
must be understood by all parties. During recent years several workshops have focused
on these topics; one of the results is a 4-volume handbook [5] that analyzes the is-
sues raised by Object-Oriented Technology. The following sections show how Ada and
real-time Java address such issues.

3 Safety-Critical Support in Ada

Ada addresses the requirements in Section 2.1 by including features that help, and by
allowing the program to exclude features that complicate, safety certification.

3.1 Reliability

Ada was designed with an emphasis on reliability, with features such as strong typing,
run-time checks, avoidance of error-prone syntax, and many others. For example:

• Valid attribute. With this attribute the programmer can check whether a scalar
object that is set from an external device has a valid value. This seemingly simple
problem was difficult to solve in Ada 83.

A Comparison of Ada and Real-Time JavaTM for Safety-Critical Applications 17

• Prevention of dangling references to declared entities. Ada’s access type rules pre-
vent creating a “pointer” to a data object or subprogram whose lifetime could be
shorter than that of the pointer.

• Specification of intent on operation inheritance. Ada 2005 has syntax that allows
the detection (at compile time) of unintended overriding or non-overriding.

• Task activation control. Ada 2005 has introduced rules for “atomic” elaboration;
this prevents interrupts during package elaboration from invoking handlers that ref-
erenced uninitialized data.

• pragma Assert. Ada 2005 has defined a pragma that allows the assertion of a
boolean condition, with program control over the effect when the condition is false,
for example by raising an exception.

But Ada also has features that can lead to hard-to-detect errors. Providing dynamic al-
location but not requiring garbage collection, Ada places storage reclamation responsi-
bilities on the programmer. This entails either unchecked deallocation (risking dangling
references) or reusable object pools (requiring careful analysis to use correctly) to avoid
storage leakage.

3.2 Predictability

Any language design has to make tradeoffs among deterministic semantics, program
efficiency, and implementability across a wide range of processors and operating sys-
tems. For example, if an expression can have side effects then order of evaluation is
important. But if the language rules dictate order of evaluation, optimizations become
more difficult. As another example, if the concurrency features have specific rules for
task dispatching, ready queue placement, and the effect of priorities, then the language’s
implementation on some platforms may be difficult or inefficient. If it lacks such speci-
ficity, then a program may have different effects on different platforms.

Ada 95 offered a partial solution to this dilemma by separating the standard into
the core language and the specialized needs annexes. For some kinds of features (e.g.,
tasking) the core language is intentionally permissive, with constraints added in the
Systems Programming or Real-Time Annexes.

However, as a compromise, this approach left a number of areas with nondetermin-
istic semantics. The use of various features may result in erroneous execution, bounded
errors, or unspecified or implementation-defined behavior. Examples include the effect
of reading the value of an uninitialized object, elaboration order choice, and dependence
on the parameter passing mechanism (by copy versus by reference).

Beyond the general issue of deterministic semantics, there is also the potential prob-
lem of implementation decisions that interfere with a program’s time or space pre-
dictability. An example is the possibility of implicit use of the heap for unconstrained
discriminated records or functions returning unconstrained arrays.

Solving such issues requires one or more of the following:

• Analyzing the program to ensure that the effect does not arise (e.g., no reads of
uninitialized data)

• Adhering to a restricted subset that does not contain the feature in question (e.g.,
avoiding elaboration order nondeterminism by ensuring that all library-level pack-
ages can be specified with pragma Pure or Preelaborate)

18 B.M. Brosgol and A. Wellings

• Knowing any relevant implementation decisions so that the program effect (includ-
ing time and space behavior) is deterministic

3.3 Analyzability

Given the size and generality of the full Ada language, arguably the most important fea-
ture for safety-critical systems is a pragma that indicates what a program is not doing:
pragma Restrictions. Indeed, Ada may best be regarded not as a single language
but rather as a family of languages. This is important because there is no such thing
as the safety-critical subset of Ada; instead pragma Restrictions provides a frame-
work that allows a programmer to define the subset needed for his or her application.
Sometimes a set of restrictions collectively is useful, and Ada 2005 introduces pragma
Profile as a higher level mechanism for this purpose. The now-classic Ravenscar con-
currency restrictions [6] are captured in this fashion: pragma Profile(Ravenscar).

An attempt to define a “one size fits all” safety-critical subset is problematic, since
the features that need to be restricted depend on the sorts of analyses that will be carried
out.4 This point is discussed and illustrated extensively in [7].

However, the utility of pragma Restrictions depends on how it is supported in
practice. An implementation is permitted to “bundle” restrictions, for example by sup-
plying some fixed number of versions of its run-time support libraries. A program that
needs some but not all of the facilities in one of these libraries will end up with the
entire library, including features that might not be desired. This will require extra ex-
pense for certifying software that is not needed (and will also require explanation to the
certification authorities as to why such deactivated code is present).

It is much more useful if the implementation is more flexible, supplying run-time
support for a feature only if the feature is actually used in the program. This à la carte
style is provided in some current Ada implementations, for example AdaCore’s High
Integrity Edition of GNAT Pro.

Ada 95’s Safety and Security Annex included several pragmas designed to assist
with safety certification-related analysis. In practice most of these pragmas have been
too weakly specified to have much of an effect, although Normalize Scalars can help
in ensuring a deterministic set of initial values.

Ada’s exception handling mechanism raises certification issues regarding library
complexity and unreachable handler code.

Ada’s high-level nature presents specific challenges to analyzability, but again an
implementation can allow the user to specify relevant restrictions. For example, since
generated code may contain loops or conditionals that were only implicit in the source
program, an implementation may allow the user to prevent such code from being gen-
erated. (The compiler will either generate alternative code, possibly less efficient, or
reject the program if no such alternative is available.) As another example, an imple-
mentation may restrict the use of exception handling, e.g. only for “last chance” code
that runs before program termination.

4 This is not to argue against the utility of well-defined subsets such as SPARK, but it might
be noted that the SPARK subset is derived from a particular approach to program verification.
Other approaches could give rise to other subsets.

A Comparison of Ada and Real-Time JavaTM for Safety-Critical Applications 19

Unlike other languages, encapsulation in Ada does not conflict with coverage analy-
sis. It is possible to define a test procedure as a child unit, whose body then has full
visibility onto the “state” data encapsulated in the specification of private child package.

3.4 Expressibility

Ada provides excellent support for low-level and real-time programming, both of which
are typically needed in safety-critical systems. It also is a methodology-neutral lan-
guage; if OOP is needed then it is available. If OOP is not needed then traditional
language features can be used. It is also possible to use Ada 83-style Object-Oriented
Design, or Ada 95 tagged types with type extension, but to exclude complicating fea-
tures such as polymorphism (class-wide types) and dynamic binding

Ada’s concurrency model is a good fit for the requirements of safety-critical pro-
gramming, as is evidenced by the Ravenscar profile.

Ada may be judged weak in the area of distribution and networking, since it lacks
many built-in language features or libraries for these domains. However, Ada’s Dis-
tributed Systems Annex ensures type safety across partitions, and equivalent semantics
when partitioning the application. In addition, Ada has extensive standard facilities for
interfacing with code in other languages. Thus if there is a certified library available in
C, it can be incorporated into an Ada application.

Other Ada limitations include the absence of built-in constructs or library support for
common idioms such as periodic tasks. The language also lacks a general annotation
facility; SPARK, for example, uses specially interpreted comments.

3.5 Summary

Ada in its entirety is too large a language for safety critical systems, but subsetting is
allowed and indeed facilitated by the Restrictions and Profile pragmas. It is strong
in terms of underlying reliability features, expressibility, and its flexibility in subsetting.
It has a proven track record in the safety arena and in several areas has advanced the
state of the art: SPARK, which has demonstrated the practicality of applying rigorous
methods to demonstrate correctness of large systems; Ravenscar, which has shown that
concurrency features can be used in safety-critical code.

Ada’s main potential drawback is with respect to portability in the context of certi-
fication. Although Ada in general supports portability well, a program with restrictions
that allow certification in one implementation might not be certifiable in another. This
is due both to Ada’s flexible approach to subsets and to its various semantic imple-
mentation dependences. This may be an issue more in theory than in practice, since
certification details tend to be rather implementation specific even for language features
that are portable.

4 Safety-Critical Support in Java

Java [8] was certainly not designed for safety-critical programming, but it is still useful
to assess the language as a whole with respect to the requirements in Section 2.1. This
will identify problems that must be addressed in a safety-critical subset and will also
point to intrinsic issues that will arise in subsets as well as the full language.

20 B.M. Brosgol and A. Wellings

4.1 Reliability

Java was designed in response to known insecurities in C and C++ and has many fea-
tures that support reliable programming. However, it also has some shortcomings. Its
primitive numeric types are weakly typed and do not provide a mechanism for defining
range constraints. The solution, to define a class with the numeric data as a field, brings
run-time overhead (dynamic allocation of new objects) and some notational clumsiness.
The signed integer types have “wraparound” semantics on overflow, resulting in the
counterintuitive effect that the sum of two positive numbers may be negative. Java car-
ries over the C/C++ syntactic framework almost intact, thereby inheriting a number of
programming pitfalls. These include poorly human-engineered numeric literals (what is
the value of 0XF000000000000000?), susceptibility to “dangling else” problems, and
errors stemming from the use of “=” for assignment. In the OOP area, although Java
1.5 has an annotation, @override, that detects the error of introducing a new or over-
loaded method when the intent was to override an inherited method, it lacks a facility
for addressing the symmetric situation: overriding an inherited method when the intent
was to define a new one. Typographical errors or spelling mistakes can result in legal
programs with subtle-to-detect bugs. The semantics for class loading can lead to some
unexpected effects, with a static field accessed before its explicit initialization value has
been assigned. The Java concurrency model is low-level and contains many subtleties
(for example with the use of synchronization and the wait / notify mechanism) that can
lead to hard-to-detect errors or race conditions. Java allows a function to be invoked as
a statement. If this is done unintentionally the program will compile and run but might
not give the expected result.

Most of these shortcomings are intrinsic and will apply to subsets as well as to full
Java. The thread model problems are somewhat addressable through a combination
of an API and a set of restrictions on thread methods (e.g., prohibiting explicit calls
on wait and notify). However, the mutual exclusion mechanism – synchronized
code and methods – is basic to Java semantics. Since all arrays and class instances are
dynamically allocated, “locking” a data structure is more complex in Java (since the
data structure may comprise discontiguous parts) than in other languages.

These are not necessarily fatal flaws—it is, after all, possible to certify systems
written in C and assembly language. However, their effect is to make the certification
process more complex and thus more expensive.

4.2 Predictability

One of Java’s strengths is its well-defined semantics, at least for sequential programs.
Like Ada, and in contrast to C or C++, Java defines the effect of run-time conditions
such as array index out of bounds and storage overflow. But Java goes much further.
Decisions that are implementation dependent or unspecified in other languages—such
as order of evaluation in expressions, the effect of referencing uninitialized data, the
interaction between optimizations (code motion) and exceptions—are specified deter-
ministically in Java.

However, some issues still arise. One is the effect of finalization. Java allows the
user to override the finalize method for a new class; during garbage collection for

A Comparison of Ada and Real-Time JavaTM for Safety-Critical Applications 21

any object of this class, finalize will be invoked. However, there is no guarantee
when garbage collection is performed.

The other major area where Java semantics are ill-defined is the thread model. Prior-
ities are not guaranteed to be used for thread dispatching; priority inversions and other
anomalies are possible.

Beyond these issues of deterministic semantics, there is also the issue of how the
language supports programs whose run-time resources (particularly space and time
requirements) must be predictable. In this area Java presents major challenges:

• Memory Management
One of the major strengths of Java is its provision of automatic garbage collection.
However, the presence of garbage collection does not prevent memory leaks. More-
over, a program may suffer from unexpected GC-induced interruptions that defeat
analysis of time predictability.

• Real-Time Deadlines
Safety-critical systems generally have real-time constraints, with hard deadlines
that must be met. The Java thread model’s nondeterminism, and interference from
the Garbage Collector, defeat this requirement:

• Java Virtual Machine Issues
Java is different from traditional languages in that its execution platform is gener-
ally a software (JVM) environment. This is not essential, and there are Java com-
pilers that generate code for standard hardware processors. However, if a JVM is
used, several issues arise. Most significant is the need to certify the JVM itself,
a formidable undertaking in view of Java’s rich run-time semantics. There is also
the problem that some JVM instructions take an unbounded amount of time (e.g.
athrow for exception propagation), complicating analysis of time predictability.

4.3 Analyzability

As a modern, highly dynamic, “pure” Object Oriented Language, Java suffers from
many of the issues identified in Section 2.2.

There is no Java analog to Ada’s pragma Restrictions. Thus subsetting will be
decided by individual Java implementations, or perhaps as the result of a Java Com-
munity Process effort. In either case there is a potential loss of flexibility with respect
to analysis techniques, if the specific subset contains features that are outside the set
allowed by a user’s analysis approach.

4.4 Expressibility

On the positive side, Java does provide class libraries for functionality such as network-
ing and distribution. However, these libraries would need to be rewritten if they are to
be used for safety-critical systems, with careful attention paid to memory management.

Java also supplies annotations (in V1.5), which can be useful for describing statically
analyzable properties.

Java is weak with respect to “systems programming” level features. This is alleviated
in part by some of the facilities provided by the RTSJ, but it is likely that low-level
programming will require native code, which will complicate certification.

22 B.M. Brosgol and A. Wellings

A more encompassing issue is that Java is a “pure” Object-Oriented Language. It is
possible to program in Java without using the dynamic OO features—for example with
all methods static or final—but that would result in a style that is distinctly non-Java-
like. This is an intrinsic issue; it will arise for any subset.

4.5 Summary

The fact that full Java is not appropriate for safety-critical programming is no surprise.
The question is whether the impediments can be removed by restricting the language
features to a “safe subset”, by providing a specialized API, or both.

Although there is no equivalent of SPARK for Java, this problem has to some extent
been addressed in other contexts, in industries that, while not safety-critical, demand
high reliability and security. As one example, a subset of the Java platform for smart
cards [9] removes a number of complex features such as multithreading and garbage
collection; class loading is also more restrictive. And there has been some work on
formally defining Java’s syntax and semantics [10].

As the Java language has evolved, features have been added that are useful for safety-
critical programming (and that thus might be candidates for inclusion in a safety-critical
subset). These include annotations and the assert statement (although, as in Ada, the
assert statement raises issues of coverage analysis for exception handling code that is
only executed when “impossible” conditions occur).

5 Safety Critical Support in the Real-Time Specification for Java

This section describes how the RTSJ addresses the safety-critical requirements pre-
sented in Section 2.1.

5.1 Safety-Critical Issues

The RTSJ was designed to address Java’s shortcomings in the real-time area, and not to
serve as an API for safety-critical applications. Nonetheless, many features that satisfy
real-time goals also support safety-critical development, so it is useful to see how the
RTSJ rates against the requirements of Section 2.1.

Reliability. The RTSJ inherits Java’s semantic underpinnings and has both the advan-
tages and disadvantages of full Java with respect to reliability. Thus most of the
Java problems cited in Section 4.1 also arise in the RTSJ. An exception is the thread
model; the problems in full Java have been largely solved by the RTSJ.

Predictability. The RTSJ addresses the major predictability issues with Java. It re-
solves the underspecified semantics of the general Java thread model, and provides
a mechanism (scoped and immortal memory) that can serve as an adjunct to or
replacement of the garbage collector. A few issues still arise, however. One is the
presence of optional features in the RTSJ (for example, the Priority Ceiling Em-
ulation policy for monitor control). Also, some RTSJ aspects are implementation
dependent, such as the placement of preempted threads in ready queues.

A Comparison of Ada and Real-Time JavaTM for Safety-Critical Applications 23

Analyzability. There are obviously features that would be too complicated for certifi-
cation and that would thus need to be excluded or substantially restricted, such as
asynchronous transfer of control, the general scoped memory model, the full mech-
anism for monitor control policies, and “on line” (run-time) feasibility analysis. On
the other hand, a number of RTSJ features are designed to support analyzability,
such as the cost and deadline data supplied to various constructors.

Expressibility. The RTSJ supports idioms (periodic, aperiodic and sporadic real-time
threads and asynchronous event handlers) that will be useful for safety-critical ap-
plications. It also adds some classes that help with low-level programming. On the
other hand, the “pure” Object-Oriented nature of Java means that expressing tradi-
tional (non-OO) functionality may have a style that is awkward. And although Java
is rich in support for distributed applications, distribution was outside the scope of
the RTSJ.

In summary, the RTSJ has demonstrated the feasibility of solving Java’s most substan-
tive predictability challenges — thread issues and garbage collection problems — in a
way that makes sense for real-time programs. It is thus reasonable to consider the RTSJ
as a starting point for the design of a safety-critical profile.

6 Defining a Safety-Critical RTSJ Profile

Early work has focused on providing a Ravenscar-like profile [11] and its associated
real-time JVM [12]. More recently, work within the European High-Integrity Java Ap-
plications (HIJA) project — www.hija.org — and under the auspices of The Open
Group’s Real-Time and Embedded Systems (RTES) Forum have begun to take this ap-
proach forward in an attempt to produce an industrial standard, which is planned for
development under Sun Microsystems’ Java Community Process and which, at a later
stage, might be submitted to ISO. No clear agreements have yet emerged out of the
RTES Forum yet, so this section will discuss the models proposed by Ravenscar-Java
and the HIJA project. These are serving as input to the RTES Forum’s deliberations.

The Memory Management Model. Both Ravenscar-Java and the HIJA high-integrity
subset use a limited form of scoped memory in order to allow dynamic allocation with
predictable reclamation and avoidance of fragmentation. Ravenscar-Java allows a single
scope per schedulable object and assumes that each application program executes in
two phases: an initialization phase and a mission phase. In the initialization phase, all
non-time-critical activities and initializations that are required before the mission phase
are carried out. This includes loading all the classes needed in the application, and
running static initializers. In the mission phase the application is executed, with each
schedulable object s treated as comprising a sequence of releases. Any objects allocated
during one release go in s’s scoped memory and are deallocated on completion of the
release. Static analysis based on annotations can detect reference assignment errors.

In the HIJA proposal, a recovery phase is added, and nested scoped memory areas
are allowed, but there is no sharing of scopes between the schedulable objects (except
the initial-scope memory area). Recovery consists of exiting the initial scoped memory
area and re-entering to re-initialize the entire system.

24 B.M. Brosgol and A. Wellings

The Concurrency Model. Both Ravenscar-Java and the HIJA proposal support a sub-
set of the RTSJ concurrency model. Among the restrictions:

• Each schedulable object must have either periodic or sporadic release parameters
(aperiodic release parameters are not supported).

• The only scheduler is the default preemptive priority-based scheduler (FIFO within
priority) with exactly 28 priorities. There is no support for dynamic priorities.

• Deadline misses are detected but there is no support for CPU-time monitoring.
• Shared objects are from classes with synchronized methods. The synchronized

statement is not allowed. Suspension is prohibited within a synchronized method.
• Priority inversion is controlled by use of the Priority Ceiling Emulation policy. The

default ceiling priority is the maximum priority supported by the default scheduler.
• Complicated features, such as asynchronous transfer of control, are prohibited.

Safety-Critical Issues with RTSJ Profiles. In summary:

• Reliability. These issues are the same as for the RTSJ.
• Predictability. The profiles supply deterministic semantics and require support for

Priority Ceiling Emulation.
• Analyzability. The profiles remove the RTSJ features that compromise analyzabil-

ity, although they do this to different degrees. Ravenscar-Java is simpler and thus
easier to certify than the HIJA approach.

• Expressibility. The essence of a subset is reduced functionality, so an issue that
will be open until there is actual application experience is whether the profiles’
restrictions introduce unacceptable stylistic complexity. For example, Ravenscar-
Java’s assumes that an application comprises an initialization phase and a mission
phase. This may be overly constraining (it is sometimes useful to have a “warm
restart” with initialization repeated; this is allowed in the HIJA profile).

7 Comparison and Conclusions

Table 1 (page 25) summarizes the main points of comparison between Ada and Real-
Time Java with respect to their suitability as the basis for safety-critical subsets.

Ada and Java represent rather different starting points for the definition of safety-
critical subsets. Ada has an established history in this domain, as illustrated by SPARK
and vendor-supplied profiles. The Ravenscar profile showed that Ada’s concurrency
features could be used for certifiable systems; there was no need to use the methodolog-
ically fragile cyclic executive style. Pragma Restrictions may be a real breakthrough
in safety-critical technology, offering the programmer the opportunity to develop sys-
tems with precise control over which features are needed and to choose the subset based
on the planned analysis techniques. Ada has reliable underpinnings; there are few if any
intrinsic issues that cause problems for a subset. And being methodologically neutral,
Ada supports traditional development techniques as well as OOP at whatever level the
programmer needs (for example it is possible to use type extension but not polymor-
phism or dynamic binding).

A Comparison of Ada and Real-Time JavaTM for Safety-Critical Applications 25

Table 1. Comparison of Ada and Real-Time Java for Safety-Critical Systems

Ada Advantages Real-Time Java Advantages

Reliability • Secure syntactic foundation, avoiding
Java’s C-based pitfalls

• Stronger typing, especially for the
numeric types

• Specific features such as named
associations, Valid attribute

• Intuitive semantics for signed integer
arithmetic overflow

• Prevention of dangling references
(no explicit deallocation)

• Prevention of references to
uninitialized values

• Prevention of unreachable code

Predictability • Specific features with predictable
time/space behavior, such as
non-blocking protected operations, and
Suspension Objects

• Absence of Garbage Collector

• Avoidance of implementation
dependences and unspecified
behavior

• Provision of automatically reclaimed
non-heap memory areas

Analyzability • General framework (Restrictions,
Profile pragmas) for defining
analyzable subsets

• Child unit as test procedure for
package with hidden “state”

• Built-in framework for feasibility
analysis

Expressibility • Support for classical (non-OO)
development

• Support for low-level programming,
interfacing with other languages

• Support for common real-time
idioms and release characteristics

• Useful features in Java 1.5, such as
annotations

Ada also has some disadvantages. The flexibility of pragma Restrictions brings
possible portability issues, and there are a number of cases in Ada where the semantics
is not completely specified (e.g., bounded errors or implementation defined behavior).

Java is a much newer technology for the safety-critical domain, and the Real-Time
Specification for Java serves as a possible starting point. Its advantages include protec-
tion against dangling references, and explicit support for idioms such as asynchronous
event handlers and periodic realtime threads. Work in progress (on the Ravenscar-Java
and HIJA profiles) thus far shows that safety-critical profiles of real-time Java are fea-
sible. On the other hand, there are intrinsic Java issues with any subset. The C-oriented
syntactic framework can lead to errors, and Java’s status as a “pure” OO language can
result in clumsy style for programs that do not need OOP. The RTSJ’s scoped mem-
ory mechanism, even in its simple forms, is new and will require a different style of
programming than what Java and real-time developers are accustomed to.

Ada is certainly expected to continue as a language of choice for safety-critical sys-
tems. It has a proven track record, and its issues are well understood and manageable.

A real-time Java profile may be attractive for a system where Java is the chosen
technology and which has safety-critical components. The potential demand for such

26 B.M. Brosgol and A. Wellings

systems means that research and development on safety-critical real-time Java will
likely continue well into the future. Given Ada 2005’s interfacing capabilities with Java,
a system with a mix of safety-critical code in Ada and real-time Java would not an be
unrealistic development.

References

1. RTCA SC-167 / EUROCAE WG-12. RTCA/DO-178B – Software Considerations in Air-
borne Systems and Equipment Certification, December 1992.

2. The Motor Industry Software Reliability Association. MISRA-C:2004 – Guidelines for the
use of the C language in critical systems, October 2004.

3. Peter Dibble (spec. lead), Rudy Belliardi, Benjamin Brosgol, David Holmes, and Andy
Wellings. Real-Time Specification for JavaTM, V1.0.1, June 2005. www.rtsj.org.

4. ISO/IEC JTC1/SC 22/WG 9. Ada Reference Manual – ISO/IEC 8652:1995(E) with Technical
Corrigendum 1 and Amendment 1 (Draft 13) – Language and Standard Libraries, 2005.

5. Handbook for Object-Oriented Technology in Aviation (OOTiA), October 2004.
www.faa.gov/aircraft/air cert/design approvals/air software/oot.

6. Alan Burns, Brian Dobbing, and George Romanski. The Ravenscar profile for high-integrity
real-time programs. In Reliable Software Technologies – Ada Europe ’98, number 1411 in
Lecture Notes in Computer Science, Uppsala, Sweden, June 1998. Springer-Verlag.

7. ISO/IEC JTC1/SC 22/WG 9. ISO/IEC DTR 15942: Guide for the Use of the Ada Program-
ming Language in High Integrity Systems, July 1999.

8. James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language Specification.
Addison-Wesley, third edition, 2005.

9. E. Poll, J. van den Berg, and B. Jacobs. Formal specification of the JavaCard API in JML: the
APDU class. Computer Networks (Amsterdam, Netherlands: 1999), 36(4):407–421, 2001.

10. Jim Alves-Foss, editor. Formal Syntax and Semantics of Java, volume 1523 of Lecture Notes
in Computer Science. Springer, 1999.

11. J. Kwon, A. Wellings, and S. King. Ravenscar-Java: a high-integrity profile for real-time
Java. Concurrency and Computation: Practice and Experience, 17(5-6):681–713, April/May
2005.

12. Hao Cai and Andy Wellings. A real-time Isolate specification for Ravenscar-Java. In Pro-
ceedings of the Seventh IEEE International Symposium on Object-Oriented Real-Time Dis-
tributed Computing, May 2004.

L.M. Pinho and M. González Harbour (Eds.): Ada-Europe 2006, LNCS 4006, pp. 27 – 39, 2006.
© Springer-Verlag Berlin Heidelberg 2006

POSIX Trace Based Behavioural Reflection

Filipe Valpereiro and Luís Miguel Pinho

Polytechnic Institute of Porto, Porto, Portugal
{fvalpereiro, lpinho}@dei.isep.ipp.pt

Abstract. Traditional Real-Time Operating Systems (RTOS) are not designed
to accommodate application specific requirements. They address a general case
and the application must co-exist with any limitations imposed by such design.
For modern real-time applications this limits the quality of services offered to
the end-user. Research in this field has shown that it is possible to develop
dynamic systems where adaptation is the key for success. However, adaptation
requires full knowledge of the system state. To overcome this we propose a
framework to gather data, and interact with the operating system, extending the
traditional POSIX trace model with a partial reflective model. Such combi-
nation still preserves the trace mechanism semantics while creating a powerful
platform to develop new dynamic systems, with little impact in the system and
avoiding complex changes in the kernel source code.

1 Introduction

Traditional Real-Time Operating Systems (RTOS) are designed to support a generic
real-time environment. In this scenario, a priori assumptions are made on the tasks
characteristics, resource utilization requirements and platform. Consequently, the
decisions made in the RTOS design narrow the range of possible applications.
However, the need to support a new rich set of applications, maybe running on
embedded devices, such as multimedia and real-time telecommunication, introduce
more stringent requirements on the dynamicity of the underlying operating system.

Although these applications still present real-time requirements, the characteristics
of tasks and resource utilisation patterns vary considerably. Typically, multimedia
applications demand resources in a non-deterministic way. Under such scenario, the
application should deliver the best possible service while respecting the real-time
requirements. To achieve such functionality, the application may need to change its
own behaviour, for which it is important to be perceptive of the system’s current state.

One particular strategy that fits well with dynamic behaviour is Reflection [1], a
well know technique in the object-oriented world. Nevertheless, the use of the
reflection paradigm to acquire (and control) the state of the system is hindered by the
lack of support for reflection in current RTOS. In this scenario we present a flexible
framework to reify operating system data using the POSIX trace [2] as a meta-object
protocol. Research in the field has already addressed the problem of adapting a
reflective approach to an RTOS kernel. Systems like ApertOS [3]; the Spring kernel
[4] and more recently DAMROS [5] are attempts to provide reflective capabilities to
operating systems. Our approach differs from previous works, since it is intended
to be used in general purpose RTOS.

28 F. Valpereiro and L.M. Pinho

We consider the use of a partial reflection model [6] to establish behavioural
reflection, integrating this model with the POSIX trace mechanism to achieve an
efficient reflective framework. It is our belief that such combination can create a
powerful tool on non-reflective RTOS, giving the developer freedom to implement
new dynamic support on current and well know systems. This will allow providing
feedback from the operating system to applications running in parallel with the
system application. By providing such feedback, it will then be possible to support
quality of service requirements evaluation [7] using real data from the system and to
collect valuable metrics on the overall system behaviour.

In this paper, we focus on the reification of data through the use of the POSIX
trace mechanism [2] and on its implementation in the MarteOS operating system [8],
to validate its usefulness and analyse its impact in the latency and determinism of the
system. The paper is structured as follows. Section 2 presents a brief notation on
computational reflection and previous approaches on using this paradigm in RTOS.
Section 3 presents a brief discussion of the POSIX tracing mechanism, and on the
benefits of its use, whilst Section 4 presents the proposed framework and discusses
some of the strategies used to reify data using the POSIX trace mechanism. Finally,
Section 5 presents some conclusions and future work.

2 Computational Reflection

Reflection can be described as the ability of a program to become 'self-aware'. Self-
aware programs can inspect themselves and possibly modify their behaviour, using a
representation of themselves [1] (the meta-model). The meta-model is said to be
causally connected with the real system in such a way that any changes in the meta-
model will be reflected in the system behaviour. In the same way, any changes in the
system are reflected in the meta-model. This “inter-model connection” is performed
through the use of a meta-interface (often termed as meta-object protocol: MOP).

A reflective system is thus composed by the meta-interface and two levels: a base
level where normal computation takes place and a meta-level where abstract aspects
of the system are being computed. Through the use of a meta-interface the meta-level
can gather information from the base-level (a process termed reification) and compute
the non-functional aspects of the system, eventually interfering in the system and
changing the behaviour (a process termed reflection). This principle clearly separates
the normal system computation from non-functional aspects of the system.

There are mainly two models of computational reflection [1]. The structural refle-
ction model is focused on the structural aspects of a program (e.g. data types and
classes). In contrast, behavioural reflection exposes the behaviour and state of the
system (e.g. methods call execution). These models can also be classified as being
partial if any form of selection can be performed on the entities being reflected.
Partial behavioural reflection [6] is an efficient approach that balances flexibility vs.
efficiency by allowing a tight control over the spatial and/or temporal selection of
entities that need reification. While spatial control can be applied at compile time by
selecting the objects and methods to be reflected, temporal selection requires an
efficient runtime support which goes beyond the scope of our framework.

 POSIX Trace Based Behavioural Reflection 29

Reification

Reflection

Meta-interfaces

MK

Z A

A’ C’ X’

C0 C1 X

Meta-level

Base-level

Fig. 1. A reflective system

Figure 1 illustrates a partial behavioural reflective system. Entities can be reflective
as A, C, and X and non-reflective as Z. Not all entities may need to reflect into a
unique meta-object. C0 and C1 have a common base class and thus in this example
are reflected by a single meta-object C’ which represents a generalization of class C.
Entities A, C0 and C1 belong to a group with related functionality (or behaviour) and
thus the meta-model may explore that relation.

2.1 Reflection in Real-Time Operating Systems

RTOS systems are usually designed to support a wide range of applications. It is
common for such design to assume no specific knowledge on the target application.
However, this approach is not suitable for some class of applications. Some
applications may require a real-time response yet they present factors of non-
deterministic behaviour. Thus, the dynamic behaviour must adapt to new system (or
functional) constraints. It is clear that an interface between the OS and the application
needs to exist. The system must allow the application to be aware of system
constraints and resources, eventually it may even allow valuable data to be accessed
(read only) by the application. In return, the application is responsible to determine
the best strategy for its behaviour, and ask the system to incorporate this new strategy.
It is also clear that this interface should allow different strategies to be available
simultaneously in the target OS.

Computational reflection is a promising solution since it allows us to expose key
OS data and computational behaviour into the meta-level where the application non-
functional concerns can be expressed and evaluated [9]. Early works on reflective
RTOS (such as ApertOS [3] and Spring [4]) have addressed these concerns,
incorporating the reflection mechanism in the design and programming language. In
Spring, reflection has been used for task management and scheduling, and to support
on-line timing requirements analysis, exposing tasks requirements data. The ApertOS
approach relies heavily in the object-oriented model and proposed a complete
reflective kernel. While these approaches certainly offer some advantages, they rely
on the development of completely new operating systems.

30 F. Valpereiro and L.M. Pinho

A more recent approach has been done in DAMROS [5] which augments a
μ-kernel with a reflection mechanism. This approach allows the application to install
user-defined policies in the form of executable source code under certain restrictions.
Applications, for example, may not access certain data from the kernel. This limits the
implementation of some functionality exclusively in the application space.

3 POSIX Trace

The POSIX trace [2] is a mechanism to collect information on a running system and
related process through the use of events. The standard defines a portable set of
interfaces whose purpose is to collect and present trace logs over selected
functionality in the OS such as: internal kernel activities or faults, system calls, I/O
activity and user defined events. A major advantage on the POSIX trace is the ability
to monitor (or debug) the kernel and applications during execution.

Another important feature in the trace mechanism is the ability to record events
as a stream, allowing the OS to store the traced data on a file system or upload it to
a remote server via a network link. The ability to read this stream back again gives
the developer a powerful tool to monitor, analyse and understand the application
behaviour in a post-mortem analysis. There are few restrictions on standard usage;
applications are free to use the trace streams for any particular purposes. Trace
streams can be shared across the operating system, with each traced system call
placing trace events in one or more streams. It is up to the developer to choose the
event calls/stream configuration used in the operating system. For example, several
trace streams can be used simultaneously and shared by the operating system
and running applications. It is easy to think of an application that can take
simultaneous advantage of this architecture to log data into a server while
performing system metrics and do some self-monitoring using the trace mechanism.

3.1 The Trace Mechanism

The trace mechanism is composed by two main data types: the trace event and the
trace stream. The trace activity is defined as the period between stream activation and
deactivation where events are recorded/processed from the trace stream. Traces events
are a convenient way to encapsulate data with meta-attributes that refer to the actual
instance, conditions and event record status within the trace stream. This information
defines (up to some time resolution) the exact moment where the trace event has
occurred in the traced process. During this activity, the standard identifies three
different roles [2]: the trace controller process, the traced process and the analyser
process (also called monitor process). The trace stream establish a link (eventually
controlled) that connects the traced process and the analyser process.

There are no restrictions in the standard forbidding a merge between the trace
controller process and the analyser process and thus we can view the traced system as
being composed by two levels: the observed level where the trace occurs, and the
observer level where the streams are controlled and data is analysed. It is also clear
that no auto-feedback should occur in the observer level which could influence the
actual observation.

 POSIX Trace Based Behavioural Reflection 31

Output interface

Trace Stream

...En E2E3 E1

Analyser
process

Controller
processA B C0 C1 D

Observed Level Observer Level

Fig. 2. A system with the trace mechanism

Figure 2 exemplifies the different roles that take part in the traced system. Not all
objects in the system may be traced (or needed to be traced). The analyser process
presents an output interface which can be used by the application (or system) to
obtain information derived from the traced data. As an example, the quality of server
managers of [7] requires access to information concerning the actual resource
utilization of the system. This information can be provided by analysing the events
generated by the operating system.

3.2 Flexibility

The POSIX standard defines the trace mechanism as a monolithic component. There
is no room for customization, and thus, this component can not be used with the
RTOS targeted for the Minimum Real-time System Profile (MRSP) [10]. Never-
theless, features required by the standard such as filesystem and process inheritance
are of no use in this profile and do not compromise the trace functionality. Our work
intends to supply a flexible, customizable trace implementation with a small memory
footprint, toward the application requirements, in a way that only the necessary trace
functionality will be present in the final application.

4 Framework Design

Several techniques have emerged in the RTOS research to address the lack of proper
support for dynamic applications behaviour. Our main motivation for the
development of this framework is the need of a common, portable platform for data
collection and system actuation where these and future techniques can be evaluated.
The goal is to support reflection on static application-oriented RTOS, allowing soft
real-time applications to change behaviour in response to the system’s state, therefore
becoming more adaptive. Moreover, the framework will allow to separate the appli-
cation development from the development of system state analysis mechanisms, and
to minimize the system interference.

The need of a portable interface to collect and reify system data led us to consider
the POSIX trace mechanism [2] as the basis component of our framework. However,
the standard requires the operating system to support functionality which is not
required for the role played by the trace mechanism in our framework. The standard

32 F. Valpereiro and L.M. Pinho

rationale defines a monolithic trace mechanism, creating dependencies between the
individual trace components. To overcome this limitation we consider a trace
mechanism based on modular components, avoiding unnecessary code dependencies
while preserving the functional semantics.

We do not consider the use of computational reflection as a whole. Instead a partial
reflection model [6] is used; where data is reified without direct transfer of control to
the meta-level (an asynchronous reflection model). Traditionally, computational
reflection belongs to the language domain, usually implemented into the language
run-time environment. This approach does not explore the advantages of concurrent
systems and thus reflection occurs as a linear transition between the base-level to the
meta-level and vice-versa. The framework takes direct advantage of our problem
domain, redefining the transition between the base and meta-level. This is supported
by extending the controller and analyser process roles within the POSIX trace
mechanism. We also introduce a third process to reify data from the trace streams and
create/modify the meta-objects (see figure 3). Under this extended model, the meta-
objects act as a “consciousness memory” of the system state, while the analyser
process performs some “consciousness” analysis. Eventually, the analyser process
may intercede asynchronously in the system, introducing non-functional aspects.

In this paper we focus on the data reification and meta-objects construction; the
analyser interface and intercede mechanism (necessary to complete the framework
model) will be the focus of further work.

4.1 Modular POSIX Trace

The main reason why the trace standard is not available in the MRSP profile is the
lack of filesystem support which is a required feature for the implementation of the
POSIX trace interface. The organization of the tracing rationale text for the trace
interface defines the trace as a monolithic component, thus leaving no flexibility in
the usage. Yet, there are distinct individual components composing the trace
mechanism.

A detailed examination of the standard and the trace use cases show us that
filesystem support is only useful for offline analysis, a feature used by the trace logs
to record data into a permanent storage (a use case not addressed in this paper). On
contrast, online analysis is a useful tool to reason on the current system state and does
not require filesystem support. This component works as an extension to the main
trace functionality, adding new features that support other trace scenarios.

We can explore the inter-component relations to avoid non-functional and unne-
cessary code in the final binary image, thus reducing the application memory footprint
and minimizing the impact on the traced system. Modularity can be achieved if each
component is implemented as a separate package in such a way that the main tracer
component does not require linking against other component packages. All the
remaining trace components must depend strictly on the main package which contains
the base definitions, unless a dependency exists between different modules.

The modularity goal is to preserve the functional semantics while eliminating inter-
component dependencies. To break these dependencies we need to work on the trace
implementation. The application may not use some of the trace components; however
the existence of these code dependencies will create a link between the application

 POSIX Trace Based Behavioural Reflection 33

code and the implementation code. An example of a usage scenario for the trace
mechanism is the ability to perform system metrics. Such example may not require
the filtering or trace log features. Consider the steps performed on every call to the
posix_trace_event function to successfully trace an event:

− Find an available trace stream or return.
− Discards the event and return if the event does not pass the filter.
− If it is a user event and data is larger than maximum value, truncate the data.
− Store the event
− Adjust the stream properties (trace policy).
− Flush the stream into the trace log if required.

The function semantics will require the filter component due to the existence of a
function call, even if it the function result is irrelevant for the usage scenario, thus a
link to this code will be established at compile time. To implement the desired
modularity we are currently using a dispatch table that invokes the requested function
if the table entry is not null. This solution minimizes the amount of compiler work,
since it only needs to recompile the main component. It introduces a new indirection
level, but that does not generate any measurable delay in the trace execution.

4.2 The Extended Trace Model

In this extended model, we introduce some principles of partial reflection using the
POSIX trace. In the model, the trace streams are used as the meta-interface that
allows the meta-level to reify information from the base-level. We also introduced a
new process in the trace observer level (the meta-level), the reify process, that acts
upon instructions from the controller process. Its main role is to read events from the
trace stream and to create and modify the corresponding meta-objects. These objects
will be used by the analyser process to perform some “consciousness” analysis, thus
the analyser process works exclusively with reified data. The amount of data and
analysis type depends only on the developer purpose. For this reason the framework
defines the task type but not the task body and properties, giving the developer the
freedom to manage the meta-objects.

To avoid possible data inconsistencies any meta-object access is performed using a
protected type and the associated interface (see figure 5). The base interface for meta-
objects is a procedure to replace a meta-object, a procedure to commit changes in the
meta-object and a function to obtain a full copy of the meta-object. However it might
be useful to extend this interface with specialized read functions to access some data
in the meta-object, improving the access time by avoiding a full object copy. Figure 3
illustrates the extended trace model and the relation between the various entities.

To use the framework the developer must define the analyser task body,
completing the meta-model. This activates the framework, triggering the code
inclusion in the application; otherwise the compiled code will be trace free. Note that
from the traced call point of view no transfer of control from the base-level to the
meta-level takes place during the traced call execution; hence the reflection model
behaves asynchronously. This is a powerful property, since the meta-level will behave

34 F. Valpereiro and L.M. Pinho

A B C0 C1 D

Trace Stream

...En E2E3 E1...En E2E3 E1

Observed Level

Observer Level

Reify
process

Controller
process

Output Interface

B’ C’
D’

KK

Meta-objects

Analyzer
process

Fig. 3. The extended trace model

as a central state of the operating system that can be queried by higher abstract
concerns that can not be expressed with traditional reflection. Note that at present we
do not define the output interface which is beyond the scope of this paper.

4.3 Implementation Details

The first step to implement the extended model is to determine which functionality
offers interesting data to be reified. Examples of possible information to reify are:
memory usage per process (or task), mutex operations including some internal details
(accessing task ID, blocked task list, mutex policy …) and CPU bandwidth used, but
different types of information can be also be gathered. Figure 4 presents some
simplified examples of event definitions used to reify data from the mutex functions.
The Data_Envelop type as been defined to ensure that trace events with size larger
than the maximum data size allowed in the trace stream can flow without loosing
information. However, this option pays heavily and must be avoided whenever
possible. Note that we omitted some type info just for clarity’s sake.

Some of the reified information exhibits patterns of similarity and thus we can
group it, creating a convenient way of express the application “reflective”
requirements. With this purpose, we define four sets of functionality that can also be
expressed in terms of sub-sets for convenience and further fine-grain control over the
data. The sets of functionality are: internal kernel structures; scheduler, locking
mechanism and signals; system calls; and I/O triggering (data transmitted/received).

Each set of functionality is also connected to a unique trace stream, leaving the
remaining streams free to other purposes. This simplifies the data reification process,
avoiding intersection of data events from different functionality sets which would
result in a larger and complex decoding task. We also define the events used for each
functional unit in each traced set and the corresponding meta-objects and the event(s)
associated, creating a map that links the reified units and the meta-objects. This
information is vital to the “reify process”, to create the meta-objects whenever a
related event is received. A second map is created dynamically that binds the created

 POSIX Trace Based Behavioural Reflection 35

 package Trace_Events_Data is

 type Data_Envelop is record
 Info : Data_Info;
 Data : Data_Buffer;
 end record;

 type Mutex_Init_Event is record
 Op : Op_Code;
 Mutex_Id : Integer;
 Policy : Locking_Policy;
 Prio : Task_Priority;
 Preemption_Level : Task_Preemption_Level;
 end record;

 type Mutex_Event is record
 Op : Op_Code;
 Mutex_Id : Integer;
 Task_Id : Integer;
 Task_Status : Task_Status;
 Prio : Task_Priority;
 end record;

 -- ...
 end Trace_Events_Data;

Fig. 4. Events definition

 with Trace_Events_Data;
 package Meta_Objects is

 type Meta_Mutex is record
 Owner : Integer;
 Mutex_ID : Integer;
 Policy : Locking_Policy;
 Preemption_Level : Task_Preemption_Level;
 Blocked_Tasks : Tasks_Lists;
 Status : Boolean;
 end record;

 procedure Init_Meta_Object (Event : in Mutex_Init_Event);

 protected type Meta_Mutex_Access is
 procedure Store_Object (Mutex : in Meta_Mutex);
 procedure Commit_Changes (Event : in Mutex_Event);
 function Get_Copy return Meta_Mutex;

 private
 Mutex : Meta_Mutex;
 end Meta_Mutex_Access;

 -- ...
 end Meta_Objects;

Fig. 5. Meta-objects definition

36 F. Valpereiro and L.M. Pinho

meta-objects to the meta-object ID and type. This step ensures that any update
information arriving in further events is committed to the corresponding meta-object.

Figure 5 present a simplified meta-object definition and the protected object used
to ensure that no data inconsistency occurs whenever an update operation is
performed in the meta-object. The protected interface was kept simple, but can be
extended to support faster access to individual fields on the meta-object to improve
the access time. This option might be useful for testing some properties without
requiring access to the whole object.

Figure 6 presents some maps definitions and task types. This package also defines
the controller, the reify and the analyser tasks. Bodies for the first two tasks will be
defined within the framework. The third task must be defined by the application
developer to perform the desired analysis using the meta-objects.

 with Trace_Events_Data;
 with Meta_Objects;
 package Meta_Level is

 type Mutex_ID is Integer;
 type Mutex_List_Access is
 new Map (Mutex_ID, Meta_Mutex_Access);

 Mutex_List : Mutex_List_Access;

 task type Controller_Task (Prio : Task_Priority);
 task type Reify_Task (Prio : Task_Priority);
 task type Analyser_Task (Prio : Task_Priority);

 -- ...

 end Meta_Level;

Fig. 6. Meta-level definition

4.4 Performance Metrics and Results

We have done some experiments in order to find the impact of the framework both on
the size of the code and on the execution times of the traced functions. Table 1 pre-
sents the overhead on the code size of a traced system. The results allow deter-
mining that, depending in the number and type of trace events embedded in the traced

Table 1. Comparison of code size

Description Size in Bytes
Simple procedure (sum of one integer) 480
Simple procedure with a single trace event 780
Mutex unit without trace events 15884
Mutex unit with eight trace events 17692
Scheduler unit without trace events 13032
Scheduler unit with eleven trace events 15088
Trace implementation with all dependable units 38056
Hello World without trace 341936
Hello World with trace unit 379088

 POSIX Trace Based Behavioural Reflection 37

unit, an overhead of approximately 10% is created in the overall code size. This
presents a considerable impact, but it is an expected side effect of the increased
functionality.

Tables 2 and 3 show the execution times for some of the traced functions, with and
without the trace functionality. The tests were performed on a Pentium-III at 930
MHz. The time values are measured by the time-stamp counter (TSC), and mean
values were obtained after 5000 measures. The test application sets up a trace stream
with sufficient space for all the events generated during the simulation.

Table 2 presents the results of a test setup, where events related to the mutex unit
were generated by a loop performing several calls to obtain a lock on the mutex. The
results show an increase of execution time by a factor of approximately 0.8 μs for
each traced function. The last test also shows the average trace time for regular events
versus events using the data envelop capability. As expected they are heavier but offer
a more flexible solution to trace large amounts of data.

Table 2. Execution times for the mutex unit

Mean
Function Trace Min Max cycles μs

No 137 221 179 0.19 Pthread_Mutex_Lock
Yes 840 1031 900 0.97
No 251 362 296 0.32 Pthread_Mutex_Unlock
Yes 931 1133 1024 1.1

Event Trace 699 962 740 0.8
Event Trace with envelop 1317 1640 1396 1.5

Table 3. Execution times for the scheduler unit

 Mean
Function Trace Min Max cycles μs

No 124 286 156 0.17 Ready_Task_Reduces_Active_Priority
Yes 741 983 833 0.90
No 92 167 118 0.13 Running_Task_Gets_Blocked
Yes 702 1242 774 0.83
No 174 494 270 0.29 Running_Task_Gets_Suspended
Yes 612 1624 821 0.88
No 100 305 130 0.20 Task_Gets_Ready
Yes 739 2108 825 0.89
No 116 573 202 0.22 Do_Scheduling
Yes 744 1286 853 0.92

Event Trace 495 958 650 0.7

Table 3 shows the execution times for the scheduler unit. They were performed
with the same configuration, except that the events generated by the scheduler unit
were obtained using four simultaneous tasks with different periods, execution time
and priority, to create some scheduler activity.

In this case, the experiments showed an increase of approximately 0.7 μs for each traced
function, which is in the same order of magnitude of other kernel to user mechanisms
available in the MarteOS kernel [11,12]. Considering the gained functionality, this

38 F. Valpereiro and L.M. Pinho

overhead is more than acceptable, since it allows applications to have access to
“fresh” kernel data.

5 Conclusion

Soft real-time multimedia applications tend to present factors of non-deterministic
behaviour. Developing applications in this domain requires the study and development of
dynamic strategies which allow the system and application to adapt, improving the quality
of the output generated by the application. This requires, however, applications to have
access to the current state of the system, particularly in what resource availability (CPU
included) is concerned.

In this paper we present a framework, which uses the POSIX trace mechanism as a
Meta-Object Protocol, to implement a partial asynchronous reflection model. Using
this framework, applications can query the system state by accessing a meta-level
which presents reified information of the system. The design requirement for the
framework is the use of standard functionality available (or easily incorporated) in
current real-time operating systems. The framework is not tied to any particular
operating system, thus making further ports straightforward. We hope that this work
can open new perspectives into the use of reflection in real-time operating systems.

Acknowledgements

The authors would like to thank the anonymous reviewers for their helpful comments
and suggestions. This work was partially supported by FCT, through the CISTER
Research Unit (FCT UI 608) and the Reflect project (POSI/EIA/60797/2004).

References

1. P. Maes. “Concepts and Experiments in Computational Reflection”, in. Proceedings of the
2nd Conference on Object-Oriented Programming Systems, Languages and Applications
(OOPSLA’87), Orlando USA, 1987, pp. 147–155.

2. IEEE Std. 1003.1, Information technology – Portable Operating System Interface
(POSIX), Section 4.17 – Tracing, 2003.

3. Y. Yokote, “The ApertOS Reflective Operating System: The concept and its implement-
tation”, in Proceedings of the 7th Conference on Object-Oriented Programming Systems,
Languages and Applications (OOPSLA’92). ACM Press, 1992, pp. 414–434.

4. J. A. Stankovic, “Reflective Real-Time Systems”, University of Massachusetts, Technical
Report 93-56, June 28, 1993.

5. A. Patil, N. Audsley, “Implementing Application Specific RTOS Policies using
Reflection”, Proceedings of the 11th IEEE Real-Time and Embedded Technology and
Applications Symposium, San Francisco, USA, 2005, pp. 438–447.

6. E. Tanter, J. Noye, D. Caromel, and P. Cointe, “Partial behavioural reflection: Spatial and
temporal selection of reification” Proceedings of the 18th Conference on Object-Oriented
Programming Systems, Languages and Applications (OOPSLA 2003), October 26-30,
2003, Anaheim, USA, pp. 27–46.

 POSIX Trace Based Behavioural Reflection 39

7. Luís M. Pinho, Luís Nogueira and Ricardo Barbosa, “An Ada Framework for QoS-Aware
Applications”, Proceedings of the 10th International Conference on Reliable Software
Technologies (Ada-Europe 2005), York, UK, June 2005, pp. 25–38.

8. M. Aldea and M. González. “MaRTE OS: An Ada Kernel for Real-Time Embedded
Applications”. Proceedings of the 6th International Conference on Reliable Software
Technologies (Ada-Europe-2001), Leuven, Belgium, May, 2001, pp. 305–316.

9. S. Mitchell, A. Wellings, A. Burns, "Developing a Real-Time Metaobject Protocol", Proc.
of the 3rd IEEE Workshop on Object-Oriented Real-Time Dependable Systems, Newport
Beach, USA, February 1997, pp. 323–330.

10. IEEE Std. 1003.13, Standardized Application Environment Profile – POSIX Realtime and
Embedded Application Support, 2003

11. M. Aldea and M. González, “Evaluation of New POSIX Real-Time Operating Systems
Services for Small Embedded Platforms”, Proc. of the 15th Euromicro Conference on
Real-Time Systems, ECRTS 2003, Porto, Portugal, July, 2003, pp. 161–168.

12. M. Aldea and J. Miranda and M. González , “Integrating Application-Defined Scheduling
with the New Dispatching Policies”, Proceedings of the 10th International Conference on
Reliable Software Technologies (Ada-Europe 2005), York, UK, June 2005, pp. 220–235.

Static Detection of Access Anomalies in Ada95�

Bernd Burgstaller1, Johann Blieberger2, and Robert Mittermayr3

1 School of Information Technologies, The University of Sydney, Australia
bburg@it.usyd.edu.au

2 Institute for Computer-Aided Automation, TU Vienna
Treitlstr. 1, A-1040 Vienna, Austria

blieb@auto.tuwien.ac.at
3 ITS Softwaresysteme, ARC Seibersdorf research GmbH, TechGate Vienna

Donau-City-Str. 1, A-1220 Vienna, Austria
robert.mittermayr@arcs.ac.at

Abstract. In this paper we present data flow frameworks that are able
to detect access anomalies in Ada multi-tasking programs. In partic-
ular, our approach finds all possible non-sequential accesses to shared
non-protected variables. The algorithms employed are very efficient. Our
approach is conservative and may find false positives.

1 Introduction

Concurrent programming is a complex task. One reason for this is that scheduling
exponentially increases the possible program states. Thus a dynamic execution
order of the statements executed in parallel is introduced. In general this leads to
different behavior between different runs of a program, even on the same input.
Because of the nondeterministic behavior, faults are difficult to detect. Static
program analysis, which has been used since the beginning of software, can be
a valuable aid for the detection of such faults.

One of the major problems with concurrent programming are access anom-
alies, also called data races. In this paper we study the problem of detecting
non-sequential access to global shared variables. We employ data flow frame-
works in order to solve sub-problems of this general problem. In detail, we set
up a data flow framework to find all tasks which potentially run in parallel and
we set up a second data flow framework to handle the interprocedural problems
of determining variables being “global” to a certain entity. In joining the solu-
tions of these data flow problems, we are able to detect access anomalies in a
conservative manner, i.e., if there actually is a non-sequential access to a shared
non-protected variable, our approach will detect it. On the other hand, we may
also detect false positives.

� Bernd Burgstaller has been supported by the ARC Discovery Project Grant “Com-
pilation Techniques for Embedded Systems” under Contract DP 0560190, and the
University of Sydney R&D Grants Scheme “Speculative Partial Redundancy Elimi-
nation” under Contract L2849 U3229.

L.M. Pinho and M. González Harbour (Eds.): Ada-Europe 2006, LNCS 4006, pp. 40–55, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Static Detection of Access Anomalies in Ada95 41

The remainder of the paper is organized as follows. In Section 2 our data flow
frameworks to find tasks running in parallel and to determine the set of variables
“global” to a program entity are presented. Examples are used to illustrate our
framework. In Section 3 we survey related work, before we conclude the paper
and describe future work in Section 4.

2 Data Flow Framework

In the following we first define a data flow framework to determine which task
objects run in parallel to other task objects. This information is used later on
to determine if tasks running in parallel access the same global variables.

2.1 Setting Up Data Flow Equations for Relation ‖
We define a relation ‖ on task objects such that for task objects t1 and t2:
t1 ‖ t2 if task objects t1 and t2 run in parallel. Note that ‖ commutes, i.e.,
t1 ‖ t2 ⇐⇒ t2 ‖ t1.

A control flow graph (CFG) G = (N, E, r) consists of a set N of nodes, and
a set E ⊆ N × N of edges. Node r is the designated root node of the CFG.

Given a CFG(t) = (N, E, r) of a task body t, the basis for the data flow
framework are standard equations [21] of the form

Sout(n) = Gen(n) ∪ (Sin(n) \ Kill(n))

Sin(n) =
⋃

n′∈Pred(n)

Sout(n′),

where n denotes a node of a CFG, Gen(n) is the set of task objects generated
(declared or allocated via a new-statement) in node n, and Kill(n) denotes the set
of task objects terminating in node n. All Gen and Kill sets can be empty. Note
that Gen sets also include task objects generated indirectly via subprogram or
entry calls and via calls of protected operations. Note also that we only take into
account the static structure of the underlying multi-tasking program. Thus a task
object t is considered to be generated in unit u if there is a statement contained in
u that allocates t or u starts with the begin-statement that immediately follows
the declarative part containing the declaration of t.

The execution of a handled sequence of statements of a package body is con-
sidered to be part of the activation of its master task [14]. Thus the CFG of such
code is prepended to the CFG of its master task. If there are several such code
pieces the corresponding CFGs can be prepended in arbitrary order because if
task are generated in these code pieces, their order of activation does not affect
the ‖-relation.

Since these are sets a compiler has to determine in order to guarantee that a
multi-tasking program is executed correctly, we assume that both Gen and Kill
sets can be found automatically (and are available for our analysis).

A detailed description of sets Sout(n) is as follows: If a task object t is gener-
ated, it is part of the Gen set, i.e., t ∈ Gen(n). If an array of task objects of type

42 B. Burgstaller, J. Blieberger, and R. Mittermayr

tt is declared, several task objects of type tt may run in parallel. We model this
by writing t∗ ∈ Gen(n). In addition, we extend the usual set operations such
that {t∗} ∪ {t} = {t∗}. A similar notation is used for the Kill sets.

We propose to use elimination methods to solve this data flow framework (see
e.g. [21] for a survey of elimination methods). As a preliminary step we need
a normal form for our equations. We note that the equation for Sin(n) can be
eliminated by inserting it into Sout(n). From here on we write S(n) instead of
Sout(n) to keep notation short.

Let A, B, C be sets. For set operations ”∪” and ”\” we have

(A ∪ B) \ C = (A \ C) ∪ (B \ C) (1)

and
(A \ B) \ C = A \ (B ∪ C). (2)

Let I ⊆ N be a subset of the set of nodes. We define the following normal
form for our equations:

S(n) =
⋃
i∈I

((
S(i) \ Kill′(i)

) ∪ Gen′(i)
)
.

Elimination methods require two rules:

Insertion Rule. One equation has to be substituted into another one. This is
straight-forward to do and by repeated application of Eq. (1) and (2) the
resulting equation can be brought to normal form again.

Loop Breaking Rule. Given an equation

S(n) =
⋃
i∈I

((
S(i) \ Kill′(i)

) ∪ Gen′(i)
)
,

where n ∈ I, the task of loop breaking is to find an equivalent equation [20]

S′(n) =
⋃
i∈I′

((
S(i) \ Kill′′(i)

) ∪ Gen′′(i)
)

(3)

such that n 	∈ I ′.
We define our loop breaking rule as follows. Let

S(n) =
⋃

i∈I\{n}

((
S(i) \ Kill′(i)

) ∪ Gen′(i)
) ∪ ((

S(n) \ Kill′(n)
) ∪ Gen′(n)

)
.

Then

S′(n) =

⎛
⎝

⎛
⎝ ⋃

i∈I\{n}

((
S(i) \ Kill′(i)

) ∪ Gen′(i)
)⎞⎠ \ Kill′(n)

⎞
⎠ ∪ Gen′′′(n)

(4)
where Gen′′′(n) = {t∗ | t ∈ Gen′(n) or t∗ ∈ Gen′(n)}. The definition of
Gen′′′ ensures that t∗ is present in the set if task objects t are generated

Static Detection of Access Anomalies in Ada95 43

in the loop body. This implies that task objects of this type are running in
parallel if the loop body is executed at least two times. If the loop is iterated
less than two times, this is not the case. Since however we do not know the
number of loop iterations statically, we assume that the loop is iterated more
than once.
Bringing Eq. (4) into normal form yields Eq. (3).

We would like to note that it is not possible to solve our data flow framework
via iterative methods [15] because iterative methods require a too simple loop
breaking rule.

In order to determine the ‖-relation from the solution of the data flow frame-
work, we use the following algorithm.

construct‖ ()
1 for each task CFG do
2 for each node n do
3 for each t∗ ∈ S(n) do
4 define t ‖ t
5 endfor
6 for each pair t1, t2 ∈ S(n) do
7 define t1 ‖ t2
8 endfor
9 endfor
10 endfor

Since our data flow framework is defined on CFGs, and since a multi-tasking
program consists of several CFGs (one for each task body), the data flow frame-
work has to be applied to all of them. This, however, has to be done in a certain
order because CFG(t) can only be processed if all task bodies corresponding to
task objects generated in t have been processed before. This order on task ob-
jects can be modeled by a directed acyclic graph (DAG). Thus we apply our data
flow framework in reverse topological order (cf. e.g. [19]) to this DAG. The last
CFG to be analyzed is that of the environment task (main procedure). Hence,
we do not handle mutual task declarations such as those depicted in Fig. 1, even
if the declaration is performed only conditionally.

1 procedure Mutual is

2 task type B is end B;

3 task type C is end C;

4 task body B is
5 T Var : C;
6 begin null; end B;

7 task body C is
8 T Var : B;
9 begin null; end C;

10 The Task : B;

11 begin null; end Mutual;

Fig. 1. Example: Unconditional Mutual Task Declarations

44 B. Burgstaller, J. Blieberger, and R. Mittermayr

2.2 Determining Sets of Used and Modified Variables

In this section we develop a method to determine the global variables read and
written by a task. For this we need the notion of a variable being global to a
given entity, according to the scoping rules of Ada95. For a declared entity the
scope of the declaration denotes those places in the code where it is legal to
refer to it. The Ada95 programming language is based on static scoping (cf. [22,
p. 176]), which means that visibility of entities at a given program point follows
solely from the lexical structure of the program, and not from dynamic aspects
(such as the point of invocation of a procedure). Section 8.2 of the language
reference manual [14] defines the scope of a declaration; a crucial aspect of these
scoping rules is that the scope of a declaration that occurs immediately within
the visible part of an outer declaration extends to the end of the scope of the
outer declaration.

1 with G; use G;

2 procedure Main is
3 Local : Integer := 0;
4 begin
5 P (Global);
6 declare
7 task B is end B;
8 task body B is
9 Another : Integer := 0;
10 begin
11 Global := Global + 1;
12 end B;
13 begin null; end;
14 end Main;

1 package G is
2 Global : Integer;
3 procedure P (X : in out Integer);
4 end G;

1 package body G is
2 U : Integer;
3 procedure P (X : in out Integer) is
4 begin
5 X := X + 1;
6 declare
7 task C is end C;
8 task body C is
9 begin
10 X := X + 1; U := U + 1;
11 end C;
12 begin null; end;
13 end P;
14 end G;

Fig. 2. Example Demonstrating Global and Owned Variables

With Ada95, the following constructs act as scopes: blocks, class subtypes
and types, entries, functions, loops, packages, subprograms, protected objects,
record types and subtypes, private types, task types and subtypes.

Definition 1. A declaration is local to a declarative region if the declaration oc-
curs immediately within the declarative region. An entity is local to a declarative
region if the entity is declared by a declaration that is local to the declarative
region [14, Section 8.1(14)].

Definition 2. Given a subprogram, task body, a protected entry, procedure or
function, or a dispatching operation u (in the following termed unit u), we say
that u owns an entity e, if e is local to the declarative region of u. In addi-
tion, task entries constitute units; they own the union of the entities owned by
their corresponding accept statements. The ownership relation is reflexive and
transitive. Moreover, we extend it to the dynamic case in the sense that u owns

Static Detection of Access Anomalies in Ada95 45

all entities owned by entities called by u. Entities which are visible to an en-
tity owned by u, but which are not owned by u, are said to be global to u. We
write O(u) to denote the set of entities owned by u, and G(u) to denote the set
of entities that are global to u.

It should be noted that our definition of “globalness” is related to up-level ad-
dressing, under incorporation of call-chains.

As an example, consider Fig. 2. Variables Local and Another are owned by
procedure Main, variable Another is also owned by task B, and variables Global
and U are global to Main, B, C, and P. In this example the formal parameter X
of procedure P is an alias for variable Global; we will treat aliasing in the latter
part of this section.

For every unit u that is a task body, and for the subprogram body correspond-
ing to the environment task (the “main” program), our analysis determines

1. the sets Or and Ow of read/written variables owned by u,
2. the sets Gr and Gw of read/written variables global to u, and
3. the sets σr = Or ∪ Gr, σw = Ow ∪ Gw, σG = Gr ∪ Gw , and σrw = σr ∪ σw.

Given now two task objects t1 and t2 with their corresponding task bodies B1
and B2. If t1 ‖ t2, and the intersection of the corresponding sets σrw(B1) ∩
σrw(B2) is non-empty, then we are facing a potential conflict. If an entity e
from the intersection is global to at least one of the participating task bodies B1
and B2, and if e is modified in at least one of the participating task bodies (as
opposed to just being used), then the conflict is “real”. (We will formalize this
condition in Section 2.3.)

We are now faced with the problem of determining for each unit u the cor-
responding quadruple 〈Or, Ow, Gr, Gw〉. This can be related to interprocedural
data flow analysis which is concerned with the determination of a conservative
approximation of how a program manipulates data at the level of its call graph.
In our case we are interested in the owned and global variables read and written
by a given unit. Our problem is flow-insensitive as we currently do not incorpo-
rate control flow information encountered in a unit; as a consequence, a single
read or update operation on a given variable v in a unit u is already sufficient
to place v in the respective set of u’s quadruple.

It is shown in [8] how alias-free flow-insensitive side-effect analysis can be
carried out for procedure call graphs and call-by-reference parameter passing.
In [9] it is shown how interprocedural flow-insensitive may-alias information can
be factored into this result to account for aliases due to call-by-reference para-
meter passing, for procedures of arbitrary lexical nesting level. This approach
assumes however the absence of pointer aliases. In the following we investigate
to what extent [8, 9] apply to Ada95 and how those approaches can be adapted
to determine the sought quadruples.

Parameter passing: Ada95 employs two types of parameter passing, namely
by copy (aka copy-in/copy-out), and by reference. When a parameter is passed
by copy, any information transfer between formal and actual parameter occurs

46 B. Burgstaller, J. Blieberger, and R. Mittermayr

only before and after execution of the subprogram (cf. [12], [14, 6.2]). From the
point of view of our analysis method both parameter passing mechanisms are
equivalent, because we screen the source code only at the granularity of whole
tasks (and subprograms).

Pointer aliases: [8, 9] does not include pointer aliases. Moreover, the may-alias
problem for k > 1 level pointers is undecidable (cf. e.g., [5]). Hence we chose
a conservative analysis strategy with respect to pointer aliasing which assumes
that every entity possibly targeted by a pointer is modified during a procedure
call. Due to the induced complexity we had to exclude access to subprogram
types altogether from our analysis.

Calculation of 〈Or, Ow, Gr, Gw〉: The only statement aggregation in [8] are
procedures. In the following we write GMOD(p) to denote the set of all vari-
ables that may be modified by an invocation of procedure p. Furthermore, we
write IMOD(p) to denote those variables that may be modified by executing
procedure p without executing any calls within it.

In order to compute GMOD(p), [8] sets up a data flow problem that is based
on the procedure call graph and consists of equations of the form

GMOD(p) = IMOD(p) ∪
[⋃

e=(p,q)

be

(
GMOD(q) ∩ Nonlocals(q)

)]
. (5)

Therein function be maps names from procedure q into names from procedure p
according to the name and parameter binding at the call site e = (p, q). Specif-
ically, be maps the formal parameters of q to the actual parameters at the call
site. The intersection of GMOD(q) with the set of nonlocal variables Nonlocals(q)
ensures that variables local to q are factored out beforehand.

To compute our sought quadruples for Ada95, we can set up a system of
equations similar to Eq. (5). Doing so we split the set GMOD into the sets
of owned and global variables, and we move from procedures to units in terms
of statement aggregation. (Hence the procedure call graph becomes a unit call
graph.) In this way, IMOD(u) denotes those variables that may be modified by
executing unit u without executing any calls to subprograms or entries within
it, and without executing any task objects owned by it. We do not count a
modification that is due to an initialization expression of a declaration in the
declarative part (cf. [14, 3.11]) of unit u; this is a measure to reduce false positives
and will be explained in Section 2.5.

G′
w(u) =

⋃
e=(u,u′)

be

(Gw(u′)
)

(6)

Gw(u) =
[
IMOD(u) ∩ G(u)

] ∪ [G′
w(u) \ O(u)

]
(7)

Ow(u) =
[
IMOD(u) ∩ O(u)

] ∪
[⋃

e=(u,u′)

Ow(u′)
]

∪ (G′
w(u) ∩ O(u)

)
(8)

Eq. (6) denotes the set of variables which are modified by called units of u
and which are global to those called units. In Eq. (7) we determine the set Gw

Static Detection of Access Anomalies in Ada95 47

of unit u, which consists of the locally modified global variables of u and those
variables of Eq. (6), which are global to u. Finally, the set Ow of u consists of the
locally modified owned variables of u as well as the modified variables owned by
called units and those modified global variables of called units which are owned
by u. In replacing IMOD by IUSE as the set of used variables, a system of
equations similar to Eq. (6)–(8) can be defined to determine the sets Gr and Or.

The sets IMOD(u) and IUSE(u) themselves can be computed by a single
linear scan of the statements of u. Therein we do not consider variables which
are marked by pragmas Atomic or Volatile, or protected variables, as none of
them can give raise to access anomalies. In addition we treat accesses to array
components as accesses to the whole array. The same applies to records and their
components.

Dispatching operations of tagged types require additional thinking — if we
cannot determine the target of a dispatching call (cf. [14, 3.9.2]) at compile-time,
we have to assume calls to all dispatching operations that might be the target
of the dispatching call at run-time.

A further source of complication are generic packages, for which we defer
analysis to the point of instantiation.

Factor In (ALIAS, U)
1 for each u ∈ U do
2 Factor Set(u, ALIAS, Or)
3 Factor Set(u, ALIAS, Ow)
4 Factor Set(u, ALIAS, Gr)
5 Factor Set(u, ALIAS, Gw)
6 endfor

Factor Set (u, ALIAS, in outSin)
1 Sout : : = Sin

2 -- add formal parameter aliases:
3 for each v ∈ Ext Formals (u) do
4 if v ∈ Sin then
5 Sout : : = Sout ∪ ALIAS(v, u)
6 endif
7 endfor
8 -- add global variable aliases:
9 for each v ∈ Nonlocals(u) ∩ Sin do
10 Sout : : = Sout ∪ ALIAS(v, u)
11 endfor
12 Sin : : = Sout

Fig. 3. Algorithm to Factor In Aliasing Information

The data flow problem defined above computes alias-free data flow informa-
tion. Regarding the example given in Fig. 2, this means that e.g., with task
body C, we are not aware that the formal parameter X of procedure P is an alias
for variable Global1. To factor in aliasing information, we employ the interpro-
cedural may-alias analysis method from [9]. Let ALIAS(v, u) denote the set of
aliases for variable v within unit u. Due to [9] we can compute ALIAS(v, u),
for each formal parameter v and for each global variable v for a unit u. We
depict in Fig. 3 how this aliasing information can be factored into our alias-
free quadruple-based data flow information; this algorithm is an adaption of an
algorithm from [9] to our data flow problem at hand.

1 An alias from the perspective of our analysis method, which is by necessity insensitive
to the copy-in/copy-out parameter passing mechanism of Ada95.

48 B. Burgstaller, J. Blieberger, and R. Mittermayr

We assume that the driver algorithm Factor In receives as arguments the
sets of aliases (ALIAS) and the units (U) of the program under consideration.
For each unit u and each set of its associated quadruple 〈Or, Ow, Gr, Gw〉, Fac-
tor In calls the factoring algorithm Factor Set in order to factor in aliasing
information. This algorithm proceeds in two steps. The first loop addresses the
set Ext Formals of extended formal parameters of u, which consists of all formal
parameters visible within u, including those of units that u is nested in, that
are not rendered invisible by intervening declarations2. In the second loop we
add the aliases of variables that are non-local to u. Note that Factor Set only
adds aliases to variables that are contained in its input-set Sin.

In the following section we define operations on our quadruple-based data flow
information which allows us to record information on program variables being
read or updated non-sequentially.

2.3 Potential Non-sequential Variable Access

We have shown in Section 2.1 how we can compute relation ‖ in order to de-
termine task objects that may execute in parallel. Moreover, in Section 2.2 we
have devised an algorithm to compute the sets of global and owned variables
used/modified by a task body.

Let B(t) denote the task body of a task object t; with this notation we regard
the environment task also as a task object, with its task body being the main
procedure of the program. A variable v is used by a task object t, if v is in the
set3 of read variables of the task body of t, that is, use(v, t) ⇔ v ∈ σr(B(t)).
Likewise for modifications of v by t, written as mod(v, t) ⇔ v ∈ σw(B(t)). We
have now everything in place to formulate the condition for a potential non-
sequential variable access between two task objects t1 and t2 which may execute
in parallel, that is, t1 ‖ t2.

Definition 3. Predicate σ(t1, t2) is true if some variable v is non-sequentially
accessed by task objects t1 and t2, false otherwise. It is formally defined as

σ(t1, t2) =
∧
v∈S

[[(
use(v, t1) ∧ mod(v, t2)

)
(9)

∨ (
mod(v, t1) ∧ use(v, t2)

)
(10)

∨ (
mod(v, t1) ∧ mod(v, t2)

)]
(11)

∧ (
v ∈ σG(B(t1)) ∪ σG(B(t2))

)]
, (12)

where S = σrw(B(t1)) ∩ σrw(B(t2)) are the variables accessed by both, B(t1)
and B(t2), and (12) ensures that variable v is global to at least one of the involved
task bodies.
2 It is shown in [9] how Ext Formals can be computed from the so-called binding graph

of procedure parameters.
3 Cf. Section 2.2 for the definition of these sets.

Static Detection of Access Anomalies in Ada95 49

Note that t1 = t2 is not excluded by this definition. In order to see that this
is useful consider two tasks of the same task type tt being allocated via new
statements (e.g. in a loop-body). Thus we have t1 = t2, say, and t1 ‖ t2. Now, if
both t1 and t2 modify variable v which is locally declared in tt, σ(t1, t2) evaluates
to false only because Eq. (12) becomes false in this case.

2.4 Complexity Issues

The data flow problem described in Section 2.1 can be solved via elimination
methods in O(|E| · log |N |) time [25], where |N | denotes the number of nodes in
a CFG and |E| the number of edges in a CFG.

As shown in [8, 9], the data flow problem stated in Section 2.2 can be solved
in O(|E| · |N | + |N |2), with |N | and |E| being the number of call graph nodes
and edges.

Summing up, our method performs very efficiently in analyzing Ada multi-
tasking programs for detecting access anomalies.

2.5 A Simple Example

For purposes of demonstration we have chosen a simple concurrent Ada program
without aliasing effects. It is the well know Producer/Consumer pattern, with
its source code depicted in Figure 4. In procedure Erroneous (which is also the
main subprogram of this example), variable a and two tasks, Producer p and
Consumer c, are declared. Both of them are using variable a (the producer is
even modifying it) ten times in an unsynchronized way.

procedure Erroneous is
a : Integer := 0; -- Node 1
task type Producer(Count : Natural) is -- Node 1
end Producer; -- Node 1
task type Consumer(Count : Natural) is -- Node 1
end Consumer; -- Node 1
task body Producer (Count : Natural) is
begin

for i in 1..Count loop -- Node 2
a := i; -- Node 3
-- do something else in the meantime - Node 3

end loop;
end Producer;
task body Consumer (Count : Natural) is
begin

for j in 1..Count loop -- Node 4
-- read global variable a -- Node 5

end loop;
end Consumer;
p : Producer(10); -- Node 1
c : Consumer(10); -- Node 1

begin
null; -- Node 1

end Erroneous;

Fig. 4. Example: Source Code

50 B. Burgstaller, J. Blieberger, and R. Mittermayr

Level 0

Level 1

Level 2

Level 3

1

2

D

4

D

End
J

3

D

J

J

5

D

J

J

Start

D D

Fig. 5. Example: DJ-Graph

e p c

Fig. 6. Example: Unit Call Graph

The data flow equations for the example shown in Figure 5 are set up as
follows (for simplicity we abbreviate Erroneous by “e”):

S(Start) = {e},

S(1) = (S(Start)\Kill(1)) ∪ Gen(1) = ({e}\∅) ∪ {p, c} = {e, p, c},

S(2) = ((S(1) ∪ S(3))\Kill(2)) ∪ Gen(2) = S(1) ∪ S(2),
S(3) = (S(2)\Kill(3)) ∪ Gen(3) = S(2),
S(4) = ((S(1) ∪ S(5))\Kill(4)) ∪ Gen(4) = S(1) ∪ S(5),
S(5) = (S(4)\Kill(5)) ∪ Gen(5) = S(4),

S(End) = ((S(Start) ∪ S(1) ∪ S(2) ∪ S(4))\Kill(End)) ∪ Gen(End)
= S(Start) ∪ S(1) ∪ S(2) ∪ S(4).

We employ the eager elimination method due to [25] to solve the data flow
equations of our example. This method is based on DJ graphs, the union of a
CFG and its dominator tree (cf. [25]). It requires to distinguish between d- and
j-edges (cf. Fig. 5). For details the reader is referred to [25]. First the bottom-
up join edge elimination phase (and simultaneous insertion in the data flow
equations) of the eager elimination method is started at level 3: 5 → 4: S(4) =
S(1) ∪ S(4); 3 → 2: S(2) = S(1) ∪ S(2).
At level 2 loop breaking is necessary: 	� 4: S(4) = S(1), 	� 2: S(2) = S(1). During
the second phase of the eager elimination method the solution is propagated
along d-edges in a top down manner: S(2) = S(3) = S(4) = S(5) = {e, p, c};
S(End) = {e, p, c}\{e, p, c} = ∅.

According to the algorithm for constructing the ‖-relation from Section 2.1,
we get e ‖ p, e ‖ c, and p ‖ c.

Static Detection of Access Anomalies in Ada95 51

In the following e, p, and c denote the nodes of the unit call graph of our
example, which is depicted in Fig. 6. (Note that since our simple example does
not contain any calls, the unit call graph is in fact trivial). According to the data
flow framework given in Section 2.2 we obtain the sets

O(p) = {i},

O(c) = {j},

O(e) = {a, i, j, p, c}.

G′
w(p) = ∅,

Gw(p) =
[
IMOD(p) ∩ G(p)

] ∪ [G′
w(p) \ O(p)

]
=

[{a, i} ∩ {a}] ∪ ∅ = {a},

Ow(p) =
[
IMOD(p) ∩ O(p)

] ∪ ∅ ∪ (G′
w(p) ∩ O(p))

=
[{a, i} ∩ {i}] ∪ ∅ ∪ (∅ ∩ {i}) = {i},

G′
w(c) = ∅,

Gw(c) =
[
IMOD(c) ∩ G(c)

] ∪ [G′
w(c) \ O(c)

]
=

[{j} ∩ {a}] ∪ ∅ = ∅,

Ow(c) =
[
IMOD(c) ∩ O(c)

] ∪ ∅ ∪ (G′
w(c) ∩ O(c)) =

[{j} ∩ {j}] ∪ ∅ = {j},

G′
w(e) = ∅,

Gw(e) =
[
IMOD(e) ∩ G(e)

] ∪ [G′
w(e) \ O(e)

]
=

[∅ ∩ ∅] ∪ [∅ \ {a, i, j, p, c}]
= ∅,

Ow(e) =
[
IMOD(e) ∩ O(e)

] ∪ (G′
w(e) ∩ O(e))

=
[∅ ∩ {a, i, j, p, c}] ∪ (∅ ∩ {a}) = ∅.

G′
r(p) = ∅,

Gr(p) = [IUSE(p) ∩ G(p)] ∪ [G′
r(p) \ O(p)] = [{i} ∩ {a}] ∪ ∅ = ∅,

Or(p) = [IUSE(p) ∩ O(p)] ∪ ∅ ∪ (G′
r(p) ∩ O(p)) = [{i} ∩ {i}] ∪ (∅ ∩ {i}) = {i},

G′
r(c) = ∅,

Gr(c) = [IUSE(c) ∩ G(c)] ∪ [G′
r(c) \ O(c)] = [{a, j} ∩ {a}] ∪ ∅ = {a},

Or(c) = [IUSE(c) ∩ O(c)] ∪ ∅ ∪ (G′
r(c) ∩ O(c))

=[{a, j} ∩ {j}] ∪ (∅ ∩ {j}) = {j},

G′
r(e) = ∅,

Gr(e) = [IUSE(e) ∩ G(e)] ∪ [G′
r(e) \ O(e)] = ∅ ∪ [∅ \ {a, i, j, p, c}] = ∅, and

Or(e) = [IUSE(e) ∩ O(e)] ∪ (G′
r(e) ∩ O(e)) = ∅ ∪ (∅ ∩ {a, i, j, p, c}) = ∅.

As already mentioned in Section 2.2, we do not count a modification that
is due to an initialization expression of a declaration in the declarative part of
unit u. This is justified by the fact that declarations in declarative part D are
(1) not visible/accessible outside the scope of this task, and (2) the elaboration
order ensures that tasks declared in D are activated after the declaration and
initialization of the variables in D. This effectively serializes the modifications
due to initialization with possible accesses from within child tasks. Thus in our
example variable a is not a member of IMOD(e).

Furthermore we get σrw(e) = ∅, σrw(p) = {a, i}, and σrw(c) = {a, j}. We have
now σrw(e) ∩ σrw(p) = ∅, and σ(e, p) = false. Because of σrw(e) ∩ σrw(c) = ∅

52 B. Burgstaller, J. Blieberger, and R. Mittermayr

and σ(e, c) = false, the same applies to tasks e and c. From σrw(p)∩σrw(c) = {a}
and σ(p, c) = true we conclude that there is an access anomaly concerning tasks
c and p with respect to variable a.

3 Related Work

In [10, 18, 17] a detailed survey of possible erroneous executions in Ada (espe-
cially unsynchronized accesses to unprotected variables and how unpredictable
the results are) is presented. Although there are protected types in Ada 95, un-
protected variables can be and are used. “. . . we do not wish to jump to the simple
conclusion that unprotected non-local variables should not be used. . . . although
the need for them has now been greatly reduced . . . perform a mechanical verifi-
cation of the fact that they are used correctly” [17].

One way to cope with unpredictability is to allow just a strict (safe) sub-
set of the Ada programming language [7, 4]. The Ravenscar Profile [6] removes
non-deterministic tasking features from Ada and thus provides a statically an-
alyzable subset of tasking facilities of Ada 95. This enables the development of
high-integrity systems even in conjunction with tasks. “The avoidance of un-
protected shared variables is generally a requirement of high integrity systems,
although detection of this erroneous case is not mandated by the Ravenscar Pro-
file definition” [7]. Thus, even in combination with the Ravenscar Profile, an
additional check is needed to make sure that unprotected data is never shared
between tasks. The Ravenscar Profile is an opportunity to allow concurrency
within SPARK [4, 1].

A variety of approaches dealing with the detection of tasking anomalies in
multi-tasking (Ada) programs have been proposed. These approaches include
static analysis, post-mortem trace analysis, on-the-fly monitoring, and combina-
tions. In [13] an overview of available techniques is presented. The goal of static
analysis is to detect access anomalies prior to execution. On-the-fly monitoring is
a dynamic approach and usually combined with a debugging tool. Post-mortem
methods include all techniques used to discover errors in an execution following
its termination.

Static Concurrency Analysis, presented in [26], is a method for determining
concurrency errors in parallel programs. The class of detectable errors includes
infinite waits, deadlocks, and concurrent updates of shared variables. Potentially
concurrent sections of code are identified. Shared variable operations in these
sections are potential anomalies. The algorithm is however exponential in the
number of tasks in the program.

Detecting access anomalies by monitoring program execution is proposed
in [23]. A general on-the-fly algorithm is presented, which can be applied to pro-
grams containing both nested fork-join and synchronization operations. In [11]
the dynamic approach is further explored, nested parallel loops are considered,
and experimental results are given. The retrospective in [24] gives a good survey
of on-the-fly techniques. In general these techniques are fundamentally different
to our static analysis approach. To reduce the amount of run-time checking,

Static Detection of Access Anomalies in Ada95 53

static program analysis can be used in combination with an on-the-fly approach
(cf. e.g., [13]).

AdaWise [3] is a set of program analysis tools that performs automatic checks
to verify the absence of common run-time errors affecting correctness or porta-
bility of Ada code. AdaWise checks at compile-time for potential errors such
as incorrect order dependence or erroneous execution due to improper aliasing.
Like our approach, it operates in a conservative way. That is, the absence of a
warning guarantees the absence of a problem. If AdaWise produces a warning,
there is a potential error that should be investigated by the developer.

A good survey of available tools detecting races in Java (e.g. rccjava, Java
Pathfinder, ESC/Java, Bandera) or C (e.g. Warlock and RacerX) can be found
in [27].

4 Conclusion and Future Work

In this paper we have presented data flow analysis frameworks for detecting non-
sequential access of shared non-protected variables, so-called access anomalies.
Our framework can handle most programs of practical importance. It is compu-
tationally efficient and easy to implement by modifying the source code of an
existing compiler like GNAT. Toolkits for constructing data flow analyzers [16]
can also be employed. Our method is conservative and may therefore raise false
positives. It should be easily adaptable for the Ravenscar profile [6, 7].

Our approach is also well-suited for other programming languages like Java
[2], although a Java program is not even termed erroneous if it accesses global
shared variables in a non-sequential way.

In the future we plan to develop a symbolic analysis framework that is aimed
at the detection of non-sequential global shared variable access. Symbolic analy-
sis is capable of incorporating flow-sensitive side-effects of a program, which will
make it less susceptible to the detection of false positives. A refinement of rela-
tion ‖ to model parallelism in a more fine-grained (i.e., intra-task) manner is an
orthogonal measure to reduce the number of false positives. At the moment our
analysis considers parallelism only on a per-task basis, which is a safe approxi-
mation of the actual potential for parallelism between variable accesses. There
are however many cases where task objects executing in parallel access a com-
mon variable, but the intra-task structure of the program reveals that the actual
access operations cannot occur in parallel (e.g., due to involved synchronization
primitives).

References

1. SPARK Examiner, The SPARK Ravenscar Profile,
http://www.praxis-his.com/sparkada/pdfs/examiner ravenscar.pdf, 2004.

2. K. Arnold, J. Gosling, and D. Holmes. The Java Programming Language. Addison-
Wesley, Reading, MA, 3rd edition, 2000.

54 B. Burgstaller, J. Blieberger, and R. Mittermayr

3. C. Barbasch and D. Egnor. Always one more bug: applying AdaWise to improve
Ada code. In Proceedings of the conference on TRI-Ada ’94, pages 228–235, New
York, NY, USA, 1994. ACM Press.

4. J. Barnes. High Integrity Software - The SPARK Approach to Safety and Security.
Addison-Wesley, Harlow, England, 2003.

5. J. Blieberger, B. Burgstaller, and B. Scholz. Interprocedural Symbolic Evaluation
of Ada Programs with Aliases. In Proc. of the Ada-Europe International Conference
on Reliable Software Technologies, pages 136–145, Santander, Spain, June 1999.

6. A. Burns. The Ravenscar Profile. Ada Lett., XIX(4):49–52, 1999.
7. A. Burns, B. Dobbing, and T. Vardanega. Guide for the use of the Ada Ravenscar

Profile in high integrity systems. Ada Lett., XXIV(2):1–74, 2004.
8. K. D. Cooper and K. Kennedy. Interprocedural side-effect analysis in linear time.

In PLDI ’88: Proceedings of the ACM SIGPLAN 1988 conference on Programming
Language design and Implementation, pages 57–66, New York, NY, USA, 1988.
ACM Press.

9. K. D. Cooper and K. Kennedy. Fast interprocedural alias analysis. In Confer-
ence Record of the 16th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 49–59, 1989.

10. P. Delrio and F. Mazzanti. The risk of destructive run-time errors. Ada Lett.,
XI(1):102–113, 1991.

11. A. Dinning and E. Schonberg. An empirical comparison of monitoring algorithms
for access anomaly detection. In PPOPP ’90: Proceedings of the second ACM
SIGPLAN symposium on Principles & practice of parallel programming, pages
1–10, New York, NY, USA, 1990. ACM Press.

12. W. Gellerich and E. Ploedereder. Parameter-induced aliasing and related problems
can be avoided. In Proc. of the Ada-Europe International Conference on Reliable
Software Technologies, pages 161–172, 1997.

13. R. Hood, K. Kennedy, and J. Mellor-Crummey. Parallel program debugging with
on-the-fly anomaly detection. In Supercomputing ’90: Proceedings of the 1990
ACM/IEEE conference on Supercomputing, pages 74–81, Washington, DC, USA,
1990. IEEE Computer Society.

14. ISO/IEC 8652. Ada Reference manual, 1995.
15. G. Kildall. A unified approach to global program optimization . In Proc. of the

First ACM Symposium on Principles of Programming Languages, pages 194–206,
New York, NY, 1973.

16. J. H. E. F. Lasseter. Toolkits for the automatic construction of data flow analyzers.
Technical report, ”University of Oregon, Computer & Information Sci. Dept.”,
2005.

17. C. Marzullo and F. Mazzanti. Towards the static detection of erroneous executions
in Ada 95. Technical report, ”Ninth International Software Quality Week ’96
(QW’96)”, Sheraton Palace Hotel, San Francisco, California USA, 1996.

18. F. Mazzanti. Guide to erroneous executions in Ada 95. Technical report, Centre
National de la Recherche Scientifique, Paris, France, France, 1997.

19. K. Mehlhorn. Graph Algorithms and NP-Completeness, volume 2 of Data Struc-
tures and Algorithms. Springer-Verlag, Berlin, 1984.

20. M. C. Paull. Algorithm Design – A Recursion Transformation Framework. Wiley
Interscience, New York, NY, 1988.

21. B. G. Ryder and M. C. Paull. Elimination algorithms for data flow analysis. ACM
Computing Surveys, 18(3):277–316, 1986.

22. D. A. Schmidt. Denotational Semantics — A Methodology for Language Develop-
ment. Allyn and Bacon, 1986.

Static Detection of Access Anomalies in Ada95 55

23. E. Schonberg. On-the-fly detection of access anomalies. In PLDI ’89: Proceedings
of the ACM SIGPLAN 1989 Conference on Programming language design and
implementation, pages 285–297, New York, NY, USA, 1989. ACM Press.

24. E. Schonberg. On-the-fly detection of access anomalies. SIGPLAN Not., 39(4):
313–327, 2004.

25. V. C. Sreedhar, G. R. Gao, and Y.-F. Lee. A new framework for elimination-based
data flow analysis using DJ graphs. ACM Trans. Program. Lang. Syst., 20(2):
388–435, 1998.

26. R. N. Taylor. A general-purpose algorithm for analyzing concurrent programs.
Commun. ACM, 26(5):361–376, 1983.

27. F. Zhou. Survey: Race Detection and Atomicity Checking, CS263 Course Project,
2003.

One Million (LOC) and Counting: Static
Analysis for Errors and Vulnerabilities in the

Linux Kernel Source Code

Peter T. Breuer and Simon Pickin

Universidad Carlos III de Madrid, Leganes, Madrid, 28911 Spain
ptb@inv.it.uc3m.es, spickin@it.uc3m.es

Abstract. This article describes an analysis tool aimed at the C code
of the Linux kernel, having been first described as a prototype (in this
forum) in 2004. Its continuing maturation means that it is now capable of
treating millions of lines of code in a few hours on very modest platforms.
It detects about two uncorrected deadlock situations per thousand C
source files or million lines of source code in the Linux kernel, and three
accesses to freed memory. In distinction to model-checking techniques,
the tool uses a configurable “3-phase” programming logic to perform its
analysis. It carries out several different analyses simultaneously.

1 Introduction

Two years ago, our group had developed a prototype static analysis tool for the
Linux kernel and described it in this forum ([1]). At that time, it was a matter of
some pride that the prototype could efficiently deal with some thirty thousand
lines or so of source code at a time, that being about the size that a small kernel
driver source code of some five hundred lines or so of C code would expand to
once referenced header files had been included and all macros expanded.

Taking the development onwards to deal with first hundreds of thousands
and then millions of lines of (unexpanded) source code has not been merely a
question of linear improvement. The tool had to be (a) coupled with a logic
compiler in order to allow the programming logic to be reconfigured for different
analyses and (b) the way the tool applied the logic to a parsed program syntax
tree was made configurable via a user-defined set of trigger/action rules, again
compiled into the tool on demand. The coverage had to be extended again and
again to deal with the many unexpected C code constructions that the GNU C
compiler allows and the Linux kernel makes use of, as they were discovered, the
order of complexity of the algorithms involved had to be reduced greatly to deal
with more than toy cases, an efficient parse had to be created for expressions
which in places reach to 5000 lexical tokens, and logical predicates needed to be
normalised on the fly in order to avoid the buildup of repetitious and redundant
contributions that increase the complexity of the analysis task.

We take the opportunity in this article to state with specificity the analytic logic
applied to every C code construct, as refined over the past two years. The analysis

L.M. Pinho and M. González Harbour (Eds.): Ada-Europe 2006, LNCS 4006, pp. 56–70, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

One Million (LOC) and Counting 57

copes with the mix of C and assembler in the Linux kernel source and the tool is
written wholly in C, making it easy to compile and distribute in an open source
environment, and it is licensed under an open source license.

Abstract interpretation [2] plays a fundamental rôle in the analysis, causing a
simplification in the description of state that is propagated through a program
code; for example, there is a literal (written “NAN”) meaning “don’t know” in
the abstract domain, and thus a program variable which may take any of the
values 1, 2, or 3 may be described as having the abstract value “don’t know”,
leading to a state described by one atomic proposition, not a disjunct of three.

By way of orientation, note that static analysis is in general difficult to apply
to C code because of C’s pointer arithmetic and aliasing, but some notable ef-
forts to that end have been made. David Wagner and collaborators in particular
have been active in the area (see for example [5], where Linux user space and
kernel space memory pointers are given different types, so that their use can be
distinguished, and [6], where C strings are abstracted to a minimal and maxi-
mal length pair and operations on them abstracted to produce linear constraints
on these numbers). That research group often uses model-checking to look for
violations in possible program traces of an assertion such as “chroot is always
followed by chdir before any other file operations”. In contrast, the approach in
this article assigns a (customisable) approximation semantics to C programs, via
a (customisable) program logic for C. It is not model-checking, but a more light-
weight approach, part-way between model-checking and Jeffrey Foster’s work
with CQual [3, 4], which extends the type system of C in a customisable man-
ner. In particular, CQual has been used to detect “spinlock-under-spinlock”, a
sub-case of the analysis here.

The remainder of this article is structured as follows: an example run of the
analysis will be presented in Section 2, the theory of the analytic logic used
will be described in Section 3, and the detail of the treatment of C will be
given in Section 4, along with the definitions that customise the analysis. Then
configurations of the analyser for a small variety of problems and the results are
discussed in Section 5.

2 First Example: Sleep Under Spinlock

In [1] we focused on checking for a particular problem in SMP systems – “sleep
under spinlock”. A function that can sleep (i.e., that can be scheduled out of
the CPU) ought never to be called from a thread that holds a “spinlock”, the
SMP locking mechanism of choice in the Linux kernel. Trying to take a locked
spinlock on one CPU provokes a busy wait (“spin”) in that thread that occupies
the CPU completely until the same spinlock is released on another CPU. If the
thread that has locked the spinlock is scheduled out of its CPU while the lock
is held, then the only thread that likely has code to release the spinlock again
is not running. If by chance it is rescheduled into the CPU before any other
thread tries to take the spinlock, then all is well. But if another thread tries
for the spinlock first, then it will spin, occupying the CPU and keeping out the

58 P.T. Breuer and S. Pickin

files checked: 1055
alarms raised: 18 (5/1055 files)
false positives: 16/18
real errors: 2/18 (2/1055 files)
time taken: ˜24h
LOC: 7̃00K (unexpanded)

1 instances of sleep under spinlock
in sound/isa/sb/sb16 csp.c

1 instances of sleep under spinlock
in sound/oss/sequencer.c

6 instances of sleep under spinlock
in net/bluetooth/rfcomm/tty.c

7 instances of sleep under spinlock
in net/irda/irlmp.c

3 instances of sleep under spinlock
in net/irda/irttp.c

Fig. 1. Testing for sleep under spinlock in the 2.6.3 Linux kernel

thread that would have released the spinlock. If yet another thread tries for
the spinlock, then on a 2-CPU system, the machine is dead, with both CPUs
spinning waiting for a lock that will never be released. Such opportunities are
denial of service vulnerabilities that any user can exploit to take down a system.
2-CPU machines are also common – any Pentium 4 of 3.2GHz or above has a
dual “hyper-threading” core. Detecting sleep under spinlock is one application
of the abstract logic applied by the analyser.

That analysis may now be applied at almost industrial scales – Table 1 shows
the results of checking for spinlock abuse in 1055 of the 6294 C source files in the
Linux 2.6.3 kernel. This particular run took about 24 hours running in a single
thread on a 550MHz (dual) SMP PC with 128MB ram (nowadays the analysis
runs about two to three times as fast as that). About forty more files failed to
parse at that time for various reasons (in one case, because of a real code error, in
others because of the presence of GNU C extensions for the gcc compiler that the
analyser could not cope with at that time, such as attribute declarations in
unexpected positions, case statement patterns matching a range instead of just
a single number, array initialisations using “{ [1,3,4] = x }” notation, etc.).
Five files showed up as suspicious under the analysis, as listed in Fig. 1.

Although the flagged instances are indeed calls of the kernel memory alloca-
tion function kmalloc (which may sleep) under spinlock, the arguments to the
call sometimes make it safe. The function will not sleep with GFP ATOMIC there,
and that is the case in several instances, but not in the two shown in Fig. 2.

The first of these two is in code that writes microcode from user-space to the
sound processor chip on the sound card; in the 2.6.11 Linux kernel source, that
section of code has been replaced entirely. The second, however, is still present
in 2.6.11 and 2.6.12 Linux kernels. Alan Cox owned up to it at 2.6.12.5 (Linux
kernel mailing list, in thread sleep under spinlock, sequencer.c, 2.6.12.5, dated
19 Aug 2005): Yep thats (sic) a blind substitution of lock kernel in an old tree
it seems. Probably my fault. Should drop it before the sleep and take it straight
after. The vulnerability might be exercised by evoking system sounds on an SMP
machine (e.g. by triggering many “you have mail” notifications at once).

One Million (LOC) and Counting 59

File & function Code fragment
sb/sb16 csp.c:
snd sb csp load

619 spin lock irqsave(&p->chip->reg lock, flags);
.
632 unsigned char *kbuf, * kbuf;
633 kbuf = kbuf = kmalloc (size, GFP KERNEL);

oss/sequencer.c:
midi outc

1219 spin lock irqsave(&lock,flags);
1220 while (n && !midi devs[dev]->outputc(dev, data)) {
1221 interruptible sleep on timeout(&seq sleeper,HZ/25);
1222 n--;
1223 }
1224 spin unlock irqrestore(&lock,flags);

Fig. 2. Sleep under spinlock instances in kernel 2.6.3

3 Analytic Program Logic

The analysis works by sweeping an initial description of state (for example, “the
count of spinlocks taken so far is zero”), forward through the code, constructing
descriptions of all the possible states reachable at every point.

The “descriptions” are predicates from a very restricted set, consisting of dis-
junctions and conjunctions of simple propositions of the form x ≤ a, x = b, and
so on, where a and b may only be constant values (including the abstract literal
meaning “don’t know”, written “NAN”). These predicates correspond to shapes
that are the unions of cubes in n-dimensional integer space and we can check
for inclusion of one such “cuboid” p in another q via a linear-programming algo-
rithm, thus determining mechanically (and efficiently) whether the implication
p → q holds or not. The variables that appear in the predicates are not program
but condition variables, introduced purely for the purpose of the analysis and
manipulated by the logic configured for the individual statements of C.

At the same time as the predicate descriptions are propagated, an approximate
state (different in all likelihood from the predicate constructed, but not incom-
patible with it) is calculated at each point and swept through the program, in
order to give some guidance. It is not necessary to construct this approximation
but it is helpful in detecting dead code and forced branches. It is not uncommon
to write “if (0)”, for example, and the abstraction would calculate the value 0
for the “0” and guide the analysis to drop the block.

The “approximate state” (currently) consists of the assignment of a range of
integer values to program (not condition) variables (Fig. 3). This approximation
is intended to capture all the possible values that the variable may take at that
point. For example, if x is assigned the range [−1, 1] just prior to the statement
x=x+1; then it is assigned the range [0, 2] after it.

To take account of the effect of loops in the guiding approximation, changes
made by the loop body to variables outside the loop are evaluated broadly. So,
for example, if the loop enters with the external program variable x set to [−1, 1],
but the body transforms it to [0, 2], it may be assigned the value NAN after the
loop, on the basis that repeat iterations change it unpredictably. The aim is

60 P.T. Breuer and S. Pickin

const :

. . . −1 0 1. . .
↖ ↑ ↗
NAN

rnge :

[c1, c2], [x : p]

ci ∈ const
p ∈ prpn

prpn :

p1 ∧ p2, p1 ∨ p2

p, q, . . .
a, p[x ± c/x], p[x/y]

a ∈ atom, pi ∈ prpn
c ∈ const

value:

x, y, z, . . .
c, v + c, v − c
upper(r), lower(r)

r ∈ rnge, c ∈ const
atom:
x < c, x = c, . . .

c ∈ const

Fig. 3. The semantic domains for the specification language. Arrows show refinement

to generate a loop invariant abstract state. At present we do not try harder to
find an accurate invariant state, though in principle we could try again with
[−1, 1] ∪ [0, 2] = [−1, 2] as the putative invariant, and again for any desired
number of repetitions. We currently move directly to NAN as the assigned value
for any variant program variable, and stop the procedure as soon as we have an
invariant approximation state. Assigning NAN for every variable always gives an
invariant, so the procedure stops in at most #variables steps.

At each point in the program code, the predicate (not the state approximation)
description of the reachable states is evaluated to see if it may permit a violation
of an objective that has been set. If it does, the line is flagged. Thus if we get
“number of spinlocks taken may be in the range [0,2]” at a point where a function
f that may sleep is called, the flag is set; it is set because the analysis says that
sleepy function f may be called under spinlock there and the objective is that
sleepy functions not be called under spinlock. In particular, if the uniformative
statement “true” (T) were all that we had as the predicate description of state
at that point, the alarm flag would be set because the state could be anything
at all, and thus the objective may not be met there.

The predicate description of the reachable states at each point is propagated
through the code by a compositional program logic called NRBG [1] (for “nor-
mal”, “return”, “break”, “goto”, reflecting its four principal components). The
four components, N, R, B, G, represent different kinds of control flow: a “normal”
flow, N, and several “exceptional” flows.

Program fragments are thought of as having three phases of execution: initial,
during, and final. The initial phase is represented by a condition p that holds
as the program fragment is entered. The only access to the internals of the
during phase is via an exceptional exit (R, B, G; return, break, goto) from the
fragment. The final phase is represented by a condition q that holds as the
program fragment terminates normally (N).

The N part of the logic represents the way code “falls off the end” of one
fragment and into another. That is, if p is the precondition that holds before
program a; b runs, and q is the postcondition that holds afterwards, then

p N(a; b) q = p N(a) r ∧ r N(b) q (1)

To exit normally with q, the program must flow normally through fragment a,
hitting an intermediate condition r, then enter fragment b, exiting it normally.

One Million (LOC) and Counting 61

ba

exceptional flow

normal flow

a

normal flow

return exceptional flow

break exceptional flow

Fig. 4. (L) Normal and exceptional flow through two program fragments in sequence;
(R) the exceptional break flow from the body of a forever loop is the normal flow exit
from the loop composite.

The R part of the logic represents the way code flows exceptionally out of the
parts of a routine through a “return” path. If r is the intermediate condition
that is attained after normal termination of a, then:

p R(a; b) q = p R(a) q ∨ r R(b) q (2)

That is, one may either return from program fragment a, or else terminate a
normally, enter fragment b and return from b.

The logic of break is (in the case of sequence) exactly equal to that of return:

p B(a; b) q = p B(a) q ∨ r B(b) q (3)

where again r is the intermediate condition that is attained after normal termi-
nation of a. One may either break out of a, or wait for a to terminate normally,
enter b, and break out of b (see Fig. 4(L)).

Where break and return logic do differ is in the treatment of loops. First of
all, one may only return from a forever while loop by returning from its body:

p R(while(1) a) q = p R(a) q (4)

On the other hand, (counter-intuitively at first reading) there is no way (F,
“false”) of leaving a forever while loop via a break exit, because a break in the
body of the loop causes a normal exit from the loop itself, not a break exit:

p B(while(1) a) F (5)

The normal exit from a forever loop is by break from its body (see Fig. 4(R)):

p N(while(1) a) q = p B(a) q (6)

To represent the loop as cycling possibly more than once, rather than the
“almost once” of the above. one would extend (4), for example, to:

p R(while(1) a) q = p R(a) q ∨ r R(while(1)a) q (7)

62 P.T. Breuer and S. Pickin

where r is the intermediate condition that is attained after normal termination
of a. However, in practice it suffices to check that r → p holds, because then the
equation reduces to the form (4) given originally. In case r → p does not hold
immediately, p is relaxed until it does. What is meant by this is that a p′ ≥ p is
found with the property p′ N(a) p′. There always is such a p′ since T (“true”)
will do. We explain further below.

Typically the precondition p is the claim that the spinlock count ρ is below
or equal to n, for some n: ρ ≤ n. In that case the logical components N, R,
B have for each precondition p a strongest postcondition p SPN (a), p SPR(a),
p SPB(a), compatible with the program fragment a in question. For example, in
the case of the logic component N:

p N(a) q ↔ p SPN (a) ≤ q (8)

Each logic component X can be written as a function rather than a relation by
identifying it with a postcondition generator no stronger than SPX . For example:

(ρ ≤ n) N

(
spin lock(&x)

spin unlock(&x)

)
=

(
ρ ≤ n + 1
ρ ≤ n − 1

)
(9)

Or in the general case, the action on precondition p is to substitute ρ by ρ±1 in
p, giving p[ρ−1/ρ] (for spin lock) and p[ρ+1/ρ] (for spin unlock) respectively:

p N

(
spin lock(&x)

spin unlock(&x)

)
=

(
p[ρ − 1/ρ]
p[ρ + 1/ρ]

)
(10)

The functional action on sequences of statements is then described as follows:

p N(a; b) = (p N(a)) N(b) (11)
p R(a; b) = p R(a) ∨ (p N(a)) R(b) (12)
p B(a; b) = p B(a) ∨ (p N(a)) B(b) (13)

Returning briefly to how we relax a predicate p to p′ ≥ p with p′ N(a) p′, we
first look at p′ = p ∨ pSPN (a). If this implies p, we are done, since p itself is an
invariant. We next check if p′ > p is an invariant by seeing if p′∨p′SPN (a) implies
p′. If it does, we are done. If not, there is a dimension (a variable x appearing
in p′) in which the lack of fit of the one cuboid in the other is manifest, because
x = k for some particular k is permitted by p′ but not by p′ ∨ p′SPN (a). We
erase atomic propositions referring to x from p′, thus obtaining a p′′ ≥ p′ > p (p′

is a positive dis/conjunctive form in the atomic ordering propositions, so erasing
part of it makes it less restricting) and then check to see if p′′ ∨ p′′SPN (a) is
contained in p′′. If it is, we are done. If not we remove references to one more
variable and repeat. The procedure terminates in at most #variables steps. At
worst it gives T.

The G component of the logic is responsible for the proper treatment of goto
statements. To allow this, the logic – each of the components N, R, B and G –
works within an additional context, e. A context e is a set of labelled conditions,

One Million (LOC) and Counting 63

each of which are generated at a goto x and are discharged/will take effect
at a corresponding labelled statement x: The G component manages this
context, first storing the current pre-condition p as the pair (x, p) (written x:p)
in the context e at the point where the goto x is encountered:

p Ge(goto x) = {x:p} ∪+ e (14)

The {x:p} in the equation is the singleton set {(x, p)}, where x is some label
(e.g. the “foo” in “foo: a = 1;”) and p is a logical condition like “ρ ≤ 1”.

In the simplest case, the operator ∪+ is set theoretic disjunction. But if an
element x:q is already present in the context e, signifying that there has already
been one goto x statement encountered, then there are now two possible ways
to reach the targeted label, so the union of the two conditions p and q is taken
and x:q is replaced by x:(p ∪ q) in e.

Augmenting the logic of sequence to take account of context gives:

p Ne(a; b) = (p Ne(a)) NpGe(a)(b) (15)
p Re(a; b) = p Re(a) ∨ (p N(a)e) RpGe(a)(b) (16)
p Be(a; b) = p Be(a) ∨ (p N(a)e) BpGe(a)(b) (17)

The N, R, B semantics of a goto statement are vacuous, signifying one cannot
exit from a goto in a normal way, nor on a break path, nor on a return path.

p Ne(goto x) = p Re(goto x) = p Be(goto x) = F (18)

The only effect of a goto is to load the context for the logic with an extra exit
condition. The extra condition will be discharged into the normal component
of the logic only when the label corresponding to the goto is found (ex is the
condition labelled with x in environment e, if any):

p N{x:q}∪e(x:) = p ∨ q p Re(x:) = F (19)
p Be(x:) = F p Ge(x:) = e − {x:ex} (20)

This mechanism allows the program analysis to pretend that there is a “short-
cut” from the site of the goto to the label, and one can get there either via
the short-cut or by traversing the rest of the program. If label foo has already
been encountered, then we have to check at goto foo that the current program
condition is an invariant for the loop back to foo:, or raise an alarm.

False positives are possible, but false negatives (in the sense of detectable cases
that are somehow missed) are not, provided only that the code does not contain
backward-going gotos, which we do not currently treat with full genericity (in the
future that may change). This is not a claim for omniscience in the technology,
just an observation that the predicate description that is calculated at each point
is intentionally broad enough to encompass (1) every value that may be obtained
in (2) every state that may be reached there.

That is subject to several provisos; the code must not do something odd
like call an opaque subroutine that modifies its own code or data, because

64 P.T. Breuer and S. Pickin

that is a possibility not modelled in the logic. And the analysis cannot know
if int *x=123456789; (*x)++; modifies a memory location that is significant
other than as data; perhaps it is the stack return address. The logic detailed
in the next section ignores possible accesses other than by name to the data in
variables, and indeed, as configured, takes no note of what value is stored.

4 The Analyser

The static analyser allows the program logic of C to be configured in detail by the
user. The motive was originally to make sure that the logic was implemented
in a bug-free way – writing the logic directly in C made for too low-level an
implementation for what is a very high-level set of concepts. A compiler into
C for specifications of the program logic was written and incorporated into the
analysis tool. The logic compiler understands specifications of the format

ctx pre-context, precondition :: name(arguments) =
postconditions with ctx post-context ;

where the precondition is an input argument, the entry condition for a code
fragment, and postconditions is an output, a tuple consisting of the N, R, B exit
conditions according to the logic. The pre-context is the prevailing goto con-
text. The post-context is the output goto context, consisting of a set of labelled
conditions. For example, the specification of the empty statement logic is:

ctx e, p::empty() = (p, F, F) with ctx e;

signifying that the empty statement preserves the entry condition p on normal
exit (p), and cannot exit via return (F) or break (F). The context (e) is unaltered.

The analysis propagates a specified initial condition forward through the pro-
gram, developing postconditions after each program statement that are checked
for conformity with a specified objective. The full set of logic specifications is
given in Table 1. To relate it to the logic presentation in Section 3, keep in mind:

ctx e, p :: k() = (n, r, b) with ctx e′;
means

p Ne(k) = n p Re(k) = r
p Be(k) = b p Ge(k) = e′

written out in the mathematical notation of Section 3.
The treatment of spin unlock calls, write unlock calls, read unlock calls,

etc. in Linux kernel code is managed by the unlock entry in the table. These all
decrement the spinlock counter n. The argument label l to the call is an iden-
tifier for the spinlock address that appears as an argument to the call. Similarly
the lock entry in the table represents the logic of the spin lock, write lock,
read lock, etc. calls. These calls all increment the spinlock counter n.

Note that function calls act like spinlock no-ops. That is, other functions are
assumed to be balanced with respect to their effect on spinlocks. That is a good
heuristic, because the only function that is explicitly unbalanced in that respect

One Million (LOC) and Counting 65

Table 1. The single precondition/triple postcondition program logic of C

ctx e, p::for(stmt) = (n∨b, r, F) with ctx f
where ctx e, p::stmt = (n,r,b) with ctx f;

ctx e, p::empty() = (p, F, F) with ctx e;
ctx e, p::unlock(label l) = (p[n+1/n], F, F) with ctx e;
ctx e, p::lock(label l) = (p[n-1/n], F, F) with ctx e;
ctx e, p::assembler() = (p, F, F) with ctx e;
ctx e, p::function() = (p, F, F) with ctx e;
ctx e, p::sleep(label l) = (p, F, F) with ctx e

{ if (objective(p) ≥ 0) setflags(SLEEP); };
ctx e, p::sequence(s1, s2) = (n2, r1∨r2, b1∨b2) with ctx g

where ctx f, n1::s2 = (n2,r2,b2) with ctx g
and ctx e, p::s1 = (n1,r1,b1) with ctx f;

ctx e, p::switch(stmt) = (n∨b, r, F) with ctx f
where ctx e, p::stmt = (n,r,b) with ctx f

ctx e, p::if(s1, s2) = (n1∨n2, r1∨r2, b1∨b2) with ctx f1∨f2

where ctx e, p::s1 = (n1,r1,b1) with ctx f1

and ctx e, p::s2 = (n2,r2,b2) with ctx f2;
ctx e, p::while(stmt) = (n∨b, r, F) with ctx f

where ctx e, p::stmt = (n,r,b) with ctx f;
ctx e, p::do(stmt) = (n∨b, r, F) with ctx f

where ctx e, p::stmt = (n,r,b) with ctx f;
ctx e, p::goto(label l) = (F, F, F) with ctx e∨{l::p};
ctx e, p::continue() = (F, F, p) with ctx e;
ctx e, p::break() = (F, F, p) with ctx e;
ctx e, p::return() = (F, p, F) with ctx {};
ctx e, p::labeled(label l) = (p∨e.l, F, F) with ctx e\\l;

Legend
assembler – gcc inline assembly code;
sleep – calls to C functions which can sleep;
function – calls to other C functions;
sequence – two statements in sequence;

if – C conditional statement;
switch – C case statement;
while – C while loop;
do – C do while loop;
labelled – labelled statements.

in the Linux kernel is the call spin_trylock, which takes the spinlock if it is free
and returns 0, or else cannot take it and returns 1. And if any (other) function
were unbalanced it would be noticed during the analysis of that function.

An “objective” function for the analysis is specified by an objective speci-
fication in the same format as the logic specifications (see Table 1). The term
upper[n:p] gives the estimated upper limit of the counter n subject to the con-
straints in the precondition p. The limit is +∞ if p is “true” (T). The predicate
must contain information that bounds n away from positive values if the objec-
tive is not to generate a positive value, and less information in the predicate will
cause a more positive value to be calculated as the spinlock count upper bound.

The objective is computed at each node of the syntax tree. Positive values
of the objective function are reported to the user (with the trigger/action rules
that are currently in force and which will be described in the following part of

66 P.T. Breuer and S. Pickin

Table 2. Trigger/action rules which propagate information through the syntax tree

1. SLEEP! & OBJECTIVE SET & OBJECTIVE ≥ 0 → aliases |= SLEEP,
callers |= SLEEP

2. REF! & SLEEP → callers |= SLEEP, ~REF
3. (SLEEP & OBJECTIVE SET & OBJECTIVE ≥ 0)! → output()

this section). In particular, calls to functions which can sleep at a node where
the objective function is positive are reported (this indicates where a call to a
sleepy function might occur under spinlock).

The initial specification (n ≤ 0) shown in Table 3 describes the initial
program state at runtime. It says here that the spinlock counter n is less than
or equal to zero (actually, zero, but the inequality is just as good and simpler).

The analysis also assumes that the tested value in conditionals, case state-
ments and loops contains no significant program code (break, continue, etc.) –
GNU C allows it but it does not appear in practice in the Linux kernel source.

The logic propagation through the syntax tree is complemented by a trig-
ger/action system which acts whenever a property changes on a node. As the
analysis tool is currently configured, the rules in Table 2 are applied. Their prin-
cipal aim is to construct the list of sleepy functions, checking for calls by name
of already known sleepy functions and thus constructing the transitive closure
of the list under the call (by name) graph.

Rule (1) applies whenever a function is newly marked as sleepy (SLEEP!).
Then if the objective function (here the maximal value of the spinlock count
n) has already been calculated on that node (OBJECTIVE SET) and is not negative
(OBJECTIVE ≥ 0, indicating that the spinlock count is 0 or higher) then all the
known aliases (other syntactic nodes which refer to the same semantic entity)
are also marked sleepy, as are all the known callers (by name) of this node (which
will be the current surrounding function, plus all callers of aliases of this node).

The reason why sleepiness is not propagated under negative spinlock is quite
subtle. Consider function f called from function g called from function h. If the
spinlock count is negative at the call of f in g, then g is intended to be called
under spinlock (releasing an already released spinlock is a design error). If f is
sleepy then g would ordinarily be marked sleepy too and that would be marked
as an error when g is called under spinlock in h. But that is wrong when f is
under negative spinlock in g, because then f is not under spinlock when g is
called under spinlock in h and it is not a problem in h that f chooses to sleep
inside g. So, under these conditions, g should not be marked as sleepy.

Rule (2) in Table 2 is triggered when a known sleepy function is referenced
(REF!). Then all the callers (including the new referrer) are marked as sleepy if
they were not so-marked before. The REF flag is removed as soon as it is added
so every new reference triggers this rule. The effect of rules (1) and (2) together
is to efficiently create the transitive sleepy call (by name) graph.

One Million (LOC) and Counting 67

Table 3. Defining initial conditions, and an objective function to be calculated at
every node of the syntax tree

::initial() = (n≤0);
p::objective() = upper[n:p];

A list of all calls to functions that may sleep under a positive spinlock count
is created via rule (3) in Table 2. Entries are added when a call is (a) sleepy,
and (b) the spinlock count at that node is already known and (c) is nonnegative
(positive counts will be starred in the output list, but all calls will be listed).

The analyser is called with the same arguments as the gcc compiler would have
used. That enables the kernel to be compiled once, the calls to gcc recorded, and
then the analyser to be run using the same arguments as were used for gcc.

The parser handles both the code of the 2.4 series Linux kernel and the 2.6
series. The lexer is user-configurable and needs seeding with the names of those
functions which are known a priori to sleep, and the names of the spinlock lock
and unlock calls. Less than twenty seed functions have been used.

5 More Targets

Spinlock-under-spinlock can be detected by first constructing the transitive graph
of functions which call functions which take spinlocks, and sounding the alarm
at a call of such a function under spinlock.

Making that graph requires attaching the code

setflags(SPINLOCK)

into the logic of the spin lock function calls in Table 1, just as for the sleep
function calls. The trigger/action rules in Table 2 are then duplicated, substi-
tuting SPINLOCK for SLEEP in the existing rules, so that the rules propagate the
SPINLOCK flag as well as the SLEEP flag from callee to caller. Then a single trig-
ger/action rule is added which outputs an alert when a function marked with
SPINLOCK (i.e. a function which calls a function which . . . takes a spinlock) is
called under spinlock:

(SPINLOCK & SPIN SET & SPIN > 0)! → output()

Why is taking a spinlock twice dangerous? Taking the same spinlock twice is
deadly, as Linux kernel spinlocks are not reentrant. The result will be to send
the CPU into a busy forever loop. Taking two different spinlocks one under
the other in the same thread is not dangerous, unless another thread takes the
same two spinlocks, one under the other, in the reverse order. There is a short
window where both threads can take one spinlock and then busy-wait for the
other thread to release the spinlock they have not yet taken, thus spinning both
CPUs simultaneously and blocking further process. In general, there is a deadlock

68 P.T. Breuer and S. Pickin

files checked: 1151
alarms raised: 426 (30/1151 files)
false positives: 214/426
real errors: 212/426 (3/1151 files)
time taken: ˜6h
LoC: 650K (unexpanded)

Fig. 5. Testing for access to kfreed memory in the 2.6.3 Linux kernel

File & function Code fragment
fm801-gp.c:
fm801 gp probe

101 kfree(gp);
102 printk("unable to grab region 0x%x-0x%x\n",

gp->gameport.io, gp->gameport.io + 0x0f);
aic7xxx old.c:
aic7xxx detect

9240 while(current p && temp p)
9241 {
9242 if (((current p->pci bus==temp p->pci bus)&&...){

...
9248 kfree(temp p);
9249 continue;

Fig. 6. Access to kfreed memory in kernel 2.6.3

window like this if there exists any spinlock cycle such that A is taken under B,
B is taken under C, etc. Detecting double-takes flags the potential danger.

We have also been able to detect accesses to freed memory (including frees
of freed memory). The technique consists of setting the logic of a kfree call on
a variable containing a memory address to increment a counter variable a(l)
unique to the (integer index label l generated by the analysis for the) variable.
Assigning the variable again resets the counter to zero (p[!a(l)] means proposi-
tion p relaxed to remove references to the counter a(l); a is treated like a vector
where appropriate, so initial condition a ≤ 0 has a(l) ≤ 0 too):

ctx e, p ::kfree(label l) = (p[a(l)-1/a(l)], F, F) with ctx e;
ctx e, p ::assignment(label l)= (p[!a(l)], F, F) with ctx e;

The alarm is sounded when the symbol with label l is accessed where the counter
a(l) may take a positive value – variable with index l may point to freed memory.

A survey of 1151 C source files in the Linux 2.6.3 kernel reported 426 “alarms”
but most of these were clusters with a single origin. Exactly 30 of the 1151 files
were reported as suspicious in total (see Table 5). One of these (aic7xxx old.c)
generated 209 of the alarms, another (aic7xxx proc.c) 80, another
(cpqphp ctrl.c) 54, another 23, another 10, then 8, 7, 5, 4, 2, 2, 2, 2, and
the rest 1 alarm each. Three (3) of the flagged files contained real errors of
the type searched for. Two of the error regions are shown in Fig. 6. Curiously,
drivers/scsi/aic7xxx old.c is flagged correctly, as can be seen in the second
code segment in the figure.

One Million (LOC) and Counting 69

All the false alarms were due to a bug in the postcondition logic of assignment
at the time of the experiment, which caused a new assignment to x closely
following on the heels of a kfree(x) to be (erroneously) flagged.

A repeat experiment on 1646 source files (982K LOC, unexpanded) of the
Linux 2.6.12.3 kernel found that all the errors detected in the experiment on
kernel 2.6.3 had been repaired, and no further errors were detected. There were
8 false alarms given on 7 files (all due to a parser bug at the time which led to
a field dereference being treated like reference to a variable of the same name).

6 Software

The source code of the software described in this article is available for down-load
from ftp://oboe.it.uc3m.es/pub/Programs/c-1.2.13.tgz under the condi-
tions of the GNU Public Licence (GPL), version 2.

7 Summary

A practical C source static analyser for the Linux kernel has been described,
capable of dealing with the millions of lines of code in the kernel on a reasonable
time-scale, at a few seconds per file. The analysing logic is configured to obtain
different analyses (and several are performed at once).

The particular logical analysis described here has detected about two uncor-
rected deadlock situations per thousand files in the Linux 2.6 kernel, and about
three per thousand files which access already freed memory.

Acknowledgements

This work has been partly supported by funding from the EVERYWARE (MCyT
No. TIC2003-08995-C02-01) project, to which we express our thanks. We are also
grateful to the shepherding member of the program committee for his helpful
guidance in the final preparation.

References

1. Peter T. Breuer, Marisol Garciá Valls: Static Deadlock Detection in the Linux
Kernel, pages 52-64 In Reliable Software Technologies - Ada-Europe 2004, 9th Ada-
Europe International Conference on Reliable Software Technologies, Palma de Mal-
lorca, Spain, June 14-18, 2004, Eds. Albert Llamośı and Alfred Strohmeier, ISBN
3-540-22011-9, Springer LNCS 3063, 2004

2. P. Cousot, R. Cousot: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Proc. 4th
ACM Symposium on the Principles of Programming Languages, pages 238–252, 1977

3. Jeffrey S. Foster, Manuel Fähndrich, Alexander Aiken: A Theory of Type Quali-
fiers. In Proc. ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI’99), Atlanta, Georgia, May 1999

70 P.T. Breuer and S. Pickin

4. Jeffrey S. Foster, Tachio Terauchi, Alex Aiken: Flow-Sensitive Type Qualifiers. In
Proc. ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI’02), pages 1–12. Berlin, Germany. June 2002

5. Rob Johnson, David Wagner: Finding User/Kernel Pointer Bugs With Type In-
ference. In Proc. 13th USENIX Security Symposium, 2004 August 9–13, 2004, San
Diego, CA, USA

6. David Wagner, Jeffrey S. Foster, Eric A. Brewer, Alexander Aiken: A First Step
Towards Automated Detection of Buffer Overrun Vulnerabilities. In Proc. Network
and Distributed System Security (NDSS) Symposium 2000, February 2-4 2000, San
Diego, CA, USA

Bauhaus – A Tool Suite for Program Analysis
and Reverse Engineering

Aoun Raza, Gunther Vogel, and Erhard Plödereder

Universität Stuttgart
Institut für Softwaretechnologie, Universitätsstraße 38

70569 Stuttgart, Germany
{raza, vogel, ploedere}@informatik.uni-stuttgart.de

Abstract. The maintenance and evolution of critical software with high
requirements for reliability is an extremely demanding, time consuming
and expensive task. Errors introduced by ad-hoc changes might have
disastrous effects on the system and must be prevented under all cir-
cumstances, which requires the understanding of the details of source
code and system design. This paper describes Bauhaus, a comprehensive
tool suite that supports program understanding and reverse engineering
on all layers of abstraction, from source code to architecture.

1 Introduction

This paper presents an overview of the program understanding and reverse en-
gineering capabilities of Bauhaus [1], a research project at the universities of
Stuttgart and Bremen. The importance of understanding program source code
and of being able to reverse engineer its components derives both from the
costly effort put into program maintenance and from the desire to create and
preserve the reliability of the code base even under extensive change. The qual-
ity of software under maintenance is crucially dependent on the degree to which
the maintainers recognise, observe, and occasionally modify the principles of the
original system design.

Therefore, tools and techniques that support software understanding and
reverse engineering have been developed by industry and academia as a vehicle
to aid in the refurbishment and maintenance of software systems. Especially crit-
ical systems with high requirements for reliability benefit from the application
of such tools and techniques. For example, it becomes possible to automatically
prove the absence of typical programming errors, e.g., uninitialised variables, to
raise the internal source code quality, e.g., by detecting dead code, and to im-
prove the understanding of the software on all layers of abstraction from source
code to architectural design.

The details of these techniques will be described later in this document.
The rest of the document is organised as follows: section 2 provides the mo-
tivation and background of Bauhaus. Section 3 discusses the program repre-
sentations used in Bauhaus. Section 4 and 5 describe the low- and high-level

L.M. Pinho and M. González Harbour (Eds.): Ada-Europe 2006, LNCS 4006, pp. 71–82, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

72 A. Raza, G. Vogel, and E. Plödereder

analyses implemented in Bauhaus. Trace analysis techniques are introduced in
section 6. Some other analyses are discussed in section 7. Section 8 describes
the development process and summarises experiences with Ada as the main
implementation language of Bauhaus. The paper ends with some conclusions
in section 9.

2 Background

The project Bauhaus is motivated by the fact that programmer efforts are mostly
(60% - 80%) devoted to maintain and evolve rather than to create systems [2].
Moreover, about half of the maintenance effort is spent on understanding the
program and data [3], before actual changes are made. Therefore, helping main-
tainers to understand the legacy systems they have to maintain could greatly
ease their job. A better understanding of the code and of its design will undoubt-
edly also contribute to the reliability of the changed software. An important step
in assisting the maintainers is to provide them with a global overview comprising
the main components of the system and their interrelations and with subsequent
refinements of the main components. Therefore, our initial goal for Bauhaus was
the development of means to semi-automatically derive and describe the software
architecture, and of methods and tools to represent and analyse source code of
legacy systems written in different languages. At present, Bauhaus is capable to
analyse programs in Ada, C, C++, and Java. Bauhaus is implemented mainly
in Ada and interfaces to software in C, C++, and an assortment of other lan-
guages. Figure 1 provides basic data about the composition of the 2005 Bauhaus
system.

Language Handwritten Generated Total
Ada95 589’000 291’000 880’000
C 106’000 0’000 106’000
C++ 115’000 177’000 292’000
.
Total 843’000 469’000 1’312’000

Fig. 1. The Bauhaus project: number of non-commented lines of code, categorised by
programming language

The primary challenges that the Bauhaus infrastructure addresses are the
support for multiple source languages and the creation of a common framework,
in which advanced compiler technologies for data- and control-flow analyses offer
foundation support engineered to allow the analysis of multi-million lines of user
code. User-oriented analyses with ultimate benefits to the maintainers of systems
achieve their goals by building on the results of these basic analyses. In the realm
of tools for program understanding, Bauhaus is one of very few toolsets that takes
advantage of data- and control-flow analyses.

Bauhaus – A Tool Suite for Program Analysis and Reverse Engineering 73

3 Program Representations

3.1 Requirements for Program Representations

The particular program representation has an important impact on what analy-
ses can be performed effectively and efficiently. Fine-grained analyses, e.g., of
data- and control-flow, require more low-level information than coarse-grained
analyses. Some of the Bauhaus tools utilise compiler techniques, which produce
rich syntactic and semantic information, often referred to as the detailed, low-
level representation of a program. Unlike compilers, all Bauhaus tools analyse
and know the system as a whole. The Bauhaus analyses used for reverse- and
re-engineering the architecture of a system, on the other hand, build on a much
coarser, high-level program representation. To reduce the size of the information
being operated upon by these analyses, the detailed information is first con-
densed into this coarser, more suitable high-level representation. An additional
design goal for our program representations was to keep them independent from
the source programming languages and, in particular, to allow for the analysis
of mixed-language systems.

In Bauhaus two separate program representations exist, catering to the need
of detailed low-level and coarser high-level analyses, respectively. The InterMedi-
ate Language (IML) representation contains information at the syntactical and
semantical levels. Resource flow graphs (RFG) are used to represent information
about global and architectural aspects of the analysed systems.

3.2 IML

The IML representation is defined by a hierarchy of classes. Each class under-
takes to represent a certain construct from a language, as for instance a while
loop. Instances of these classes model the respective occurrences in a program.
Within the hierarchy, a specialisation takes place: child classes model the same
semantic construct as their parent class, however in a more specialised pattern,
e.g., the While Loop class is a child of the more general Loop Statement class.
By enforcing certain rules on the generation of the sub-nodes of such an instance,
a semantic equivalence is ensured, so that analyses not interested in the fact that
the loop was indeed a While Loop will function correctly when operating on the
instance merely as a general Loop Statement. This modelling strategy allows us
in many cases to add a construct from a particular language as instance of a
more general common notion present in many languages. E.g., the for-loops of
Ada and C are represented by two distinct classes. Both share the same base
class that models the common aspects of all loops. In this regard, IML is quite
unique among the known Intermediate Languages [4].

Objects in IML possess attributes, which more specifically describe the rep-
resented constructs. Often such an attribute is a pointer, or a list, or a set of
pointers to other objects. Thus, IML forms a general graph of IML objects and
their relationships. IML is generated by compiler frontends that support C and
C++. Frontends for Ada and Java are under development. Foundation support
for the persistence of IML automates the writing and reading of IML to and

74 A. Raza, G. Vogel, and E. Plödereder

from a file. Prior to advanced analyses, the IML parts of a program are linked
by a Bauhaus tool into a complete representation of the entire program to be
analysed.

3.3 RFG

As described earlier, different abstraction levels are used in Bauhaus for the
recognition of the architecture of a software system. While IML represents the
system on a very concrete and detailed level, the abstraction levels for global un-
derstanding are modelled by means of the RFG. An RFG is a hierarchical graph,
which consists of typed nodes and edges. Nodes represent architecturally relevant
elements of the software system, e.g., routines, types, files and components. Re-
lations between these elements are modelled with edges. The information stored
in the RFG is structured in views. Each view represents a different aspect of
the architecture, e.g., the call graph or the hierarchy of modules. Technically,
a view is a subgraph of the RFG. The model of the RFG is fully dynamic and
may be modified by the user, i.e., by inserting or deleting node/edge attributes
and types. For visualising the different views of RFGs, we have implemented a
Graphical Visualiser(Gravis) [5]. The Gravis tool facilitates high-level analysis
of the system and provides rich functionality to produce new views by RFG
analyses or to manipulate generated views.

For C and C++, an RFG containing all relevant objects and relationships for
a program is automatically generated from IML, whereas for Ada and Java the
RFG is generated from other intermediate representations or compiler supported
interfaces, e.g., the Ada Semantic Interface Specification (ASIS) or Java classfiles.

This RFG is then subjected to and augmented by additional automated and
interactive analyses.

4 Analyses Based on IML

This section describes the Bauhaus analyses that can be performed on the IML
representation to help maintain the reliability and quality of the operational
code.

4.1 Base Analyses for Sequential Code

In Bauhaus we have implemented the fundamental semantic analyses of control-
and data-flow as well as different known and adapted points-to analysis tech-
niques. The results of all these analyses are conservative in the sense that they
produce overestimations in the presence of situations that are known to be un-
decidable in the general case. Examples are unrealizable paths or convoluted
patterns of points-to aliasing on the heap. A different class of conservative in-
accuracy comes from analyses which generate less precise results in favour of
a better run time behaviour in space and time consumption. As we strive to
analyse large systems, these engineering tradeoffs are highly relevant.

Bauhaus – A Tool Suite for Program Analysis and Reverse Engineering 75

Over the years, several pointer analyses with different characteristics have
been implemented and evaluated in the context of the Bauhaus project. The
focus of the first set of analyses was the production of highly precise points-to
information for the data-flow analyses. The experiences with an implementa-
tion of the algorithm by Wilson [6] showed that the accurate results come at
a high price. The run time and memory requirements of this analysis are often
prohibitive. This cost as well as pronounced variations in timing behaviour pre-
vented its application to large programs; even for smaller programs the runtime
performance was too unpredictable. To be able to analyse programs with more
than 200.000 lines of code, we have implemented flow insensitive analyses as de-
veloped by Steensgaard, Das, or Andersen [7, 8, 9]. These analyses show a much
better and acceptable run time behaviour, but are considerably less precise than
the analysis by Wilson. We presently investigate how those imprecise results can
still be improved and the balance optimised between the cost of tighter results
and their benefit to subsequent analyses.

The control-flow analysis in Bauhaus computes traditional intraprocedural
control-flow graphs for all routines of a program. Together with the call-relation-
ships, the set of intraprocedural control-flow graphs form an interprocedural
control-flow graph that can be traversed by interprocedural data-flow analyses.
The control-flow analysis is based on basic blocks which are a sparse repre-
sentation of control-flow graphs. Besides the information of the possible flow
of control between the basic blocks, derived information like dominance- and
control-dependency information is available and subsequently used in architec-
tural analyses.

A thorny issue for the analysis of C++, Java, and Ada is the representation of
exception handling in control-flow graphs. Our model is similar to the modelling
that was shown by Sinha and Harrold in [10]. As exceptions generate complex
control-flow graphs and implicit exceptions might be raised at any time during an
execution (e.g., the virtual machine error in Java), we compromised and consider
only explicitly thrown exceptions in our analyses.

Data-flow relations are represented by the SSA-form (Static Single Assign-
ment form). The SSA generation of Bauhaus is derived from the algorithm
proposed by Cytron in [11]. The algorithm operates on locators which are an
abstraction of variables or of parts of variables. The analysis itself does not know
about the specific characteristics of the locators. Through this, it is possible to
have analyses with different precision by just changing the locators, e.g., from
one locator for each variable to one locator for each part of a structured variable.
Also, it is possible to incorporate arbitrary pointer analyses by generating loca-
tors for the specific memory elements of each analysis. The data-flow analysis
is performed interprocedurally in two phases. The first phase determines side
effects, the second phase performs a local SSA generation for each routine and
incorporates the side effects. The generation is context-sensitive, i.e., it takes
multiple calling contexts for each routine into account. Each calling context
might result in different data-flow patterns and side effects.

76 A. Raza, G. Vogel, and E. Plödereder

Manifold applications for the results of the data-flow analysis exist. Simple
tests for error detection like finding uninitialised variables, or the location of
redundant or unread assignments, are truly trivial algorithms once the SSA
form is available. Escape analysis for C pointer arguments is a slightly more
elaborate but still simple algorithm.

Similarly, the results are the basis for applications of slicing or tracing for
program understanding, all the way to applications on the architecture level
like the recovery of glue code that implements the interactions between two
components, or the classification of components within the architecture based
on their external data-flow behaviour.

4.2 Base Analyses for Parallel Programs

In parallel programs, different tasks often need to communicate with each other
to achieve their assigned job. Different communication methods are available
for these interactions, such as message passing, use of shared memory or en-
capsulated data objects. Furthermore, tasks may need to claim other system
resources that cannot be shared with others. As multiple threads try to access
shared resources, their access must be protected by some synchronisation mech-
anism. Otherwise, their interaction could lead to data inconsistencies, which can
further lead to abnormal program behaviour. Two important classes of inter-
process anomalies are race conditions and deadlocks. A race condition occurs
when shared data is read and written by different processes without prior syn-
chronisation, whereas deadlock is a situation where the program is permanently
stalled waiting for some event such as the freeing of a needed resource. Both
these classes of errors tend to be very difficult to detect or to recreate by test
runs; they arise in real-life execution as an inexplicable, sudden, and not recreat-
able, sometimes disastrous malfunction of the system. For reliable systems it is
literally a “must” to impose coding restrictions and to perform a static analysis
of the code to ensure the absence of race conditions and deadlocks. Tools can
help to discover the situations and can assist programmers in locating the culprit
source code.

There has been considerable research on defining different static and dy-
namic analysis techniques and building tools for race detection [12, 13, 14]. Tools
based on static approaches need good base analyses, i.e., points-to and alias
analyses [12]. In Bauhaus different points-to, control- and data-flow analysis
techniques are implemented as discussed in 4.1. To overcome the deficiencies in
previously proposed solutions we are now exploiting the Bauhaus base analy-
ses for the implementation of race detection and deadlock analysis tools. A
tool LoRad for the detection of data races in parallel programs has been im-
plemented and is in its testing phase. LoRad uses the Bauhaus control-flow
and points-to analyses to detect competing concurrent read and write accesses
of variables shared by multiple threads or tasks, but executed without proper
mutual exclusion. While not always an error, such accesses at best may cause
non-deterministic program results, at worst are truly disastrous if multiple, func-
tionally related variables are updated and read without proper synchronisation.

Bauhaus – A Tool Suite for Program Analysis and Reverse Engineering 77

It is worth mentioning that none of the already implemented race detection
approaches have included rich points-to information, which is surprising, as the
prevalent OS-interfaces are invariably based on pointer semantics for their argu-
ments. Additionally, we are also implementing a deadlock detection technique,
which uses a data-flow analysis based technique to check for necessary conditions
to enable dangerous cyclic waiting situations.

4.3 Dead Code Analysis

Many systems contain code that is never executed because the corresponding
subprograms are never reached. Despite being not necessary, the so-called dead
code complicates the analysis and evaluation of the software and should be elim-
inated.

Bauhaus provides tools for the automatic detection of dead code. Those tools
test the reachability of routines in the call graph. For safe and precise approxima-
tions of the effects of indirect calls, our tools consider the results of the points-to
analyses described in section 4.1.

5 Analyses Based on RFGs

This section describes some Bauhaus analyses performed on the high-level RFG
representation.

5.1 Component Recovery

The IEEE standard for recommended practice for architectural description of
software-intensive systems [15] defines architecture as the fundamental organi-
sation of a system embodied in its components, their relationships to each other,
and to the environment, and the principles guiding its design and evolution.
Bauhaus focuses on the recovery of the structural architecture that consists
of components and connectors. 12 automatic component recovery techniques
were evaluated, none alone has a sufficient recovery coverage [16]. To overcome
the limitations exhibited by automated component recovery techniques, a semi-
automatic approach was developed and implemented that combines automatic
techniques in an interactive framework. The effectiveness of the method was val-
idated through a case study performed on xfig [5]: In the limited time of five
hours an analysis team was able to gain a 50% coverage of the source code, which
was sufficient to understand the full architecture of xfig. Later the team could
validate the acquired knowledge by solving three typical maintenance tasks.

5.2 Reflexion Analysis

Reverse engineering large and complex software systems is often very time con-
suming. Reflexion models allow software engineers to begin with a hypothetical
high-level model of the software architecture, which is then compared with the
actual architecture that is extracted from source code. We extended the re-
flexion model defined by [17] with means for hierarchical decomposition [18],

78 A. Raza, G. Vogel, and E. Plödereder

i.e., now the entities of the hypothetical and the actual architecture may contain
other entities. The reflexion starts with a coarse model of the architecture which
is iteratively refined to rapidly gain deeper knowledge about the architecture.
Most importantly, the reflexion analysis flags all differences of the two models
with respect to dependencies among entities. Thus, unintentional violations of
the hypothetical model can be easily recognised or the model adjusted, respec-
tively. Two major case studies performed on non-trivial programs with 100 and
500 KLOC proved the flexibility and usefulness of this method in realistically
large applications. These systems, maintained and evolved over a long time, con-
tained many deviations from the hypothetical architecture which were detected
by our tool. In many cases, the deviations are not flaws, but rather a result of
a too idealistic model. Thus, our tools help to find reality and avoid surprises
by unrecognised dependencies. An interesting side-result of the case studies was
that the quality of the results depended heavily on the availibility of points-to
information.

5.3 Feature Analysis

Features are the realisation of functional requirements of a system. In trying
to understand a program and its architecture, maintainers often want to know
where in the code base a set of features has been implemented. For Bauhaus, we
have developed a new technique for feature location [19]. A set of scenarios (test
cases) invokes the features of interest and a profiler records the routines called
by each test case. The relations between test cases and features and between test
cases and routines is then analysed by concept analysis [20]. The output of the
analysis is a lattice that allows a classification of the routines with respect to their
specificity for the implementation of a particular feature or groups thereof. This
assessment is of significant value in judging the effects of changes or the ability
to extract a component from a system for reuse. The maintainer can additionally
augment the concept lattice with information learned from the static call graph
in Bauhaus. The very nature of deriving the lattice from test case profiles implies
that important cases might be missed, but are guaranteed to be present in the
static call graph. Inversely, the static call graph may include calls that implement
cross-cutting concerns and hence are not specific to a feature.

5.4 Protocol Analysis

Despite being important aspects of interface documentation, detailed descrip-
tions of the valid order of operations on components are often missing. Without
such a specified protocol, a programmer can only guess about the correct use of
the component.

The component recovery implemented in Bauhaus is able to discover the ex-
ported interface of components which serves as a starting point for further analy-
sis. The protocol recovery described by Haak [21] can be applied to discover
the actually used protocol of the component. It is based on information derived
from dynamic and static trace analyses (see section 6). The retrieved traces are

Bauhaus – A Tool Suite for Program Analysis and Reverse Engineering 79

transformed into finite automata which are later used in a unification process to
form the protocol of the component.

The protocol validation [21] automatically detects infringements of protocol,
e.g., if a component was accessed before it was initialised. The validation is based
on an existing protocol which is compared with the actual use.

6 Static and Dynamic Traces

6.1 Static Trace Extraction

Traces are records of a program’s execution and consist of sequences of performed
operations [22]. Static trace graphs cover all possible executions and are derived
directly from IML. In Bauhaus those graphs have many applications and are
important input to further analyses, e.g., protocol recovery and validation (see
section 5.4) and the recovery of information about component interaction. Static
trace graphs are extracted with respect to an object that may be located on stack
or heap [22] and contain all operations that might affect the object, including
accesses, modifications and subroutine calls. In general, static trace graphs are
projections of the interprocedural control flow graph and must cover all possible
dynamic traces. Again, a key factor for the precision of the analysis is the quality
of the base analyses. In four case studies performed using the Bauhaus imple-
mentation we further investigated these effects and showed that the extraction
of trace graphs is feasible for programs with more than 100kLOC [22].

6.2 Dynamic Trace Extraction

As dynamic traces generally depend upon input, test cases have to be prepared
that require a certain component for the derivation. Then, the source or object
code program has to be instrumented [23], and executed on the specific input.
The advantage of this dynamic analysis is that it yields precisely what has been
executed and not an approximation. The problem of aliasing, where one does not
exactly know at compile time what gets indirectly accessed via an alias, does not
occur for dynamic analysis. Moreover, infeasible paths, i.e., program paths for
which a static analysis cannot decide that they can never be taken, are excluded
by dynamic analysis, too. On the other hand, the dynamic analysis lacks from
the fact that it yields results only for one given input or usage scenario. In order
to find all possible dynamic traces of the component, the use cases have to cover
every possible program behaviour. However, full coverage is generally impossible
because there may be principally endless repetitions of operations.

The Bauhaus dynamic analyses use IML for code instrumentation and fur-
ther enhancements. The resulting IML graph is used to obtain a semantically
equivalent C code. After its compilation, the execution of the program addition-
ally generates traces in RFG representation. The generated traces are used in
component and protocol analysis.

80 A. Raza, G. Vogel, and E. Plödereder

7 Other Analyses

7.1 Clone Detection

A widely used way of re-use is to copy a piece of code to some other place
and possibly modify it slightly there. When an error is discovered in one of
the copies, all other copies ought to be corrected as well. However, there is no
trace of where the clones reside. Consequently, the same error gets rediscovered,
reanalysed and fixed in different ways in each clone. Code quality suffers and the
cost of maintenance rises. Studies have claimed that 20% and more of a system’s
code is duplicated in this fashion. The Bauhaus clone detection [24] identifies
code clones of three categories: type-I clones are truly identical; type-II clones
are copies in which identifiers or literals are consistently changed; type-III clones
are modified by insertions or deletions and thus hardest to detect.

The evaluation of existing clone detection tools by Bellon [24] determined
that a detection based on an abstract syntax graph has a better precision than a
token-based clone detection. Consequently, the Bauhaus clone detection operates
on IML.

7.2 Metrics

Metrics are quantitative methods to assess the overall quality of the software
system and provide objective numbers for present and future software develop-
ment plans. The metrics implemented in Bauhaus operate on different levels of
a software system, i.e., source code or architecture level, and are computed on
IML and RFG, respectively:

– Source code level: lines of code, Halstead, maximal nesting, cyclomatic
complexity

– Architecture level: number of methods, classes and units, coupling, cohe-
sion, derived metrics e.g., number of methods per class, classes per unit

The calculated results can be used in many ways, for instance, to estimate
software complexity, to detect code smells, or to provide parameters to mainte-
nance effort models. Most importantly, they can be used to observe trends while
the software evolves.

8 Bauhaus Development and Experiences with Ada

We chose Ada as the main implementation language of Bauhaus, because we
knew that few other languages would allow us to evolve and maintain a very large
system in such a controlled and guided manner. The platform-independence of
Ada allowed us to configure Bauhaus very easily to run on a variety of different
platforms like x86-Linux, Microsoft Windows, and Sun Solaris.

The long term development and maintenance of Bauhaus in the research con-
text is done by the researchers of the Universities of Stuttgart and Bremen.

Bauhaus – A Tool Suite for Program Analysis and Reverse Engineering 81

Since the beginning, various student projects were performed on the Bauhaus
infrastructure to implement new software components [25]. While most students
would have preferred Java or C++ in the beginning, in retrospective (and after
having worked on Java or C++ projects), they appreciated the features of Ada
and it often seems to have become their language of choice.

Since all collaborators of the Bauhaus project have different backgrounds
and are more or less experienced programmers, the adherence to common rules
and standards is crucial. Since the introduction of the GNAT Coding Style, all
developers share the same conventions which increased the readability and hence
the quality of source code tremendously.

9 Conclusion

Bauhaus provides a strong and generic base for low- and high-level program
understanding using advanced code- and data-flow analyses, pointer analyses,
side-effect analyses, program slicing, clone recognition, source code metrics, sta-
tic tracing, query techniques, source code navigation and visualisation, object
recovery, re-modularisation, and architecture recovery techniques. In the near fu-
ture we plan to extend Bauhaus with more analyses and error finding techniques
for parallel programs. We have plans to implement deadlock and race detection
analysis for Ada and Java. Bauhaus is growing as a large scale research initiative.
Besides the University of Stuttgart we now have another Bauhaus working group
at Bremen University. We have introduced portions of Bauhaus as a commercial
product to deal with growing industrial response. Very recently, a company was
created, focused on Bauhaus as a product.

Looking into the future, it is interesting to note that many program prop-
erties that were reasonably easy to analyse in procedural languages, because
they were statically decidable, were moved in more modern languages into the
realm of undecidability. For example, polymorphism makes determination of the
called routine much more imprecise. Similarly, the efficiently decidable aliasing
among reference parameters has now been mapped onto the undecidable and
very difficult reference-value based aliasing. In short, object-oriented languages
have significantly increased the need to obtain accurate points-to information,
where in the past simple static semantic knowledge still sufficed. It is reassuring
to know that, within Bauhaus, all tools can easily query the results of the IML
base analyses to obtain this information.

References

1. Eisenbarth, T., Koschke, R., Plödereder, E., Girard, J.F., Würthner, M.: Projekt
Bauhaus: Interaktive und inkrementelle Wiedergewinnung von SW-Architekturen.
In: 1. Workshop Software-Reengineering, Bad Honnef, Germany (1999)

2. Nosek, J.T., Palvia, P.: Software Maintenance Management: Changes in the Last
Decade. Journal of Software Maintenance 2 (1990) 157–174

3. Fjeldstadt, R.K., Hamlen, W.T.: Application Program Maintenance Study: Report
to Our Respondents. In: Proc. of GUIDE 48, Philadelphia, PA (1983)

82 A. Raza, G. Vogel, and E. Plödereder

4. Rainer Koschke, J.F.G., Würthner, M.: An Intermediate Representation for Re-
verse Engineering Analyses. In: Working Conference on Reverse Engineering,
Hawaii, USA, IEEE Computer Society Press (1998) 241–250

5. Czeranski, J., Eisenbarth, T., Kienle, H., Koschke, R., Simon, D.: Analyzing xfig
Using the Bauhaus Tool. In: Working Conference on Reverse Engineering, Brisbane
Australia, IEEE Computer Society Press (2000) 197–199

6. Wilson, R.P., Lam, M.S.: Efficient Context-Sensitive Pointer Analysis for C Pro-
grams. In: PLDI. (1995)

7. Steensgaard, B.: Points-to Analysis in Almost Linear Time. In: POPL ’96: Pro-
ceedings of the 23rd ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, New York, NY, USA, ACM Press (1996) 32–41

8. Das, M.: Unification-based Pointer Analysis with Directional Assignments. In:
PLDI. (2000) 35–46

9. Andersen, L.O.: Program Analysis and Specialization for the C Programming
Language. PhD thesis, DIKU, University of Copenhagen (1994)

10. Sinha, S., Harrold, M.J.: Analysis and Testing of Programs with Exception Han-
dling Constructs. IEEE Trans. Softw. Eng. 26 (2000) 849–871

11. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Efficiently
Computing Static Single Assignment Form and the Control Dependence Graph.
ACM Transaction on Programming Languages and Systems 13 (1991) 451–490

12. Engler, D., Ashcraft, K.: RacerX: Effective, Static Detection of Race Conditions
and Deadlocks. In: SOSP ’03: Proceedings of the 19th ACM Symposium on Oper-
ating Systems Principles, New York, NY, USA, ACM Press (2003) 237–252

13. Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., Anderson, T.: Eraser: A Dy-
namic Data Race Detector for Multi-Threaded Programs. In: SOSP ’97: Proceed-
ings of the 16th ACM Symposium on Operating Systems Principles, New York,
NY, USA, ACM Press (1997) 27–37

14. Helmbold, D.P., McDowell, C.E.: A Taxonomy of Race Detection Algorithms.
Technical report, University of California, Santa Cruz, CA, USA (1994)

15. IEEE Standards Board: IEEE Recommended Practice for Architectural Descrip-
tion of Software-intensive Systems—Std. 1471-2000 (2000)

16. Koschke, R.: Atomic Architectural Component Detection for Program Understand-
ing and System Evolution. PhD thesis, University of Stuttgart (2000)

17. Murphy, G.C., Notkin, D., Sullivan, K.J.: Software Reflexion Models: Bridging the
Gap between Design and Implementation. IEEE Computer Society Transactions
on Software Engineering 27 (2001) 364–380

18. Koschke, R., Simon, D.: Hierarchical Reflexion Models. In: Working Conference
on Reverse Engineering, IEEE Computer Society Press (2003) 36–45

19. Eisenbarth, T., Koschke, R., Simon, D.: Locating Features in Source Code. IEEE
Computer Society Transactions on Software Engineering 29 (2003)

20. Lindig, C., Snelting, G.: Assessing Modular Structure of Legacy Code Based on
Mathematical Concept Analysis. In: Proceedings of the 19th International Confer-
ence on Software Engineering, IEEE Computer Society Press (1997)

21. Haak, D.: Werkzeuggestützte Herleitung von Protokollen. Diplomarbeit (2004)
22. Eisenbarth, T., Koschke, R., Vogel, G.: Static Object Trace Extraction for Pro-

grams with Pointers. Journals of Systems and Software (2005)
23. Larus, J.R.: Efficient Program Tracing. Computer 26 (1993) 52–61
24. Bellon, S., Koschke, R.: Comparison and Evaluation of Clone Detection Tools.

IEEE Computer Society Transactions on Software Engineering 21 (2004) 61–72
25. Vogel, G., Simon, D., Plödereder, E.: Teaching Software Engineering with Ada95.

In: Proc. Reliable Software Technologies, Ada-Europe 2005, York, LNCS (2005)

SPARK Annotations Within Executable UML

Damian Curtis

AWE plc, Aldermaston, Reading, Berkshire, RG7 4PR, United Kingdom
damian.curtis@awe.co.uk

Abstract. The emergence in the software industry of the Unified Mod-
elling Language (UML) has led to the question as to whether it may be
used to complement existing development techniques for high integrity
systems. Work is in progress to develop a code generator for SPARK Ada
from the executable UML (xUML) subset. This paper concentrates on
the work completed, which enables the utilisation of SPARK annotations
within xUML models for a prototype code generator. The code gener-
ated by this prototype has been successfully analysed using the SPARK
toolset.

1 Introduction

There are a number of well established approaches to designing software for
dependable systems. In the defence industry the approach chosen has been his-
torically guided by standards such as UK Def-Stan 00-55 [1], which prescribed
suitable methods for developing high integrity software. This mandated the use
of formal methods for the highest integrity systems and the use of the SPARK
toolset was strongly recommended.

The recent revision of Def-Stan 00-56 [2] (which also superseded 00-55) has
reduced the emphasis on prescribing particular approaches and allows greater
flexibility of software development, as long as there is a suitable justification
for the approach taken. Given this new “goal based” approach, as well as the
understanding that the wider software industry has advanced considerably in
recent years, it has been recognised that there are new approaches possible,
which would be of benefit when developing high integrity software.

In particular, it has been noted that there has been a move towards the
development of what can be described as “semi-formal” methods, such as the
use of the Unified Modelling Language (UML) to design software systems. UML
suffers from the lack of a precise definition, which makes it impossible to execute
as it stands, but there is a movement within the Object Management Group
(OMG) to establish an executable subset of UML (xUML), which does not suffer
from this problem [3].

The work described in this document concerns a project to develop an xUML
to SPARK code generator. This project aims to demonstrate that the benefits of
xUML can be combined with those of more formal approaches such as SPARK
to provide a new approach for high integrity software development.

L.M. Pinho and M. González Harbour (Eds.): Ada-Europe 2006, LNCS 4006, pp. 83–93, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

84 D. Curtis

The tools used within this project are the iUML Modeller and iCCG Config-
urable Code Generator tools from Kennedy Carter [4] and the SPARK toolset
from Praxis High Integrity Systems (Praxis-HIS)[5].

This paper concentrates on the work that has been undertaken to identify a
suitable strategy for utilising the SPARK annotations within this project.

1.1 Existing UML to SPARK Code Generators

It was recognised prior to commencing this work that there are other tool ven-
dors who also support SPARK code generation from UML. However, there are
some key differences between these approaches and that of the Kennedy Carter
tools. The models developed using iUML are completely independent of the tar-
get language, as all the action semantics are written using an implementation
independent language. There is no Ada or other target language code embedded
in the models created with iUML, unless “inline” code is required to interface
with legacy code and/or low level operating system primitives. Most other “ex-
ecutable UML” tool vendors only generate the structure of the code from their
models and use embedded target language (e.g. Ada, C etc.) code to specify the
actions [6]. This results in the models losing their platform independence. It is
the ability to generate 100% of the target SPARK code from the xUML models,
with the actions coded using an implementation independent language, that is
a unique feature of our chosen approach.

1.2 Executable UML and the iUML Toolset

xUML is a precisely defined subset of UML. xUML has the concept of domains
(or subject areas) which allow a system to be divided into subsystems. Each do-
main has a class diagram. The class diagram is used to define the static structure
of the model, using classes, attributes and relationships. The dynamic behav-
iour is captured using state charts, along with operations. However, this alone
is insufficient to produce a fully executable model and so an action semantic
language is added. This action language operates at a higher level of abstraction
than a conventional programming language; it is designed to model interactions
between model elements and thus it is used to provide the detailed description
of the model’s behaviour. It is this which makes the model executable.

The action language used with the iUML toolset is Action Specification Lan-
guage (ASL) [7]. Most ASL code appears in operations in the class diagram
and state actions. It is also used to specify bridge operations, which are used
to link different domains together; initialisation code, which is used to start-up
the model; and test methods, which are used to stimulate the model during
simulation.

Amongst its additional features that support programming at the modelling
level, ASL has the ability to access all data contained in the class diagram. This
includes supporting relationship navigation, and the ability to generate signals,
which trigger state transitions in classes with associated state charts.

When a signal is generated by a segment of ASL, it is placed in a queue. The
signal queue is serviced regularly, and if a signal is present it will be removed

SPARK Annotations Within Executable UML 85

and processed. A processed signal causes a state transition in the state machine
of the class instance to which the signal is targetted.

The iUML tool allows models to be built and executed either as a single-
domain build, where just one subsystem is executed, or as a multi-domain build,
where the whole system or just a collection of subsystems can be executed.

The iUML tool also allows the user to create other diagrams including: use
case, sequence and collaboration diagrams. These are not used, however, as a
source of data for code generation. Other UML diagrams (e.g. activity, compo-
nent and deployment diagrams) are not currently supported by the iUML tool.

This project is using the iCCG to automatically generate SPARK code from
xUML models produced using iUML. The iCCG itself is a meta-model of xUML
and the ASL language, written using xUML. Further ASL code is added to this
meta-model to tailor code generation to the target language (i.e. in this case
SPARK).

1.3 SPARK Ada and the SPARK Toolset

The SPARK Ada language [8, 9] is a subset of the Ada language, suitable for
use in high integrity systems. It features a set of annotations which are used by
the programmer to specify the intended behaviour of the code. The annotations
appear in the form of Ada comments, and are therefore invisible to an Ada
compiler. They therefore have no effect on the compilation and execution of the
code. Their purpose is to provide an expression of the code designers intent. The
existence of annotations in the code means that it is possible to use the static
analysis capability provided by the SPARK toolset (developed by Praxis-HIS
[5], comprising three main tools: the Examiner, Simplifier and Proof Checker)
on that code. It is the development of a method to utilise these annotations,
with an xUML to SPARK Ada automatic code generator, that is the subject of
this paper.

2 Proposed Modelling Process

The SPARK INFORMED Process [10] emphasises the importance of considering
the detailed structure of the design prior to implementing the code. The SPARK
toolset supports this, as it is possible to analyse the specifications of the code
packages without having a full implementation of the package bodies.

The xUML approach is similar, although less formal, and encourages exten-
sive analysis of the system design. The system design is first broken down into
domains, each of which deals with one complete subject area. These domains
are populated with classes, some of which may have state machines. Coupling
between domains is minimised and the domains can be developed independently.

Therefore much consideration was given to a modelling process which would
merge the benefits of using a graphical notation such as UML, with those
of the more formal approach offered by SPARK. The process is outlined in
Figure 1. The concept is that a skeleton xUML model is developed on the basis
of the system requirements; however no action language is inserted at this stage.

86 D. Curtis

Fig. 1. Model Development Process

The analyst will annotate this model with SPARK-like annotations, which will
indicate their design intent. At this point code can be generated, and the SPARK
Examiner used to analyse the generated package specifications. The analyst will
then complete the model by adding action language and the full code for the
model can be generated. The SPARK Examiner can then be used on the fully
generated code. Further detail on this approach, and on the general strategy for
code generation can be found at [11].

3 Use of SPARK Annotations with the SPARK Code
Generator

This section gives a brief explanation of the various annotations utilised in the
SPARK code generator, for further details see [8].

The annotations currently being supported by the SPARK code generator
are “global”, which specifies access by subprograms to global variables and
“derives”, which specifies the information flow of data through the system be-
tween a procedure’s, imported and exported parameters and global variables.
Although SPARK subprograms can be either procedures or functions, functions
do not have “derives” annotations. SPARK functions cannot have side effects,
hence it is implied that the function return parameter is derived from all the
function parameters and all imported global variables. “Global” and “derives”

SPARK Annotations Within Executable UML 87

annotations are supported, as they enable the possibility of undertaking the
proof of freedom from run-time errors.

“Global” and “derives” annotations are either written by the analyst or gen-
erated by the code generator. For an explanation of this see section 4.

“Own” variable annotations control access to global variables within packages.
“Initializes” annotations indicate the initialisation of these global variables. Class
attributes, relationships and signal queues are the global data within xUML mod-
els, and so the code generator automatically creates appropriate “own” variable
annotations for each of these, along with suitable “initializes” annotations.

The “inherit” annotation is used to control the visibility of package nameswithin
a SPARK program. This is generated automatically by the code generator.

It is anticipated that future versions of the code generator will include further
support for the remaining annotations (i.e.“pre”, “post”, “check” and “assert”).

4 Derivation of the “Global” and “Derives” Annotations
Which Appear in the Target Code

One of the fundamental principles of SPARK program design is that annotations
should not be generated from the body of the code. This is because they are
intended as an expression of design intent and if they are generated from the
same source, then their value is lost.

The general package structure of the generated code is shown in Figure 2.
There is a Main Program which is simply a loop that polls all the class signal
dispatching packages in turn. When one of these packages has a signal on a
queue, then the appropriate state action procedure is called in one of the state
action packages. That state action may result in updates to data stored in the
class data package, signals being placed on signal queues or operations being
called.

Data flow analysis checks that the usage of parameters and global variables
within subprograms corresponds to their modes, that variables are not read
before being initialised and that all imported variables have been used. The
“global” annotation is used in SPARK to indicate the intended use of global
variables and their modes. In order to perform data flow analysis, with the
SPARK Examiner, all subprograms must therefore have “global” annotations.

Where possible it is also desirable to use information flow analysis. The “de-
rives” annotations are used to indicate the interdependencies between global
variables and parameters. Information flow analysis checks that the “derives”
annotations do not conflict with the variable modes, and that the interdepen-
dencies between parameters and global variables are correctly reflected in their
usage in the body of the code. All the subprograms in packages below, and
including, the state actions will have a “derives” annotation. A “derives” an-
notation for the subprograms in packages above this point would be extremely
complex and therefore of little value to the analysis of the code. For example,
the “derives” annotation of the procedure that selects the appropriate state ac-
tion to call would have to take into consideration every state action within a

88 D. Curtis

Fig. 2. Hierarchy of Procedure Calls between Code Packages

state machine. Analysis of this section of the code by the SPARK Examiner will
be limited to data-flow analysis only. This is quite a common situation at the
higher levels of a SPARK program and will not prevent the proof of freedom
from run-time errors.

The annotations found in the generated code are derived from two sources
and perform two distinct functions. These are detailed in sections 4.1 and 4.2.

4.1 Analyst Provided “Global” and “Derives” Annotations

These annotations will be provided by the analyst when creating models. They
are provided in order to describe the effects of the action language on global
data within the models. The elements of the UML class diagram (ie. classes, at-
tributes, relationships etc.), along with the signal queues for the state machines,
are considered to be the global data within xUML models. The logical place to
incorporate these annotations in the iUML tool, are as part of the description
fields in the state actions of the models state charts and the description fields
of the class operations. They allow the analyst to provide a formal expression of
their design intent.

The analyst will apply “global” and “derives” annotations to indicate access
to class attributes and relationships between classes. The analyst will annotate
to indicate the intention to place a signal on the signal queue. The “derives” an-
notations will have to account for any parameters belonging to the state actions
and operations.

A separate annotation is also required for every class with a state machine.
This is a “global” annotation, which must account for all the variables that
can be changed as a result of the execution of a state action within that state

SPARK Annotations Within Executable UML 89

machine. This annotation is used towards the top of the package hierarchy, where
there is a procedure that is processing signals on signal queues and determining
which state action to execute.

Format of the Analyst Provided Annotations. The format for annotations
is the same as that used by SPARK as can be seen from the following extract
from a description held in the iUML tool:

Description:
...
This operation calculates the cost of fuel delivered based on its
price per litre and the volume of fuel delivered.
...
--# global in PSC.price_per_litre;
--# in PSC.current_volume;
--# out PSC.cost;
--# derives PSC.cost from
--# PSC.current_volume,
--# PSC.price_per_litre;

“PSC” is a reference, assigned by the analyst to a class in the xUML model.
This reference is known as a class key letter. “Price per litre”, “current volume”
and “cost” are attributes of that class. The code generation process must make
some small modifications to convert the class reference into its full SPARK pack-
age name and the attribute name to the name of the array in which it is stored.
The following is the relevant extract from the generated package specification:
...
procedure calculate_cost;
--# global in PSC_DATA.price_per_litre_ARRAY;
--# in PSC_DATA.current_volume_ARRAY;
--# out PSC_DATA.cost_ARRAY;
--# derives PSC_DATA.cost_ARRAY from
--# PSC_DATA.current_volume_ARRAY,
--# PSC_DATA.price_per_litre_ARRAY;
...

As can be seen this transformation is a minor adjustment to the original
annotation. It is important to note that the code generator does not check that
the annotations are correct in any way; it merely searches for tokens that match
class key letters in the model and makes the appropriate adjustments. (Class
key letters are used as a short-form alternative to class names when referencing
classes in xUML models.) Checking the correctness of the annotations is left to
the SPARK Examiner.

4.2 Code Generator Generated “Global” and “Derives”
Annotations

These annotations were created during the design phase of the code generator,
when generic templates of the code packages were created to guide the code

90 D. Curtis

generation process. They represent the intentions of the designers and are used
to provide a check on the code generator mechanism. They increase confidence
in the design and implementation of the code generator and the automatically
generated code, by reducing systematic errors.

Since there will be an infinite number of potential source models, and therefore
an infinite number of sets of generated code, these annotations must still be
examined by the SPARK Examiner for every new model. This will assist with
the identification of potential flaws in the code generator design.

These code generator embedded annotations have already proved useful dur-
ing the design and construction phases of the prototype code generator, as they
have provided early identification of bugs. Some of these would have otherwise
been difficult to trace in a code generator.

The use of SPARK abstract “own” variables in the generated annotations
means that the analyst does not need to know the full detail of the generated
implementation. This can best be illustrated by considering an example:

Consider a simple xUML class model as shown in Figure 3. This model has
two classes: “Student” and “Teacher” which are linked by a relationship “R1”.
R1 is a one-to-many relationship. ie. one Teacher can teach many Students.
Conversely, in this model, a student can only be taught by one teacher.

Fig. 3. A Simple xUML Class Model

In order to establish the teacher which belongs to a set of students, the analyst
might write using ASL:

the_teacher = a_student -> R1

which means navigate from the instance “a student” (an instance of the class
student) along the relationship “R1” and return the instance of Teacher which
is linked to “a student”.

When this is translated into SPARK code, it becomes a procedure call:

...
NAVIGATE_ONE_R1(a_student, LINK_EXISTS, the_teacher);
...

and the analyst would provide a suitable annotation to indicate that the R1
relationship global data would be accessed by this segment of ASL, in the manner
described in section 4.1. For example:

SPARK Annotations Within Executable UML 91

--# global in R1;
--#;
--# derives from, R1;

The analyst will be expected to annotate the operation or state action, in
which this relationship navigation has taken place, in order to indicate access to
the R1 relationship. However, they are not expected to be aware of the detail
of the implementation of that navigation. This can be achieved using SPARK
abstract own variables. The specification of the “Navigate One R1” procedure
in the generated code becomes:

procedure NAVIGATE_ONE_R1(FROM_INSTANCE : in Student_IH_TYPE;
LINK_EXISTS : out Boolean;
TO_INSTANCE : out Teacher_IH_TYPE);
--# global in R1_RELATIONSHIP;
--# derives LINK_EXISTS, TO_INSTANCE from R1_RELATIONSHIP,
--# FROM_INSTANCE;

but, since “R1 RELATIONSHIP” is abstract, the body of the procedure will
have a concrete implementation:

procedure NAVIGATE_ONE_R1(FROM_INSTANCE : in Student_IH_TYPE;
LINK_EXISTS : out Boolean;
TO_INSTANCE : out Teacher_IH_TYPE)
--# global in R1_EXISTS_ARRAY;
--# in R1_INSTANCES_ARRAY;
--# derives LINK_EXISTS from R1_EXISTS_ARRAY, FROM_INSTANCE &
--# TO_INSTANCE from R1_INSTANCES_ARRAY, FROM_INSTANCE;
is
begin
...
end NAVIGATE_ONE_R1;

The implementation of the “R1 RELATIONSHIP” abstract own variable is
two arrays: the “R1 EXISTS ARRAY” and the “R1 INSTANCES ARRAY”. In
the implementation produced by this code generator, the “R1 EXISTS ARRAY”
is an array of booleans, which indicate that there exists a link for this instance of
Student to an instance of Teacher. The “R1 INSTANCES ARRAY” is an array
of integers representing the instance handle of Teacher to which the Student is
linked.

This is a relatively simple example, but it can still be seen that the use of ab-
stract own variables means that the analyst does not require detailed knowledge
of the code generator implementation in order to make sensible annotations to
the models.

The specification and body of this procedure along with the associated an-
notations are entirely generated by the code generator. The analyst only has to
annotate for the ASL code which they have written, and the consistency of all
the annotations is checked using the SPARK Examiner on the generated code.

92 D. Curtis

5 Analysis of Multi-domain Builds

The work completed so far has concentrated on generating the code for a single
domain build. However, it is desirable that a complete code generator should
have the ability to generate code for both single and multi-domain builds.

There is a problem with simply extending the same approach to other do-
mains and this has an impact on the way the model is annotated. The problem
is that whilst the domains are constructed to be as independent as possible,
they do communicate via bridge operations. This means that for complete static
analysis on a multi-domain model, the annotations in one domain would have
to include any effects in other domains caused by the bridge. As the domains
can be mutually dependent, it becomes difficult to avoid mutual dependency of
generated code packages.

It is also desirable in xUML for domains not to have knowledge of other
domains. This maintains the xUML idea of domain partitioning to support the
separation of concerns, as well as domain reuse and replaceability.

At present it is considered that the most appropriate solution is to parti-
tion the static analysis along domain boundaries. Although this will weaken the
analysis to an extent, it should not be too severe, as the bridges between domains
are normally kept to a minimum. The consequence for the annotations is that
they will only refer to data in other domains as SPARK external own variables.

6 Current Results

An annotation strategy has been developed, which combines the benefits of both
xUML and SPARK. A prototype code generator has been constructed using the
Kennedy Carter Configurable Code Generator and iUML tool. This prototype
code generator has been used to demonstrate that SPARK code and annotations
can be generated from executable UML models. The generated code has been
analysed using the SPARK Examiner and so it has been demonstrated that it is
possible to include support for SPARK annotations within the Kennedy Carter
iUML tool.

7 Future Work

It is planned to extend the prototype code generator such that it is fully capable
of generating code for single-domain and later multi-domain xUML models. A
single domain model of a typical subsystem will be constructed and the resulting
code statically analysed. This will enable a more complete understanding of the
implications of the selected architecture on static analysis capabilities.

The remaining SPARK annotations will be investigated, in order to see how
they can be utilised within the models.

Above all, it is the intention to conclude whether the approach taken is suit-
able for development processes involving high integrity systems.

SPARK Annotations Within Executable UML 93

8 Conclusions

The work presented in this paper demonstrates that it is possible to incorporate
SPARK annotations in xUML models. Those annotations can be used to perform
static analysis upon the code generated from these models. The strategy for
supporting the SPARK annotations has been implemented with a prototype
code generator. An approach has been adopted which can be extended to full
code generation from multi-domain xUML models.

Acknowledgements

The work described within this paper was also carried out by Colin Marsh of
AWE plc and by Ian Wilkie and Mike Finn of Kennedy Carter Ltd. An important
contribution was also made by Janet Barnes of Praxis High Integrity Systems,
who provided advice on the SPARK language and toolset. The author also wishes
to acknowledge the contributions of Alun Lewis and Wilson Ifill of AWE plc and
Jeff Terrell of Kennedy Carter Ltd.

References

1. Ministry of Defence: Requirements for Safety Related Software in Defence Equip-
ment, Defence Standard 00-55, August 1997

2. Ministry of Defence: Safety Management Requirements for Defence Systems, In-
terim Defence Standard 00-56, Issue 3, December 2004

3. Model Driven Architecture with Executable UML, Chris Raistrick et al, Cambridge
University Press 2004

4. See www.kc.com
5. See www.sparkada.com
6. Executable Systems Design with UML 2.0, Scott Niemann, I-Logix Inc
7. The Action Specification Language Reference Manual, Ian Wilkie et al, Kennedy

Carter Ltd, 2003
8. High Integrity Software: The SPARK Approach to Safety and Security, John

Barnes, Addison-Wesley, 2003
9. SPARK 95 - The SPADE Ada 95 Kernel - Edition 4.3, Gavin Finnie et al, Praxis

High Integrity Systems, 2005
10. The INFORMED Design Method for SPARK, Peter Amey, Praxis High Integrity

Systems, 1999, 2001
11. Executable UML and SPARK Ada: The Best of Both Worlds, Ian Wilkie, Zu-

verlässigkeit in einegebetten Systemen, Ada Deutschlang Tagung 2005, Shaker
Verlag, 2005

Runtime Verification of Java Programs
for Scenario-Based Specifications�

Li Xuandong, Wang Linzhang, Qiu Xiaokang, Lei Bin, Yuan Jiesong,
Zhao Jianhua, and Zheng Guoliang

State Key Laboratory of Novel Software Technology
Department of Computer Science and Technology

Nanjing University, Nanjing, Jiangsu, P.R. China 210093
lxd@nju.edu.cn

Abstract. In this paper, we use UML sequence diagrams as scenario-
based specifications, and give the solution to runtime verification of Java
programs for the safety consistency and the mandatory consistency. The
safety consistency requires that any forbidden scenario described by a
given sequence diagram never happens during the execution of a pro-
gram, and the mandatory consistency requires that if a reference scenario
described by the given sequence diagrams occurs during the execution
of a program, it must immediately adhere to a scenario described by the
other given sequence diagram. In the solution, we first instrument the
program under verification so as to gather the program execution traces
related to a given scenario-based specification; then we drive the instru-
mented program by random test cases so as to generate the program
execution traces; last we check if the collected program execution traces
satisfy the given specification. Our work leads to a testing tool which
may proceed in a fully automatic and push-button fashion.

1 Introduction

Scenario-based specifications such as message sequence charts [1] and UML se-
quence diagrams [2,3] offer an intuitive and visual way of describing system
requirements. They are playing an increasingly important role in specification
and design of systems. Such specifications focus on message exchanges among
communicating entities in real-time and distributed systems.

In this paper, we use UML sequence diagrams as scenario-based specifications,
and consider runtime verification of Java programs. We concern the following
four kinds of specifications which are depicted in Figure 1:

– Safety consistency specifications require that any forbidden scenario descri-
bed by a given sequence diagram D never happens during the execution of
a program;

� Supported by the National Natural Science Foundation of China (No.60425204,
No.60233020), the National Grand Fundamental Research 973 Program of
China (No.2002CB312001), and by the Jiangsu Province Research Foundation
(No.BK2004080).

L.M. Pinho and M. González Harbour (Eds.): Ada-Europe 2006, LNCS 4006, pp. 94–105, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Runtime Verification of Java Programs for Scenario-Based Specifications 95

– Forward mandatory consistency specifications require that if a reference sce-
nario described by a given sequence diagram D1 occurs during the execution
of a program, then a scenario described by the other given sequence diagram
D2 must follow immediately;

– Backward mandatory consistency specifications require that if a reference
scenario described by a given sequence diagram D1 occurs during the execu-
tion of a program, then it must follow immediately from a scenario described
by the other given sequence diagram D2; and

– Bidirectional mandatory consistency specifications require that if a reference
scenario described by a given sequence diagram D1 occurs during the ex-
ecution of a program and a reference scenario described by another given
sequence diagram D2 follows, then in between these two scenarios, a sce-
nario described by the third given sequence diagram D3 must occur exactly.

For runtime verification, we first instrument the program under verification
so as to gather the program execution traces related to a given scenario-based
specification. Then we drive the instrumented program by random test cases
so as to generate the program execution traces. Last we check if the collected
program execution traces satisfy the given specification. The verification process
is depicted in Figure 2. Our work can be used to detect not only the program

� �

��

� � � �� � � � � �

� � � �� �

Forward Mandatory Consistency specifications Backward Mandatory Consistency specifications

Bidirectional Mandatory Consistency specificationsSafety Consistency specifications

D1 D3 D2

D1 D3 D2

D2D1 D1D2

D2D1 D1D2

⇒ ⇐

⇒ ⇐� �

�
�
�

�

D

D

Fig. 1. Scenario-based specifications

�

� � �

�

�

�������

Original
Program

UML Sequence
Diagrams

Random
Test Cases

Consistency
Checking

Program
Instrumenting

Instrumented
Program

Program
Executing

Program
Execution

Traces

	
	

		

	
	

		 		

		

�

	
	

		

	
	

		

�
�

�
�

� �

�
�

	
�

Fig. 2. The Run-Time Verification Process

96 X. Li et al.

bugs resulting from the wrong temporal orders of message flow, but also the
incomplete UML interaction models constructed in reverse engineering for the
legacy systems, and leads to a testing tool which may proceed in a fully automatic
and push-button fashion.

The paper is organized as follows. In next section, we introduce UML sequence
diagrams, and give their formal definition for verification. The detailed solution
is given in Section 3 to the runtime verification of Java programs for the scenario-
based specifications. The related works and some conclusions are given in the
last section.

2 UML Sequence Diagrams

We represent the scenario-based specifications by UML sequence diagrams. A
UML sequence diagram describes an interaction, which is a set of messages ex-
changed among objects within a collaboration to effect a desired operation or
result. Its focus is on the temporal order of the message flow. A sequence diagram
has two dimensions: the vertical dimension represents time, and the horizontal
dimension represents different objects. Each object is assigned a column, the
messages are shown as horizontal, labelled arrows [2,3]. Here we just consider
simple sequence diagrams which describe exactly one scenario without any alter-
native and loop. For example, a simple sequence diagram is depicted in Figure 3,
which describes a scenario about the well-known example of the railroad crossing
system in [14,15]. This system operates a barrier at a railroad crossing, in which
there are a railroad crossing monitor and a barrier controller for controlling the
barrier. When the monitor detects that a train is arriving, it send a message
to the controller to lower the barrier. After the train leaves the crossing, the
monitor send a message to the controller to raise the barrier.

In a sequence diagram, by events we mean the message sending or the mes-
sage receiving. The semantics of a sequence diagram essentially consists of the

Monitor Controller Barrier

�Train arriving
e1 e2

�Lower barrier
e3 e4

� Barrier down
e6 e5

�Train passed
e7 e8

�Raise barrier
e9 e10

� Barrier up
e12 e11

�Train arriving
e13 e14

Fig. 3. A simple UML sequence diagram describing the railroad crossing system

Runtime Verification of Java Programs for Scenario-Based Specifications 97

sequences (traces) of the message sending and receiving events. The order of
events (i.e. message sending or receiving) in a trace is deduced from the visual
partial order determined by the flow of control within each object in the se-
quence diagram along with a causal dependency between the events of sending
and receiving a message [1-4]. In accordance with [4], without losing generality,
we assume that each sequence diagram corresponds to a visual order for a pair
of events e and e′ such that e precedes e′ in the following cases:

– Causality: A sending event e and its corresponding receiving event e′.
– Controllability: The event e appears above the event e′ on the same object

column, and e′ is a sending event. This order reflects the fact that a sending
event can wait for other events to occur. On the other hand, we sometimes
have less control on the order in which the receiving events occur.

– Fifo order: The receiving event e appears above the receiving event e′ on
the same object column, and the corresponding sending events e1 and e′1
appear on a mutual object column where e1 is above e′1.

For verifying the scenario-based specifications, we formalize sequence dia-
grams as follows.

Definition 1. A sequence diagram is a tuple D = (O, E, M, L, V) where

– O is a finite set of objects. For each object o ∈ O, we use ζ(o) to denote the
class which o belongs to.

– E is a finite set of events corresponding to sending or receiving a message.
– M is a finite set of messages. Each message in M is of the form (e, g, e′) where

e, e′ ∈ E corresponds to sending and receiving the message respectively, and
g is the message name which is a character string.

– L : E → O is a labelling function which maps each event e ∈ E to an object
L(e) ∈ O which is the sender (receiver) while e corresponds to sending
(receiving) a message.

– V is a finite set whose elements are a pair (e, e′) where e, e′ ∈ E and e
precedes e′, which is corresponding to a visual order. ��

We use event sequences to represent the traces of sequence diagrams, which
describes the temporal order of the message flow. An event sequence is of the
form e0ˆe1ˆ . . . ˆem, which represents that ei+1 takes place after ei for any i
(0 ≤ i ≤ m − 1).

Definition 2. For any sequence diagram D = (O, E, M, L, V), an event se-
quence e0ˆe1ˆ . . . ˆem is a trace of D if and only if the following condition holds:

– all events in E occur in the sequence, and each event occurs only once, i.e.
{e0, e1, . . . , em} = E and ei 	= ej for any i, j (0 ≤ i < j ≤ m); and

– e0, e1, . . . , em satisfy the visual order defined by V , i.e. for any ei (0 ≤ i ≤ m)
and ej (0 ≤ j ≤ m), if (ei, ej) ∈ V , then 0 ≤ i < j ≤ m. ��

98 X. Li et al.

3 Runtime Verification for Scenario-Based Specifications

Now we consider runtime verification of Java programs for the scenario-based
specifications expressed by UML sequence diagrams. The verification process
consists of three main steps: program instrumenting, program executing driven
by random test cases, and consistency checking, which is depicted in Figure 2.

For a program under verification, we gather its execution traces by running its
instrumented version. The test cases used to drive the programs are generated
randomly. The first reason for selecting random method is its inexpensive charge.
Secondly, it is automatic and can be applied in almost any systems, just like what
we want. Usually, there is an important problem in random testing, which is how
many random test cases are sufficient? But this problem is not so concerned
with us. That is because our work aims to develop an automatic testing support
tool, which may help us to find the program bugs with a low cost. Due to the
inexpensive charge, the tool can run as long as possible, and we think the test
cases sufficient when the tool has been running for a duration long enough, or
when an apparent and believable result can be concluded, i.e. an inconsistent
case is detected.

3.1 Program Instrumenting

For a Java program under verification, we need to insert some statements into its
source code for gathering the program execution traces. Since the scenario-based
specifications we consider in this paper are represented by the sequence diagrams,
the program execution traces we gather are a sequence of events corresponding
to sending and receiving messages.

In a Java program, a method call is corresponding to a message sending
event, while the first statement execution in a method is corresponding to a
message receiving event. Thus we insert the statements for gathering the infor-
mation around each related method call and in the beginning of each related
method definition. Let D = (O, E, M, L, V) be a sequence diagram in a given
scenario-based specification. When a sending or receiving event for a message
in M happens, the information we need to log include the message, its sender
or receiver, and the class which the sender or receiver belongs to. In addition,
since an object may send or receive the same message many times, we need to
pair a sending event and its corresponding receiving event for the same message.
These pairs can be matched if there is an unique number for each pair of events.
So for each method corresponding a message in M , we extend its parameter list
by adding a long integer formal parameter. When such a method is called , the
added parameter is given the current coordinated universal time in milliseconds
and is sent to the receiver so as to establish the pair.

The instrumentation algorithm depicted in Figure 4 runs as follows. First we
scan the program for parsing the source code into a file of tokens. Then we
check each token for recognizing the related method call and method defini-
tions. If a definition of method m corresponding to a message in M is found
out, then we revise the formal parameter list by adding a formal parameter

Runtime Verification of Java Programs for Scenario-Based Specifications 99

scan the program for parsing the source code into a file of tokens;
open the file of tokens;
read an token from the token file and assign it to current token;
while current token �= eof of the file do

begin
if a definition of method m corresponding to a message in M is found out
then begin

revise the formal parameter list by adding a formal parameter mid;
insert the code segment Log Receiving Event before the first statement
in the method definition;

end
else if a call for method m corresponding to a message in M is found out

then begin
revise the actual parameter list by adding the current coordinated
universal time corresponding to the formal parameter mid;
insert the code segment Log Sending Event before the method call;

end;
read an element from the token file and assign it to current token;

end;
return true.

Algorithm for Instrumenting Programs

try{ synchronized(this)
java.io.RandomAccessFile receiveLog = new java.io.RandomAccessFile(log,”rw”);
receiveLog.seek(receiveLog.length());
receiveLog.writeBytes(mid + ”meth exec” + (Object)this.toString()

+ (Object)this.getClassName() + m);
receiveLog.close(); }}

catch(Exception e){}
Code Segment Log Receivinging Event

try{ synchronized(this)
{ java.io.RandomAccessFile sendLog = new java.io.RandomAccessFile(log,”rw”);
sendLog.seek(sendLog.length());
mid = System.currentTimeMillis();
sendLog.writeBytes(mid + ”meth call” + (Object)this.toString()

+ (Object)this.getClassName() + m);
receiveLog.close(); }}

catch(Exception e){}
Code Segment Log Sending Event

Fig. 4. Instrumentation algorithm and inserted code segments

mid and insert the code segment Log Receiving Event depicted in Figure 4 be-
fore the first statement in the method definition for gathering the information
about the receiver and the class it belongs to. If a call for method m corre-
sponding to a message in M is found out, then we revise the actual parameter
list by adding the current coordinated universal time corresponding to the for-
mal parameter mid and insert the code segment Log Sending Event before the
method call for gathering the information about the sender and the class it
belongs to.

A message sender or receiver in a program execution trace we log is represented
by the character string consisting of its class name and a hash code, which
is provided by Java API class method (Object)toString. The toString method
defined by class Object does return distinct hash codes for distinct objects, but
since this is implemented by converting the internal address of the object into
a hash code, it is still possible for different objects that exist in different time
to return the same hash code. To determine the life cycles of these dynamic
objects, we need to instrument the finalizer of the concerned classes. Whenever

100 X. Li et al.

one object is finalized, its hash code is logged so that we know what a hash code
exactly refers to at different time.

3.2 Consistency Checking

According to the algorithm for instrumenting programs given in Section 3.1,
for an event corresponding to sending (receiving) a message, we can obtain its
sender (receiver) and the class the sender (receiver) belongs to. We also can pair
a sending event and its corresponding receiving event for the same message. For
simplicity, from now on we represent any program execution trace we gather by
a sequence which is of the form v0ˆv1ˆ . . . ˆvn where each vi (0 ≤ i ≤ n) is an
event corresponding to sending (receiving) a message, and the class which the
sender (receiver) of vi belongs to is denoted by τ(vi). In the following, we give
the solutions to checking the program execution traces for the safety consistency
specifications and for the mandatory consistency specifications.

For matching the program execution traces and the traces of a given sequence
diagram, we define the trails of the sequence diagram as follows. Given a sequence
diagram D = (O, E, M, L, V), a program execution trace v0ˆv1ˆ . . . ˆvn is a trail
of D if it can be mapped into a trace of D, i.e., there is a corresponding trace
of D of the form e0ˆe1ˆ . . . ˆen such that

– for each i (0 ≤ i ≤ n), the class which the sender or receiver of vi belongs
to is the same as the one which the sender or receiver of ei belongs to, i.e,
τ(vi) = ζ(L(ei));

– for each i (0 ≤ i ≤ n); if ei is a message sending (receiving) event, then vi

corresponds the same message sending (receiving) event;
– if (ei, g, ej) is in M (0 ≤ i < j ≤ n), then vi and vj is a pair of the sending

and receiving for the same message; and
– for any vi and vj (0 ≤ i < j ≤ n), if τ(vi) = τ(vj) then vi and vj have the

same sender (receiver).

Since the different objects with the same class may occur in a program ex-
ecution trace, for a given sequence diagram D = (O, E, M, L, V) there may be
multiple object compositions corresponding to O in the program execution trace,
and when consistency checking we should consider the scenarios generated by
those object compositions respectively. Let D = (O, E, M, L, V) be a sequence
diagram, and B be a set of objects in a program execution trace. If there is a
bijection function which maps each object in O to an object in B such that their
classes are the same, we say that B is an agent of O in the program execution
trace, and the bijection function is denoted by θB : O → B.

Let D = (O, E, M, L, V) be a sequence diagram, σ = v0ˆv1ˆ . . . ˆvn be a
program execution trace, and B be an agent of O. For a subsequence σ1 in σ of
the form viˆvi+1ˆ . . . ˆvj (0 ≤ i < j ≤ n), by removing any vk (i ≤ k ≤ j) from
σ1 such that the sender (receiver) of vk is not in B, we get an event sequence
σ′

1 = v′0ˆv′1ˆ . . . ˆv′m. If σ′
1 is a trail of D, then we say that σ1 is an image of D

on B. Furthermore, if σ1 is an image of D on B and vi = v′1 ∧ vj = v′m, then
we say that σ1 is an exact image of D on B.

Runtime Verification of Java Programs for Scenario-Based Specifications 101

Safety Consistency Checking. A safety consistency specification consists of
one sequence diagram D, denoted by SS(D), and require that any forbidden sce-
nario described by D never happens during the execution of a program. For ex-
ample, there are two sequence diagrams depicted in Figure 5 which are about the
railway crossing system. The left one describes a normal scenario for the prepa-
ration for the train crossing, which should occur during the program execution.
The right one is an exceptional scenario in which the message Barrier secured is
sent to the monitor before the barrier is put down, which is forbidden to occur
during the program execution, and forms a safety consistency specification.

�
�

� �
�

��

Train arriving

Acknowledgement

Approaching

Crossing secured

Low barrier

Barrier down

Power off

Monitor Controller Barrier

�
�

�
�

�
�

�

Train arriving

Acknowledgement

Approaching

Crossing secured
Low barrier

Barrier down

Power off

Monitor Controller Barrier

Fig. 5. Saftey consistency specifications for the railway crossing system

Let D = (O, E, M, L, V). For a program execution trace σ of the form
v0ˆv1ˆ . . . ˆvn, if there are an agent B of D and a subsequence σ1 of σ of the
form viˆvi+1ˆ . . . ˆvj (0 ≤ i < j ≤ n) which is an image of D on B, than we
say that a scenario described by D occurs in σ. Thus, we define that a pro-
gram execution trace satisfies a safety consistency specification SS(D) where
D = (O, E, M, L, V) if for any agent B of O, there is no image of D on B in the
program execution trace.

Forward Mandatory Consistency Checking. A forward mandatory con-
sistency specification consists of two sequence diagrams D1 and D2, denoted
by SF (D1, D2), and require that if a reference scenario described by D1 occurs
during the execution of a program, then a scenario described by D2 must fol-
low immediately. For example, a forward mandatory consistency specification
for the railway crossing system is depicted in Figure 6, which requires that from
the scenario for the preparation for the train crossing, the scenario for raising
the barrier after the train passes must follows immediately.

�
�

� �
�

��

Train arriving

Acknowledgement

Approaching

Crossing secured

Low barrier

Barrier down

Power off

Monitor Controller Barrier

�
�

�
�

Train passed

Raise barrier

Barrier up

Power off

Monitor Controller Barrier

⇒

Fig. 6. Forward mandatory consistency specification for the railway crossing system

102 X. Li et al.

Let D1 = (O1, E1, M1, L1, V1), D2 = (O2, E2, M2, L2, V2), and σ be a program
execution trace of the form v0ˆv1ˆ . . . ˆvn. If for any agent B1 of O1, for any
subsequence σ1 of σ of the form viˆvi+1ˆ . . . ˆvj (0 ≤ i < j ≤ n) which is an
exact image of D1 on B1, the following forward mandatory condition is satisfied:

– there is an agent B2 of O2 such that θB1(o) = θB2(o) for any o ∈ O1 ∩ O2,
and

– there is a subsequence σ2 of σ of the form vj+1ˆvj+2ˆ . . . ˆvk (j < k ≤ n)
which is an image of D2 on B2,

then we say that the program execution trace σ satisfies SF (D1, D2).

Backward Mandatory Consistency Checking. A backward mandatory
consistency specification consists of two sequence diagrams D1 and D2, denoted
by SB(D1, D2), and require that if a reference scenario described by D1 oc-
curs during the execution of a program, then it must follow immediately from
a scenario described by D2. For example, a backward mandatory consistency
specification for the railway crossing system is depicted in Figure 7, which re-
quires that the scenario for raising the barrier after the train passes must follows
immediately from the scenario for the preparation for the train crossing.

�
�

� �
�

��

Train arriving

Acknowledgement

Approaching

Crossing secured

Low barrier

Barrier down

Power off

Monitor Controller Barrier

�
�

�
�

Train passed

Raise barrier

Barrier up

Power off

Monitor Controller Barrier

⇐

Fig. 7. Backward mandatory consistency specification for the railway crossing system

Let D1 = (O1, E1, M1, L1, V1), D2 = (O2, E2, M2, L2, V2), and σ be a program
execution trace of the form v0ˆv1ˆ . . . ˆvn. If for any agent B1 of O1, for any
subsequence σ1 of σ of the form viˆvi+1ˆ . . . ˆvj (0 ≤ i < j ≤ n) which is an
exact image of D1 on B1, the following backward mandatory condition is satisfied:

– there is an agent B2 of O2 such that θB1(o) = θB2(o) for any o ∈ O1 ∩ O2,
and

– there is a subsequence σ2 of σ of the form vkˆvk+1ˆ . . . ˆvi−1 (0 ≤ k < i)
which is an image of D2 on B2,

then we say that the program execution trace σ satisfies SB(D1, D2).

Bidirectional Mandatory Consistency Checking. A bidirectional manda-
tory consistency specification consists of three sequence diagrams D1, D2, and
D3, denoted by SD(D1, D2, D3), and require that if a reference scenario de-
scribed by D1 occurs during the execution of a program and a reference sce-
nario described by D2 follows, then in between these two scenarios, a scenario

Runtime Verification of Java Programs for Scenario-Based Specifications 103

described by D3 must occur exactly. For example, a bidirectional mandatory
consistency specification for the railway crossing system is depicted in Figure 8,
which requires that between the scenarios for confirming the train arriving and
for permitting the train crossing, the scenario for lowering the barrier must exist
exactly.

�
�

�

Train arriving

Acknowledgement

Approaching

Monitor Controller

�
�

�

Low barrier

Barrier down

Power off

Controller Barrier

�
�

Crossing secured

Train passed

Monitor Controller

⇒ ⇐

Fig. 8. Bidirectional mandatory consistency specification for RCS

Let σ be a program execution trace of the form σ = e0ˆe1ˆ . . . ˆen, and

D1 =(O1, E1, M1, L1, V1) , D2 =(O2, E2, M2, L2, V2) , D3 = (O3, E3, M3, L3, V3).

If for any agent B1 of O1 and any agent B2 of O2 such that θB1(o) = θB2(o) for
any o ∈ O1 ∩ O2, for any subsequence σ1 of σ of the form

σ1 = eiˆei+1ˆ . . . ˆejˆej+1ˆej+2ˆ . . . ˆek−1ˆekˆek+1ˆ . . . ˆem

where

– 0 ≤ i < j < k < m ≤ n,
– the subsequence eiˆei+1ˆ . . . ˆej is an exact image of D1 on B1,
– the subsequence ekˆek+1ˆ . . . ˆem is an exact image of D2, and
– any subsequence of the form eaˆea+1ˆ . . . ˆeb (j < a < b < k) is not any

image of D1 or D2,

the following bidirectional mandatory condition is satisfied:

– there is an agent B3 of O3 such that θB1(o) = θB3(o) for any o ∈ O1 ∩ O3
and that θB2(o) = θB3(o) for any o ∈ O2 ∩ O3, and

– the subsequence ej+1ˆej+2ˆ . . . ˆek−1 is an image of D3 on B3,

then we say that the program execution trace σ satisfies SD(D1, D2, D3).

3.3 Support Tool and Case Study

With the work presented in this paper, we aim to develop an automatic support
tool for testing, which may help us to reduce the testing cost. This tool can help
us to detect the inconsistency between the behavior implemented by the program
and the expected behavior specified by the scenario-based specifications. The
tool may proceed in a fully automatic fashion, and we can drive this tool after
we leave our office in the evening, and see the results in the next morning.

Based on our work in this paper, we have implement a prototype of this kind
of tool. The tool accepts a Java program under verification, instruments the

104 X. Li et al.

program according to the given scenario-based specifications, drives the instru-
mented program to execute on a set of random test cases, and reports the errors
which result from the inconsistency with the specification.

By the tool, we have conducted several case studies for evaluating the poten-
tial and usability of the solution presented in this paper. One case study is an
automated teller machine simulation system, which is a complete example from
[5] of object-oriented analysis, design, and programming applied to a moderate
size problem. The other case studies also include an microwave oven simulation
system which is implemented in Java with 17 classes and 113 methods totally,
and an official retirement insurance system which is a real project in the indus-
try, and which is implemented in Java with 17 classes and 241 methods totally.
In these case studies, in addition to the bugs embedded manually, by the tool
we did find out several inconsistent cases resulting from the program bugs or the
incomplete sequence diagrams we use as the specification. Since the algorithms
for program instrumenting and consistency checking are simple and efficient, we
think there is no particular obstacle to scale our approach to larger systems.

4 Conclusion

To our knowledge, there has been few literature on runtime verification of Java
programs for the scenario-based specifications expressed by UML sequence di-
agrams. The runtime verification techniques have been used for Java programs
and the other programs [6-9]. In those works, several specification languages
based on temporal logics are designed to describe the relations between events,
but do not support to describe the mandatory consistency specifications consid-
ered in this paper. Even for the temporal logics themselves, it is difficult and not
a natural way to be used to describe the scenario-based specifications considered
in this paper in some cases such that an event is allowed to occur many times in a
specification and that the scenarios are required to adhere immediately with each
other in a mandatory consistency specification. Compared to those specification
languages, UML sequence diagrams are much more popular and the specifica-
tions expressed by UML sequence diagrams can come directly from the artifacts
generated in software development processes. Furthermore, we know that it is
not easy to use formal verification techniques directly in industry because the
specification languages in the verification tools are too formal and theoretical
to master easily. In industry, it is much more acceptable to adopt UML se-
quence diagrams as a specification language instead of the temporal logic based
languages in formal verification tools. In addition, since the specifications are
described by UML sequence diagrams, our work can also be used to detect the
incomplete UML interaction models constructed in reverse engineering for the
legacy systems, which is another advantage. A scenario-based testing approach
is presented in [12] based on a simple subset of live sequence charts (LSCs) [13]
which can not be used to describe the backward and bidirectional mandatory
consistency specifications considered in this paper. There are also several works
[10,11] on verifying Java programs based on model checking techniques whose
capacity is restricted by the huge program state spaces.

Runtime Verification of Java Programs for Scenario-Based Specifications 105

In this paper, our work focuses on the runtime verification of Java programs,
but the underlying approach and ideas are more general and can also possibly
be applied to the runtime verification of the other object-oriented programs.

References

1. ITU-T. Recommendation Z.120. ITU - Telecommunication Standardization Sector,
Geneva, Switzerland, May 1996.

2. J. Rumbaugh and I. Jacobson and G. Booch. The Unified Modeling Language
Reference Manual, Addison-Wesley, 1999.

3. OMG. UML2.0 Superstructure Specification, availabe at http://www.uml.org, Oct.
2005.

4. Doron A. Peled. Software Reliability Methods. Springer, 2001.
5. Russell C. Bjork. The Simulation of an Automated Teller Machine.

http://www.math-cs.gordon.edu/local/courses/cs211/ATMExample/Links.html.
6. Detlef Bartetzko, Clemens Fischer, Michael Moller, and Heike Wehrheim. Jass -

Java with Assertions. In Electronic Notes in Theoretical Computer Science, Vol.55,
Issure 2, Elsevier, 2001.

7. Klaus Havelund and Grigore Rou. Monitoring Java Programs with Java PathEx-
plorer. In Electronic Notes in Theoretical Computer Science, Vol.55, Issure 2,
Elsevier, 2001.

8. M. Kim, S. Kannan, I. Lee, O. Sokolsky and M. Viswanathan. Java-MaC: A
Run-time Assurance Tool for Java Programs. In Electronic Notes in Theoretical
Computer Science, Vol.55, Issure 2, Elsevier, 2001.

9. Mark Brorkens, Michael Moller. Dynamic Event Generation for Runtime Checking
using the JDI. In Electronic Notes in Theoretical Computer Science, Vol.70, Issure
4, Elsevier, 2002.

10. David Y.W. Park, Ulrich Stern, Jens U. Skakebak, and David L. Dill. Java
Model Checking. In Proceedings of the First International Workshop on Automated
Program Analysis, Testing, and Verification, 2000.

11. Klaus Havelund and Thomas Pressburger. Model checking JAVA programs us-
ing JAVA PathFinder. In International Journal on Software Tools for Technology
Transfer, (2000) 2: 366-381.

12. M. Lettrai and J. Klose. Scenario-based monitoring and testing of real-time UML
models. In Proceedings of 4th International Conference on Unified Modeling Lan-
guage (UML2001), LNCS 2185, Springer, 2001.

13. Werner Damm and David Harel. LSCs: Breathing life into message sequence charts.
In Formal Methods in System Design, 19(1):45-80, 2001.

14. Olaf Kluge. Modelling a Railway Crossing with Message Sequence Chatrs and Petri
Nets. In H.Ehrig et al.(Eds.): Petri Technology for Communication-Based Systems
- Advance in Petri Nets, LNCS 2472, Springer, 2003, pp.197-218.

15. Constance L. Heitmeyer, Ralph D. Jeffords, and Bruce G. Labaw. Comparing Dif-
ferent Approaches for Specifying and Verifying Real-Time Systems. In Proc. 10th

IEEE Workshop on Real-Time Operating Syatems abd Software. New York, 1993.
pp.122-129.

Secure Execution of Computations
in Untrusted Hosts

S.H.K. Narayanan1, M.T. Kandemir1, R.R. Brooks2, and I. Kolcu3

1 Department of Computer Science and Engineering
The Pennsylvania State University, University Park, PA 16802, USA {snarayan,

kandemir}@cse.psu.edu
2 Department of Electrical and Computer Engineering

Clemson University, Clemson, SC 29634, USA
rrb@acm.org

3 Computation Department, UMIST, Manchester, M60 1QD, UK
ikolcu@umist.ac.uk

Abstract. Proliferation of distributed computing platforms, in both
small and large scales, and mobile applications makes it important to
protect remote hosts (servers) from mobile applications and mobile appli-
cations from remote hosts. This paper proposes and evaluates a solution
to the latter problem for applications based on linear computations that
involve scalar as well as array arithmetic. We demonstrate that, for cer-
tain classes of applications, it is possible to use an optimizing compiler
to automatically transform code structure and data layout so that an
application can safely be executed on an untrusted remote host without
being reverse engineered.

1 Introduction

Mobile code technology allows programs to move from node to node on a net-
work. Java is probably the best-known mobile code implementation. Applets can
be downloaded and executed locally. Remote Method Invocation (RMI) allows
applets registered with a service to be executed on a remote node. The use of
a standardized language allows virtual machines running on different processors
to execute the same intermediate code.

The software update and patch systems for both Microsoft and the Linux com-
munity are built on mobile code infrastructures. In current security research, the
goal is to secure individual workstations and restrict program execution to a set
of trusted programs.This paper looks at the largely ignored problem of protect-
ing programs running on remote untrusted systems, and proposes automated
compiler help to ensure secure execution of programs. Several important appli-
cations exist for this technology. A driving force for computer interoperability
and sharing of software is business-to-business e-commerce. There are real needs
to retrieve information from remote suppliers or clients. On the other hand, there

This work is supported in part by NSF Career Award 0093082 and a grant from the
GSRC.

L.M. Pinho and M. González Harbour (Eds.): Ada-Europe 2006, LNCS 4006, pp. 106–118, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Secure Execution of Computations in Untrusted Hosts 107

are also real needs to guard corporate intellectual property. The approaches we
present are an initial step towards allowing interoperability without risking re-
verse engineering and the loss of intellectual capital. Legal and accounting appli-
cations of the approach for auditing and monitoring systems is also foreseeable.
Finally, remote sensor-based processing is another potential application domain
because in many cases data remains with the sensors that collect them or our
application needs data that is available only in a particular region covered by
(untrusted) sensor nodes. Consequently, we need to be able to execute our appli-
cation remotely and we do not know whether the sensor nodes are reliable. In all
these scenarios, remote secure execution in an untrusted environment is a critical
issue, and this paper proposes and evaluates a compiler-driven approach to this
problem and presents experimental evidence demonstrating its applicability.

Mobile code security is not a new topic. Generally, the research in this area can
be broken down into three parts. Protecting the host from malicious code, pro-
tecting the code from malicious hosts and finally, preventing man-in-the-middle
type attacks which result in mobile code or generated results being leaked. In
the mobile code protection domain, which is what this paper targets, prior works
involve sending the original code and somehow ensuring that the right results are
brought back, i.e. they concentrate on the results generated by mobile code. For
example, [3] deals with spoofing and [14] addresses the problem of a malicious
remote host not generating the right results. Further, [9] gives a technique to
prevent one host from changing the results generated by another host.

However, the prior works assume that the original code can be shared with
all hosts, irrespective of whether they are trustworthy. Our approach allows the
owner of the mobile code, to protect the code itself from being revealed and
hence helps to preserve intellectual capital. The proposed mechanism allows the
owner to send a code that is different from the original code and still get back the
results that he/she wants. Hence, this approach ensures that if the owner does not
want to share the code, the confidentiality of the original code is never lost. The
proposed mechanism cannot individually solve all the issues involved in mobile
code security (such as spoofing, correct code execution, obtaining untampered
results), but when used in conjunction with existing techniques it ensures that
the code as well as the generated results are secure.

This rest of this paper is organized as follows. Section 2 discusses related
work. Section 3 presents a high-level view of the proposed approach, and its
mathematical details are presented in Section 4. Section 5 explains how compu-
tation matrices are formed and how our approach handles affine computations.
Section 6 discusses the selection of transformation matrices for correct secure ex-
ecution. Section 7 discusses how our approach is extended when we have multiple
servers. Section 8 provides an example and Section 9 discusses our experimental
results. Section 10 concludes the paper.

2 Related Work

The work presented in this paper is related to many efforts in distributed comput-
ing, agent-based computing, remote procedure invocation, code security/safety,

108 S.H.K. Narayanan et al.

and code obfuscation domains. In this section, we only focus on the secure exe-
cution of functions on untrusted hosts. This has been studied as a more general
problem of confidentiality of execution in efforts such as [1, 4, 12, 13]. Most of
these efforts focus on the circuit computation model which is not very well
suited for general, large-scale mobile code. Sander and Tschudin [8, 10] defined a
function hiding scheme, and focused on non-interactive protocols. In their frame-
work, the privacy of a function is assured by an encrypting transformation on
that function. Integrity of evaluation is the ability of the circuit owner to verify
the correctness of the execution of his/her circuit. This problem has been widely
studied in the view of reliability but not from the view of a malicious server. The
proof-based techniques [14] suggested that the untrusted host has to forward a
proof of correctness of execution together with the result.

Perhaps the most relevant prior work to the one presented in this paper is [6, 7]
in which a function is encrypted using error coding and sent to the untrusted
host which provides the clear-text input. The enciphered output generated by
the host is then sent back to the original host, where it is decrypted and the result
is verified. The authors advocate the employment of the tamper proof hardware
(TPH) as a necessary mechanism to store and provide the control flow between
the numerous functions that make up a program. Control flow is located on the
TPH and is supplied to the untrusted host. The main difference between these
studies and the work presented in this paper is that we target general scalar and
array based computations not circuit-specific expressions. Consequently, the code
and data transformations used by our approach are different from those employed
in prior studies such as [6, 7], and are directed by an optimizing compiler. Further,
our approach deals with the case with multiple untrusted hosts as well.

3 High-Level View

This section presents an overview of the proposed mechanism. First, the mech-
anism used for scalar codes is presented. Following this, array based codes are
discussed. In both the cases, we use the term “client” to refer to the owner of
the application code to be executed, and the term “server” to denote the remote
untrusted host (node) that will execute this application.

3.1 Scalar Codes

The high-level view of our approach for linear scalar computations is illustrated
in Figure 1(a). On the client side, we have a computation represented, in a
compact form, by computation matrix C. We want to execute this computation
using input data represented by vector I, and generate an output, represented
by vector O. That is, the original computation that we want to perform (as the
client) can be expressed in mathematical terms as:

O = CI. (1)

Secure Execution of Computations in Untrusted Hosts 109

(a) (b)

Fig. 1. High-level view of secure code execution in an untrusted server for (a) Scalar
codes and (b)Array based codes. The thick curve represents the boundary between the
client and the server. Both cases calculate O = CI .

The problem is that the client does not have input I and this input data cannot
be transmitted to the client.1 Consequently, the computation must be performed
at the server side. The client transforms C to C′, and sends this transformed
code to the server. The server in turn executes this transformed code represented
by matrix C′ using input I, computes an output (O′), and sends it to the client
(note that O′ 	= O). Since only the client knows the relationship between C and
C′, it also knows how to obtain the originally required output O from O′, and
it uses an appropriate data transformation for this purpose.

3.2 Array-Based Codes

The high-level view of our approach for array based computations is illustrated
in Figure 1(b). C is transformed by a loop transformation into a code C′, in
which the order, by which the elements of an array are accessed, within the loop
is changed. In the next step, C′ undergoes a semantic transformation to form a
new code in which the meaning of the code itself is changed. In order to prevent
the untrusted host from gleaning the locations of the arrays to which computed
values are written (on the left-hand-side of the expressions), the left-hand-side
arrays are replaced by different array expressions. This step is referred to as
redirection or data remapping. C′′ is applied to the input I by the server to
generate the output O′′. This output is sent back to the client, which obtains
O′ from it by applying the inverse of the semantic transformation used earlier.
Following this, we use the inverse of the array redirection used earlier, which
eventually gives us O, the desired output (i.e., O = CI) .

1 This can be due to two potential reasons: either the data is not physically movable
as in the case in a remote sensor processing environment, or the server is not willing
to share data, due to security concerns.

110 S.H.K. Narayanan et al.

4 Mathematical Details

This section provides the mathematical details of our proposed method. For the
purpose of clarity, the determination of computation and code/data transforma-
tion matrices is dealt with separately in Section 5 and Section 6, respectively.

4.1 Scalar Codes

The main restriction that we have regarding the computation to be performed
is that it should be a linear function of I, and as a result, can be represented by
a matrix (C), as is well-known from the linear algebra theory. Note that in the
execution scenario summarized above, the client performs two transformations:
• Code Transformation: This is performed to obtain C′ from C. As both C′ and
C are linear and expressed using matrices, we can use a linear transformation
matrix T to denote the transformation performed. Consequently :

C′ = TC. (2)

• Data Transformation: This is performed to obtaining O from O′, and can also
be represented using a matrix (M):

O = MO
′
. (3)

4.2 Array-Based Codes

The client performs the following series of transformations on the computation
matrix C:

• Loop Transformation: In optimizing compiler theory, loop transformations
are used to reorder the points in loop iteration spaces [11]. Here it is used to
obtain C′ from C. Each execution of a loop body is represented by an iteration
vector i. An array reference accessed in a nest is represented as:

Li + o, (4)

where L is referred to as the access matrix and o is referred to as the offset
vector. A linear loop transformation can be represented using a transformation
matrix TL. Upon application of this transformation, the iteration vector i is
mapped to i′ = TLi. As a consequence, the new subscript function is given by
the following expression:

LTL
−1i′ + o. (5)

This means that the new (transformed) access matrix is L′ = LTL
−1. The loop

transformation does not affect the offset vector o. The loop bounds are, however,
affected by this transformation. The loop bounds of the transformed iteration
space can be computed – in the most general case – using techniques such as
Fourier-Motzkin elimination [11].

• Semantic Transformation: This is performed to obtain C′′ from C′. Since
both C′′ and C′ are linear and expressed using matrices, a transformation matrix
T is used to denote the transformation being applied.

Secure Execution of Computations in Untrusted Hosts 111

C′′ = TC′. (6)

It needs to be emphasized that T is entirely different from TL. While it is
true that both of them are applied to the loop nest, TL re-orders loop itera-
tions, whereas T modifies the loop body. Another important difference is that
while TL is a semantic-preserving transformation, T changes the meaning of the
computation performed within the loop body.

• Redirection: This is a data space transformation performed to hide the mem-
ory locations in the client to which the results of computation are being stored.
This also makes manipulating the results of the computation easier as the di-
mensions of the result matrices will be the same. Let Li+o be an array reference
after the loop and semantic code transformations have been applied. Our goal is
to apply a data (memory layout) transformation such that the access matrix and
the offset vector are mapped to desired forms. While any data transformation
that changes L and o is acceptable, the one adopted in this work transforms the
access matrix to the identity matrix and the offset vector to the zero vector if
it is possible to do so (if not, we use an arbitrary but legal transformation). We
represent a data transformation using a pair (S, s). In this pair, S is termed as
the data transformation matrix and is m × m for an m-dimensional array. s is
called the shift vector and has m entries. Redirection transforms, the reference
Li + o to:

SLi + So + s.

We want SL to be the identity matrix (ID) and So + s to be the zero vector.
We solve this system of equations as follows. First, from SL = ID we solve for
S. After that, we substitute this S in the second equation (So + s = 0), and
determine s.

• Inverse Semantic Transformation: This is performed to obtain O′ from O′′,
and can also be represented using a matrix (M).

O′ = MO′′. (7)

Note that, at this point, we apply the inverse of the redirection used earlier, and
do not apply the inverse of the loop transformation used earlier. This is because,
C and C′ are semantically equivalent and the outputs generated by them are
equivalent (in the context of this paper).

• Inverse Redirection: The purpose of this transformation is to obtain the
original memory locations of the output elements computed. Recall that the
redirection transforms reference Li + o to SLi + So + s. To obtain the original
reference from this, we use the data transformation (Y, y). This gives us:

Y {SLi + So + s} + y,

which expands to

Y SLi + Y So + Y s + y.

Since we want Y SL = L and Y So + Y s + y = o, we determine Y and y as:

Y = S
−1 and y = −S

−1
s.

112 S.H.K. Narayanan et al.

5 Determining Computation Matrix and Handling Affine
Programs

An important problem is to determine matrix C, given a code fragment. Recall
that this matrix captures the relationship between I and O. Let us assume
for now that the program variables in I and O are disjoint; that is, the two
vectors have no common variables. In this case, it is easy to convert a linear
code fragment to C. As an example, consider the code fragment below:

a := d+e+f;
b := g-2e;
c := 3f+4d;

For this fragment, the input variables are e, d, f and g, and the output variables
are a, b and c. Consequently, we can express I, O, and C as:

I =

d
e
f
g

; O =
a
b
c

; and C =
1 1 1 0
0 −2 0 1
4 0 3 0

.

However, the problem becomes more difficult if there are dependencies in the
code. Our solution to this problem is to use multiple C ”sub-fragments”. As an
example, let us consider the following code fragment:

a := d-5c+2g;
b := e+f;
c := g+4d;
h := 3e-4d;

Since variable c is used both on the right-hand-side of the first statement and on
the left-hand-side of the third statement, we cannot directly apply the method
used in the previous case. However, we can (logically) divide the statements
into two groups. The first group contains the first two statements, whereas the
second group contains the remaining two statements. Note that, the only data
dependence in the code (an anti-dependence in this case) goes from the first
group to the second group; that is, the original code fragment is divided over
the data dependence. After this division, we can assign a separate C matrix to
each sub-fragment. In this example, we have:

I1 =

c
d
e
f
g

; O1 = a
b

; C1 = −5 1 0 0 2
0 0 1 1 0 and I2 =

d
e
g

; O2 = c
h

; C2 = 4 0 1
−4 3 0 .

The C1 and C2 matrices are then used to represent the computation performed
by the two sub-fragments.

So far, our formulation has focused on handling linear computations. We now
discuss how our approach can be extended to affine computations. These compu-
tations are different from linear computations in that the relationship between
I and O is expressed as:

O = CI + c, (8)

Secure Execution of Computations in Untrusted Hosts 113

as opposed to O = CI, used in the linear case. Here, c is a constant vector, i.e.,
it contains the constant terms used in the assignment statements that form the
computation. Let us define our loop transformation in this case as follows:

C
′ = TC + t, (9)

where t is a constant vector, whose entries are to be determined (along with those
of T). In this case, the server computes O′ = TCI + Tc + t. After receiving O′

from the remote (untrusted) server, the client calculates:

O = MO′ + m, (10)

where m is a constant vector. Hence, for correct execution, we need to have:

CI + c = MTCI + MTc + Mt + m (11)

This means that the following two equalities have to be satisfied:

C = MTC (12)
c = MTc + Mt + m (13)

The details of the solution are omitted due to space concerns.

6 Selection of T and M

In this section, we study the required relationship between T and M to ensure
correctness. First, we focus on scalar codes, and then array based codes.

6.1 Scalar Codes

We start with Equation (3), and proceed as follows:

O = MO′

O = MC′I

O = MTCI

CI = MTCI

Since I 	= 0 (zero vector), from this last equality, we can obtain:

C = MTC. (14)

In other words, M must be left inverse of T . Let us now discuss the dimen-
sionalities of matrices T and M . Assuming that I has n entries and O has m
entries, C is m × n. Therefore, the only dimensionality requirement regarding
T is that it needs to have m columns, and similarly M needs to have m rows.
Thus, matrices T and M are k × m and m × k, respectively. That is, we have a
flexibility is selecting k. There is also an alternate way of generating C′ from C.
More specifically, we can have C′ = CT . In this case, we can proceed as follows:

114 S.H.K. Narayanan et al.

O = MO′

O = MC′I

O = MCTI

CI = MCTI

Since I 	= 0 (zero vector), from this last equality, we can obtain:

C = MCT. (15)

However, it should be noticed that with this formulation, we do not have a flex-
ibility in selecting the dimensions of transformation matrices T and M . Specif-
ically, T should be an n × n matrix, and M should be an m × m matrix; i.e.,
we need to work with square matrices. In this case, given a T matrix, we can
determine M by solving the resulting linear system of equations. Alternately, we
can adopt the following strategy. Let us select an M matrix first, and define a
new matrix Q as Q = MC. Using this, we can proceed as follows:

C = MCT

C = QT

Q
T

C = Q
T

QT

(QT
Q)−1

Q
T

C = T

Notice that the last equality gives us the T matrix. It must be noted, however,
that in order to use this strategy, we need to select a suitable M such that QT Q
is invertible, i.e., it is non-singular.

6.2 Array Based Codes

Selection of the matrices T and M for array based codes is similar to their
selection for scalar codes. Starting with Equation (7), we proceed as follows:

O′ = MO′′

O′ = MC′′I

O′ = MTC′I

C′I = MTC′I

Note that the last equality is obtained from the penultimate one because loop
transformation changes only the order by which the elements are accessed during
execution but not the result of the execution itself. So, it is correct to equate O′

and C′I; and since I 	= 0 (zero vector), from this last equality, one can obtain:

C′ = MTC′. (16)

In other words, M must be left inverse of T. Note that similar to the case
with scalar codes, there is also an alternate way of generating C′′ from C′. More
specifically, we can set C′′ to C′T . The details are omitted due to space concerns.

Secure Execution of Computations in Untrusted Hosts 115

7 Multiple Server Case

In this section, we discuss how the proposed approach can be extended to the
case with multiple servers. Due to space concerns, we focus only on scalar com-
putations. The execution scenario in this case, which is depicted in Figure 2,
can be summarized as follows. The client divides the computation (C) to i sub-
computations, where the ith sub-computation is represented by matrix Ci, where
1 ≤ i ≤ p. In mathematical terms, this can be expressed as follows:

O = CI (17)

⎛
⎜⎝

O1
O2

...
Op

⎞
⎟⎠ =

⎛
⎜⎝

C1 0 0 0
0 C2 0 0
...

...
. . .

...
0 0 0 Cp

⎞
⎟⎠

⎛
⎜⎝

I1
I2

...
Ip

⎞
⎟⎠ . (18)

Note that Ci operates on input Ii and generates output Oi. The client then
determines a Ti matrix and computes C′

i = TiCi. Then, C′
i is sent to the server

i, which in turn computes O′
i = C′

iIi, and sends it back. After having received
O′

i from server i, the client calculates Oi = MiO
′
i, where Mi is the data trans-

formation matrix used in conjunction with Ti. Note that, for correctness, we
should have Mi = T−1

i . After collecting O′
1, O′

2, ..., O′
p and obtaining O1, O2,

..., Op, the client merges these outputs into the desired out vector O. A simi-
lar analysis could be conducted by using the alternate formulation as well (see
Section 6).

Fig. 2. High-level view of secure code execution in multiple untrusted servers. Note
that the original computation, C, is divided into p sub-computations, and each sub-
computation is set to get executed on a different server.

8 Example

In this section an example on our approach is presented. Due to space restrictions
only an example based on scalar codes is presented.

Consider the following linear code fragment taken from [5]:

116 S.H.K. Narayanan et al.

dx0 = x0 - x1 - x12
dy0 = y0 - y1 - y12
dx1 = x12 - x2 + x3
dy1 = y12 - y2 + y3

The computation matrix for this computation is:

C =

1 −1 0 0 −1 0 0 0 0 0
0 0 0 0 0 1 −1 0 0 −1
0 0 −1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 −1 1 1

.

Given the input represented by

I = (x0 x1 x2 x3 x12 y0 y1 y2 y3 y12)T = (10 10 10 10 10 10 10 10 10 10)T ,

the original output can be computed as:

O = (dx0 dy0 dx1 dy1)T = CI =
1 −1 0 0 −1 0 0 0 0 0
0 0 0 0 0 1 −1 0 0 −1
0 0 −1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 −1 1 1

10 10 10 10 10 10 10 10 10 10 T =

−10
−10

10
10

.

We now discuss how the same computation is carried out in an untrusted remote
server environment. Let us assume the following loop transformation matrix:

T =

1 1 0 −1
0 1 0 0

−1 0 1 0
0 −1 0 1

.

In this case, the transformed computation matrix (C′ = TC) is:

C′ =

1 −1 0 0 −1 1 −1 1 −1 −2
0 0 0 0 0 1 −1 0 0 −1

−1 1 −1 1 2 0 0 0 0 0
0 0 0 0 0 −1 1 −1 1 2

.

Consequently, the computation performed by the remote server is:

O′ = C′I = −30 − 10 20 20 T .

After receiving the output generated by the server, the client needs to multiply
it by M = T−1. In this case, M can be found as:

M =

1 0 0 1
0 1 0 0
1 0 1 1
0 1 0 1

.

Therefore, the resulting output is:

MO
′ =

1 0 0 1
0 1 0 0
1 0 1 1
0 1 0 1

−30
−10

20
20

=

−10
−10

10
10

,

which is the same as the intended output that would be computed from O = CI.

Secure Execution of Computations in Untrusted Hosts 117

9 Experiments

In this section, we explain how the overheads of the proposed mechanisms are
calculated. To test the proposed approach, we implemented it within an opti-
mizing compiler (built upon SUIF [2]) and performed experiments with three
applications that model execution in a sensor-based image processing environ-
ment. The first of these applications, TRACK SEL 2.0, implements a vehicle
tracking algorithm which is used to support missile systems by maintaining sur-
veillance against incoming targets and providing the data required for targeting,
launch, and midcourse guidance. The second application, SMART PLANNER,
is an emergency exit planner. The application determines the best exit route in
case of an emergency which is detected, in the current implementation, using
heat sensors. Our third application is named CLUSTER and implements a dy-
namic cluster forming algorithm. It’s main application area is energy-efficient
data collection in a wireless sensor environment. All these three applications are
written in C++, and their sizes range from 1,072 to 3,582 C++ lines (excluding
comment lines). For each application in our experimental suite, we compared
two different execution schemes. In the first scheme, which is not security ori-
ented, the application is shifted from one workstation to another and executed
there using local data. The second execution implements the proposed approach.
Specifically, the application is first transformed and then sent to the remote ma-
chine and, when the results are received, they are transformed as explained in
the paper. We measured the additional performance overhead incurred by our
approach over the first execution scheme. More specifically, we computed the
ratio

(loop restructuring time + data transformation time)
(total execution time)

,

where “total execution time” includes the time spent in computation in the remote
machine and the time spent during communication. We found that the value of
this ratio was 0.0421, 0.0388, and 0.0393 for the benchmarks TRACK SEL 2.0,
SMART PLANNER, and CLUSTER, respectively. That is, the extra code/data
transformations required by our approach do not bring significant performance
overheads, which means that we pay a small price to hide the semantics of the
application from the remote machine.

10 Concluding Remarks

This paper presents a novel, automated solution to the problem of protecting
mobile applications from untrusted remote hosts. These applications based on
scalar and array based codes, are automatically transformed with the help of an
optimizing compiler to prevent reverse engineering.

Future work involves extending the proposed approach to cater to general
purpose programs that cannot be readily expressed as a linear function of the
inputs. In order to so, a method to represent the non-linear code in an array

118 S.H.K. Narayanan et al.

format is required. One possible way is to simply treat a variable, such as a,
and a non-linear sub-expression that it appears in, such as a2, to be different
variables. That is, we can assume a2 = x and use x in our formulation. This
technique however does not solve the problem of an expression like ab where b
is itself a variable. Further, the problem of recognizing dependencies between
an assignment to a and the use of x is complicated. Once the representation
mechanism exists, it can be used with the transformation techniques to hide the
semantics of the original code as shown in this paper.

References

1. M. Abadi and J. Feigenbaum. Secure circuit evaluation. Journal of Cryptology,
2(1):112, 1990.

2. S. P. Amarasinghe, J. M. Anderson, C. S. Wilson, S.-W. Liao, B. R. Murphy, R. S.
French, M. S. Lam, and M. W. Hall. Multiprocessors from a Software Perspective
IEEE Micro, June 1996, pages 52-61.

3. A. Bremler-Barr, H. Levy. Spoofing prevention method. In Proc. of INFOCOM
2005, Volume 1, pages 536 - 547, 2005.

4. O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or a
completeness theorem for protocols with honest majority. In Proc. of the 19th
Annual ACM Symposium on Theory of Computing, pages 218–229, May 1987.

5. C. Li, M. Potkonjak, and W. H. Mangione-Smith. MediaBench: a tool for eval-
uating and synthesizing multimedia and communication systems. In Proc. of the
International Symposium on Microarchitecture, 1997.

6. S. Loureiro, L. Bussard, and Y. Roudier. Extending tamper-proof hardware security
to untrusted execution environments. In Proc. of CARDIS, 2002.

7. S. Loureiro and R. Molva. Function hiding based on error correcting codes. In
Proc. of the International Workshop on Cryptographic Techniques and Electronic
Commerce, pages 92–98, 1999.

8. T. Sander and C. F. Tschudin. Towards mobile cryptography. In Proc. of the 1998
IEEE Symposium on Security and Privacy, pp. 215–224, 1998.

9. A.Tripathi, N. Karnik. A Security Architecture for Mobile Agents in Ajanta. In
Proc. of the International Conference on Distributed Computing Systems, 2000.

10. T. Sander and C. Tschudin. On software protection via function hiding. In Proc.
of the Second Workshop on Information Hiding, 1998.

11. M. Wolfe. High Performance Compilers for Parallel Computing, Addison-Wesley
Publishing Company, 1996.

12. A. C. Yao. Protocols for secure computations. In Proc. of the IEEE Symposium on
Foundations of Computer Science, pages 160–164, 1982.

13. A. C. Yao. How to generate and exchange secrets. In Proc. of the IEEE Symposium
on Foundations of Computer Science, pages 162–167, 1986.

14. B. Yee. A sanctuary for mobile agents. Technical Report CS97-537, Department of
Computer Science and Engineering, April 1997.

A Systematic Approach to Developing Safe
Tele-operated Robots�

Diego Alonso, Pedro Sánchez, Bárbara Álvarez, and Juan A. Pastor

Universidad Politécnica de Cartagena, Division of Systems and Electronic
Engineering (DSIE) Campus Muralla del Mar, s/n. Cartagena, E-30202, Spain

diego.alonso@upct.es

Abstract. Tele–operated service robots are used for extending human
capabilities in hazardous and/or inaccessible environments. Their use is
undergoing an exponential increase in our society, reason why it is of
vital importance that their design, installation and operation follow the
strictest possible process, so that the risk of accident could be minimised.
However, there is no such process or methodology that guides the full
process from identification, evaluation, proposal of solutions and reuse
of safety requirements, although a hard work is being done, specially
by the standardisation committees. It’s also very difficult to even find
in the literature examples of safety requirements identification and use.
This paper presents the engineering process we have followed to obtain
the safety requirements in one of the robots of the EFTCoR1 project and
the way this requirements have affected the architecture of the system,
with a practical example: a crane robot for ship hull blasting.

1 Introduction

Human operators use tele–operated service robots for performing more or less
hazardous operations (manipulation of heavy and/or dangerous products) in
more or less hostile environments (nuclear reactors, space missions, warehouses,
etc). Anyway, independently of the operation, the robot has to interact with both
the environment it’s working on and with human operators. So, it is essential that
the design (which include both software and hardware) of the robot involves no
(or an acceptable level of) risk, neither for the operators, nor for the environment
nor for the robot itself.

Nevertheless, it’s not always possible to make a system free of failures in its
design or operation. Apart from the risk inherent to the use of the mechanisms
themselves, these systems work in hazardous environments, where the probabil-
ity of the risk is higher than normal. Should a failure happen, the consequences
� This work has been partially supported by the Spanish Government programs

CICYT, ANCLA (TIC2003-07804-C05-02), part of DYNAMICA (DYNamic and
Aspect-Oriented Modeling for Integrated Component-based Architectures).

1 Project EFTCoR: Environmentally Friendly and Cost-Effective Technology for Coat-
ing Removal. Fifth framework programme of the European Community for re-
search, key action Competitive and Sustainable Growth (GRD2-2001-50004).

L.M. Pinho and M. González Harbour (Eds.): Ada-Europe 2006, LNCS 4006, pp. 119–130, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

120 D. Alonso et al.

of it can even involve the loss of human lives. [1] documents many cases of
computer–related failures, such as the Therac–25 (a radiation–therapy device),
the missiles shield in Saudi Arabia, etc.

But safety aspects are seldom included in the design process of the system
from the beginning, even though they are a critic aspect. Generally, safety has
to conform and adapt to the already designed system and not vice versa, when
it’s known that safety involves not only the design of the software but also the
hardware. In fact, there are many situations in which a simple hardware solution
can eliminate a hazard or simplify the design of the safety software.

However, the identification of safety requirements is not different from the
identification of the rest of requirements of the system. It only requires a more
thorough study, due to their importance (don’t forget, human lives and equip-
ment integrity may depend on it!). On the other hand, safety has a big reper-
cussion in the design phase, specially when the time to define the architecture
of the system arrives. Its impact is even bigger by the need to avoid common
failure modes, that can propagate failures within different units of the system.

The objectives of this paper are to stress the importance of the capture of
the safety requirements early in the design process and to present a practical
experience on how to capture these safety requirements and how they can alter
the design of the system. The example presents a thorough study of the safety
requirements that a crane robot (a member of the EFTCoR [2, 3] project) must
conform to in order to work in such a hazardous environment as shipyards are.
The EFTCoR project is about to end after three years of intense work. Altough
the robot fulfils the basic safety requirements, we are now thinking about making
a commercial version of it, so a deeper study of safety is needed.

This paper is structured in five sections. Section 2 presents a brief description
of the EFTCoR project and the safety characteristics that make it a perfect
example. In section 3 the process followed to obtain the safety requirements
is commented, while section 4 presents the process of identification of safety
requirements for the EFTCoR crane robot. Finally, section 5 summarises the
contents of the paper and outlines future lines of work.

2 EFTCoR: the Danger of Cleaning Ship Hulls in
Shipyards

The EFTCoR family of robots offers a global solution to the problems related
to the most dangerous hull maintenance operations, such as cleaning, blasting
and painting (see Fig. 1-a). The solution is provided by means of two families
of robots: tele–operated cranes and climbing vehicles, depending on the work-
ing area. All these robots consist of a primary positioning system, capable of
covering large hull areas, and a secondary positioning system, mounted on the
primary system, that can position a tool over a relatively small area (4 to 16 m2).
The robots have been developed to achieve the objective of performing the cur-
rent hull cleaning operations in a way that avoids the emissions of residues to
the environment and enhances the working conditions of the shipyard operators

A Systematic Approach to Developing Safe Tele-operated Robots 121

a) Before EFTCoR b) With EFTCoR crane

Fig. 1. Blasting operation

without worsening the current costs and operation times. Figure 1-b shows the
crane robot in action.

The design of such a complex system as EFTCoR involves the necessity of
early detection and identification of failures so that correcting measures can be
adopted early in the design of the robot. The fundamental characteristics of
the EFTCoR that makes it necessary to take into account the need of a safe
approach when designing the robots are summarised by the following points:

� The operator uses a heavy mechatronic device whose range of movement can
cause serious damage (see Fig. 1-b).

� The system has to be used outdoors, so it has to be able to deal with at-
mospheric agents that can alter its normal operation (rain, water on the
ground, dust, noise, wind, etc).

� The working environment of the robots (shipyards) is very dynamic: there are
many cranes, load and unload of heavy equipments, lots of operators moving
around (either working on the robot or conscious or not of its presence), etc.

� Some maintenance operations include the blasting of the hull with high–
pressure abrasive particles. The energy of the jet makes it very dangerous
for human operators and for the rest of the equipment, so it’s absolutely
necessary to train operators in the use of the tool, to maintain the equipment
in perfect conditions and to install all the security components needed. Also,
as a result of the impact of the jet with the hull, a lot of dust is produced,
worsening the condition of the working place.

3 A Safety Process

The purpose of this section is to present a brief summary of the steps we have
followed for discovering the safety requirements for the EFTCoR and the con-
sequences they imply on the architecture of the system. To work this out we
have based our work on the ANSI standard for robotics [4] (see next point),

122 D. Alonso et al.

completing it with the contribution of other authors, such as Douglass [5], that
complete the proposal.

Before going on, we introduce the meaning of some words that are used in
the paper. According to Douglass, a risk is an event or condition that can occur
but is undesirable; safety is the characteristic of a system that does not incur
too much risk to persons or equipment and an accident is damage to property
o harm to persons, the happening of a risk. A safety system is, according to the
definition of ANSI/RIA, a system that has been tested, evaluated and proven to
operate in a reliable and acceptable manner when applied in a function critical
to health and welfare of personnel. Leveson [6] defines a hazard as a state or set
of conditions of a system (or object) that, together with other conditions in the
environment of the system (or object) will inevitably lead to an accident (loss
event).

3.1 Survey of Safety Standards and Techniques

There are several approaches to manage safety in literature. Many deal with
the problem of designing a standard that guides the whole process (from iden-
tification to solution) while others are simple tools or techniques. Among the
standards we want to stress the European Standard EN 61508:2001 [7] and the
American ANSI/RIA R15.06-1999 [4]. Among the techniques for safety designs
we highlight fault trees [8] and ROPES [5] (Rapid Object-oriented Process for
Embedded Systems).

EN 61508:2001. This European standard sets up a generic approximation for
dealing with all the activities related to the life–cycle of the systems that use
electric and/or electronic and/or programmable devices for safety functions.
The other main purpose of this standard is to serve as basis for the develop-
ment of specific standards for each application sector, that would take into
account techniques and solutions typical of the sector.

ANSI/RIA R15.06-1999. The objective of this standard is to enhance the
safety of personnel using industrial robot systems by establishing require-
ments for the manufacture (including remanufacture and overhaul), installa-
tion, safeguarding methods, maintenance and repair of manipulating indus-
trial robots. It is the intention of this standard that the manufacturer (in-
cluding remanufacturer and rebuilder), the installer and the end–user have
specific responsabilities.

Fault Trees. It’s one of the most popular approaches to identify, evaluate and
manage safety requirements. These trees provide a graphical notation and a
formal support that makes it easy to make the analysis from the perspective
of the system failures and their origins. However, they do not offer a global
framework for requirement specification as a discipline.

ROPES. ROPES is, in words of Douglass, “a development process that em-
phasises rapid turnaround, early proofs of correctness and low risk”. It’s an
iterative process that makes the design in small, incremental steps. Douglass
proposes an eight–steps methodology for dealing with the safety aspects of
any system.

A Systematic Approach to Developing Safe Tele-operated Robots 123

3.2 Process of Elicitation of Requirements

As last section shown, until a new standard derived from EN 61508 and targeted
to robotics appear, only the ANSI standard offers an specific guide to this kind
of systems. But ANSI encourages the use of hardware solutions (such as barriers,
light beams, buttons, etc), and does not provide any guide on the use of more
complex, software based, solutions.

To complete this lack of detail, the proposal “eight steps to safety” from Dou-
glass has been adopted. In it, Douglass proposes some design patterns oriented
to the achievement of a particular safety objective, such as multi–channel voting
pattern, watchdog pattern, safety executive pattern, etc. By using these patterns
we can design software solutions that conform to the needs imposed by the ANSI
standard, according to the level of risk of a particular hazard.

Finally, the technique of fault trees can be used to obtain the possible causes of
the failures that are analysed in the second step of the methodology we propose.
Fault trees is a very used and mature technique, but it doesn’t help in neither
measuring nor classifying nor solving failures. We haven’t use this technique for
obtaining the causes of the failures, although we think it would have been a good
idea to do so.

The four–steps methodology we present proposes the fusion of the standards
and techniques presented in subsection 3.1. It encourages the tracking of safety
throughout the life–cycle of the robot (as EN 61508 proposes) and uses the ANSI
standard as a guide to classify hazards and to propose solutions. By completing
ANSI with the contributions of Douglass, it is possible to deal with the design
of software–based solution that are more complex than a simple barrier.

Step 1 � Identify hazards. It is desirable that a system should normally
work without imminent hazards. So, the first step is to identify all the tasks that
involve the use of the system and that have potential hazards. After that, for
each task an analysis of the hazards is performed. Some possible sources for the
identification of hazards, that can serve as a starting point in their identification,
are the following ones (extracted from [4]):

• The movement of mechanical components, especially those which can cause
trapping or crushing.

• Stored energy in moving parts, electrical or fluid components.
• Power sources: electrical, hydraulic, pneumatic.
• Hazardous atmospheres, material or conditions: explosive or combustible,

radioactive, high temperature and/or pressure, etc.
• Acoustic noise, vibrations, EMI, etc.
• Human failures in design, construction, installation, and operation, whether

deliberate or not.
This analysis of hazards also include the identification of the possible causes of

the failure (hardware, software or human), the task in which it can happen, the
reaction to the happening of the hazard, and some temporal data (adopted from
Douglass) relative to how long can the hazard be tolerated before it results in an
accident (tolerance time), the maximum amount of time to detect the happening
(detection time) and the maximum time to react to it (reaction time).

124 D. Alonso et al.

Step 2 � Identify risks. The objective of this second step is to identify the
possible risks of the system and classify them, according to the impact they
have on the environment and linking them to the hazards identified on the the
first step. The ANSI standard says that, for each risk, three characteristics have
to be evaluated. They are the level of severity, the level of exposure and the
level of avoidance, each with two different values (for a total of eight possible
combinations). Depending on the different values of these characteristics, a Risk
Reduction Category (RRC) is obtained. Based on the RRC, ANSI requires a
certain level of performance of the safeguard and circuit that are to be design
to reduce the risk (simple, single channel, single channel with monitoring and
control reliable). Moreover, ANSI also recommend the adoption of safety policies
to help human operators avoid some risks (training, presence detectors, security
barriers, etc).

After applying the safeguards designed for the specific RRC of the risk, a new
analysis is performed to calculate the residual risk, just to be sure that the risk is
kept at a tolerable level for both the system and the environment. This process
does not end here but has to be repeated during the life–cycle of the robot to
ensure that no new risk appears and that the risk already identified are kept
under control.

Step 3 � Specify safety requirements. The purpose of this third step is to
extract the safety requirements for the system from the results of the previous
steps. This is quite difficult to do, because neither ANSI nor Douglass offer a
methodology to deduce the requirements from the previous results, so this ex-
traction has been handmade. At this point, it’s necessary to have an appropriate
process for the harvest of requirements, a way to catalogue them so that they can
be reused in other systems of the domain of application (tele–operated robots in
our case), as well as tools for tracking the use of the requirements throughout
the development process and, in particular, until the architecture of the system.
This is the kind of work the Universidad de Murcia is doing inside DYNAMICA.

Step 4 � Make safe designs. The design of the architecture of the system
must consider the safety measures and avoid that the failure in a part spread
through the rest of the system. A safe design must start off with the previous
requirements of security (third step) to adopt a concrete architectural pattern
that could be periodically reviewed when new hazards are identified. To be able
to do it, to be able to be adaptable, a rigorous architectural approach that allows
the evolution of the architectural model due to new requirements or by evolution
of the conditions of work is necessary.

4 Safety in the EFTCoR Project

In this section we present an example of the application of the process to obtain
the safety requirements for the crane robot of the EFTCoR project. The crane
robot uses a commercial crane as the primary positioning system (see Fig. 2-a)
and a XYZ table as the secondary positioning system (see Fig. 2-b). The crane

A Systematic Approach to Developing Safe Tele-operated Robots 125

has its own control (provided by the manufacturer), a height of twelve meters
and a weight of twenty tons, which make unavoidable the movement of the robot
with the consideration of safety requirements. It also has, in its central zone, an
articulated arm of two tons for holding the XYZ table (which includes a cleaning
tool). The control system of the XYZ table has been designed to follow the
cleaning instructions from a human operator or from a computer vision system,
which finds the areas of the hull to be blasted.

a) Crane b) XYZ table

Fig. 2. Crane robot for cleaning vertical surfaces in EFTCoR

Due to the extension of the work, only the results of the safety analysis for
the primary position system (tasks, hazards and risks) will be presented (see
subsection 4.1). Subsection 4.2 presents the solution adopted for the hazard
“The arm of the primary system does not stop” (see table 2, H13).

4.1 Identification of Hazards and Risks for the Primary System

Using the functional requirements of the EFTCoR system as a starting point, a
total of 30 different tasks with a potential hazard have been identified (excerpt
in Table 1). These tasks are performed not only by the operator of the robot
but also by the maintenance and cleaning staff, can have been planned or not,

Table 1. Excerpt of tasks related to the primary system

Type Description
T1 Operator Move the primary (rail)
T2 Operator Move the primary (vertical axis)
T8 Operator Execute a sequence
T20 Maintenance Calibrate one of the axes of the primary
T23 Maintenance Repair an axis (primary or secondary)

126 D. Alonso et al.

Table 2. Excerpt of hazards related to the primary system

Hazard Risk Origin Prob. Reaction
H3.Person in the rail Very

severe
There’s a person
standing on the rail

Med. Raise alarm. Stop the
primary. Emergency
stop

H4.Obstacle in the
rail

Severe There’s an obstacle
on the rail

Med. Raise alarm. Stop the
primary. Emergency
stop

H5.Obstacle in the
vertical axis

Very
severe

There’s an obstacle
on the trajectory

High Raise alarm. Stop the
primary. Emergency
stop

H7.The limit switch
of the vertical axis is
passed

Very
severe

Sensor or software er-
ror. Comm failure

Low Raise alarm. Emer-
gency stop

H8.The limit switch
of the rail is passed

Very
sever

Sensor or software er-
ror. Comm failure

Low Raise alarm. Stop
power source

H13.The arm of the
primary system does
not stop

Very
severe

Joint control error.
Comm or power fail-
ure

Low Raise alarm. Stop
power source. Emer-
gency stop

H15.The sequence of
the primary does not
end

Very
severe

Sequence control er-
ror. Comm failure

Low Raise alarm. Stop
primary

Table 3. Excerpt of solutions for the primary system hazards

Risk RRC Solution RRC
H3 Run over a person R2A Add presence sensors to the rail. Add an

acoustic signal when the robot moves
R3B

H4 Damage obstacle and
primary

R2A Add presence sensors to the rail. Add an
acoustic signal when the robot moves

R3B

H5 Damage obstacle and
primary

R1 Add presence sensors to the vertical axis. R3B

H7 Damage to equipment or
primary or persons

R2B Add mechanic limits R4

H8 Damage to equipment or
primary or persons

R2B Add mechanic limits R4

H13 Damage to equipment or
primary or persons

R2B Add an emergency stop mechanism. Add
sensors external to the control loop

R4

H15 The robot can even
knock over

R2B Add an emergency stop mechanism. Add
sensors external to the control loop

R4

and their frequency can be daily, weekly, monthly, annually, etc. Table 2 shows
an excerpt of the 31 hazards related to the tasks to be performed by the robot
(only the hazards related to the primary are shown). These two tables comprise
the first step.

A Systematic Approach to Developing Safe Tele-operated Robots 127

Finally, Table 3 shows the results of the step identify risks, but just for the
hazards related to the primary positioning system (with the consequences of an
accident, the RRC required according to ANSI, the safeguard adopted and the
residual RRC).

4.2 Analysis of a Hazard: “The Arm of the Primary System Does
Not Stop”

An analysis with detail of this hazard takes us to associate the following possible
sources of error: (1) any sensor integrated with the motors that move the arm
fails; (2) the electric power is off and (3) the control unit does not run correctly
(a hardware fail or a software error). The hazard H13 may imply the breaking
of mechanical parts, the precipitation of components to the floor or damages
to the human operator. See table 2 and table 3 for the characterisation of this
hazard.

��������

	�
�
������

�������

������ ������

���	����

���

���
�
����

������ ����

����

�����

��� ���

����

���

��� �������

����� ���

������������
��

��������

	�
�
������

�������

������ ������

���	����

���

���
�
����

������ ����

����

�����

��� ���

����

���

��� �������

����� ���

������������
��

Fig. 3. Deployment diagram for H13

Following the ANSI standard, the levels of the severity of the injury, the
frequency of the exposure and the probability of avoidance are evaluated. This
evaluations results in a RRC of R2B. Figure 3 shows the deployment partitioning
of the system (using an extension of the standard UML notation) that accom-
plishes the R2B to R4 risk reduction for the hazard H13. This particular solution
uses the watchdog pattern from Douglass [5]. The limitation of space in this pa-
per does not allow us to give all the details related to the real implementation
of the safeguard for this hazard, although table 4 shows the connection between
the entities shown in the deployment diagram and their implementation in Ada.
Anyway, the full description of the solution follows:

1. When a movement command is received, the Man Machine Interface (MMI)
node forwards it simultaneously to the Control Unit node (that will exe-
cute it) and to the redundant node, which is in charge of detecting possible
hazards (Safety Control node).

128 D. Alonso et al.

Table 4. Relation between deployment diagram and Ada objects

Element from Fig. 3 Ada implementation Note
Node Task Does its main function (control, mon-

itor and MMI).
Watchdog Task Synchronous rendezvous with time-

out.
Access to hardware Protected object Periodically updated by a task.
Real time issues — Both node and watchdog are periodic

tasks. Watchdog has higher priority.

2. The Control node reads periodically the current position of the joint from a
sensor and controls the actuator. The Safety node is in charge of stopping
the motor when it detects that the motor is not working properly.

3. Just before the execution of any command, the Control node sends a mes-
sage to the Safety node, authorising the start of the movement. From here,
the Control Unit sends to the Safety node the current value just read from
the sensor. The Safety node answers with an acknowledgement that includes
as parameter the estimated value of the motor position. Both nodes compute
the curve of the discrete positions that must be reached by the robot arm,
depending on the initial value and the movement command. Any difference
between the calculated values (or no data at all) implies an anomaly in the
function of the robot movement (or communication link), which triggers the
stop of the robot and the generation of an emergency signal (both nodes
have access to the actuator).

4.3 Safety Conclusions for the Crane Robot

Although only the study of safety for the primary positioning system has been
presented, in this last subsection we want to present a summary of the conclusion
that can be extracted of the whole study. To do so, the 31 identified hazards
have been classified in six groups, depending on the type of safeguard adopted.
The following conclusions can be extracted from this study:

– 45% of the safety requirements do not affect neither the design of the archi-
tecture nor its possible evolution.

– 55% of the safety requirements do affect architecture:
• 40% imply the addition or extension of some components so that the

values of the actuators can be double–checked.
• 6.66% imply the design and adoption of redundant nodes as the one

described in subsection 4.2.
• 8.66% imply the addition of new sensors to the robot to monitor the

system (generally, safety–related sensors).

These extensions or additions to the basic architecture (based only on the
functional requirements) due to the safety requirements, mean the need of mak-
ing cross verifications in practically every level of the architecture, which makes
the process of designing the architecture harder and more complicated.

A Systematic Approach to Developing Safe Tele-operated Robots 129

5 Conclusions and Future Works

It is always desirable to make the analysis of the possible hazards for any system
to improve its design and safety. When the system interacts with the environ-
ment and/or with humans (as project EFTCoR does), the analysis becomes
indispensable. But the analysis of hazards is a complex process that needs the
support of a methodology. The more domain–specific the methodology, the more
accurate the results will be. We have used the ANSI/RIA standard as the basis
for the identification and classification of the hazards, risks and the safeguards
to be adopted to reduce the risks to acceptable levels. This standard can be
complemented by the safety patterns extracted from Douglass when designing a
more complex solution and the use of fault trees to identify the possible causes
of failure. In this sense, we hope that soon an European standard, derived from
EN 61508 and specifically targeted to robotics systems, soon appears to fulfil
the lack of a methodology for safety requirements specification and solutions in
the EU.

Although it may seem that this work is the result of applying together (“glued”
even) several standars, the contribution of this work goes further on because:

1. It gathers the methodologic experience of diverse authors, since this experi-
ence is usually absent in most of the standards.

2. The range of application of the proposal is wider than that of one of a
single standard or technique seen in subsection 3.1, because this work covers
from requirements specification to the implementation patterns applied in
architectural design.

3. Lastly, a case study of a real application has been presented, where the safety
requirements were naturally present from the beginning of the proyect, not
added later.

From the work on safety requirements for the crane robot two important
conclusions can be extracted: (1) only half of the safety requirements really affect
the software architecture of the system and (2) only a few fraction of them require
the use of external redundant control that must conform to the strictest level of
safety. Nevertheless, since security requirements are, conceptually, independent
of the functional ones, it would be more than desirable to have an architectural
approach that allows this conceptual separation of concerns could be used by the
designer. This is the line of work we are currently working on in the context of
the research project DYNAMICA with the Universidad Politécnica de Valencia
(Spain) and its ADL, PRISMA. It’s also necessary to have a proper methodology
to extract the safety requirements from the tables of risks and hazards and to
have tools to catalogue them and to track their use and ease their reuse in another
products of the same family, which is the aim of that project also shared with
the University of Murcia in Spain.

130 D. Alonso et al.

References

1. P. Neumann. Computer-Related Risks. Addison-Wesley Professional, October 1994.
ISBN: 0-201-55805-X.

2. C. Fernández, A. Iborra, B. Álvarez, J.A. Pastor, P. Sánchez, J.M. Fernández, and
N. Ortega. Co-operative Robots for Hull Blasting in European Shiprepair Industry.
November 2004. ISSN: 1070-9932.

3. EFTCoR Official Site. http://www.eftcor.com/.
4. ANSI/RIA R15.06: american national standard for industrial robots and robot

systems safety requirements. Robotic Industries Association, 1999.
5. Bruce Powel Douglass. Doing hard time: developing real-time systems with UML,

objects, frameworks and patterns. Object Technology. Addison-Wesley Longman
Publishing Co., Inc., 1999. ISBN: 0-201-49837-5.

6. Nancy Leveson. Safeware: system safety and computers. ACM Press, New York,
NY, USA, 1995. ISBN: 0-201-11972-2.

7. EN 61508: functional safety of electrical/electronic/programmable electronic safety-
related systems. European Committee for Electrotechnical Standardization, 2003.

8. K. Hansen, A. Ravn, and V. Stavridou. From safety analysis to software require-
ments. 24(7):573–584, July 1998.

Towards Developing Multi-agent Systems in Ada�

G. Aranda, J. Palanca, A. Espinosa, A. Terrasa, and A. Garcı́a-Fornes

Information Systems and Computation Dept.
Technical University of Valencia, Spain

{garanda, jpalanca, aespinos, aterrasa, agarcia}@dsic.upv.es

Abstract. Agent-oriented technology is a rising paradigm for developing qual-
ity software in complex domains. Currently, no Ada interface or middleware
exist for the development of agent-based applications. In this paper, an Ada bind-
ing for developing agent and multi-agent-based applications in Ada is proposed.
This binding is compatible with an existing open-source agent platform named
SPADE.

1 Introduction

Agent-based systems are one of the most active areas of research and development in
information technology. Many researchers believe that agents represent the most im-
portant new paradigm for software development since object orientation. The concept
of agent introduces a high level of abstraction, which is appropriate to the development
of complex computational systems, especially in open and dynamic environments.

As shown in [1], software agents are generally presented as computational entities
with a human behavior. They run on regular computers (i.e. PCs, PDAs, mobile phones,
etc.) and in network nodes. They are autonomous and are able to take decisions for
themselves, to reason, to learn, to communicate with other agents, to organize them-
selves, and to move from one node to another. They use their capacities to solve prob-
lems in an intelligent, pro-active and helpful way for the user. An agent can do this in a
collaborative way (cooperating with other agents) or by itself.

In this context, one of the most important topics to be considered is the development
of technologies that provide infrastructures and supporting tools for agent systems, such
as agent programming languages and software engineering methodologies. As stated
in [2], “any infrastructure deployed to support the execution of agent applications must
be long-lived and robust. More generally, middleware, or platforms for agent interoper-
ability, as well as standards, will be crucial for the medium-term development of agent
systems”.

Over the last few years, several initiatives have appeared for the definition and stan-
dardization of agent technologies, such as KQML [3], OMG [4] or, more recently, the
Agentcities Project [5]. Among these, one of the best known is FIPA (Foundation for
Intelligent Physical Agents) [6] . This foundation has proposed some important aspects
for agent communication, like platform interoperability or message transport protocols.

� This work is partially supported by the TIC2003-07369-C02-01 and TIN2005-03395 projects
of the spanish government.

L.M. Pinho and M. González Harbour (Eds.): Ada-Europe 2006, LNCS 4006, pp. 131–142, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

132 G. Aranda et al.

However, there is still a lack of maturity both in methodologies and programming tools.
Current tools work well in straightforward situations with few agents; but, in general,
they do not address the development of large-scale, efficient agent systems. These tools
do not offer facilities for monitoring or tuning the behavior of such complex systems. In
addition, languages for high-level programming of multi-agent systems are also needed.
These languages should be expressive, easy-to-use, and efficient, in order to coordinate
large, open, scalable, dynamic and heterogeneous systems.

Agent technology displays very interesting features and new approaches to solve
problems. But in practice, the agent community has limited itself to the use of very few
computer technologies. Nearly all the relevant agent-based products and developments
are done in the Java programming language. Moreover, these products generally operate
in a way that only agents programmed in Java are compatible with them.

In order to contribute to cover part of this gap, we have developed SPADE [7].
SPADE (Smart Python multi-Agent Development Environment) is a fully FIPA com-
pliant agent platform. Its main objective is to provide good performance while retaining
strong scalability options and to provide an open design that allows the implementation
of platform components and agents in several high-level programming languages.

The work presented in this paper is to provide the means to allow the development
of SPADE agents with Ada, and to propose the necessary middleware to do so. This
middleware allows the Ada and agent technologies to be integrated with each other,
effectively combining the advantages of both. On the one hand, the development of
agents can benefit from the use of Ada in cases when safety, reliability or real-time fea-
tures are needed. On the other hand, Ada engineers can benefit from the higher level of
abstraction of the agent-based technology. For example, in cases when high-level com-
munication protocols enabling complex interactions are useful; or when abstractions
more complex than the inheritance are needed; or when developing heterogeneous sys-
tems which require the integration of different technologies (such as databases, web
applications, software components, etc.).

The rest of the paper is structured as follows. In Section 2, a review of the SPADE
agent platform is done. Later, in Section 3, a programming interface to develop agents
for the SPADE agent platform with the Ada programming language is introduced. Fi-
nally, conclusions and future work lines are presented.

2 SPADE

SPADE is a multi-agent platform which provides a new framework to build agents using
a communication model different from other platforms. This platform provides a simple
interface for the agent development using the above-mentioned communication model.
Thanks to this interface, agents can be built in any programming language with total
independence of the SPADE platform.

As every component inside the SPADE platform has been developed as an agent,
this communication model is also used to communicate the internal elements of the
platform.

In addition, SPADE has a special agent to provide a user-friendly view of the plat-
form. This GUI agent provides a mechanism to load and unload agents in the platform.

Towards Developing Multi-agent Systems in Ada 133

It allows the user to search for agents and services and to send messages to any agent.
This feature can be used as a dummy agent to send simple messages to other agents and
to show their answers.

The basic SPADE components have been developed using the Python programming
language. It is a versatile interpreted language that runs on several architectures and
operating systems, although it has a poorer performance than compiled languages like
Ada or C. In particular, being implemented in Python allows the platform to be executed
in systems such as Windows, Linux, MacOS, Windows Mobile, PalmOS, SymbianOS
(for mobile phones), etc.

The core of the communication layer of the platform is a standard, well-known pro-
tocol called Jabber[8], which provides virtual channels to put in contact conversational
entities, like agents.

The most popular application of the Jabber protocol is a social communication net-
work with similar functionalities to the ones present in legacy systems like AIM, ICQ,
MSN or Yahoo Messenger. These networks allow for the interconnection of known
users by means of trust networks, and are tested and used by thousands of users simul-
taneously every day.

The Jabber protocol uses a distributed client-server topology. The servers that route
the Jabber messages are designed to support a very large number of users and messages.
This feature helps to improve the SPADE performance and scalability.

The interface between the SPADE platform and its agents is purely Jabber-based (in
fact, TCP/IP-based at its lowest level). Therefore, SPADE agents can be implemented
with any framework that supports Jabber communications and with any programming
language capable of dealing with Jabber and/or TCP/IP communications. To ease the
development of SPADE agents, we provide the necessary code-base to develop agents
in the Ada and Python programming languages. Besides using the Jabber protocol,
SPADE also supports the HTTP protocol, which is used in other agent platforms. The
following sections introduce the different models that compose SPADE.

2.1 The Platform Model

The SPADE platform is modeled according to the FIPA standard proposal for a multi-
agent platform [6]. It features the standard basic FIPA services (such as an Agent Man-
agement System and a Directory Facilitator), which have been designed as Jabber server
components (or add-ins).

Although the core communication system relies on the Jabber technology, other
legacy message transport protocols, such as the HTTP protocol, are also supported.

Platform Elements. In this section, the elements that make up the SPADE platform
are described.

– The XML Router is the main platform element, the one that the rest of the platform
components and agents are connected to. It is a standard XMPP server[8] that routes
all the messages from its sender to the specified receiver without having the user
to intervene. This XML Router acts as the Message Transport System (MTS) and
it is the only external component of the platform that has been reused. It has been
chosen for its flexibility: this component can be replaced with no re-writing of any

134 G. Aranda et al.

other component, so the developer is free to replace it with any other XML Router
of choice.

– One of the components connected to the router is the SPADE Agent Communi-
cation Channel (ACC). It manages all the communication within the platform and
receives the FIPA-ACL1[9] messages that arrive to the platform. After arrival, it
redirects the messages to the correct destination element. This destination can be
either an agent or another component. Should the receiver element is an agent, the
MTS would relay the message to the agent and it would be held in the agent’s
message queue for later processing.

– A default Message Transport Protocol (MTP) is built within the platform. In addi-
tion to internally connecting the platform elements, the XML Router is the element
that connects the platform to outside entities (like other platforms or even human-
agent communications).

– The Agent Management System is the component that implements the basic man-
agement services for the agents. The AMS agent complies with the entire ’fipa-
agent-management’ ontology.

– The Directory Facilitator is a component that provides a service directory to reg-
ister and query services offered by the agents that are registered at the platform.
The DF agent also complies with the fully ’fipa-agent-management’ ontology.

A brief schematic view of the SPADE Platform can be seen in Figure 1.

Fig. 1. SPADE Platform and Agent Models

There is a graphical block that represents the MTS (using the Jabber protocol) which
handles all the received messages and redirects them to their actual receivers. A receiver
can be an agent, a platform component, or even a human user. Moreover, control infor-
mation (iq queries) and routing information are managed by the MTS. The ACC, AMS
and DF elements are plugged into to the platform as modular components. Besides, all
of them are built as agents, so they have the full functionality provided by a standard

1 FIPA Agent Communication Language.

Towards Developing Multi-agent Systems in Ada 135

SPADE agent. As it can be seen in the figure, agents are also connected to the MTS,
which virtually connects them with the SPADE Platform.

2.2 The Agent Model

As mentioned above, every component inside a SPADE platform is built as an agent.
SPADE agents are elements connected to the MTS that can send messages to each other
and to other platforms (or even to human users).

The Agent Model of SPADE is basically composed of a connection module to the
platform, a message dispatcher, and a group of different behaviors that the dispatcher
gives the messages to (–see Figure 1). Every SPADE agent needs an identifier called
Jabber ID (JID) and a correct password to make a connection with the platform. Should
the default platform registration process be disabled, the platform administrator would
have to define alternate registration policies.

The JID is composed by a username, an ’@’, and a server domain. It will be the
internal name that identifies an agent in the platform. The agent virtual address (which
is another important field on the Agent Identifier) would be the JID of the platform’s
ACC (i.e: xmpp://acc.gti-ia.dsic.upv.es). The prefix xmpp:// has been
defined for the XMPP addresses.

A behavior is a task that an agent can execute using scheduling patterns. A SPADE
agent can run several behaviors simultaneously. SPADE provides some predefined be-
havior types: Cyclic, One-Shot, Periodic, Time-Out, and Finite State Machine Behavior.
These behavior types help the implementation of the different tasks that a SPADE agent
can perform:

A behavior has a message template associated to it. The message dispatcher uses this
template to know which types of messages a behavior must receive: it compares every
arriving message with the templates of the behaviors.

Every SPADE agent can have as many behaviors as wanted. When a message arrives
to a SPADE agent, the message dispatcher forwards it to the message queues of the
adequate behaviors (–see Figure 1).

3 Ada Application Programming Interface

As stated above, SPADE agents can be developed by default using Python (like the core
platform components). Now, we introduce the possibility of developing SPADE agents
in Ada. In this section, the programming API for creating a SPADE agent with Ada is
presented.

The structure of the application interface is shown in Figure 2. There are 8 packages
included in a main package called Spade.

3.1 Package Spade

Spade is the main package that contains the rest of the application interface packages.
It also includes some basic Ada types to help in common operations (like String lists).

136 G. Aranda et al.

Fig. 2. SPADE Package Structure

3.2 Package Spade.Aids

This package provides the interface to build Agent Identifiers (called AID). An Agent
Identifier is a record composed by the name of the agent, its addresses (an agent can
have more than one address). The interface provides an Ada type called Aid and some
Set and Get procedures to manipulate Agent Identifiers.

package Spade.Aids is

type Aid is private;

function Get Name (From: Aid) return Aid Name;
function Get Addresses (From: Aid) return List Addresses;
function Get Resolvers (From: Aid) return List Resolvers;
procedure Set Name (To : in out Aid; Name: in Aid Name);
procedure Add Address (To : in out Aid; Address: in Address);
procedure Add Resolver (To : in out Aid; Resolver: in Resolver); 10

. . .
end Spade.Aids;

3.3 Package Spade.Basic Fipa Date Times

This package provides a help class to manage dates and times in the FIPA standard
format. This format is a string composed by the year, the month, the day, a separator, the
hour, minutes, seconds and milliseconds with 3 digits (e.g. 20051103T234521343).
An example of the API is as follows.

package Spade.Basic Fipa Date Times is

type Basic Fipa Date Time is tagged private;

function Get Day (From: Basic Fipa Date Time) return Day;
function Get Milliseconds (From: Basic Fipa Date Time) return Milliseconds;
procedure Set Day (To: in out Basic Fipa Date Time; Day: in Day);
procedure Set Milliseconds (To: in out Basic Fipa Date Time; Milli: in Milliseconds);
procedure From String (To: in out Basic Fipa Date Time; String Date : in String);
function To String (From: Basic Fipa Date Time) return String; 10

. . .
end Spade.Basic Fipa Date Times;

Towards Developing Multi-agent Systems in Ada 137

3.4 Package Spade.Envelopes

A FIPA Message is a structure that contains a Payload and an Envelope. The payload
has the content of the message and some meta-information. This payload can be in some
different languages (like ACL). The envelope contains the routing information for the
message like the receiver, the sender, the encoding, the date, etc.

A brief example of some of the interface methods is now shown:

package Spade.Envelopes is

type Envelope is tagged private;

function Get To (From: Envelope) return List Aid;
function Get From (From: Envelope) return Aid;
function Get Comments (From: Envelope) return String;
procedure Set Payload Length (To: in out Envelope; Len : in Length);
. . .

end Spade.Envelopes; 10

3.5 Package Spade.Acl Messages

The package Acl Messages contains the Ada type Acl Message, used to build the
payload of a FIPA Message. This payload has the content of the message and some
meta-information like the language and ontology of the content, or the performative.

package Spade.Acl Messages is

type Acl Message is tagged private;

function Get Conversation Id (From: Acl Message) return Id;
procedure Set Language (To: in out Acl Message; Lang: in Language);
procedure Set Ontology (To: in out Acl Message; Onto: in Ontology);
−− Creates a reply of the message
function Create Reply (From: Acl Message) return Acl Message;
. . . 10

end Spade.Acl Messages;

Once Envelopes and Acl Messages packages are viewed, it is possible to build a
FIPA Message, which is the basic communicative structure used by agents. Sending
messages of this kind between FIPA compliant agents (like SPADE agents) ensures the
success of a communicative act.

138 G. Aranda et al.

3.6 Package Spade.Message Receivers

This package provides the Message Receiver type. Objects of this type are entities capa-
ble of sending and receiving messages. This tagged type is extended by other packages
(like agent or behavior) that will be introduced later.

package Spade.Message Receivers is

type Message Receiver is tagged private;

function Is Alive (Who : Message Receiver Class) return Boolean;
function Receive (From : Message Receiver Class) return Acl Message;
function Blocking Receive (From : Message Receiver Class;

Time Out: Time) return Acl Message;
. . .

end Spade.Message Receivers; 10

The Receive and Blocking Receive functions return an Acl Message when a message
arrives to a Message Receiver. If there is no message in the inbox, it returns an empty
Acl Message. The function Blocking Receive also accepts a Time Out parameter. This
parameter indicates the time (in seconds) that the function will wait for a message (it
can also be forever).

3.7 Package Spade.Behaviors

Agents are entities composed of SPADE’s ’behaviors’. These behaviors are supposed
to provide the intelligence to the agent. Programmers must implement these behaviors
and add them to the agent to compose the brain that controls the agent.

The package Spade.Behaviors contains the five behaviors currently supported
by SPADE:

– Behavior: This is the Cyclic Behavior type. Its code is executed continuously.
– Periodic Behavior: The Periodic Behavior type runs every user-defined ’period’.
– One Shot Behavior: One Shot Behavior type. Runs only one time.
– Time Out Behavior: The Time Out Behavior type is a Periodic Behavior with a

’timeout’. It is executed every period with a time lag (the timeout).
– FSM Behavior: Finite State Machine (FSM) Behavior type. It runs different be-

haviors according to a defined FSM. The nodes of the FSM are behavior types
(which can be any kind of behavior: cyclic, one shot or even another FSM). The
transitions between nodes are called events. Each of these events has a value which
is the exit codes of a behavior node.

Figure 3 shows the Types Hierarchy. Some of the presented classes are simply sup-
port classes with access methods to manage FIPA information structures. However,
more interesting Ada types (such as the hierarchy of ’Behavior’ types) provide a full
interface to create software agents with a simple middleware. The next block is an
example of the behavior interface.

Towards Developing Multi-agent Systems in Ada 139

package Spade.Behaviors is

type Behavior is new Message Receiver with private;
function Exit Code (From: Behavior Class) return Integer;
−−Executed when the behavior finishes
procedure On End (From: in out Behavior Class);
−−Executed when the behavior starts
procedure On Start (From: in out Behavior Class);
−−Executed when the behavior is running
procedure Process (From: in out Behavior Class); 10

type Periodic Behavior is new Behavior with private;
function Get Period (From: Periodic Behavior) return Time;
procedure Set Period (To: in out Periodic Behavior; Period: in Time);
procedure On Tick (From: in out Periodic Behavior);

type Time Out Behavior is new Periodic Behavior with private;
function Get Time Out (From: Time Out Behavior) return Time;
procedure Set Time Out (To: in out Time Out Behavior; Time Out: in Time);

20

type One Shot Behavior is new Behavior with private;

type FSM Behavior is new Behavior with private;
procedure Register First State (From: in out FSM Behavior;

State: in Behavior Class;
Name: in String);

procedure Register Last State (From: in out FSM Behavior;
State: in Behavior Class;
Name: in String);

procedure Register State (From: in out FSM Behavior; 30

State: in Behavior Class;
Name: in String);

procedure Register Transition (From: in out FSM Behavior;
From Node: in String;
To Node: in String;
Event: in Integer);

. . .
end Spade.Behaviors;

Examples of use of such behavior interface range from simple to really complex
agents. For instance, agents mostly reactive that perform quick responses to environ-
ment changes can be developed using a reduced number of behaviors executed in a
cyclical scheme with a short period. On the contrary, agents displaying a sophisticated
and deliberative (intelligent) functionality can be implemented by using a higher num-
ber of behaviors of more complex types, like finite state machines.

140 G. Aranda et al.

Fig. 3. SPADE Class Hierarchy

A behavior executes the code defined in the procedure Process. In addition, pro-
cedures On Start and On End are run when a behavior is created and finishes (or it
is killed), respectively.

3.8 Package Spade.Acl Templates

A behavior can be configured to receive only the messages that match with a defined
template. When a message arrives to an agent, the message dispatcher of the agent puts
the received message in the inbox of the behaviors which template matches. If there is
no match, the message is sent to a default behavior (defined with the
Behaviors.Set Default Behavior procedure).

The interface is very similar to the Acl Messages package.

package Spade.Acl Templates is

type Acl Template is tagged private;
function Get Sender(From: Acl Template) return Aid;
function Get Conversation Id(From: Acl Template) return Id;
procedure Set Performative(To: in out Acl Template; Perf: in Performative);
. . .

end Spade.Acl Templates;

The procedureBehavior.Add Template is used to add a template to a behavior.

3.9 Package Spade.Agents

Finally, the agent interface is now introduced. There is a basic type called Basic Agent
from which the two agent types are inherited. There is a Platform Agent type for

Towards Developing Multi-agent Systems in Ada 141

internal purposes (like component agents: AMS, DF, etc.) and a simple Agent type,
used to develop user agents. This hierarchy can also be viewed in Figure 3. The inter-
face is now shown:

package Spade.Agents is
type Basic Agent is new Message Receiver with private;

function Get Aid(From: Basic Agent Class) return Aid;
procedure Start (What: in out Basic Agent Class);
procedure Take Down (What: in out Basic Agent Class);
procedure Setup (What: in out Basic Agent Class);
procedure Kill (What: in out Basic Agent Class);
procedure Add Behavior (To: in out Basic Agent Class;

Behav: in Behavior Class; 10

Template: in Acl Template);

function Search Agent (From: Basic Agent Class;
Template: Ams Agent Description)
return List Ams Agent Description;

procedure Register Service (From: in Basic Agent Class;
Service: in Df Agent Description);

procedure Send Message (From: in out Basic Agent Class;
Env: in Envelope;
Message: in Acl Message); 20

type Agent is new Basic Agent with private;
type Platform Agent is new Basic Agent with private;
. . .

end Spade.Agents;

Finally, the following code contains an example of use of this interface. The example
creates an agent and two behaviors that are included into the agent Then it is started.

An Agent: Agent;
Behavior One: Periodic Behavior;
Behavior Two: One Shot Behavior;
A Template: Acl Template;

Set Default Behavior (To => An Agent, Behav => Behavior One);
Add Template (To => Behavior Two, Template => A Template);
Add Behavior (To => An Agent, Behav => Behavior Two);

Start (What => An Agent); 10

4 Conclusions and Future Work

A middleware that allows the development of intelligent agents using Ada has been
developed. This middleware focuses on creating Ada agents that are compatible with the

142 G. Aranda et al.

SPADE agent platform. The middleware’s API is object-oriented, which is a paradigm
fully supported under Ada.

This middleware opens the possibility of creating agents in Ada, which is a very in-
teresting topic since it allows bringing the advantages of Ada to the agent realm and
vice-versa. Robust and stable agents can be created due to Ada’s proved robustness.
In scenarios where performance is a key element, Ada can show its celerity against
interpreted languages (like Python) or Virtual Machine-based ones (like Java). More-
over, due to Ada’s fitting in the real-time domain, the possibility of developing real-time
SPADE agents with Ada is now opened.

In the future, we intend to study the behavior of this software solution, from both
the efficiency and the scalability points of view. Our intention is to perform tests to
compare the performance of agents built using this middleware against SPADE agents
implemented in other programming languages, and also against agents developed in
different agent platforms.

References

1. Mas, A.: Agentes software y sistemas multiagente. Pearson Educacion (2005)
2. Luck, M., McBurney, P., Shehory, O., Willmott, S.: Agent Technology Roadmap. A Roadmap

for Agent Based Computing. AgentLink III (2005)
3. Finin, T., Fritzson, R., McKay, D., McEntire, R.: KQML as an Agent Communication Lan-

guage. In Adam, N., Bhargava, B., Yesha, Y., eds.: Proceedings of the 3rd International Con-
ference on Information and Knowledge Management (CIKM’94), Gaithersburg, MD, USA,
ACM Press (1994) 456–463

4. Object Management Group: OMG: Object Services - Request for Information. RfI 91.11.6
(1991)

5. AgentCities Homepage. http://www.agentcities.org/ (2005)
6. FIPA Abstract architecture specification. Technical Report SC00001L (2002)
7. Smart python multi-agent development environment. http://magentix.gti-ia-dsic.upv.es (2005)
8. Jabber Software Foundation: Extensible Messaging and Presence Protocol (XMPP): Core.

Technical report, http://www.ietf.org/rfc/rfc3920.txt (2004)
9. FIPA: Agent ACL message structure specification. Technical Report XC00061E (2001)

A Software Reliability Model Based on a
Geometric Sequence of Failure Rates�

Stefan Wagner1 and Helmut Fischer2

1 Institut für Informatik
Technische Universität München

Boltzmannstr. 3, 85748 Garching b. München, Germany
2 Siemens AG

COM E QPP PSO
Hofmannstr. 51, 81379 München, Germany

Abstract. Software reliability models are an important tool in quality
management and release planning. There is a large number of different
models that often exhibit strengths in different areas. This paper pro-
poses a model that is based on a geometric sequence (or progression) of
the failure rates of faults. This property of the failure process was ob-
served in practice at Siemens among others and led to the development
of the proposed model. It is described in detail and evaluated using stan-
dard criteria. Most importantly, the model performs constantly well over
several projects in terms of its predictive validity.

1 Introduction

Software reliability engineering is an established area of software engineering
research and practice that is concerned with the improvement and measurement
of reliability. For the analysis typically stochastic software reliability models are
used. They model the failure process of the software and use other software
metrics or failure data as a basis for parameter estimation. The models are able
(1) to estimate the current reliability and (2) to predict future failure behaviour.

There are already several established models. The most important ones has
been classified by Miller as exponential order statistic (EOS) models in [5]. He
divided the models on the highest level into deterministic and doubly stochastic
EOS models arguing that the failure rates either have a deterministic relationship
or are again randomly distributed. For the deterministic models, Miller presented
several interesting special cases. The well-known Jelinski-Moranda model [3], for
example, has constant rates. He also stated that geometric rates are possible as
documented by Nagel [9, 8].

This geometric sequence (or progression) between failure rates of faults was
also observed in projects of the communication networks department of the
Siemens AG. In several older projects which were analysed, this relationship
fitted well to the data. Therefore, a software reliability model based on a geo-
metric sequence of failure rates is proposed.
� This research was partially supported by the DFG in the project InTime.

L.M. Pinho and M. González Harbour (Eds.): Ada-Europe 2006, LNCS 4006, pp. 143–154, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

144 S. Wagner and H. Fischer

Problem. The problem which software reliability engineering still faces is the
need for accurate models for different environments and projects. Detailed mod-
els with a geometric sequence of failure rates have to our knowledge not been
proposed so far.

Contribution. We describe a detailed and practical software reliability model
that was motivated out of practical experience and contains a geometric sequence
of failure rates which was also suggested by theoretical results. A detailed com-
parison shows that this model has a constantly good performance over several
projects, although other models perform better in specific projects. Hence, we
validated the general assumption that a geometric sequence of failure rates is a
reasonable model for software.

Outline. We first describe important aspects of the model in Sec. 2. In Sec. 3 the
model is evaluated using several defined criteria, most importantly its predictive
validity in comparison with established models. We offer final conclusions in
Sec. 4. Related work is cited where appropriate.

2 Model Description

The core of the proposed model is a geometric sequence for the failure rates
of the faults. This section describes this and other assumptions in more detail,
introduces the main equations and the time component of the model and gives
an example of how the parameters of the model can be estimated.

2.1 Assumptions

The main theory behind this model is the ordering of the faults that are present
in the software based on their failure rates. The term failure rate describes in
this context the probability that an existing fault will result in an erroneous
behaviour of the system during a defined time slot or while executing an average
operation. In essence, we assign each fault a time-dependent probability of fail-
ure and combine those probabilities to the total failure intensity. The ordering
implies that the fault with the highest probability of triggering a failure comes
first, then the fault with the second highest probability and so on. The probabil-
ities are then arranged on a logarithmic scale to attain an uniform distribution
of the points on the x-axis. The underlying assumption being that there are
numerous faults with low failure rates and only a small number of faults with
high failure rates. In principle, we assume an infinite number of faults because
of imperfect debugging and updates.

As mentioned above, the logarithmic scale distributes the data points in ap-
proximately the same distance from each other. Therefore, this distance is ap-
proximated by a constant factor between the probabilities. Then we can use the
following geometric sequence (or progression) for the calculation of the failure
rates:

pn = p1 · d(n−1), (1)

A Software Reliability Model Based on a Geometric Sequence 145

where pn is the failure rate of the n-th fault, p1 the failure rate of the first fault,
and d is a project-specific parameter. It is assumed that d is an indicator for the
complexity of a system that may be related to the number of different branches
in a program. In past projects of Siemens d was calculated to be between 0.92
and 0.96. The parameter d is multiplied and not added because the distance is
only constant on a logarithmic scale.

The failure occurrence of a fault is assumed to be geometrically distributed.
Therefore, the probability that a specific fault occurred by time t is the following:

P (Ta ≤ t) = Fa(t) = 1 − (1 − pa)t. (2)

We denote with Ta the random variable of the failure time of the fault a.
In summary, the model can be described as the sum of an infinite number of

geometrically distributed random variables with different parameters which in
turn are described by a geometric sequence.

2.2 Equations

The two equations that are typically used to describe a software reliability model
are the mean number of failures μ(t) and the failure intensity λ(t). The mean
value function needs to consider the expected value over the indicator functions
of the faults:

μ(t) = E(N(t))
= E

(∑∞
i=a I[0,t](Xa)

)
=

∑∞
a=1 E(I[0,t](Xa))

=
∑∞

a=1 P (Xa ≤ t)
=

∑∞
a=1 1 − (1 − pa)t.

(3)

This gives us a typical distribution as depicted in Fig. 1. Note that the dis-
tribution is actually discrete which is not explicitly shown because of the high
values used on the x-axis.

We cannot differentiate the mean value equation directly to get the failure
intensity. However, we can use the probability density function (pdf) of the
geometric distribution to derive this equation. The pdf of a single fault is

f(t) = pa(1 − pa)t−1. (4)

Therefore, to get the number of failures that occur at a certain point in time t,
we have to sum up the pdf’s of all the faults:

λ(t) =
∞∑

a=1

pa(1 − pa)t−1. (5)

An interesting quantity is typically the time that is needed to reach a cer-
tain reliability level. Based on the failure intensity objective that is anticipated
for the release, this can be derived using the equation for the failure intensity.
Rearranging Eq. 4 gives:

t =
lnλ∑∞

a=1 pa − p2
a

+ 1. (6)

146 S. Wagner and H. Fischer

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 2000 4000 6000 8000 10000

C
um

m
ul

at
iv

e
nu

m
be

r
of

 fa
ilu

re
s

Incidents

Fig. 1. A typical distribution of the model

What we need, however, is the further required time Δt to determine the nec-
essary length of the test or field trial. We denote the failure intensity objective
λF and use the following equation to determine Δt:

Δt = tF − t =
lnλF − lnλ∑∞

a=1 pa − p2
a

(7)

Finally, the result needs to be converted into calendar time to be able to give a
date for the end of the test or field trial.

2.3 Time Component

In the proposed model time is measured in incidents, each representing a usage
task of the system. To convert these incidents into calendar time it is necessary
to introduce an explicit time component. This contains explicit means to convert
from one time format into another.

There are several possibilities to handle time in reliability models. The prefer-
able is to use execution time directly. This, however, is often not possible. Subse-
quently, a suitable substitute must be found. With respect to testing this could
be the number of test cases, for the field use the number of clients and so forth.
Fig. 2 shows the relationships between different possible time types.

The first possibility is to use in-service time as a substitute. This requires
knowledge of the number of users and the average usage time per user. Then
the question arises how this relates to the test cases in system testing. A first
approximation is the average duration of a test case. The number of incidents
is, opposed to the in-service time, a more task-oriented way to measure time.
The main advantage of using incidents, apart from the fact that they are al-
ready in use at Siemens, is that in this way, we can obtain very intuitive metrics,

A Software Reliability Model Based on a Geometric Sequence 147

How many users?
Incidents/day and
user?

Usage time/user?
How many users?

Test cases
per day?

Average
duration of
incident?

Duration of
test case?

In−service time

Calendar time

Execution time

Incidents Test cases

Fig. 2. The possible relationships between different types of time

e.g., the average number of failures per incident. There are usually some estima-
tions of the number of incidents per client and data about the number of sold
client licenses.

However, the question of the relation to test cases is also open. A first cut
would be to assume a test case is equal to an incident. A test case, however, has
more “time value” than one incident because it is generally directed testing, i.e.,
cases with a high probability of failure are preferred. In addition, a test case is
usually unique in function or parameter set while the normal use of a product
often consists of similar actions. When we do not follow the operational profile
this should be accounted for. A possible extension of the model is proposed in
[12] but needs further investigation.

2.4 Parameter Estimation

There are two techniques for parameter determination currently in use. The
first is prediction based on data from similar projects. This is useful for planing
purposes before failure data is available.

However, estimations should also be made during test, field trial, and op-
eration based on the sample data available so far. This is the approach most
reliability models use and it is also statistically most advisable since the sample
data comes from the population we actually want to analyse. Techniques such
as Maximum Likelihood estimation or Least Squares estimation are used to fit
the model to the actual data.

Maximum Likelihood. The Maximum Likelihood method essentially uses a like-
lihood function that describes the probability of a certain number of failures
occurring up to a certain time. This function is filled with sample data and then
optimised to find the parameters with the maximum likelihood.

The problem with this is that the likelihood function of this model gets ex-
tremely complicated. Essentially, we have an infinite number of random variables
that are geometrically distributed, but all with different parameter p. Even if
we constrain ourselves to a high number N of variables under consideration it
still results in a sum of

(
N
x

)
different products. This requires to sum up every

possible permutation in which x failures have occurred up to time t. The number
of possibilities is

(
N
x

)
. Each summand is a product of a permutation in which

different faults resulted in failures.

148 S. Wagner and H. Fischer

L(p1, d) =
∏x

i=1 1 − (1 − pi)t · ∏N
i=x+1 (1 − pi)t+∏x+1

i=2 1 − (1 − pi)t · ∏N
i=x+2 (1 − pi)t · (1 − p1)t+∏x+2

i=3 1 − (1 − pi)t · ∏N
i=x+3 (1 − pi)t · ∏2

i=1 (1 − p1)t+
. . . ,

(8)

where pi = p1d
i−1.

An efficient method to maximise this function has not been found.

Least Squares. For the Least Squares method an estimate of the failure intensity
is used and the relative error to the estimated failure intensity from the model is
minimised. We use the estimate of the mean number of failures for this because it
is the original part of the model. Therefore, the square function to be minimised
in our case can be written as follows:

S(p1, d) =
m∑

j=1

[ln rj − lnμ(tj ; p1, d)]2, (9)

where m is the number of measurement points, rj is the measured value for the
cumulated failures, and tj is the time at measurement j.

This function is minimised using the simplex variant of Nelder and Mead [10].
We found this method to be usable for our purpose.

3 Evaluation

We describe several criteria that are used to assess the proposed model.

3.1 Criteria

The criteria that we use for the evaluation of the Fischer-Wagner model are
derived from Musa et al. [6]. We assess according to five criteria, four of which
can mainly be applied theoretically, whereas one criterion is based on practical
applications of the models on real data. The first criterion is the capability of the
model. It describes whether the model is able to yield important quantities. The
criterion quality of assumptions is used to assess the plausibility of the assump-
tions behind the model. The cases in which the model can be used are evaluated
with the criterion applicability. Furthermore, simplicity is an important aspect
for the understandability of the model. Finally, the predictive validity is assessed
by applying the model to real failure data and comparing the deviation.

3.2 Capability

The main purpose of a reliability model is to aid managers and engineers in
planning and managing software projects by estimating useful quantities about
the software reliability and the reliability growth. Following [6] such quantities,
in approximate order of importance, are

A Software Reliability Model Based on a Geometric Sequence 149

1. current reliability,
2. expected date of reaching a specified reliability,
3. human and computer resource and cost requirements related to the achieve-

ment of the objective.

Furthermore, it is a valuable part of a reliability model if it can predict quanti-
ties early in the development based on software metrics and/or historical project
data.

The model yields the current reliability as current failure intensity and mean
number of failures. It is also able to give predictions based on parameters from
historical data. Furthermore, the expected date of reaching a specified reliability
can be calculated. Human and computer resources are not explicitly incorpo-
rated. There is an explicit concept of time but, it is not as sophisticated as, for
example, in the Musa-Okumoto model [7].

3.3 Quality of Assumptions

As far as possible, each assumption should be tested by real data. At least
it should be possible to argue for the plausibility of the assumption based on
theoretical knowledge and experience. Also the clarity and explicitness of the
assumptions are important.

The main assumption in the proposed model is that the failure rates of the
faults follow a geometric sequence. The intuition is that there are many faults
with low failure rates and only a small number of faults with high failure rates.
This is in accordance with software engineering experience and supported by [1].
Moreover, the geometric sequence as relationship between different faults has
been documented in a NASA study [9, 8].

Furthermore, an assumption is that the occurrence of a failure is geometrically
distributed. The geometric distribution fits because it can describe independent
events. We do not consider continuous time but discrete incidents.

Finally, the infinite number of faults makes sense when considering imperfect
debugging, i.e., fault removal can introduce new faults or the old faults are not
completely removed.

3.4 Applicability

It is important for a general reliability model to be applicable to software prod-
ucts in different domains and of different size. Also varying project environments
or life cycle phases should be feasible. There are four special situations identified
in [6] that should be possible to handle.

1. Software evolution
2. Classification of severity of failures into different categories
3. Ability to handle incomplete failure data with measurement uncertainties
4. Operation of the same program on computers of different performance

150 S. Wagner and H. Fischer

All real applications of the proposed model have been in the telecommunica-
tions area. However, it was used for software of various sizes and complexities.
Moreover, during the evaluation of the predictive validity we applied it also to
other domains (see Sec. 3.6). In principle, the model can be used before and
during the field trial. Software evolution is hence not explicitly incorporated. A
classification of failures is possible but has not been used so far. Moreover, the
performance of computers is not a strong issue in this domain.

3.5 Simplicity

A model should be simple enough to be usable in real project environments: it
has to be simple to collect the necessary data, easy to understand the concepts
and assumptions, and the model should be implementable in a tool.

While the concepts themselves are not difficult to understand, the model in
total is rather complicated because it not only involves failures but also faults.
Furthermore, for all these faults the failure is geometrically distributed but each
with a different probability.

A main criticism is also that the assumed infinite number of faults make
the model difficult to handle. In practical applications of the model and when
building a tool, an upper bound of the number of faults must be introduced to be
able to calculate model values. This actually introduces a third model parameter
in some sense.

The two parameters, however, can be interpreted as direct measures of the
software. The parameter p1 is the failure probability of the most probable fault
and d can be seen as a measure of system complexity.

3.6 Predictive Validity

The most important and “hardest” criterion for the evaluation of a reliability
model is its predictive validity. A model has to be a faithful abstraction of the
real failure process of the software and give valid estimations and predictions
of the reliability. For this we follow again [6] and use the number of failures
approach.

Approach. We assume that there have been q failures observed at the end
of test time (or field trial time) tq. We use the failure data up to te(≤ tq) to
estimate the parameters of the mean number of failures μ(t). The substitution
of the estimates of the parameters yields the estimate of the number of failures
μ̂(tq). The estimate is compared with the actual number at q. This procedure is
repeated with several tes.

For a comparison we can plot the relative error (μ̂(tq)− q)/q against the nor-
malised test time te/tq. The error will approach 0 as te approaches tq. If the
points are positive, the model tends to overestimate and accordingly underes-
timate if the points are negative. Numbers closer to 0 imply a more accurate
prediction and, hence, a better model.

A Software Reliability Model Based on a Geometric Sequence 151

Models for Comparison. As comparison models we apply four well-known
models: Musa basic, Musa-Okumoto, Littlewood-Verall, and NHPP. All these
models are implemented in the tool SMERFS [2] that was used to calculate the
necessary predictions. We describe each model in more detail in the following.

Musa Basic. The Musa basic execution time model assumes that all faults are
equally likely to occur, are independent of each other and are actually observed.
The execution times between failures are modelled as piecewise exponentially
distributed. The intensity function is proportional to the number of faults re-
maining in the program and the fault correction rate is proportional to the failure
occurrence rate.

Musa-Okumoto. The Musa-Okumoto model, also called logarithmic Poisson ex-
ecution time model, was first described in [7]. It also assumes that all faults are
equally likely to occur and are independent of each other. The expected number
of faults is a logarithmic function of time in this model, and the failure inten-
sity decreases exponentially with the expected failures experienced. Finally, the
software will experience an infinite number of failures in infinite time.

Littlewood-Verall Bayesian. This model was proposed for the first time in [4].
The assumptions of the Littlewood-Verall Bayesian model are that successive
times between failures are independent random variables each having an expo-
nential distribution. The distribution for the i-th failure has a mean of 1/λ(i).
The λ(i)s form a sequence of independent variables, each having a gamma dis-
tribution with the parameters α and φ(i). φ(i) has either the form: β(0)+β(1) · i
(linear) or β(0) + β(1) · i2 (quadratic). We used the quadratic version of the
model.

NHPP. Various models based on a non-homogeneous Poisson process are de-
scribed in [11]. The particular model used also assumes that all faults are equally
likely to occur and are independent of each other. The cumulative number of
faults detected at any time follows a Poisson distribution with mean m(t). That
mean is such that the expected number of faults in any small time interval
about t is proportional to the number of undetected faults at time t. The mean
is assumed to be a bounded non-decreasing function with m(t) approaching the
expected total number of faults to be detected as the length of testing goes to
infinity. It is possible to use NHPP on time-between-failure data as well as failure
counts. We used the time-between-failure version in our evaluation.

Data Sets. We apply the reliability models to several different sets of data
to compare the predictive validity. The detailed results for all of these projects
can be found in [12]. We describe only the combined results in the following.
The used data sets come (1) from the The Data & Analysis Center for Software
(DACS) of the US-American Department of Defence and (2) from the telecom-
munication department of Siemens. The DACS data has already been used in
several evaluations of software reliability models. Hence, this ensures the com-
parability of our results. In particular, we used the projects 1, 6, and 40 and
their failure data from system tests measured in execution time.

152 S. Wagner and H. Fischer

The Siemens data gives additional insights and analysis of the applicability of
the model to these kind of projects. We mainly analyse two data sets containing
the failure data from the field trial of telecommunication software and a web
application. The Siemens data contains no execution time but calendar time
can be used as approximation because of constant usage during field trial. All
these projects come from different domains with various sizes and requirements
to ensure a representative evaluation.

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 20 30 40 50 60 70 80 90 100

R
el

at
iv

e
er

ro
r

Normalised execution time (percentage)

Fischer-Wagner
Musa basic

Musa-Okumoto
Littlewood-Verall

NHPP

Fig. 3. Median relative errors for the different models based on all analysed data sets

Analysis and Interpretation. The usage of the number of failures approach
for each project resulted in different curves for the predictive validity over time.
For a better general comparison we combined the data into one plot which can
be found in Fig. 3. This combination is straight-forward as we only considered
relative time and relative errors. To avoid that strongly positive and strongly neg-
ative values combined give very small errors we use medians instead of average
values. The plot shows that with regard to the analysed projects the Littlewood-
Verall model gives very accurate predictions, also the NHPP and the proposed
model are strong from early on.

However, for an accurate interpretation we have to note that the data of the
Littlewood-Verall model for one of the Siemens projects was not incorporated
into this comparison because its predictions were far off with a relative error
of about 6. Therefore, the model has an extremely good predictive validity if it
gives reasonable results but unacceptable predictions for some projects. A similar
argument can be made for the NHPP model which made the weakest predictions
for one of the DACS projects. The proposed model cannot reach the validity of

A Software Reliability Model Based on a Geometric Sequence 153

these models for particular projects, but has a more constant performance over
all projects. This is important because it is difficult to determine which of the
models gives accurate predictions in the early stages of application since there is
only a small amount of data. Using the Littlewood-Verall or NHPP model could
lead to extremely bad predictions in some cases.

4 Conclusions

We conclude with a summary of our investigations and give some directions for
future work.

Summary. We propose a software reliability model that is based on a geometric
series of the failure rates of faults. This basis is suggested from the theory by
Miller in [5] as well as from practice in Nagel et al. in [9, 8] and Siemens projects.

The model has a state-of-the-art parameter determination approach and a
corresponding prototype implementation of it. Several data sets from DACS and
Siemens are used to evaluate the predictive validity of the model in comparison
to well-established models. We find that the proposed model often has a similar
predictive validity as the comparison models and outperforms most of them.
However, there is always one of the models that performs better than ours.
Nevertheless, we are able to validate the assumption that a geometric sequence
of failure rates of faults is a reasonable model for software reliability.

Future Work. The early estimation of the model parameters is always a prob-
lem in reliability modelling. Therefore, we plan to evaluate the correlation with
other system parameters. For example the parameter d of the model is supposed
to represent the complexity of the system. Therefore, one or more complexity
metrics of the software code could be used for early prediction. This needs ex-
tensive empirical analysis but could improve the estimation in the early phases
significantly.

Furthermore, a time component that also takes uncertainty into account would
be most accurate. The Musa basic and Musa-Okumoto models were given such
components (see [6]). They model the usage as a random process and give esti-
mates about the corresponding calendar time to an execution time.

Further applications with other data sets and comparison with other types
of prediction techniques, such as neural networks, are necessary to evaluate the
general applicability and predictive validity of the proposed model.

Finally, we plan to use the model in an economics models for software quality
[13] and work further on a possibility to estimate the test efficiency using the
proposed model. Some early ideas are presented in [12].

Acknowledgements

We are grateful to Christine Dietrich and Lothar Quoll for their help in gathering
the necessary data and to Sebastian Winter for useful comments on the paper.

154 S. Wagner and H. Fischer

References

1. Edward N. Adams. Optimizing Preventive Service of Software Products. IBM
Journal of Research and Development, 28(1):2–14, 1984.

2. William H. Farr and Oliver D. Smith. Statistical Modeling and Estimation of Relia-
bility Functions for Software (SMERFS) Users Guide. Technical Report NAVSWC
TR-84-373, Naval Surface Weapons Center, 1993.

3. Z. Jelinski and Paul B. Moranda. Software Reliability Research. In W. Freiberger,
editor, Statistical Computer Performance Evaluation. Academic Press, 1972.

4. Bev Littlewood and J.L. Verall. A Bayesian Reliability Growth Model for Com-
puter Software. Applied Statistics, 22(3):332–346, 1973.

5. Douglas R. Miller. Exponential Order Statistic Models of Software Reliability.
IEEE Transactions on Software Engineering, 12(1):332–346, 1986.

6. John D. Musa, Anthony Iannino, and Kazuhira Okumoto. Software Reliability:
Measurement, Prediction, Application. McGraw-Hill, 1987.

7. John D. Musa and Kazuhira Okumoto. A Logarithmic Poisson Execution Time
Model for Software Reliability Measurement. In Proc. Seventh International Con-
ference on Software Engineering (ICSE’84), pages 230–238, 1984.

8. P.M. Nagel, F.W. Scholz, and J.A. Skrivan. Software Reliability: Additional In-
vestigations into Modeling with Replicated Experiments. NASA Contractor Rep.
172378, NASA Langley Res. Center, Jun. 1984.

9. P.M. Nagel and J.A. Skrivan. Software Reliability: Repetitive Run Experimenta-
tion and Modeling. NASA Contractor Rep. 165836, NASA Langley Res. Center,
Feb. 1982.

10. John A. Nelder and Roger Mead. A Simplex Method for Function Minimization.
The Computer Journal, 7(4):308–313, 1965.

11. Hoang Pham. Software Reliability. Springer, 2000.
12. Stefan Wagner and Helmut Fischer. A Software Reliability Model Based on a

Geometric Sequence of Failure Rates. Technical Report TUMI-0520, Institut für
Informatik, Technische Universität München, 2005.

13. Stefan Wagner and Tilman Seifert. Software Quality Economics for Defect-
Detection Techniques Using Failure Prediction. In Proc. 3rd Workshop on Software
Quality (3-WoSQ). ACM Press, 2005.

L.M. Pinho and M. González Harbour (Eds.): Ada-Europe 2006, LNCS 4006, pp. 155 – 166, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Adaptive Random Testing Through Iterative Partitioning

T.Y. Chen1, De Hao Huang1,*, and Zhi Quan Zhou2

1 Faculty of Information & Communication Technologies,
Swinburne University of Technology, Hawthorn, 3122, Australia

{tchen, dhuang}@ict.swin.edu.au
2 School of IT & Computer Science, University of Wollongong,

Wollongong, 2522, Australia
zhiquan@uow.edu.au

Abstract. Random testing (RT) is a fundamental and important software testing
technique. Based on the observation that failure-causing inputs tend to be clus-
tered together in the input domain, the approach of Adaptive Random Testing
(ART) has been proposed to improve the fault-detection capability of RT. ART
employs the location information of previously executed test cases to enforce an
even spread of random test cases over the entire input domain. There have been
several implementations (algorithms) of ART based on different intuitions and
principles. Due to the nature of the principles adopted, these implementations
have their own advantages and disadvantages. The majority of them require in-
tensive computations to ensure the generation of evenly spread test cases, and
hence incur high overhead. In this paper, we propose the notion of iterative
partitioning to reduce the amount of the computation while retaining a high
fault-detection capability. As a result, the cost effectiveness of ART has been
improved.

1 Introduction

There has been an increasing demand for high quality software products. The quality
of software depends on the quality of the development process, in which testing al-
ways plays a critical role [12]. Among the various testing methods, random testing
(RT) is a fundamental and straightforward approach [13, 14]. It simply selects test
cases from the entire input domain randomly and independently. It avoids the over-
head of specification-based or program-based partitioning of the input domain, which
can be very expensive in many situations. Moreover, when the formal specification or
the program code is not available, RT can often be a practical solution to generate a
large number of inputs to cover cases that are possible to occur in real life but may
often be overlooked by human testers [9, 21]. As a result, RT has been widely used in
many real-life applications [7, 9, 10, 17-22]. In 1990, for example, Miller developed
the fuzzy system that generated random data streams to test programs in several ver-
sions of the UNIX system [17]. It has been reported that 24% to 33% of the programs
tested failed on valid inputs that are randomly generated. Apart from academia, RT

* Corresponding author.

156 T.Y. Chen, D.H. Huang, and Z.Q. Zhou

techniques have been adopted by large software corporations and implemented in
their software testing tools (e.g., [1]).

Recently, the approach of Adaptive Random Testing (ART) has been proposed to
further improve the performance of RT in terms of using fewer test cases to detect the
first failure [5, 15]. ART is based on the observation that failure-causing inputs form
different failure patterns, which can be coarsely classified into three types, namely
block, strip and point patterns [6]. In the block and strip patterns, failure-causing
inputs are clustered in one or a few regions. In other words, the failure-causing inputs
are “denser” in some areas of the input domain. Examples of these failure patterns for
a program with a 2-dimensional input domain are given in the schematic diagrams in
Fig. 1, where the outer square represents the input domain and the shaded areas repre-
sent the failure-causing inputs. With respect to the types of fault that yield these types
of failure patterns, interested reader many consult [3]. Intuitively, when failure-
causing inputs are clustered together, selecting a test case close to previously executed
test cases that have revealed no failure is less likely to reveal the failure. Hence, ART
proposes to have test cases evenly spread and far apart from each other.

 Block pattern Strip pattern Point pattern

Fig. 1. Examples of three types of failure patterns

It has been reported that ART improves the fault-detection capability of RT
greatly. In [5], 12 programs were studied to investigate the effectiveness of ART.
These programs are faulty versions of some numerical computation programs pub-
lished in [8] with about 30 to 200 statements each. Typical errors were seeded into the
programs. It was found that the fault-detection capability of ART (in terms of average
number of test cases required to reveal the first failure) had generally achieved an
improvement in the order of 30%, and occasionally up to 50%, over that of RT.

Several methods (algorithms) have been proposed to implement ART. Most of
these methods require additional computations to achieve an even spread of test cases.
To reduce the cost of computations, an ART method, ART through Dynamic Parti-
tioning (DP-ART), has been proposed [3]. It significantly reduces the amount of com-
putation in test case generation, but at the cost that its fault-detection capability is
lower than that of the other ART methods.

In this paper we propose a new ART method to reduce the time cost of most ART
methods (as DP-ART does) while retaining a high fault-detection capability. The
paper is organized as follows. Section 2 reviews some existing ART methods. Section
3 introduces our proposed approach and Section 4 reports the results of our experi-
ments. Section 5 will present some discussions and conclude the paper.

 Adaptive Random Testing Through Iterative Partitioning 157

2 A Brief Review of Existing ART Method

For convenience of discussion, this paper adopts the notations in [6]. An input is
called a failure-causing input, if it causes the program to produce an incorrect output.
We use d, m and n to denote the domain size, total number of failure-causing inputs
and number of test cases, respectively. The failure rate, , is defined as m/d. In this
paper, F-measure (that is, the number of test cases needed to detect the first failure) is
adopted as a metric to assess the failure-causing capability of different testing strate-
gies. Aimed at achieving an even spread of test cases, ART exploits the location in-
formation of previously executed test cases. Several implementations of ART have
been recently developed [2, 3, 15].

2.1 Distance-Based ART

Distance-based ART (D-ART) [5, 15] is the first implementation of ART. This
method maintains a set of candidate test cases and a set of executed test cases. Every
time a test case is required, a fixed number of test case candidates will be randomly
generated from the whole input domain to form the candidate set, and then the next
test case is selected according to the criterion of maximizing the minimum Cartesian
distance between the test case candidate and all the previously executed test cases.
This procedure is elaborated as follows.

Let C = {C1, C2, ..., Ck} and E = {E1, E2, ..., El} be the set of candidate test
cases and the set of executed test cases, respectively. Let us denote the Cartesian
distance in an n-dimensional input space between a test case candidate

),,,(
21 niiii cccC = and an executed test case),,,,(

21 njjjj eeeE = where

n 1, by
=

−=
n

p
jiji pp

ecECdist
1

2)(),(. Let Mini be the minimum Cartesian

distance between test case candidate Ci and all the members of E, that is,

}1),(min{ ljECdistMin jii ≤≤= . Then D-ART algorithm will select a candi-

date Cq, where Minq is the largest among Min1, Min2, ..., Mink, to be the next test case
and discard all the other candidates.

If the test case Cq does not reveal a failure, then it will be put into the executed set
E and the above procedure will be repeated until a failure is detected or the testing
resources are exhausted.

2.2 Restriction Random Testing

Restriction Random Testing (RRT) [2] is another implementation of ART. In D-ART,
the enforcement of even spread of test cases is based on the notion of selecting the
best, whereas in RRT, the enforcement is based on the notion of selecting the first that
satisfies a constraint/qualification. RRT specifies exclusion zones around each exe-
cuted test case. Test case candidates are generated from the whole input domain ran-
domly and the first one outside all exclusion zones is selected as the next test case.
Similar to D-ART, the test case will be put into the set of executed test cases if it does

158 T.Y. Chen, D.H. Huang, and Z.Q. Zhou

not reveal a failure, and the process will be repeated until a failure is detected or the
testing resources are exhausted.

2.3 ART Through Dynamic Partitioning

Though D-ART and RRT use different principles to ensure an even spread of test
cases, in both these methods all the elements of the entire input domain have equal
chances of being selected as the test case candidates. However, after the executions of
several successful test cases, the input domain becomes uneven in that some regions
have a higher density of executed test cases than other regions. Hence, in order to
achieve an even spread of test cases, the next test case should be generated from the
sparsely populated regions. It seems, therefore, that treating every element of the
input domain equally as in D-ART and RRT is not efficient because it has not fully
utilized the location information of executed test cases.

Based on the observation, another ART method, ART through Dynamic Partition-
ing (DP-ART), has been proposed [3]. Instead of generating test case candidates from
the entire input domain and then conducting distance computations to decide the most
appropriate one as the next test case, this method partitions the input domain first and
then directly generates the next test case (rather than the “candidates”) from the
sparsely populated regions. This approach applies a partitioning scheme on the input
domain to differentiate regions of varying densities of executed test cases.

In DP-ART [3], two dynamic partitioning schemes for the input domain have been
proposed: (1) ART by Random Partitioning, which partitions the input domain using
the executed test cases themselves (that is, dividing a region by drawing straight lines
perpendicular to each other crossing at the most recently executed test case), and then
chooses the subregion having the largest size to generate the next test case; (2) ART
by Bisection, which divides the input domain into subdomains of equal size, and then
randomly chooses a subdomain that does not contain any executed test case as the
region to generate the next test case. If all subdomains contain executed test cases,
then each subdomain will be subdivided into halves and the testing process is repeated
until a failure is detected or the testing resources are exhausted.

Because DP-ART does not involve the generation of extra candidates and the se-
lection of test cases amongst the candidates, its time cost is very low compared with
that of D-ART and RRT. On the other hand, however, the experiment results [3]
showed that the fault-detection capability (in terms of F-measure) of this method is
not as good as that of D-ART and RRT. A major reason for this is that in this method
there are chances that the new test case is still close to some previously executed
ones, as illustrated in Fig. 2 and Fig. 3, where the outer square represents the input
domain, the black points represent the test cases and the highlighted rectangle

Fig. 2. An unfavorable scenario of ART by random partitioning

 Adaptive Random Testing Through Iterative Partitioning 159

Fig. 3. An unfavorable scenario of ART by bisection

represents the region where the next test case is to be generated from. As also shown
in the two figures, the follow-up partitioning scheme is always to further subdivide
the previous one.

3 Adaptive Random Testing Through Iterative Partitioning
(IP-ART)

To overcome the shortcomings of the previous ART methods while retaining their
advantages, we have developed a new ART method, namely ART through Iterative
Partitioning (IP-ART). Similar to DP-ART, IP-ART does not require the generation
of extra candidates or the identification of the next test case among candidates. Hence,
it retains the advantage of low overhead. Furthermore, by categorizing the subdo-
mains into three different types, we can identify partitions that are close to existing
test cases, and therefore avoid selecting test cases from those regions. As a result, it
achieves a fault-detection capability comparable to that of D-ART and RRT but at a
much lower time cost.

3.1 Overview

To illustrate the basic idea of IP-ART, let us consider Fig. 4. Fig. 4(a) shows a square
input domain. Suppose we have already run three test cases, represented by the black
points, but no failure has been revealed so far. According to the principle of ART,
now we want to generate a new test case far apart from all the existing ones. The
input domain can be partitioned, for example, using a 5×5 grid as shown in Fig. 4(b).
We call the cells that contain the executed test cases occupied cells. Obviously, the
next test case should not be generated from these cells. Furthermore, we call the cells
that are surrounding neighbours of the occupied cells adjacent cells. These cells them-
selves do not contain any executed test case but share at least a common side or a
common vertex with an occupied cell, as shaded in Fig. 4(b). If the next test case is
generated from an adjacent cell, then it still has a chance of being close to previous
test cases. Hence, adjacent cells are also not desirable for test case generation. IP-
ART therefore requires that the next test case be generated from the regions that are
neither occupied nor adjacent cells, known as candidate cells. The blank areas in Fig.
4(b) represent the 5 candidate cells. Obviously, a test case generated from a candidate
cell has a higher chance of being far apart from all existing test cases.

After a new test case is generated, the lists of occupied, adjacent and candidate
cells need to be updated and, sooner or later, all candidate cells will be used up. Then
IP-ART will discard the current partitioning scheme (the n×n grid) and generate a
finer (n+1) × (n+1) grid to partition the input domain all over again.

160 T.Y. Chen, D.H. Huang, and Z.Q. Zhou

Fig. 4. Partitioning the input domain and identifying candidate cells

3.2 The Grid Coordinates Used in IP-ART

The concept of grid is widely used in many areas. For example, to make a map more
manageable, it can be partitioned by a set of vertical and horizontal lines into regu-
larly sized grid cells. The size of the cells is set according to the resolution required
by the user.

In IP-ART, the whole input domain is divided into equally sized grid cells under a
certain resolution, and any grid cell can be referred to using coordinates. Suppose we
have a program q(a, b) in a 2-dimentional input domain, where a and b are real num-
bers and 0 ≤ a, b < M, and suppose the input domain is partitioned by a p×p grid,
where p is a positive integer. Let C be the side length of each grid cell, then C=M/p.
Each grid cell is labeled with a pair of integers. The grid cell (i, j) refers to the cell
whose lower left vertex has coordinates (i×C, j×C). To conform to rounding conven-
tions, a point on a vertical border belongs to the cell on its right, and a point on a
horizontal border belongs to the cell above it. It is straightforward to map any point in
the input domain to a grid cell. For any valid test case (x, y), it is mapped into grid cell
(x/C , y/C). If the input domain is partitioned by a 10×10 grid, and M is set to
100, as an example, the test case (28.8, 12.6) is mapped into grid cell (2, 1).

3.3 Categorization of Grid Cells

We categorize grid cells into 3 types: occupied cells that contain executed test cases;
adjacent cells that do not contain any test case but are surrounding neighbours of
some occupied cells; all the other remaining cells are candidate cells. In an n-
dimensional input space, let (o1, o2, ..., on) and (a1, a2, ..., an) be the coordinates of an
occupied cell and one of its adjacent cells, respectively, where 1≤n, then | ai - oi | ≤ 1,
for i = 1, 2, ..., n.

3.4 The Algorithm

To perform IP-ART, we need to first decide the resolution of the grid for partitioning
the input domain. If it is at the early stage of testing, then the number of executed test
cases is small and, hence, a coarse grid is appropriate. This is because, if the grid is
too fine at the beginning, then many candidate cells will not be sufficiently far away
from the occupied cells. Hence, the algorithm starts with a coarse grid. If no failure is
revealed and no candidate cell is available, then the current n×n partitioning scheme
will be discarded and a finer partitioning scheme using an (n+1)×(n+1) grid will be
applied to partition the input domain all over again.

 Adaptive Random Testing Through Iterative Partitioning 161

The algorithm to be elaborated below is for a 2-dimensional square input domain
with a size of M×M. Extension to input domains of higher dimensions is straightfor-
ward. A Boolean matrix GridCells is used to represent the partitioning grid. Each
entry of the matrix corresponds to a grid cell. If a matrix entry corresponds to an oc-
cupied or adjacent cell, then it will be assigned a value of F; otherwise it corresponds
to a candidate cell and will be assigned a value of T. In the algorithm, p indicates the
resolution of the grid. For example, p = 2 indicates a 2×2 partitioning grid.

IP-ART Algorithm
(It is assumed that the program under test is program(parameter1, parameter2), where
parameter1 and parameter2 are real numbers and 0 ≤ parameter1, parameter2 < M.)

1. Initialize the grid by setting p =1. Set the executed set, E, to be empty.
2. Construct a p×p Boolean matrix, GridCells, and assign T to all its entries. Use

CntCandidateCell to count the number of candidate cells, and set CntCandidate-
Cell = p×p.

3. Map each executed test case e (parameter1 = s, parameter2 = t) in E into a grid
cell by assigning F to the corresponding occupied cell GridCells (s×p/M ,
t×p/M). Update CntCandidateCell.

4. For each occupied cell GridCells(x, y), assign F to all its adjacent cells, namely
GridCells(x-1, y-1), GridCells(x-1, y), GridCells(x-1, y+1), GridCells(x, y-1),
GridCells(x, y+1), GridCells(x+1, y-1), GridCells(x+1, y), GridCells(x+1, y+1),
as necessary. Update CntCandidateCell.

5. If CntCandidateCell > 0 then generate a random integer r, where 0 < r ≤
CntCandidateCell, and search GridCells row by row until the rth candidate cell,
R, is encountered. Otherwise go to step 8.

6. Randomly generate a test case tc within R.
7. If tc is a failure-causing input, report the failure and terminate. Otherwise add tc

to E, assign F to R and its adjacent cells, update CntCandidateCell. Go to step 5.
8. Discard (release) the Boolean matrix GridCells. Set p=p+1. Go to step 2.

Fig. 5. An example that illustrates the IP-ART algorithm

An example that illustrates the above algorithm has been given in Fig. 5. Initially,
no test case has been generated. The only candidate cell is the whole input domain. A
test case is randomly generated and the cell becomes occupied. Suppose this is not
a failure-causing input. Then, since there is no candidate cell, the input domain is
partitioned by a 2×2 grid. The executed test case is mapped into the new partition
and cell (1, 1) is identified as the occupied cell, and cells (0, 0), (0, 1) and (1, 0) are

162 T.Y. Chen, D.H. Huang, and Z.Q. Zhou

adjacent cells. Hence, this partitioning scheme cannot provide us with any candidate
cell. As a result, this partitioning scheme is discarded as shown in Fig. 5(c). Then the
input domain is partitioned again using a 3×3 grid as shown in Fig. 5(d), and the oc-
cupied and adjacent cells are accordingly identified. Now cells (0, 2), (0, 1), (0, 0), (1,
0) and (2, 0) are candidate cells and one of them, say, (0, 1), is randomly selected as
the region for generating the next test case. A test case is randomly generated
within this region. Then the adjacent cells surrounding are marked as shown in
Fig. 5(e). Fig. 5(e) also shows that the cell (2, 0) is now the only remaining candidate
cell and, therefore, the third test case will be generated from this region. This process
will be repeated until a failure is detected or the testing resources are exhausted.

4 The Experiments

To compare the fault-detection capability of IP-ART with that of existing methods, a
series of simulations have been conducted. For each test run, a failure-causing region
with a specified failure rate and a specified failure pattern was randomly placed
within the input domain. For the block failure pattern, it was a square; for the strip
failure pattern, two points on the adjacent borders of the input domain were randomly
chosen and connected to form a strip with a certain width; for the point failure pattern,
10 circular regions were randomly placed in the input domain without overlapping so
that their total area yields the specified failure rate. For each combination of failure
pattern and failure rate, 5000 test runs were executed. For random testing with re-
placement, it is easy to prove that the expected number of trials before first failure
(Expected FRT) is 1/ , no matter what the failure patterns is. For ART methods, Mean
FART records the average F-measure of 5000 test runs on each combination of failure
pattern and failure rate. In order to illustrate the improvement of ART over RT, FART /
FRT records the ratio of FART and FRT .

Table 1 presents the results of the simulations conducted in a 2-dimensional input
domain with failure rates varied from 0.01 to 0.001 with respect to three types of
failure patterns. For the block pattern, the F-measure of IP-ART is about 37~40%
lower than that of random testing. For the strip pattern, the F-measure of IP-ART is
about 22~23% lower than that of random testing. For the point pattern, the improve-
ment is not significant. Table 2 compares the performance among various ART

Table 1. F-measure of IP-ART under 3 failure patterns on a 2-dimensional input domain (on
average of 5000 trials)

Block Pattern Strip Pattern Point Pattern Failure
Rate

Expected
FRT (1/) Mean

FART
FART /

FRT

Mean
FART

FART /
FRT

Mean
FART

FART /
FRT

0.01 100 63 63% 78 78% 96 96%
0.005 200 122 61% 156 78% 188 94%
0.002 500 301 60% 387 77% 476 95%
0.001 1000 605 61% 781 78% 925 93%

 Adaptive Random Testing Through Iterative Partitioning 163

Table 2. A comparison of the performance of different ART methods (on average of 5000
trials, with = 0.001 and a block failure pattern)

Dimensions ART methods FART / FRT
 D-ART

RRT

ART by
random

partition

ART by
bisection

IP-ART

2 66% 62% 77% 72% 61%
3 74% 71% 85% 79% 74%

Table 3. Recorded CPU time of different ART methods (with block failure pattern, =0.001,
for a run of 5000 trials each method)

ART
Method

D-ART RRT ART by
random

partition

ART by
bisection

IP-ART

CPU time
(in seconds)

3645.8 1562.1 1141.1 6.4 12.0

methods with respect to 2 and 3 dimensional input domains and with being set to
0.001. We can see that the F-measure of IP-ART is comparable to that of D-ART and
RRT, but obviously smaller than that of ART by random partitioning and ART by
bisection.

We also investigated the overhead of each ART method by recording and
comparing the CPU time they consumed. Simulations for all ART methods were
conducted in the same hardware and software environment: an HP Compaq PC with
2.6 GHz Intel Pentium IV processor equipped with 256M RAM, running Microsoft
Windows XP SP1. Table 3 lists the CPU time we recorded for running 5000 trials of
each method. It shows that the time cost of IP-ART is negligible compared to D-ART,
RRT and ART by random partition, and less than twice that of ART by bisection. The
table shows that the overhead of ART by random partition is also quite high. This is
because, although it avoids distance computations, ART by random partition has to
search in the entire input domain for the subregion with the largest size to be the test
case generation region, and hence incurs the overhead.

5 Discussions

Random Testing (RT) is simple in concept and easy to implement. RT has been the
underlying technique of many software testing tools, such as those developed by IBM
[1] and Bell Laboratories [11]. As pointed out in [11], Random Testing "can be re-
markably effective at finding software bugs".

Adaptive Random Testing (ART) improves the fault-detection capability of RT in
real-life situations where the failure-causing inputs are often clustered in one or a few
regions. Compared with other black- or white-box testing strategies, ART retains the
advantages of RT in that (1) both ART and RT do not require the knowledge of the

164 T.Y. Chen, D.H. Huang, and Z.Q. Zhou

source code of the program under test; (2) both ART and RT only need to know the
input space without any further information from the specification; in contrast, all the
other specification-based testing methods require intensive analysis of the specifica-
tion by the human tester (such as the identification of classifications and associated
classes in the well-known Classification-Tree method).

This paper has proposed a new implementation of ART, namely ART through It-
erative Partitioning (IP-ART). By applying a partitioning scheme on the input do-
main, the favorable regions for test case generation can be easily identified. If such a
favorable region cannot be identified, then the current partitioning scheme will be
discarded and a refined one will be applied again. We start to partition the input do-
main by a coarse grid, and then iteratively refine the partitioning scheme.

To compare with DP-ART [3], IP-ART obviously achieves a higher failure-
causing capability. The major extra computation is only the identification of adjacent
cells. It should be noted that DP-ART also identifies a potential test case generation
region by means of partitioning. However, its new partitioning scheme is always to
subdivide the preceding partitioning scheme. It can be viewed as imposing the new
partitioning scheme on the previous one, and hence is a multilevel partitioning proc-
ess. In IP-ART, on the other hands, any new partitioning scheme is not based on the
previous ones (which are in fact discarded). It is therefore an iterative partitioning
process.

Compared with D-ART and RRT, IP-ART has a comparable fault-detection capa-
bility, but at a negligible computation cost. In D-ART and RRT, all elements in the
input domain have an equal chance of being selected as test case candidates. To find
the most suitable test case from the candidates, the computation involves the location
data of all executed test cases. In IP-ART, on the other hand, the most favorable re-
gion is always located prior to test case generation. The expensive distance computa-
tions as well as the generation of multiple candidates are therefore avoided. In addi-
tion, in RRT, every time a new test case is generated, the exclusion zone needs to be
adjusted; but this is not the case for IP-ART although it also repartitions the input
domain at a certain stage.

Some methods have recently been developed to combine DP-ART with D-ART
and RRT by using the concept of localization [4, 16]. These methods improved the
fault-detection capability of DP-ART by applying D-ART or RRT in a selected test
case generation region (rather than the entire input domain) with respect to only the
test cases around that region. The classification of grid cells in our method is also
based on the concept of localization.

Finally, we would like to point out some potential advantages of IP-ART that have
not yet been employed:

1. Instead of coarsely classifying the cells into 3 different types, different grid cells
can actually be assigned different weights according to their locations relative to
the occupied cells.

2. Instead of initializing the input domain as a 1×1 grid, a finer grid can be used to
partition the input domain at the very beginning if the program is anticipated to
have a low failure rate.

3. Instead of refining the grid by 1 in each iteration, a greater increment may be used
to accelerate the test case generation process.

 Adaptive Random Testing Through Iterative Partitioning 165

It should be noted that the F-measure of our method was investigated by means of
simulations. It is worthwhile to conduct more experiments using real programs.
Moreover, we shall also study how to apply our method to test programs with input
parameters involving advanced programming constructs such as arrays and objects.

Acknowledgements

This research project is partially supported by an Australia Research Council Discov-
ery Grant (DP0557246) and a URC Small Grant of the University of Wollongong.

References

1. Bird, D. L. and Munoz, C. U. Automatic generation of random self-checking test cases.
IBM Systems Journal, 22(3): 229-245, 1983.

2. Chan, K. P., Chen, T. Y., and Towey, D. Normalized restricted random testing. In Pro-
ceedings of 8th Ada-Europe International Conference on Reliable Software Technologies,
pages 368-381, Springer-Verlag, 2003.

3. Chen, T. Y., Eddy, G., Merkel, R., and Wong, P. K. Adaptive random testing through dy-
namic partitioning. In Proceedings of the 4th International Conference on Quality Software
(QSIC 2004), pages 79-86, IEEE Computer Society Press, 2004.

4. Chen, T. Y. and Huang, D. H. Adaptive random testing by localization. In Proceedings of
the 11th Asia-Pacific Software Engineering Conference (APSEC,04), pages 292-298,
IEEE Computer Society, 2004.

5. Chen, T. Y., Leung, H., and Mak, I. K. Adaptive Random Testing. In Proceedings of the
9th Asian Computing Science Conference (ASIAN 2004), Vol. 3321 of LNCS, pages 320-
329, Springer-Verlag, 2004.

6. Chen, T. Y., Tse, T. H., and Yu, Y. T. Proportional sampling strategy: a compendium and
some insights. The Journal of Systems and Software, 58(1): 65-81, 2001.

7. Cobb, R. and Mills, H. D. Engineering software under statistical quality control. IEEE
Software, 7(6): 45-54, 1990.

8. Collected Algorithms from ACM. edition. Association for Computing Machinery, 1980.
9. Dab czi, T., Kollár, I., Simon, G., and Megyeri, T. Automatic testing of graphical user in-

terfaces. In Proceedings of the 20th IEEE Instrumentation and Measurement Technology
Conference 2003 (IMTC '03), pages 441-445, 2003.

10. Forrester, J. E. and Miller, B. P. An empirical study of the robustness of Windows NT ap-
plications using random testing. In Proceedings of the 4th USENIX Windows Systems
Symposium, pages 59-68, 2000.

11. Godefroid, P., Klarlund, N., and Sen, K. DART: directed automated random testing. In
Proceedings of ACM SIGPLAN 2005 Conference on Programming Language Design and
Implementation (PLDI), pages 213-223, 2005.

12. Hailpern, B. and Santhanam, P. Software debugging, testing, and verification. IBM Sys-
tems Journal, 41(1): 4-12, 2002.

13. Hamlet, R. Random testing. In J. Marciniak, editor, Encyclopedia of Software Engineer-
ing. John Wiley & Sons, second edition, 2002.

14. Loo, P. S. and Tsai, W. K. Random testing revisited. Information and Software Technol-
ogy, 30(7): 402-417, 1988.

166 T.Y. Chen, D.H. Huang, and Z.Q. Zhou

15. Mak, I. K. On the effectiveness of random testing. Master's thesis, Department of Com-
puter Science, The University of Melbourne, 1997.

16. Mayer, J. Adaptive Random Testing by Bisection and Localization. In Proceedings of the
5th International Workshop on Formal Approaches to Testing of Software (FATES 2005),
pages, 2005.

17. Miller, B. P., Fredriksen, L., and So, B. An empirical study of the reliability of UNIX utili-
ties. Communications of the ACM, 33(12): 32-44, 1990.

18. Miller, B. P., Koski, D., Lee, C. P., Maganty, V., Murthy, R., Natarajan, A., and Steidl, J.
Fuzz revisited: A re-examination of the reliability of UNIX utilities and services. Techni-
cal Report CS-TR-1995-1268, University of Wisconsin, 1995.

19. Miller, E. Website testing.
http://www.soft.com/eValid/Technology/White.Papers/website.testing.html.

20. Nyman, N. In defense of monkey testing: Random testing can find bugs, even in well en-
gineered software. http://www.softtest.org/sigs/material/nnyman2.htm. Microsoft Corpora-
tion.

21. Slutz, D. Massive stochastic testing of SQL. In Proceedings of the 24th International Con-
ference on Very Large Data Bases (VLDB98), pages 618-622, 1998.

22. Yoshikawa, T., Shimura, K., and Ozawa, T. Random program generator for Java JIT com-
piler test system. In Proceedings of the 3rd International Conference on Quality Software
(QSIC 2003), pages 20-24, IEEE Computer, 2003.

L.M. Pinho and M. González Harbour (Eds.): Ada-Europe 2006, LNCS 4006, pp. 167 – 178, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Run-Time Detection of Tasking Deadlocks
in Real-Time Systems with

the Ada 95 Annex of Real-Time Systems

Jingde Cheng

Department of Information and Computer Sciences, Saitama University
Saitama, 338-8570, Japan

cheng@ics.saitama-u.ac.jp

Abstract. Any existing detection method or tool for Ada 95 programs cannot
detect all types of tasking deadlocks in an Ada program with the Ada 95’s
annex of real-time systems. This paper investigates synchronization waiting re-
lations in Ada 95 programs with the annex of real-time systems, extends the
representation of Task-Wait-For Graph to deal with synchronization waiting
relations defined in the annex of real-time systems, shows the necessary and
sufficient conditions for tasking deadlock occurrences, and present a run-time
tasking deadlock detector we implemented for real-time systems with the Ada
95’s annex of real-time systems.

1 Introduction

A tasking deadlock in a concurrent Ada program is a situation where some tasks form
a circular waiting relation at some synchronization points that cannot be resolved by
the program itself (including the behavior of other tasks), and hence these tasks can
never proceed with their computation by themselves [2, 4, 5, 6, 7]. Tasking deadlock
is one of the most serious and complex problems concerning the reliability of concur-
rent systems with Ada 95. However, any existing detection method or tool for Ada 95
programs cannot detect all types of tasking deadlocks in an Ada program with the
Ada 95’s annex of real-time systems, because they take only the core Ada 95 but not
the Ada 95’s annex of real-time systems into account [3, 14]. Ada 95’s annex of real-
time systems defined a synchronization waiting relation concerning suspension
objects [1, 13]. By combinations of the suspension waiting relation and those syn-
chronization waiting relations in the core Ada 95, there may be a lot of different types
of tasking deadlocks which may occur in programs with the Ada 95’s annex of real-
time systems [4, 18]. All tasking deadlocks concerning the suspension waiting cannot
be detected by any existing detection method or tool for Ada 95 programs.

This paper investigates synchronization waiting relations in Ada 95 programs with
the annex of real-time systems, extends the representation of Task-Wait-For Graph to
deal with suspension waiting relations, shows the necessary and sufficient conditions
for tasking deadlock occurrences, and present a run-time tasking deadlock detector we
implemented for real-time systems with the Ada 95’s annex of real-time systems.

168 J. Cheng

2 Basic Notions and Terminology

First of all, we define the terminology about tasking deadlocks and livelocks in Ada
programs for discussing our subject clearly and unambiguously. In this paper, we use
the term ‘task’ to represent an execution of a task unit, and use the term ‘task type’
and/or ‘single task’ to represent the source code of a task unit.

A task in an Ada program is said to be blocked in an execution state of the program
if it is waiting at a synchronization point in its thread of control for synchronization
with one or more other tasks or even itself and this waiting state will be kept until
either the synchronization has occurred or the task is aborted.

A tasking deadlock in an Ada program is an execution state of the program where
some synchronization waiting relations among some tasks blocked at some synchro-
nization points form a cycle that cannot be resolved by the program itself (including
the behavior of other tasks), and hence these blocked tasks can never proceed with
their computation by themselves. Any of the blocked tasks involved in the cycle is
said to be deadlocked. A task calling its own entry can be regarded as a special case
of tasking deadlock.

A blocked task in an execution state is said to be deadlock-blocked if it is waiting
for synchronization with a deadlocked task but not involved in the cycle the dead-
locked task is involved in. Note that a task waiting for synchronization with several
tasks may be deadlocked in a tasking deadlock and at the same time be blocked by
another tasking deadlock.

Obviously, from the viewpoint of deadlock resolution, to break the waiting of a
task blocked by a tasking deadlock cannot change the deadlock state of any dead-
locked task in the tasking deadlock, and hence has no effect on resolution of that
tasking deadlock. Therefore, if a tasking deadlock detection method does not explic-
itly distinguish deadlocked tasks from deadlock-blocked tasks, then the detection
method cannot work well for tasking deadlock resolution.

A tasking livelock in an Ada program is an infinite series of execution states of the
program where each member of a group of tasks keeps forever rendezvousing with
only tasks in the group and hence can never respond to a synchronization request
from any task outside the group. Any of the tasks involved in the group is said to be
livelocked. A task executing an infinite loop can never respond to any synchroniza-
tion request from other tasks can be regarded as a special case of tasking livelock.

A blocked task in an execution state is said to be livelock-blocked if it is waiting
for synchronization with a livelocked task. Note that a task waiting for synchroniza-
tion with several tasks may be blocked by a tasking deadlock and at the same time be
blocked by a tasking livelock.

The purpose of this paper is to investigate tasking deadlocks and their detection.
We must introduce livelock since both livelock and deadlock may occur in the same
Ada program. In this case, the detection of the tasking deadlock may depend upon the
ability to detect the tasking livelock. At present, how to detect a livelock in a concur-
rent program is a completely open problem. The topic how to detect tasking dead-
locks when tasking livelocks occur simultaneously is too large to be considered in this
paper, we will deal with the issue as a subject of future work.

On the other hand, from the viewpoint of deadlock resolution, if a local tasking
deadlock and a local tasking livelock exist simultaneously during an execution of an

 Run-Time Detection of Tasking Deadlocks in Real-Time Systems 169

Ada program, to break the waiting of a livelock-blocked task cannot change the dead-
lock state of any deadlocked task in the tasking deadlock, and hence has no effect on
resolution of that tasking deadlock. Therefore, if a tasking deadlock detection method
does not explicitly distinguish deadlocked tasks from livelock-blocked tasks, then the
detection method cannot work well for deadlock resolution.

Besides deadlocks and livelocks, a task may be blocked forever when it is waiting
for accepting an entry call from some unspecified task or tasks even if such tasks are
never existent. In an execution state of an Ada program, a blocked task waiting for
accepting an entry call from other tasks is said to be acceptance-starved if it is nether
deadlocked, nor deadlock-blocked, nor livelock-blocked, and there does not exist an
entry call to one of its entries from any other task.

Similarly, in an execution state of an Ada program, a blocked task waiting for sus-
pension until the value of the suspension object is true is said to be suspension-
starved if it is neither deadlocked, nor deadlock-blocked, nor livelock-blocked, and no
task has a statement to set the value of the suspension object true.

The terminology defined above can also be used for other concurrent programming
languages if we replace ‘task’ by ‘process’ or ‘thread.’ For concurrent programs
where deadlocks and livelocks may occur simultaneously, to explicitly distinguish
and identify deadlocked processes, deadlock-blocked processes, livelock-blocked
processes, and starved processes is the key to design and develop an effective method
for deadlock discrimination and detection. Unfortunately, almost all works on dead-
lock discrimination and detection did not pay careful attentions on this issue [7].

3 Synchronization Waiting Relations and Task-Wait-For Graph

In order for tasks to synchronize and communicate with each other, Ada 95 defines
various types of synchronization waiting relations between tasks [1, 13]. The follow-
ing synchronization waiting relations concern tasking deadlocks:

Activation waiting: A task that created some new tasks and initiated their activations
in its own body, or in the body of a block statement executed by it, or in a subpro-
gram, which may be unprotected or protected called by it, is blocked until all of the
activations complete. The execution of an entry body that created some new tasks
and initiated their activations is also blocked until all of the activations complete.

Finalization waiting: A master is the execution of a task body, a block statement, a
subprogram body, an entry body, or an accept statement. Each task depends on one
or more masters. The first step of finalizing a master is to wait for the termination of
any tasks dependent on the master. A completed construct, i.e., a completed task, a
completed block statement, a completed subprogram, or a completed entry body,
executing a master is blocked until the finalization of the master has been performed.

Completion waiting: A task depends on some master and is blocked at a selective
accept statement with an open terminate alternative; it must wait for completion to-
gether with other dependents of the master considered that are not yet completed.

170 J. Cheng

Acceptance waiting: A task executing an accept statement or a selective accept
statement with some open accept alternative but no open delay alternatives and no
else part is blocked until a caller of the corresponding entry is selected.

Entry-calling waiting: A task calling an entry by a simple entry call is blocked until
the corresponding rendezvous has finished or the call is cancelled by a requeue with
abort. Similarly, if a task is calling an entry by a timed entry call, a conditional entry
call, or a simple entry call as the triggering statement of an asynchronous select and
the corresponding rendezvous has started, then it is blocked until the corresponding
rendezvous has finished or the call is cancelled by a requeue with abort.

Protection waiting: A task calling a protected procedure or a protected entry of a
protected object is blocked until a new protected action can be started on the protected
object, i.e., no another protected action on the same protected object is underway.

Protected-entry-calling waiting: A task calling a protected entry and the correspond-
ing protected action has started is blocked until the execution of the corresponding
entry body has finished. Similarly, if a task is calling a protected entry by a condi-
tional or timed entry call, the corresponding protected action has started, and the
execution of the corresponding entry body has started, then it is blocked until the
execution of the corresponding entry body has finished.

Suspension waiting: A task calling the procedure Suspend_Unit_True of a suspen-
sion object is blocked until the state of the suspension object becomes true.

In the above synchronization waiting relations, the activation waiting, finalization
waiting, completion waiting, acceptance waiting, entry-calling waiting, protection
waiting, and protected-entry-call waiting relations were defined in the core Ada 95,
while the suspension waiting relation is defined in the Ada 95’s annex of real-time
systems. From our investigation, we have not found other synchronization waiting
relations defined in the full Ada 95’s annexes.

Note that in the above synchronization waiting relations we do not consider those
selective accept statements with open delay alternatives or else part and those timed
entry calls, conditional entry calls, or simple entry calls as the triggering statements of
asynchronous selects which have not yet been accepted because a task reaching any
such selective accept or entry call can change its own waiting state. As a result, all of
the above waiting relations have a common property, i.e., the waiting task in any
waiting relation cannot change its own waiting state if there is not an event, including
the execution of an abort statement, in the execution of its partner or partners. There-
fore, a circular waiting relation formed among some tasks implies that a tasking dead-
lock might have occurred there.

By combinations of the suspension waiting relation and those synchronization
waiting relations in the core Ada 95, there may be a lot of different types of tasking
deadlocks which may occur in programs with Ada 95’s annex of real-time systems.
No tool that does not take Ada 95’s annex of real-time systems into account can de-
tect a tasking deadlock concerning the suspension waiting relation. We are not aware
of any tool which takes this annex into account.

The following example program shows a simple Ada 95 program involved all
types of synchronization waiting relations. More examples can be found in [18].

 Run-Time Detection of Tasking Deadlocks in Real-Time Systems 171

Example: An Ada 95 program involved all types of synchronization waiting relations

 with Ada.Synchronous_Task_Control; task T6;
 use Ada.Synchronous_Task_Control; task T7;
 procedure Main is task body T6 is
 type ITEM is new Integer; begin T5.E5; end T6;
 task T1 is entry E1; end T1; task body T7 is
 task T2 is entry E2; end T2; Y: ITEM;
 task T3; begin V.W(Y); end T7;
 S : Suspension_Object; begin null; end B;
 function GET return ITEM is T1.E1;
 begin end T4;
 T2.E2; task body T5 is
 return 0; task T8;
 end GET; task body T8 is
 protected V is begin
 Procedure W(X: in ITEM); Set_False(S);
 entry R(X: out ITEM); Suspended_Until_True(S);
 private Var: end T8;
 end V; begin accept E5; end T5;
 protected body V is begin accept E1; end T1;
 procedure W(X: in ITEM) is task body T2 is
 begin Var := X; end W; begin
 entry R(X: out ITEM) when TRUE is select
 begin X := GET; when FALSE => accept E2;
 end R; or
 end V; terminate;
 task body T1 is end select;
 task T4; Set_True(S);
 task T5 is entry E5; end T5; end T2;
 task body T4 is task body T3 is
 begin Z: ITEM;
 B: begin V.R(Z); T1.E1; end T3;
 declare begin null; end Main;

To formally investigate tasking deadlocks and their detection, we need a represen-
tation of the tasking waiting state in an execution of an Ada program. Arc-classified
digraph is a good representation tool for our purpose because we can use different
types of arcs to represent different types of task synchronization waiting relations.
We have defined a kind of arc-classified digraph, named the Task-Wait-For Graph
(TWFG for short), which explicitly represents various types of task synchronization
waiting relations in an execution of a program with the core Ada 95 [5, 6]. It has
been used as a formal model for run-time detection of tasking deadlocks in core Ada
95 programs. We now extend it to deal with synchronization waiting relations de-
fined in the full Ada 95.

A tasking object in an execution state of an Ada program is any one of the follow-
ing: a task whose activation has been initiated and whose state is not terminated; a
block statement that is being executed by a task; a subprogram that is being called by
a task; a protected subprogram that is being called by a task; a protected object on
which a protected action is underway.

A Task-Wait-For Graph at time t (this time may be a physical time in an inter-
leaved implementation of Ada 95 or a virtual time in a distributed implementation of

172 J. Cheng

Ada 95) in an execution of an Ada program P, denoted by TWFG (P, t), is a tuple
(V(P, t), E(P), SO(P), Act, Fin, Com, Acc, EC, Pro, PEC, Sus) as defined below:
(V(P, t), Act, Fin, Com, Acc, EC, Pro, PEC, Sus) is an arc-classified digraph where
V(P, t)=T(P, t)∪BS(P, t)∪P(P, t)∪PS(P, t) represents the set of all tasking objects of
P at t, T(P, t) is the set of tasks, BS(P, t) is the set of blocks and subprograms, P(P, t)
is the set of protected objects, PS(P, t) is the set of protected subprograms; E(P)
represents the set of unprotected and protected entries of P; SO(P) represents the set
of suspension objects of P; Act ⊆ V(P, t) × T(P, t), Fin ⊆ V(P, t) × V(P, t), Com
⊆ T(P, t) × T(P, t), Acc ⊆V(P, t) × T(P, t) × E(P), EC ⊆ V(P, t) × T(P, t) × E(P), Pro
⊆ V(P, t) × P(P, t), PEC ⊆ V(P, t) × P(P, t) × E(P), Sus ⊆ V(P, t) × T(P, t) × SO(P),
and an element of Act, Fin, Com, Acc, EC, Pro, PEC, and Sus, called an activation
waiting arc, finalization waiting arc, completion waiting arc, acceptance waiting
arc, entry-calling waiting arc, protection waiting arc, protected entry-calling wait-
ing arc, and suspension waiting arc, respectively, corresponds to an activation wait-
ing relation, finalization waiting relation, completion waiting relation, acceptance
waiting relation, entry-calling waiting relation, protection waiting relation, protected-
entry-calling waiting relation, and suspension waiting relation between two elements
of V(P, t), respectively.

As an example, Fig. 1 shows the TWFG of the example program where some task-
ing deadlocks have occurred.

Fig. 1. The Task-Wait-For-Graph of the example program when tasking deadlocks occurred

 Run-Time Detection of Tasking Deadlocks in Real-Time Systems 173

4 Run-Time Detection of Tasking Deadlocks

Based on the above definitions, we now discuss how to detect all types of tasking
deadlocks at run-time. First of all, we have the following propositions as the direct
results of the above definitions and the full Ada 95 definition [13].

Proposition 1. In an execution state of an Ada program, if a task is blocked, then it
must keep one and only one of the following five states: deadlocked, deadlock-
blocked, livelock-blocked, acceptance-starved, or suspension-starved.

Proposition 2. For any vertex v of a TWFG (P, t), all outgoing arcs of v are type
exclusive, i.e., if out-degree(v)>0 then all outgoing arcs of v must be a subset of any
one of Act, Fin, Com, Acc, EC, Pro, PEC, and Sus of the TWFG (P, t).

For any TWFG (P, t), a vertex v is called an AND-activation vertex if all its outgo-
ing arcs are activation-waiting arcs, and any path from an AND-activation vertex is
called an AND-activation path.

For any TWFG (P, t), a vertex v is called an OR-acceptance vertex if all its outgo-
ing arcs are acceptance-waiting arcs, and any path from an OR-acceptance vertex is
called an OR-acceptance path. For any TWFG (P, t), a vertex v is called an OR-
suspension vertex if all its outgoing arcs are suspension-waiting arcs, and any path
from an OR-suspension vertex is called an OR-suspension path. An OR-waiting
vertex is either an OR-acceptance vertex or an OR-suspension vertex. An OR-
waiting path is either an OR-acceptance path or an OR-suspension path.

The potential synchronization task set of an entry or a suspension object in an Ada
program, denoted by PST(e), is a set of task types and/or single tasks such that: (1) if
e is an entry, then every member of the set has at least one call to e in its body or in
the body of a subprogram it can call directly or indirectly; or (2) if e is a suspension
object, then every member of the set has at least one call to the procedure Set_True of
e in its body or in the body of a subprogram it can call directly or indirectly. For any
entry or suspension object e in an Ada program, PST(e) can be obtained by a static
analysis of the program. Note that PST(e) just represents a static property of an Ada
program. Not all member of PST(e) must have a corresponding task at every time
point in an execution of the program. Moreover, a task corresponding to a member of
PST(e) just maybe call e or the procedure Set_True of e but not necessarily really
does that in an execution of the program.

For any TWFG (P, t), an OR-waiting path from vi is said to be stable if any task
corresponding to a member of PST(e), where e is the entry or suspension object in-
volved in the acceptance waiting or suspension waiting of vi, is blocked, and the path
satisfies any of the following conditions: (1) excluding vi, it includes no OR-waiting
vertex, and (2) excluding vi, it includes some other OR-waiting vertices while every
OR-acceptance path starting from any of the OR-waiting vertices is stable. Note that
in fact the condition “any task corresponding to a member of PST(e) is blocked” is a
sufficient but not necessary one to the discrimination and detection of tasking dead-
locks. That is, it is too strong to the discrimination and detection of some tasking
deadlocks.

Based on the above discussions, we have the following Proposition 3 that
shows the necessary condition for occurrences of all types of tasking deadlocks, and

174 J. Cheng

Proposition 4 that shows the sufficient condition for occurrences of all types of task-
ing deadlocks.

Proposition 3. For any Ada program P, if a tasking deadlock occurs at time t in an
execution of P, then there exists a cycle in TWFG (P, t) such that each arc of the cycle
corresponds to a synchronization waiting relation involved in the tasking deadlock.

Proposition 4. For any TWFG (P, t), if (1) there exists a cycle, and (2) for every OR-
waiting path starting from every OR-waiting vertex in the cycle, either it is a part of a
cycle or it is stable, then a tasking deadlock occurs in the execution of P at time t.

Note that the existence of a cycle is the sufficient condition for occurrences of
some types of tasking deadlocks, i.e., those tasking deadlocks involving nether accep-
tance waiting relation nor suspension waiting relation, but not the sufficient condition
for occurrences of all types of tasking deadlocks.

Thus, having TWFGs as a formal representation for the tasking waiting state in an
execution of a program with the Ada 95’s annex of real-time systems, in order to
detect all types of tasking deadlocks, we just need to monitor the tasking behavior of
the program, construct and update a TWFG for the program at run-time, detecting
cycles in the TWFG, checking the necessary and sufficient conditions for occurrences
of all types of tasking deadlocks, and reporting detected tasking deadlocks.

From the viewpoint of practice, an ideal method or tool for detecting Ada tasking
deadlocks should satisfy the following three basic requirements:

Completeness: The method must be able to detect any tasking deadlock in any arbi-
trary Ada program.

Soundness: The method must not report any nonexistent tasking deadlock in any
arbitrary Ada program.

Efficiency: The method must be able to be implemented such that it can detect task-
ing deadlocks in any arbitrary Ada program of an application system using a reason-
able time allowed by the system.

However, the three basic requirements are difficult to satisfy. For target programs
with the Ada 95’s annex of real-time systems, unfortunately, as we have pointed out
in Section 1, none of those tasking deadlock detection methods and tools proposed
until now can deal with all tasking deadlocks, and therefore, they are far from com-
plete. For target programs with the core Ada 95, from the viewpoints of completeness
and soundness, the current best result is the run-time detection method and tool we
developed that can certainly detect all types of tasking deadlocks (Note that here we
just say “all types of tasking deadlocks” but not “all tasking deadlocks”), without
reporting any nonexistent tasking deadlock, in programs with the core Ada 95 that are
livelock-free [11, 14]. Finally, form the viewpoint of efficiency, there is no experi-
mental result reported until now.

5 A Run-Time Tasking Deadlock Detector

To detect tasking deadlocks in a target Ada program at run-time, it is indispensable to
monitor the tasking behavior of the program. There are three approaches to monitor

 Run-Time Detection of Tasking Deadlocks in Real-Time Systems 175

the tasking behavior of Ada programs, i.e., the source program transformation ap-
proach, the run-time environment support approach, and the self-measurement ap-
proach. In the source program transformation approach, a target Ada program P is
transformed by a preprocessor into another Ada program P’, called the subject pro-
gram of P, such that P’ preserves the tasking behavior of P and during its execution P’
will communicate with a run-time monitor when each tasking event of P occurs in P’
and pass information about the tasking event to the run-time monitor [9, 10, 14]. In
the run-time environment support approach, the run-time monitoring function is im-
plemented in the run-time support environment of Ada language and information
concerning tasking events in a target Ada program is provided by the run-time support
environment. In the self-measurement approach, a run-time monitor is implemented
as a permanent component of the target program itself and information concerning
tasking events in the target program is provided by the run-time monitor [8, 15].

We have implemented a run-time tasking deadlock detector for Ada 95 programs
with the Ada 95’s annex of real-time systems by extending the detector we developed
for programs with the core Ada 95 [9, 14]. We implemented our tasking deadlock
detector in the source program transformation approach. Our detector has two sepa-
rate components, i.e., a preprocessor and a run-time monitor. The preprocessor trans-
forms a target Ada program P into its subject program P’ such that some Ada codes
are inserted at each point where a tasking event occurs for passing information about
the tasking event to the run-time monitor. To monitor tasking behavior of P, P’ is
compiled, linked with the separately compiled run-time monitor, and then executed.
During its execution, P’ communicates with the run-time monitor when a tasking
event of P occurs in P’ and pass information about the tasking event to the run-time
monitor. The run-time monitor records the collected information, constructs and
updates the TWFG of P, detects cycles in the TWFG when it is updated, and checks
and reports detected tasking deadlocks, if any, that have occurred in P.

In the implementation of the preprocessor of our detector, we use the Source Code
Analysis Tool Construction (SCATC) Domain-Specific Kit (DSK) [12], which con-
tains modified versions of the AFLEX lexical analyzer generator, AYACC parser
generator and a specification file for the Ada 95 syntax [16, 17].

To correctly create and update a TWFG for a target Ada program, the run-time
monitor must be able to identify any task of the program uniquely during its lifetime.
Ada 95 provides a package Task_Identification in the System Programming Annex
which can be used to obtain the identity of any task [1, 13]. This makes possible for a
task to get its own unique identity, called task ID. Our detector can obtain a unique
identifier of any instance task of the same task type, while our Ada 83 tasking dead-
lock detector cannot do.

The run-time monitor is provided as a package that contains a task and a protected
objects, some data objects, and some other functions and procedures. The task is
called Tasking Information Collector (TIC for short). When the subject program
reports a tasking event, it calls an entry of the TIC. The protected object is called
Task-Wait-For Graph Manager (TWFGM for short). This object manages a TWFG
of the target program and some other information of the target program as protected
data. Different from the TIC, this object is not visible for the subject program. The
subprograms and the entries of the TWFGM are only called from the TIC.

176 J. Cheng

We have tested our run-time tasking deadlock detector by the following examples.

(1) The example program given in this paper: This program has all 8 types of syn-
chronization waiting relations during its execution. Our detector successfully de-
tected all three tasking deadlocks in the program.

(2) An example program that has a tasking deadlock concerning only suspension
waiting relation: A tasking deadlock formed by some suspension waiting relations
occurs in this program and it was successfully detected by our detector.

(3) An example program that has cycles of synchronization waiting relations tem-
porarily: This program has some cycles formed by some synchronization waiting
relations but the cycles are resolved by a task that is not in the cycles. Our detector
successfully detected the cycles in the program but did not report any tasking dead-
lock.

(4) An example program that is a slight modification of example program (3) but
where a tasking deadlock occurs certainly. This program is just like example program
(3) but the order of two statements is exchanged such that a tasking deadlock occurs
certainly. Our detector successfully detected the tasking deadlock in the program.

(5) An example program that has both a tasking deadlock and a tasking livelock:
This program occurs a tasking deadlock and a tasking livelock simultaneously during
its execution. In the example program, a task issued a call on suspension statement
for a suspension object is involved a cycle of synchronization waiting relations.
However, other tasks not involved in the cycle are livelocked. This type of tasking
deadlock cannot be detected only by checking cycles in a TWFG, because the
TWFGs do not handle tasking livelocks. Our detector did not report any tasking
deadlock in this program.

Our analysis and implementations have shown that our run-time tasking deadlock
detector can detect all types of tasking deadlocks (again, note that here we just say
“all types of tasking deadlocks” but not “all tasking deadlocks”), without reporting
any nonexistent tasking deadlock, in programs with the Ada 95’s annex of real-time
systems that are livelock-free.

6 Concluding Remarks

Although the work and results presented in this paper are an extension of our previous
work, we have made some important improvements on basic notions, terminology,
formal definitions on our previous ones in order to provide a standard reference on
Ada 95 tasking deadlocks for designers and developers of real-time systems with the
Ada 95’s annex of real-time systems.

We are developing a tasking behavior monitor with general-purpose as an Ada 95
generic package such that its instances can be used as permanent components in vari-
ous target systems which need to monitor tasking behavior at run-time by themselves
based on the self-measurement principle.

Future work should be focused on designing and developing complete, sound, and
efficient detection methods and tools for run-time detection of all tasking deadlocks.
In particular, some works should be done on the open problem how to detect tasking
deadlocks when tasking livelocks occur simultaneously.

 Run-Time Detection of Tasking Deadlocks in Real-Time Systems 177

Acknowledgements

The author would like to thank Mr. Yasushi Tojo for his help in the implementation
of our deadlock detector. The author would also like to thank Dr. Stephen Michell
and referees for their valuable comments for improving the quality of this paper.

References

1. Barnes J. (Ed.): Ada 95 Rationale: The Language, the Standard Libraries. Lecture Notes in
Computer Science, Vol. 1247. Springer-Verlag, Berlin Heidelberg New York (1997)

2. Barnes, J.: Programming in Ada 95 (2nd Edition). Addison-Wesley, (1998)
3. Blieberger, J., Burgstaller, B., Scholz, B.: Symbolic Data Flow Analysis for Detecting

Deadlocks in Ada Tasking Programs. In: Keller, H.B., Ploedereder, E. (eds.): Reliable
Software Technologies - Ada-Europe 2000, 5th International Conference on Reliable
Software Technologies, Potsdam, Germany, June 2000, Proceedings. Lecture Notes in
Computer Science, Vol. 1845. Springer-Verlag, Berlin Heidelberg New York (2000)
225-237

4. Burns, A., Wellings, A.: Concurrency in Ada (2nd Edition). Cambridge University Press,
Cambridge (1998)

5. Cheng, J.: A Classification of Tasking Deadlocks. ACM Ada Letters, Vol. 10, No. 5
(1990) 110-127

6. Cheng, J.: Task-Wait-For Graphs and their Application to Handling Tasking Deadlocks.
In: Proc. 3rd ACM Annual TRI-Ada Conference (1990) 376-390

7. Cheng, J.: A Survey of Tasking Deadlock Detection Methods. ACM Ada Letters, Vol. 11,
No.1 (1991) 82-91

8. Cheng, J.: The Self-Measurement Principle: A Design Principle for Large-scale, Long-
lived, and Highly Reliable Concurrent Systems. In: Proc. 1998 IEEE-SMC Annual Interna-
tional Conference on Systems, Man, and Cybernetics, Vol. 4 (1998) 4010-4015

9. Cheng, J., Kasahara, Y., Ushijima, K.: A Tasking Deadlock Detector for Ada Programs.
In: Proc. 15th IEEE-CS Annual International Computer Software & Applications Confer-
ence (1991) 56-63

10. Cheng, J., Ushijima, K.: Partial Order Transparency as a Tool to Reduce Interference in
Monitoring Concurrent Systems, In: Ohno, Y. (ed.): Distributed Environments. Springer-
Verlag, Tokyo (1991) 156-171

11. Cheng, J., Ushijima, K.: Tasking Deadlocks in Ada 95 Programs and their Detection. In:
Strohmeier, A. (ed.): Reliable Software Technologies - Ada-Europe ‘96, 1996 Ada-Europe
International Conference on Reliable Software Technologies, Montreux, Switzerland, June
1996, Proceedings. Lecture Notes in Computer Science, Vol. 1088. Springer-Verlag,
Berlin Heidelberg New York (1996) 135-146

12. Conn, R.: Software Version Description (SVD) and Software User's Manual (SUM)
Source Code Analysis Tool Construction Domain-Specific Kit (SCATC DSK). Public Ada
Library (1998)

13. International Organization for Standardization: Information Technology: Programming
Language – Ada. ISO/IEC 8652:1995(E) (1995)

14. Nonaka, Y., Cheng, J., Ushijima, K.: A Tasking Deadlock Detector for Ada 95 Programs.
Ada User Journal, Vol. 20, No. 1 (1999) 79-92

178 J. Cheng

15. Nonaka, Y., Cheng, J., Ushijima, K.: A Supporting Tool for Development of Self-
measurement Ada Programs. In: Keller, H.B., Ploedereder, E. (eds.): Reliable Software
Technologies - Ada-Europe 2000, 5th International Conference on Reliable Software
Technologies, Potsdam, Germany, June 2000, Proceedings. Lecture Notes in Computer
Science, Vol. 1845. Springer-Verlag, Berlin Heidelberg New York (2000) 69-81

16. Self, J.: Aflex - An Ada Lexical Analyzer Generator Version 1.1. UCI-90-18 (1990)
17. Taback, D., Tolani, D., Schmalz, R.J., Chen, Y.: Ayacc User’s Manual Version 1.1. Arca-

dia Document UCI-94-01 (1994)
18. Tojo, Y., Nara, S., Goto, Y., Cheng, J.: Tasking Deadlocks in Programs with the Full Ada

95. ACM Ada Letters, Vol. 25, No. 1 (2005) 48-56

Abstract Interface Types in GNAT:
Conversions, Discriminants, and C++

Javier Miranda1 and Edmond Schonberg2

1 Applied Microelectronics Research Institute
University of Las Palmas de Gran Canaria

Spain and AdaCore
jmiranda@iuma.ulpgc.es

2 AdaCore
104 Fifth Avenue, 15th floor

New York, NY 10011
schonberg@adacore.com

Abstract. Ada 2005 Abstract Interface Types provide a limited and
practical form of multiple inheritance of specifications. In this paper we
cover the following aspects of their implementation in the GNAT com-
piler: interface type conversions, the layout of variable sized tagged ob-
jects with interface progenitors, and the use of the GNAT compiler for
interfacing with C++ classes with compatible inheritance trees.

Keywords: Ada 2005, Abstract Interface Types, Tagged Types, Dis-
criminants, GNAT.

1 Introduction

In recent years, a number of language designs [1, 2] have adopted a compromise
between full multiple inheritance and strict single inheritance, which is to allow
multiple inheritance of specifications, but only single inheritance of implemen-
tations. Typically this is obtained by means of “interface” types. An interface
consists solely of a set of operation specifications: it has no data components and
no operation implementations. A type may implement multiple interfaces, but
can inherit code from only one parent type [4, 7]. This model has much of the
power of full-blown multiple inheritance, without most of the implementation
and semantic difficulties that are manifest in the object model of C++ [3].

At compile time, an interface type is conceptually a special kind of abstract
tagged type and hence its handling does not add special complexity to the com-
piler front-end (in fact, most of the current compiler support for abstract tagged
types has been reused in GNAT). At run-time we have chosen to give support to
dynamic dispatching through abstract interfaces by means of secondary dispatch
tables. This model was chosen for its time efficiency (constant-time dispatching
through interfaces), and its compatibility with the run-time structures used by
G++ (this is the traditional nickname of GNU C++).

L.M. Pinho and M. González Harbour (Eds.): Ada-Europe 2006, LNCS 4006, pp. 179–190, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

180 J. Miranda and E. Schonberg

This is the third paper in a series describing the implementation in the GNAT
compiler of Ada 2005 features related to interfaces (the previous papers are
[13] and [14]). We discuss the interesting implementation challenges presented
by interface type conversions, and the layout of variable sized tagged objects
with progenitors, which is the Ada 2005 term that designates the interfaces
implemented by a tagged type [4, Section 3.9.4 (9/2)]. Finally, we show how
our implementation makes it possible to write multi-language object-oriented
programs with interface inheritance. We present a small mixed-language example
that imports into Ada a C++ class hierarchy with multiple inheritance, when
all but one of the base classes have only pure virtual functions [3, Chapter 9].

This paper is structured as follows: In Section 2 we give a brief overview
of Ada 2005 abstract interfaces. In Section 3 we summarize the data layout
adopted by GNAT (for more details read [13] and [14]). In Section 4 we describe
the implementation of interface conversions. In Section 5 we discuss possible
approaches to the layout of tagged objects with components constrained by dis-
criminants, and their impact on conversion. In Section 6 we present an example
of mixed-language object-oriented programming; this example extends in Ada
2005 a C++ class whose base classes have only pure virtual functions [3, Chapter
9]. We close with some conclusions and the bibliography.

2 Abstract Interfaces in Ada 2005

The characteristics of an Ada 2005 interface type are introduced by means of
an interface type declaration and a set of subprogram declarations [4, Section
3.9.4]. The interface type has no data components, and its primitive operations
are either abstract or null. A type that implements an interface must provide non-
abstract versions of all the abstract operations of its progenitor(s). For example:

package Interfaces_Example is
type I1 is interface; -- 1
function P (X : I1) return Natural is abstract;

type I2 is interface and I1; -- 2
procedure Q (X : I1) is null;
procedure R (X : I2) is abstract;

type Root is tagged record ... -- 3
...
type DT1 is new Root and I2 with ... -- 4
-- DT1 must provide implementations for P and R
...
type DT2 is new DT1 with ... -- 5
-- Inherits all the primitives and interfaces of the ancestor

end Interfaces_Example;

The interface I1 defined at –1– has one subprogram. The interface I2 has
the same operations as I1 plus two subprograms: the null subprogram Q and
the abstract subprogram R. (Null procedures are described in AI-348 [10]; they

Abstract Interface Types in GNAT: Conversions, Discriminants, and C++ 181

behave as if their body consists solely of a null statement.) At –3– we define the
root of a derivation class. At –4– DT1 extends the root type, with the added
commitment of implementing (all the abstract subprograms of) interface I2.
Finally, at –5– type DT2 extends DT1, inheriting all the primitive operations
and interfaces of its ancestor.

The power of multiple inheritance is realized by the ability to dispatch calls
through interface subprograms, using a controlling argument of a class-wide
interface type. In addition, languages that provide interfaces [1, 2] provide a run-
time mechanism to determine whether a given object implements a particular
interface. Accordingly Ada 2005 extends the membership operation to interfaces,
and allows the programmer to write the predicate O in I’Class. Let us look at
an example that uses the types declared in the previous fragment, and displays
both of these features:

procedure Dispatch_Call (Obj : I1’Class) is
begin

if Obj in I2’Class then -- 1: membership test
R (I2’Class (Obj)); -- 2: interface conversion plus dispatch call

else
... := P (Obj); -- 3: dispatch call

end if;

I1’Write (Stream, Obj); -- 4: dispatch call to predefined op.
end Dispatch_Call;

The type of the formal Obj covers all the types that implement the interface I1.
At –1– we use the membership test to check if the actual object also implements
I2. At –2– we perform a conversion of the actual to the class-wide type of I2 to
dispatch the call through I2’Class. (If the object does not implement the target
interface and we do not protect the interface conversion with the membership
test then Constraint Error is raised at run-time.) At –3– the subprogram safely
dispatches the call to the P primitive of I1. Finally, at –4– we see that, in addition
to user-defined primitives, we can also dispatch calls to predefined operations
(that is, ’Size, ’Alignment, ’Read, ’Write, ’Input, ’Output, Adjust, Finalize, and
the equality operator).

Ada 2005 extends abstract interfaces for their use in concurrency: an interface
can be declared to be a non-limited interface, a limited interface, a synchronized
interface, a protected interface, or a task interface [9, 11]. Each one of these
imposes constraints on the types that can implement such an interface: a task
interface can be implemented only by a task type or a single task; a protected
interface can only be implemented by a protected type or a single protected
object; a synchronized interface can be implemented by either task types, single
tasks, protected types or single protected objects, and a limited interface can
be implemented by tasks types, single tasks, protected types, single protected
objects, and limited tagged types.

The combination of the interface mechanism with concurrency means that it
is possible, for example, to build a system with distinct server tasks that provide

182 J. Miranda and E. Schonberg

similar services through different implementations, and to create heterogeneous
pools of such tasks. Using synchronized interfaces one can build a system where
some coordination actions are implemented by means of active threads (tasks)
while others are implemented by means of passive monitors (protected types).
For details on the GNAT implementation of synchronized interfaces read [14].

3 Abstract Interfaces in GNAT

Our first design decision was to adopt as much as possible a dispatching model
compatible with the one used by G++, in the hope that mixed-language pro-
gramming would intermix types, classes, and operations defined in both lan-
guages. A compatible design decision was to ensure that dispatching calls through
either classwide types or interface types should take constant time.

As a result of these choices, the GNAT implementation of abstract interfaces
is compatible with the C++ Application Binary Interface (ABI) described in [6].
That is, the compiler generates a secondary dispatch table for each progenitor of
a given tagged type. Thus, dispatching a call through an interface has the same
cost as any other dispatching call. The model incurs storage costs, in the form
of additional pointers to dispatch tables in each object.

Figure 1 presents an example of this layout. The dispatch table has a header
containing the offset to the top and the Run-Time Type Information Pointer
(RTTI). For a primary dispatch table, the first field is always set to 0 and
the RTTI pointer points to the GNAT Type Specific Data (the contents of this
record are described in the GNAT sources, file a-tags.adb). The tag of the object
points to the first element of the table of pointers to primitive operations. At the
bottom of the same figure we have the layout of a derived type that implements
two interfaces I1 and I2. When a type implements several interfaces, its run-time
data structure contains one primary dispatch table and one secondary dispatch
table per interface. In the layout of the object (left side of the figure), we see
that the derived object contains all the components of its parent type plus 1) the
tag of all the implemented interfaces, and 2) its own user-defined components.
Concerning the contents of the dispatch tables, the primary dispatch table is
an extension of the primary dispatch table of its immediate ancestor, and thus
contains direct pointers to all the primitive subprograms of the derived type.
The offset to top component of the secondary tables holds the displacement to
the top of the object from the object component containing the interface tag.
(This offset provides a way to find the top of the object from any derived object
that contains secondary virtual tables and is necessary in abstract interface type
conversion; this will be described in Section 4.)

In the example shown in Figure 1, the offset-to-top values of interfaces I1 and
I2 are m and n respectively. In addition, rather than containing direct pointers to
the primitive operations associated with the interfaces, the secondary dispatch
tables contain pointers to small fragments of code called thunks. These thunks
are generated by the compiler, and used to adjust the pointer to the base of the
object (see description below).

Abstract Interface Types in GNAT: Conversions, Discriminants, and C++ 183

package Example is

 type I1 is interface;
 function P (X : I1) return Natural is abstract;

 type I2 is interface;
 procedure Q (X : I2) is null;
 procedure R (X : I2) is abstract;

A’Address
B’Address

Primary Dispatch Table

Offset_To_Top = 0
 TSD Pointer

T’Tag

T Object

T Components

 type Root is tagged record with
 -- T components
 . . .
 end record;

 procedure A (Obj : T) is . . .
 function B (Obj : T) return Integer is . . .

 type DT is new Root and I1 and I2 with
 -- DT Components
 . . .
 end record;

 function P (Obj : T) return Natural is . . .
 procedure Q (Obj : T) is . . .
 procedure R (Obj : T) is . . .

end Example;

A’Address
B’Address
P’Address
Q’Address
R’Address

Primary Dispatch Table

P’Address

Secondary Table of I1

Q’Address
R’Address

Secondary Table of I2

Offset_To_Top = 0
 TSD Pointer

Offset_To_Top = -m
 OSD Pointer

Offset_To_Top = -n
 OSD Pointer

DT’Tag

DT Object

T Components

I1’Tag
I2’Tag

DT Components

n

m

Thunk of I1.P

Thunk of I2.Q

Thunk of I2.R

Fig. 1. Layout compatibility with C++

4 Abstract Interface Type Conversions

In order to support interface conversions and the membership test, the GNAT
run-time has a table of interfaces associated with each tagged type containing the
tag of all the implemented interfaces plus its corresponding offset-to-top value in
the object layout. Figure 2 completes the run-time data structure described in
the previous section with the Type Specific Data record which stores this table
of interfaces.

In order to understand the actions required to perform interface conversions,
let us recall briefly the use of this run-time structure for interface calls. At the
point of call to a subprogram whose controlling argument is a class-wide inter-
face, the compiler generates code that displaces the pointer to the object by m
bytes, in order to reference the tag of the secondary dispatch table correspond-
ing to the controlling interface. This adjusted address is passed as the pointer
to the actual object in the call. Within the body of the called subprogram, the
dispatching call to P is handled as if it were a normal dispatching call. For ex-
ample, because P is the first primitive operation of the interface I1, the compiler
generates code that issues a call to the subprogram identified by the first entry
of the primary dispatch table associated with the actual parameter. Because the
actual parameter is a displaced pointer that points to the I1’Tag component
of the object, we are really issuing a call through the secondary dispatch table
of the object associated with the interface I1. In addition, rather than a direct
pointer to subprogram Q, the compiler also generates code that fills this entry
of the secondary dispatch table with the address of a thunk that 1) subtracts the
m bytes displacement corresponding to I1 in order to adjust the address so that

184 J. Miranda and E. Schonberg

A’Address
B’Address
P’Address
Q’Address
R’Address

Primary Dispatch Table

P’Address

Secondary Table of I1

Q’Address
R’Address

Secondary Table of I2

Offset_To_Top = 0
 TSD Pointer

Offset_To_Top = -m
 OSD Pointer

Offset_To_Top = -n
 OSD Pointer

DT’Tag

DT Object

T Components

I1’Tag
I2’Tag

DT Components

n

m

Thunk of I1.P

Thunk of I2.Q

Thunk of I2.R

I1’Tag m
I2’Tag n

Type Specific Data

Idepth
Expanded_Name
 :
 :

 Table
 of
Interfaces

(1)

(2)

(3)

(4)

(5)

Fig. 2. Object Layout

it refers to the real base of the object, and 2) does a direct jump to the body of
subprogram Q.

Now let us see the work performed by the GNAT run-time to support in-
terface conversion. Let us assume that we are again executing the body of the
subprogram with the class-wide formal, and hence that the actual parameter is
a displaced pointer that points to the I1’Tag component of the object. In order
to get access to the table of interfaces the first step is to read the value of the
offset-to-top field available in the header of the dispatch table (see 1 in the fig-
ure). This value is used to displace upwards the actual parameter by m bytes to
designate the base of the object (see 2). From here we can get access to the table
of interfaces and retrieve the tag of the target interface (see 3). If found we per-
form a second displacement of the actual by using the offset value stored in the
table of interfaces (in our example n bytes) to displace the pointer downwards
from the root of the object to the component that has the I2’Tag of the object
(see 4). If the tag of the target interface is not found in the table of interfaces the
run-time raises Constraint Error. As a result, an interface conversion incurs a
run-time cost proportional to the number of interfaces implemented by the type.
An extensive examination of the Java libraries indicates that in the great major-
ity of cases there are no more than 4 progenitors for any given class. Thus this
overhead is certainly acceptable. More sophisticated structures could be used to
speed up the search for the desired interface, but we defer such optimizations
until actual performance results indicate that they are needed.

5 Discriminant Complications

The use of abstract interface types in variable sized tagged objects requires
some special treatment. Complications arise when a tagged type has a parent

Abstract Interface Types in GNAT: Conversions, Discriminants, and C++ 185

that includes some component whose size is determined by a discriminant. For
example:

type Root (D : Positive) is tagged record
Name : String (1 .. D);

end record;

type DT is new Root and I1 and I2 with ...
Obj : DT (N); -- N is not necessarily static

In this example it is clear that the final position of the components contain-
ing the tags associated with the secondary dispatch tables of the progenitors
depends on the actual value of the discriminant at the point the object Obj is
elaborated. Therefore the offset-to-top values can not be placed in the header of
the secondary dispatch tables, nor in the table of interfaces itself. However as
we described in the previous section the offset-to-top values are required for in-
terface conversions. The C++ ABI does not address this problem for the simple
reason that C++ classes do not have non-static components.

At this point it is clear that we must provide a way to 1) displace the pointer
up to the base of the object, and 2) displace the pointer down to reference the
tag component associated with the target interface. Two main alternatives were
considered to solve this problem (obviously the naive approach of generating
a separate dispatch table for each object was declared unacceptable at once).
Whatever alternative was chosen, it should not affect the data layout when dis-
criminants are not present, so as to maintain C++ compatibility for the normal
case. The two plausible alternatives are:

1. To place the interface tag components at negative (and static) offsets from
the object pointer (cf. Figure 3). Although this solution solves the problem,
it was rejected because the value of the Address attribute for variable size
tagged objects would not be conformant with the Ada Reference Manual,
which explicitly states that “X’Address denotes the address of the first of the
storage elements allocated for X” [5, Annex K]. In addition, programmers
generally assume that the allocation of an object can be accurately described
using ’Address and ’Size and therefore they generally expect to be able to
place the object at the start of a particular region of memory by using an
offset of zero from that starting address.

2. The second option is to store the offset-to-top values immediately follow-
ing each of the interface tags of the object (that is, adjacent to each of the
object’s secondary dispatch table pointers). In this way, this offset can be
retrieved when we need to adjust a pointer to the base of the object. There
are two basic cases where this value needs to be obtained: 1) The thunks
associated with a secondary dispatch table for such a type must fetch this
offset value and adjust the pointer to the object appropriately before dis-
patching a call; 2) Class-wide interface type conversions need to adjust the
value of the pointer to reference the secondary dispatch table associated with
the target type. In this second case this field allows us to solve the first part

186 J. Miranda and E. Schonberg

A’Address
B’Address
P’Address
Q’Address
R’Address

Primary Dispatch Table

Offset_To_Top = 0
 TSD Pointer

DT’Tag

DT Object

T Components

I2’Tag
I1’Tag

DT Components

n

I1’Tag m
I2’Tag n

Type Specific Data

Idepth
Expanded_Name
 :
 :

 Table
 of
Interfaces

m

Q’Address
R’Address

Secondary Table of I2

Offset_To_Top = -n
 OSD Pointer Thunk of I2.Q

Thunk of I2.R

P’Address

Secondary Table of I1
Offset_To_Top = -m
 OSD Pointer

Thunk of I1.P

Fig. 3. Approach I: Interface tags located at negative offsets

A’Address
B’Address
P’Address
Q’Address
R’Address

Primary Dispatch Table

P’Address

Secondary Table of I1

Q’Address
R’Address

Secondary Table of I2

Offset_To_Top = 0
 TSD Pointer

Offset_To_Top = -1
 OSD Pointer

Offset_To_Top = -1
 OSD Pointer

DT’Tag

DT Object

T Components

 I1’Tag
Offset_To_Top = -m
 I2’Tag
Offset_To_Top = -n

DT Components

n
m

Thunk of I1.P

Thunk of I2.Q

Thunk of I2.R

I1’Tag
I2’Tag

Type Specific Data

Idepth
Expanded_Name
 :
 :

 Table
 of
Interfaces

Offset_To_Top_Func

Offset_To_Top_Func

Fig. 4. Approach II: Offset value adjacent to pointer to secondary DT

of the problem, but we still need this value in the table of interfaces to be
able to displace down the pointer to reference the field associated with the
target interface. For this purpose the compiler must generate object specific
functions which read the value of the offset-to-top hidden field. Pointers to
these functions are themselves stored in the table of interfaces.

The latter approach has been selected for the GNAT compiler. Figure 4 shows
the data layout of our example following this approach. Note: The value -1 in
the Offset To Top of the secondary dispatch tables indicates that this field does
not have a valid offset-to-top value.

Abstract Interface Types in GNAT: Conversions, Discriminants, and C++ 187

6 Collaborating with C++

The C++ equivalent of an Ada 2005 abstract interface is a class with pure
virtual functions and no data members. For example, the following declarations
are conceptually equivalent:

class I1 { type I1 is interface;
public: virtual void p () = 0; procedure P (X : I1) is abstract;
}

class I2 { type I2 is interface;
public: virtual void q () = 0; procedure Q (X : I2) is abstract;

virtual int r () = 0; function R (X : I2) return Integer
} is abstract;

Let us see the correspondence between classes derived from these declarations
in the two languages:

class Root { type Root is tagged record with
public: R_Value : Integer;
int r_value; end record;
virtual void Root_Op (); procedure Root_Op (X : Root);

};

class A : Root, I1, I2 { type A is new Root and I1 and I2 with
public A_Value: Float;
float a_value; end record;

virtual void p (); procedure P (X : A);
virtual void q (); procedure Q (X : A);
virtual int r (); function R (X : A) return Integer;
virtual float s (); function S (X : A) return Float;

};

Because of the chosen compatibility between GNAT run-time structures and
the C++ ABI, interfacing with these C++ classes is easy. The only require-
ment is that all the primitives and components must be declared exactly in the
same order in the two languages. The code makes use of several GNAT-specific
pragmas, introduced early in our Ada 95 implementation for the more modest
goal of using single inheritance hierarchies across languages. These pragmas are
CPP Class, CPP Virtual, CPP Import, and CPP Constructor.

First we must indicate to the GNAT compiler. by means of the pragma CPP -
Class, that some tagged types have been defined in the C++ side; this is required
because the dispatch table associated with these tagged types will be built on
the C++ side and therefore it will not have the Ada predefined primitives. (The
GNAT compiler then generates the elaboration code for the portion of the table
that holds the predefined primitives: Size, Alignment, stream operations, etc).
Next, for each user-defined primitive operation we must indicate by means of
pragma CPP Virtual that their body is on the C++ side, and by means of

188 J. Miranda and E. Schonberg

pragma CPP Import their corresponding C++ external name. The complete
code for the previous example is as follows:

package My_Cpp_Interface is
type I1 is interface;
procedure P (X : I1) is abstract;

type I2 is interface;
procedure Q (X : I1) is abstract;
function R (X : I2) return Integer is abstract;

type Root is tagged record with
R_Value : Integer;

end record;
pragma CPP_Class (Root);

procedure Root_Op (Obj : Root);
pragma CPP_Virtual (Root_Op);
pragma Import (CPP, Root_Op, "_ZN4Root7Root_OpEv");

type A is new Root and I1 and I2 with record
A_Value : Float;

end record;
pragma CPP_Class (A);

procedure P (Obj : A);
pragma CPP_Virtual (P);
pragma Import (CPP, P, "_ZN1A4PEv");

procedure Q (Obj : A);
pragma CPP_Virtual (Q);
pragma Import (CPP, Q, "_ZN1A4QEv");

function R (Obj : A) return Integer;
pragma CPP_Virtual (R);
pragma Import (CPP, R, "_ZN1A4REv");

function S (Obj : A) return Float;
pragma CPP_Virtual (S);
pragma Import (CPP, S, "_ZN1A7SEi");

function Constructor return A’Class;
pragma CPP_Constructor (Constructor);
pragma Import (CPP, Constructor, "_ZN1AC2Ev");

end My_Cpp_Interface;

With the above package we can now declare objects of type A and dispatch
calls to the corresponding subprograms in the C++ side. We can also extend
A with further fields and primitives, and override on the Ada side some of the
C++ primitives of A.

Abstract Interface Types in GNAT: Conversions, Discriminants, and C++ 189

It is important to note that we do not need to add any further information to
indicate either the object layout, or the dispatch table entry associated with each
dispatching operation. For completeness we have also indicated to the compiler
that the default constructor of the object is also defined in the C++ side.

In order to further simplify interfacing with C++ we are currently working
on a utility for GNAT that automatically generates the proper mangled name
for the operations, as generated by the G++ compiler. This would make the
pragma Import redundant.

7 Conclusion

We have described part of the work done by the GNAT Development Team to
implement Ada 2005 interface types in a way that is fully compatible with the
C++ Application Binary Interface (ABI). We have explained our implementa-
tion of abstract interface type conversions, including the special support required
for variable sized tagged objects. We have also given an example that shows the
power of the combined use of the GNAT and G++ compilers for mixed-language
object-oriented programming.

The implementation described above is available to users of GNAT PRO,
under a switch that controls the acceptability of language extensions (note that
these extensions are not part of the current definition of the language, and can
not be used by programs that intend to be strictly Ada95-conformant). This
implementation is also available in the GNAT compiler that is distributed under
the GNAT Academic Program (GAP) [15].

We hope that the early availability of the Ada 2005 features to the academic
community will stimulate experimentation with the new language, and spread
the use of Ada as a teaching and research vehicle. We encourage users to report
their experiences with this early implementation of the new language, in advance
of its much-anticipated official standard.

Acknowledgments

We wish to thank Robert Dewar, Cyrille Comar, Gary Dismukes, and Matthew
Gingell for the discussions that helped us to clarify the main concepts described
in this paper. We also wish to thank the dedicated and enthusiastic members of
AdaCore, and the myriad supportive users of GNAT whose ideas, reports, and
suggestions keep improving the system.

References

1. J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language Specification (3rd
edition). Addison-Wesley, 2005. ISBN: 0-321-24678-0.

2. E. International. C# Language Specification (2nd edition). Standard ECMA-334.
Standardizing Information and Communication Systems, December, 2002.

190 J. Miranda and E. Schonberg

3. ISO/IEC. Programming Languages: C++ (1st edition). ISO/IEC 14882:1998(E).
1998.

4. Ada Rapporteur Group. Annotated Ada Reference Manual with Technical Cor-
rigendum 1 and Amendment 1 (Draft 15): Language Standard and Libraries.
(Working Document on Ada 2005).

5. S. Taft, R. A. Duff, and R. L. Brukardt and E. Ploedereder (Eds). Consolidated
Ada Reference Manual with Technical Corrigendum 1. Language Standard and Li-
braries. ISO/IEC 8652:1995(E). Springer Verlag, 2000. ISBN: 3-540-43038-5.

6. CodeSourcery, Compaq, EDG, HP, IBM, Intel, Red Hat, and SGI. Ita-
nium C++ Application Binary Interface (ABI), Revision 1.83, 2005.
http://www.codesourcery.com/cxx-abi

7. Ada Rapporteur Group. Abstract Interfaces to Provide Multiple Inheritance. Ada
Issue 251. http://www.ada-auth.org/cgi-bin/ cvsweb.cgi/AIs/AI-00251.TXT.

8. Ada Rapporteur Group. Object.Operation Notation. Ada Issue 252, Available at
http://www.ada-auth.org/ cgi-bin/cvsweb.cgi/AIs/AI-00252.TXT.

9. Ada Rapporteur Group. Protected and Task Interfaces. Ada Issue 345, Available
at http://www.ada-auth.org/cgi-bin/cvsweb.cgi/ AIs/AI-00345.TXT.

10. Ada Rapporteur Group. Null Procedures. Ada Issue 348, Available at http://
www.ada-auth.org/cgi-bin/ cvsweb.cgi/AIs/AI-00348.TXT.

11. Ada Rapporteur Group. Single Task and Protected Objects Implementing Inter-
faces. Ada Issue 399. Available at http://www.ada-auth.org/cgi-bin/cvsweb.cgi/
AIs/AI-00399.TXT.

12. J. Miranda, E. Schonberg. GNAT: On the Road to Ada 2005. SigAda’2004, No-
vember 14-18, Pages 51-60. Atlanta, Georgia, U.S.A.

13. J. Miranda, E. Schonberg, G. Dismukes. The Implementation of Ada 2005 Interface
Types in the GNAT Compiler. 10th International Conference on Reliable Software
Technologies, Ada-Europe’2005, 20-24 June, York, UK.

14. J. Miranda, E. Schonberg, K. Kirtchov. The Implementation of Ada 2005 Synchro-
nized Interfaces in the GNAT Compiler. SigAda’2005, November 13-17. Atlanta,
Georgia, U.S.A.

15. AdaCore. GNAT Academic Program.
http://www.adacore.com/academic overview.php

Using Mathematics to Improve Ada
Compiled Code

Ward Douglas Maurer

Computer Science Department,
George Washington University,
Washington, DC 20052, USA

maurer@gwu.edu

Abstract. We have developed two mathematical techniques which, used
together, can increase the speed of Ada compiled code, in two ways. We
can eliminate most subprogram call overhead, involving stack pointer
adjustment when a subprogram is called and when it returns. We can
also eliminate most static scoping overhead, requiring the use of multiple
base registers when procedures are nested. In particular, all this overhead
can be eliminated in the absence of recursion. One of our techniques
is based on an analogy with a variant of the well-known critical path
method. The other is based on a new result in directed graph theory,
which has many potential applications in addition to the one presented
here.

1 Introduction

The problem being addressed here is that of how to reduce, as much as possible,
two kinds of overhead in Ada compiled code. One of these is associated with
pushing an allocation record on the public stack when a subprogram is called, and
popping it when the subprogram returns. The other is associated with finding
local variables of a procedure in which the current procedure is nested, at one
or more levels. All this overhead can be eliminated in the non-recursive case,
as indicated in section 3 below. However, an improved Ada compiler would be
unacceptable if it eliminated overhead only in this case, despite the fact that
Ada is used in practice mostly for safety-critical systems using coding rules that
normally forbid recursion.

We have developed two mathematical techniques which, used together, can
eliminate most of this overhead. One of our techniques is based on an analogy
with a variant of the well-known critical path method. The other is based on a
new result in directed graph theory, which has many potential applications in
addition to the one presented here.

We shall assume familiarity with offsets of variables in allocation records and
with the usual rules for pushing and popping these records on the public stack;
and also with the static chain method and the display method for gaining ac-
cess to variables when procedures are nested. These are described in several
programming language texts, such as [1].

L.M. Pinho and M. González Harbour (Eds.): Ada-Europe 2006, LNCS 4006, pp. 191–202, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

192 W.D. Maurer

2 The Critical Path Method

In section 3 below, we will show how to eliminate all subprogram call overhead,
and all base register swapping, in the absence of recursion. This will be done by
an analogy with the AOV (activity on vertex) version of the critical path method
(CPM), which was originally developed for managing large industrial projects.

An industrial project is made up of tasks, sometimes known as activities. Each
task takes a certain amount of time, represented by an integer. Several tasks may
take place simultaneously. Certain tasks must be finished before other tasks can
be started. CPM is used in determining when each task can start; how long the
entire project will take; and what to do in case some tasks take more time than
they were supposed to.

In using CPM, we form a directed graph; in the AOV version, each task is
a node of the graph. (In the other version, AOE or Activity On Edge, tasks
correspond to edges, rather than nodes, of the graph.) An edge P1 → P2 in the
graph denotes the fact that task P1 must be complete before P2 can start. For
every path in the graph, P1 → P2 → . . . → Pn, it therefore follows that P1 must
be complete before Pn can start.

It should be clear that such a graph must be acyclic; it would make no sense
for P1 to be required to finish before P1 itself can start. It is well known that
the graph therefore has a topological sort (see, for example, [2], pages 549-551),
meaning that its nodes can be ordered as P1, P2, . . . , Pn, in such a way that, for
every edge Pi → Pj , we have i < j. In what follows, we assume that such an
order has been imposed.

We associate a length, length(P), with each task P , which is the amount of
time P will take, considered in discrete increments. (In CPM this is an estimated
length, to be revised later; but we ignore this detail, since it will not be needed
in our analogy.) It is then necessary to find start(P) and finish(P) for each
P , where start(P) + 1 is the time at which P should start, and finish(P) is
the time at which P will then finish. These calculations are made by considering
all nodes in the order P1, P2, . . . , Pn of the topological sort. For every initial
node Pj of the graph (including P1), we have start(Pj) = 0; for every other
node Pj , start(Pj) is the maximum value of all finish(Pi) over all nodes Pi for
which there are edges from Pi to Pj , since Pj cannot start until all these Pi have
finished. In either case, we have finish(Pj) = length(Pj) + start(Pj).

It is customary to add an artificial node T at the end of the project, with an
edge to it from every terminal node. This allows us to calculate start(T), which
is the total time taken by the project. CPM now continues by determining a
critical path in the project, in order to guide managers if certain tasks actually
take longer than their estimated times. As before, we ignore this detail here,
since it will not affect our analogy.

An example of all this is given in Figure 1. Here length(Pi) is given initially for
each Pi, and we now proceed to calculate start(Pi) and finish(Pi), as follows:

start(P1) = 0 (since P1 is an initial node)
finish(P1) = length(P1) = 10

Using Mathematics to Improve Ada Compiled Code 193

Fig. 1. A sample CPM project graph, showing length, start, and finish values

start(P2) = finish(P1) = 10
finish(P2) = length(P2) + start(P2) = 8 + 10 = 18
start(P3) = finish(P1) = 10
finish(P3) = length(P3) + start(P3) = 6 + 10 = 16
start(P4) is the maximum of finish(P2) and finish(P3), i. e., max(18, 16) =

18
finish(P4) = length(P4) + start(P4) = 12 + 18 = 30
start(P5) = finish(P3) = 16
finish(P5) = length(P5) + start(P5) = 4 + 16 = 20
start(T) is the maximum of finish(P4) and finish(P5), i. e., max(30, 20) =

30

3 The Call Graph

We proceed now with our analogy. This time the Pi are subprograms in a com-
puting project, and there is an edge from Pi to Pj in the graph if Pi calls Pj .
Such a graph is known as a call graph, and these have been studied by Ryder
[3]. Unlike a project graph, a call graph G may contain cycles, and such a cycle
always represents recursion. Ordinary recursion is represented by a self-loop in
G, from some Pi to itself, where Pi calls Pi; mutual recursion is represented by
a more general cycle, Q1 → Q2 → . . . → Qk = Q1, where Q1 calls Q2, which
calls Q3, and so on back to Q1 again.

We start by assuming no recursion, so that the call graph is acyclic; therefore,
we may apply the method of the preceding section. This time, length(Pi) is the
number of bytes in the allocation record of Pi, while start(Pi) is the offset of the
first of these bytes. The offsets of the other bytes range from start(Pi) through
start(Pi)+ length(Pi)−1. The total allocation size needed for the entire project
is start(T); and this number of bytes is reserved when execution starts.

194 W.D. Maurer

Our overall aim, here, is to associate with every temporary variable V in every
subprogram a single offset. Since this offset never changes, it may be used for
every reference to V , throughout the lifetime of the project. There is one and
only one base register, whose value never changes during execution.

Some of the allocation records share space, since they will never be needed at
the same time. However, as we show at the end of section 4 below, this will never
be true of the bytes that can be referenced by a nested subprogram. Specifically,
suppose that Q2 is nested in Q1; Q3 is nested in Q2; and so on up to Qk. Then
the local variables of Q1, Q2, and so on up through Qk can always be referenced
simultaneously; none of them will ever overlap.

4 A Call Graph Example

Call graphs are illustrated in Figure 2, which describes the following project
(omitting most of the statements):

procedure P1 is
S: Short Integer; −− 2 bytes
F: Float; −− 4 bytes

begin
. . . P2;
. . . P3; . . .

end P1;
procedure P2 is

I: Integer; −− 4 bytes
begin

. . . P4; . . .
end P2;
procedure P3 is

C1: Character; −− 1 byte
C2: Character; −− 1 byte

begin
. . . P4;
. . . P5; . . .

end P3;
procedure P4 is

D: Long Float; −− 8 bytes
begin

. . .
end P4;
procedure P5 is

. . .
begin

. . .
end P5;

Using Mathematics to Improve Ada Compiled Code 195

Fig. 2. Actual byte numbers for this project, with local byte numbers and offsets

The call graph of this project is the same as Figure 1. Thus P1 calls P2 and
P3, and therefore there are edges from P1 to P2 and P3; both P2 and P3 call
P4, so there are edges from both of these to P4; and so on. The length of P1
is 10, as in Figure 1, since there are 10 bytes needed in the allocation record
of P1 — four, as always, for the return address; two for S: Short Integer;

196 W.D. Maurer

which takes up two bytes; and four for F: Float; which takes up four bytes.
The length of P2 is 8, since there is, again, a four-byte return address, and also
a four-byte I: Integer; and so on.

Note that the given offsets (at the right of the figure) are those for a grow-down
stack; each offset for a stack growing upward is one less than the corresponding
actual byte number (since these start at 1, while offsets start at zero). Also, in our
figure, we omit, without loss of generality, parts of the allocation records other
than the return address and the local temporary variables, such as subprogram
parameters and registers to be saved.

In CPM, an edge from Q1 to Q2 means that Q1 must finish before Q2 can
start. In our compiling method, the allocation record of Q1 (call it A1) must
metaphorically finish before that of Q2 (call it A2) can start; meaning that the
offsets of bytes in A1 are all less than (and thus metaphorically “earlier” than)
all the offsets of bytes in A2, so that A1 and A2 become disjoint, on the stack.
This is because the values of the temporary variables of Q1 must be preserved
when Q1 calls Q2, and must be available for use when Q2 returns to Q1. On
the other hand, in the CPM example of Figure 1, P2 and P3 are done at the
same time, since there is no edge connecting them. In our compiling method, the
allocation records of P2 and P3 share the same space. For example, P3 cannot
start until P2 returns to P1, at which point the values of the variables of P2,
being temporary, are not retained and thus may be overwritten by those of P3.

Suppose now that some of these subprograms are nested; for example, P5
could be nested in P3, which is nested in P1. In that case P5 can reference
the local variables of P3 and P1 in addition to its own local variables. This is
possible because the allocation records of P1, of P3, and of P5 are mutually
disjoint. Informally we can see that, for example, P3, which shares space with
P2, cannot be nested in P2, because then P1 could not call P3. Formally, this
kind of condition always holds because the static chain is always a subchain of
the dynamic chain (see, for example, [4], Lemma 3.7).

5 Loop Trees

All this, as we have said, works only in the absence of recursion. When there
is recursion, it is necessary, as we see in section 6 below, to use loop trees,
as introduced by this author in [4]. These have important applications to flow
graphs, as well as to call graphs; and their terminology follows from flow graph
applications. Here an edge in a flow graph, from statement U to statement V ,
means that V is, or can be, the next statement to be executed after U (see, for
example, [5]). We summarize the general theory in this section, and then go on
to its specific application to Ada.

Semantically, outer loops in a flow graph correspond to nontrivial strongly
connected components of it (this is not always true syntactically). Here such a
component is trivial if it has no edges, and therefore exactly one node. An outer
loop L contains at least one entry point, that is, a vertex with an edge to it from
outside L, if and only if it does not contain the start vertex of the graph. By

Using Mathematics to Improve Ada Compiled Code 197

choosing a head H for L, either one of its entry points or the start vertex, and
then eliminating from L all edges (called loopbacks) which lead to H , we obtain
the body B of L. A first-level inner loop is then a nontrivial strongly connected
component of B.

This process may be iterated as many times as necessary, to obtain loops at
all levels. The process works for any directed graph, including call graphs. The
loops (in this sense) of such a graph G may be arranged in a loop tree, with
G as the root and the loops as nodes, where descendants of L in the loop tree
correspond to loops contained in L. A graph may have more than one loop tree,
since a loop may have more than one entry point. A structured graph is one
which has a unique loop tree; and it may be proved (see the end of [4]) that
the structured graphs are exactly the reducible graphs in the sense of Allen and
Cocke (see [5]).

The skeleton of a graph G is G after removing all loopbacks, as defined above,
at all levels. The skeleton of G is acyclic, and therefore, as we have seen, has a
topological sort. By putting the loopbacks in again, we arrive at the fundamental
theorem of loop trees: any directed graph can always be ordered in such a way
that the only reverse edges, relative to the ordering, are the loopbacks.

Loop trees can, without too much difficulty, be found automatically; the only
slight difficulty is in the determination of strongly connected components. The
easiest way to do this is by doing two depth-first searches, one on the original
graph and one on its transpose. The order of starting points in the second search
is the reverse of the order of finish times in the first search (see [2], pages 552-
557). Another method of finding these components, which avoids the necessity
of precomputing the transpose, has been found by Gabow [6].

There is a stronger version of the fundamental theorem in which every loop,
at every level, is required to be a contiguous subsequence of the given ordering
(see [4], Theorem 1.2). If a graph G has n vertices, represented by the integers
0 through n − 1, this allows an entire loop tree of G to be represented by two
arrays, each indexed from 0 through n − 1. The first of these, called order, is
such that order(k) is the kth vertex in the ordering. The second, called loops,
is such that loops(k) = j + 1 where order(j) is the last vertex in the loop with
head equal to order(k). If order(k) is not the head of a loop, then loops(k) = k.

6 Insert and Remove Operations

The use of loop trees to treat recursion is an extension of a method that is more
easily understood in the case of a simple cycle Q1 → Q2 → . . . → Qk = Q1 in
the call graph G. Suppose that the removal of the single edge Qk−1 → Qk from
G leaves an acyclic graph. We now topologically sort that graph, and apply to
it the method of the preceding section. This will work so long as Qk−1 does not
actually call Qk = Q1.

Suppose now that start(Q1) = U and finish(Qk−1) = V . In other words, the
first byte of the allocation record for Q1 is at SP + U , and the last byte of the
allocation record for Qk−1 is at SP +V −1. When Qk−1 calls Qk = Q1, then, we

198 W.D. Maurer

want the first byte of the allocation record for Q1, at recursion level 2, to be at
SP +V . Any reference to this byte with base-displacement addressing, however,
will have U in its displacement field. It will work, then, only if V −U is added to
SP , producing a new value SP ′ such that SP ′+U = SP +(V −U)+U = SP +V .

The treatment of this single cycle proceeds from three observations about
adding V − U to SP . First, this also works for any other byte in the allocation
record of Q1. Supposing that there are K bytes in this record, they will be at
SP + U through SP + U + K − 1 at recursion level 1. At recursion level 2, there
is room for them at SP + V through SP + V + K − 1. Therefore, byte J of this
record will be at SP + U + J − 1, and the displacement for it is U + J − 1. After
adding V − U to SP , and using this same displacement, the effective address is
SP ′ +U + J − 1 = SP +(V −U)+ U + J − 1 = SP + V +J − 1. This is exactly
where we expect it to be, at recursion level 2.

Second, and more important, this also works for any byte in the allocation
record of any Qi, for 2 ≤ i ≤ k − 1. If start(Qi) = Xi, then, at recursion level 1,
byte J in the allocation record for Qi will be at SP +Xi+J , and its displacement
in base-displacement addressing will be Xi + J . Rewriting SP + Xi + J as
SP +U +(Xi −U +J), we see that it is byte Xi −U +J among the V −U bytes
making up the allocation records of all Qi for 2 ≤ i ≤ k−1. At recursion level 2,
we lay out space for all these allocation records (we do not necessarily use them
all, of course), starting at SP + V . Byte Xi − U + J among these will therefore
be at SP + V + (Xi − U + J) = SP ′ + Xi + J , where SP ′ = SP + V − U as
before. Thus the displacement Xi + J still works properly.

Finally, all of this also works at recursion levels 3 and higher. At recursion
level 2, the last byte of the allocation record for Qk−1 is at SP ′ + V − 1. When
Qk−1 calls Qk = Q1, then we want the first byte of the allocation record for
Q1, at recursion level 3, to be at SP ′ + V . A reference to this byte, with base-
displacement addressing, will work if V −U is added once more to SP ′, producing
SP ′′, and SP ′′ + U = SP ′ + (V − U) + U = SP ′ + V . The same arguments as
above may then be used iteratively.

We refer to the adding of V − U to SP as an insert operation. It must be
undone when Qk = Q1 returns to Qk−1; this is a remove operation. These opera-
tions are stack pointer adjustments, like those which we are making unnecessary.
This is why we say that we can eliminate most (not all) subprogram call over-
head, as mentioned in section 1 above.

Whenever there is an operation that must take place when F calls G, there
is a question as to whether F should do the operation just before calling G,
or whether G should start by doing the operation itself. In this case, there is
a definite answer. An insert must be done when Qk−1 calls Q1, but not when
Q1 is called from outside the cycle; therefore Q1 cannot do the insert, which
must be done by Qk−1. In general, when a subprogram P makes a call which is
a loopback in the call graph, then P performs the insert operation; then makes
the call; and then performs the corresponding remove operation.

Using Mathematics to Improve Ada Compiled Code 199

7 Structured Graphs

We now show how insert and remove operations may be used in a call graph
which is more general than just a simple cycle. We restrict ourselves first to
graphs in which each loop has one and only one entry point, or structured graphs
(see section 5 above). Let P be called by P ′, and suppose that this call represents
a loopback in the call graph. Suppose that, as above, an insert operation takes
place within P ′ just before it calls P , and a remove operation takes place within
P ′ just after P returns. Then it is not hard to see that this call to P must
introduce a new recursion level for P .

We can see this as follows. Suppose that, as above, an insert operation takes
place when P ′ calls P and when this call is a loopback. By the definition of a
loopback (in section 5 above), P must be an entry point of some loop L in the
loop tree, where P ′ is also contained in L. If P is the start vertex of G, then it is
already on the dynamic chain. Otherwise, P is an entry point of L, and therefore
the only entry point of L, since G is structured. In that case L must have been
entered at P , and P is again already on the dynamic chain. In either case, P is
now at the next higher recursion level.

Consider now the cycle consisting of the path on the dynamic chain from P to
P ′, followed by the edge from P ′ to P . Since L is a loop, it is strongly connected;
since P is in L, this cycle C is completely contained in L. All the subprograms
on C are on the dynamic chain when P ′ calls P , and so space has already been
set up on the stack for their allocation records. When P ′ calls P , and the insert
operation is done, space is effectively again set up for all these subprograms.
Any such subprogram which is actually called will have its allocation record in
the proper place.

8 General Graphs and Pseudo-recursive Calls

We now consider general graphs which are not structured; that is to say, a loop
might have more than one entry point. Here we have a new problem, because a
loopback N → N ′ is defined with respect to a particular choice of head N ′ for
the loop. All we can do is to choose one head H for each loop; perform insert and
remove operations in loopbacks relative to H ; and then handle alternate entry
points in a different way. We shall now see how this can be done.

As a simple example, let us look again at the cycle of section 6 above. We
assumed there that Q1 was the only entry point to this cycle. Suppose, however,
that Q3 is also an entry point; and suppose that we continue to use the method
described in that section. That is, just before Qk−1 calls Qk = Q1, an insert
operation is done; and, just after Q1 returns, a remove operation is done. Does
this still work? The answer is that it does, although not for an obvious reason.

When the cycle is entered at Q1, the call from Qk−1 to Q1 is a recursive call;
it starts what it calls (in this case Q1) at a new recursion level. Whenever that
happens, adjusting the stack pointer is clearly necessary, since only in that way
are proper references made to local temporary variables at the new recursion

200 W.D. Maurer

level. When the cycle is entered at Q3, however, the call from Qk−1 to Q1 is not
recursive; Q1 is at recursion level 1 when it is called.

It is, therefore, unnecessary to adjust the stack pointer when Q1 is called, in
this case. However, it does no harm, other than using some unnecessary space
which was reserved on the stack for the allocation records of Q1 and Q2. That
space was never used, and the new space reserved for these records, at recursion
level 2, is actually being used at level 1; but the speed, and the correctness, of
the code are unaffected.

We refer to the call from Qk−1 to Q1, in this case, as a pseudo-recursive call.
It is not a real recursive call, but it is compiled as if it were. It can, as here, be
followed by a real recursive call; in this case, the call from Q2 to Q3. No insert
operation takes place here, and none is needed, because the insert was already
done when Qk−1 called Q1. Further details of this are given in [4].

9 Base Registers

It remains to be seen how many base registers are needed in the general case. In
the worst case, a simple example, involving k subprograms, for any k > 1, shows
that k base registers are required. Let the subprograms be Q1, Q2, and so on
up to Qk, where Qi is nested in Qi−1 for 2 ≤ i ≤ k; and let each Qi−1 possibly
(but not always) call itself before it calls Qi. If Qk uses the temporary variables
of all the Qi, for 1 ≤ i ≤ k, then k base registers are required, one for each Qi.
This is because Qk has no way of knowing, for each Qi, whether it called itself
or not; all these decisions (did Qi call itself? yes or no?) are independent of each
other; and each decision determines where the temporary variables of Qi are.

For this reason, we cannot, as mentioned in section 1 above, eliminate all sta-
tic scoping overhead. We can, however, eliminate most of it, because the example
above is contrived. Indeed, there are many cases in which only one base register
is needed, even in the presence of arbitrary nesting depth. Suppose that, in the
example above, none of the Qi makes a call to itself; and that the call to Q1 from
Qk−1 is the only loopback in the project. Then it is not hard to see that, as before,
we can get by with one base register. At recursion level 1, allocation records are on
the public stack for Q1 through Qk−1. When Qk−1 calls Q1, an insert operation
takes place, providing space on the public stack for allocation records at level 2 for
all these subprograms. The result is that, when Qj is called, for any j, 2 ≤ j ≤ k,
the allocation records for all Qi, for 1 ≤ i ≤ j, are available for the use of Qj at
recursion level 2. The same techniques then work at higher levels.

We now solve the problem posed at the start of this section.

Theorem 1. Let G have the loop tree Z, and let U and V be nodes in G, such
that V is nested in U . Suppose that every loop in Z which contains V also
contains U . Then U and V can share a base register.

The proof of this theorem is given in [4] (Theorem 3.1).
In the second example of this section, there is only one loop L in the loop

tree, and L consists of the subprograms Q1 through Qk−1. Here Qi is nested in

Using Mathematics to Improve Ada Compiled Code 201

Qi−1, for 2 ≤ i ≤ k − 1. All these subprograms are in L, and so the hypotheses
of the theorem are satisfied; hence all of these can share a base register, and only
one base register is needed for the project. In the first example of this section,
however, each Qi calls itself, for 1 ≤ i ≤ k − 1, and therefore there is an edge
in the call graph from each Qi to itself. Each Qi, therefore, together with this
edge, is a separate loop in the loop tree. As we saw, Qi is nested in Qi−1, for
2 ≤ i ≤ k − 1; but, this time, each Qi is in a loop which does not contain Qi−1,
and the hypotheses of the theorem are not satisfied. Indeed, as we saw, none of
the Qi, in general, can share a base register with any other.

10 Conclusions and Suggestions for Further Work

Using mathematics, we have developed methods for saving time in the execution
of Ada code. The reason that these methods work is easy to understand as long as
the compiled code contains no recursion. It is considerably harder to understand,
but relatively easy to apply, when recursion is present.

Our methods result in greater savings when the target processor has a small
number of registers. On a machine with 32 general-purpose registers, several of
these can be dedicated to use as base registers. On a register-sparse machine, on
the other hand, if there are several base registers, their values may well have to
be kept in memory and loaded into actual registers when necessary. Reducing
the number of base registers results in greater savings in this case.

Further work needs to be done on the actual implementation of the methods
presented here, and an empirical determination of efficiency improvement for real
examples including both small and large Ada programs. Comparison should then
be made between the efficiency problems suggested here and other such problems,
including those concerned with complex floating point operations, internal bus
limitations, and limitations of graphic hardware. It should be understood that
the author of this paper is a mathematician, who is not, at the time of writing,
associated with any actual Ada compilation project. This is the only reason for
the fact that we have no data on how much savings actually accrue in practice
with our methods.

Acknowledgments

The author is grateful to Prof. Michael B. Feldman, and to four anonymous
reviewers, for checking this paper for errors and inconsistencies; and to colleagues
and students for help with LATEX.

References

1. Sebesta, R.W.: Concepts of Programming Languages. 7th edn. Addison-Wesley,
Boston (2005)

2. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms.
2nd edn. McGraw-Hill, New York (2001)

202 W.D. Maurer

3. Ryder, B.G.: Constructing the Call Graph of a Program. IEEE Trans. on Software
Eng. 1 (1979) 216-226

4. Maurer, W.D.: Loop Trees for Directed Graphs and Their Applications. Technical
Report TR-GWU-CS-05-004. Computer Science Dept., George Washington Univ.,
Washington (2005)

5. Hecht, M.S., Ullman, J.D.: Flow Graph Reducibility. SIAM J. on Computing 1
(1972) 188-202

6. Gabow, H.N.: Path-Based Depth-First Search for Strong and Biconnected Compo-
nents. Inf. Processing Letters 74 (2000) 107-114

L.M. Pinho and M. González Harbour (Eds.): Ada-Europe 2006, LNCS 4006, pp. 203 – 214, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Replication-Aware Transactions: How to Roll
a Transaction over Failures

Mohsen Sharifi and Hadi Salimi

Computer Engineering Department
Iran University of Science and Technology

msharifi@iust.ac.ir, h_salimi@mail.iust.ac.ir

Abstract. The CORBA standard adopted by OMG supports reliability using
two orthogonal mechanisms: Replication (by means of FT-CORBA standard)
and Transaction (with the aid of OTS standard). Replication represents a roll-
forward approach in which a failed request is re-directed into another replica
that is alive. On the other hand, transaction represents a roll-back approach in
which a system reverts into its last committed state upon any failure. Current
researches show that integrating these two approaches is essential in 3-tier sys-
tems, wherein the replication protects system processes from failures in the
middle tier, and the transaction concept ensures the data consistency in the data
tier. All proposed methods for reconciling these two concepts are unanimous
that the transaction approach suffers from poor performance due to the use of
two-phase commit protocol. In this paper we introduce a new replication-aware
transaction model based on replicated objects. This kind of transaction can
jump over the failures that the replicas come across without rolling the whole
transaction back (we call it roll-over). Instead, the failed objects would be
removed from the replica list and re-created somewhere else if needed.
Implementation results of our model show better transaction throughput in
comparison with known approaches.

1 Introduction

There are two different attributes of fault tolerance for enterprise systems: protection
of data against corruption and protection of processes against failures. Data
protection means using techniques that guarantee no loss or inconsistencies exist in
data. On the other hand, process protection represents methods that ensure that at least
one processing unit will be available every time to reply client requests.

To protect data against loss or inconsistency, systems are usually equipped with
transaction processing capability. This feature ensures that no partial execution of an
operation is allowed. This means that transactions execute completely or not at all [5].
To protect the processes of a system against failures, these processes are usually rep-
licated [6], so that a failed process is replaced with a fresh one.

Object Management Group (OMG) has released two specifications related to fault
tolerance, namely, Fault Tolerant CORBA (FT-CORBA) [1] and Object Transaction
Service (OTS) [2]. FT-CORBA provides reliability for enterprise applications by
replicating CORBA objects so that, if one of the replicas fails, another one can

204 M. Sharifi and H. Salimi

provide continuous service to the clients. On the other hand, the OTS provides reli-
ability by introducing commit and abort concepts to provide consistency even in the
presence of faults. In other words, FT-CORBA yields liveness by replicating the
CORBA objects, but OTS fulfills the consistency or safety attribute of a system.

In this paper, we present a replication-aware flat transaction model with a new ter-
mination style, called roll-over. This termination means that although there had been
errors during the execution of a flat transaction on a group of replicated objects, the
transaction can be committed safely. By means of this method, the replica objects that
had failed will be removed from the list of object replicas.

The remainder of this paper is organized as follows. Sect. 2 provides a summarized
background on FT-CORBA and OTS required in our discussions. Sect. 3 describes
some notable related works. Sect. 4 presents an important limitation of the existing
methods. Sect. 5 presents our proposed approach. Sect. 6 illustrates some experimen-
tal results of our approach, and finally Sect. 7 concludes the paper.

2 Background

In the rest of this section, we describe the current CORBA standards that provide
reliability for the constructed systems. These services include: FT-CORBA and OTS.

2.1 FT-CORBA

Support for availability is provided by the standard that has recently been adopted by
OMG, namely, FT-CORBA [1]. This standard implements system availability by
replicating objects. In the case of a replica failure, a new replica can take over the
failed one, generally without the client's awareness.

In this standard, the concept of IOGR (Interoperable Object Group Reference) is in-
troduced. An IOGR specifies an object reference that contains multiple IORs, each of
which represents a replica object reference. The client ORB can easily iterate through
the replica references and try to make calls to other replicas in the case of failures.

In FT-CORBA a unit called Replication Manager (RM) manipulates the creation,
replication and deletion of replicated objects. RM replicates objects and distributes
the replicas across the system. It is also responsible for constructing IOGRs that
clients use to contact the replicated objects.

Replica faults are detected by a unit inside each host, namely, Fault Detector (FD).
Detected faults are reported to Fault Notifier (FN), which filters them and distributes
fault event notifications to RM. Based on these notifications, RM initiates appropriate
actions to enable the system to recover from faults.

FT-CORBA defines three different replication styles: (1) active, (2) warm-passive
and (3) cold-passive. In active replication, all members of an object group receive and
simultaneously process the same sequence of client requests in an independent way.
Consistency is guaranteed by assuming that, when provided with the same input in the
same order, replicas will produce the same output. In warm-passive replication, the
basic principle is that clients send their requests to a primary, which executes
the requests and sends update messages to the backups. The backups do not execute
the invocation, but apply the changes produced by the invocation execution at the
primary. In a cold-passive replication strategy, clients send their requests to a unique

 Replication-Aware Transactions: How to Roll a Transaction over Failures 205

primary member of the group which is the only one who executes the requests. After
the operation has completed, the state of this primary gets recorded in a message log.
When faults occur, the recovery is done using the state information and messages
recorded in the message log. In this case, the state gets transferred to a new primary
member object.

2.2 OTS

CORBA provides support for safety using the Object Transaction Service (OTS)
standard [2]. OTS supports interfaces for synchronizing a transaction across the ob-
jects of a distributed and object-based application. A transaction is initiated by a
client, and can involve multiple objects. The scope of a transaction is defined by a
transaction context, which is shared by all the objects that take part in that transaction.
The context is associated with the client thread that initiated the transaction. This
context is implicitly bound to subsequent invocations that the client makes, until the
client decides to terminate the transaction. If no fault occurs during the execution of a
transaction, the changes produced as a consequence of the client’s requests are com-
mitted. In the case that a fault occurs, any changes to object states that had occurred
within the scope of the current transaction are rolled back and discarded.

Each object that intends to take part in a transaction is required to register a special
kind of object in the transaction called resource object. At the end of a transaction,
OTS performs the two-phase commit protocol by issuing requests to the resources
registered for the transaction.

3 Related Works

Researches that have so far focused on integrating replication and transaction can be
categorized into two different groups. The first group includes those methods in
which the integration of legacy concepts of transaction and replication are considered.
Old transaction concepts have focused on concurrency and locking methods in data-
base management systems. Legacy concepts of replication are also known as process
groups in which more than one process is responsible for performing the same task.
On the other hand, the second group includes those techniques that try to integrate the
new concepts of transaction and replication. These approaches have mainly focused
on integrating transaction and replication on distributed systems, especially the ones
that have been constructed by means of CORBA. So, the previous attempts at recon-
ciling replication and transaction are discussed under two headings with the focus on:
(1) traditional concepts and (2) new concepts.

3.1 Traditional Concepts

In this section we will highlight research efforts that have attempted to solve specific
aspects of integrating transactional and group communication protocols.

Some old researches believe that these two models are also rivals. Some of them
[7] claim that transactional processing systems are better suited to group communica-
tion-enabled ones. Those researches that are group communication supporters [8]
have the opposite idea.

206 M. Sharifi and H. Salimi

A more complete approach is presented in [9]. In this work, the role of group
communication in building transaction processing systems is explored. The viewpoint
of this paper is that group communication primitives are mechanisms that provide
transactional semantics.

The idea of Group Transactions was first defined in [10]. This approach tries to in-
tegrate the two concepts using a new transactional model. This work also proposes
that the transactional servers can also be a group of processes which either work indi-
vidually or cover each other when a failure occurs.

[11] presents another transaction model, namely, e-Transaction. This model is pro-
posed on behalf of enterprise systems in which the middle tier only contains repli-
cated stateless application servers. This model also guarantees to be executed exactly
once when errors occur.

3.2 New Concepts

Integrating OTS and FT-CORBA capabilities in order to bring end-to-end reliability
to CORBA applications is still an open issue [4]. Some researches [13] believe that
integration of these two services requires more facilities to make them interoperable.
On the other hand, other works [3] claim that unification of these two standards is
possible by applying some changes to the protocols that these services are based on.

A comparison between transactional systems and the ones that use group commu-
nication is presented in [12]. This work assumes that future distributed applications
will increasingly rely on middleware services. This research shows that transactions
can be used to support replication without the need for process groups. It is shown
that if the underlying infrastructure supports process groups, these groups can be
exploited effectively for binding service replication, for providing faster switching to
backups and for supporting active replication.

A CORBA-based infrastructure for unification of OTS and FT-CORBA in 3-tier
systems is introduced in [14]. This infrastructure tries to bring reliability to systems
by means of replicating application servers and transaction coordinators. This makes
it possible to use OTS and FT-CORBA together to achieve higher availability and
reliability.

Felber and Narasimhan [3] have proposed a protocol to use transactional mecha-
nisms in the implementation of replicated objects. This protocol can also address the
problem of determinism in nested interactions between replicated objects. Using this
technique, 3-tier systems would be able to use replication-based availability in their
middle tier and at the same time use transaction-based safety in their back-end
systems, which are typically database management systems.

4 Limitation of Current Researches

Almost all available implementations of FT-CORBA standard (like Eternal [16],
Electra [17] and FRIENDS [18]) rely on total-order multicast protocols [15] to keep
object replicas consistent. These protocols ensure that all messages sent to a set of
objects (processes) are delivered to all of these objects (processes) in the same total
order. The underlying totally ordered multicast mechanisms guarantee that all of the repli-
cas of an object receive the same messages in the same order; therefore, they perform the

 Replication-Aware Transactions: How to Roll a Transaction over Failures 207

operations in the same order. This ensures that the states of the replicas are consistent at
the end of each operation.

Failure of replica objects during the execution of an update operation is still another
concern. FT-CORBA standard assumes that no source of non-determinism exists in the
system, so all the replicas will reach the same final state after an update execution. Some
other FT-CORBA implementations consider non-deterministic behavior for replica consis-
tency. For example, Eternal supposes that if a replica object fails, while performing an
operation, the remaining replicas in its object group continue to perform the operation and
return the result. In this case, the failed replica is simply removed from the group by object
group membership mechanisms while the operation continues to be performed. The failure
is thus transparent to other object groups involved in the operation. This replica consis-
tency scheme substantially quickens recovery from faults.

Although the so-called multicast protocols that are frequently used in constructing
fault tolerant systems are beneficial, there are cases in which using only these tech-
niques cannot guarantee system safety. Fig. 1 depicts a case in which the object O1
intends to do an atomic operation on a set of replicated objects (G) and a non-
replicated object (O2). First, O1 makes a successful call to the group of replicated
objects. Next, O1 performs another call to a non-replicated object, O2. The problem is
that if O2 fails because of encountering an error, the state changes on replicated
objects cannot be discarded.

Fig. 1. A case in which the total-order multicast protocol cannot guarantee system safety

According to the above scenario, it can be concluded that the total-order multicast
protocols are especially beneficial to guarantee the message delivery to the members
of some object groups. They also guarantee to deliver the messages in the same total
order. Although the use of these protocols can prevent the objects from going to un-
safe states, other sources of inconsistency exist that cannot be resolved using these
protocols. As an example, we showed how an object crashing during an atomic opera-
tion can lead to an unwanted state.

It seems that the use of transaction technique can solve the mentioned problem. But
the transaction model that OTS supports is based on two-phase commit protocol and
is flawed with rolling the whole transaction back when encountering any error. In the
next section, we propose a new transaction model which works on behalf of replicated
objects. As Sect. 6 shows, this model is preferable for dealing with replicated objects,
compared to the traditional model that OTS supports.

208 M. Sharifi and H. Salimi

5 The Proposed Approach

As discussed in Sect. 4, there are cases in which using only multicast protocols cannot
guarantee the safety of a system. As an example, we showed how the crash of an
object in an atomic operation can lead to system inconsistency. On the other hand,
equipping the system with transaction processing capabilities may lead to roll many
changes back due to any replica failure.

From another point of view, any failure in the scope of a transaction that is execut-
ing on a group of replicated objects can be easily discarded. If the replicated objects
are stateless, any failure on a replica can be recovered just by selecting another replica
to provide the expected service. Due to this mechanism (called roll-forward), the
failure can easily be compensated. In the case of statefull objects, forwarding the
request to another replica cannot be helpful when a failure occurs, because the states
of other replica objects need to remain consistent. In this case, removing the failed
object from the group inhibits the roll back of the whole transaction. We call this
action roll-over, which means that the transaction can be rolled over a failure.

Fig. 2 depicts three different transaction models. In Fig. 2.a, an object crash in the
scope of a transaction that is executing on a set of unreplicated objects has lead to
roll the whole transaction back. In this case, in step 0, the transaction is issued and in
steps 1 and 2, the first object is updated. In step 3 the request for updating the second
object is failed because of the crash of this object. So, the transaction will be rolled
back, without any state change.

Fig. 2. Three different transaction models: (a) roll-back (b) roll-forward (c) roll-over

Fig. 2.b presents a transaction on a group of stateless replicated objects. The trans-
action has committed successfully by redirecting the failed request to a live replica.
As depicted, although the request in step 1 has failed, but this failure has recovered
just by redirecting it to another replica (step 2). Finally, Fig. 2.c shows a case that a
transaction is executed across a group of statefull and replicated objects. In this case,
although there is a failure during the transaction in step 3, the transaction has commit-
ted successfully by removing the failed replica from the relevant object group.

 Replication-Aware Transactions: How to Roll a Transaction over Failures 209

5.1 Implementation of Roll-Over Mechanism

To implement the proposed roll-over approach, we have extended the OTS service in
such a way that it can ignore the failures that statefull replica objects come across. In
this case, all recoverable objects, including statefull replica objects, register their
resource objects in OTS. The difference in registering the resource by replica objects
is that they register their resources with a name that can be easily identified by OTS.
Using this technique, the OTS Resource Manger is able to distinguish ordinary re-
source objects from the ones that are registered by replica objects.

When the OTS Resource Manager performs the two-phase commit protocol on
registered resources, those resources that belong to replicated objects can be easily
detected by their registered name. The Resource Manger can easily ignore the failure
occurred in a replica. To clarify the approach, parts of the code for the registerRe-
source and prepare methods in the OTS Resource Manager is given below:

void
ResourceManager::registerResource(CosTransactions::Resource_ptr r,
const char* name)
{
 ResourceRecord record;

 Record.name = name; // and other initializations for record

 if (strstr(name , "~$Replicated$~"))
 record.setReplicated(true)
 else record.setReplicated(false);

 resources_.push_back(record);
}

CosTransactions::Vote ResourceManager::prepare(Heuristic& h)
{
 ResourceList::iterator iter = resources_.begin();

 while (iter != resources_.end())
 {
 CosTransactions::Resource res = apply(*iter).resource;
 CosTransactions::Vote v = res -> prepare();

 switch(v) {
 case CosTransactions::VoteRollback:
 if (res -> isReplicated())
 resources_.Remove(res);
 else return v;

 //other cases come here
 }
 }
}

In the code related to prepare method, when the Resource Manager receives a
VoteRollback vote from a resource, if the registered resource belongs to a replicated
object, the resource is easily said to forget about the transaction and is removed from
the resource list. So this resource will not take part in the next step of the two-phase
commit protocol.

210 M. Sharifi and H. Salimi

5.2 Removing the Failed Replica from Its Group

The elimination of a replica that has failed during a transaction is performed by its
registered resource. Using this mechanism, each resource object issues a crash mes-
sage to its owner object whenever a failure occurs. The replica object (resource
owner) then marks its state as NotAlive. This state causes the replica object to be de-
tected as a failed object by the local fault detector. The local fault detector informs the
Replication Manager of the failure. Now, the Replication Manager is responsible for
recreating the failed replica somewhere else. It is also possible for the resource object
to encounter a fault. In this case, the fault will be explicitly detected by its local fault
detector the next time it pings the local servant.

5.3 Support for Group Failure Detection

Failure of all the objects belonging to an object group is still another concern. This
case may occur when all the replica objects are running on the same host. The crash
of this host will cause all the replicas to shut down. Disconnection of hosts, the ones
that a group of replica objects are running on, from the network may be another rea-
son for group failure. Group failure can also occur if at a given time there exists only
one replica in the system and that replica comes across a failure.

The approach that we have proposed up to here is not able to tolerate this kind of
fault; in the case of a group failure, the transaction server will commit the transaction
even if the entire replica objects fail. In other words, our extended transaction service
will roll over all the failures regardless of considering a group failure.

To tolerate this special kind of failure, the information about whether all the mem-
bers of an object group have failed or not should be specified in the revised OTS. To
achieve this, the names in which resource objects have registered themselves in the
transaction service must be changed in such a way that replicas’ group can be deter-
mined. As depicted in Fig. 3, this name is composed of two parts. The first part is a
constant string as used in the program code above. The second part is the identifier of
the group that the replica object belongs to. This identifier can easily be retrieved
from the replica's IOGR. By means of this name, OTS is able to roll the transaction
back if all group members fail during the transaction.

Fig. 3. The structure of a resource name registered by a replica object

6 Performance Measurement

We have developed a prototype environment (adopted from [14]) to evaluate our
proposed approach. It is based on an open source ORB, namely, ORBacus [20] and
our extended version of ORBacus OTS implementation [19] from Object-Oriented
Concepts, Inc. We have also implemented a light-weight Replication Manager Ser-
vice to manage replica manipulation. Our experiments were carried out on a number

~$Replicated$~ Replica Object Group Identifier

Constant Variable

 Replication-Aware Transactions: How to Roll a Transaction over Failures 211

of Pentium III PCs over a 100 Mbit/Sec LAN. Each PC was equipped with 256
Mbytes of RAM and ran Microsoft Windows XP© with SP1.

The experimental application architecture is shown in Fig. 4. A client invokes the
replicated server objects to do a simple bank balance transfer operation. An intercep-
tor is registered at the client side and dispatches the client requests to all target replica
objects, which are distributed across the network, using active replication style. The
account objects then update their states which are stored in the MS SQL Server
DBMS.

Each balance transfer request is carried out in the scope of a transaction which is
initiated by the client. All replica objects are updated during the execution of this
transaction. If any account object fails during this period, the transaction server will
not roll the transaction back; instead, it commits the transaction with the remaining
objects. In the prepare and commit phase, OTS ignores any partial failures caused by
a replicated object. The failed replica objects are detected by means of local fault
detectors. The recovery from fault is performed by reporting the fault to Replication
Manager and creating the failed replica again.

Fig. 4. An architectural view of the implemented environment

We ran the described application on the chosen hardware platform with different
configurations. The following parameters were changed in each run: the number of
each account replica objects (N), the probability of a replica failure (P) and the pre-
ferred transaction model supported by OTS. In each configuration, we measured the
overall transaction throughput (T) in terms of the number of committed transactions
per second. The results are summarized in Fig. 5.

As depicted in Fig. 5, the transaction throughput (T) increases when the roll-over
approach is used, especially in faulty environments. When there is no fault in the
system (P=0), both approaches lead to the same value of T. In a fully faulty environ-
ment (P=1), the two approaches lead to the same value of T (T=0) again. As the num-
ber of replica objects increases, the roll-over approach shows better performance
compared to roll-back approach. The reason is that when a transaction is issued on a

212 M. Sharifi and H. Salimi

crowded object group, the probability of roll-back increases and hence more transac-
tions fail to commit.

An interesting point about the roll-over approach, in contrast to roll-back approach,
is that when P varies between 0 to 0.5 (or 0.7 for more crowded groups) the value of
T increases. The rate of this increase also deteriorates as N decreases. The reason is
that as the failure probability increases, more replica objects are prone to crash. So,
fewer objects are able to do a successful commit operation. In this case, the roll-over
approach commits the transaction with a fewer number of objects and hence the
whole transaction duration decreases and more transactions can commit in a defined
interval. The failed objects need to be recreated in the system again, but because the
cost of recreation of an object is much less than writing the value of the object into a
database table, the roll-over approach shows better performance. We expect decrease
in performance in case of heavy objects.

0

0.4

0.8

1.2

1.6

2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(c) P

T

0

0.4

0.8

1.2

1.6

2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(a)

T

P

0

0.4

0.8

1.2

1.6

2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(b)

T

P

0

0.4

0.8

1.2

1.6

2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T

(d) P

Fig. 5. The measured transaction throughput (T) in different transaction models. The dashed
curves show T for roll-over approach, and the solid curves show T for roll-back approach.
(a) N=2, (b) N=3, (c) N=4 and (d) N=5.

Although our experimental results show better performance for roll-over approach,
there are cases in which this mechanism may not be helpful. As an example, consider
the organization of objects shown in Fig. 1. In this case, the transactions that use the
roll-over model will pass the replicated objects by rolling over the failures that may
occur in this group, but may crash due to O2 failure. So, roll-over approach brings
some extra object commits that will be rolled back finally. This extra commits will be
the cause of poor performance in this scenario.

 Replication-Aware Transactions: How to Roll a Transaction over Failures 213

Table 1. A feature-wise transaction model comparison

Object
Type

Object
State

Recovery
Mechanism

OTS
Change

Transaction
Type

Replication
Style

Ordinary
Objects

Stateless or
Statefull

Roll-Back No
Flat or
Nested

N/A

Stateless Roll-Forward No Nested Active
Replicated

Objects
Statefull Roll-Over Yes Flat

Warm-Passive
or Active

A feature-wised comparison for different transaction models with respect to replicated
objects is presented in Table 1.

7 Conclusion and Further Work

In this paper we showed that current replica consistency techniques that are based on
total order multicast protocols cannot guarantee system safety. To solve this problem,
we presented a new transaction model that can be applied to object replicas. This
model is based on the fact that a failure in the scope of a transaction that is running on
a group of replicated objects can be easily ignored. To achieve a good performance,
we extended the OTS in support of our model. We also implemented a prototype to
evaluate this extension. The experimental results showed that this model is particu-
larly beneficial to crowded object groups within faulty environments. In the case of
replica groups that contain fewer objects, this approach is not recommended due to
high probability of a group failure.

The current research will be complemented in future by modeling the proposed ap-
proach with Stochastic Petri Nets, and also by extending the model to support the
active with voting replication style.

References

1. Object Management Group: Fault Tolerant CORBA (Final Adopted Specification). OMG
Technical Committee Document, formal/01-12-29, December 2001.

2. Object Management Group: Object Transaction Service Specification. Version 1.4, OMG
Technical Committee Document, formal/03-09-02, September 2003.

3. Felber, P., Narasimhan, P.: Reconciling Replication and Transactions for the End-to-End
Reliability of CORBA Applications. In the Proceedings of International Symposium on
Distributed Objects and Applications (DOA’02), pp. 737-754, October 2002.

4. Felber, P., Narasimhan, P.: Experiences, Strategies and Challenges in Building Fault-
Tolerant CORBA Systems. IEEE Transactions on Computers, Vol. 53, No. 5, May 2004.

5. Gray, J., Reuter, A.: Transaction Processing: Concepts and Techniques. Morgan Kaufmann
Publishers, San Mateo, CA, 1993.

6. Pullum, L.: Software Fault Tolerance Techniques and Implementations. Artech House
Publishers, Norwood, MA, 2001.

214 M. Sharifi and H. Salimi

7. Cheriton, D.R., Skeen, D.: Understanding the Limitations of Causally and Totally Ordered
Communication. In the Proceedings of 14th ACM Symposium on Operating Systems
Principles. Operating Systems Review, 27 (5), pp. 44-57, December 1993.

8. Rebuttals from Cornell, Operating Systems Review, 28 (1), January 1994.
9. Schiper, A., Raynal, M.: From Group Communication to Transactions in Distributed Sys-

tems. CACM, 39(4), April 1996.
10. Martinez, M.P., Peris, R.J., Arevalo, S.: Group Transactions: An Integrated Approach to

Transaction and Group Communication. Workshop on Concurrency in Dependable Com-
puting, June 2001.

11. Frolund, S., and Guerraoui, R.: Implementing e-Transactions with Asynchronous Replica-
tion. IEEE Transactions on Parallel and Distributed Systems, vol. 12, No. 2, pp. 133-146
(2001).

12. Little, M.C., Shrivastava, S.K.: Integrating Group Communication with Transactions for
Implementing Persistent Replicated Objects. Lecture Notes in Computer Science, Vol.
1752, Springer-Verlag, 2000.

13. Frolund, S., Guerraoui, R., CORBA Fault-Tolerance: why it does not add up. In the Pro-
ceedings of the IEEE Workshop on Future Trends in Distributed Systems, Cape Town,
December 1999.

14. Zhao, W., Moser, L.E., Melliar-Smith, P.M.: Unification of Replication and Transaction
Processing in Three-Tier Architectures. In the Proceedings of the International Conference
on Distributed Systems, 2002.

15. Tanenbaum, A.S., Steen, M.V.: Distributed Systems: Principles and Paradigms. Prentice
Hall, 2002, ISBN: 0-13-088893-1

16. Moser, L.E., Melliar-Smith, P.M, Narasimhan, P.: Consistent Object Replication in the
Eternal System. Theory and Practice of Object Systems, 4(2):81-92, 1998.

17. Maffeis, S.: Run-Time Support for Object-Oriented Distributed Programming. PhD thesis,
University of Zurich, Feb. 1995.

18. Fabre, J.C., Perennou, T.: FRIENDS: A Flexible Architecture for Implementing Fault Tol-
erant and Secure Distributed Applications. In the Proceedings of the 2nd European Confer-
ence on Dependable Computing (EDCC), LNCS 1150, pp.3-20, Springer Verlag, 1996.

19. Object Oriented Concepts, Inc. ORBacus OTS, Version 1.2, 2000. http://ooc.com
20. Object Oriented Concepts Inc. ORBacus 4.1.1, http://ooc.com

The Arbitrated Real-Time Protocol (AR-TP):
A Ravenscar Compliant Communication Protocol for

High-Integrity Distributed Systems�

Santiago Urueña1, Juan Zamorano1, Daniel Berjón2,
José A. Pulido2, and Juan A. de la Puente2

1 Technical University of Madrid (UPM)
Department of Computer Architecture and Technology (DATSI)

E28660 Boadilla del Monte, Spain
{suruena, jzamora}@datsi.fi.upm.es

2 Technical University of Madrid (UPM)
Department of Telematic Systems Engineering (DIT)

E28040 Madrid, Spain
{berjon, pulido, jpuente}@dit.upm.es

Abstract. A new token-passing algorithm called AR-TP for avoiding the non-
determinism of some networking technologies is presented. This protocol—based
on RT-EP, a research protocol also based on transmission control techniques—
allows the schedulability analysis of the network, enabling the use of standard
Ethernet hardware for Hard Real-Time behavior while adding congestion man-
agement. It is specially designed for High-Integrity Distributed Hard Real-Time
Systems, being fully written in Ada and taking advantage of some of the new
Ada 2005 features, like the Ravenscar Profile.

1 Introduction

A Distributed Hard Real-Time System must not respond later than expected to its in-
puts. Therefore the timing behavior of all of its actions shall be bounded, including the
access to the network. However, some network technologies do not have a deterministic
media access control —usually due to collisions in the shared medium—, being thus not
directly usable by applications with real-time constraints. A possible solution is to add
a transmission control layer [1] to the communication stack to avoid this unpredictable
behavior, and thus making the access to the network predictable.

This paper describes the Arbitrated Real-Time Protocol (AR-TP), a communication
protocol designed for safety-critical embedded hard-real time systems that employs to-
ken passing for avoiding collisions. These high-integrity systems exhibit a set of strict
requirements not found in other application fields, heavily derived from the entailed cer-
tification process. The certification of an application can be difficult or even impossible
if no constraints are imposed to the development process.

Ada has always provided a good foundation for the development of real-time em-
bedded applications, as well as for those with the more demanding safety-critical re-
quirements. Because the unrestricted usage of some high level constructions of some
� Work supported by MEC, project TRECOM (TIC2002-04123).

L.M. Pinho and M. González Harbour (Eds.): Ada-Europe 2006, LNCS 4006, pp. 215–226, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

216 S. Urueña et al.

programming languages can lead to unpredictable code behavior, the protocol has been
designed to be compliant with the Ada Ravenscar Profile [2], a subset that restricts the
Ada tasking features in such a way that defines a computational model that allows cur-
rent response time analysis techniques [3] [4]. The current implementation of AR-TP
as well as the network interface card driver are fully programmed in the Ada Raven-
scar profile, also taking advantage of some other features added by Ada 2005 [5] like
execution time clocks, task termination procedures or the partition elaboration policy.

Although most communication protocols could be coded using the Ravenscar Pro-
file, its timing analysis can be difficult to obtain or too pessimistic (and thus useless).
AR-TP has been specifically designed to be easily implemented under those restric-
tions, as well as predictable enough for modeling its temporal behavior. Now that the
Ravenscar profile has been standardized by ISO as part of the Ada 2005 language revi-
sion, it is time to look forward and, together with deterministic protocols like AR-TP, to
develop a Distributed Ravenscar Profile that paves the way for certifying High-Integrity
Distributed Hard Real-Time systems.

This paper is organized as follows. Section 2 discusses some networking technolo-
gies used in embedded and real-time systems. Section 3 gives a detailed description
of the protocol, whereas section 4 explains the implementation. Section 5 evaluates
the properties of the Arbitrated Real-Time Protocol. Finally, section 6 presents the
conclusions of this work.

2 Networking Technologies for Real-Time Systems

Fieldbuses like CAN Bus [6] were the communication networks traditionally used in
automation systems because they fulfilled the requirements of distributed hard real-
time systems, including predictability (deterministic behavior), low cost and reliability
[7]. But nowadays these networks cannot provide the required bandwidth for the more
demanding distributed real-time systems [8]. For example, CAN Bus cannot improve
its bandwidth because it is limited by the propagation time. Therefore developers are
looking for cost-effective alternatives, including network technologies that were not
designed for systems with real-time requirements.

Two widely-used Local Area Network (LAN) technologies that do not have a de-
terministic behavior are IEEE 802.3 [9] (commonly known as Ethernet), and the IEEE
802.11 family of standards [10] (also known as Wi-Fi). These technologies are by far
the most used communication networks in office environments, and through the years
they have increased their bandwidth and decreased their cost, becoming de facto net-
working standards. This ensures that they will continue to be maintained and improved
in the future.

These advantages over other communication networks make both technologies ap-
pealing options for the development of distributed systems. Industrial versions of Ether-
net and Wi-Fi have been developed to support more aggressive conditions, like those
faced in automation and other industrial environments, hardening network interfaces
and wires. But their non-deterministic arbitration mechanism, designed for a shared
physical medium, prevents their direct use as a communication network with real time
constraints.

The Arbitrated Real-Time Protocol (AR-TP) 217

The arbitration mechanism of Ethernet (CSMA/CD) monitors the physical medium
until no signal is detected, sending the message when the Interframe Gap (IFG) time
has expired (96-bit times, i.e. 9.6 μs at 10 Mbit/s). If a collision is detected during the
transmission of the frame, the node stops transmitting the message, sends a jam signal
to ensure that other stations detect the collision too, and waits for a random time before
trying to send the message again. This random wait in the arbitration mechanism is the
main cause of the non predictability of Ethernet (Wi-Fi has an analogous behavior).

The use of transmission control techniques to avoid non-determinism is an effective
method that can be implemented by a portable software layer above full-conforming
standard hardware, and without modifying the device drivers. This method can work
with any network topology, including Wi-Fi, half-duplex Ethernet, full-duplex Ether-
net, or a heterogeneous network made of any combination of hubs, switches, bridges,
repeaters or other network devices. However, some of them do not support the use of
switches or bridges for full performance.

3 Description of the Protocol

3.1 Overview

The Arbitrated Real-Time Protocol (AR-TP) is a research real-time communication
protocol for local area networks with a non-deterministic shared media like half-duplex
Ethernet, Wi-Fi, or other wireless networks. It is based on RT-EP (Real-Time Ethernet
Protocol) [11], a research multipoint local area network protocol designed to achieve
full predictability over half-duplex Ethernet thanks to the addition of a transmission
control layer for avoiding collisions. In RT-EP a station is not allowed to put any frame
on the network until it receives a special frame, called token, which gives it the right
to transmit. Stations are organized into a logical ring where, as the network is a shared
medium, every station receives all the frames.

In RT-EP the token is first circulated through all stations to write onto this special
frame the priority of their messages. When the token arrives to the last node, the right to
transmit is finally granted to the station with the highest priority message. When the data
message has been transferred, the token is circulated again to start another negotiation
cycle. The protocol is fully distributed, and is prepared to detect and solve some types
of faults, like the loss of a token or a failing station.

Under RT-EP the maximum blocking time for a message can be computed because
the random wait introduced by the Media Access Control of Ethernet is completely
eliminated. Moreover, as fixed priorities are assigned to messages, there are mature
schedulability techniques for analyzing the timing behavior of the network, thus being
adequate for distributed systems with hard-real time requirements. Other advantages of
the protocol are its fault-tolerance mechanisms (e.g. there is no single point of failure)
and especially that it works with unmodified Ethernet hardware.

However, the performance of RT-EP is lower than other protocols because a high
number of arbitration packages are needed for every transferred message. This means
that the network bandwidth is decreased, and that the nodes must circulate the token
even when there are no messages to transmit (a delay is introduced before sending
every token in order to reduce the CPU overhead). Other issues of RT-EP are that it is

218 S. Urueña et al.

Ethernet specific, and that it reduces the Maximum Transfer Unit (MTU) of the net-
work due to the addition of a new header to data messages. AR-TP was developed in
order to eliminate some drawbacks of RT-EP —specially the performance and CPU
overhead— while maintaining its advantages —predictability and fault-tolerance— as
well as adding other features derived from the requirements. The main differences
of AR-TP with respect to RT-EP are that more than one message could be sent in
the transmission phase, and the addition of a framework for handling network
overloads.

The bandwidth is increased in AR-TP because up to n messages could be sent in
each transmission phase, as well as other improvements like decreasing the number
of packets needed in the arbitration. Therefore the ratio between info data and control
data is higher, the overhead of the protocol is lower and thus the throughput is increased.
Moreover, less control messages are used in AR-TP than in RT-EP. However, the higher
the cycle time, the worse the maximum blocking time —a vital concern of hard-real
time systems—, so the optimum value of n is constrained by the characteristics of the
system. It depends on the number of stations, the maximum size of data messages, and
the worst admissible blocking time. In addition, AR-TP exploits the control messages
for including an additional service: the token contains the global number of messages
currently waiting to be sent. By monitoring this new parameter the stations are capable
to prevent and handle network congestions.

3.2 Detailed Description

Consider a distributed system composed by M stations interconnected by a communi-
cations network, where each station can be a producer or/and a consumer, i.e. sends data
messages or receives data messages (or both). All the producer nodes of the network
are organized into a logical ring where each station has been assigned a unique network
identifier (ID). Each node must be informed about the configuration of the ring to know
the ID of its successor and predecessor.

In AR-TP the access to the (shared) medium is controlled by the use of a token. The
possession of this special message gives the station the right to transmit. It also contains
information about the number of messages waiting to be transmitted, and the ID of the
stations with the highest priority messages. After the initialization of the system, when
the logical ring has been established, the first communication cycle starts when the node
with the lowest ID creates a new token. This token is initialized by setting to zero the
number of enqueued frames (messages waiting to be sent) and the sequence number.
Each communication cycle has two phases: the arbitration phase and the transmission
phase.

At the arbitration phase the token circulates through all the stations to determine
the nodes with the n highest priority messages. While holding the arbitration token,
each station checks the n priority slots of the token, where empty slots have priority
0. If one or more slots have recorded a lesser priority than any of the messages of the
current station, it overwrites those slots with the priority of its messages and its ID.
But if the station has no messages or the preceding nodes have filled all the slots with
higher priorities, it does not modify these fields of the token. If the number of enqueued
messages of this station has changed with respect to the previous cycle, it modifies the

The Arbitrated Real-Time Protocol (AR-TP) 219

token field with the global number of enqueued messages, and then transmits the token
to its successor.

When the arbitration token arrives to the last node, it will have recorded the ID of
the stations with the highest priority messages. Then this last station, just after deter-
mining whether any of its messages has higher priority than the other nodes, modifies
the message type to the “transmission token” value, starting the transmission phase. At
this phase the token is circulated among the “winning” stations to allow them to send
their messages. The token is updated with the new global number of enqueued mes-
sages. When all the messages have been sent, the transmission phase ends, starting a
new communication cycle.

The last node that has transmitted a data message puts the new token in the next
arbitration phase. This new token is circulated immediately unless no frames were sent
at the transmission phase of the previous cycle. In that case, if the priority of zero
messages were recorded in the token at the end of the arbitration phase, a delay W is
introduced before starting the next cycle to reduce the transmission of control packets
when there are no messages to send. It should be noted that the new initiator of the
arbitration phase is probably different in every cycle.

Due to the fault-tolerance mechanisms, the behavior of the protocol requires some
time-outs to detect the token loss, as well as a failing station. Refer to the paper about
RT-EP [11] for more information.

3.3 Temporal Behavior

As stated above, temporal predictability is of paramount importance when certifying a
hard real-time system. The response time of the protocol is defined as the time elapsed
since the message is passed to the AR-TP layer at the sender node, until its arrival at the
destination node. All operations are bounded, and schedulability analysis can be done.
The cycle time of AR-TP can be modeled as shown below. The k-th cycle time Cyclek,
of a system with M producer nodes can be obtained from the following equation:

Cyclek =

arbitration phase︷ ︸︸ ︷
(tdelay + ttoken) · M +

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

W nk = 0

transmission phase︷ ︸︸ ︷
nk∑
i=1

(tdelay + Msgi,k) nk > 0

(1)

where ttoken is the token transmission time, tdelay is the delay between messages, nk

is the number of messages sent in the k-th arbitration phase, Msgi,k is the transmission
time of the i-th message of the cycle k, and W is the wait time.

The delay between messages (tdelay) is imposed by the hardware, e.g. in Ethernet
is equal to the IFG (0.96 μs at 100 Mbit/s). This delay could also be “incremented” by
software for other purposes like to leave enough execution time to process the token
for some slow nodes (e.g. microcontrollers). Note that in RT-EP this delay between
messages is used to reduce the CPU overhead of the stations (mainly when there are no
messages to send), whereas in AR-TP the wait time W is used for this purpose, and only
this wait is introduced when there are no enqueued messages. Of course W ≥ tdelay .

220 S. Urueña et al.

Under AR-TP, the response time of any message is bounded. The best response time
of the protocol is when the last node of the arbitration phase wants to send a minimum-
size message with a higher priority than any of the other stations just before writing
the final token, i.e. the minimum-size message is produced just before the start of the
transmission phase, being the first to be sent, i.e.

Rbest = ttoken + tdelay + Msgmin, (2)

where Msgmin, is the transmission time of a minimum size message. However, the
best case is not used to analyze the schedulability of a hard real-time system, but the
worst case. The response time in the worst case has to take into account the blocking
time caused by the non-preemptability of the network, potentially causing a priority
inversion. The maximum blocking time B occurs when the initial node produces a
message just after the arbitration token has been transmitted, having to wait the whole
arbitration phase as well as the longest transmission phase. Please, refer to other papers
about this protocol [12] for a more complete timing analysis.

This blocking time depends heavily on the number of messages sent by cycle (n),
the delay time (tdelay) and the size of the maximum message (Msgmax). The system
designer can adjust any of these parameters to obtain an adequate blocking time, while
maximizing the throughput of the network and minimizing the CPU overhead. The
value of n can be as high as the allowed by the maximum admissible blocking time. If
the application needs a very tight response time, n can be reduced to 1, giving the same
blocking time as RT-EP (in fact the response time is slightly better because there are
less arbitration frames in AR-TP than in RT-EP).

The priority of a message is proportional to the temporal constraints of its data,
i.e. the closer the relative deadline the higher its assigned priority. This fixed priority
assigned to a message is obtained by using timing analysis techniques, deduced from
the maximum blocking time. However, although the current implementation uses Fixed
Priority Scheduling, the message priorities do not need to be fixed, and they could be
scheduled using dynamic techniques like Earliest Deadline First, for example.

3.4 Congestion Management

The system is said to be overloaded when it has to process more jobs than it can cope
with, due to the lack of resources. Overloads can happen by an unforeseen event not
taken into account at development time, or during operation due to an implementation
bug. Therefore, although temporal analysis is conducted during system design to ob-
tain a correct behavior, dependable systems must be prepared to handle overloads at
runtime. The protocol has been designed to cope with network overloads (congestions),
i.e. when there are too many messages to be sent by the nodes without violating their
time constraints. Usually, under the nominal mode of operation, the priority of a mes-
sage is proportional to the temporal constraints of its data, as stated above. However,
when the system is overloaded not all messages will be sent before the violation of their
deadlines, therefore the priority of the message should be proportional to the criticality
of the data, and not the urgency.

To achieve this behavior, in AR-TP each message has associated two priorities, one
used when the system is in the nominal operating mode, and the other when the network

The Arbitrated Real-Time Protocol (AR-TP) 221

is under an overload. A network congestion is detected when the number of enqueued
messages at the end of the previous cycle exceeds a determined threshold O1. Each
station checks this value reading the last token sent in the previous cycle. In the next
arbitration phase the overload priority will be considered instead of the regular one.
The network congestion is considered to be finished when the number of enqueued
messages decreases to a given constant O2, where O1 ≥ O2. Two thresholds are used
for the mode change instead of one to avoid overload mode bouncing. The value of both
constants depends on the network bandwidth, the number of nodes of the ring, as well
as the maximum size of messages, being thus system specific.

The whole algorithm has been designed to have a constant computational complex-
ity, i.e. O(1) in the big O notation: in the average case, only a constant number of
frames has to be examined before updating the arbitration token (the upper bound is the
maximum number of messages allowed in a transmission phase), even when a mode
change have just occurred. To this end, the current implementation uses two output
queues in every node —one ordered by the regular priority whereas the other is ordered
by the congestion priority— and thus there is no need after a mode change to reorder
the messages.

During a congestion it is highly probable that some messages violate their time
constraints while being enqueued, so, to avoid sending obsolete data, each message has
also assigned an absolute deadline that must be checked before recording its priority in
an arbitration token. Of course, the sender task of that message is informed when this
happens. However, in the worst case, all the messages of a node can have violated their
deadlines before being sent. Therefore, the entire queue would be examined dropping
all messages while searching for the highest priorities, having thus a linear complexity.
A background task is introduced for dropping all enqueued messages that have violated
their deadlines, trying to avoid this situation.

4 Implementation

A preliminary version of the AR-TP protocol has been developed with the GNAT/ORK
[13] cross-compilation system for PC-compatible computers. The target computers are
Advantech PCM-3350 single board computers, which are PC/104 compatible and in-
clude an AMD Geode processor at 300 MHz as well as an Intel i82559 LANCE (Local
Area Network Controller for Ethernet). The i82559 can operate the network at 10 or
100 Mbit/s and it was designed for the PCI bus. It must be noted that the stations are in-
terconnected by a 100 Mbit/s Ethernet hub and not by a switch, which would introduce
a noticeable transmission delay as well as extra traffic.

The intended middleware layers for high integrity distributed applications are shown
in figure 1. The whole system —the low level driver and the AR-TP protocol layer— has
been implemented from the scratch following the Ravenscar profile, which is supported
by the Open Ravenscar Kernel. It is planned to add new low-level drivers for other
network technologies, e.g. wireless local area networks.

The Ravenscar profile provides a foundation adequate indeed for the development
of the low level Ethernet driver, as it retains nearly every element from the Ada lan-
guage needed for low-level development, such as representation clauses, which greatly

222 S. Urueña et al.

PC-104 Embedded Computer

Open Ravenscar KernelLow-Level Driver

AR-TP

Restricted
GNARL

PolyORB Middleware

Ravenscar-Compliant Application

Fig. 1. General architecture

improve code readability. In fact, the Ravenscar profile definition provides much more
than is really needed for this particular piece of software, which was finally written
using full sequential code except for the use of a single protected object to handle the
interrupts generated by the network adapter in the way described in Annex C of the
Ada Reference Manual [5]. There are also no explicit dependencies on ORK, so the
code should be readily usable under any other operating system that provides an Ada
runtime library with the minimum tasking capabilities needed to support the interrupt
handling.

The driver provides two sending procedures, one enables the programmer to send
Ethernet frames from a single memory buffer, with type checking, while the other sends
whatever data is stored in several raw data buffers in sequence, which is useful to avoid
data copying when using a layered network architecture in which each network layer
attaches a header to the packet coming from the upper level. Using this procedure each
header may be contained in a different buffer and there is no need to copy anything.
Both sending procedures are blocking, as the time needed to execute the call is fairly
small and constant for a given package size and it simplifies memory management,
making it unnecessary to keep track of whether a memory buffer has already been read.
Neither of the sending procedures returns any feedback about the success of the sending
operation because the adapter does not provide reliable information on this subject so
all error detection logic is left for the upper software layers.

Two receiving methods are provided in a blocking variant, which returns data if
there was any frame waiting to be read or waits until there is. Since blocking calls cannot
be cancelled under the restrictions of the Ravenscar profile, a non-blocking variant is
also provided, which returns immediately either with valid data or signaling the absence
of such data. Both variants can be used interchangeably during the same program with
no ill effects. No operation requires dynamic memory allocation, whose use can be
freely decided by the implementor of the upper level.

The Ravenscar profile has also been expressive enough for supporting the required
behavior of the AR-TP layer. It has two tasks: the main task and a background task. The
latter continuously traverses through the two output queues discarding the messages
that have violated their deadlines. The main task implements the logic of AR-TP, and
is in charge of checking incoming messages, processing the token, and transmitting the

The Arbitrated Real-Time Protocol (AR-TP) 223

adequate frames. This task must be assigned a higher priority than any other task using
the network disrupting the communication. Both tasks make use of CPU time clocks
for measuring their worst-case execution time.

Finally, it must be said that the guide of usage of the Ravenscar profile [14] has been
a great reference for the implementation of the whole system. A preliminary middle-
ware prototype has been built by using the Ravenscar compliant version of PolyORB
[15], which provides a Distributed System Annex (DSA) implementation. However,
this preliminary prototype was built by using the raw Ethernet driver and therefore the
AR-TP layer has still to be integrated. Furthermore, in the future it is planned to design
a new Partition Communication Subsystem interface —taking advantage of the new
Ada 2005 permission to provide an implementation dependent one— to fully exploit
the features of AR-TP within the DSA.

5 Evaluation

Metrics of the best-, average- and worst-case response times have been obtained for a
set of operations of the protocol, using an AR-TP prototype on a cluster of three PC/104
nodes, as described in section 4. The test application was designed to stress the network
at the same instant in every node. Some hooks were added to the protocol source code
for obtaining precise execution time measures of operations. Also, all the frames put
in the network were captured by the host with the help of a packet sniffer, traffic later
analyzed for exact time measurements.

The metrics were taken for different configurations of the protocol. The maximum
size of the data was varied between 75–1500 bytes, while the number of messages per
transmission phase (n) was given the values 1, 3, and 5. (When the value of n equals
to 1, the performance of the protocol is equivalent to RT-EP.) The delay used between
messages at the arbitration phase was 100 μs.

The processing of the token is a relevant metric of AR-TP. The execution time
needed to check and modify the slots of the token at the arbitration phase depends on
the number of slots of the token (n), but not on the maximum size of the messages. As
can be seen in table 1, the token processing time does not increase significantly with the
number of messages per cycle.

Table 1. Measures of the prototype implementation

Frame size Token check time (μs) Arbitration time (μs)
(octets) n Best Average Worst Best Average Worst

1 6.08 6.11 8.78 733 810 1062
75 3 6.97 7.00 10.48 709 973 1065

5 7.01 7.13 11.06 741 836 1169
1 4.79 5.82 9.50 733 821 1162

500 3 6.91 7.00 11.08 737 831 1414
5 5.00 5.07 9.78 741 838 1179
1 6.08 6.12 9.52 733 812 1355

1500 3 5.00 6.08 10.65 734 835 1357
5 5.00 6.92 10.73 717 827 1365

224 S. Urueña et al.

 1800

 1600

 1400

 1200

 1000

 1500 1250 1000 750 500 250 75

B
lo

ck
in

g
(m

ic
ro

se
co

nd
s)

Maximum frame size (octets)

n = 5
n = 3
n = 1

Fig. 2. Blocking time for 3 stations

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 500 400 300 200 100 10

E
ffe

ct
iv

e
bi

t r
at

e
(M

bi
t/s

)

Delay between frames (microseconds)

n = 5
n = 3
n = 1

Fig. 3. Effective bit rate for 3 stations sending messages of 1500 octets

Another interesting metric of the protocol is the duration of an arbitration phase.
It can be seen in the table that the arbitration phase barely grows with the number of
messages per cycle. This is derived from the previous result, i.e. if the time needed to
check the token grows slowly with the number of slots the arbitration phase will exhibit
the same behavior. This result demonstrates that the increase in the number of messages
sent at the transmission phase does not introduce a penalty in the arbitration phase.
Therefore the lower the number of arbitration frames per data messages the higher the
network throughput with respect to RT-EP. However, as said in section 3.1, the blocking
time increases with the maximum size of data messages and the number of packets sent

The Arbitrated Real-Time Protocol (AR-TP) 225

each transmission phase as can be seen in figure 2. At 100 Mbit/s, the blocking time for
a 3-node system with 5 messages per cycle can have a blocking time as high as 2 ms
(with the maximum MTU).

Finally, the overhead introduced by the protocol must be considered. The effective
bit rate achieved with AR-TP depends on many factors, and is directly proportional to
the average size of data messages and the number of packets sent each transmission
phase, and inversely proportional to the number of stations and the token processing
time. The last one (tdelay) is the main bottleneck of the protocol, being highly sensitive
to the delay between messages, as shown in figure 3. It should be noted that neither the
CPUs are very fast nor the current prototype is optimized, so better token processing
execution times could be achieved. However, it also should be noted that in practice
pure shared Ethernet cannot achieve its 100% capacity due to collisions. Depending on
the traffic pattern, the network can be saturated with a much lower load.

In summary, AR-TP has a better performance than RT-EP, but still its full pre-
dictability has a price. The system designer must make a trade-off between the network
throughput and the blocking time when configuring the protocol parameters.

6 Conclusions

As the complexity of distributed real-time systems grows, their hardware resources must
be increased. The networks traditionally used in this type of systems are becoming not
capable of transmitting the required amount of information, therefore faster network
technologies are being used, and even those without a real-time behavior like Ethernet
or Wi-Fi. This paper has presented AR-TP, a protocol that employs transmission control
techniques to avoid the non-determinism of Ethernet or Wi-Fi, making them usable for
hard real-time systems.

This token-passing protocol can be implemented by a portable software layer above
full-conforming standard hardware, working with any network technology and topol-
ogy, including Wi-Fi, half-duplex Ethernet, full-duplex Ethernet, or a heterogeneous
network made of any combination of hubs, switches, bridges, repeaters or other network
devices. It offers advanced network scheduling policies (including congestion manage-
ment), static temporal analysis techniques, and its distributed architecture guarantees
a fault-tolerant protocol well suited for wireless networks. However, although it has
better performance than other protocols, a trade-off must be done between the network
throughput and the maximum blocking time.

The protocol has been fully implemented in the Ada programming language, taking
advantage of some Ada 2005 features like the Ravenscar Profile, execution time clocks
and task termination procedures. Ada is well suited for the development of hard-real
time applications and high-integrity systems, specially the Ada 2005 revision which in-
cludes several facilities not found in other programming languages —like the Ravenscar
profile—, or not in a portable manner —like execution time clocks, or the scheduling
policies.

Future work is directed towards the integration of the protocol with communication
middlewares like PolyORB, as well as designing a Partition Communication Subsystem
—taking advantage of the new Ada 2005 permission to modify it— to fully exploit all

226 S. Urueña et al.

the features of AR-TP within the DSA. Also, it is planned to explore the behavior of
AR-TP in implementation for Wireless Local Area Networks.

References

1. Pedreiras, P., Almeida, L., Gai, P.: The FTT-Ethernet protocol: Mergin flexibility, timeli-
ness and efficiency. In: 14th Euromicro Conference on Real-Time Systems, IEEE Computer
Society Press (2002) 1–10

2. Burns, A., Dobbing, B., Romanski, G.: The Ravenscar tasking profile for high integrity
real-time programs. In Asplund, L., ed.: Reliable Software Technologies — Ada-Europe’98.
Number 1411 in LNCS, Springer-Verlag (1998) 263–275

3. Audsley, N., Burns, A., Richardson, M., Tindell, K., Wellings, A.: Applying new scheduling
theory to static priority preemptive scheduling. Software Engineering Journal 8(5) (1993)

4. Sha, L., Abdelzaher, T., Årzén, K.E., Cervin, A., Baker, T., Burns, A., Buttazzo, G., Cac-
camo, M., Lehoczky, J., Mok, A.K.: Real time scheduling theory: A historical perspective.
Real-Time Systems 28 (2004) 101–155

5. Taft, S.T., Duff, R.A., Brukardt, R.L., Plöedereder, E., eds.: Consolidated Ada Refer-
ence Manual. Language and Standard Libraries. International Standard ANSI/ISO/IEC-
8652:1995(E) with Technical Corrigendum 1. Volume 2219 of Lecture Notes in Computer
Science. Springer-Verlag (2001)

6. R. Bosch Gmbh Germany: CAN Specification-Version 2.0 Part A. (1991)
7. Thomesse, J.: Fieldbuses and interoperability. Control Engineering Practice 7(1) (1999)

81–94
8. Song, Y.: Time constrained communication over switched ethernet. In: 4th IFAC Interna-

tional Conference on Fieldbus Systems and their Applications, Nancy, France (2001)
9. The Institute of Electrical and Electronics Engineers New York, USA: IEEE Std. 802.3-2002.

(2002)
10. The Institute of Electrical and Electronics Engineers New York, USA: IEEE Std. 802.11-

2003. (2003)
11. Martínez, J.M., González Harbour, M.: RT-EP: A fixed-priority real time communication

protocol over standard ethernet. In Vardanega, T., Wellings, A., eds.: Reliable Software
Technologies - Ada-Europe 2005. Volume 3555 of LNCS., Springer-Verlag (2005)

12. Urueña, S., Zamorano, J., Berjón, D., Pulido, J.A., de la Puente, J.A.: Schedulability analy-
sis of AR-TP, a Ravenscar compliant communication protocol for high-integrity distributed
systems. In: 14th International Workshop on Parallel and Distributed Real-Time Systems,
Island of Rhodes, Greece (2006)

13. de la Puente, J., Ruiz, J., Zamorano, J.: An open Ravenscar real-time kernel for GNAT. In
Keller, H.B., Plöedereder, E., eds.: Reliable Software Technologies — Ada-Europe 2000.
Number 1845 in LNCS, Springer-Verlag (2000) 5–15

14. Burns, A., Dobbing, B., Vardanega, T.: Guide for the use of the Ada Ravenscar profile in
high integrity systems. Ada Letters XXIV(2) (2004) 1–74

15. Vergnaud, T., Hugues, J., Pautet, L., Kordon, F.: PolyORB: a schizophrenic middleware
to build versatile reliable distributed applications. In: Proceedings of the 9th International
Conference on Reliable Software Techologies Ada-Europe 2004 (RST’04). Number 3063 in
LNCS, Palma de Mallorca, Spain, Springer Verlag (2004) 106–119

L.M. Pinho and M. González Harbour (Eds.): Ada-Europe 2006, LNCS 4006, pp. 227 – 240, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Interchangeable Scheduling Policies in
Real-Time Middleware for Distribution*

Juan López Campos, J. Javier Gutiérrez, and Michael González Harbour

Departamento de Electrónica y Computadores
Universidad de Cantabria, 39005 - Santander, Spain
{lopezju, gutierjj, mgh}@unican.es

Abstract. When a middleware layer is designed for providing semi-transparent
distribution facilities to real-time applications, a trade-off must be made be-
tween the expressiveness and control capabilities of the real-time parameters
used, and the simplicity of usage. Middleware specifications such as RT-
CORBA or Ada’s Distributed Systems Annex (DSA) rely on the use of priori-
ties to map the timing requirements of the application, thus restricting the
possible scheduling policies. This paper presents a generic technique to express
complex scheduling and timing parameters of distributed transactions, allowing
real-time middleware implementations to change their scheduling policies for
both the processing nodes and the networks. The technique has been tested in
an implementation of Ada’s DSA, providing two interchangeable policies: a
fixed-priority scheduler, and a complex contract-based flexible scheduler.

1 Introduction

As real-time embedded systems grow in complexity and cover an increasing number
of application areas, the need for real-time distribution grows accordingly.
Developing software that can be migrated in a semi-transparent way from a single
node platform to different distributed platforms with different interconnection archi-
tectures requires the use of a distribution middleware that takes care of all the
communication implied, without explicit intervention of the application. There are
different distribution middleware technologies, such as CORBA [8], which supports
the distributed object paradigm, or the Distributed Systems Annex (DSA) in Ada 95
[12], which is mainly based on remote procedure calls (RPCs) and also supports
distributed objects.

The advantages of these distribution middleware technologies are that they provide
a level of abstraction that allows the application developer to concentrate on the
problem being solved, independently of the platform used to execute it, and without
having to program explicit message passing. Later, at configuration time, the
particular mapping of software elements to processing nodes and communication
networks is established, allowing the flexibility of migrating to different platforms,

* This work has been funded in part by the Spanish Ministry of Science and Technology under

grant number TIC2002-04123-C03-02 (TRECOM), and by the IST Programme of the European
Commission underproject IST-2001-34140 (FIRST).

228 J. López Campos, J.J. Gutiérrez, and M. González Harbour

and the ability to explore different configurations. Explicit message passing makes the
application not well structured and difficult to analyse.

If distribution middleware is to be used in real-time applications, it is necessary
that the application developer has some way of mapping the timing requirements of
the application into system parameters that can be used by the system to guarantee the
required timing properties. In addition, the services provided and used by the
middleware, such as dynamic task creation, the scheduling policies, or the networks
and communication protocols must be designed so that the system is capable of
guaranteeing predictable response times. For these reasons distribution middleware
specially adapted to real-time systems has been specified and implemented. One of
these specifications is real-time CORBA [19]. Another one is the DSA in the Ada
language [12]; although it is not specifically designed to support real-time
applications, it is possible to develop implementations that provide hard real-time
guarantees [10] [11] [5].

Both of these middleware technologies, RT-CORBA and Ada’s DSA, are based on
fixed priority scheduling. The timing requirements of the application must be mapped
on to priorities assigned to the user tasks and also to the tasks implementing the
remote procedure handlers or the servers. In addition, if a fixed priority
communication network is used, the application must also specify the priorities of all
the messages involved [5]. This requirement somehow limits the “transparency” of
distribution, but it is well known that in real-time applications a model of all the
activities being performed must be known, and there must be ways to influence their
timing behaviour. This applies to both hard and soft real-time applications, despite the
fact that the timing models are required to be more precise for hard real-time.

The fixed priority approach is simple in the sense that the application just has to
specify a number that can be dynamically assigned to tasks and messages, and fixed
priority scheduling is widely available and simple to implement. However, many
realtime applications being built today have a mixture of complex timing
requirements that require the use of advanced scheduling policies capable of flexibly
managing the available resources [2]. Moving towards more complex scheduling
policies means that a single number such as a priority or a deadline is not enough to
express the application requirements. Distribution middleware must be adapted to
support these complex scheduling parameters that cannot be changed or transmitted
dynamically. It must also be adapted to support changeable scheduling policies that
can fit specific application requirements.

In this paper we present some ideas that allow a distribution middleware to manage
complex scheduling parameters specified by an application in a way that minimizes
overhead. We also show how these ideas can be used to adapt an implementation of
Ada’s DSA. For this particular implementation we show the API that the application
has to use to set the scheduling parameters, and the way in which a new scheduling
policy can be added to the system.

The paper is organized as follows. First, in Section 2 we present the model used to
describe the event flow of a distributed real-time system, and its influence on the new
approach for distribution middleware. In Section 3 we discuss the particular aspects of
the communication layer in an implementation of Ada’s DSA, and in Section 4 we
show the corresponding API. In Section 5 we show how to introduce a new
scheduling policy under the new approach. Section 6 contains a simple example that
illustrates the usage of the API, while Section 7 provides a case study and evaluates
the ease of usage. Finally, Section 8 contains our conclusions.

 Interchangeable Scheduling Policies in Real-Time Middleware for Distribution 229

2 The Transactional Model Applied to Distribution Middleware

Traditional distributed architectures built with RT-CORBA or Ada’s DSA are based
on the client-server architecture or the distributed objects model [10]. However, for
analysing the response time of a real-time distributed application it is common to use
the event-driven transactional model [7] (not to be confused with the transactional
model used in database applications), in which events arriving at the system trigger
the execution of activities, which can be either task jobs in the processors or messages
in the networks. These activities, in turn, may generate additional events that trigger
other activities, and this gives way to a chain of events and activities, possibly with
end-to-end timing requirements, called the transaction (see Fig 1). It is easy to show
how an application designed with distributed objects or under the client-server
architecture can be modelled and analysed using the transactional model.

Fig. 1. Model of a transaction

To allow the highest degree of flexibility and the best timing results, it is useful to
allow the application developer to assign the scheduling parameters of each activity
involved in a transaction in an independent way [4]. This contradicts the traditional
way of assigning scheduling parameters used in common distributed middleware
specifications and implementations. For instance, in RT-CORBA we can assign a
priority to a server, or it can inherit the priority of the calling client. None of these
alternatives is completely satisfactory, because scheduling analysis might show that in
a particular system configuration the optimum solution is to execute the server at a
low priority when called from a high priority server, and use a high priority when
called from particular a low priority client [4].. It is the transaction in which the server
is being executed that should be used to determine the priority, but not with the
rigidity that inheriting the client’s priority imposes.

To allow a flexible use of the transactional model we proposed in [5] a modifica-
tion of the GLADE [11] implementation of Ada’s DSA, called RT-GLADE, in which
the application developer was able to assign all the priorities involved in an RPC: the
priority of the client task, the priorities of the query and reply messages, and the prior-
ity of the RPC handler in the server side. As it can be seen in Fig 2, the underlying
implementation automatically sets the priority of the query message, and encodes into
it the priorities of the RPC handler and of the reply message. The system then chooses

230 J. López Campos, J.J. Gutiérrez, and M. González Harbour

Client Node

User task

Receive

Send

Remote Node

Send

Receive
Query message

Reply message

Acceptor
task

Pool of RPC
handlers

RPC
handler

Ph Pr message

Pq: query message priority
Ph: handler priority
Pr: reply message priority

Sets P q, Ph, Pr
& makes remote

call

Carries P h, Pr

Picks a handler
task and sets its

priority to P h

Executes remote
code and sends
reply with P r

Wait
PO task

Fig. 2. Handling priorities in RT-GLADE

a task from the pool of RPC handlers to execute the remote procedure call, and dy-
namically changes its priority to the one specified in the message. Once the call is
completed, the reply message, if any, is sent at the priority specified by the applica-
tion. The remote call is transparent to the application code with the exception that the
priorities must be set.

However this solution is tied to the use of fixed priorities, and does not work if
more complex scheduling policies are used. Sending the scheduling parameters of the
RPC handler and the reply message through the network is inefficient if these
parameters are large in size. Dynamically changing the scheduling parameters of the
RPC handler may also be inefficient. Both problems appear in the contract-based
scheduling framework described later in Section 5, where the scheduling parameters
represent a contract with tens of parameters, and for which dynamically changing a
contract requires an expensive renegotiation process.

The solution proposed in this paper consists of explicitly creating the network and
processor schedulable entities required to establish the communication and execute
the remote calls, and identifying the created schedulable entities with a short identifier
that can be easily encoded in the messages transmitted (see Fig. 3):

• F or the processing nodes, the schedulable entities in the server side are the RPC
handlers. Instead of having a pool of RPC handler tasks, we will create these
tasks explicitly, each with their own appropriate scheduling parameters.

• For the network, the schedulable entities are communications ports that are used
to establish the scheduling parameters that will be used for messages sent through
that particular port. We will identify each of these ports through the two
endpoints used to send and receive messages at either node. We will assume that
the scheduling parameters are assigned to the port through its send endpoint. The
endpoints are created and assigned their scheduling parameters explicitly.

 Interchangeable Scheduling Policies in Real-Time Middleware for Distribution 231

Client Node

Receive endpoint

Send endpoint

Remote Node

Send endpoint

Receive endpoint
port 1

port 2

...

RPC handler
task 1

......

User
task

Id message

Sets the
event Id

Carries the
event Id

Executes the
remote code

and sends reply

Fig. 3. Explicitly created schedulable entities

For identifying these schedulable entities we will relate to the transactional model and
use an identifier that represents the event that triggers the activity executed by the
schedulable entity. We call it an Event_Id.

To achieve distributed communication in an application developed with the
proposed approach it is necessary to create the following elements, as shown in Fig. 3:

• A send endpoint must be created in the client’s node to send the message with the
RPC query, containing information about the destination node and port.

• A receive endpoint must be created in the remote node for an RPC handler task to
wait for the RPC reply message; it must specify the same port used in the caller’s
send endpoint.

• An RPC handler task must be created in the remote node to execute the remote
call; it will directly wait for messages arriving at the corresponding receive
endpoint in the remote node.

• A send endpoint must be created at the remote node to send back the RPC reply
to the client; it must contain information on the destination node (where the
client’s partition is) and a port.

• A receive endpoint must be created in the client’s node for the calling task to
await the reply message; it must use the same port specified in the remote node’s
send endpoint.

It is also necessary to establish the corresponding scheduling parameters for each of
the above elements, both in the processors and in the networks. This is usually done in
the configuration or initialization part of each of the software components used. This
configuration could be automatically generated by a tool that would obtain the
information from the model of the transaction. Once configured, the usage of the new

232 J. López Campos, J.J. Gutiérrez, and M. González Harbour

scheme is almost transparent, and the only requirement is that the application sets the
desired Event_Id.

With this approach we can also eliminate the restriction in RT-GLADE that a
distributed transaction with servers making nested calls to other remote servers could
not fully specify the desired priorities for the nested calls, because only one set of
priorities is sent in the calling message. With the new approach it is possible to fully
specify all of the scheduling parameters, even in the presence of nested remote calls.

The proposed approach makes it possible to use different scheduling policies in
different partitions, as each RPC handler task and communication endpoint can be
created with the scheduling parameters that are appropriate for their underlying node
or network.

It should be noted that there is no need to create more RPC handler tasks than those
required by the transaction’s architecture. The same RPC handler task can be used to
execute many different remote procedures belonging to the same partition, as long as
they can share the same scheduling parameters and provided they don’t need to be
executed concurrently among themselves.

3 The Communication Layer in RT-GLADE

In this section we will explain the modifications made to the original RT-GLADE
communication layer in order to implement the proposed approach for inter-
changeable scheduling policies. The main architectural changes are:

• Removal of the Acceptor_Task: the purpose of these tasks was to receive
messages directly from the network and process part of their information to then
dynamically set the priority of the selected RPC handler tasks and awaken them.
This is not necessary any more, so these tasks are removed in the new
implementation, making it more efficient.

• Removal of the pool of RPC handlers: they were in charge of executing the calls
in the remote node. In the new implementation the RPC handler tasks are created
explicitly, and they wait for messages from the network directly, using the
communication endpoints also created explicitly.

• Removal of the wait mechanism for a remote call reply: now the same user task
that made the RPC waits directly for the reply because the communication
endpoint is already created and known.

In order to identify the schedulable entities we create a special identifier called
Event_Id. This identifier is specified by the application and used when creating the
schedulable entities, which are the communication endpoints and the RPC handlers.
Before an RPC is invoked, the application task must set the Event_Id associated
with the current transaction, thus identifying the send and receive endpoints at its
partition. This Event_Id is added to the RPC query message, so that the RPC
handler task can read it and determine the send endpoint to which the reply should be
sent in the remote node.

Internally, there is a mapping established between this Event_Id and the
corresponding information relative to the communication layer; in particular, the
identifiers of the required communication endpoints. It is possible to reduce the

 Interchangeable Scheduling Policies in Real-Time Middleware for Distribution 233

number of RPC handler tasks by grouping the execution of remote code placed in the
same remote node through the same RPC handler.

4 The Application Interface for Ada’s DSA

The application program interface appears in three packages: Rt_Glade_Types,
containing basic data types; Rt_Glade_Event_Id_Handling, containing the only
operations that are required to be invoked from the user code, to set or get the
Event_Id for a remote call; and Rt_Glade_Scheduling, which contains the
abstract types used to explicitly create and set the scheduling parameters of the
communication endpoints and RPC handlers.

For representing the network elements, we will assume that there could be several
networks, each identified with a value of the type Network_Id. A node is identified
with a value of the type Node_Id. Reception queues at the destination node and
network are identified by a port Id of the type Port_Id. These three types appear in
package Rt_Glade_Types.

The Event_Id is stored as a task attribute in order to be easily used inside the RT-
GLADE communication layer, as we did in the original RT-GLADE with the
priorities involved in each RPC. The call used to set the Event_Id for a remote
call is:

 procedure Set_Event_Id (Id : Rt_Glade_Types.Event_Id);

There is also a function that may be called by an RPC handler task to get the
Event_Id carried inside the query message that activated the current execution.

Package Rt_Glade_Scheduling contains two abstract tagged types and their
corresponding classwide access types. The first of these types, Task_ Scheduling_
Parameters, represents the scheduling parameters of an RPC handler task. The
second type, Message_Scheduling_Parameters, represents the scheduling para-
meters used for the messages sent through a specific endpoint. Both types must be
extended to represent actual parameters required by the underlying scheduling
policies.

 type Task_Scheduling_Parameters is abstract tagged private;
 type Task_Scheduling_Parameters_Ref is
 access all Task_Scheduling_Parameters'Class;
 type Message_Scheduling_Parameters is abstract tagged pri-
vate;
 type Message_Scheduling_Parameters_Ref is
 access all Message_Scheduling_Parameters'Class;

The primitives used to customize the communication layer by creating the RPC
handler tasks and the communication endpoints are:

• Procedure Create_Query_Send_Endpoint creates a send endpoint for query
messages. The arguments are the Event_Id that will be associated with this
endpoint, the network that will be used to send the messages, the destination node
and port in that network, and the scheduling parameters used for sending the
messages.

234 J. López Campos, J.J. Gutiérrez, and M. González Harbour

• Procedure Create_RPC_Handler creates a receive endpoint for the query
message and an RPC handler that waits at that receive endpoint. The arguments
passed are the network and port from where the receive endpoint must receive the
messages, the associated Event_Id, and the scheduling parameters used for the
RPC handler.

• Procedure Create_Reply_Send_Endpoint creates a send endpoint for sending
the reply messages to the originating partition. The necessary arguments are the
Event_Id that will be associated with this endpoint, the network that will be
used to send the messages, the destination node and port in that network, and the
scheduling parameters for sending the messages.

• Procedure Create_Reply_Receive_Endpoint creates a receive endpoint from
where the application task can read the reply message. Its arguments are the
associated Event_Id and the network and port from where the receive endpoint
must receive the messages.

Corresponding operations are provided to destroy the created endpoints or handlers,
but their specification is omitted here for saving space.
 For creating all the elements shown in Fig 3 the application has to take the
following actions when initializing software components involved in a remote call:

• Choose an unused Event_Id (My_Event_Id), an unused port in the remote node
(Remote_Port), and an unused port in the client’s partition node (Calling_
Port).

• In the client’s node, create the send endpoint by invoking Create_Query_
Send_Endpoint using the desired scheduling parameters and network,
specifying the node where the remote partition is located, and using Remote_
Port and My_Event_Id. And create the receive endpoint by invoking Create_
Reply_Receive_Endpoint using the desired network, and using Calling_
Port and My_Event_Id.

• In the remote node, create the RPC handler and the receive endpoint by invoking
Create_RPC_Handler using the desired scheduling parameters and network,
and using Remote_Port and My_Event_Id. And also create the send endpoint
by invoking Create_Reply_Send_Endpoint using the desired scheduling
parameters and network, specifying the node where the calling node is located,
and using Calling_Port and My_Event_Id.

After this initialization, RPCs can be made and they will be automatically directed
through the appropriate endpoints and RPC handler by just specifying My_Event_Id,
with procedure Set_Event_Id described above.

5 Implementation of Specific Scheduling Policies

Once a system supports a new scheduling policy, adapting the RT-GLADE
implementation to use it requires extending the abstract types declared in Rt_Glade_
Scheduling. The same applies to a new real-time communication protocol using a
new scheduling policy for the messages.

The extension for the task and message scheduling parameters types requires that
at least the scheduling parameters for the new policy are included among the new
attributes of both types. In addition, the Rt_Glade_Scheduling specifies in its

 Interchangeable Scheduling Policies in Real-Time Middleware for Distribution 235

private part two abstract primitive operations of these types that must be defined.
Their specification is:

 procedure Create_Task
 (Params : in Task_Scheduling_Parameters;
 Endpoint : in Rt_Glade_Types.Receive_Endpoint_Id;
 Tid : out Ada.Task_Identification.Task_Id);
 procedure Create_Send_Endpoint
 (Params : in Message_Scheduling_Parameters'Class;
 Node : in Rt_Glade_Types.Node_Id;
 Net : in Rt_Glade_Types.Network_Id;
 Port : in Rt_Glade_Types.Port_Id;
 Endpoint : out Rt_Glade_Types.Send_Endpoint_Id);

Procedure Create_Task creates an RPC handler task and associates the
parameters to it in a manner appropriate to the scheduling policy being used. The
handler waits for messages (from any source) arriving at the specified endpoint. Each
message carries the Event_Id of the sender. If the call requires a reply, the handler
sends the reply message through the send endpoint associated with the Event_Id
carried in the message, unless the Event_Id is changed by the handler code.

Procedure Create_Send_Endpoint creates a send endpoint for the specified
node, net and port and associates the parameters to it in a manner appropriate to the
scheduling policy being used.

For the purpose of demonstrating the ability to change the scheduling policy, we
have implemented two extensions of the Rt_Glade_Scheduling package, one for
the traditional fixed priority scheduling, but under the new approach, and the other
one for a complex contract-based flexible scheduling policy [3].

For the fixed priorities, we have implemented the extension in a child package
called Rt_Glade_Scheduling.Priorites. The particularization of the two tagged
types for this case are:

type Task_Priority is new Task_Scheduling_Parameters with record

RPC_Handler_Priority:System.Garlic.Priorities.Global_Priority;
end record;

type Message_Priority is new Message_Scheduling_Parameters with
record
 Endpoint_Priority : System.Garlic.Priorities.Global_Priority;
end record;

The Create_Task operation creates an RPC handler task and sets its priority to
the value specified in the Task_Scheduling_Parameters object. We do the same
in Create_Send_Endpoint for the communication endpoints.

The First Scheduling Framework (FSF) [3] is a framework for a scheduling
architecture that provides the ability to compose several applications or components
to build a real-time system, and to flexibly schedule the available resources while
guaranteeing hard real-time requirements. It is is based on establishing service
contracts that represent the complex and flexible requirements of the application, and
which are managed by the underlying system to provide the required level of service.
FSF is applied both to processor and networks. From the application’s perspective,
the requirements of an application component are written as a set of contracts, which

236 J. López Campos, J.J. Gutiérrez, and M. González Harbour

are negotiated with the underlying implementation. To accept a set of contracts, the
system has to check if it has enough resources to guarantee all the minimum
requirements specified, while keeping guarantees on all the previously accepted
contracts negotiated by other application components. If as a result of this negotiation
the set of contracts is accepted, the system will reserve enough capacity to guarantee
the minimum requested resources, i.e., processor capacity and network bandwidth,
and will adapt any spare capacity available to share it among the different contracts
that have specified their desire or ability for using additional capacity.

In summary, the FSF contracts are the scheduling parameters of the tasks and
messages under this framework, and they are very different in nature from the plain
fixed priorities.

To use this scheduling framework, we have created a child package called
Rt_Glade_Scheduling.Fsf in which we have extended the types to hold an FSF
contract as a scheduling parameters. In addition, the operations Create_Task and
Create_Send_Endpoint perform the contract negotiation. It is important to set in
the contract, at least, the minimum budget, and the maximum period to ensure a
minimum amount of system resources.

6 Example Using the Proposed Approach

In this subsection we will show how to build a simple application using the approach
presented in this paper. For simplicity, we will use the fixed priorities scheduling
scheme. In this application, shown in Fig 4, we are going to perform a remote add
operation. The application is composed of two partitions, each placed in a different
node. Partition p1 contains the code of the main program, menu, and the initialization
code for that partition, P1_Init, while partition p2 contains the code implementing
the calculator, Calculator, and the initialitation code, P2_Init. The Event Ids and
the network ports are chosen arbitrarily from those still available.

Partition P1 - Node 1

Comms.
Layer

Receive endpoint

Send endpoint

Partition P2 - Node 2

Comms.
Layer

Send endpoint

Receive endpoint

Remote
code

Main

Handler
task

P2_Init

Calculator

P1_Init

task

Menu

Prio:12

Network “1” (RT-EP)

Prio:17Port 2

Port 2

Prio:14

Event_Id: 8

Event_Id: 8

Fig. 4. Example using fixed priorities in the new version of RT-GLADE

 Interchangeable Scheduling Policies in Real-Time Middleware for Distribution 237

The menu procedure code is as follows:

with Calculator, RT_Glade_Event_Id_Handling, P1_Init;
procedure Menu is
 A,B,Sum:Integer;
Begin

 -- Initialize the communications endpoints
 P1_Init;
 -- Set the event id for subsequent RPCs
 Rt_Glade_Event_Id_Handling.Set_Event_Id(8);
 loop
 ...
 Sum := Calculator.Add (A, B); -- remote call
 ...
 end loop;
end Menu;

The P1_Init procedure is used to initialize all the neccesary elements to establish the
communications in partition p1:

with Ada.Real_Time, Rt_Glade_Scheduling;
with Rt_Glade_Scheduling.Priorities;
procedure P1_Init is
 R_Message_Params :
 Rt_Glade_Scheduling.Message_Scheduling_Parameters_Ref;
begin
 -- Create the send endpoint for the query messages
 R_Message_Params:= new Rt_Glade_Scheduling.Priorities.
 Message_Priority’
 (Rt_Glade_Scheduling.Message_Scheduling_Parameters
 with Endpoint_Priority=>12);
 Rt_Glade_Scheduling.Create_Query_Send_Endpoint
 (Params=>R_Message_Params.all, Node=>2,
 Net=>1, Port=>2, Event=>8);

 -- Create the receive endpoint for the reply messages
 Rt_Glade_Scheduling.Create_Reply_Receive_Endpoint
 (Net=>1, Port=>2, Event=>8);
end P1_Init;

The Calculator package is a normal ada implementation with the only difference
that the package has to be categorized with the pragma Remote_Call_Interface
which makes all the procedures callable remotely.

package Calculator is
 pragma Remote_Call_Interface;

 function Add (A : in Integer; B : in Integer) return Integer;
end Calculator;

The P2_Init procedure is a main partition program to initialize all the neccesary
elements to establish the communications in p2:

with Rt_Glade_Scheduling, Rt_Glade_Scheduling.Priorities;
with Ada.Real_Time;
procedure P2_Init is
 R_Task_Params :

238 J. López Campos, J.J. Gutiérrez, and M. González Harbour

 Rt_Glade_Scheduling.Task_Scheduling_Parameters_Ref;
 R_Message_Params :
 Rt_Glade_Scheduling.Message_Scheduling_Parameters_Ref;
begin
 -- Create the RPC handler
 R_Task_Params:=new Rt_Glade_Scheduling.Priorities.

 Task_Priority’
 (Rt_Glade_Scheduling.Task_Scheduling_Parameters
 with RPC_Handler_Priority=>14);
 Rt_Glade_Scheduling.Create_RPC_Handler
 (Params=>R_Task_Params.all, Net=>1, Port=>2, Event=>8);

 -- Create the send endpoint for the reply message
 R_Message_Params:= new Rt_Glade_Scheduling.Priorities.
 Message_Priority’
 (Rt_Glade_Scheduling.Message_Scheduling_Parameters
 with Endpoint_Priority=>17);
 Rt_Glade_Scheduling.Create_Reply_Send_Endpoint
 (Params=>R_Message_Params.all, Node=>1,
 Net=>1, Port=>2, Event=>8);
end P2_Init;

As we can see, once the initialization code for creating the communication endpoints
and the RPC handler is written, the only change to the application code is the setting
of the Event Ids.

7 Case Study and Evaluation of Application Complexity

We have evaluated the impact of migrating a real application that had been built using
the fixed-priority version of RT-GLADE to the new proposed approach for
scheduling, in particular using the FSF contracts mentioned in Section 5. The
application is a simulated tile inspection plant that uses a real industrial robot arm and
a video acquisition system, running on a MaRTE OS operating system [1] and using
the RT-EP real-time communication protocol [6]. To minimize the number of RPC
handler tasks, we have grouped all the calls for a particular transaction and to a given
partition into a single RPC handler, calculating its budget as the sum of the worst case
execution times of all the RPCs involved. With this approach, every transaction in the
application code has been assigned a single Event_Id that identifies its
communication endpoints and the associated RPC handler task.

The number of source code lines that were necessary to make the networks
contracts for seven distributed transactions was 14*7 = 98 lines to create 14 send
endpoints, 7*8 = 56 lines to create 7 RPC handlers and associated receive endpoints
in the remote nodes, and 7 lines to create the 7 receive endpoints in the calling tasks.
Besides we added 13 “with” lines, and 7 lines to specify the Event_Ids of each
distributed transaction. So in total we have added just 181 lines of code, to a program
of more than 13.000 lines.

In summary, we did not require any changes to the architecture when migrating
from the original version of RT-GLADE to the new version. Changes were only
required for the creation of the network contracts, the communication endpoints, and
the RPC handlers, and for the specification of Event_Ids. The amount of new lines

 Interchangeable Scheduling Policies in Real-Time Middleware for Distribution 239

of code is very small, compared to the size of the application. We can conclude that
having a well-documented architecture and real-time model of the application makes
it very easy for a designer to use the FSF contracts, or any other special-purpose
scheduling policy, for a distributed application under the new RT-GLADE
implementation.

8 Conclusions

We have proposed an approach to support generic scheduling parameters and policies
in real-time distributed middleware. This approach follows the transactional model in
which the scheduling parameters are determined by the sequence of events that are
activated inside a real-time transaction, allowing the highest degree of flexibility and
resource usage. Complex scheduling policies, such as those used to achieve flexible
scheduling using contracts or reservations can be handled with the proposed
approach, even if the size of the scheduling parameters is large, or if dynamic changes
of these parameters are expensive. With the new approach we can define the
scheduling parameters of whole distributed transactions with complete freedom, even
in the presence of nested remote procedure calls.

The approach has been tested in an implementation of Ada’s DSA, by providing
two interchangeable policies: a fixed-priority scheduler, and a complex contract-based
flexible scheduler. The new implementation continues to conform to Ada’s DSA and
is independent of the kind of scheduling parameters used. The architecture of this
implementation is simpler than before, although it may require more space as the pool
of RPC handlers is replaced by a possibly larger set of explicitly created handlers. In
summary the new implementation is more flexible, and has more control on the
scheduling of the different elements involved in the distributed transactions, at the
price of requiring more intervention from the application and using more tasks and
network access points.

References

1. M. Aldea and M. González. ‘‘MaRTE OS: An Ada Kernel for Real-Time EmbeddedAp-
plications’’. Proceedings of the International Conference on Reliable Software Technolo-
gies, Ada-Europe 2001, Leuven, Belgium, Springer LNCS 2043, May 2001.

2. Bruno Bouyssounouse and Joseph Sifakis (Eds.) ‘‘Embedded Systems Design. TheAR-
TIST Roadmap for Research and Development’’, Springer LNCS Vol. 3436, 2005.

3. M. Aldea, et al. ‘‘FSF: A Real-Time Scheduling Architecture Framework’’. Proceedings of
the 12th IEEE Real-Time and Embedded Technology and Applications Symposium,San
Jose, CA, USA, April 2006.

4. J.J. Gutiérrez García, and M. González Harbour. ‘‘Prioritizing Remote Procedure Calls in
Ada Distributed Systems’’. Proceedings of the 9th International Real-Time Ada Work-
shop, ACM Ada Letters, XIX, 2, pp. 67-72, June 1999.

5. Juan López Campos, J. Javier Gutiérrez, Michael González Harbour, "The Chance for
Adato Support Distribution and Real-Time in Embedded Systems". Proceedings of the
8thInternational Conference on Reliable Software Technologies, Ada-Europe, Springer
LNCS 3063, June, 2004, ISBN:3-540-22011-9, pp. 91,105.

240 J. López Campos, J.J. Gutiérrez, and M. González Harbour

6. José María Martínez and Michael González Harbour, "RT-EP: A Fixed-Priority Real Time
Communication Protocol over Standard Ethernet". Proceedings of the 9th International-
Conference on Reliable Software Technologies, Ada-Europe, York, Springer, LNCS-3555,
June, 2005.

7. J.L. Medina Pasaje, M. González Harbour, J.M. Drake Moyano, "MAST Real-Time View:
Graphic UML Tool for Modeling Object-Oriented Real-Time Systems". Proceedings ofthe
22th IEEE Real-Time Systems Symposium, London, UK, December, 2001, ISBN:0-7695-
1420-0, pp. 245,256.

8. Object Management Group. CORBA Core Specification. OMG Document, v3.0 formal/
02-06-01, Julio 2003.

9. Object Management Group. Realtime CORBA Specification. OMG Document, v2.0 for-
mal/03-11-01, November 2003.

10. L. Pautet, T. Quinot, and S. Tardieu. ‘‘CORBA & DSA: Divorce or Marriage’’. Proc. Of
the International Conference on Reliable Software Technologies, Ada-Europe’99,
Santander, Spain, in Lecture Notes in Computer Science No. 1622, pp.211-225, June 1999.

11. L. Pautet and S. Tardieu. ‘‘GLADE: a Framework for Building Large Object-Oriented
Real-Time Distributed Systems’’. Proc. of the 3rd IEEE Intl. Symposium on Object-
Oriented Real-Time Distributed Computing, (ISORC'00), Newport Beach, USA, March
2000.

12. S. Tucker Taft, and R.A. Duff (Eds.). ‘‘Ada 95 Reference Manual. Language and Standard
Libraries’’. International Standard ISO/IEC 8652:1995(E), in LNCS 1246, Springer, 1997.

Author Index

Alonso, Diego 119
Álvarez, Bárbara 119
Aranda, G. 131

Berjón, Daniel 215
Blieberger, Johann 40
Breuer, Peter T. 56
Brooks, R.R. 106
Brosgol, Benjamin M. 13
Burgstaller, Bernd 40

Chen, T.Y. 155
Cheng, Jingde 167
Curtis, Damian 83

de la Puente, Juan A. 1, 215

Espinosa, A. 131

Fischer, Helmut 143

Garćıa-Fornes, A. 131
González Harbour, Michael 227
Gutiérrez, J. Javier 227

Huang, De Hao 155

Kandemir, M.T. 106
Kolcu, I. 106

Lei, Bin 94
Li, Xuandong 94
López Campos, Juan 227

Maurer, Ward Douglas 191
Miranda, Javier 179
Mittermayr, Robert 40

Narayanan, S.H.K. 106

Palanca, J. 131
Pastor, Juan A. 119
Pickin, Simon 56
Pinho, Lúıs Miguel 27
Plödereder, Erhard 71
Pulido, José A. 1, 215

Qiu, Xiaokang 94

Raza, Aoun 71

Salimi, Hadi 203
Sánchez, Pedro 119
Schonberg, Edmond 179
Sharifi, Mohsen 203

Terrasa, A. 131

Urueña, Santiago 1, 215

Valpereiro, Filipe 27
Vardanega, Tullio 1
Vogel, Gunther 71

Wagner, Stefan 143
Wang, Linzhang 94
Wellings, Andy 13

Yuan, Jiesong 94

Zamorano, Juan 1, 215
Zhao, Jianhua 94
Zheng, Guoliang 94
Zhou, Zhi Quan 155

	Frontmatter
	Real-Time Systems
	Hierarchical Scheduling with Ada 2005
	A Comparison of Ada and Real-Time Java<Superscript>TM</Superscript> for Safety-Critical Applications
	POSIX Trace Based Behavioural Reflection

	Static Analysis
	Static Detection of Access Anomalies in Ada95
	One Million (LOC) and Counting: Static Analysis for Errors and Vulnerabilities in the Linux Kernel Source Code
	Bauhaus -- A Tool Suite for Program Analysis and Reverse Engineering

	Verification
	SPARK Annotations Within Executable UML
	Runtime Verification of Java Programs for Scenario-Based Specifications

	Applications
	Secure Execution of Computations in Untrusted Hosts
	A Systematic Approach to Developing Safe Tele-operated Robots
	Towards Developing Multi-agent Systems in Ada

	Reliability
	A Software Reliability Model Based on a Geometric Sequence of Failure Rates
	Adaptive Random Testing Through Iterative Partitioning
	Run-Time Detection of Tasking Deadlocks in Real-Time Systems with the Ada 95 Annex of Real-Time Systems

	Compilers
	Abstract Interface Types in GNAT: Conversions, Discriminants, and C++
	Using Mathematics to Improve Ada Compiled Code

	Distributed Systems
	Replication-Aware Transactions: How to Roll a Transaction over Failures
	The Arbitrated Real-Time Protocol (AR-TP): A Ravenscar Compliant Communication Protocol for High-Integrity Distributed Systems
	Interchangeable Scheduling Policies in Real-Time Middleware for Distribution

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

