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Abstract. Given a query point Q, a Reverse Nearest Neighbor (RNN) Query
returns all points in the database having Q as their nearest neighbor. The
problem of RNN query has received much attention in a centralized database.
However, not so much work has been done on this topic in the context of Peer-
to-Peer (P2P) systems. In this paper, we shall do pioneering work on supporting
distributed RNN query in large distributed and dynamic P2P networks. Our
proposed RNN query algorithms are based on a distributed multi-dimensional
index structure, called P2PRANN-tree, which is relying on a super-peer-based
P2P overlay. The results of our performance evaluation with real spatial data
sets show that our proposed algorithms are indeed practically feasible for
answering distributed RNN query in P2P systems.

1 Introduction

The problem of Reverse Nearest Neighbor (RNN) Query [1,2,3,4,5,6,7,8,9,10] is to
retrieve all data points in given multi-dimensional data sets whose Nearest Neighbor
(NN) is a given query point. Although RNN is a complement of NN problem it is
more complex than NN problem. The solutions from NN query cannot be directly
applied to RNN query. This is because of the asymmetric relationship between
NN/RNN: if a data point p is an RNN(g) (g is the nearest neighbor of p), it does not
imply that p is the nearest neighbor NN(g) of g. The RNN problem has recently
received considerable attention in the context of centralized database system due to its
importance in a wide range of applications such as decision support system, profile-
based marketing, document databases etc.

Nowadays, Peer-to-Peer (P2P) systems have become popular for sharing resources,
information and services across a large number of autonomous peers in Internet.
Especially, the applications of sharing multi-dimensional data (e.g. spatial data,
documents, image files) in P2P systems are now being widely studied in the
literatures [11,12,13,14,15,16,17]. However, most of these applications focus mainly
on two types of queries: Range query and Nearest Neighbor (NN) query on the
distributed data sets. And not so much effort is taken to support RNN search in such
large distributed and ad-hoc environment. However, we believe that like its
importance in the centralized database system, RNN query will become a practical
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and important class of queries in P2P systems. Let us first consider an example in the
P2P Geographic Information System (GIS) application. Suppose a large-scale chain
supermarket is to open up a new supermarket at a location, the RNN query can be
used to find the subset of existing supermarkets will be affected by the new
supermarket, assuming people choose the nearest supermarket to consume. Another
example is that when a new document is inserted into a P2P digital library, the RNN
query can be used to ask the subset of authors of other documents who will find the
new document interesting based on similarity to their documents. Therefore, this
paper will investigate RNN search in distributed and dynamic P2P systems.

Like most of previous researches for RNN query in centralized database system,
our proposed methods also build on tree-based multi-dimensional index structures
(e.g. the R-tree family [18,19,20]). However, instead of maintaining a centralized
multi-dimensional index in one centralized server, we propose a distributed multi-
dimensional index, called P2PRANN-tree, supported by a super-peer-based P2P
overlay network. The P2PRdNN-tree structure enables efficient RNN search in large
distributed environment. Like Rdnn-tree [2] proposed for centralized database
context, our proposed distributed P2PRANN-tree index structure stores extra
information about nearest neighbor of data points in tree nodes. The extra information
can efficiently reduce the search space and network communication

The remainder of this paper is organized as follows: Section 2 overviews the
previous work. Section 3 presents our proposed super-peer-based P2P overlay and
P2PRdANN-tree structure. Section 4 presents our proposed distributed RNN search
algorithms. Section 5 provides experimental results and Section 6 summarizes our
work.

2 Related Work

In Section 2.1, we shall briefly describe previous work on RNN query in centralized
database systems. Section 2.2 overviews multi-dimensional data sharing in P2P
systems.

2.1 RNN Search in Centralized Database Systems

Algorithms for processing RNN query in centralized databases can be classified into
two categories depending on whether they require pre-computation or not.

The problem of RNN was first studied in [1]. The idea of the authors is to pre-
compute, for each data point d, the distance dnn to its nearest neighbor NN(d). Thus,
each data point is represented as a circle, whose center is the data point and whose
radius is its dnn. Besides the R-tree that indexes the original data point, a separate R-
tree is maintained which indexes the sets of such circles. The problem of finding RNN
of a query point Q is then reduced to finding the circles that contain Q.

In order to avoid maintaining two separate R-trees, [2] combines the two indexes in
the Rdnn-tree (R-tree containing Distance of Nearest Neighbors) index structure.
Rdnn-tree differs from standard R-tree by storing extra information about NN of the
data points for each tree node: for every leaf node, its record stores dnn, and for every
non-leaf node, it record stores max_dnn (the maximum distance from every point in
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the sub-tree to its nearest neighbor). Therefore it requires prior computation of NN for
each data point. The Rdnn-tree benefits RNN queries as follows. Let a non-leaf node
be N, and let the query point be Q. If the distance between Q and the MBR (Minimal
Bounding Rectangle) of N is bigger than N’s max_dnn, there is no need to search the
sub-tree rooted by N. Inspired by the idea of Rdnn-tree, our proposed distributed
multi-dimensional index structure also maintains extra information about the nearest
neighbor in each tree node for assisting in efficient distributed RNN search.

There are several methods without relying on pre-computation. The approach of
[3] divides the (2D) data space around the query point Q into six 6(° regions, such
that the only candidate of the RNN of Q in each region is exactly the NN of Q. So [3]
finds the six NNs, and then check to see if each of them really considers Q as NN. [8]
introduces another approach. Its idea is to find the NN (say o) of a query point Q
first. Then consider the bisector of Q and o,. All data points on the side of o, (except
o, itself) can be pruned, since their distances to o, is no more than the distances to Q.
Next, in the unpruned space, the NN to Q is found, and the space is further pruned.
Finally, the unpruned space does not contain any data point. The only candidates of
RNN are the identified NNs. The refinement step, which removes false positives, uses
the previously pruned MBRs so that no tree node is visited twice throughout the
algorithm.

Above we have reviewed the traditional monochromatic RNN query. There are
other versions of RNN query have been proposed. [9][4] propose the solutions for
bichromatic RNN queries where, given a set Q of queries, the goal is to find the
points d € D that are closer to some ¢ € Q than any other point of Q; [5] investigates
continuous RNN queries on spatiotemporal data; [6] examines stream RNN queries
where data arrive in the form of stream, and the goal is to report aggregate results
over the RNNs of a set of query points.

2.2 Multi-dimensional Data Sharing in P2P Systems

The sharing of multi-dimensional data in P2P systems has become popular recently.
CAN [21] can be regarded as the first P2P system supporting the sharing of multi-
dimensional data since it has the same structure as the kd-tree[22] and grid-file[23].
pSearch [14], a P2P system based on CAN, is proposed for retrieving documents that
are modeled as points in multi-dimensional space. [27] has proposed another system
also based on CAN for supporting range query by including the ranges into hash
functions. Most other systems such as [15] use space filling curves to map multi-
dimensional data to one dimensional data. SkipIndex [16] is based on skip graph [28],
which aims to support high dimensional similarity query. More recently, several
distributed multi-dimensional index structures have been proposed in the literatures.
[13] proposed an R-tree-based indexing structure for P2P systems in the context of
sensor network. The proposed index structure in [13] is designed for optimize NN
search. P2PR-tree [12] is another distributed multi-dimensional index structure based
on R-tree. P2PR-tree is well designed for optimizing window query. [11] proposed
VBI-tree, a new Peer-to-Peer framework based on a balanced tree structure overlay,
which can support extensible centralized mapping methods and query processing
based on a variety of multidimensional tree structures, including R-Tree, X-Tree [24],
SSTree [25], and M-Tree [26].
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3 P2PRdANN-Tree Structure

In this section, we first present a super-peer-based P2P overlay network and then
propose P2PRANN-tree implemented on top of such P2P overlay.

3.1 Super-Peer-Based Overlay

Peers in a P2P system may be organized by various network overlays. Considering the
fact that peers in the network often vary widely in bandwidth and computing capacity,
we organize peers into a super-peer-based P2P topology (shown as in Fig. 3.1).

In such super-peer-based P2P network infrastructure, a small subset of peers with
relatively high stability and relatively high computing capacity are designated as
super-peers. As we can see in the following sections, super-peers take over a lot of
important responsibilities such as routing query and answer messages, initiating and
maintaining local P2PRdNN-tree structure, distributing and executing of query plan.
For simplicity, we connect super-peers with a main channel that acts as a broadcast
routing mechanism and can be implemented in many different ways. Certainly, super-
peers can also be arranged in more complex topology such as Hypercup [29].

Each peer storing and maintaining a set of multi-dimensional data points connects
directly to one super-peer in the network. Peers can join and leave the system in any
time and have relatively lower computing power.

D Super-peer

> Peer
‘/Main Channel

Fig. 3.1. Super-peer-based P2P overlay

3.2 P2PRdANN-Tree

In this section, we shall present the structure of P2PRANN-tree based on our proposed
super-peer-based P2P overlay in the above section.

Assume that each peer, say p, stores and manages a set D, of n dimensional data
points concerning a certain region of the n dimensional space. The region can be
expressed in the form of the MBR,, that bounds the data points in D,. We can also say
that the peer p is responsible for the MBR,,. For each data point, say d, in the data set D,
we compute the distance L_dnnpy(d) to its local nearest neighbor NN(d) in D,. Please
note that the local nearest neighbor of a point, defined here, may not be the real (global)
nearest neighbor in all data sets available on the network. The real (global) nearest
neighbor of a point may locate in other peer. This can be illustrated in Fig. 3.2. The real
nearest neighbor b of data point d locates in peer B, and point a is the local nearest
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Fig. 3.2. The concept of Local nearest neighbor

neighbor of d in peer A. However, in order to avoid introducing extra network traffic,
we do not compute here the distance between the point and its real nearest neighbor.

For each peer in the network, it should send its information to its corresponding
super-peer. The information include the location of the peer (e.g. IP address and port),
its responsible MBR and max_dnn=max{L_dnnp,(d)}. The super-peer shall initiate a
P2PRdANN-tree structure based on the information from the peers connecting to it. We
present the structure of P2PRANN-tree in the following paragraphs.

In case of P2PRdANN-tree structure, each peer is assigned one leaf node of
P2PRdNN-tree. Like the Rdnn-tree, the leaf node of P2PRANN-tree contains entries
of the form (ptid, L_dnn), where ptid refers to an n dimensional point and L_dnn is
the distance from the point to its local nearest neighbor. The entries of a leaf node of
tree are stored in the responsible peer.

As far as the super-peer is concerned, it does not hold the leaf level of P2PRANN-
tree. It maintains the non-leaf nodes of P2PRANN-tree. Similar to Rdnn-tree, each
non-leaf node of P2PRANN-tree stores a set of entries of the form (ptr, rect,
max_dnn). ptr is the address of a child node in the tree. If ptr points to a leaf node, the
address refers to the location of the responsible peer and rect is the MBR of the leaf
node. If ptr points to a non-leaf node, the rect is the MBR of all rectangles that are
entries in the child node. Max_dnn is the maximum distance from every data point in
the subtree to its nearest neighbor. For the root node of P2PRANN-tree, it stores an
additional entry of the form of (G_MBR, G_maxdnn), where G_MBR refers to the
general MBR bounding all points managed by its connected peers, and G_maxdnn is
the maximum max_dnn of all points in G_MBR.

Thus, for each super-peer and its directly-connecting peers, they maintain together
a local P2PRdNN-tree indexing the data sets stored in the peers. Fig.3.3 shows a local
P2PRdANN-tree structure. In the Fig.3.3 (b), Peer A ~H manage the data points of the
regions a ~h respectively. In the local P2PRdNN-tree from Fig.3.3 (a), leaf nodes a ~h
are managed by Peer A ~H respectively. The super-peer is responsible for maintain-
ing other part of the tree (the non-leaf nodes i ~o0).
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Fig. 3.3. The P2PRANN-tree index structure

4 RNN Search with P2PRANN-Tree

In this section, we shall discuss how to process distributed RNN search based on the
P2PRdANN-tree index structure presented in the above section.

Our distributed RNN search algorithm operates in two steps: (1) the filter step
retrieves a candidate RNN set (discussed in section 4.1), and (2) the verification step
eliminates false hits and reports the actual RNNs (discussed in section 4.2). The
introduction of the second step has something to do with the definition of L_dnn
presented in above section.

According to the distributed nature of the query and the P2P network, each step in
the algorithm consists of three parts that are respectively executed by

(1)  The super-peer initially receiving the query,
(i)  Other partitioning super-peers in the network,
(iii)) And the local peers at each partitioning super-peer.

Let us now present the algorithm to answer a RNN query Q posed by peer P to
super-peer SP, also called the initiating super-peer. The algorithm is entirely
controlled by super-peer SP, which, whenever necessary, poses the requests to its
connected peers and other super-peer in the network during the execution.

We shall study two steps in our proposed algorithm respectively as follows.

4.1 Filter Step

When super-peer SP receives a RNN query Q from one of its connected peers. It first
broadcasts via the main channel a query message in a form of (Q, Query_id) where Q
indicates the query is a RNN query and Query_id is the unique identifier of the query.
The Query_id prevents one super-peer or peer from receiving a query twice. Every
super-peer (including SP) receiving the query message computes the distance Dist(Q,
G_MBR) between Q and its G_MBR from the root node of its local P2PRANN-tree. If
Dist(Q, G_MBR) is greater than its corresponding G_maxdnn, we can conclude that
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any point in the G_MBR is not closer to Q than its nearest neighbor. In other words,
there is no reverse nearest neighbor of Q in the G_MBR. Thus, we need not to search
the peers connecting to this super-peer for reverse nearest neighbor. Then the super-
peer discards the query message. Otherwise, the super-peer accepts the query and
performs the filter algorithm (shown in Fig.4.1) by branch-and-bound traversing the
local P2PRdNN-tree. For those super-peers accepting the query message, we call
them query-partitioning super-peer (partitioning super-peer for short). Please note that
the initiating super-peer may be partitioning super-peer.

Determining_candidates_of _RNN (Node n, Query Q)

If n is leaf node of P2PRANN-tree, the partitioning super-peer sends a request to the
peer who is responsible for the leaf node. And at the responsible peer, for each entries
(ptid, L_dnn),

if Dist(Q, ptid)<L_dnn, outputs the data point referred by ptid as one of the
candidate RNNs of Q, and sends the candidate to the initiating super-peer SP.

If n is non-leaf node of P2PRdANN:-tree, then for each branch B=(ptr, rect, max_dnn),
if Dist(Q,rect)<max_dnn, call Determine_candidate_of_RNN (B.ptr,Q)

Fig. 4.1. The filter algorithm

4.2 Verification Step

When each candidate retrieved during the filter step arrives at the initiating super-peer
SP, we need to verify whether the candidate is actual RNN of Q. For each candidate c,
the initiating super-peer SP broadcasts via main channel a Range Query in the form of
[O(c,r), Query_id] where Q(c,r) refers to the query is a kind of circle range query with
center point ¢ and radiu r=Dist(c,Q), and Query_id is the unique identifier of the query.

Every super-peer (including SP) receiving the range query message checks whether
its G_MBR covers or intersects the region of Q(c,r). If the result is false, then the
super-peer discards the range query message. Otherwise, the super-peer accepts the
range query and performs the verification algorithm by traversing the local
P2PRdANN-tree using any existing range query algorithm on R-tree. Similarly, we call
those super-peers accepting the query message as partitioning super-peer. The
verification step terminates if all the partitioning super-peers report no points in the
query region or if there is a partitioning super-peer reports points in the query region.
If the former condition is satisfied, then the candidate ¢ is an actual RNN of Q and is
reported to the query peer by the initiating super-peer SP. Otherwise, the candidate ¢
is discarded by SP.

5 Experiments

We conducted simulation experiments to evaluate the performance of our proposed
algorithms. Our simulation environment comprised a 100-node computer cluster. In
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order to compare our work meaningfully against the centralized database context, we
implement two different network topologies for organizing these machines: the first is
Super-Peer (SP) based topology for P2P environment; the second is star topology for
Client/Server (C/S) architecture. Our performance study was conducted using a real-
world dataset known as Tiger data files.

For super-peer based topology, all simple peers have exactly one connection to a
super-peer. The super-peers form their own P2P network. For the experiments
described in this paper we use main channel to connect all super-peers. In our
simulation experiments, we let each simple peer manage multiple leaf nodes of local
P2PRdANN-tree. Each leaf node has more than 100000 spatial objects.

For star topology, all spatial objects are stored in one server to which all other peers
connect. In the server, we index all objects by Rdnn-tree [2].

The simulation experiment results are shown in Fig.5.1. In the figure, the x-axis
represents an inter-arrival rate of n RNN queries which implies n RNN queries were
issued in the entire system every second. The y-axis represents the average
completion time that indicates the average time taken for each query to return all
answer from relevant peers. From the results in Fig.5.1, we find that as the inter-
arrival rate of queries increases, the performance of C/S drops more quickly than SP.
This occurs because in C/S every query has to be routed only to the centralized server.
As a result, there are large job queues at the centralized server, thereby causing
significantly increased waiting times at the server that ultimately causes severely the
completion times to increase. In contrast, the decentralized nature of SP implies that
query execution is performed in a distributed fashion, thereby ensuring the absence of
any serious execution bottlenecks.

S
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Interarrival rate of queries

Fig. 5.1. The performance comparison between C/S and S/P

6 Conclusions and Future Work

In this paper, we have made the pioneering investigation on distributed Reverse Nearest
Neighbor search in P2P systems. In our work, our proposed RNN search algorithms are
based on the P2PRANN-tree, a P2P version of Rdnn-tree, which is well-suited for RNN
search in P2P environment. Meanwhile, our proposed P2PRANN-tree also supports
Range Query and Nearest Neighbor Query since it is also a variation of R-tree.
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This paper does not discuss the issue of the update of our distributed P2PRANN-

tree when the evolutions of network and data take place. However, this issue is
interesting and challenging. We plan to Study this issue in our future work.

This paper focuses on the traditional monochromatic RNN query in P2P systems.

We also plan to investigate other RNN queries such as bichromatic RNN in
distributed environment.

Our proposed solutions work well for low dimensional data. We wish to explore

how to adjust our solutions for performing RNN search on high-dimensional data in
P2P systems.
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