
H. Larsen et al. (Eds.): FQAS 2006, LNAI 4027, pp. 65 – 74, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Materialization-Based Range and k-Nearest Neighbor
Query Processing Algorithms*

Jae-Woo Chang and Yong-Ki Kim

Dept. of Computer Engineering, Chonbuk National Univ.,
Chonju, Chonbuk 561-756, South Korea

jwchang@chonbuk.ac.kr, ykkim@dblab.chonbuk.ac.kr

Abstract. Recently, the spatial network databases (SNDB) have been studied
for emerging applications such as location-based services including mobile
search and car navigation. In practice, objects, like cars and people with mobile
phones, can usually move on an underlying network (road, railway, sidewalk,
river, etc.), where the network distance is determined by the length of the prac-
tical shortest path connecting two objects. In this paper, we propose materializa-
tion-based query processing algorithms for typical spatial queries in SNDB,
such as range search and k nearest neighbors (k-NN) search. By using a materi-
alization-based technique with the shortest network distances of all the nodes on
the network, the proposed query processing algorithms can reduce the computa-
tion time of the network distance as well as the number of disk I/Os required for
accessing nodes. Thus, the proposed query processing algorithms improve the
existing efficient k-NN (INE) and range search (RNE) algorithms proposed by
Papadias et al. [1], respectively. It is shown that our range query processing al-
gorithm achieves about up to one of magnitude better performance than RNE
and our k-NN query processing algorithm achieves about up to 150% perform-
ance improvements over INE.

1 Introduction

In general, spatial databases has been well studied in the last two decades, resulting in
the development of numerous spatial data models, query processing techniques, and
index structures for spatial data [2]. Most of existing work considers Euclidean
spaces, where the distance between two objects is determined by the ideal shortest
path connecting them. However, in practice, objects, like cars and people with mobile
phones, can usually move on an underlying network (road, railway, sidewalk, river,
etc.), where the network distance is determined by the length of the practical shortest
path connecting two objects on the network. For example, a gas station nearest to a
given query q in Euclidean space may be more distant from q in a given network
space than any other gas stations. Therefore, the network distance, rather than the
Euclidean one, is an importance measure in spatial network databases. Recently, the

* This work is financially supported by the Ministry of Education and Human Resources De-

velopment (MOE), the Ministry of Commerce, Industry and Energy (MOCIE) and the Minis-
try of Labor (MOLAB) though the fostering project of the Lab of Excellency.

 Legind

66 J.-W. Chang and Y.-K. Kim

spatial network databases (SNDB) have been studied for emerging applications such
as location-based services including mobile search and car navigation. [3]. Studies on
SNDB can also be divided into three research categories, that is, data model, query
processing techniques, and index structures. First, Speicys et al. [4] dealt with a com-
putational data model for spatial network. Secondly, Jensen et al. [5] presented
k-nearest neighbor (k-NN) query processing algorithms for SNDB. Thirdly, Papadias
et al. [1] proposed query processing algorithms for range search, spatial joins, and
closest pairs as well as k-NN. Finally, Pfoser and Jensen [6] designed a novel index
structure for SNDB. In this paper, we propose materialization-based query processing
algorithms for typical spatial queries in SNDB, such as range and k-NN queries. By
using a materialization-based technique with the shortest network distances of all the
nodes in the spatial network, the proposed query processing algorithms can reduce the
computation time of the network distance of two nodes as well as the number of disk
I/Os accesses for visiting the nodes. Thus, the proposed query processing algorithms
can improve the existing efficient k-NN and range search algorithms proposed by
Papadias et al. [1]. This paper is organized as follows. In Section 2, we introduce
related work on query processing algorithms for SNDB. In Section 3, we present the
architecture of underlying storage and index structures for SNDB. In Section 4 and 5,
we propose materialization-based range and k-NN query processing algorithms, re-
spectively. In Section 6, we provide the performance analysis of our k-NN and range
query processing algorithms. Finally, we draw our conclusions and suggest future
work in Section 7.

2 Related Work

In this section, we overview related work on query processing algorithms for spatial
network databases (SNDB). First, Jensen et al. described a general framework for
k-NN queries on moving objects in road networks [5]. The framework includes a
data model and a set of concrete algorithms needed for dealing with k-NN queries.
The data model captures road networks and data points with continuously changing
locations. It encompasses two data representations. The detailed two-dimensional
representation captures the geographical coordinates of the roads and moving objects.
The more abstract graph representation captures the road and moving objects in a
form that enables k-NN queries to be answered efficiently by using road distances
instead of Euclidean distance. The algorithms for k-NN queries employ a client-server
architecture that partitions the NN search. First, a preliminary best-first search for a
nearest-neighbor candidate (NNC) set in a graph is performed on the server. Sec-
ondly, the maintenance of the query result is done on the client, which re-computes
distances between data points in the NNC set and the query point, sorts the distances,
and refreshes the NNC set periodically to avoid significant imprecision. Finally, the
combination of NNC search with the maintenance of an active result provides the user
with an up-to-date query result.

Next, Papadias et al. proposed a flexible architecture for SNDB by separating the
network from the entity datasets [1]. That is, they employ a disk-based network repre-
sentation that preserves connectivity and location, while spatial entities are indexed
by respective spatial access methods for supporting Euclidean queries and dynamic

 Materialization-Based Range and k-Nearest Neighbor Query Processing Algorithms 67

updates. Using the architecture, they also developed two frameworks, i.e., Euclidean
restriction and network expansion, for each of the most common spatial queries, i.e.,
nearest neighbors, range search, closest pairs, and distance joins. The proposed algo-
rithms expand conventional query processing techniques by integrating connectivity
and location information for efficient pruning of the search space. Specifically, the
Euclidean restriction algorithms take advantages of the Euclidean low-bound property
to prune the search space while the network expansion algorithms perform query
processing directly in the network.

3 Storage and Index Structures for SNDB

Considering a road network, both network junctions and the starting/ending points of
a road can be represented as nodes. The connectivity between two nodes can be repre-
sented as an edge. Each edge connecting node ni and nj includes a network distance
dN(ni, nj) which equals the length of the shortest path from ni to nj in the network.
Most of the existing work on index structures for SNDB focuses on storage structures
representing spatial network, especially, storing both the nodes and the edges of the
spatial network into a secondary storage. For a fast answer to users’ spatial queries,
however, it is necessary to efficiently index the spatial network itself as well as
objects residing on the spatial network. The objects on the spatial network can be
divided into two types according to their mobility, such as points of interest (POIs)
and moving objects. To design our storage and index structures for SNDB, we make
use of the following ideas. The first one is to differentiate the underlying network
from POIs and moving objects. This separation has a couple of advantages. First,
dynamic updates in each dataset can be handled independently. Secondly,
new/existing datasets can be added to and removed from the system easily. The other
one is to make a special treatment on storing and indexing moving objects’ trajecto-
ries. Because moving objects are continuously moved on the spatial network, their
trajectory information is generally large in size. To answer users’ spatial query, the
support for partial match retrieval on moving objects’ trajectories is required. Based
on the two main ideas, we design the architecture for storing and indexing spatial
network data, point of interests (POIs), and moving objects in SNDB, as shown in
Figure 1.

First of all, for the spatial network data, we design a spatial network file organiza-
tion for maintaining both nodes and edges. For nodes, the node-node matrix file
is used to store all the network distance dN(ni, nj) between node ni and node nj and
the node adjacent information file is used to maintain the connectivity between
nodes. Both the node ID table and the hash table are used to gain fast accesses to the
information of a specific node. For edges, the edge information file is used to store the
edge information as well as to maintain POIs residing on an edge. The edge R-tree
is used to locate edges rapidly for answering spatial queries. Secondly, we design a
POI storage organization for POIs, like restaurants, hotels, and gas stations. The POI
information file is used to store the information of POIs and its location in the under-
lying road network. The POI B+-tree is used to have fast accesses to the information
of a specific POI. The edge R-tree is also used to find which edge a specific POI is
covered by. Finally, for moving objects, such as cars, persons, motorcycles, etc., we
design an object trajectory signature file to have fast accesses to the trajectories of a

68 J.-W. Chang and Y.-K. Kim

given moving objects. The architecture supports the following main primitive opera-
tions for dealing with SNDB. (i) find_edge(p) outputs a set of edges that covers a
point p by performing a point location query on the network R-tree. If multiple edges
cover p, the first one found is returned. This function is applied whenever a query is
issued, so as to locate an edge which the query point is covered by. (ii) find_points(e)
returns a set of POI points covered by the edge e. Specifically, it finds all the candi-
dates points that fall on the MBR of e, and then eliminates the false hits using the edge
information file. (iii) compute_ND(p1,p2) returns the network distance dN(p1, p2) of
two arbitrary points p1, p2 in the network. This can be achieved in a fast way by ac-
cessing the node-node matrix file incorporated into our architecture via the hash table.

Fig. 1. Storage and index structures for SNDB

4 Materialization-Based Range Query Processing Algorithm

A range query processing algorithm for SNDB is quite different from the conven-
tional ones proposed for the ideal Euclidean space [7] because objects can usually
move only on the underlying network. For instance, suppose a query to find gas sta-
tions within 10Km from q in Figure 2. The results to satisfy the query in the Euclid-
ean space are p1, p2, p3, and p4 while only p2 can satisfy the query in the network
space. To design a range query processing algorithm in SNDB, it is possible to simply
apply into the spatial network the conventional algorithms being proposed in Euclid-
ean space [1]. But, the Euclidean restriction algorithm, called RER, generally requires
a large number of disk I/O accesses to answer a range query in the underlying net-
work. To remedy this problem, the network expansion algorithm, called RNE, was
proposed [1], where it performs network expansion starting from an edge covering a
query and determines if objects encountered are within a given range. However, both
the RER and the RNE are inefficient where there are lots of roads, being represented
as lines, and lots of intersections cross them, being represented as nodes, in spatial
networks. This is because they require a lot of the computation time of network dis-
tance between a pair of nodes and the number of disk I/Os accesses for visiting nodes.

 Materialization-Based Range and k-Nearest Neighbor Query Processing Algorithms 69

Fig. 2. Range search in Euclidean spaces and spatial networks

Algorithm Range(q,r) /* q is the query point and r is the net-
work distance */
1. Estimate D, the density of POIS in a circle made by r from q
2. result = Ø

3. if(D threshold_value) {
4. PE = Euclidean-range(q,e)
5. for each point p in PE {
6. dN(q,p) = compute_network_dist(q, e(ni,nj), p)

7. if(d
N
(q,p) r) result = result p }

8. } else {
9. e(ni,nj) = find_edge(q)
10. EN = expand-network(e(ni,nj)) // EN is a set of edges in
the expanded network
11. for each edge e(n,m) in EN {
12. PS = set of POIs covered by e(n,m)
13. for each p in PS {
14. dN(q,p) = compute_network_dist(q, e(ni,nj), p)

15. if(dN(q,p) r) result = result p }
16. } //end of for
17. } //end of if else
End Range

Function compute_network_dist(q, e(ni,nj), p) /* q is a query
point, p a target POI, and e(ni,nj) an edge covered by q */
1. e(nk,nl) = find_edge(p)
2. return dN(q,p)=min{dN(ni,nk)+dN(ni,q)+dN(nk,p),
 dN(ni,nl)+dN(ni,q)+dN(nl,p),
 dN(nj,nk)+dN(nj,q)+dN(nk,p),
 dN(nj,nl)+dN(nj,q)+dN(nl,p)}
End compute_network_dist

Fig. 3. Our materialization-based range query processing algorithm

70 J.-W. Chang and Y.-K. Kim

To remedy it, the network distance computation should be facilitated by the materiali-
zation of pre-computed results one time [8], so as to efficiently answer the most
common spatial queries in SNDB, such as range and k-NN queries. A critical disad-
vantage of maintaining all the network distances is to require a huge storage space.
For example, we assume that the number of nodes in the network is 200,000 and one
network distance is stored with four bytes, we require 160GB (=200K*200K*4) to
store all the network distances. Currently, Maxter and Segate Inc. offer the hard disk
drivers (HDDs) of 500GB in capacity [9]. Thus, it is possible to maintain all the net-
work distances requiring a huge storage capacity in a disk. A record RMi for a node
Ni in the node-node matrix file is RMi = <dist(Ni,N1), … dist(Ni,Nj) … dist(Ni,Nn)>
where dist(Ni, Nj) is the shortest network distance between Ni and Nj. Based on our
node-node matrix file, we propose a materialization-based range query processing
algorithm where the pre-computation of the shortest paths between all the nodes in the
network is performed beforehand, as shown in Figure 3.

5 Materialization-Based k-NN Query Processing Algorithm

In SNDB, a k-NN query processing algorithm for SNDN is quite different from the
conventional ones which were proposed under the assumption that objects moves on
the ideal Euclidean space [10]. As a result, the nearest neighbor of a query in the
Euclidean space may be not the case in a spatial network. Figure 2 show an example
of the case. That is, the nearest neighbor of q is p1 in the Euclidean space and the
distance between q and p1 is 4.5Km. However, the nearest neighbor of q is p2, not p1,
in the underlying network and the network distance is 10Km because there is no di-
rect path between q and p1. To design a k-NN query processing algorithm in SNDB,
it is possible to simply apply the conventional algorithms proposed for Euclidean
space into the spatial network [1]. However, the Euclidean restriction algorithm,
called IER, generally searches a large number of Euclidean nearest neighbors to find
the network nearest neighbors, thus leading to a large number of disk I/O accesses to
answer a k-NN query. To remedy this problem, the network expansion algorithm,
called INE, was proposed [1]. The algorithm performs network expansion starting
from a query and examines objects in the order that they are encountered until finding
k-nearest neighbors. The algorithm computes the network distance of k-nearest
neighbors from q and terminates when the network distance of the first node in a
queue is grater than dSN(q, p). The IER and the INE have its own different approach to
find nearest neighbors in a spatial network. That is, the IER first locates Euclidean
nearest neighbors in a global manner and then compute their network distances from a
query. On the contrary, the INE first locates an edge covering a query, and then ex-
pand the network starting from the edge, in a local manner. Thus, the IER performs
well where lots of parallel roads intersect others in an orthogonal way, like Manhattan
of New York City, while the latter algorithm performs well where roads are made
avoiding obstacles, like a mountain area. Therefore, we need to consider the following
for the effective integration of the two algorithms.

Consideration 1: To acquire the actual k-nearest neighbors of q efficiently in the
underlying network, the initial set of near-optimal candidates for k nearest neighbors
should be obtained.

 Materialization-Based Range and k-Nearest Neighbor Query Processing Algorithms 71

Consideration 2: Once the initial set of near-optimal candidates for k nearest
neighbors has obtained, the final k-nearest neighbors of q in the underlying network
should be obtained using the initial set, as rapidly as possible.

Algorithm K-NN(q, k) /* q is the query point */
1. Determine k’, the number of initial Euclidean k-NNs and c’,
the number of edge connection from q for acquiring initial can-
didates, depending on k.
2. e(ni,nj) = find_edge(q)
3. {p1,…,pk’} = Euclidean-NN(q,k’) // k’ < k
4. for each pi
 dN(q,pi) = compute_network_dist(q, e(ni,nj), pi)
5. sort {p1,…,pk’} in ascending order of dN(q,pi)
6. Q = <(ni, dN(q,ni)), (nj, dN(q,nj))> // sorted by distance
7. En = expand_network(e(ni,nj), c’, Q)// En is the set of edges
in a network being expanded by edge e(ni,nj) within c’ connec-
tions from the edge. Q is updated through network expansion. //
8. SE = find-points(En) // SE is a set of POIs covered by En
9. {p1,…,pk} = the k network nearest neighbors by merging
{p1,…,pk’} and SE sorted in ascending order of their network
distance (pm,…pk may be Ø if the merged result contains just m-1

points with m k)

10. dmax = dN(q,pk) // if pk = Ø, dmax =
11. for Pj which is originated from Euclidean-NN (q,k’) {
12. dN(q,pj) = compute_network_dist(q, e(ni,nj), pj)
13. insert <nj, dN(q,pj)> into Q }
14. delele from Q the node n with the smallest dN(q,n)
15. while(dN(q,n) < dmax) {
16. for each non-visited adjacent node nj of n {
17. Sp = find-point(e(nj,n))

18. update {p1,…,pk} from {p1,…,pk} Sp
19. dmax = dN(q,pk)
20. dN(q,pj) = compute_network_dist(q, e(ni,nj), pj)
21. insert <nj, dN(q,pj)> into Q } // end of for each
22. delele from Q the next node n with the smallest
dN(q,n)
23. } /* end of while
End K-NN

Fig. 4. Our materialization-based k-NN query processing algorithm

To satisfy the first consideration, we are required to build the initial set of candi-
dates for k nearest neighbors by integrating the initial set construction part of the
Euclidean restriction algorithm with that of the network expansion one. Because we
obtain the initial set of candidates by combining a global initial set and a local initial
set, it is possible to acquire an initial set of near-optimal candidates, regardless the
characteristic of the underlying road network (Manhattan or a mountain area). To
satisfy the second consideration, once obtaining an initial set of near-optimal candi-
dates, we are required to find the final k-nearest neighbors using the network expan-
sion algorithm. This is because we can obtain the final k-nearest neighbors in an
efficient way by performing a local network search using the near-optimal candidates.
That is, because a global search on the network has been performed to obtain the

72 J.-W. Chang and Y.-K. Kim

initial set of candidates, it is sufficient to perform only a local search on the network
for the final k-nearest neighbors, thus enabling to achieve a good retrieval perform-
ance. In addition, because it takes much time to compute a network distance between
two nodes during network expansion, it is required to makes use of our node-node
matrix file. This makes it possible to obtain the shortest network distance between any
specified node and one of nodes incident an edge covering a query in the fastest way,
thus remarkably reducing the network distance computation time and the number of
disk I/Os accesses for visiting nodes. We propose a materialization-based k-NN query
processing algorithm to satisfy the above considerations, as shown in Figure 4.

6 Performance Analysis

For our experiment, we make use of a road network consisting of 170,000 nodes and
220,000 edges [11]. We also generate 10,846 points of interest (POIs) randomly on
the road network by using RunTime21 algorithm [12]. We implement our range and
k-NN query processing algorithms under Pentium-IV 2.0GHz CPU with 1GB main
memory, running Window 2003.

For the materialization, we use 229G node-node matrix file. For performance analy-
sis, we compare our rage query processing algorithm with RNE and our k-NN query
processing algorithm with INE scheme because RNE and INE are considered as the
most efficient query processing algorithm [1]. We measure a time for answering a range
query whose radius r is between 10 and 200. Figure 5 shows the rage query processing
times of RNE and our materialization-based range query processing algorithm (called
OMR). The RNE and our OMR require about 0.24 and 0.17 seconds, respectively, when
r = 10. In addition, the RNE and our OMR require about 2.25 and 0.24 seconds, respec-
tively, when r = 100. It is shown that our OMR achieves about up to one of magnitude
better performance than the RNE and the performance improvement of our OMR over
the RNE is increased as the range r is increased. This is because our materialization-
based OMR can reduce the network distance computation time and the number of disk
I/Os required for accessing nodes by using our node-node matrix file.

0

2

4

6

8

10

12

10 50 100 200

range (r)

W
a
ll
Ti
m
e
(s
ec
)

RNE

OMR

Fig. 5. Range query processing time

 Materialization-Based Range and k-Nearest Neighbor Query Processing Algorithms 73

Figure 6 shows the k-NN query processing times of the INE and our materializa-
tion-based k-NN algorithm (called OMK). The INE and our OMK require about
0.059 and 0.058 seconds, respectively, when k = 1. In addition, the INE and our
OMK require about 0.078 and 0.059 seconds, respectively, when k = 10. It is shown
that the performance of OMK is nearly the same as that of INE when k=1 and
the performance improvement of our OMR over the RNE is increased as k is
increased. When k=100, our OMK achieves about up to 150% performance
improvements over the INE since the INE and our OMK require about 0.098 and
0.069 seconds, respectively, This is because our materialization-based OMR can
reduce the computation time of network distances between a pair of nodes met
during network expansion and the number of disk I/Os required for accessing nodes
by using our node-node matrix file.

0.050

0.055

0.060

0.065

0.070

0.075

0.080

0.085

0.090

0.095

0.100

1 5 10 20 40 60 80 100

K

W
a
ll
T
im
e
 (
s
e
c
)

INE

OMK

Fig. 6. k-NN query processing time

7 Conclusions and Future Work

In this paper, we designed efficient storage and index structures for spatial network
databases (SNDB). Based on the structures, we proposed materialization-based range
and k-NN query processing algorithms for SNDB. By using our node-node matrix file
containing the shortest network distances of all the nodes in the spatial network, the
proposed query processing algorithms can reduce the computation time of the net-
work distances and the number of disk I/Os required for accessing the nodes It was
shown that our range query processing algorithm achieved about up to one of magni-
tude better performance than the RNE and our k-NN query processing algorithm
achieved about up to 150% performance improvements over INE. As future work, it
is required to study on e-distance join and closest-pairs query processing algorithms
for SNDB.

74 J.-W. Chang and Y.-K. Kim

References

1. D. Papadias, J. Zhang, N. Mamoulis, and Y. Tao, "Query Processing in Spatial Network
Databases" Proc. of VLDB, pp, 802-813, 2003.

2. S. Shekhar et al., "Spatial Databases – Accomplishments and Research Needs," IEEE
Tran. on Knowledge and Data Engineering, Vol. 11, No. 1, pp 45-55, 1999.

3. J.-W. Chang, J.-H. Um, and W.-C. Lee, "An Efficient Trajectory Index Structure for Mov-
ing Objects in Location-Based Services," LNCS 3762, OMT Workshops, pp 1107-1116,
2005.

4. L. Speicys, C.S. Jensen, and A. Kligys, "Computational Data Modeling for Network-
Constrained Moving Objects," Proc. of ACM GIS, pp 118-125, 2003.

5. C.S. Jensen, J. Kolář, T.B. Pedersen, and I. Timko, "Nearest Neighbor Queries in Road
Networks," Proc. of ACM GIS, pp 1-8, 2003.

6. D. Pfoser and C.S. Jensen, "Indexing of Network Constrained Moving Objects," Proc. of
ACM GIS, pp 25-32, 2003.

7. T. Seidl, N. Roussopoulos, and C. Faloutsos, “The R+-tree: a Dynamic Index for Multi-
Dimensional Objects, Proc. of VLDB, 1987.

8. N. Jing, Y.-W. Huang, and E.A. Rundensteiner, "Hierarchical Encoded Path Views for
Path Query Processing: An Optimal Model and Its Performance Evaluation," IEEE Tran.
on Knowledge and data Engineering, Vol. 10, No. 3, pp 409-432, 1998.

9. http://www.pcworld.com
10. T. Seidl and H. Kriegel, “Optimal Multi-step k-Nearest Neighbor Search, Proc. of ACM

SIGMOD, 1998.
11. www.maproom.psu.edu/dcw/
12. T. Brinkhoff, "A Framework for Generating Network-Based Moving Objects," GeoInfor-

matica, Vol. 6, No. 2, pp 153-180, 2002.

	Introduction
	Related Work
	Storage and Index Structures for SNDB
	Materialization-Based Range Query Processing Algorithm
	Materialization-Based k-NN Query Processing Algorithm
	Performance Analysis
	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

