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Abstract. Recently, the spatial network databases (SNDB) have been studied 
for emerging applications such as location-based services including mobile 
search and car navigation. In practice, objects, like cars and people with mobile 
phones, can usually move on an underlying network (road, railway, sidewalk, 
river, etc.), where the network distance is determined by the length of the prac-
tical shortest path connecting two objects. In this paper, we propose materializa-
tion-based query processing algorithms for typical spatial queries in SNDB, 
such as range search and k nearest neighbors (k-NN) search. By using a materi-
alization-based technique with the shortest network distances of all the nodes on 
the network, the proposed query processing algorithms can reduce the computa-
tion time of the network distance as well as the number of disk I/Os required for 
accessing nodes. Thus, the proposed query processing algorithms improve the 
existing efficient k-NN (INE) and range search (RNE) algorithms proposed by 
Papadias et al. [1], respectively. It is shown that our range query processing al-
gorithm achieves about up to one of magnitude better performance than RNE 
and our k-NN query processing algorithm achieves about up to 150% perform-
ance improvements over INE. 

1   Introduction 

In general, spatial databases has been well studied in the last two decades, resulting in 
the development of numerous spatial data models, query processing techniques, and 
index structures for spatial data [2]. Most of existing work considers Euclidean 
spaces, where the distance between two objects is determined by the ideal shortest 
path connecting them. However, in practice, objects, like cars and people with mobile 
phones, can usually move on an underlying network (road, railway, sidewalk, river, 
etc.), where the network distance is determined by the length of the practical shortest 
path connecting two objects on the network. For example, a gas station nearest to a 
given query q in Euclidean space may be more distant from q in a given network 
space than any other gas stations. Therefore, the network distance, rather than the 
Euclidean one, is an importance measure in spatial network databases. Recently, the 
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spatial network databases (SNDB) have been studied for emerging applications such 
as location-based services including mobile search and car navigation. [3]. Studies on 
SNDB can also be divided into three research categories, that is, data model, query 
processing techniques, and index structures. First, Speicys et al. [4] dealt with a com-
putational data model for spatial network. Secondly, Jensen et al. [5] presented  
k-nearest neighbor (k-NN) query processing algorithms for SNDB. Thirdly, Papadias 
et al. [1] proposed query processing algorithms for range search, spatial joins, and 
closest pairs as well as k-NN. Finally, Pfoser and Jensen [6] designed a novel index 
structure for SNDB. In this paper, we propose materialization-based query processing 
algorithms for typical spatial queries in SNDB, such as range and k-NN queries. By 
using a materialization-based technique with the shortest network distances of all the 
nodes in the spatial network, the proposed query processing algorithms can reduce the 
computation time of the network distance of two nodes as well as the number of disk 
I/Os accesses for visiting the nodes. Thus, the proposed query processing algorithms 
can improve the existing efficient k-NN and range search algorithms proposed by 
Papadias et al. [1]. This paper is organized as follows. In Section 2, we introduce 
related work on query processing algorithms for SNDB. In Section 3, we present the 
architecture of underlying storage and index structures for SNDB. In Section 4 and 5, 
we propose materialization-based range and k-NN query processing algorithms, re-
spectively. In Section 6, we provide the performance analysis of our k-NN and range 
query processing algorithms. Finally, we draw our conclusions and suggest future 
work in Section 7. 

2   Related Work 

In this section, we overview related work on query processing algorithms for spatial 
network databases (SNDB). First, Jensen et al. described a general framework for  
k-NN queries on moving objects in road networks [5]. The framework includes a  
data model and a set of concrete algorithms needed for dealing with k-NN queries. 
The data model captures road networks and data points with continuously changing 
locations. It encompasses two data representations. The detailed two-dimensional 
representation captures the geographical coordinates of the roads and moving objects. 
The more abstract graph representation captures the road and moving objects in a 
form that enables k-NN queries to be answered efficiently by using road distances 
instead of Euclidean distance. The algorithms for k-NN queries employ a client-server 
architecture that partitions the NN search. First, a preliminary best-first search for a 
nearest-neighbor candidate (NNC) set in a graph is performed on the server. Sec-
ondly, the maintenance of the query result is done on the client, which re-computes 
distances between data points in the NNC set and the query point, sorts the distances, 
and refreshes the NNC set periodically to avoid significant imprecision. Finally, the 
combination of NNC search with the maintenance of an active result provides the user 
with an up-to-date query result. 

Next, Papadias et al. proposed a flexible architecture for SNDB by separating the 
network from the entity datasets [1]. That is, they employ a disk-based network repre-
sentation that preserves connectivity and location, while spatial entities are indexed 
by respective spatial access methods for supporting Euclidean queries and dynamic 
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updates. Using the architecture, they also developed two frameworks, i.e., Euclidean 
restriction and network expansion, for each of the most common spatial queries, i.e., 
nearest neighbors, range search, closest pairs, and distance joins. The proposed algo-
rithms expand conventional query processing techniques by integrating connectivity 
and location information for efficient pruning of the search space. Specifically, the 
Euclidean restriction algorithms take advantages of the Euclidean low-bound property 
to prune the search space while the network expansion algorithms perform query 
processing directly in the network. 

3   Storage and Index Structures for SNDB 

Considering a road network, both network junctions and the starting/ending points of 
a road can be represented as nodes. The connectivity between two nodes can be repre-
sented as an edge. Each edge connecting node ni and nj includes a network distance 
dN(ni, nj) which equals the length of the shortest path from ni to nj in the network. 
Most of the existing work on index structures for SNDB focuses on storage structures 
representing spatial network, especially, storing both the nodes and the edges of the 
spatial network into a secondary storage. For a fast answer to users’ spatial queries, 
however, it is necessary to efficiently index the spatial network itself as well as  
objects residing on the spatial network. The objects on the spatial network can be 
divided into two types according to their mobility, such as points of interest (POIs) 
and moving objects. To design our storage and index structures for SNDB, we make 
use of the following ideas. The first one is to differentiate the underlying network 
from POIs and moving objects. This separation has a couple of advantages. First, 
dynamic updates in each dataset can be handled independently. Secondly, 
new/existing datasets can be added to and removed from the system easily. The other 
one is to make a special treatment on storing and indexing moving objects’ trajecto-
ries. Because moving objects are continuously moved on the spatial network, their 
trajectory information is generally large in size. To answer users’ spatial query, the 
support for partial match retrieval on moving objects’ trajectories is required. Based 
on the two main ideas, we design the architecture for storing and indexing spatial 
network data, point of interests (POIs), and moving objects in SNDB, as shown in 
Figure 1. 

First of all, for the spatial network data, we design a spatial network file organiza-
tion for maintaining both nodes and edges. For nodes, the node-node matrix file  
is used to store all the network distance dN(ni, nj) between node ni and node nj and  
the node adjacent information file is used to maintain the connectivity between  
nodes. Both the node ID table and the hash table are used to gain fast accesses to the 
information of a specific node. For edges, the edge information file is used to store the 
edge information as well as to maintain POIs residing on an edge. The edge R-tree  
is used to locate edges rapidly for answering spatial queries. Secondly, we design a 
POI storage organization for POIs, like restaurants, hotels, and gas stations. The POI 
information file is used to store the information of POIs and its location in the under-
lying road network. The POI B+-tree is used to have fast accesses to the information 
of a specific POI. The edge R-tree is also used to find which edge a specific POI is 
covered by. Finally, for moving objects, such as cars, persons, motorcycles, etc., we 
design an object trajectory signature file to have fast accesses to the trajectories of a 
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given moving objects. The architecture supports the following main primitive opera-
tions for dealing with SNDB. (i) find_edge(p) outputs a set of edges that covers a 
point p by performing a point location query on the network R-tree. If multiple edges 
cover p, the first one found is returned. This function is applied whenever a query is 
issued, so as to locate an edge which the query point is covered by. (ii) find_points(e) 
returns a set of POI points covered by the edge e. Specifically, it finds all the candi-
dates points that fall on the MBR of e, and then eliminates the false hits using the edge 
information file. (iii) compute_ND(p1,p2) returns the network distance dN(p1, p2) of 
two arbitrary points p1, p2 in the network. This can be achieved in a fast way by ac-
cessing the node-node matrix file incorporated into our architecture via the hash table. 

 

Fig. 1. Storage and index structures for SNDB 

4   Materialization-Based Range Query Processing Algorithm 

A range query processing algorithm for SNDB is quite different from the conven-
tional ones proposed for the ideal Euclidean space [7] because objects can usually 
move only on the underlying network. For instance, suppose a query to find gas sta-
tions within 10Km from q in Figure 2. The results to satisfy the query in the Euclid-
ean space are p1, p2, p3, and p4 while only p2 can satisfy the query in the network 
space. To design a range query processing algorithm in SNDB, it is possible to simply 
apply into the spatial network the conventional algorithms being proposed in Euclid-
ean space [1]. But, the Euclidean restriction algorithm, called RER, generally requires 
a large number of disk I/O accesses to answer a range query in the underlying net-
work. To remedy this problem, the network expansion algorithm, called RNE, was 
proposed [1], where it performs network expansion starting from an edge covering a 
query and determines if objects encountered are within a given range. However, both 
the RER and the RNE are inefficient where there are lots of roads, being represented 
as lines, and lots of intersections cross them, being represented as nodes, in spatial 
networks. This is because they require a lot of the computation time of network dis-
tance between a pair of nodes and the number of disk I/Os accesses for visiting nodes.  
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Fig. 2. Range search in Euclidean spaces and spatial networks 

Algorithm Range(q,r) /* q is the query point and r is the net-
work distance */ 
1.  Estimate D, the density of POIS in a circle made by r from q 
2.  result = Ø 

3.  if( D  threshold_value ) { 
4.  PE = Euclidean-range(q,e)  
5.    for each point p in PE { 
6.     dN(q,p) = compute_network_dist(q, e(ni,nj), p)  

7.     if(d
N
(q,p)  r) result = result  p  } 

8.  } else { 
9.     e(ni,nj) = find_edge(q)
10.    EN = expand-network(e(ni,nj)) // EN is a set of edges in 
the expanded network 
11.    for each edge e(n,m) in EN { 
12.    PS = set of POIs covered by e(n,m)  
13.    for each p in PS { 
14.     dN(q,p) = compute_network_dist(q, e(ni,nj), p)  

15.     if(dN(q,p)  r) result = result  p  }
16.    } //end of for 
17. } //end of if else 
End Range 

Function compute_network_dist(q, e(ni,nj), p) /* q is a query 
point, p a target POI, and e(ni,nj) an edge covered by q */ 
1.  e(nk,nl) = find_edge(p)
2.  return dN(q,p)=min{dN(ni,nk)+dN(ni,q)+dN(nk,p),
          dN(ni,nl)+dN(ni,q)+dN(nl,p),  
          dN(nj,nk)+dN(nj,q)+dN(nk,p),  
                        dN(nj,nl)+dN(nj,q)+dN(nl,p)}  
End compute_network_dist  

Fig. 3. Our materialization-based range query processing algorithm 
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To remedy it, the network distance computation should be facilitated by the materiali-
zation of pre-computed results one time [8], so as to efficiently answer the most 
common spatial queries in SNDB, such as range and k-NN queries. A critical disad-
vantage of maintaining all the network distances is to require a huge storage space. 
For example, we assume that the number of nodes in the network is 200,000 and one 
network distance is stored with four bytes, we require 160GB (=200K*200K*4) to 
store all the network distances. Currently, Maxter and Segate Inc. offer the hard disk 
drivers (HDDs) of 500GB in capacity [9]. Thus, it is possible to maintain all the net-
work distances requiring a huge storage capacity in a disk. A record RMi for a node 
Ni in the node-node matrix file is RMi = <dist(Ni,N1), … dist(Ni,Nj) … dist(Ni,Nn)> 
where dist(Ni, Nj) is the shortest network distance between Ni and Nj. Based on our 
node-node matrix file, we propose a materialization-based range query processing 
algorithm where the pre-computation of the shortest paths between all the nodes in the 
network is performed beforehand, as shown in Figure 3. 

5   Materialization-Based k-NN Query Processing Algorithm 

In SNDB, a k-NN query processing algorithm for SNDN is quite different from the 
conventional ones which were proposed under the assumption that objects moves on 
the ideal Euclidean space [10]. As a result, the nearest neighbor of a query in the 
Euclidean space may be not the case in a spatial network. Figure 2 show an example 
of the case. That is, the nearest neighbor of q is p1 in the Euclidean space and the 
distance between q and p1 is 4.5Km. However, the nearest neighbor of q is p2, not p1, 
in the underlying network and the network distance is 10Km because there is no di-
rect path between q and p1. To design a k-NN query processing algorithm in SNDB, 
it is possible to simply apply the conventional algorithms proposed for Euclidean 
space into the spatial network [1]. However, the Euclidean restriction algorithm, 
called IER, generally searches a large number of Euclidean nearest neighbors to find 
the network nearest neighbors, thus leading to a large number of disk I/O accesses to 
answer a k-NN query. To remedy this problem, the network expansion algorithm, 
called INE, was proposed [1]. The algorithm performs network expansion starting 
from a query and examines objects in the order that they are encountered until finding 
k-nearest neighbors. The algorithm computes the network distance of k-nearest 
neighbors from q and terminates when the network distance of the first node in a 
queue is grater than dSN(q, p). The IER and the INE have its own different approach to 
find nearest neighbors in a spatial network. That is, the IER first locates Euclidean 
nearest neighbors in a global manner and then compute their network distances from a 
query. On the contrary, the INE first locates an edge covering a query, and then ex-
pand the network starting from the edge, in a local manner. Thus, the IER performs 
well where lots of parallel roads intersect others in an orthogonal way, like Manhattan 
of New York City, while the latter algorithm performs well where roads are made 
avoiding obstacles, like a mountain area. Therefore, we need to consider the following 
for the effective integration of the two algorithms.  

Consideration 1: To acquire the actual k-nearest neighbors of q efficiently in the 
underlying network, the initial set of near-optimal candidates for k nearest neighbors 
should be obtained. 
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Consideration 2: Once the initial set of near-optimal candidates for k nearest 
neighbors has obtained, the final k-nearest neighbors of q in the underlying network 
should be obtained using the initial set, as rapidly as possible. 

Algorithm K-NN(q, k)  /* q is the query point */ 
1. Determine k’, the number of initial Euclidean k-NNs and c’, 
the number of edge connection from q for acquiring initial can-
didates, depending on k.
2. e(ni,nj) = find_edge(q)
3. {p1,…,pk’} = Euclidean-NN(q,k’)  // k’ < k 
4. for each pi
     dN(q,pi) = compute_network_dist(q, e(ni,nj), pi)
5. sort {p1,…,pk’} in ascending order of dN(q,pi)
6. Q = <(ni, dN(q,ni)), (nj, dN(q,nj))> // sorted by distance 
7. En = expand_network(e(ni,nj), c’, Q)// En is the set of edges 
in a network being expanded by edge e(ni,nj) within c’ connec-
tions from the edge. Q is updated through network expansion. // 
8. SE = find-points(En) // SE is a set of POIs covered by En
9. {p1,…,pk} = the k network nearest neighbors by merging 
{p1,…,pk’} and SE sorted in ascending order of their network 
distance (pm,…pk may be Ø if the merged result contains just m-1 

points with m  k)

10. dmax = dN(q,pk) // if pk = Ø, dmax = 
11. for Pj which is originated from Euclidean-NN (q,k’) { 
12.   dN(q,pj) = compute_network_dist(q, e(ni,nj), pj) 
13.   insert <nj, dN(q,pj)> into Q  } 
14.   delele from Q the node n with the smallest dN(q,n) 
15.   while(dN(q,n) < dmax) { 
16.   for each non-visited adjacent node nj of n { 
17.     Sp = find-point(e(nj,n))

18.     update {p1,…,pk} from {p1,…,pk}  Sp 
19.     dmax = dN(q,pk)
20.     dN(q,pj) = compute_network_dist(q, e(ni,nj), pj) 
21.     insert <nj, dN(q,pj)> into Q  }  // end of for each 
22.   delele from Q the next node n with the smallest
dN(q,n)
23. } /* end of while 
End K-NN

 

Fig. 4. Our materialization-based k-NN query processing algorithm 

To satisfy the first consideration, we are required to build the initial set of candi-
dates for k nearest neighbors by integrating the initial set construction part of the 
Euclidean restriction algorithm with that of the network expansion one. Because we 
obtain the initial set of candidates by combining a global initial set and a local initial 
set, it is possible to acquire an initial set of near-optimal candidates, regardless the 
characteristic of the underlying road network (Manhattan or a mountain area). To 
satisfy the second consideration, once obtaining an initial set of near-optimal candi-
dates, we are required to find the final k-nearest neighbors using the network expan-
sion algorithm. This is because we can obtain the final k-nearest neighbors in an  
efficient way by performing a local network search using the near-optimal candidates. 
That is, because a global search on the network has been performed to obtain the 
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initial set of candidates, it is sufficient to perform only a local search on the network 
for the final k-nearest neighbors, thus enabling to achieve a good retrieval perform-
ance. In addition, because it takes much time to compute a network distance between 
two nodes during network expansion, it is required to makes use of our node-node 
matrix file. This makes it possible to obtain the shortest network distance between any 
specified node and one of nodes incident an edge covering a query in the fastest way, 
thus remarkably reducing the network distance computation time and the number of 
disk I/Os accesses for visiting nodes. We propose a materialization-based k-NN query 
processing algorithm to satisfy the above considerations, as shown in Figure 4. 

6   Performance Analysis 

For our experiment, we make use of a road network consisting of 170,000 nodes and 
220,000 edges [11]. We also generate 10,846 points of interest (POIs) randomly on 
the road network by using RunTime21 algorithm [12]. We implement our range and 
k-NN query processing algorithms under Pentium-IV 2.0GHz CPU with 1GB main 
memory, running Window 2003.  

For the materialization, we use 229G node-node matrix file. For performance analy-
sis, we compare our rage query processing algorithm with RNE and our k-NN query 
processing algorithm with INE scheme because RNE and INE are considered as the 
most efficient query processing algorithm [1]. We measure a time for answering a range 
query whose radius r is between 10 and 200. Figure 5 shows the rage query processing 
times of RNE and our materialization-based range query processing algorithm (called 
OMR). The RNE and our OMR require about 0.24 and 0.17 seconds, respectively, when 
r = 10. In addition, the RNE and our OMR require about 2.25 and 0.24 seconds, respec-
tively, when r = 100. It is shown that our OMR achieves about up to one of magnitude 
better performance than the RNE and the performance improvement of our OMR over 
the RNE is increased as the range r is increased. This is because our materialization-
based OMR can reduce the network distance computation time and the number of disk 
I/Os required for accessing nodes by using our node-node matrix file.  
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Fig. 5. Range query processing time 
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Figure 6 shows the k-NN query processing times of the INE and our materializa-
tion-based k-NN algorithm (called OMK). The INE and our OMK require about 
0.059 and 0.058 seconds, respectively, when k = 1. In addition, the INE and our 
OMK require about 0.078 and 0.059 seconds, respectively, when k = 10. It is shown 
that the performance of OMK is nearly the same as that of INE when k=1 and  
the performance improvement of our OMR over the RNE is increased as k is  
increased. When k=100, our OMK achieves about up to 150% performance  
improvements over the INE since the INE and our OMK require about 0.098 and 
0.069 seconds, respectively, This is because our materialization-based OMR can 
reduce the computation time of network distances between a pair of nodes met  
during network expansion and the number of disk I/Os required for accessing nodes 
by using our node-node matrix file. 
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Fig. 6. k-NN query processing time 

7   Conclusions and Future Work 

In this paper, we designed efficient storage and index structures for spatial network 
databases (SNDB). Based on the structures, we proposed materialization-based range 
and k-NN query processing algorithms for SNDB. By using our node-node matrix file 
containing the shortest network distances of all the nodes in the spatial network, the 
proposed query processing algorithms can reduce the computation time of the net-
work distances and the number of disk I/Os required for accessing the nodes It was 
shown that our range query processing algorithm achieved about up to one of magni-
tude better performance than the RNE and our k-NN query processing algorithm 
achieved about up to 150% performance improvements over INE. As future work, it 
is required to study on e-distance join and closest-pairs query processing algorithms 
for SNDB. 
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