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Abstract. In this paper, a novel approach for building synopses is pro-
posed by using a service and message-oriented architecture. The SaintE-

tiQ summarization system initially designed for very large stored data-
bases, by its intrinsic features, is capable of dealing with the requirements
inherent to the data stream environment. Its incremental maintenance
of the output summaries and its scalability allows it to be a serious chal-
lenger to existing techniques. The resulting summaries present on the
one hand the incoming data in a less precise form but is still on the
other hand very informative on the actual content. We expose a novel
way of exploiting this semantically rich information for query answering
with an approach mid-way between blunt query answering and mid-way
between data mining.

1 Introduction

Emerging applications are generating and exploiting data in the form of data
streams. Such information, as opposed to the traditional way of managing infor-
mation, is by essence on-line, potentially unlimited and unbounded. Interesting
domains of application include network traffic surveillance and administration,
financial analysis, sensor data feeds or web applications. The constraints of these
application are related to their need for timely answers for decision making pur-
poses. For example, when a broker has to decide whether to buy or sell stocks
according to the evolution of different indexes, he needs a final answer within
seconds or tens of seconds. When considering the streams, each one correspond-
ing to the real-time evolution of a stock market index, generated by all the stock
markets, it is virtually impossible to store the transiting data. Thus, we pinpoint
the need for adapted structures for managing this versatile data.

While the data stream domain is relatively new, as opposed to the traditional
database paradigm, synopses remain relatively unformalized. Gibbons and Ma-
tias define in [6] those, for a class of queries Q, as a functionf(n) that provides
(exact or approximate) answers to queries from Q that uses O(f(n)) space for a
data set of size n, where f(n) = O(nε) for some constant ε < 1. The evaluation
criteria proposed are thus (i)the coverage of f(n), (ii)the answer quality, (iii)the
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footprint, (iv)the query time and (v)the computation/update time (the reader
is invited to refer to [6] for further details). We retain criteria (i), (ii), (iii) and
(v) as a basis to evaluate and position our system comparatively to existing ap-
proaches. The challenge that then rises is to find a compromise optimizing these
opposing criteria.

Motivating example. A certain number of present applications and needs
motivate our research in this direction.

As an example, it is well-known that the only way for car industries to make
profit is to reduce their costs. An option is to introduce more and more on-board
electronics to replace previously hydraulic and pneumatic systems. Thus, Bosch
is working on motronic (motorised + electronic) brakes that would be completely
independent and would communicate via a wireless connection to a central on-
board system. These are monitored in real-time through the sensor feeds they
send to the server. Considering the limits of these on-board electronics, it is
impracticable to store the data and necessary to provide timely answers.

Formulation of the problem. Recent applications are providing and using
more and more input feeds in the form of data streams either structured or not.
Due to the host system physical limitations(hard drive access times, computing
capabilities, etc...) and the timely answers required, it is not realistic to try to
deal with these new inputs with the existing techniques that have been devel-
oped for the traditional stored databases and/or data warehouses. On the other
hand, even though timely answers are required by such applications, 100% exact
answers may not be necessary.

Thus, the main problem for managing and exploiting data streams can par-
tially be answered by providing data structures, called synopses, and algorithms
to construct and maintain them, in a time and space cost-efficient fashion. These
are part of the major criteria retained but these solutions also need to propose
answers adapted to the requirements of the application considered, such as the
class of queries addressed, and guarantee to a certain extent the quality of the
answers provided.

Roadmap. The rest of the paper is organized as follows. First, an overview
of the existing techniques and of their performances in designing synopses for
data streams is presented in section 2. Then, we will discuss the SaintEtiQ

approach for building summaries and the novel decision making-oriented para-
digm that we propose for exploiting SaintEtiQ summaries in a data stream
environment through section 3. Our perspectives and short & long term work
will be introduced in section 4. Finally we will conclude this paper in section 5.

2 Related Work

Recent works on data streams have mostly focused on designing synopses, algo-
rithms and/or (adapting) techniques from the traditional database domain for
estimating one dimensional data values.
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The most basic approach proposed relied on sampling the data stream. This
statistical technique used in the stored database context keeps track of a subset
of the data values. In a data stream environment, the performances would be
appreciable in terms of space and time processing. However, the unknown size
of the data set is a critical issue, thus making the approach poorly applicable.

Pretty similar to the sampling approach, load shedding was notably proposed
by Babcock & al. in [4]. The idea was to drop sections of unprocessed data
from the incoming stream in a two step process: (i)target sampling rates for the
queries then (ii)execute the load shedding operation in the most efficient manner
possible. This technique suffers from the same issue as the sampling approach;
the unknown size of the data set remains a dead end.

Sliding windows focus mainly on recent data. Babcock & al.[3] define a random
sample on a window of size n over the stream within which only k items are
stored in memory. The authors achieve at best O(k log(n)) memory usage for
their priority-sample algorithm developed for timestamp-based windows. The
main drawback of this method, even though semantically easy to understand, is
giving poor results on queries implying older data items.

Other researches have focused on providing methods coping with queries re-
lated to frequency moments Fn(see [2] for a more complete definition). The idea
is to compute/approximate F0 the number of distinct values in the sequence,
F1 the length of the sequence, F2 the self-join size (or Gini’s index of homo-
geneity) or F∞ the most frequent item’s multiplicity. Manku and Motwani pro-
posed in [12] a probabilistic Sticky Sampling Algorithm for answering iceberg-like
queries[11] (frequency counts exceeding user-defined thresholds). The algorithm
computes ε-deficient synopses over data streams of singleton items. It was de-
signed to sweep over the data stream and update concise samples[6] which are
(item, count) pairs. Cormode and Muthukrishnan[5] proposed on their side an
algorithm, based on a divide and conquer process using a dyadic range sum
oracle, capable of providing the k hottest items for dynamic datasets.

A classic paradigm is representing synopses with histograms. The idea is to
capture the data distribution at best with the objective of minimizing the errors
while reconstructing the data values. The main approaches include V-Optimal,
Equi-Width and End-biased histograms. V-Optimal histograms approximate the
distribution of a set a data values u1, ..., un with a function û that minimizes the
sum of squared error Σi(ui − û(i))2 (or L2). One of the most efficient sketching
algorithms was proposed by Gilbert & al.[7] where the authors achieved to bound
the sketch constructing time and footprint by poly(B, log(N), log||A||, 1/ε) where
A is a vector(buffer in the case of data streams) of length N and B the number of
buckets in the histogram. The main drawback of this sketching approach comes
from the metric used (L2) which is not adapted for representing isolated data
values.

Equi-Width histograms as reminded by Poosala & al.[14] are meant to par-
tition the data value space into β approximately equal buckets by generating
quantiles or splitters. Greenwald and Khanna[8] presented a deterministic algo-
rithm capable of computing quantiles in a single-pass and achieving O(1

ε log(εN))
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space while guaranteeing εN precision. The main weakness of such a method
comes from atypical individual data that may be clustered in a same bucket.

Manku and Motwani[12] presented randomized and deterministic algorithms
for computing iceberg queries[11] by using End-Biased histograms. Iceberg
queries are computed aggregate functions over an attribute or a set of attributes
to find aggregate values above user-defined threshold. The proposed algorithm
achieve O(1

ε log(εN)) space, where N is the length of the stream and guarantee
that any element is undercounted by at most εN and that the reported count is
not worse than εN from the actual count.

The last family of sketching techniques uses Haar wavelets as a decomposition
function. An error tree compound of the wavelet coefficients is then computed
[10]. Considering 8 data items, 8 wavelet coefficients are computed. These coeffi-
cients are enough to rebuild the original information. Given a chosen number of
coefficients, let’s say α, and an error measure m (L2, maximum absolute error,
maximum relative error, etc), research has been focused on selecting the α-best
coefficients of the error tree that optimize the error measure m. In the latest
work known, Karras and Mamoulis[9] propose one-pass algorithms adapted to
the data stream environment (with an incremental construction of the error tree
from a data stream) that minimises the maximum-error metrics. They achieve
in terms of space complexity at best O(N) and in terms of time complexity their
algorithms converge to O(N log2(N)) for the maximum absolute error metric
and to O(N log3(N)) for the maximum relative error metric.

In a Synthetic word. We have presented here a brief overview of existing
techniques that answer the problem as we have formulated. Table 1 synthesizes,
to our best, these techniques by positioning them according to Gibbons’ criteria
introduced earlier.

Approach Coverage Non−Coverage Answer Quality Footprint Comp. &
Update time

Observations

Sampling

Load
Shedding

Sliding
Windows

V−Optimal H.

Equi−Width H.

End−Biased H.

Wavelets

Any request

Any request

Requests on recent
data

Estimations in query
optimizers, Frequent

 moments
Estimations in query
optimizers, Frequent

 moments

Aggregation & Iceberg
queries

Aggregation queries

Performs poorly on
joins

Performs poorly on
joins

Requests on historical
data

The others

The others

The others

The others

Approximative & no guarantees

Approximative & no guarantees

Good on recent data & Poorly on
historical data

1/e but not adapted for isolated 
data (L² metric used)

Not worse than eN but relatively
poor for data distribution with high

standard deviation
Not worse than eN

User defined

Potentially
important

Potentially
important

O(k Log N)

Poly(B,Log N,1/e)

O(1/e Log eN)

O(1/e Log eN)

Converges to
O(N)

Rapid

Rapid

Rapid

Poly(B,Log N,1/e)

Converges to
   O(N Log²N) or  

O(N Log3 N)

Errors due to data
distribution (high

standard deviation)

Errors due to data
distribution (high

standard deviation)

Fig. 1. Summary of existing approaches
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The most important remark that can be done concerns the domain of applica-
tion of the different approaches. Most of them focus on providing data structures
and algorithms capable of rebuilding (approximately) singleton data values and
ensuring maximum control over the error rate.

Our Contribution. We propose to adapt a highly efficient on-line service-
oriented summarization service capable of constructing a linguistic summary of
very large tables and/or views called SaintEtiQ [1]. SaintEtiQ’s summariza-
tion system takes a database in any form (tables, views, streams) as input and
produces a reduced version of this input through both a rewriting and a gen-
eralization process. The resulting table provides tuples with less precision than
the original but yet are very informative of the actual content of the database.

Definition 1 (SaintEtiQ Summary). Let be a first normal form relation
R(A1, . . . , An) in the relational database model. The SaintEtiQ summariza-
tion system constructs a new relation R∗(A1, . . . , An), in which tuples z are
summaries and attribute values are linguistic labels describing a set of tuples
Rz, sub-table of R. Thus, the SaintEtiQ system identifies statements of the
form “Q tuples of R are (a1

1 or a2
1 . . . or am1

1 ) and . . . and (a1
2 . . . or amn

n )”.

SaintEtiQ was originally designed for summarizing very large databases. It was
thus designed as a service-oriented (as a plugable webservice) scalable system
with a linear time complexity (O(n), with n the number of tuples to summarize)
for the construction and maintenance of the summaries. SaintEtiQ computes
and incrementally maintains a hierarchically arranged set of summaries, from
the root (the most generic summary) to the leaves (the most specific ones). The
reader is invited to refer to [15] for more thorough details. Therefore, we can
sum up our contribution in three points.

The first one would be proposing a general framework adaptable to the data
stream environment. We ensure a linear time complexity algorithm coupled with
a user-definable space usage. Furthermore, the precision of our approach is driven
by space usage. Incidentally, we comply with the criteria we have selected from
Gibbon’s definition. Therefore, we give here a truly interesting compromise by
fixing the time complexity factor to an acceptable level and leaving the answer
quality and space complexity to the user’s need.

The second point is the proposal of a framework capable of dealing with mul-
tidimensional data in a user-understandable fashion, which is, to our knowledge,
one of its unique features when compared to the existing techniques available
for the data stream environment.

Finally but not the least, we propose a novel way of using the synopses built
upon the content of the data streams in a datamining-fashioned way through
the very informative summaries obtained via SaintEtiQ.

In the following section of this paper, we are going to present the SaintEtiQ

process and will position it with more details according to Gibbons’ criteria.
Finally, we will introduce a novel vision on how data streams can be exploited
in their overall form through SaintEtiQ summaries.
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3 A SaintEtiQ Approach for Data Streams

3.1 The SaintEtiQ Model

The traditional SaintEtiQ summarization model takes database records as
input and gives some kind of knowledge as output. The process is divided into
two main steps: the first one consists in rewriting the input raw data and the
second one is the learning or summarization step.

However, in order to cope with the data stream environment, it is necessary to
add a preliminary step: the data stream bufferization. Therefore, the SaintEtiQ

summarization model for data streams (SEQS MODS) becomes a 3 step process
as shown in figure 2.
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Fig. 2. SEQS MODS 3 step process for brake feeds

The primary stage is focused on receiving the (possibly) multiple streams.
Thus, at the input of the system we introduce a multiplexer black-box. Its only
purpose is to multiplex the input data into a single stream that will feed a buffer
of user-defined size. At this stage of the process, there are many possible scenarii
for feeding the buffer. The naive approach is to feed it until it is full then discard
the items that do not fit until some space it released. More advanced techniques
including intelligent sampling or load shedding (this then refers to related work)
can be envisaged here. This step is generically illustrated by algorithm 1.

Once the buffer has input data, the Data Processor ’s job is to retrieve single (or
batches of) items and send those to the translation service for the rewriting task.

The rewriting step allows the system to rewrite the input stream items in
order to be processed by the mining algorithm. This translation step gives birth
to candidate tuples, which are different representations of a single stream item,
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Algorithm 1. Data stream bufferization process
while (Data stream has input items) or (process not terminated by user) do

Receive data from data stream s into sdata
Apply policy for inserting sdata into buffer
%% It can be load shedding, sampling or simply first-come, first-served %%

end while

in accordance with a Background Knowledge(BK). BK is made up of fuzzy
partitions defined over attribute domains. Each class of a partition is also labelled
with a linguistic descriptor which is provided by the user or a domain expert.
For example, the fuzzy label ”Slow” could belong to a partition built over the
domain of the attribute ”Speed”.

Thus, once a raw stream item is rewritten, for reducing processing time, the
candidate tuple with the highest membership scores is selected among those
generated. It is then considered by a machine learning algorithm and is first
classified into the existing summary hierarchy to find the best matching sum-
mary following a top-down approach. At each node, the hierarchy is modified
to incorporate this new instance through operations that can create or delete
hierarchical child nodes. Decisions are taken based on local optimization crite-
ria called the Partition Quality (PQ) which tries to minimize the length of the
intentional description of the summary. This intentional description is made of
a fuzzy set of domain descriptors on each attribute associated with a possibility
measure.

In a data stream environment, due to the inherent limitations in terms of
data rate and volume, a strategy needs to be held in order to be able to answer
aggregation queries on the streams. Thus, in each node of the hierarchy, tables
or histograms recording the contribution of each candidate tuple to each fuzzy
linguistic label may be maintained and updated. As an example, a summary node
compound of the attributes (Speed, Brake Pressure, Temperature) may be
associated with table 1.

Table 1. Attribute contribution table

Too fast Released Cool
5 4 6

The result is a set of summaries which each describe a subset of the data stream
items coupled with quantitative information recorded in histograms. These sum-
maries are hierarchically organized so that the root summary describes the overall
data stream, and the leaf summaries describe a very precise subset of the stream.
This part of the process is presented in the generic algorithm 2.

The scalability issues are inherent to the data stream paradigm; thus, Sain-

tEtiQ is intrinsicly able to cope with the memory consumption and the time
complexity factors in order to handle massive datasets. SaintEtiQ process time
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Algorithm 2. SEQS MODS process
while Input data streams have items do

Read data stream input from buffer into sdata
Rewrite sdata in the translation service
Retrieve cooked data into cookedSData
Classify cookedSData in summary hierarchy through the summarization service

end while

complexity was designed to be linear (0(n) with n the number of candidate tu-
ples). In terms of space cost, it is obvious that the more precise the BK, the
more voluminous the summaries will be. Let us denote S the average size in
kilo-bytes of a summary or cooked data. In the average-case assumption, there
are

∑d
k=0 Bk = (Bd+1 − 1)/(B − 1) nodes in a B-arity tree with d, the aver-

age depth of the hierarchy. Thus, the average space requirement is given by:
cm = S · Bd+1−1

B−1 . Based on real tests, S = 3kB gives a rough estimation of the
space required for each summary. However, the system was built in a way that
it is possible to maintain only parts of the hierarchy in main memory and store
the less accessed ones on disk.

Having said this, we are now able to position SaintEtiQ according to Gib-
bons’ criteria.

Coverage. When constructing the output hierarchy it is currently possible to
maintain a table/histogram of the contribution of each data stream item to each
fuzzy linguistic label. This quantitative information is the key for answering
aggregate, frequent moment or iceberg queries and potentially any other type
of request, thus allowing the system to position itself on the same tracks as the
previously presented techniques. However, if we consider joins, our systems is
restricted to providing size estimations of the different attributes involved in the
join, as it does not keep references to the stream items.

Answer Quality. As said earlier, the precision of the summaries evolve with the
precision of the BK provided. The more accurate the BK, the more precise the
summaries and as a result the more voluminous they are. It then becomes obvious
that the quality of the answers provided depends mostly on the compromise on
the quality of the input BK.

Let’s take again the example of join queries. On the one hand, in the extreme
case where the BK is very roughly defined, a large number of tuples may be
selected for the cartesian product operation. Therefore, the selectivity power of
the summary is very poor as many tuples will not participate in the cartesian
product. On the other hand, if the data distribution can be estimated accurately
on certain attributes, the tuples selected for the join operation are probabilis-
tically better chosen, which means that most selected tuples will participate in
the operation; thus the selectivity power of the summary, and the underlying
histograms, may be dramatically increased.

This example pinpoints how important the definition of the BK influences
the quality of the answers provided by the SaintEtiQ summaries. Therefore,
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an interesting axis of work may be oriented towards dynamically tuning the BK
according to the distribution of the dataset, to the evaluation of the current
performances and to the user’s needs for a more data-oriented approach.

Footprint. As the computation and update time of a summary were designed to
be linear, the footprint of the summaries is a major factor on which compromises
must be done. Detailed BKs induce high memory consumption.

However, each node of the hierarchy was designed as an autonomous agent
that can be serialized as a small binary stream. A cache manager can discard or
resurrect older summaries to/from the disk providing disk accesses are accept-
able for the system. Therefore, the footprint of the summaries is also a tunable
factor according to the user’s needs in terms of memory capabilities/savings.

Computation & Update time. The SaintEtiQ process was designed to be
linear, O(n), where n is the number of candidate tuples.

3.2 Novel Field of Application for Data Stream Synopses

The summaries resulting from processing multidimensional input data through
SaintEtiQ convey semantically richer information than any other traditional
data stream synopsis. This unique feature allows us to open the path to ad-
vanced applications such as identifying the topology of a group within the
data stream. Thus, SaintEtiQ synopses are potentially geared towards a data
mining-oriented usage. It seems interesting to associate decision making actions
with (candidate tuple) pattern matching rules.

Let us take a different and maybe more challenging toy example, this time in
the financial analysis environment. Suppose a broker needs to advice a customer
for the investment into company A(CA). What he’ll like to do is to sell both
stocks of CA and other stocks to his customer. However, the latter would only
buy if there are relative guarantees on the profitability of the transaction. Thus,
imagine the following scenario: Company B (CB) wants to perform a takeover
bid on CA - but CA is against. Therefore, in order to delay and/or avoid this
operation, CA starts a takeover on Company C(CC). Incoming feeds would be
in the form (actor, target, price, number of stocks).

When processing these input stream items, as CA invests massively into CC,
many candidate tuples in the form (actor, target, cheap, plenty) may be
generated. An agent specially designed could then detect this tendency of the
market. Speculatively speaking, stocks of CC are then susceptible to become
more valuable in the short term. Thus, when considering this example, SEQS
MODS summaries become very handful. The broker, within the first transac-
tions, may be able to identify the tendency, which is those massive acquisitions
of CC by CA at a cheap price (relatively to the probable future short-term value).
He can then advice his customer to quickly invest with high confidence into CC
stocks. Identifying these kind of topology is obviously a crucial parameter for
his decision making job.
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This toy example highlights the many possibilities offered in terms of appli-
cation by SaintEtiQ summaries. They provide a rich background for advanced
techniques, including mining or profiling, on data streams.

4 Perspectives and Future Work

Up till now, we be have based our talk on the experience and results that we
have acquired in a traditionally stored database background. What we can at
least guarantee with our current experiments on the current prototype is our
ability to manage data streams with data rates at least equal to the system’s
current input capacity on stored databases. For the time being, our work is
focused on optimizing the prototype so as to squeeze out the time consuming
tasks entirely related to the stored database domain. Many optimization works,
especially the implementation of the heuristics(see [15]), the cache management
or the distribution of the process are currently on track. Once these are integrated
into the system, we believe the summarization task will be dramatically sped up.

The second axis for our future work is to determine in the resulting summary
hierarchy whether it is more interesting to keep the whole hierarchy structure or
prune of it. Actually, as said earlier, the root of the hierarchy is the most general
synopsis and the leaves are the most specific ones. It may not be interesting to
conserve the root nor all of the leaves. Our attention is then directed towards
finding a compromise between what needs to be kept and what doesn’t. Obvi-
ously, this has an important impact on the summary maintaining process and
the hence the performance of the overall architecture. This domain needs more
thorough investigation.

Finally, we expect to take advantage of all the experience acquired here to
adapt and optimize existing distributed architectures such as the WS-CatalogNet
[13] or support applications as ”Advance Resource Reservation”[16].

5 Conclusion

In this paper, we presented the integration of an on-line linguistic summarization
process into a data stream environment. This is facilitated by the intrinsic feature
of the SaintEtiQ system. By the system’s advantages such as being an on-line
service, as its scalability, as its reduced and controlled footprint and linear time
complexity, SaintEtiQ is by essence ready for dealing with high data rate and
voluminous data streams.

The summaries obtained through the process are furthermore semantically
rich enough to open a new field of application on data streams. We are now able,
through the same process, to summarize and mine the streams. It is now possible
in a Decision Making paradigm to exploit the resulting summaries to explore and
find profiles for example either in financial analysis or network surveillance and
administration.

Immediate work is focused on optimizing and distributing the process for
better performances in terms of stream processing.
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At a medium term, we will investigate the way SaintEtiQ summaries may
be pruned in order to improve the summarization process.

At last, further developments include the use of summaries to help query E-
Community E-Catalogs or use their structure for data source selectivity which
are domains potentially exposed to the data stream model. It would be, for
instance, promising to implement such a service on an application level on mobile
routers(MR) as described in [16] in order to help the MRs to optimize their
network traffic.
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13. H.-Y. Paik, B. Benatallah, K. Bäına, F. Toumani, C. Rey, A. Rutkowska, and
B. Harianto. Ws-catalognet: An infrastructure for creating, peering, and querying
e-catalog communities. In Proc. of the 30th VLDB Conference 2004, 2004.

14. V. Poosala, Y. E. Ioannisdis, P. J. Haas, and E. J. Shekita. Improved histograms
for selectivity estimation of range predicates. 22nd VLDB Conference 1996, 1996.

15. R. Saint-Paul, G. Raschia, and N. Mouaddib. General purpose dataset summa-
rization. 31st VLDB Conference 2005, 2005.

16. A. Sun, M. Hassan, M. B. I. Hassan, P. Pham, and B. Benatallah. Fast and scalable
access to advance resource reservation data in future mobile networks. IEEE ICC,
2006.


	Introduction
	Related Work
	A SaintEtiQ Approach for Data Streams
	The SaintEtiQ Model
	Novel Field of Application for Data Stream Synopses

	Perspectives and Future Work
	Conclusion
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


