
Approximate Querying of XML Fuzzy Data

Patrice Buche1, Juliette Dibie-Barthélemy1,2, and Fanny Wattez1,2

1 Mét@risk MIA INRA
16, rue Claude Bernard,
F-75231 Paris Cedex 05

2 UMR MIA INA P-G/INRA
16, rue Claude Bernard,
F-75231 Paris Cedex 05

{Patrice.Buche, Juliette.Dibie, Fanny.Wattez}@inapg.inra.fr

Abstract. The MIEL++ system integrates data expressed in two dif-
ferent formalisms: a relational database and an XML database. The XML
database is filled with data semi-automatically retrieved from the Web,
which have been semantically enriched according to the ontology used
in the relational database. These data may be imprecise and represented
as possibility distributions. The MIEL++ querying system scans the
two databases simultaneously in a transparent way for the end-user. To
scan the XML database, the MIEL query is translated into an XML
tree query. In this paper, we propose to introduce flexibility into the
query processing of the XML database, in order to take into account the
imperfections due to the semantic enrichment of its data. This flexibil-
ity relies on fuzzy queries and query rewriting which consists in gener-
ating a set of approximate queries from an original query using three
transformation techniques: deletion, renaming and insertion of query
nodes.

1 Introduction

Numerous approaches have been proposed in the bibliography to introduce flex-
ibility in the comparison between an XML tree query and XML data trees. The
first one is based on the encoding of the XML data trees [6]. This method only
permits the introduction of intermediate nodes in the tree query structure in
order to carry out the comparison with the data trees. The second approach [1]
is based on the rewriting of the XML tree query. It permits the introduction, re-
naming and deletion of nodes in the query. The third one [12] is a combination of
the previous two: the data are encoded and the query is rewritten. It provides an
accurate computation of the transformation cost between the query and the data.
But, it is very difficult to use because it requires one to redefine the management
of the index and data encoding in the XML Database Management System. In
a fourth approach [2], fuzzy predicates are introduced into the query to express
flexible selection conditions and to perform fuzzy subtree matching. But it does
not take into account suppression and renaming of nodes. In this paper, we pro-
pose a new XML querying system. It combines the flexibility provided by the

H. Larsen et al. (Eds.): FQAS 2006, LNAI 4027, pp. 26–38, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Legind

Approximate Querying of XML Fuzzy Data 27

use of fuzzy sets to represent the user’s preferences in an XML query and the
flexibility of XML query rewriting (including insertion, deletion and renaming
of nodes) to perform an approximate comparison between an XML tree query
and an XML data tree. Moreover, it supports XML imprecise data expressed
as possibility distributions which is also an original contribution because few
research has been done in modeling and querying imprecise XML data. To the
best of our knowledge (see [10] for a recent synthesis), only imprecise data and
probabilistic data modeling in XML have been proposed. Our querying system
is fully compatible with XML querying standards since the final rewriting of the
queries is performed in XQuery language (http://www.w3.org/XML/Query/).

This work is realised in the framework of a system development whose aim is
to integrate heterogeneous data sources. Two approaches are generally consid-
ered to solve this problem: the data warehouse approach [14] in which data are
transformed to be stored in one global schema and mediated architectures [15]
where the data remain stored in the original sources, the mapping between the
global integration schema and the schemas of original sources being carried out
by wrappers. In our system, we propose data integration based on a mediated
architecture. More precisely, we use a global schema to integrate data expressed
in two different formalisms: a relational database and an XML database. This
architecture, called MIEL++ [4], is close to a Global as Views approach, in which
the global schema is defined in terms of the local schemas to be integrated, as
in the TSIMMIS [13] system. An original aspect of our approach is that our
XML database is comparable to a data warehouse, since it contains data, semi-
automatically retrieved from the Web, which have been modified in order to be
expressed in the same vocabulary and semantic relations as the ones used in the
relational database [9]. These data, called SML data, may be imprecise [3] and
represented as possibility distributions [17]. Moreover, in order to avoid empty
answers, MIEL++ querying system proposes to the end-user to express selection
criteria by means of fuzzy sets used as expression of preferences [3]. In [5], we
have defined a wrapper which translates a MIEL query into an XML tree query
to scan the XML database. We made the assumption that the XML data trees
retrieved by the MIEL++ system have to fit exactly the structure of the XML
tree query. This assumption does not permit the imperfections of the SML data
to be taken into account. Therefore, we cannot make the assumption as in [11]
that we know precisely the schema of the Web data sources we want to integrate.
In this paper, we study the way of introducing more flexibility into the MIEL
query processing of an XML database. This work is done in the framework of
the development of a real data warehouse in an actual application domain: risk
assessment in food safety.

In section 2, we briefly present firstly the fuzzy set framework that we use to
represent imprecise data and preferences in the queries, secondly the MIEL query
language and thirdly the way imprecise data are represented in an XML data-
base. In section 3, we define a new wrapper which translates a MIEL query into
a set of approximate XML queries. In section 4, we present the implementation
and preliminary test results of this wrapper in a real application.

28 P. Buche, J. Dibie-Barthélemy, and F. Wattez

2 Backgrounds

2.1 Fuzzy Set Theory

In this article, we use the representation of fuzzy sets proposed in [16, 17].

Definition 1. A fuzzy set f on a definition domain Dom(f) is defined by a
membership function μf from Dom(f) to [0, 1] that associates the degree to
which x belongs to f with each element x of Dom(f).

The fuzzy set formalism can be used in two ways: (i) in the databases, in order
to represent imprecise data expressed in terms of possibility distributions or
(ii) in the queries, in order to represent fuzzy selection criteria which express
the preferences of the end-user. A fuzzy set can be defined on a continuous or
discrete definition domain (see Fig. 1). In order to answer queries in databases
involving fuzzy sets, we must be able to compare fuzzy sets. Two scalar measures
are classically used in the fuzzy set theory to evaluate the compatibility between
an imprecise datum and end-user’s preferences: a possibility degree of matching
[17] and a necessity degree of matching [8]. In this paper, for simplicity reasons,
we will only use the possibility degree of matching which is defined below.

Definition 2. Let f and g be two fuzzy sets defined on the same definition
domain Dom, representing respectively a selection criterion and an imprecise
datum, μf and μg being their membership functions. The possibility degree of
matching between f and g is Π(f, g) = supx∈Dom(min(μf (x), μg(x))). The
selection criterion is satisfied if and only if Π(f, g) > 0.

2.2 The MIEL Query Language

In the MIEL++ system, the query processing is done through the MIEL query
language. This query processing relies on the ontology of the databases, called
MIEL++ ontology, which contains the vocabulary used by the end-users to ex-
press their queries. We first present the MIEL++ ontology and then, we intro-
duce the MIEL query language by presenting the queries and their answers.

The MIEL++ ontology. The ontology is notably composed of: (1) a taxon-
omy of terms including the set of attributes which can be queried on by the

4 5

1

0

1

0.5

0

pHPreference

6 7 Fresh cheese

SubstratePreference

Soft cheese

Fig. 1. An example of a continuous fuzzy set pHPreference noted [4,5,6,7] and a discrete
fuzzy set SubstratePreference noted (1/Fresh cheese + 0.5/Soft cheese)

Approximate Querying of XML Fuzzy Data 29

end-user, and their corresponding definition domains. Each attribute has a def-
inition domain which can be numeric, “flat” symbolic (unordered constants) or
hierarchized symbolic (constants partially ordered by the “kind-of” relation);
(2) a relational schema, which corresponds to the schema of the relational data-
base of the MIEL++ system. That relational schema is composed of a set of
signatures of the possible relations between the terms of the taxonomy.

The queries. In the MIEL query language, a query is asked in a view, which is
a pre-written query allowing the system to hide the complexity of the database
schema. A view is characterized by its set of queryable attributes and by its
actual definition. A query is then an instanciation of a given view by the end-
user, by specifying, among the set of queryable attributes of the view, which are
the selection attributes and their corresponding searched values, and which are
the projection attributes of the query.

Definition 3. A query Q asked on a view V defined on n attributes {a1, . . . , an}
is defined by Q = {V, S, C} where S ⊆ {a1, . . . , an} represents the set of the pro-
jection attributes and where C = {c1, . . . , cm} is the set of conjunctive selection
criteria. Each selection criterion ci is restricted to an equality < ai = vi > be-
tween an attribute ai ∈ {a1, . . . , an} and its searched value vi which can be crisp
or fuzzy and must be defined on a subset of the definition domain of ai.

When the fuzzy value of a selection attribute has a hierarchized symbolic defini-
tion domain, the fuzzy set used to represent the fuzzy value can be defined on a
subset of this definition domain. We consider that such a fuzzy set defines degrees
implicitly on the whole definition domain of the selection attribute. In order to
take those implicit degrees into account, the fuzzy set closure has been defined
in [3]. Intuitively, the degrees are propagated to more specific values of the hier-
archized symbolic domain. The fuzzy set closure is systematically used when a
comparison involves two fuzzy sets (an expression of end-users’ preferences and
an imprecise datum) defined on a hierarchical definition domain.

The answers. An answer to a query Q must (1) satisfy all the selection criteria
of Q in the meaning of definition 4 given below and (2) associate a constant
value with each projection attribute of Q.

Definition 4. Let < a = v > be a selection criterion and v′ a value of the
attribute a stored in the databases. The selection criterion < a = v > is satisfied
with the possibility degree Π(cl(v), cl(v′)) in the meaning of definition 2 where
the cl function corresponds to the fuzzy set closure.

As the selection criteria of a query are conjunctive, we use the min operator to
compute the adequation degree associated with the answer.

Definition 5. An answer to a query Q = {V, S, C} is a set of tuples, each of the
form {v1, . . ., vl, adΠ}, where v1, . . ., vl correspond to the crisp or fuzzy values
associated with each projection attribute ai ∈ S, where all the selection criteria
c1, . . ., cm of Q are satisfied with the possibility degrees Π1, . . .,Πm, and where
adΠ is the possibility degree of the answer to Q defined by: adΠ=minm

i=1(Πi).

30 P. Buche, J. Dibie-Barthélemy, and F. Wattez

2.3 The XML Database

The XML database has been built in the MIEL++ system in order to store
information retrieved from the Web. It is a set of XML documents which may
contain fuzzy values. We propose to model XML documents as fuzzy data trees
[5, 4] which are data trees that allow fuzzy values to be represented. According
to the definition of [7], a data tree is a triple (t, l, v) where t is a finite tree, l
a labelling function that assigns a label to each node of t and v a partial value
function that assigns a value to nodes of t. The couple (t, l) is called a labelled
tree. The representation of fuzzy values relies on the fuzzy set formalism. For
readability reasons in this paper, we only deal with discrete fuzzy sets. However,
the contributions of this paper can easily be extended to continuous fuzzy sets.

Definition 6. A discrete fuzzy set f is represented by a data tree which is
composed of a root labelled DFS and such that for each element x of Dom(f),
there exists a node labelled ValF that has two children labelled Item and MD
(for Membership Degree) of respective values x and μ(x).

In a fuzzy data tree, the partial value function v can assign a crisp or a fuzzy
value to a node, which is then called crisp or fuzzy value node.

Definition 7. A fuzzy data tree is a triple (t, l, v) where (t, l) is a labelled tree
and v is a partial value function that assigns a value to the crisp and fuzzy value
nodes of t. The value assigned to a crisp value node is an atomic value and the
one assigned to a fuzzy value node is a data tree which conforms to definition 6.

A fuzzy data tree (t, l, v) is an instance [7] of a type tree (tT , lT) 1 if there exists
a strict type homomorphism h from (t, l) to (tT , lT): (i) h preserves the root of
t: root(tT) = h(root(t)), (ii) h preserves the structure of t: whenever node m is
a child of node n, h(m) is a child of h(n) and (iii) h preserves the labels of t: for
each node n of t, l(n)=lT (h(n)).

Example 1. Figure 2 gives two examples of fuzzy data trees representing two
lines of a Web data table. The crisp value node originalVal represents the original
value of a Product in the Web data table and the fuzzy value node finalVal is
a discrete fuzzy set representing the terms of the MIEL++ taxonomy associated
with the original value. See subsection 4.1 for more details.

3 The Approximate Query Processing of the XML Base

The XML database is filled with data semi-automatically extracted from the
Web. Its integration into the MIEL++ system is possible thanks to the semantic
enrichment of its data according to the ontology (see subsection 4.1 for more
details). This section presents the XML subsystem which realizes the query
processing of the XML database by means of the MIEL query language. In order

1 A type tree is a labelled tree such that no node has two children labelled the same.

Approximate Querying of XML Fuzzy Data 31

Table

Content

Product Lipid

5g

RelLine

FoodProductAmountLipid

originalVal

Red onion
finalVal

ValF

Item

Tree onion

MD

1.0

ValF

Item

Welsh onion

MD

1.0

DFS

ValF

Item

Red cabbage

MD

0.2

Attribute

100g

Amount

null

Table

Content

Product Lipid

30g

RelLine

FoodProductAmountLipid

originalVal

Roasted beef
finalVal

ValF

Item

Beef:carcasse

MD

1.0

ValF

Item

Beef:conjunctive

tissue

MD

0.8

DFS

Amount

null

Fig. 2. Two fuzzy data trees

to take into account the imperfections coming from the semantic enrichment of
the XML database, we propose to introduce flexibility into the query processing
of the XML database using the following three techniques: deletion, renaming
and insertion of query nodes. In this section, we define the notions of views,
queries and answers of the MIEL query language in the XML subsystem.

3.1 The Views

The XML subsystem contains a set of views, which are built from the terms
and the relations of the MIEL++ ontology and allow one to query the XML
database. The information needed to perform approximate query processing is
encoded at the view level. For each node of each view, except for the root of
each view, we propose to define a deletion cost, renaming values and their costs.

Definition 8. A view that conforms to a type tree (tT , lT) is a 4-tuple V =(tV ,
lV , wV , cV) where (tV , lV) is an instance of (tT , lT), wV is a partial function that
assigns the mark ql to crisp and fuzzy value nodes of tV which are then queryable
nodes, cV is a partial function that assigns transformation information to each
node and value node –except to the root– of tV . The transformation information
of a node n are represented by a couple of the form (dcn, {(r1

n, rc1
n), . . ., (rp

n,
rcp

n)}) where dcn is the deletion cost of the node n and r1
n, . . . , rp

n are the possible
renamings of the node n with their corresponding costs rc1

n, . . . , rcp
n.

Example 2. The left side of figure 3 shows a view using the relation FoodPro-
ductAmountLipid involving three queryable attributes: the product, the amount
of the product and the quantity of lipid. A deletion cost of 1000 (resp. 100) is
associated with the node FoodProductAmountLipid (resp. Amount). A possible
renaming in Relation (resp. Attribute) is associated with the node FoodProduc-
tAmountLipid (resp. Amount) with a renaming cost of 50 (resp. 10).

3.2 The Queries

A query is built from a given view, where the end-user specifies: (i) among the
set of queryable value nodes of the view, the selection and the projection value

32 P. Buche, J. Dibie-Barthélemy, and F. Wattez

Table

Content

Product

ql+sl+pl

Amount

ql+sl+pl

RelLine

FoodProductAmountLipid

ValF

Item

Beef:carcass

MD

1.0

DFS

Table

Content

Product

ql

Amount

ql+100+

(Attribute,10)

RelLine

FoodProductAmountLipid

1000+ (Relation, 50)

Lipid

ql

Lipid

ql+pl

ValF

Item

Tree onion

MD

0.9

DFS

ValF

Item

250g

MD

1.0

ValF

Item

100g

MD

1.0

tc
max

=500

Fig. 3. An example of a view and a query defined on that view

nodes of the query and (ii) a transformation cost threshold which allows some
transformations to be forbidden. The end-user can also modify the transforma-
tion information defined in the view.

Definition 9. A query that conforms to a type tree (tT , lT) is a 8-tuple Q=(tQ,
lQ, wQ, cQ, tcmax, pQ, sQ, wsQ) where:

– (tQ, lQ, wQ, cQ) is a view that conforms to (tT , lT);
– tcmax is the maximum acceptable transformation cost of the query;
– pQ is a partial function that assigns the mark pl to the queryable value nodes

of the view, which are considered as the projection value nodes;
– sQ is a partial function that assigns the mark sl to the queryable value

nodes of the view, which are considered as the selection value nodes, also
called selection criteria;

– wsQ is a partial value function that assigns a value to the selection value
nodes of the query, such that the value assigned to a crisp value node is an
atomic value and the value assigned to a fuzzy value node is a data tree with
a root labelled DFS which conforms to definition 6.

As defined in definition 3, the value v of a selection criterion < a = v >, a being
a value node of the query, must be defined on a subset of the definition domain
of a. When this value is fuzzy, the fuzzy selection criterion which expresses the
end-user’s preferences is represented by a fuzzy set.

Example 3. The query Q of figure 3 (right side) expresses that the end-user
wants to obtain the product, the amount of product and the quantity of lipid from
the view using the relation FoodProductAmountLipid. The fuzzy value assigned
to the selection criterion Product can be interpreted as “the end-user wants Beef:
carcass as a product, but he/she also accepts Tree onion with a lower interest”.
The associated maximum transformation cost tcmax is 500.

3.3 The Approximate Queries

The search for approximate answers to an XML query Q is done in two steps. The
first step consists in generating potential approximated queries from the query

Approximate Querying of XML Fuzzy Data 33

Q by means of combinations of the following two transformation rules: (i) every
node and value node of Q with a deletion cost can be deleted, (ii) every node
and value node with renaming values and costs can be renamed. Each generated
approximate query must have at least one projection value node and one selection
value node, non necessarily distinct. In the second step, a transformation cost
is computed with each potential approximate query generated as the sum of
the deletion costs of the deleted nodes and the renaming costs of the renamed
nodes from the query Q. Only the approximate queries with a transformation
cost lower than the transformation cost threshold of the query Q are kept and
will be executed to find the approximate answers to the query Q.

Definition 10. An approximate query generated from a query Q=(tQ, lQ, wQ,
cQ, tcmax, pQ, sQ, wsQ) is a 7-tuple A=(tA, lA, wA, pA, sA, wsA, tcA) where:

– there exists a weak structural homomorphism h from the nodes of tA into
nodes of tQ: (i) h preserves the root of tA: root(tA) = h(root(tQ)) and (ii) h
preserves the ancestor-descendant relationship of tA: whenever node m is a
descendant of node n, h(m) is a descendant of h(n);

– lA is a labelling function that assigns to each node n in tA either the label
assigned by lQ to the image node h(n) in tQ or a renaming value belonging
to the transformation information cQ(h(n)) of the image node h(n) in tQ;

– for every value node n of tA such that wQ(h(n)) = ql, we have wA(n) = ql
and, for the other value nodes of tA, wA is not defined;

– for every value node n of tA such that pQ(h(n)) = pl, we have pA(n) = pl
and, for the other value nodes of tA, pA is not defined. Moreover, there must
exist at least one value node n in tA such that pA(n) = pl;

– for every value node n of tA such that sQ(h(n)) = sl, we have sA(n) = sl
and, for the other value nodes of tA, sA is not defined. Moreover, there must
exist at least one value node n in tA such that sA(n) = sl;

– for every value node n of tA such that wsQ(h(n)) is defined, we have wsA(n)
= wsQ(h(n)) and, for the other value nodes of tA, wsA is not defined;

– tcA is the transformation cost of the query Q into the approximate query

A: tcA =
l∑

i=1
dcni

d
+

q∑

i=1
rcni

r
where cQ(n)=(dcn, {(r1

n, rc1
n), . . ., (rp

n, rcp
n)})

is the transformation information of a node n of tQ (see definition 8), {n1
d,

. . ., nl
d} is the list of deleted nodes2 of tQ in tA and {n1

r, . . ., nq
r} is the list

of renamed nodes3 of tQ in tA. Moreover, tcA must be lower or equal to the
maximum acceptable transformation cost tcmax of the query.

Example 4. Figure 4 gives two examples of approximate queries generated from
the query Q of figure 3. The first approximate query (left side) has been gener-
ated by renaming the node Amount to Attribute, the second one (right side) by
deleting the node Amount.

2 The list of nodes of tQ such that ni
d has no antecedent in tA by h.

3 The list of nodes of tQ such that ni
r has an antecedent in tA by h and lQ(ni

r) �=
lA(h−1(ni

r)).

34 P. Buche, J. Dibie-Barthélemy, and F. Wattez

Content

Product

ql+sl+pl

RelLine

FoodProductAmountLipid

ValF

Item

Beef:carcass

MD

1.0

DFS

Lipid

ql+pl

ValF

Item

Tree onion

MD

0.9

ValF

Item

250g

MD

1.0

ValF

Item

100g

MD

1.0

Table

tc
A
=10

Table

Content

RelLine

ValF

Item

Beef:carcass

MD

1.0

DFS

Lipid

ql+pl

ValF

Item

Tree onion

MD

0.9

tc
A
=100

Attribute

ql+sl+pl

DFS

Product

ql+sl+pl

FoodProductAmountLipid

Fig. 4. Two examples of approximate queries generated from the query Q of figure 3

Remark 1. Thanks to the representation of fuzzy values in a fuzzy data tree
(see definition 7), there is no distinction between the deletion of a fuzzy value
node and of a crisp value node: in both cases, the node and its value are deleted.

3.4 The Answers

The approximate answer to an XML query Q is the union of the answers to the
generated approximate queries from Q. While the generation of approximate
queries from Q relies on the deletion and the renaming of nodes of Q, the com-
putation of the answers to an approximate query A allows the insertion of nodes
into A. An answer to an approximate query A (i) satisfies all the selection crite-
ria of A in the meaning of definition 4 and (ii) associates a constant value with
each projection value node of A. The search for the answers to an approximate
query in an XML database is done through the valuation of the query on the
fuzzy data trees of the database as defined below.

Definition 11. Let A=(tA, lA, wA, pA, sA, wsA, tcA) be an approximate query
generated from Q=(tQ, lQ, wQ, cQ, tcmax, pQ, sQ, wsQ) which conforms to a
type tree T=(tT , lT) and D=(tD, lD, vD) be a fuzzy data tree instance of T . A
valuation of A with respect to D is a mapping σD from tA into tD such that:

– σD is a weak type homomorphism from (tA, lA) into (tD, lD): σD is a weak
structural homomorphism (see definition 10) and preserves the labels of tA;

– σD satisfies each selection criterion ni
s, i ∈ [1, m], of A with the possibility

degree Π(wsA(ni
s), vD(σD(ni

s))).

The adequation degree of the fuzzy data tree D to the approximate query A
through the valuation σD is adΠ(D)=mini∈[1,m](Π(wsA(ni

s), vD(σD(ni
s)))).

An answer to an approximate query in the XML database is a set of tuples,
where each tuple is composed of (i) a set of values given to each projection node,
(ii) an adequation degree of the answer to the approximate query and (iii) a cost
of transforming the initial query into the approximate query.

Approximate Querying of XML Fuzzy Data 35

Definition 12. An answer to an approximate query A=(tA, lA, wA, pA, sA,
wsA, tcA) composed of m projection value nodes n1

p, . . ., nm
p in an XML database

W is a set of tuples, each tuple being defined as follows: { ∪m
i=1 vD(σD(ni

p)) ∪
adΠ(D) ∪ tcA | D is a fuzzy data tree of W and σD is a valuation of A w.r.t. D}.

Example 5. To facilitate result interpretation, answers are ordered first by as-
cending transformation cost (tcA) and second by descending adequation degree
(adΠ(D)). The answer to the query Q of figure 3 according to the left approx-
imate query of figure 4 in the fuzzy data trees of figure 2 is the following:
{(Product.originalVal=Red onion, Product.finalVal=1.0/Tree onion+1.0/Welsh
onion+0.2/Red cabbage, Attribute=100g, Lipid=5g, adΠ=0.9, tcA=10)}. The
answer to the query Q of figure 3 according to the right approximate query of
figure 4 in the fuzzy data trees of figure 2 is the following: {(Product.originalVal=
Roasted Beef, Product.finalVal=1.0/Beef:carcass+0.8/Beef:conjunctive tissue,
Lipid=30g, adΠ=1.0, tcA=100), (Product.originalVal=Red onion, Product.
finalVal = 1.0/Tree onion+ 1.0/Welsh onion+ 0.2/Red cabbage, Lipid=5g, adΠ

=0.9, tcA=100) }.

Remark 2. Note that when we compute the approximate answer to a query Q
which is the union of the answers to the generated approximate queries from Q,
we only keep tuples coming from distinct data trees of the XML database.

4 Application

The approximate query processing detailed below has been applied to the XML
database of the MIEL++ system. Subsection 4.1 briefly presents the SML
process which permits this database to be filled. Subsection 4.2 presents the im-
plementation of the approximate query processing and first experimental results.

4.1 The XML Database Filling

The XML database of the MIEL++ system is filled with data semi-automatically
extracted from the Web. The search is focussed on pdf and html documents which
contain data tables and concern the MIEL++ domain application. The Web data
tables are extracted and translated into a generic XML representation of data
table, called XTab. Those XTab documents are then transformed into SML (for
Semantic Markup Language) documents, by a semantization process based on
the MIEL++ ontology. Then it becomes possible to query the SML documents
through the MIEL uniform query language. The SML process [9] achieves three
kinds of semantic enrichment: (i) it associates terms of a Web data table with
their corresponding terms in the MIEL++ taxonomy, (ii) when enough terms are
identified in a given column of a Web data table, it becomes possible to identify
the “title” of the column, otherwise the generic title attribute is associated with
the column; (iii) it instanciates semantic relations of the ontology which appear
in the Web table schema. That instanciation is done by comparing the previously
identified columns with the signatures of the semantic relations of the ontology.

36 P. Buche, J. Dibie-Barthélemy, and F. Wattez

A semantic relation can be completely or partially represented in a Web table
schema. Moreover, in [5], we propose a fuzzy semantic enrichment of the terms
of a Web data table: each association between a term of a Web data table and
a term belonging to the MIEL++ taxonomy is weighted by a possibility degree
depending on their syntactic closeness. The SML documents thus contain fuzzy
data: for a given term of a Web data table, its associated terms belonging to the
taxonomy are represented by a discrete fuzzy set.

Example 6. Figure 5 presents two examples of Web data tables and the cor-
responding tables obtained by semantic enrichment. In the left table, the first
column has been identified as having the type product and the third one as hav-
ing the type lipid. But the second one, which actually corresponds to the amount,
has not been identified because the title of the column is an abbreviation (Qty).
So it is associated with the generic type attribute. The semantic relations Food-
ProductAmountLipid of the MIEL++ ontology is only partially instanciated,
because the attribute Amount is not in the Web table schema. The remaining
column having the type attribute is added to the instanciation of the relation
FoodProductAmountLipid in order to avoid bad interpretation of the data. The
left fuzzy data tree of figure 2 corresponds to the third line of this Web data table.
In the right table, the first column has been identified as having the type product
and the second one as having the type lipid. Consequently, the relation FoodPro-
ductAmountLipid is only partially instanciated, because the attribute Amount is
not in the Web table schema. The right fuzzy data tree of figure 2 corresponds
to the second line of this Web data table.

In example 5, the tuple of the first answer (tcA=10) shows that the renaming of
the node Amount of the query Q to Attribute allows the value 100g to be retrieved
even if the corresponding column (Qty) in the left Web data table of figure 5 has
not been identified as an amount. The first tuple of the second answer shows that
the deletion of the node Amount in the query Q allows pertinent information to

18.75 g250 gRoasted beef

5 g100 gRed onion

100 g

Qty

7.8 g

Lipids

Whiting with lemon

Item

18.75 g250 gRoasted beef

Product = {Beef:carcass,

Beef: conjunctive tissue}

7.8 g100 gWhiting with lemon

Product = {}

100 g

(Qty,

Attribute)

5 g

(Lipids,

Lipid)

Red onion

Product = {Tree onion,

Welsh onion, Red cabbage}

(Item, Product)

SML

30 gBeef

25 gBacon

40 g

Lipids/

100g

Sausage

Foodstuff

30 gBeef

Product = {Beef:carcass,

Beef:conjunctive tissue}

40 gSausage

Product = {Sausage}

25 g

(Lipids/100g,

Lipid)

Bacon

Product = {Bacon}

(Foodstuff, Product)

SML

Fig. 5. Two examples of Web data tables and their associated semantic enrichment

Approximate Querying of XML Fuzzy Data 37

be retrieved from the right Web data table of figure 5 even if the column amount
has not been identified. In all the tuples of both answers, the insertion of the
nodes originalVal and finalVal into the query Q has been used.

4.2 Implementation and Preliminary Tests

We have implemented a prototype of this querying system in Java using the
Xquery processor Saxon (www.saxonica.com). Given an XML initial query, the
program runs in the following three steps. In the first step, approximate queries
are generated in XML documents from the initial query by means of deletion
and renaming of nodes. In the second step, each distinct approximate query is
translated into an XQuery query and executed in ascending order of its transfor-
mation cost. The result is built from the union of the answer to the initial query
and the answers to the generated approximate queries, the duplicates being re-
moved. Encouraging preliminary tests have been done on a database composed
of 196 SML documents. Three different queries involving three different seman-
tic relations have been tested. The first (resp. second and third) query contains
3 (resp. 2 and 2) selection and 3 (resp 3 and 2) projection attributes. Among
the 93 results obtained, 66 are pertinent results obtained from the approximate
queries, 4 of which being also obtained from the initial query.

5 Conclusion

In this paper, we propose a new XML querying system which harmoniously com-
bines two kinds of complementary flexibility management. These two kinds of
flexibility concern on the one hand the structure of the query tree and on the
other hand the values stored in the data trees. Firstly, the calculation of a set of
approximate queries from an initial one allowing insertion, renaming and dele-
tion of nodes permits the retrieval of XML data trees whose structure is close
to that of the initial query. Secondly, the expression of preferences in selection
criteria of the query, by means of fuzzy sets, allows the end-user to enlarge the
set of answers. Finally, this new querying system is able to manage imprecise
data, represented by possibility distributions, stored in the XML database using
fuzzy pattern matching techniques. In the very near future, we will realise ex-
perimentations of our approach in different application domains using different
ontologies in order to evaluate the genericity of our approach. We will also study
the way of introducing a ”degree of uncertainty” in the partial instanciation of
semantic relations of the ontology into a Web data table.

References

1. S. Amer-Yahia, S. Cho, and D. Srivastava, Tree pattern relaxation, EDBT, 2002.
2. D. Braga, A. Campi, E. Damiani, G. Pasi, and PL. Lanzi, FXPath: Flexible query-

ing of xml documents, Proc. of EuroFuse 2002 (2002).

38 P. Buche, J. Dibie-Barthélemy, and F. Wattez

3. P. Buche, C. Dervin, O. Haemmerlé, and R. Thomopoulos, Fuzzy querying of in-
complete, imprecise and heterogeneously structured data in the relational model
using ontologies and rules, IEEE Trans. Fuzzy Systems 13 (2005), no. 3, 373–383.

4. P. Buche, J. Dibie-Barthélemy, O. Haemmerlé, and G. Hignette, Fuzzy semantic
tagging and flexible querying of xml documents extracted from the web, Journal of
Intelligent Information Systems 26 (2006), 25–40.

5. P. Buche, J. Dibie-Barthélemy, O. Haemmerlé, and M. Houhou, Towards flexible
querying of xml imprecise data in a data warehouse opened on the web, FQAS 2004
(Lyon, France), LNAI #3055, Springer, June 2004, pp. 28–40.

6. E. Damiani and L. Tanca, Blind queries to xml data, DEXA’00, 2000, pp. 345–356.
7. C. Delobel, M. C. Rousset C. Reynaud, J.-P. Sirot, and D. Vodislav, Semantic

integration in xyleme: a uniform tree-based approach, DKE. 44 (2003), no. 3, 267–
298.

8. D. Dubois and H. Prade, Possibility theory: an approach to computerized processing
of uncertainty, New York: Plenum Press, 1988.

9. H. Gagliardi, O. Haemmerlé, N. Pernelle, and F. Sais, A semantic enrichment of
data tables applied to food risk assessment, DS’05, LNCS #3735, 2005, pp. 374–376.

10. Zongmin Ma, Fuzzy database modeling with xml, Springer., 2005.
11. Lucian Popa, Yannis Velegrakis, Renée J. Miller, Mauricio A. Hernández, and

Ronald Fagin, Translating web data., VLDB, 2002, pp. 598–609.
12. T. Schlieder, Schema-driven evaluation of approximate tree-pattern queries, Pro-

ceedings of EDBT, 2002.
13. Jeffrey D. Ullman, Information integration using logical views., Theor. Comput.

Sci. 239 (2000), no. 2, 189–210.
14. J. Widom, Research problems in data warehousing, Proceedings of the International

Conference on Information and Knowledge Management, 1995.
15. G. Wiederhold, Mediation in information systems, ACM Computing Surveys 27

(1995), no. 2, 265–267.
16. L. Zadeh, Fuzzy sets, Information and control 8 (1965), 338–353.
17. , Fuzzy sets as a basis for a theory of possibility, Fuzzy Sets and Systems 1

(1978), 3–28.

	Introduction
	Backgrounds
	Fuzzy Set Theory
	The MIEL Query Language
	The XML Database

	The Approximate Query Processing of the XML Base
	The Views
	The Queries
	The Approximate Queries
	The Answers

	Application
	The XML Database Filling
	Implementation and Preliminary Tests

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

