
Search Strategies for Finding Annotations and
Annotated Documents: The FAST Service

Maristella Agosti and Nicola Ferro

Department of Information Engineering – University of Padua
Via Gradenigo, 6/b – 35131 Padova – Italy

{agosti, ferro}@dei.unipd.it

Abstract. This paper discusses two kinds of search strategies supported
by the Flexible Annotation Service Tool (FAST), an annotation ser-
vice that can be used by different Digital Library Management Systems
(DLMSs). The first strategy concerns the search and retrieval of annota-
tions, considered as stand-alone documents; while, the second one regards
how to exploit annotations in order to search and retrieve annotated
documents which are relevant for a user query. This paper describes the
proposed search strategies in the light of the architectural design choices
needed to support them.

1 Introduction

As observed by [10, p. 274], “the progress of the Digital Library (DL) field can be
evaluated along several dimensions”, one of which is called the service dimension,
which “characterizes the complexity of processing that DLs and federations of
DLs can manage on behalf of clients”. In particular, we are interested in studying
and developing a service able to add annotation capabilities on the documents
managed by a Digital Library Management System (DLMS), so that the service
encapsulates all the complex processing needed to provide advanced annotation
functionalities and can be easily “plugged” into different DLMSs.

We have designed and we are developing an annotation service for DLMSs,
which is called Flexible Annotation Service Tool (FAST) [1, 2, 3, 4]. FAST offers
basic annotation management functionalities and provides users with advanced
search capabilities for retrieving both annotations and annotated documents on
the basis of their annotations. This paper will introduce the search strategies
supported by FAST in order to search for both annotations and annotated doc-
uments and it will describe the architecture of FAST with a particular focus on
the architectural design choices which impact the search functionalities offered
by the service.

The paper is organized as follows: Section 2 discusses the use of annotations
in the context of DLMSs; Section 3 provides an overview of the FAST service;
Section 4 describes the search strategies supported by FAST; Section 5 discusses
the architecture of the system and its consequences on the offered search strate-
gies; finally Section 6 draws some conclusions and provides an outlook of the
future research work.

H. Larsen et al. (Eds.): FQAS 2006, LNAI 4027, pp. 270–281, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Legind

Search Strategies for Finding Annotations and Annotated Documents 271

2 DLMSs and Annotations

DLMS are currently in a state of evolution: today they are simply places where
information resources can be stored and made available, whereas for tomorrow
they will become an integrated part of the way the user works. For example,
instead of simply downloading a paper and then working on a printed version, a
user will be able to work directly with the paper by means of the tools provided
by the DLMS and share their work with colleagues. This way, the user’s intellec-
tual work and the information resources provided by the DLMS can be merged
together in order to constitute a single working context. Thus, the DLMS is no
longer perceived as something external to the intellectual production process
and neither as a mere consulting tool, but instead as an intrinsic and active part
of the intellectual production process [2].

Annotations are effective means in order to enable the paradigm of interaction
between users and DLMSs envisioned above, since they are very well-established
practices and widely used. Annotations are not only a way of explaining and
enriching an information resource with personal observations, but also a means of
transmitting and sharing ideas in order to improve collaborative work practices.
Thus, annotations can be geared not only to the way of working of the individual
and to a method of study, but also to a way of doing research, as it happens
in the Humanities. Finally, annotations allow users to naturally merge and link
personal contents with the information resources provided by the DLMS so that
a common context that unifies all of these contents can be created.

With this last respect, documents managed by the DLMS and annotations
constitute an hypertext [3, 4], since annotations allow the creation of new rela-
tionships among existing objects, by means of links that connect annotations
together with existing objects. [9] points out that annotations are one of the ac-
tivities that form the basis of any collaborative effort and for which hypermedia
systems are ideally suited, while [12] considers annotations as a natural way of
creating and growing hypertexts that connect information resources by actively
engaging users. Moreover, DLMSs do not normally have a hypertext connect-
ing information resources with each other; thus, annotations can turn out to
be an effective way of associating a hypertext to a DLMS in order to enable
an active and dynamic usage of information resources. This hypertext can span
and cross the boundaries of the single DLMS, if users need to interact with the
information resources managed by diverse DLMSs [2]. This latter possibility is
quite innovative, because offers the means for interconnecting various DLMSs in
a personalized way meaningful for the end-user and, as recognized also by [10],
is a big challenge for next generation DLMSs.

In this evolving context, it becomes crucial to design and develop services
able to provide annotation functionalities to many different DLMSs. Moreover,
besides offering various annotation management facilities, these services should
pay particular attention to offer support for integrating annotations into the
information access and retrieval process. Indeed, the possibilities of collaboration
and active involvement with digital resources uncovered by bringing annotations
into DLMSs require that annotation are an integral part of the way in which

272 M. Agosti and N. Ferro

users share, search, and retrieve information. Thus, we need to develop methods
that allow us to search both for annotations themselves by taking into account
their own features, and for annotated documents by exploiting the annotations
linked to them. In the first case, the objective of our search are annotations
and we need to develop techniques that exploit their peculiarities in order to
effectively retrieve them. On the contrary, in the second case, we aim at searching
annotated documents and annotations simply represent a means for retrieving
better and more documents with respect to the case of a search without using
annotations.

3 Overview of FAST

FAST is a flexible service designed to support both various architectural para-
digms, such as Peer-To-Peer (P2P) or Web Services (WS) architectures, and a
wide range of different DLMSs. The flexibility of FAST and its independence
from any particular DLMS is a key feature to provide users with a uniform way
of interaction with annotation functionalities, without the need of changing their
annotative practices only because a user works with different DLMSs. In order
to achieve the desired flexibly:

1. FAST is a stand-alone system, i.e. it is not part of any particular DLMS;
2. the core functionalities of the annotation service are separated from the

functionalities needed to integrate it into different DLMSs;
3. the architecture is as modular as possible, so that different implementations

of each component of FAST can be provided in order to add and/or modify
its functionalities with the desired degree of granularity.

The choice of making FAST a stand-alone system is coherent with the ap-
proach adopted by different systems: for example, both Annotea [11, 13] and
Multimedia Annotation of Digital Content Over the Web (MADCOW) [7] rely
on stand-alone servers, that store and manage annotations separated from the
annotated objects. On the other hand, the choice of separating the core func-
tionalities of the annotation service, from the functionalities needed to integrate
it into the different DLMSs is quite new. As a consequence of this architectural
choice, it is worth pointing out that the FAST service knows everything about
annotations, however it cannot do any assumption regarding the information
resources provided by the DLMS, being that it needs to cooperate with different
DLMSs. This situation is very different from what is commonly found today.
For example, both Annotea and MADCOW are stand-alone systems but they
are targeted to work with Web pages. Indeed, they assume that the annotated
object has a structure compliant with HyperText Markup Language (HTML),
as an example, and that they can use HyperText Transfer Protocol (HTTP) to
transport annotations. On the contrary, FAST cannot assume that it is dealing
with either HTML documents or the HTTP protocol, but it has to avoid any
constraints concerning both the annotated information resource and the avail-
able protocols. The only assumption about information resources that FAST can

Search Strategies for Finding Annotations and Annotated Documents 273

make is that each information resource is uniquely identified by a handle, which
is a name assigned to an information resource in order to identify and facilitate
the referencing to it, such as a Uniform Resource Identifier (URI) or a Digital
Object Identifier (DOI).

FAST models annotations according to the Entity–Relationship (ER) schema
described in [1, 4, 5]: annotations are composite and complex multi-media ob-
jects, where each part of the annotation, called sign of annotation, has its own
medium, e.g. text or audio, and a well-defined and explicit semantics, called
meaning of annotation, according to an ontology of agreed meanings of anno-
tation, e.g. comment, question, and so on. Annotations can annotate multiple
parts of a given Digital Object (DO) and can relate this annotated DO to vari-
ous other DOs, if needed. Furthermore, once it has been created, an annotation
is considered as a first class DO, so that it can be annotated too. In this way,
the model support users in creating not only sets of annotations concerning a
DO, but also threads of annotations, i.e. annotations which reply to one another.
These threads of annotations are the basis for actively involving users with the
system and for enabling collaboration.

From a functional point of view, FAST provides annotation management func-
tionalities, such as creation, storage, access, and so on. Furthermore, it supports
collaboration among user by introducing scopes of annotation and groups of
users: annotations can be private, shared or public; if an annotation is shared,
different groups of users can share it with different permissions, e.g. one group
can only read the annotation while another can also modify it. Note that the
annotation management engine ensure that some validity constraints are com-
plied with: for example, a private annotation cannot be annotated by a public
annotation. In such cases there is a scope conflict – in the example, the author of
the private annotation could see both the public and the private annotation, but
another user could see only the public annotation which would be annotating
something hidden to this user.

4 Search Strategies Supported by FAST

As introduced in Section 1, in order to effectively exploit annotations, we need
to design and develop two complementar kinds of search strategy: the first kind
of search strategy is concerned with the retrieval of annotations themselves and
it is presented in Section 4.1; the second kind regards how to effectively exploit
annotations when we search for annotated documents; this last strategy has been
firstly discussed in [3] and its key points are briefly reported in Section 4.2.

Figure 1 shows the Unified Modeling Language (UML) class diagram of the
interfaces that describe query capabilities supported by FAST. Note that we are
defining the query capabilities of FAST in term of abstract interfaces, which
control the general semantics of the query; on the other hand, we have a fur-
ther degree of freedom given by the possible different implementations of each
interface, which can vary the functionalities actually offered, still in the broad
semantics prescribed by the corresponding interface. Finally, as we will discuss in

274 M. Agosti and N. Ferro

<<interface>>
Query

<<interface>>
TextualQuery

<<interface>>
MetadataQuery

<<interface>>
BooleanQuery

compose

1

1..*

1

1..*

<<interface>>
FieldedQuery

<<interface>>
TermQuery

<<interface>>
PhraseQuery

<<interface>>
AuthorQuery

<<interface>>
AnnotatedDigitalObjectQuery

<<interface>>
RelatedDigitalObjectQuery

<<interface>>
MeaningQuery

<<interface>>
SharingGroupQuery

<<interface>>
SignMimeTypeQuery

<<interface>>
ScopeQuery

<<interface>>
CreatedTimestampQuery

<<interface>>
ModifiedTimeStampQuery

BooleanOperator <<use>> <<interface>>
ContentQuery

Visual Paradigm for UML Standard Edition(University of Padua)

Fig. 1. UML class diagram of the query types supported by FAST

Section 5, different components of the FAST service are responsible for actually
processing a query, according to its type and implementation.

4.1 Searching for Annotations

With respect to the first kind of search strategy, FAST offers three basic kinds
of query: MetadataQuery, ContentQuery, and BooleanQuery.

The first query type, MetadataQuery, is intended for searching annotations
on the basis of their metadata, such as for example the author of the anno-
tation or the handle of the annotated DO. This kind of query is processed
by using an exact match approach and annotations are retrieved in a Data-
Base Management System (DBMS) fashion. In order to actually carry out this
kind of search, this interface is further specialised into a set of sub-interfaces
that capture the different kinds of metadata available for an annotation. Thus,
we have the following basic types of metadata query: the AnnotatedDigital-
ObjectQuery searches for all the annotations which are annotating a given DO;
the RelatedDigitalObjectQuery has a similar purpose but for the DOs re-
lated by an annotation; the ScopeQuery selects annotations on the basis of their
scope, i.e. private, shared, or public annotations; the AuthorQuery finds anno-
tations with a given author; the MeaningQuery is intended for searching an-
notations with the specified meaning of annotation, e.g. for searching all the
comments or all the counter-arguments; the CreatedTimestampQuery and the
ModifiedTimestampQuery are used when we need annotations that have been,
respectively, created or modified in a time stamp before, equal, or after the spec-
ified one; the SignMimeTypeQuery searches for annotations which contain a sign
of annotation with the specified Multipurpose Internet Mail Extensions (MIME)
type, e.g. for searching all the annotations containing a textual part or a graph-
ical part; finally, the SharingGroupQuery looks annotations on the basis of the
groups which are sharing them, as for example the annotations shared by a

Search Strategies for Finding Annotations and Annotated Documents 275

given group with read and write permission. Note that the MetadataQuery cov-
ers both the metadata that are sometimes called structural metadata, such as
the AnnotatedDigitalObjectQuery or the MeaningQuery, and those metadata
that are sometimes referred as administrative metadata, such as ScopeQuery or
SharingGroupQuery.

The second query type, ContentQuery, is concerned with the search and re-
trieval of annotations on the basis of their actual content. Thus, this kind of
search requires a best match approach and annotations are retrieved in an In-
formation Retrieval System (IRS) fashion. Even if annotations are in general
multi-media compound objects, at the moment, the only medium supported
by FAST for search purposes is the text. Thus, the general ContentQuery is
specialised by the TextualQuery which is focused on searching for annotations
that contain signs of annotations with a textual MIME type; nevertheless the
query hierarchy and the architecture of FAST, as we will see in Section 5, are
designed for seamlessly supporting the introduction of new content queries for
other kinds of medium, such as images or audio, by simply providing new sub-
interfaces of ContentQuery. The TextualQuery is further specialised by two ba-
sic query types: the TermQuery that matches annotations against a given term,
and PhraseQuery that matches annotations against a given phrase, that is a
particular sequence of terms.

The third query type, BooleanQuery, represents a query that matches anno-
tations against a combination of other queries by using the AND, OR, and NOT
BooleanOperators. Thus, it is a compound query whose aim is to increase the
expressive power of the basic queries described above. For example, we could
search for annotations with the specified author and the given scope, or we may
search for annotations containing one term but not another one. Note that, even
if the class hierarchy is designed for supporting the case, the present prototype
implementation of FAST does not allow mixed boolean queries, that are boolean
queries combining metadata and content queries together.

A final kind of query is the FieldedQuery, which is not a new type of query but
instead it is a convenience query type. It allows us to create the most commonly
used boolean queries involving annotation’s metadata by ensuring that some
general query semantics is preserved. For example, by using MetadataQuery
and BooleanOperator, it would be possibile to create a syntactically correct
query that asks for private annotations that are shared by a given group; this
would result in a “wrong” query with an empty result set, because by definition
private annotations cannot be shared by any group. On the other hand, the
contract specified by the FieldedQuery interface ensures that the constraints
set on the scope of an annotation are coherent with other possibile constraints
on its sharing groups, otherwise an appropriate exception is thrown.

4.2 Searching for Documents by Exploiting Annotation

When we plan to exploit annotations for searching annotated documents, we
need to develop a search strategy which is able to effectively take into account the
multiple sources of evidence which come from both documents and annotations,

276 M. Agosti and N. Ferro

DLMSFAST

Submit query
Forward query

Execute query

Return results
Return result documents set

Execute query

Return result annotations set

Determine documents linked to annotations

Return documents related to annotations

Combine results

Return combined results
Return results

1

2

3

4

5

6

Fig. 2. UML sequence diagram of the search strategy for searching documents by
exploiting annotations (from [3])

as proposed in [3]. In fact, the combining of these multiple sources of evidence can
be exploited in order to improve the performances of an information management
system. Our aim is to retrieve more documents that are relevant and to have
them ranked in a way which is better than a system that does not makes use of
annotations.

In order to carry out this search strategy, we need to deal with two kinds of
DOs, that are documents and annotations. Let D be the set of documents and
d ∈ D is a generic document; let A be the set of annotations and a ∈ A is a
generic annotation; let DO = D ∪ A be the set of digital objects and do ∈ DO
is a generic digital object, which can be either a document or an annotation.
Finally, let Q be the set of user queries and q ∈ Q is a generic query. The UML
sequence diagram of Figure 2 summarizes our search strategy:

1. the user submits a query q ∈ Q to FAST;
2. FAST forwards the query to the DLMS, which searches for documents to

retrieve for the query q.
We call Rd,q ⊆ D the result set returned by the DLMS, sd,q ∈ [0, 1] the

similarity score of the document d with respect to the query q. According
to our architecture, Rd,q is completely defined and managed by the DLMS
and FAST has no control over Rd,q. Thus, the DLMS has the function of
providing Rd,q and a similarity score sd,q for each document d ∈ Rd,q to
FAST;

3. FAST searches for annotations to retrieve for the query q, according to the
search strategies described in Section 4.1.

Search Strategies for Finding Annotations and Annotated Documents 277

We call Ra,q ⊆ A the result set returned by FAST, sa,q ∈ [0, 1] the
similarity score of the annotation a with respect to the query q.According
to our architecture, Ra,q is completely defined and managed by FAST;

4. FAST determines the documents associated to the annotations contained in
Ra,q, by using a mapping function M : A → D, that associates an annotation
a ∈ A to a document d ∈ D. To carry out the mapping function M, FAST
exploits the hypertext existing between documents and annotations, intro-
duced in Section 1, and follows the paths that link annotations to annotated
documents.

We call Rd,a ⊆ D the set containing the documents associated to the
annotations in Ra,q, i.e. Rd,a = M(Ra,q); sd,a ∈ [0, 1] is the similarity score
of a document d ∈ Rd,a;

5. FAST combines the two sets Rd,q and Rd,a into one set Rd = Rd,q∪Rd,a ⊆ D
in order to obtain only one list of retrieved documents. sd ∈ [0, 1] is the
similarity score of a document d ∈ Rd, obtained combining sd,q and sd,a;

6. FAST returns the list of retrieved documents to the user.

We can point out some interesting characteristics of this search strategy.
Firstly, in the fourth step FAST needs to employ both Hypertext Information
Retrieval (HIR) [6] and data fusion techniques [8]: indeed, different paths in the
hypertext allow FAST to associate annotations to documents, which are neces-
sary to determine Rd,a from Ra,q; furthermore, FAST has to exploit also data
fusion techniques in order to compute the similarity score sd,a of a document d
from the similarity scores sa,q of the annotations linked to d. Secondly, in the
fifth step we need to combine the similarity scores sd,q computed by the DLMS
with the similarity scores sd,a computed by FAST, which is a data fusion prob-
lem. Finally, the sequence diagram of Figure 2 highlights that we are dealing
with a distributed search problem. For further details on this search strategy,
please refer to [3].

With respect to the query class hierarchy shown in Figure 1, this search strat-
egy involves mainly content queries, because we have no information about the
documents managed by the DLMS and thus we remit to the DLMS the task of
retrieving documents on the basis of their content. In line of principle, it would
be possibile to take into consideration also some metadata query, especially on
the annotation side of this search strategy, but this is left for future investigation.

5 Architecture of FAST

FAST adopts a three-layers architecture – the data, application and interface
logic layers – and is designed at a high level of abstraction in terms of ab-
stract Application Program Interfaces (APIs) using an Object Oriented (OO)
approach. In this way, we can model the behaviour and the functioning of FAST
without worrying about the actual implementation of each component. Different
alternative implementations of each component could be provided, still keeping a
coherent view of the whole architecture of the FAST service. We achieve this ab-
straction level by means of a set of interfaces, which define the behaviour of each

278 M. Agosti and N. Ferro

component of FAST in abstract terms. Then, a set of abstract classes partially
implement the interfaces in order to define the actual behaviour common to all
of the implementations of each component. Finally, the actual implementation is
left to the concrete classes, inherited from the abstract ones, that fit FAST into
a given architecture. Java1 is the programming language in use for developing
FAST. Java ensures us great portability across different hardware and software
platforms, thus providing us with a further level of flexibility.

The UML class diagram of figure 3 presents the main interfaces involved in the
definition of the data and application logic layers, which are the ones responsible
for the actual query processing. The user interface layer is not reported in figure 3
since issues concerning the visualization of query results are out of the scope of
the present paper.

5.1 Data Logic Layer

The data logic layer manages the actual storage of the annotations and provides
a persistence layer for storing and retrieving the objects which represent the
annotation and which are used by the upper layers of the architecture.

Datastore is a façade for the following interfaces: AnnotationDAO, UserDAO,
GroupDAO, MeaningDAO, and LoggerDAO, which define the operations needed to
ensure the persistence of the different objects managed by the system. These
interfaces are designed according to the Data Access Object (DAO) design pat-
tern2. The DAO implements the access mechanism required to work with the
underlying data source, e.g. it may offer access to a Relational DBMS (RDBMS)
by using the Java DataBase Connectivity (JDBC)3 technology. Besides ensuring
the persistence of the differen objects managed by the system, the Datastore
is responsible also for actually processing both metadata queries and boolean
queries, composed by only metadata queries. We use the PostgreSQL4 DBMS
in order to perform the actual storage of the annotations, and a concrete class
implementing the Datastore interface has been developed in order communicate
with PostegreSQL by using JDBC.

The Indexer interface is responsible for the processing of content queries.
In particular, in the prototype of FAST we have implemented a textual in-
dexer based on the Lucene5 library able to manage the different kinds of textual
query. As introduced in Section 4.1, support for further kind of media can be
easily added by proving additional implementations of the Indexer interface,
specialised for the desired medium.

Finally, the Datalogic interface provides coherent access to the underlying
components and forwards queries either to the Datastore or the the proper
Indexer, according to whether they are metadata or content queries.

1 http://java.sun.com/
2 http://java.sun.com/blueprints/corej2eepatterns/Patterns/
3 http://java.sun.com/products/jdbc/
4 http://www.postgresql.org/
5 http://lucene.apache.org/

Search Strategies for Finding Annotations and Annotated Documents 279

+DATASTORE_INSTANCE_NAME : String = "datastoreInstance"
+DATASTORE_CONTEXT_NAME : String = "datastoreContext"

<<interface>>
Datastore

 getAnnotation(annotationHandle : AnnotationHandle) : Annotation
 getAnnotationHandle(annotationHandle : String) : AnnotationHandle
 insertAnnotation(annotation : Annotation) : Annotation
 findAnnotations(query : Query) : List
 findAnnotatedDocuments() : List

<<interface>>
AnnotationDAO

 getGroup(groupName : String) : Group
 getUsers(group : Group) : Group
 insertGroup(group : Group) : void
 addUser(user : User, group : Group) : Group
 listGroups() : List

<<interface>>
GroupDAO

+log(loggingEventBeanList : List) : void

<<interface>>
LoggerDAO

 getMeaning(name : String) : Meaning
 getRelatedRelatingMeanings(meaning : Meaning) : Meaning
 insertMeaning(meaning : Meaning) : void
 relateMeanings(source : Meaning, destination : Meaning, relationship : String) : Meaning
 listMeanings() : List

<<interface>>
MeaningDAO

 getUser(user : User) : User
 getGroups(user : User) : User
 insertUser(user : User) : void
 addToGroup(user : User, group : Group) : User
 listUsers() : List

<<interface>>
UserDAO

+INDEXER_CONTEXT_NAME : String = "indexerContext"
+INDEXER_INSTANCE_NAME : String = "indexerInstances"

 indexAnnotation(annotation : Annotation) : void
 findAnnotations(query : Query) : List

<<interface>>
Indexer

+DATALOGIC_CONTEXT_NAME : String = "datalogicContext"
+DATALOGIC_INSTANCE_NAME : String = "datalogicInstance"
+MEANING_VERTEX_DATUM_KEY : String = "meaningVertexKey"
+MEANING_EDGE_DATUM_KEY : String = "meaningEdgeKey"
+HANDLE_VERTEX_DATUM_KEY : String = "handleVertexKey"

 getAnnotation(annotationHandle : AnnotationHandle) : Annotation
 getAnnotationHandle(annotationHandle : String) : AnnotationHandle
 insertAnnotation(annotation : Annotation) : Annotation
 findAnnotations(query : Query) : List
 findAnnotatedDocuments() : List
 getDocumentAnnotationHypertext() : Graph
 getGroup(groupName : String) : Group
 getUsers(group : Group) : Group
 insertGroup(group : Group) : void
 getUser(user : User) : User
 listGroups() : List
 getGroups(user : User) : User
 insertUser(user : User) : void
 addUserToGroup(user : User, group : Group) : User
 listUsers() : List
 getMeaning(name : String) : Meaning
 getRelatedRelatingMeanings(meaning : Meaning) : Meaning
 insertMeaning(meaning : Meaning) : void
 relateMeanings(source : Meaning, destination : Meaning, relationship : String) : Meaning
 getMeaningsGraph() : Graph
 listMeanings() : List

<<interface>>
Datalogic

<<use>><<use>>

+ANNOTATION_SERVICE_CONTEXT_NAME : String = "annotationServiceContext"
+ANNOTATION_SERVICE_INSTANCE_NAME : String = "annotationServiceInstance"

 createAnnotation(annotation : Annotation) : Annotation
 readAnnotation(annotationHandle : AnnotationHandle) : Annotation
 readAnnotationHandle(annotationHandle : String) : AnnotationHandle
 searchAnnotations(query : Query) : List
 searchAnnotatedDocuments() : List
 searchDocumentsbyAnnotations(query : Query) : List
 authenticateUser(user : User) : User
 readGroups(user : User) : User
 registerUser(user : User) : void
 addUserToGroup(user : User, group : Group) : void
 enumerateUsers() : List
 readGroup(groupName : String) : Group
 readUsers(group : Group) : Group
 createGroup(group : Group) : void
 enumerateGroups() : List
 readMeaning(name : String) : Meaning
 readRelatedRelatingMeanings(meaning : Meaning) : Meaning
 createMeaning(meaning : Meaning) : void
 relateMeanings(source : Meaning, destination : Meaning, relationship : String) : Meaning
 readMeaningsGraph() : Graph
 enumerateMeanings() : List

<<interface>>
AnnotationService

<<use>>
 searchDocumentsByAnnotations(q : Query) : Collection

<<interface>>
InformationRetrievalOnAnnotations

<<use>>

<<use>>

Visual Paradigm for UML Standard Edition(University of Padua)

D
a
ta

 L
o
g
ic

L
a
y
e
r

A
p
p
li
c
a
ti

o
n
 L

o
g
ic

L
a
y
e
r

Fig. 3. UML class diagram of the data and application logic layers of FAST

5.2 Application Logic Layer

The application logic layer provides advanced functionalities that make use of
annotations, such as for example the search strategy described in Section 4.2.
As in the case of the data logic layer, we define a set of abstract API that make

280 M. Agosti and N. Ferro

the access to the FAST service functionalities independent from the particular
implementation provided.

In particular, the InformationRetrievalOnAnnotations interface is respon-
sible for carrying out the search strategy introduced in Section 4.2. This interface
is currently being implemented and relies on the Datalogic for carrying out the
part of the search strategy that involves searches on annotations.

Finally, the AnnotationService interface provides coherent access to the un-
derlying components and mainly forwards the requests it receives to the right
component, after having analyzed them.

6 Conclusions

We have introduced the issues related to the effective searching of both anno-
tations and annotated documents, when we plan to offer an annotation service
that supports both the collaboration and the active involvement of users in a
DLMS. Moreover, we have presented our prototype of annotation service, called
FAST, introducing its architectural features with respect to the different sup-
ported search strategies.

Future research will concern the study of more complex query processing algo-
rithms able to support mixed boolean queries, combining metatada and content
queries at the same time. Furthermore, we will need to evaluate the retrieval per-
formances of the proposed algorithms by using standard information retrieval
methodologies. Finally, there is a lack of experimental test collections with an-
notated digital contents. Thus, the future research work may also concern the
design and development of this kind of test collection.

Acknowledgements

The work reported in this paper has been partially funded by Italian Ministry
of Education (MIUR) under the Project of Relevant National Interest (PRIN)
called “Methods for a digital corpus of illuminated manuscripts” (ISA). The work
was also partially supported by the DELOS Network of Excellence on Digital
Libraries, as part of the Information Society Technologies (IST) Program of the
European Commission (Contract G038-507618).

References

1. M. Agosti and N. Ferro. Annotations: Enriching a Digital Library. In T. Koch and
I. T. Sølvberg, editors, Proc. 7th European Conference on Research and Advanced
Technology for Digital Libraries (ECDL 2003), pages 88–100. LNCS 2769, Springer,
Heidelberg, Germany, 2003.

2. M. Agosti and N. Ferro. A System Architecture as a Support to a Flexible Annota-
tion Service. In C. Türker, M. Agosti, and H.-J. Schek, editors, Peer-to-Peer, Grid,
and Service-Orientation in Digital Library Architectures: 6th Thematic Workshop
of the EU Network of Excellence DELOS. Revised Selected Papers, pages 147–166.
LNCS 3664, Springer, Heidelberg, Germany, 2005.

Search Strategies for Finding Annotations and Annotated Documents 281

3. M. Agosti and N. Ferro. Annotations as Context for Searching Documents. In
F. Crestani and I. Ruthven, editors, Proc. 5th International Conference on Con-
ceptions of Library and Information Science – Context: nature, impact and role,
pages 155–170. LNCS 3507, Springer, Heidelberg, Germany, 2005.

4. M. Agosti, N. Ferro, I. Frommholz, and U. Thiel. Annotations in Digital Libraries
and Collaboratories – Facets, Models and Usage. In R. Heery and L. Lyon, ed-
itors, Proc. 8th European Conference on Research and Advanced Technology for
Digital Libraries (ECDL 2004), pages 244–255. LNCS 3232, Springer, Heidelberg,
Germany, 2004.

5. M. Agosti, N. Ferro, and N. Orio. Annotating Illuminated Manuscripts: an Effective
Tool for Research and Education. In M. Marlino, T. Sumner, and F. Shipman,
editors, Proc. 5th ACM/IEEE-CS Joint Conference on Digital Libraries (JCDL
2005), pages 121–130. ACM Press, New York, USA, 2005.

6. M. Agosti and A. Smeaton, editors. Information Retrieval and Hypertext. Kluwer
Academic Publishers, Norwell (MA), USA, 1996.

7. P. Bottoni, R. Civica, S. Levialdi, L. Orso, E. Panizzi, and R. Trinchese. MAD-
COW: a Multimedia Digital Annotation System. In M. F. Costabile, editor, Proc.
Working Conference on Advanced Visual Interfaces (AVI 2004), pages 55–62. ACM
Press, New York, USA, 2004.

8. W. B. Croft. Combining Approaches to Information Retrieval. In W. B. Croft,
editor, Advances in Information Retrieval: Recent Research from the Center for In-
telligent Information Retrieval, pages 1–36. Kluwer Academic Publishers, Norwell
(MA), USA, 2000.

9. F. G. Halasz. Reflections on NoteCards: Seven Issues for the Next Generation
of Hypermedia Systems. Communications of the ACM (CACM), 31(7):836–852,
1988.

10. Y. Ioannidis, D. Maier, S. Abiteboul, P. Buneman, S. Davidson, E. A. Fox,
A. Halevy, C. Knoblock, F. Rabitti, H.-J. Schek, and G. Weikum. Digital library
information-technology infrastructures. International Journal on Digital Libraries,
5(4):266–274, 2005.

11. J. Kahan and M.-R. Koivunen. Annotea: an open RDF infrastructure for shared
Web annotations. In V. Y. Shen, N. Saito, M. R. Lyu, and M. E. Zurko, editors,
Proc. 10th International Conference on World Wide Web (WWW 2001), pages
623–632. ACM Press, New York, USA, 2001.

12. C. C. Marshall. Toward an Ecology of Hypertext Annotation. In R. Akscyn,
editor, Proc. 9th ACM Conference on Hypertext and Hypermedia (HT 1998): links,
objects, time and space-structure in hypermedia systems, pages 40–49. ACM Press,
New York, USA, 1998.

13. W3C. Annotea Project. http://www.w3.org/2001/Annotea/, October 2005.

	Introduction
	DLMSs and Annotations
	OverviewofFAST
	Search Strategies Supported by FAST
	Searching for Annotations
	Searching for Documents by Exploiting Annotation

	Architecture of FAST
	Data Logic Layer
	Application Logic Layer

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

