
Why Using Structural Hints in XML Retrieval?

Karen Sauvagnat, Mohand Boughanem, and Claude Chrisment

IRIT - SIG
{sauvagna, bougha, chrisment}@irit.fr

118 route de Narbonne, F-31062 Toulouse Cedex 4

Abstract. When querying XML collections, users cannot always ex-
press their need in a precise way. Systems should therefore support
vagueness at both the content and structural level of queries. This paper
present a relevance-oriented method for ranking XML components. The
aim here is to evaluate whether structural hints help to better answer
the user needs. We experiment (within the INEX framework) with users
needs expressed in a flexible way (i.e with ou without structural hints).
Results show that they clearly improve performance, even if they are
expressed in an ”artificial way”. Relevance seems therefore to be closely
linked to structure. Moreover, too complex structural hints do not lead
to better results.

1 Introduction

The growing number of XML documents leads to the need for appropriate re-
trieval methods which are able to exploit the specific features of this type of
documents. Hierarchical document structure can be used to return specific doc-
ument components instead of whole documents to users. The main challenge in
XML retrieval is therefore to retrieve the most exhaustive and specific informa-
tion units.

These last years, many methods were proposed in the literature for finding
relevant elements. They can be divided into two main sub-groups, depending
on the way they consider the content of XML documents. On one hand, the
data-oriented approaches use XML documents to exchange structured data
(as for example whole databases). XML documents are seen as highly structured
data marked up with XML tags. The database community was the first to pro-
pose solutions for the XML retrieval issue, using the data-oriented approach.
Unfortunately, the proposed approaches typically expect binary answers to very
specific queries. In the Xquery language for example, proposed by the W3C [3],
SQL functionalities on tables (tuples collection) are extended to support similar
operations on forests (trees collection), as XML documents can be seen as trees.
An extension of XQuery with full-text search features is expected [23]. On the
other hand, the document-oriented approaches consider that tags are used
to describe the logical structure of documents, which are mainly composed of
text. The IR community has adapted traditional IR approaches to address the
user information needs in XML collection. Some of these methods are based on
the vector space model [8], [16], [9], or on the probabilistic model, either using

c© Springer-Verlag Berlin Heidelberg 2006
H. Larsen et al. (Eds.): FQAS 2006, LNAI 4027, pp. 2006.Legind 197–209,

198 K. Sauvagnat, M. Boughanem, and C. Chrisment

a relevance propagation method [6] or using language models [18], [10]. Such
methods have been evaluated since 2002 in the framework of the INEX (Initia-
tive for the Evaluation of XML Retrieval) campaign. This initiative provides an
opportunity for participants to evaluate their XML retrieval methods using uni-
form scoring procedures and a forum for participating organisations to compare
their results.

One of the major issue discussed by INEX participants is the users model used
when expressing queries. In classical IR, users often have difficulties to express
their queries, because they do not know the collection or because they cannot
express their information need in a precise way. XML documents emphasize the
issue: if users want to express very specific queries, they should not only know
the content of the collection, but also how it is structured. This can be a prob-
lem when collections contain heterogeneous documents (i.e. documents following
different DTD): users cannot express all the possible structure constraints. They
should consequently be able to express their need in a flexible way, either by
giving some keywords, or by giving some structural hints about what they are
looking for. Such hints should not be satisfied strictly, but should be considered
as clues on which types of elements are most probably relevant for users. Systems
dealing with such needs are therefore necessary [15].

The use of structural hints has already been explored during the INEX 2004
campaign. Results showed that structure was not really useful to improve per-
formance [5]. However, Kamps et al. [11] showed that the use of structure in
queries functions as a precision enhancing device, even if it does not lead to
improved mean average precision scores. It is however difficult to draw conclu-
sions on INEX 2004 results, since the pool used for the assessments was not only
obtained with the content conditions of queries (most of the results in the pool
were obtained using structure conditions of queries and bias the pool).

In this paper, we use a relevance-oriented method, based on relevance prop-
agation, to evaluate whether the introduction of structure in queries composed
of simple keyword terms (also called Content-only (CO) queries) can improve
performance. In other words, does a relevant structure exist for each information
need ? Is relevance closely linked to structure ?

The rest of the paper is organised as follows. Section 2 presents our baseline
model, which uses a relevance propagation method. The INEX 2005 test suite
and the associated metrics are described in section 3. At least, section 4 presents
experiments we’ve done on the introduction of structure.

2 Baseline Model

The model we used is based on a generic data model that allows the processing of
heterogeneous collection (collections that contain documents following different
DTD). We consider that a structured document sdi is a tree, composed of simple
nodes nij , leaf nodes lnij and attributes aij . Leaf nodes lnij are content-bearer
(i.e. they are text nodes) whereas other nodes only give indication on structure.

During query processing, relevance values are assigned to leaf nodes and rel-
evance score of inner nodes are then computed dynamically.

Why Using Structural Hints in XML Retrieval? 199

2.1 Evaluation of Leaf Nodes Weights

The first step in query processing is to evaluate the relevance value of leaf nodes
ln according to the query. Let q = t1, . . . , tn be a query composed of simple key-
word terms (i.e. a CO query). Relevance values are computed using a similarity
function RSV (q, ln).

RSVm(q, ln) =
n∑

i=1

wq
i ∗ wln

i (1)

Where:
- wq

i is the weight of term i in query q
- wln

i is the weight of term i in leaf node ln

According to previous experiments [21], we choose to use the following term
weighting scheme, which aims at reflecting the importance of terms in leaf nodes,
but also in whole documents:

wq
i = tf q

i wln
i = tf ln

i ∗ idfi ∗ iefi (2)

Where tf q
i and tf ln

i are respectively the frequency of term i in query q and leaf
node ln, idfi = log(|D|/(|di| + 1)) + 1, with |D| the total number of documents
in the collection, and |di| the number of documents containing i, and iefi is the
inverse element frequency of term i, i.e. log(|N |/|nfi|+1)+1, where |nfi| is the
number of leaf nodes containing i and |N | is the total number of leaf nodes in
the collection.

Inner nodes relevance values are evaluated using one or more propagation
functions, which depend on the searching task. These propagation functions are
described in the following sections.

2.2 Relevance Propagation for Content-Only Queries

In our model, each node in the document tree is assigned a relevance value which
is function of the relevance values of the leaf nodes it contains. Terms that occur
close to the root of a given subtree seem to be more significant for the root
element that ones at deeper levels of the subtrees. It seems therefore intuitive
that the larger the distance of a node from its ancestor is, the less it contributes
to the relevance of its ancestor. This is modeled in our propagation formula by
the use of the dist(n, lnk) parameter, which is the distance between node n and
leaf node lnk in the document tree, i.e. the number of arcs that are necessary to
join n and lnk. Moreover, it is also intuitive that the more relevant leaf nodes a
node has, the more relevant it is . We then introduce in the propagation function
the |Lr

n| parameter, which is the number of n descendant leaf nodes having a
non-zero score. The relevance value rn of a node n is finally computed according
to the following formula:

rn = |Lr
n|

∑

k=1..N

αdist(n,lnk)−1 ∗ RSV (q, lnk) (3)

where α ∈]0..1], lnk are leaf nodes being descendant of n and N is the total
number of leaf nodes being descendant of n.

200 K. Sauvagnat, M. Boughanem, and C. Chrisment

2.3 Relevance Propagation for Content-Only Queries with
Structural Hints

Content Only queries with structural hints (also called CO+S queries) are queries
containing structural constraints that should be interpreted as vague conditions.
Such constraints can simply be constraints on the type of the returned elements
(example 1), or content restrictions on the environment in which the requested
element occurs (descendants or ancestors): we talk about hierarchical queries
(example 2). Here are some examples of CO queries with structural hints (ex-
pressed in the XFIRM query language [20]):

– Example 1: te: sec[electronic commerce e-commerce] : user is looking for
information about ”electronic commerce e-commerce” that can be found
in section elements (that are target elements(indicated with the terminal
expression te))

– Example 2: //article[business strategies]//te: sec[electronic commerce
e-commerce] : user is also looking for information about ”electronic com-
merce e-commerce” which is probably in section elements of an article about
”business strategies”

The evaluation of a CO+S query is carried out as follows :

1. Queries are decomposed into elementary sub-queries ESQ, which are of the
form: ESQ = tg[q], where tg is a tag name, i.e. a structure constraint, and
q = t1, ..., tn is a content constraint composed of simple keywords terms.

2. Relevance values are then evaluated between leaf nodes and the content
conditions of elementary sub-queries

3. Relevance values are propagated in the document tree to answer to the
structure conditions of elementary sub-queries

4. Original queries are evaluated thanks to upwards and downwards propaga-
tion of the relevance weights [20]

In step 3, the relevance value rn of a node n to an elementary subquery ESQ =
tg[q] is computed according the following formula:

rn =
{∑

lnk∈Ln
αdist(n,lnk)−1 ∗ RSV (q, lnk) if n ∈ construct(tg)

0 else
(4)

where the result of the construct(tg) function is a set composed of nodes having
tg as tag name, and RSV (q, lnk) is evaluated during step 2 with equation 1. The
construct(tg) function uses a Dictionary Index, which provides for a given tag
tg the tags that are considered as equivalent.

For processing CO+S queries, as structural conditions should be considered
as vague conditions, we use a dictionary index composed of very extended equiv-
alencies. For example, a section node (sec) can be considered as equivalent to
both a paragraph (p) and a body (bdy) node (see Appendix for the dictionary
index used on the INEX collection). This index is built manually.More details
about CO+S queries processing can be found in [20].

Why Using Structural Hints in XML Retrieval? 201

2.4 Discussion

Many relevance propagation methods can be found in the literature [1] [2] [8]
[7] [19]. Our approach differs from these previous works on two main points.
The first point is that all leaf nodes are indexed, because we think that even the
smallest leaf nodes can be relevant or can give information on the relevance of its
ancestors. Advantages of such an approach are twofold: first, the index process
can be done automatically, without any human intervention and the system will
be so able to handle heterogeneous collections automatically; and secondly, even
the most specific query concerning the document structure will be processed,
since all the document structure is kept.

The second point is that the propagation is made step by step and takes into
account the distance that separate nodes in the document tree.

Our aim here is not to present a new propagation method, but to evaluate
whether the introduction of structure can improve overall performance of systems.

3 INEX 2005 Evaluation Campaign

3.1 Collection and Topics

We used the well-known INEX framework to evaluate the use of structural hints.
The 2005 test collection completes the one used during the last years and is
composed of more than 17000 documents with extensive XML markup, extracted
from IEEE Computer Society journals published between 1995 and 2004.

Experiments presented here are related to the Content-Only (CO) task and
the Content-Only+Structure (CO+S) task of the INEX 2005 campaign. The
2005 CO-CO+S tasks are composed of 29 topics and of the associated relevance
judgments. An example of such topic can be found in table 1. We use the title
part of topic for CO queries, and the castitle part for CO+S queries.

Only 19 topics have structural hints. In order to compared CO and CO+S
tasks however, the 2 sets of queries we use need to have the same number of
topics. We consequently use for each task two sets of queries, respectively called

Table 1. Example of CO-CO+S query

<inex topic topic id=”202” query type=”CO+S”>
<InitialTopicStatement> [...]</InitialTopicStatement>
<title> ontologies case study </title>
<castitle> //article[about(.,ontologies)]//sec[about(.,ontoologies case
study)]</castitle>
<description> Case studues in the use of ontologies </description>
<narrative> I’m writing a report on the use of ontnnologies. I’m interested in knowing
how ontologies are used to encode knowledge in real world scenarios. I’m particularly
interested in knowing what sort of concepts and relations people use in their ontologies
[...] </narrative>
</inex topic>

202 K. Sauvagnat, M. Boughanem, and C. Chrisment

full-set and partial-set. In the full set, all 29 topics are used. For CO+S task,
when no castitle part is available, we create it in an artificial way, by adding
section as structural constraint (section elements are elements that are the most
often returned by systems [4]). In the partial set, only the 19 topics containing
a castitle part are used. The partial set is used for the official submissions at the
INEX 2005 CO+S task, whereas the full set is used for official submissions at
the CO task.

Relevance judgments for each query are done by the participants. Two dimen-
sions of relevance are used: exhaustivity (e) and specificity (s). Exhaustivity is
measured using a 4-level scale: highly exhaustive (e=2), somewhat exhaustive
(e=1), not exhaustive (e=0), too small (e=?). Specificity is measured on a con-
tinuous scale with values in [0,1], where s=1 represents a fully specific component
(i.e. one that contains only relevant information).

During the assessments, structural conditions were ignored. Judges assessed
the elements returned for CO+S queries as whether they satisfied the information
need with respect to the content criterion only.

3.2 Metrics

Whatever the metrics used for evaluating systems, the two dimensions of rele-
vance (exhaustivity and specificity) need to be quantised into a single relevance
value. Quantisation functions for 2 user standpoints are used:
– a strict quantisation to evaluate whether a given retrieval approach is able

of retrieving highly exhaustive and highly specific document components

fstrict(e, s) =
{

1 if e = 2 and s = 1
0 otherwise

(5)

– a generalised quantisation has been used in order to credit document com-
ponents according to their degree of relevance

fgeneralised(e, s) = e ∗ s (6)

Official metrics are based on the extended cumulated gain (XCG) [14] [13].
The XCG metrics are a family of metrics that aim to consider the dependency
of XML elements (e.g. overlap and near misses) within the evaluation. The
XCG metrics include the user-oriented measures of normalised extended cumu-
lated gain (nXCG) and the system-oriented effort-precision/gain-recall measures
(ep/gr). The xCG metric accumulates the relevance scores of retrieved docu-
ments along a ranked list. Given a ranked list of document components, xCG,
where the element IDs are replaced with their relevance scores, the cumulated
gain at rank i, denoted as xCG[i], is computed as the sum of the relevance scores
up to that rank:

xCG[i] =
i∑

j=1

xG[j] (7)

For example, the ranking xGq =< 2, 1, 0, 1, 0, 0 > produces the cumulated
gain vector of xCG =< 2, 3, 3, 4, 4, 4 >.

Why Using Structural Hints in XML Retrieval? 203

For each query, an ideal gain vector, xI, can be derived by filling the rank
positions with the relevance scores of all documents in the recall-base in decreas-
ing order of their degree of relevance. The corresponding cumulated ideal gain
vector is referred to as xCI. By dividing the xCG vectors of the retrieval runs
by their corresponding ideal xCI vectors, the normalised xCG (nxCG) measure
is obtained:

nxCG[i] =
xCG[i]
xCI[i]

(8)

For a given rank i, the value of nxCG[i] reflects the relative gain the user ac-
cumulated up to that rank, compared to the gain he/she could have attained if
the system would have produced the optimum best ranking. For any rank the
normalised value of 1 represents ideal performance.

Analogue to the definition of nxCG, a precision-oriented XCG measure, effort-
precision ep, is defined as:

ep(r) =
eideal

erun
(9)

where eideal is the rank position at which the cumulated gain of r is reached by
the ideal curve and erun is the rank position at which the cumulated gain of r
is reached by the system run. A score of 1 reflects ideal performance, where the
user need to spend the minimum necessary effort to reach a given level of gain.

Effort-precision, ep, is calculated at arbitrary gain-recall points, where gain-
recall is calculated as the cumulated gain value divided by the total achievable
cumulated gain:

gr[i] =
xCG[i]
xCI[n]

(10)

where n is the total number of relevant documents.
The meaning of effort-precision at a given gain-recall value is the amount of

relative effort (where effort is measured in terms of number of visited ranks) that
the user is required to spend when scanning a systems result ranking compared
to the effort an ideal ranking would take in order to reach a given level of gain
relative to the total gain that can be obtained. See [13] for more details.

4 Experiments

We experiment with two search strategies, which correspond to different user
needs: find all relevant information in the collection or find only the most relevant
information:

– find all highly exhaustive and specific elements (thorough strategy).
The nature of relevance in XML retrieval may imply overlapping elements
(i.e. elements that are nested within each others) to be returned by systems.
If a child element is relevant, so will be its parent, although to a greater or
lesser extent. It is however a challenge to rank these elements appropriately,
as systems that rank highly exhaustive and specific elements before less
exhaustive and specific ones, will obtain a higher effectiveness performance.

204 K. Sauvagnat, M. Boughanem, and C. Chrisment

– find the most exhaustive and specific element in a path (focussed
strategy). No overlapping elements are allowed: for a given document, only
elements that are not nested within each others can be returned.

It seems to us important to evaluate the use of structural hints on these two
strategies, since they could lead to contradictory behaviors.

To answer to the thorough strategy, weighted sub-trees (equation 3 and 4) are
simply ordered and returned by the system. In order to remove nodes overlap
(focussed retrieval), we use the following strategy: for each relevant path, we
keep the most relevant node in the path. The results set is then parsed again, to
eliminate any possible overlap among results components.

4.1 Experiments with a Thorough Strategy

According to previous experiments, we use α = 0.1 in equation 3 and α = 0.5 in
equation 4 (these values are optimal for the considering sub-tasks).

Figures 1 and 2 show the evolution of the nxCG metric, for both the full set
and partial set of queries. Table 2 shows the results for the ep/gr-MAP metric.

Thorough strategy - Generalised quantisation

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,
01

0,
08

0,
15

0,
22

0,
29

0,
36

0,
43 0,

5

0,
57

0,
64

0,
71

0,
78

0,
85

0,
92

0,
99

CO - full set
COS- full-set
CO -partial set
COS - partial-set

Fig. 1. nXCG evolution - Thorough strategy - Generalised quantisation

Thorough strategy - Strict quantisation

0

0,05

0,1

0,15

0,2

0,25

0,3

0,
01

0,
09

0,
17

0,
25

0,
33

0,
41

0,
49

0,
57

0,
65

0,
73

0,
81

0,
89

0,
97

CO - full set
COS- full-set
CO -partial set
COS - partial-set

Fig. 2. nXCG evolution - Thorough strategy - Strict quantisation

Why Using Structural Hints in XML Retrieval? 205

Table 2. Comparison of CO/CO+S queries with MAP metric, Thorough strategy

Generalised Strict
Full-set CO 0,0535 0,0234

CO+S 0,0690 0,0240
Gain +29% +3%

Partial-set CO 0,0517 0,0158
CO+S 0,0749 0,0163
Gain +45% +3%

Results with CO+S queries are better for low levels of recall, and are compa-
rable to those obtained for the CO strategy at other recall levels. However, if we
considered average results (see table 2), the CO+S strategy is clearly preferable
to the CO strategy.

If we now compare results for the full set and the partial set, we see that if we
consider the generalised quantisation function, results are better with the partial
set, whereas it is not the case when considering the strict quantisation function.

4.2 Experiments with a Focussed Strategy

For the focussed retrieval strategy, according to previous experiments, we use
α = 0.1 in equation 3 and α = 0.2 in equation 4 (these values are optimal for
the considering sub-tasks).

Figures 3 and 4 show the evolution of the nXCG metric, for both the full set
and partial set of queries. Table 3 shows the results for the ep/gr-MAP metric.

At low levels of recall, results for the thorough strategy are comparable to
results for the focussed strategy: CO+S queries allows to obtain better results
than simple CO queries. However, we can observe reverse results for other recall
levels. If we now consider average results, results obtained with CO+S queries
outperformed again results obtained with CO queries.

Focussed strategy - Generalised quantisation

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0,
01

0,
08

0,
15

0,
22

0,
29

0,
36

0,
43 0,

5

0,
57

0,
64

0,
71

0,
78

0,
85

0,
92

0,
99

CO - full set
COS- full-set
CO -partial set
COS - partial-set

Fig. 3. nXCG evolution - Focussed strategy - Generalised quantisation

206 K. Sauvagnat, M. Boughanem, and C. Chrisment

Focussed strategy- Strict quantisation

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,
01

0,
08

0,
15

0,
22

0,
29

0,
36

0,
43 0,

5
0,

57
0,

64
0,

71
0,

78
0,

85
0,

92
0,

99

CO - full set

COS- full-set

CO -partial set

COS - partial-
set

Fig. 4. nXCG evolution - Focussed strategy - Strict quantisation

Table 3. Comparison of CO/CO+S queries with MAP metric, Focussed strategy

Generalised Strict
Full set CO 0,0538 0,0195

CO+S 0,0782 0,0372
Gain +45% +91%

Partial set CO 0,0554 0,0167
CO+S 0,0877 0,0353
Gain +58% +111%

When comparing partial and full sets, we notice that results are in a general
manner better for the partial set. This can be explained by the fact that the
partial set only contains queries having a structural constraint defined by the
user, whereas this constraints was artificially added for some queries in the full
set. This is not surprising, since the user need is more clearly defined in queries
of the partial set.

4.3 Discussion

For both retrieval strategies we see that results are significantly better when
structural hints are used, for almost all recall levels and when considering mean
average precision. This extends conclusions drawn in [11], in which authors
showed that structured queries function as a precision enhancing device, i.e.
are useful for promoting the precision in initially retrieved elements, but are not
useful on mean average precision.

Improvements are more significant on the focussed strategy. This is not really
surprising, since in CO+S queries the users needs are more clearly defined: they
help finding the most specific element in a path.

Let us now consider results in depth, i.e. results for each query1. We see that
CO+S queries improve results even for queries with an ”artificial” structure con-
1 Due to space limitation, results are not presented here.

Why Using Structural Hints in XML Retrieval? 207

straint, i.e. CO queries that do not have structural hints and for which we add
the structural constraint (10 queries over 29). Queries for which no improvement
is observed are queries having a too complex structure condition (i.e. having hier-
archical conditions). This seems to show that only simple structural constraints
are useful for improving overall performance, even if these constraints are arti-
ficial. In other words, it shows that relevant information seems to be located in
some particular element types and that relevance is closely linked to structure.
At last, we have to notice the relative high precision of our runs compared to
INEX 2005 official submissions [5]. Most of our runs would have been ranked
in the top ten for both quantisation functions. Best results are obtained for the
CO-Focussed strategy: we would have been ranked first for generalised quanti-
sation on nxCG[10], nXCG[25] and nXCG[50] metrics (official metrics at INEX
2005). We respectively obtain 0.2607, 0.2397 and 0.224, whereas best results
were respectively 0.2181, 0.1918 and 0.1817, and were obtained by the Univer-
sity of Amsterdam with a language model-based method [22] and by IBM Haifa
Research Lab [17] using the vector space model. We would also be in the top 5
for strict quantisation.

5 Conclusion

Content-oriented retrieval is one of the most challenging issue in XML retrieval,
because queries do not contain indications on which type of elements should be
returned to the user. In this paper, we present some experiments on the use of
structural hints in queries (which allows the user to express queries in a more
flexible way).

We can draw several conclusions from these experiments. First, the use of
structural hints improve in a very significant way the system performance, both
in average and at low levels of recall. This means that users have almost always
an implicit structural need and that relevance is closely linked to structure.
Moreover, structural hints have a higher impact for a focussed retrieval strategy
than for a thorough retrieval strategy: they help the system to focus on the
user information need. Third, the introduction of ”artificial” structural hints
also improve results: our system is consequently able to process queries in a
flexible way. At last, no improvement is observed for structural queries having
too complex structural conditions (i.e. hierarchical conditions): structure should
consequently be only used as an indication of what type of elements should be
retrieved.

In the future, we will apply these results for doing structured relevance feed-
back: as the use of structural hints improve significantly results, we will try to
add them in CO queries when doing relevance feedback. The study of the type of
relevant elements will allow us to better define the implicit need of the user and
to express new queries with more relevant structural hints (than the artificial
hints used in this article when none were available). Some preliminary work can
be found in [12].

208 K. Sauvagnat, M. Boughanem, and C. Chrisment

References

1. M. Abolhassani and N. Fuhr. Applying the divergence from randomness approach
for content-only search in XML documents. In Proceedings of ECIR 2004, Sunder-
land, pages 409–419, 2004.

2. V. N. Anh and A. Moffat. Compression and an IR approach to XML retrieval. In
Proceedings of INEX 2002 Workshop, Dagstuhl, Germany, 2002.

3. M. Fernandez, A. Malhotra, J. Marsh, M. Nagy, and N. Walsh. XQuery 1.0 and
XPath 2.0 data model. Technical report, World Wide Web Consortium (W3C),
W3C Working Draft, may 2003.

4. N. Fuhr, M. Lalmas, and S. Malik. INEX 2003 workshop proceedings, 2003.
5. N. Fuhr, M. Lalmas, S. Malik, and G. Kazai. INEX 2005 workshop pre-proceedings,

2005.
6. N. Fuhr, S. Malik, and M. Lalmas. Overview of the initiative for the evaluation of

XML retrieval (INEX) 2003. In Proceedings of INEX 2003 Workshop, Dagstuhl,
Germany, December 2003.

7. N. Gövert, M. Abolhassani, N. Fuhr, and K. Grossjohann. Content-oriented XML
retrieval with hyrex. In Proceedings of the first INEX Workshop, Dagstuhl, Ger-
many, 2002.

8. T. Grabs and H.-J. Scheck. Flexible information retrieval from xml with PowerDB
XML. In Proceedings in the First Annual Workshop for the Evaluation of XML
Retrieval (INEX), pages 26–32, December 2002.

9. V. Kakade and P. Raghavan. Encoding XML in vector spaces. In Proceedings of
ECIR 2005, Saint Jacques de COmpostelle, Spain, 2005.

10. J. Kamps, M. de Rijke, and B. Sigurbjornsson. Length normalization in XML
retrieval. In Proceedings of SIGIR 2004, Sheffield, England, pages 80–87, 2004.

11. J. Kamps, M. Marx, M. de Rijke, and B. Sigurbjornsson. Structured queries in
XML retrieval. In Proceedings of CIKM 2005, Bremen, Germany, 2005.

12. M. B. Karen Sauvagnat, Lobna Hlaoua. Xfirm at inex 2005: ad-hoc and relevance
feedback tracks. In INEX 2005 Workshop pre-proceedings, Dagstuhl, Germany,
november 2005.

13. G. Kazai and M. Lalmas. Inex 2005 evaluation metrics. In Pre-proceedings of INEX
2005, Dagstuhl, Allemagne, November 2005.

14. G. Kazai, M. Lalmas, and A. P. de Vries. The overlap problem in content-oriented
XML retrieval evaluation. In Proceedings of SIGIR 2004, Sheffield, England, pages
72–79, July 2004.

15. M. Lalmas and T. Rölleke. Modelling vague content and structure querying in xml
retrieval with a probabilistic object-relational framework. In Proceedings of FQAS
2004, Lyon, France, june 2004.

16. Y. Mass and M. Mandelbrod. Component ranking and automatic query refinement
for XML retrieval. In Proceedings of INEX 2004, pages 134–140, 2004.

17. Y. Mass and M. Mandelbrod. Experimenting various user models for xml retrieval.
In Pre-Proceedings of INEX 2005, Dagstuhl, Germany, 2005.

18. P. Ogilvie and J. Callan. Using language models for flat text queries in XML
retrieval. In Proceedings of INEX 2003 Workshop, Dagstuhl, Germany, pages 12–
18, December 2003.

19. T. Roelleke, M. Lalmas, G. Kazai, J. Ruthven, and S. Quicker. The accessibility
dimension for structured document retrieval. In Proceedings of ECIR 2002, 2002.

20. K. Sauvagnat, M. Boughanem, and C. Chrisment. Answering content-and-
structure-based queries on XML documents using relevance propagation . In In-
formation Systems - Special Issue SPIRE 2004 . Elsevier, 2006.

Why Using Structural Hints in XML Retrieval? 209

21. K. Sauvagnat, L. Hlaoua, and M. Boughanem. XML retrieval: what about using
contextual relevance? In ACM Symposium on Applied Ccomputing (SAC) - IAR
(Information Access and Retrieval) , Dijon, April 2006.

22. B. Sigurbjörnsson, J. Kamps, and M. de Rijke. The university of Amsterdam at
INEX 2005: Adhoc track. In Pre-Proceedings of INEX 2005 workshop, Dagstuhl,
Germany, november 2005.

23. W3C. XQuery and XPath full-text use cases. Technical report, World Wide Web
Consortium (W3C), W3C working draft, february 2003.

A Dictionary Index

The first tag in each line is considered to be equivalent to the following tags.

Table 4. Dictionary index

p,ilrj,ip1,ip2,ip3,ip4,ip5,item-none,p1,p2,p3,sec,ss1,ss2,ss3,abs,bdy,article
ip1,p,ilrj,ip2,ip3,ip4,ip5,item-none,p1,p2,p3,sec,ss1,ss2,ss3,abs,bdy,article
sec,ss1,ss2,ss3,p,ilrj,ip1,ip2,ip3,ip4,ip5,item-none,p1,p2,p3,abs,bdy,article
dl,l1,l2,l3,l4,l5,l6,l7,l8,l9,la,lb,lc,ld,le,list,numeric-list,numeric-rbrace,bullet-list
h,h1,h1a,h2,h2a,h3,h4
abs,fm,article,p,ilrj,ip1,ip2,ip3,ip4,ip5,item-none,p1,p2,p3,sec,ss1,ss2,ss3,bdy
fm,article
bdy,article
bb,bm,bib,bibl,article
bib,bibl,article,bb,bm
atl,tig,st
st,atl,tig
snm,au
au,snm
vt,bm,article
fgc,fig,p,ilrj,ip1,ip2,ip3,ip4,ip5,item-none,p1,p2,p3,sec,ss1,ss2,ss3,abs,bdy,article
article,fm,bm,bdy,abs,p,ilrj,ip1,ip2,ip3,ip4,ip5,item-none,p1,p2,p3,sec,ss1,ss2,ss3

	Introduction
	Baseline Model
	Evaluation of Leaf Nodes Weights
	Relevance Propagation for Content-Only Queries
	Relevance Propagation for Content-Only Queries with Structural Hints
	Discussion

	INEX 2005 Evaluation Campaign
	Collection and Topics
	Metrics

	Experiments
	Experiments with a Thorough Strategy
	Experiments with a Focussed Strategy
	Discussion

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

