
Term Disambiguation in Natural Language
Query for XML

Yunyao Li1,�, Huahai Yang2, and H.V. Jagadish1,�

1 University of Michigan, Ann Arbor, MI 48109, USA
{yunyaol, jag}@umich.edu

2 University at Albany, SUNY, Albany, NY 12222, USA
hyang@albany.edu

Abstract. Converting a natural language query sentence into a formal database
query is a major challenge. We have constructed NaLIX, a natural language in-
terface for querying XML data. Through our experience with NaLIX, we find
that failures in natural language query understanding can often be dealt with as
ambiguities in term meanings. These failures are typically the result of either the
user’s poor knowledge of the database schema or the system’s lack of linguistic
coverage. With automatic term expansion techniques and appropriate interactive
feedback, we are able to resolve these ambiguities. In this paper, we describe our
approach and present results demonstrating its effectiveness.

1 Introduction

Supporting arbitrary natural language queries is regarded by many as the ultimate goal
for a database query interface. Numerous attempts have been made towards this goal.
However, two major obstacles lie in the way: first, automatically understanding natural
language (both syntactically and semantically) is still an open research problem itself;
second, even if we had a perfect parser that could fully understand any arbitrary natural
language query, translating this parsed natural language query into a correct formal
query remains an issue since this translation requires mapping the user’s intent into a
specific database schema.

In [17, 18], we proposed a framework for building a generic interactive natural lan-
guage query interface for an XML database. Our focus is on the second challenge—
given a parsed natural language query (NLQ), how to translate it into a correct struc-
tured query against the database. The translation is done through mapping grammatical
proximity of parsed tokens in a NLQ to proximity of corresponding elements in the
result XQuery statement. Our ideas have been incorporated into a working software
system called NaLIX1. In this system, we leverage existing natural language processing
techniques by using a state-of-art natural language parser to obtain the semantic rela-
tionships between words in a given NLQ. However, the first challenge of understanding
arbitrary natural language still remains. One solution to address the challenge is to pro-
vide training and enforce a controlled vocabulary. However, this requirement defeats
our original purpose of building a natural language query interface for naive users.

� Supported in part by NSF IIS-0219513 and IIS-0438909, and NIH 1-U54-DA021519-01A1.
1 NaLIX was demonstrated at SIGMOD 2005 and voted the Best Demo [17].

c© Springer-Verlag Berlin Heidelberg 2006
H. Larsen et al. (Eds.): FQAS 2006, LNAI 4027, pp. 2006.Legind 133–146 ,

134 Y. Li, H. Yang, and H.V. Jagadish

Through our experience with NaLIX, we find that several factors contribute to fail-
ures in natural language query understanding, and these failures can often be dealt with
as ambiguities in term meaning. In this paper, we describe how we resolve these ambi-
guities with automatic term expansion techniques and appropriate interactive feedback
facilities. In particular, we depict how we engage users, who are naturally more capa-
ble of natural language processing than any software, to help deal with uncertainty in
mapping the user’s intent to the result queries. We discuss the details of our approach
in Sec. 3. We then evaluate the effectiveness of our term disambiguation techniques
through a user study. The experimental results are presented in Sec. 4. In most cases,
for a user query that initially could not be understood by the system, no more than
three iterations appears to be sufficient for the user to reformulate it into an acceptable
query. Previous studies [4, 23] show that even casual users frequently revise queries to
meet their information needs. As such, our system can be considered to be very use-
ful in practice. Examples illustrating our interactive term disambiguation approach are
described in Section 5.

Finally, we discuss related work in Sec. 6 and conclude in Sec. 7. We begin with
some necessary background material on our framework for building a generic natural
language query interface for XML in Sec. 2.

2 From Natural Language Query to XQuery

Translating queries from natural language queries into corresponding XQuery expres-
sions involves three main steps. The first step is token classification (Sec. 2.1), where
terms in a parse tree output of a natural language parser are identified and classified
according to their possible mapping to XQuery components. Next, this classified parse
tree is validated based on a context-free grammar defined corresponding to XQuery
(Sec. 2.2). A valid parse tree is then translated into an XQuery expression (Sec. 2.3). In
this section, we briefly describe each of the three steps to provide necessary background
information. More detailed discussion of these three key steps can be found in [18]. The
software architecture of NaLIX has been described in [17].

2.1 Token Classification

To translate a natural language query into an XQuery expression, we first need to
identify words/phrases in the original sentence that can be mapped into correspond-
ing XQuery components. We call each such word/phrase a token, and one that does not
match any XQuery component a marker. Tokens can further be divided into different

Table 1. Different Types of Tokens

Type of Token Query Component Description
Command Token(CMT) Return Clause Top main verb or wh-phrase [21] of parse tree, from an enum set of words and phrases
Order by Token(OBT) Order By Clause A phrase from an enum set of phrases

Function token(FT) Function A word or phrase from an enum set of adjectives and noun phrases
Operator Token(OT) Operator A phrase from an enum set of preposition phrases

Value Token(VT) Value A noun or noun phrase in quotation marks, a proper noun or noun phrase or a number
Name token(NT) Basic Variable A non-VT noun or noun phrase
Negation (NEG) function not() Adjective “not”

Quantifier Token(QT) Quantifier A word from an enum set of adjectives serving as determiners

Term Disambiguation in Natural Language Query for XML 135

Table 2. Different Types of Markers

Type of Marker Semantic Contribution Description
Connection Marker(CM) Connect two related tokens A preposition from an enumerated set, or non-token main verb
Modifier Marker(MM) Distinguish two NTs An adjectives as determiner or a numeral as predetermine or postdeterminer
Pronoun Marker(PM) None due to parser’s limitation Pronouns
General Marker(GM) None Auxiliary verbs, articles

Table 3. Grammar Supported By NaLIX

1. Q → RETURN PREDICATE* ORDER BY?
2. RETURN → CMT+(RNP|GVT|PREDICATE)
3. PREDICATE → QT?+((RNP1|GVT1)+GOT+(RNP2|GVT2)
4. |(GOT?+RNP+GVT)
5. |(GOT?+GVT+RNP)
6. |(GOT?+[NT]+GVT)
7. |RNP
8. ORDER BY → OBT+RNP
9. RNP → NT |(QT+RNP)|(FT+RNP)|(RNP∧RNP)
10. GOT → OT|(NEG+OT)|(GOT∧GOT)
11. GVT → VT |(GVT∧GVT)
12. CM → (CM+CM)

Symbol “+” represents attachment relation between two tokens; “[]” indicates implicit token, as
defined in Def. 11 of [18]

types as shown in Table 1 according to the type of components they match2. Enumer-
ated sets of phrases (enum sets) are the real-world “knowledge base” for the system. In
NaLIX, we have kept these small—each set has about a dozen elements. Markers can be
divided into different types depending on their semantic contribution to the translation.

2.2 Parse Tree Validation

The grammar for natural language corresponding to the XQuery grammar supported by
NaLIX is shown in Table 3 (ignoring all markers). We call a parse tree that satisfies
the above grammar a valid parse tree. As can be seen, the linguistic capability of our
system is directly restricted by the expressiveness of XQuery, since a natural language
query that may be understood and thus meaningfully mapped into XQuery by NaLIX is
one whose semantics is expressible in XQuery. Furthermore, for the purpose of query
translation, only the semantics that can be expressed by XQuery need to be extracted
and mapped into XQuery.

2.3 Translation into XQuery

A valid parse tree, obtained as described above, can then be translated into XQuery.
XML documents are designed to be “human-legible and reasonably clear” [27]. There-
fore, any reasonably designed XML document should reflect certain semantic structure
isomorphous to human conceptual structure and hence expressible by human natural
language. The major challenge for the translation is to utilize the structure of the natural

2 When a noun/noun phrase matches certain XQuery keywords, special handling is required.
Such special cases are not listed in the table and will not be discussed in the paper due to space
limitation.

136 Y. Li, H. Yang, and H.V. Jagadish

language constructions, as reflected in the parse tree, to generate appropriate structure
in the XQuery expression. We address these issues in [18] through the introduction of
the notions of token attachment and token relationship in natural language parse trees.
We also propose the concept of core token as an effective mechanism to perform se-
mantic grouping and hence determine both query nesting and structural relationships
between result elements when mapping tokens to queries. Our previous experimental
results show that in NaLIX a correctly parsed query is almost always translated into a
structured query that correctly retrieves the desired answer (average precision = 95.1%,
average recall = 97.6%).

3 Term Disambiguation

The mapping process from a natural language query to XQuery sometimes fails at token
classification or parse tree validation stage. We observe that failures in this mapping
process can always be dealt with as term ambiguities. Disambiguation of terms are
thus necessary for properly mapping a user’s intent into XQuery. In this section, we
outline different types of failures we identified, and how they present themselves as
term ambiguities. We then describe how we disambiguate the terms via automatic term
expansion and interactive feedback.

3.1 Types of Failure

Parser failure. An obvious kind of failure in any natural language based system is one
due to limited linguistic capability. In our system, a natural language query with correct
grammar, though possible to be manually translated into XQuery, can still be found
invalid at the validation step due to the incorrect parse tree generated by the parser. For
example, for query “Display books published by addison-wesley after 1991,” the parser
we use generates a parse tree rooted by “published” as the main verb, and “display” as
a noun underneath “books.” This parse tree results in “published” being classified as
unknown. A better parser may avoid such ambiguities, but such a solution is out of the
scope of this paper.

Limited system vocabulary. A query sentence may contain terms that cannot be prop-
erly classified due to the restricted size of vocabulary that our system understands. For
instance, it is impractical to exhaustively include all possible words for each type of to-
ken and marker in our system. As a result, there always exists the possibility that some
words in a user query will not be properly classified. These words will be singled out in
our system.

Inadvertent user error. Inadvertent user errors, such as typos, are unavoidable in any
user interface. Such errors could cause failures in natural language query understanding,
including unclassifiable terms and undesirable search results. Although some queries
with typos can be successfully validated and translated, the results could be different
from what the user desires, and are often found to be empty. For instance, the user may
write “boks” instead of “books” in the query. Identifying such terms can help explain
invalid queries and avoid frustrating users with unexpected results. Users may also write

Term Disambiguation in Natural Language Query for XML 137

queries in incorrect grammar. These grammatically incorrect query sentences may result
in certain words being labeled as untranslatable as well.

Limited user knowledge. Users often do not possess good knowledge of database
schema. Although the requirement for users to have perfect knowledge of a XML docu-
ment structure can be eliminated by using Schema-Free XQuery as our target language
[16], users still need to specify query terms exactly matching element or attribute names
in the database. Consequently, query sentences containing unmatched terms could result
in misses, unless users are given the opportunities to choose a matching term.

Invalid query semantics. Any natural language system has to deal with situations
where users simply do not intend to request an allowable system service. In our system,
a user may write a natural language sentence that cannot be semantically expressed in
XQuery. For example, some users typed “Hello world!” in an attempt to just see how
the system will respond. Such a natural language query will of course be found to be in-
valid based on the grammar in Table 3, resulting in words such as “Hello” being marked
as untranslatable.

3.2 Interactive Term Disambiguation

All five types of failures in natural language query translation can be dealt with as
problems of term ambiguity, where the system cannot understand a term or find more
than one possible interpretation of a term during the transformation into XQuery. Clever
natural language understanding systems attempt to apply reasoning to interpret these
terms, with limited success. Our approach is complementary: get the user to rephrase
the query into terms that we can understand. By doing so, we shift some burden of
semantic disambiguation from the system to the user, for whom such task is usually
trivial. In return, the user obtains better access to information via precise querying.

A straightforward solution to seek the user’s assistance is to simply return a notifica-
tion whenever a failure happens and ask the user to rephrase. However, to reformulate
a failed query without help from the system can be frustrating to the user. First of all,
it is difficult for a user to recognize the actual reason causing the failures. For example,
it is almost impossible for a casual user to realize that certain failures result from the
system’s limited vocabulary. Similarly, given the fact that an empty result is returned
for a query, it is unlikely for the user to discover that it is caused by a mismatch between
element name(s) in the query and the actual element name(s) in the XML document. In
both cases, the user may simply conclude the system is completely useless as queries
in perfect English fail every time. Furthermore, even if the user knows exactly what
has caused the failures, to correct most failures is nontrivial. For instance, considerable
effort will be required from the user to study the document schema in order to rephrase
a query with mismatched element names.

From the above discussion, we can see that the difficulties in query reformulation
without system feedback are largely due to the user’s lack of (perfect) knowledge of
the system and the XML document. Intuitively, query reformulation will be easier for
the user if the system can provide the needed knowledge without demanding formal
training. With this in mind, we designed the following interactive term disambigua-
tion mechanism. First, unknown terms (beyond the system and document vocabulary

138 Y. Li, H. Yang, and H.V. Jagadish

Table 4. Error Messages in NaLIX. (The error messages listed below do not include the high-
lighting of offending parts in the user sentence and the full informative feedback offered; objects
in “〈〉” will be instantiated with actual terms at feedback generation time.)

Error 1 The system cannot understand what 〈UNKNOWN〉 means. The closest term to 〈UNKNOWN〉 the system
understands is 〈KNOWN〉. Please rewrite your query without using 〈UNKNOWN〉, or replace it with 〈KNOWN〉.

Error 2 The value “〈VT〉” cannot be found in the database.

Error 3 No element or attribute with the name “〈NT〉” can be found in the database.

Error 4 At least one noun phrase should be used.

Error 5 Please tell the system what you want to return from the database by using the following commands (list of
〈CMT〉).

Error 6 〈FT〉 must be followed by a common noun phrase.

Error 7 〈CMT|OBT〉 must be followed by a noun phrase (link to example usage of 〈CMT|OBT〉). Please specify
what you want to return (if CMT) or order by (if OBT).

Error 8 CMT|OBT should not attach to a noun phrase. Please remove (RNP|GVT)1.

Error 9 The system does not understand what 〈non-GOT|non-CM〉 means. Please replace it with one of the following
operators (a list of typical OTs with closest OT first) or connectors (a list of typical CMs with closest CM first).

Error 10 OBT should not be attached by a proper noun such as GVT.

Error 11 The system does not understand what 〈GVT + RNP〉 means. Please specify the relationship between 〈GVT〉
and 〈RNP〉 by using one of the following operators (a list of typical OTs with the closest OT first) or connectors (a list
of typical CMs with the closest CM first).

Error 12 〈GOT|CM〉 must be followed by a noun phrase (example usage of 〈GOT|CM〉).

Table 5. Warning Messages in NaLIX

Warning 1 System may not be able to understand pronouns correctly. If you find the returned results surprising, try
express your query without pronouns.

Warning 2 There is no element/attribute with the exact name 〈NT〉. You may choose one or more from the list (of
matching elements/attribuates).

Warning 3 There are multiple elements/attributes with the value 〈VT〉. You may choose one from the list (of matching
elements/attribuates).

Warning 4 We assume that 〈NT 〉 elements/attributes is related with 〈coretoken〉. If this is not what you intended,
you may choose one from the list (of matching elements/attribuates).

boundary) and the exact terms violating the grammar in the parse tree are identified and
reported in the feedback messages. The types of ambiguities caused by these terms are
also reported. In addition, for each ambiguous term, appropriate terms that can be un-
derstood by the system are suggested to the user as possible replacement for the term.
Finally, example usage of each suggested term is shown to the user. A complete list of
error messages generated by our system is shown in Table 4.

The above feedback generation techniques work as three defensive lines against un-
certainty in term disambiguation. Identification of term ambiguities is the first essential
defensive line. It not only helps a user to get a better understanding of what has caused
the query failure, but also narrows down the scope of reformulation needed for the
user. Certain failures, such as those caused by typos, can easily be fixed based on the
ambiguous terms identified. For others, the user may need to have relevant knowledge
about the system or document vocabulary for term disambiguation. For such cases, our
system uses term suggestion as the second defense line. Relevant terms in the system
and document vocabulary are suggested based on their string similarity and function
similarity (in the XQuery translation) to each ambiguous term. Obviously, not every

Term Disambiguation in Natural Language Query for XML 139

term suggested can be used to replace the ambiguous term. The user is responsible for
resolving the uncertainty issue associated with term suggestion by selecting suggested
terms to replace the ambiguous term. Finally, when queries fail due to parser errors,
incorrect grammar, or invalid query semantics, the exact terms causing the failures are
difficult to pinpoint. The system is likely to wrongly identify term ambiguities and thus
may generate less meaningful error messages and suggest irrelevant terms. For such
cases, providing examples serves as the last line of defense. Examples supply helpful
hints to the user with regard to the linguistic coverage of the system without specifying
tedious rules. However, exactly how the information conveyed by the examples is used
for term disambiguation is associated with greater uncertainty.

For some queries, the system successfully parses and translates the queries, yet may
not be certain that it is able to correctly interpret the user’s intent. These queries will
be accepted by the system but with warnings. A complete list of warning messages is
presented in Table 5.

3.3 Error Reporting

The failures of a natural language query may be attributed to multiple factors. For ex-
ample, a query may contain multiple typos and mismatched element names. For such
queries, multiple error messages will be generated and reported together, with the fol-
lowing exception. If an error message of category Error 1 is generated, then any error
message of category Error 4 to 12 for the same query will not be reported to the user.

The above error reporting policy is based on the following observation: any parse
tree containing unknown term(s) validates the grammar in Table 3. Therefore for the
same query, error message(s) of both category Error 1 and category Error 4 to 12 are
likely to be caused by the same unknown term(s). In such a case, an error message
directly reporting the unknown term(s) provides more relevant information for query
reformulation. Moreover, our study shows that users tend to deal with feedback message
one at a time—withholding less meaningful error messages in the report is unlikely to
have any negative impact over the reformulation.

3.4 Ontology-Based Term Expansion

A user may not be familiar with the specific attribute or element names contained in the
XML document. For example, the document being queried uses author, while the user
query says writer. In such a case, the Schema-Free XQuery translation of the query will
not be able to generate correct results. We borrow term expansion techniques from in-
formation retrieval literature [2, 5, 22] to address such name-mismatch problems. When
using term expansion techniques, one must deal with uncertainty associated with the
added terms in the query representation. Such uncertainty is traditionally handled by
introducing approximate scoring functions. However, terms added to the query may be
weighted in a way that their importance in the query is different from the original con-
cept expressed by the user. We avoid this issue by granting the user full control of the
term expansion: warning messages are generated to alert the user whenever term expan-
sion is employed; then the user may choose to use one or more of the terms added by the
expansion in new queries. Uncertainty introduced by term expansion is thus explicitly

140 Y. Li, H. Yang, and H.V. Jagadish

revealed to the user and clarified by the user’s response. Such an interactive term ex-
pansion process not only avoids the drawback of scoring functions, but also allows the
user to gradually learn more about the XML database by revealing a part of the database
each time. This approach is especially suitable for our system, since term expansion is
limited to the terms used as attribute and element names in the XML document.

4 Experiment

We implemented NaLIX as a stand-alone interface to the Timber native XML data-
base [1] that supports Schema-Free XQuery. We used Minipar [19] as our natural lan-
guage parser. To evaluate our system, we conducted a user study with 18 untrained par-
ticipants recruited from a university campus. Each participant worked on ten different
search tasks adapted from the “XMP” set in the XQuery use cases [26]. Detailed dis-
cussion on the experimental set up and results on ease of use and retrieval performance
of our system can be found in [18]. In this paper, we analyze the transcripts of system
interaction with users to assess the effectiveness of our interactive term disambiguation
approach.

Measurement. For each query initially rejected by the system, we recorded the number
of iterations it took for a participant to reformulate the query into a system acceptable
one or until time out (5 minutes for each search task). We also recorded the actual
user input for each iteration in a query log. We then manually coded the query logs to
determine how a user may have utilized the feedback messages in each reformulation
process. The coding schema below were used:

– If the user changed a term that appears in the body of a feedback message in the next
query input, we count the reformulation as being helped by the feedback message.

– If the user used a suggested term in the next query input, we count the term sugges-
tion as being helpful.

– If the user rewrote the query in the same format as that of an example query con-
tained in the feedback, then the example is regarded as useful.

– If we cannot attribute the user change(s) to any specific component of a feedback
message, then the feedback is counted having failed to contribute to term disam-
biguation.

For example, one user initially wrote “List tiltes and editors.” An error message
“tiltes cannot be found in the database” was returned. The user then fixed the typo by
changing “tiltes” into “titles” in the new query “List titles and editors,” which was then
accepted by the system. In this case, the disambiguation of term “tiltes” was consid-
ered as made with the assistance of the error message. Feedback message, suggested
terms, and term usage examples are not exclusive from each other in assisting query
reformulation. One or more of them may be utilized in a single iteration.

We consider the entire reformulation process as a whole when determining the types
of helpful feedback. The reason is two-fold. First, we cannot determine the effectiveness
of term disambiguation for a query until the reformulation is complete. Furthermore,
users were often found to revise the query based on only one feedback at a time, even
when multiple feedback messages were generated. Thus multiple iterations are needed

Term Disambiguation in Natural Language Query for XML 141

Table 6. Types of Aids Used in Query Reformulation

Body of Feedback Message Suggested Term Example None
75.1% 22.4% 10.9% 7.3%

to disambiguate all the terms in one failed query, and they should be considered as parts
of a whole reformulation process.

Results. We coded 166 query reformulation processes in total. The average number of
iterations needed for participants to revise an invalid natural language query into a valid
one was 2.55; the median number of iterations was 2.

The statistics on different types of aids utilized in the reformulations is listed in
Table 6. As can be seen, the body of feedback messages provided helpful information
for majority of the reformulation processes. Suggested terms and their example usage
were found helpful for less than one quarter of the reformulations. Nevertheless, these
two techniques are not thus less important. Both suggested terms and their example us-
age are most likely to be utilized when failures were caused by parser failure, grammar
error, or incorrect query semantics. For such cases, there is no easy means to deter-
mine the actual factors resulting in the failure, because we depend on an outside parser
to obtain dependency relation between words as approximation of their semantic rela-
tionships. In another word, it is unlikely for our system to generate insightful feedback
messages for such failures. Even if we do have full access to the internals of a parser,
we would still not be able to distinguish a parser failure from an incorrect query se-
mantics. A user, however, has little difficulty in taking helpful hints from the identified
problematic words, the suggested terms and their example usage to reformulate queries
successfully. This is true even when the content of the error message is not entirely
insightful.

5 Analysis and Discussion

In this section, three examples of iterations taken from our user study are presented.
These illustrate how interactive term disambiguation helps to resolve different types of
failures in natural language understanding.

Example 1 (Out of Vocabulary Boundary)
User Input 0: Return list of all books with title and author

Status: Rejected
Error Message: No element or attribute with the name ‘‘list’’

can be found in the database.
User Input 1: List all books by title and author

Status: Accepted

In NaLIX, words/phrases in a given natural language query are classified based on small
enumerate sets of phrases (Sec. 2.1) corresponding to XQuery components. A user may
use terms outside of the system vocabulary. Some terms cannot be classified and are
reported as unknown; others may be wrongly classified and result in error messages
later on.

142 Y. Li, H. Yang, and H.V. Jagadish

Fig. 1. Example Error Message with Suggested
Terms

Fig. 2. Example Usage of a Suggested
Terms

In this example, “list of” is beyond the boundary of system vocabulary. As a result,
the token classification process wrongly identified “list” as a name token and “of” as
a connection marker. NaLIX then reported failure when it tried to map “list” into a
variable in XQuery, as no element or attribute with name “list” exists in the XML doc-
ument of interest. The user recognized the term ambiguity from the feedback message
generated and successfully disambiguated the term “list” by making minor changes to
the original query. Specifically, the user removed “list of,” implying that this phrase
does not contribute to the query semantics, and replaced verb “return” with verb “list,”
implying that they are synonyms within the context of the query.

Example 2 (Parser Failure)
User Input 0: Show titles and publishers

Status: Rejected
Error Message: As shown in Figure 1
User Input 1: Display titles and publishers

Status: Accepted

NaLIX relies on a natural language parser to obtain dependency relation between words.
The parser we currently use is Minipar [19]. Like any other generic natural language
parser, Minipar may produce an incorrect parse tree3 for an arbitrary natural language
sentence.

In this example, verb “show” was parsed as a noun and wrongly regarded as depend-
ing on “titles,” rather than the other way around. It was thus identified as a name token,
instead of a command token (corresponding to RETURN clause of XQuery). As a re-
sult, the arse tree validation process determined that a command token was lacking and
reported so.

There is no easy way to resolve such parsing problems without building a better
parser. Even generating a meaningful feedback message is extremely difficult: for in-
stance, the feedback message for the above example is confusing, as the feedback mes-
sage is generated based on a wrong parse tree. Therefore, we alert users the possible
confusion, and include related terms and meaningful examples in the feedback to pro-
vide more information about the system’s linguistic capability without requiring any
formal training. As we can see from the above example, this feature is very helpful in

3 Minipar achieves about 88% precision and 80% recall with respect to dependency relations
with the SUSANNE Corpus[19].

Term Disambiguation in Natural Language Query for XML 143

practice. In this example, the feedback message generated based on the incorrect parse
tree does not make much sense, as the user has already specified what to be returned in
input 0. However, by replacing “show” with a suggested term “display,” the user suc-
cessfully revised the failed query into one that can be accepted by the system without
changing the query semantics. We also observed that users sometimes took hints from
the given examples by writing part of the query in the way shown in the examples, and
thus successfully obtained a system-understandable query.

Like translation failures that result from parser failure, those caused by incorrect
grammar (e.g., “What books have at least one author?”) or invalid query semantics (e.g.,
“Return love.”) also pose significant challenges to natural language query translation.
It is often impossible to determine the actual reason for a failure solely on the basis of
a parse tree. Therefore, the content of a generated error message usually is not helpful
in term of pinpointing the exact problem. Nevertheless, users were found to be able to
reformulate queries successfully in these cases with the help of identified problematic
words, suggested terms, and examples.

Example 3 (Mixed Failures)
User Input 0: List author’s name and titles of all bkkos by

that author.
Status: Rejected

Error Message: 1. No element or attribute with the name
‘‘name’’ can be found in the database.
2. No element or attribute with the name
‘‘bkkos’’ can be found in the database.

User Input 1: List author’s name and titles of all books by
that author.

Status: Rejected
Error Message: No element or attribute with the name ‘‘name’’

can be found in the database.
User Input 2: List author and titles of all books by that

author.
Status: Rejected

Error Message: As shown in Figure 1, 2
User Input 3: List all the authors and titles of all books

by each author
Status: Accepted

Example 1 and 2 present cases where the failure of natural language query understand-
ing can be contributed to a single factor. In practice, cases such as Example 3, where
multiple factors result in a natural language query failure, are also common 4. In the
above example, the initial user input contains one typo “bkkos” and one mismatched
name token “name.” Our feedback messages reported both. Note, however, although
the corresponding parse tree for this query was invalid, no related error message was
reported following the policy described in Sec. 3.3.

4 In our user study, nearly half of the iterations were caused by user error alone, about 10% by
parser failure alone, and around 20% by a mixture of the two, with the remaining iterations
caused by other factors.

144 Y. Li, H. Yang, and H.V. Jagadish

The last iteration in the above example illustrates how a user can be helped for parser
failures by example usage included in the feedback message. The user successfully
reformulated input 2 into input 3 by adding “all the” before “authors” in similar way as
the example usage shown for “list” (Figure 2).

From the above examples, we can see that in many cases, it is very difficult, if not
impossible, to determine the exact reason for failures of natural language query under-
standing and to generate specific feedback messages. The same error “list is not found
in the database” may be produced for failures caused by limited system vocabulary,
where phrases such as “list of” cannot be properly translated into XQuery semantics, or
by the user’s poor knowledge of the document schema, where no object with the name
“list” exists in the XML database. However, by handing the problem over to an in-
teractive term disambiguation process, users can successfully reformulate queries with
minimal efforts. In return, they can express richer query semantics, have more control
over search results, and obtain results with better quality.

6 Related Work

In the information retrieval field, research efforts have long been made on natural lan-
guage interfaces that take keyword search query as the target language [6, 8]. In recent
years, keyword search interfaces to databases have begun to receive increasing atten-
tion [7, 10, 16, 12, 13], and have been considered a first step towards addressing the
challenge of natural language querying. Our work builds upon this stream of research.
However, our system is not a simple imitation of those in the information retrieval field
in that it supports a richer query mechanism that allow us to convey much more complex
semantic meanings than pure keyword search.

Extensive research has been done on developing natural language interfaces to
databases (NLIDB), especially during the 1980’s [3]. The architecture of our system
bears most similarity to syntax-based NLIDBs, where the resulting parse tree of a
user query is directly mapped into a database query. However, previous syntax-based
NLIDBs, such as LUNAR [30], interface to application-specific database systems and
depend on database query languages specially designed to facilitate the mapping from
the parse tree to the database query [3]. Our system, in contrast, uses a generic query
language, XQuery, as our target language. In addition, unlike previous systems such as
the one reported in [25], our system does not rely on extensive domain-specific knowl-
edge.

The idea of interactive NLIDBs has been discussed in some early NLIDB litera-
ture [3, 15]. Majority of these focus on generating cooperative responses using query
results obtained from a database with respect to the user’s task(s). In contrast, the focus
of the interactive process in our system is purely query formulation—only one query is
actually evaluated against the database. Several interactive query interfaces have been
built to facilitate query formulation [14, 28]. These depend on domain-specific knowl-
edge. Also, they assist the construction of structured queries rather than natural lan-
guage queries.

Human computation refers to a paradigm of using human to assist computer in solv-
ing problems. The idea has been applied in areas such as imagine analysis, speech

Term Disambiguation in Natural Language Query for XML 145

recognition, and natural language processing [9, 24, 29]. All these problems share one
common characteristic—they appear to be difficult to computers to solve effectively,
but are easy for humans. The natural language understanding problem in our system
belongs to the same category. Our solution to this problem is interactive term disam-
biguation, where human assists to solve term ambiguities identified by the system. It
can thus be considered as following a human computation approach as well.

NaLIX explicitly relies on query iterations to elicit user feedback. In the field of in-
formation retrieval, an alternative to manual feedback is to automatically infer feedback
based on the user’s interaction with the system (e.g. document browse pattern); such
feedback can then be used to determine document relevance and to expand the original
query to obtain more relevant results [11, 20, 31]. However, such an automatic feedback
approach does not apply to NaLIX. First of all, explicit feedback requires much less
user effort in our system - a user only need to read short feedback messages instead
of long documents. More importantly, our system depends on explicit user feedback
to resolve ambiguities in natural language understanding to generate precise database
query. Unlike information retrieval queries, an incorrect database query will likely fail
to produce any results that could be useful for enhancing the original query. Moreover,
if we can infer proper information from query results and rewrite a structured query to
get correct answer, we may have already solved the difficult natural language under-
standing problem.

7 Conclusion and Future Work

In this paper, we described term disambiguation in a natural language query interface
for an XML database via automatic term expansion and interactive feedback. Starting
from a failed natural language query, users reformulate a system understandable query
with the help of feedback messages from the system. Uncertainty associated with term
expansion, ambiguous term identification, term suggestion and term usage examples are
explicitly revealed to the user in the feedback messages. The user then addressed such
issues directly by query reformulation. Our user study demonstrates the effectiveness
of our approach in handling failures in natural language query. The system as we have,
although far from being able to pass Turing test, is already usable in practice.

In the future, we plan to investigate machine learning techniques to improve system
linguistic coverage. We are also interested in integrating grammar checking techniques
to deal with incorrect grammars. Additionally, we intend to redesign the user interface
of our system for better usability. These techniques will all improve our interactive term
disambiguation facility, and help users to formulate natural language queries that are a
true expression of their information needs and are understandable by database systems.

References

1. Timber: http://www.eecs.umich.edu/db/timber/
2. WordNet: http://www.cogsci.princeton.edu/∼wn/
3. I. Androutsopoulos et al. Natural language interfaces to databases - an introduction. Journal

of Language Engineering, 1(1):29–81, 1995.

146 Y. Li, H. Yang, and H.V. Jagadish

4. M. J. Bates. The design of browsing and berrypicking techniques for the on-line search
interface. Online Review, 13(5):407–431, 1989.

5. A. Burton-Jones et al. A heuristic-based methodology for semantic augmentation of user
queries on the Web. In ICCM, 2003.

6. J. Chu-carroll et al. A hybrid approach to natural language Web search. In EMNLP, 2002.
7. S. Cohen et al. XSEarch: A semantic search engine for XML. In VLDB, 2003.
8. S. V. Delden and F. Gomez. Retrieving NASA problem reports: a case study in natural

language information retrieval. Data & Knowledge Engineering, 48(2):231–246, 2004.
9. J. A. Fails and D. R. Olsen. A design tool for camera-based interaction. In CHI, 2003.

10. L. Guo et al. XRANK: Ranked keyword search over XML documents. In SIGMOD, 2003.
11. W. Hill et al. Read wear and edit wear. In CHI, 1992.
12. V. Hristidis et al. Keyword proximity search on XML graphs. In ICDE, 2003.
13. A. Hulgeri et al. Keyword search in databases. IEEE Data Engineering Bulletin, 24:22–32,

2001.
14. E. Kapetanios and P. Groenewoud. Query construction through meaningful suggestions of

terms. In FQAS, 2002.
15. D. Kupper et al. NAUDA: A cooperative natural language interface to relational databases.

SIGMOD Record, 22(2):529–533, 1993.
16. Y. Li et al. Schema-Free XQuery. In VLDB, 2004.
17. Y. Li et al. Nalix: an interactive natural language interface for querying XML. In SIGMOD,

2005.
18. Y. Li et al. Constructing a generic natural language interface for an XML database. In EDBT,

2006.
19. D. Lin. Dependency-based evaluation of MINIPAR. In Workshop on the Evaluation of

Parsing Systems, 1998.
20. M. Morita and Y. Shinoda. Information filtering based on user behavior analysis and best

match text retrieval. In SIGIR, 1994.
21. R. Quirk et al. A Comprehensive Grammar of the English Language. Longman, London,

1985.
22. P. V. R. Navigli. An analysis of ontology-based query expansion strategies. In Workshop on

Adaptive Text Extraction and Mining, 2003.
23. J. R. Remde et al. Superbook: an automatic tool for information exploration - hypertext? In

Hypertext, pages 175–188. ACM Press, 1987.
24. B. C. Russell et al. Labelme: a database and web-based tool for image annotation. MIT AI

Lab Memo, 2005.
25. D. Stallard. A terminological transformation for natural language question-answering sys-

tems. In ANLP, 1986.
26. The World Wide Web Consortium. XML Query Use Cases. W3C Working Draft. Available

at http://www.w3.org/TR/xquery-use-cases/, 2003.
27. The World Wide Web Consortium. Extensible Markup Language (XML) 1.0 (Third Edition).

W3C Recommendation. Available at http://www.w3.org/TR/REC-xml/, 2004.
28. A. Trigoni. Interactive query formulation in semistructured databases. In FQAS, 2002.
29. L. von Ahn and L. Dabbish. Labeling images with a computer game. In CHI, 2004.
30. W. Woods et al. The Lunar Sciences Natural Language Information System: Final Report.

Bolt Beranek and Newman Inc., Cambridge, MA, 1972.
31. J. Xu and W. B. Croft. Query expansion using local and global document analysis. In SIGIR,

1996.

	Introduction
	From Natural Language Query to XQuery
	Token Classification
	Parse Tree Validation
	Translation into XQuery

	Term Disambiguation
	Types of Failure
	Interactive Term Disambiguation
	Error Reporting
	Ontology-Based Term Expansion

	Experiment
	Analysis and Discussion
	Related Work
	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

