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Preface

This volume contains the papers presented at AI 2006, the 19th conference
of the Canadian Society for the Computational Study of Intelligence (CSCSI).
AI 2006 has attracted a record number of 220 paper submissions. Out of these,
47 high-quality papers were accepted by the Program Committee for publication
in this volume. In addition, we have invited three distinguished researchers to
give talks about their current research interests: Geoffrey Hinton from Univer-
sity of Toronto, Fred Popowich from Simon Fraser University, and Pascal Van
Hentenryck from Brown University.

The organization of AI 2006 has benefited from the collaboration of many
individuals. Foremost, we express our appreciation to the Program Committee
members and the additional reviewers who provided thorough and timely re-
views. We thank Dirk Peters for his technical assistance with Paperdyne: the con-
ference management system used by AI 2006 to manage the paper submissions
and reviews. Finally, we thank the Organizing Committee (Laurence Capus, Ma-
madou Koné, François Laviolette, Nicole Tourigny, and Hospitalité Québec) and
the members of the CSCSI Executive Committee for all their efforts in making
AI 2006 a successful conference.

June 2006 Luc Lamontagne and Mario Machand
Program Co-chairs, AI 2006

Guy Mineau
Conference Chair, AI 2006
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Integrating Information Gathering Interaction into
Transfer of Control Strategies in Adjustable Autonomy

Multiagent Systems

Michael Y.K. Cheng and Robin Cohen

School of Computer Science University of Waterloo
{mycheng, rcohen}@cs.uwaterloo.ca

Abstract. In this paper, we present a model that allows agents to reason about
adjusting their autonomy in multiagent systems, integrating both full transfers
of decision making control to other entities (users or agents) and initiations of
interaction to gather more information (referred to as partial transfers of control).
We show how agents can determine the optimal transfer of control strategy (which
specifies which entities to transfer control to, and how long to wait for a response),
by generating and evaluating possible transfer of control strategies. This approach
extends earlier efforts in the field by explicitly demonstrating how information
seeking interaction can be integrated into the overall processing of the agent.
Through examples, we demonstrate the benefits of an agent asking questions,
in order to determine the most useful transfers, or to improve its own decision
making ability. In particular, we show how the model can be used to effectively
determine whether or not it is beneficial to initiate interaction with users. We
conclude with discussions on the value of the model as the basis for designing
adjustable autonomy systems.

1 Introduction

Multiagent systems with the ability to adjust the autonomy of their agents, over time,
are referred to as adjustable autonomy systems[4]. The need for adjustable autonomy
systems has been reinforced by work such as that of Barber et al.[1] that show the value
of dynamic levels of autonomy for agents, compared to static ones, for improving the
performance of a system. Researchers in such application areas as space exploration
(e.g. Martin et al.[7]) also emphasize how critical it is to allow for robots working with
human users to have their autonomy adjusted, at times. Agent-based adjustable auton-
omy systems[6] are ones in which agents are provided with the ability to reason about
adjusting their own autonomy. One promising approach for the design of these systems
is that of Electric Elves (E-Elves)([9]: a model for agents to reason about whether to
retain autonomy or to transfer decision-making control to another entity (user or agent).

In this paper, we present a new model that allows agents to initiate interactions with
other entities, to gather more information, before ultimately selecting which entities to
approach for transferring decision making control. With questions to entities included as
possible actions from agents, the resulting model is in essence one of a hybrid transfer
of control: either there is a full transfer of decision making control to another entity,
or there is partial transfer of control, where input is obtained from another entity by

L. Lamontagne and M. Marchand (Eds.): Canadian AI 2006, LNAI 4013, pp. 1–12, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



2 M.Y.K. Cheng and R. Cohen

asking a question, but the agent still retains decision making control. This approach
therefore allows an agent to make use of run-time information (in the form of responses
from entities) to drive the choice of which entities should be given decision making
control, resulting in a more principled basis for deciding whether to adjust autonomy.
This approach contrasts as well with those of researchers (e.g. Fleming and Cohen [3])
that have agents initiating interactions with other entities, but always retaining ultimate
control over the decision making, themselves. We demonstrate the value of allowing
an agent to reason about both decision making and interaction, towards the goal of
maximizing the expected utility of its strategies.

2 Background

In the E-Elves model, which serves as the starting point for our work, the central notion
is that of a transfer-of-control strategy, an agent’s planned sequence of decision-making
transfers, together with times indicating how long it should wait for the delegated entity
to respond, before transferring control away to another entity, or perhaps back to itself.
For example, the strategy e1(5), e2(11), Agent denotes a strategy where the agent will
first transfer control to entity e1, and if e1 hasn’t responded with a decision by time
point 5, then the agent will transfer control to entity e2, which has until time point 11
to respond, before the agent gives up, and decides autonomously.

In E-Elves[9], each agent seeks to maximize the expected utility (EU ) of its transfer-
of-control strategy, by modeling two key factors for each entity in the system: the ex-
pected quality of a decision made by the entity, and the probability of the entity respond-
ing at a point in time to the delegation of decision making control1. The formula for
evaluating potential agent strategies is the following: EU =

∫∞
0 Pᵀ(t) × (EQd

ec
(t) −

W (t))dt, where Pᵀ(t) denotes the probability that the entity currently in control, ec,
will respond at time point t, EQd

ec
(t) denotes the expected decision quality of the en-

tity, ec, for decision d at time point t, and W (t) denotes the cost of waiting until time t
to make a decision.

3 A Hybrid Transfer of Control Model

In our hybrid transfer-of-control model, we differentiate between two types of
transfers-of-control (TOC), namely full transfer-of-control (FTOC), and partial
transfer-of-control (PTOC). The transfers in the E-Elves [9] model are FTOCs, where
the agent completely gives up decision-making control to some other entity. A PTOC
denotes a new type of transfer where the agent queries another entity for information
that can used in the problem solving process, while still retaining decision-making
control.

Humans face problems of too much data and plans of too much complexity, while
agents have the problem of under-specified domain information. As such, PTOCs are
particularly useful in domains where neither the human user nor the agent are very

1 In this paper, we factor out discussion of deadline delaying actions, which are also part of the
E-Elves framework.
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capable of making a good decision alone, while together they can. Another way PTOCs
are useful is to make the overall strategy more flexible, to be better able to handle
a dynamic (uncertain) environment. For example, an agent can query about a user’s
location, in order to determine whether or not it is still useful to transfer control to that
user (in case the user changed locations and may no longer be responsive to transfers).

A critical difference between an FTOC and a PTOC is that a successful FTOC (i.e.,
the entity to whom control has been transferred to actually responds) means that a de-
cision has been made, and so strategy execution ends. In contrast, a successful PTOC
does not mean that a decision has been made, only that information has been gathered
that can help lead to a good decision. As such, the strategy execution continues after a
PTOC, with the agent performing other transfers.

The output of our model will be a hybrid transfer-of-control (HTOC) strategy, that
the agent should follow to maximize overall expected utility. We use the term ‘hybrid’ to
emphasize the fact that our agents can employ strategies containing both full transfers-
of-control, and partial transfers-of-control. Visually, one can picture an HTOC strategy
as a tree, with two types of nodes, FTOC nodes and PTOC nodes.

An FTOC node represents the agent fully transferring control to some entity at some
time point ti and waiting until time point ti+1 for a response. It is sequential in the
sense that if the entity does not respond to the requested control transfer by time point
ti+1, then there is only one next step - i.e., execute the next node in the transfer-of-
control strategy. For simplicity’s sake, we will regard the case of the agent deciding
autonomously as an FTOC to the agent itself. Note that for this special FTOC case, we
do not need to plan for any transfers afterwards, since the decision will definitely have
been made (i.e., the agent can be sure that it will respond to itself).

A PTOC node represents the agent partially transferring control by asking some en-
tity a query at some time point ti and waiting until time point ti+1 for a response. Each
possible response to a query will be represented as a branch from the PTOC node to a
strategy subtree (also referred to as a substrategy in this paper) representing what the
agent should do when it receives that particular response. We will use the following
terminology. Qj denotes a particular query, and rj,1, rj,2, ...rj,n denote its possible an-
swer responses. We also include “I don’t know” as a valid response, denoted as rj,?,
and also allow for the ‘no response’ case, rj,¬resp, which occurs when the entity does
not respond in time (i.e., by time ti+1).

Figure 1 illustrates an example HTOC strategy where the agent is responsible for
rescheduling a presentation meeting time. In this example, the agent is uncertain about
which factor it should prioritize when selecting a meeting time. So, it does a PTOC to
the group leader Bob, asking query Q1 = “When rescheduling a meeting time, which
factor should be prioritized?”, with the possible answer responses being r1,1 = “Prior-
itize having the meeting earlier”, r1,2 = “Prioritize having as many people being able
to attend the meeting”, and r1,3 = “Prioritize having the meeting be convenient for the
presenter”. Depending on the response it gets back from Bob, the agent will do different
things. For example, if the response is r1,3, then the agent figures that the presenter, Ed,
is much more capable to make a good decision and so does an FTOC to Ed, asking Ed to
make the meeting time decision, and waiting until time T2 for the response. If time T2
arrives and Ed still hasn’t responded back yet, then the agent will just decide itself (to
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Fig. 1. Example Hybrid TOC Strategy

avoid waiting around too long and not arriving at a decision). For the other responses,
the agent decides to make the decision itself, either because it feels it is most capable
(for responses r1,1 and r1,2) or because this is the best decision it can make. Note that
the decision autonomously made by the agent will differ depending on the response it
gets back from Bob. For example, if Bob’s response were r1,1, then the meeting time
that the agent decides on may be different than if Bob’s response were r1,2.

An HTOC strategy extends the FTOC-only model of E-Elves [9], by allowing the
agents to also perform PTOCs. It should be noted that E-Elves strategies are linear, in
the sense that at any time point tx, if the decision is not made yet, the agent knows in
advance exactly who should have control. This contrasts with an HTOC strategy, since
the entity given control depends on the responses received from earlier PTOCs. Note
that it is important that the agent has a strategy, and reasons about future actions, since
the best action to do at the moment often depends on what can be done afterwards. For
instance, the usefulness of a PTOC depends on how the information obtained will affect
the agent’s later actions.

The procedure for an agent to find the optimal HTOC strategy will be a branch and
bound search where the agent generates all possible strategies, of length up to a fixed
number K , evaluates the generated strategies, and then selects the one with the highest
expected utility value. As in E-Elves [9], we use bounds to restrict the number of strate-
gies generated, but our procedure differs in order to generate and evaluate strategies
containing PTOCs.

3.1 Strategy Generation

In the strategy generation phase, the agent generates all possible strategies from length
1 up to length K , where K is used to bound the length of strategies searched. Viewing
a strategy as a tree, the length of the strategy is then the maximum depth of the tree.

Let Q be the set of all relevant queries and E the set of all relevant entities in the
system (including the agent itself). Let FN be the set of all possible FTOC nodes,
where each node (fn) identifies which entity e ∈ E to fully transfer control to. Let PN
be the set of all possible PTOC nodes, where the set consists of all possible pairings
between a query q ∈ Q and entity e ∈ (E − {agent}). So, each PTOC node (pn)



Integrating Information Gathering Interaction 5

Fig. 2. Strategy generation algorithm

identifies which entity to ask which query. Also, each pn has branches for the possible
responses to query q, and each of these branches will have an attached strategy subtree.

We present the basic strategy generation algorithm in Figure 2, and for brevity’s sake,
omitted the finer details/refinements. GenerateStrategy(K) will generate all strategies
from length 1 to K .

3.2 Strategy Evaluation

In order to determine the optimal strategy s∗, we must first instantiate each generated
strategy with the optimal timings of its transfers-of-control. For example, for a simple
strategy consisting of an FTOC to Bob, then an FTOC back to the agent, we need to
determine the optimal time point T that the agent should stop waiting for a response
from Bob, and just decide by itself.

The optimal strategy is determined by evaluating the expected utility (EU ) of each
of the generated strategies and selecting the one with the highest EU value. The overall
EU of strategy s is the sum of the EU of all the nodes in s:

EU(s) =
∑

node∈s

EU(node) (1)

The EU of a node depends on its type, which can be either an FTOC node, fn, or a
PTOC node, pn.

[FTOC Node]. The expected utility of a FTOC node (fnl), which denotes a full transfer-
of-control to some entity ei, is computed as follows:

EU(fnl) = Ptrans(fnl) ×
∫ te

ts

PRd
ei

(t) × (EQ
d,{info}
ei (t) − W (t) − BCfnl

)dt (2)

where ts denotes the time point that the decision-making control is transferred to en-
tity ei, and te denotes the time point that the agent gives up, and transfers control
away to some other entity. Or in other words, [ts, te] is the time duration of the FTOC
node fnl.
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PRd
ei

(t) : �+ → �+ denotes the probability that entity ei will respond with a
decision d at time point t, given that the transfer-of-control to ei occurred at time point
ts. Another way to look at this term is as P(ei responds with a decision d at time point
t | ei received decision-making control at time point( )t(s)).

EQ
d,{info}
ei (t) : �+ → � denotes the expected quality of decision d made by entity

ei at time t, given that the agent has received the information {info} from past PTOCs.
It is important to make note of the {info} term because the expected decision quality
of an entity may differ depending on the information the agent gathers. For instance, it
might be the case that the agent’s decision making ability improves when it obtains the

user’s preference, i.e., EQ
d,{info}
agent > EQ

d,{}
agent.

W (t) : �+ → � denotes the cost of waiting until time t to arrive at a decision.
BCfnl

denotes the accumulated ‘bother cost’ to entities resulting from all the trans
fers-of-control that the agent has done up to (and including) FTOC node fnl. For in-
stance, looking back at Figure 1, the bother cost for FTOC node fn3 is BCfn3 =
BCQ1

Bob + BCd
Ed, where BCQ1

Bob is the bother cost of asking Bob query Q1 and BCd
Ed

is the bother cost of asking Ed to make the decision d. Asking queries thus incurs a
cost, labelled here as the cost of bothering the entity being asked.

Ptrans(fnl) is the probability that the agent will actually reach/execute node fnl.
For example, referring back to Figure 1, the probability of reaching/executing node
fn4 depends on the PTOC node to Bob giving back a response of r1,3 and of the earlier
FTOC node fn3 (FTOC to Ed) failing, i.e., no decision response. So, Ptrans(fnl) is
computed as follows:

Ptrans(fnl) =
∏

fnprev

(1 −
∫ te

ts

PRd
eprev

(t)dt) ×
∏

pnprev

PQj
eprev

(resp = r) (3)

where the first product is iterated over all the previous FTOC nodes, and represents
the probability that the decision was not made in an earlier FTOC node fnprev (where
fnprev denotes a full transfer to entity eprev for time frame [ts, te])2. The second prod-
uct is iterated over all the previous PTOC nodes pnprev , and represents the probability
that for all the previously asked queries, the agent received the responses such that node
fnl will be reached/executed.

P
Qj
eprev (resp = r) denotes the probability that asking entity eq

prev query Qj will
result in a particular response r. The computation of this term will be described in a
section further below.

As an example, referring back to Figure 1, we see that the probability of reach-
ing/executing node fn4 depends on the PTOC node to Bob giving back a response of
r1,3 and of the earlier FTOC node fn3 (FTOC to Ed) failing. Mathematically then,

Ptrans(fn4) = PQ1
Bob(resp = r1,3) × (1 −

∫ T2

T1
PRd

Ed(t)dt).
For an FTOC node fnl to the agent itself (representing that the agent should

decide autonomously), the calculation of EU is simplified to just Ptrans(fnl) ×
(EQ

d,{info}
agent (T ) − W (T ) − BCfnl

) where T denotes the time that the agent gets back
control and decides itself. Following the original E-Elves [9] model, we assume that

2 Note that the value of a product iterating over an empty set is 1.
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an agent can always make a decision immediately; i.e., we do not need to factor in the
probability of response3.

[PTOC]. The expected utility of a PTOC node (pnl) is just EU(pnl) = 0. This is
because a decision is never made in a PTOC (so there is no direct benefit to overall
EU ). The real benefit of PTOCs is indirect, and is reflected in the overall EU calcula-
tions as described above. The power of the PTOCs is that they allow agents to employ
different branch strategies for different responses. To elaborate, different responses in-
dicate different states of the world, which are modeled by different model parameter
values for each branch. As an example, suppose that if the agent has no information,
then it expects that EQ

d,{}
Bob = EQ

d,{}
Ed , but if it gathers some information (i.e., does

a PTOC), it may find that for one response, r1,1, Bob is the better decision maker,

i.e., EQ
d,{r1,1}
Bob > EQ

d,{r1,1}
Ed while for another response, r1,2, Ed is the better deci-

sion maker. Different model parameter values may have different optimal strategies. So,
continuing the earlier example, if the response from the PTOC was r1,1, then the agent
will do an FTOC to Bob, while if the response was r1,2, then the agent will do an FTOC
to Ed4.

Here we will elaborate on the computation of P
Qj
ei (resp = rj,k), the probability of

getting a particular response rj,k when asking entity ei query Qj . The relevant entity

characteristics are the PEK
Qj
ei value, denoting the probability that entity ei knows the

answer to query Qj , and the PR
Qj
ei (t) value, denoting the probability distribution over

time that ei responds to Qj at time point t. These two model parameters determine how
much of the response probabilities will be ‘shifted’ from the answer responses to the
“I don’t know” and ‘No response’ case. The idea is that the probability of getting an
answer response is contingent on ei responding, and ei knowing the answer. The three
possible cases for how to compute the value of P

Qj
ei (resp = rj,k), are as follows:

[No response]: P
Qj
ei (resp = rj,¬resp) = (1 −

∫ te

ts
PR

Qj
ei (t)dt)

[“I don’t know”]: P
Qj
ei (resp = rj,?) =

∫ te

ts
PR

Qj
ei (t)dt × (1 − PEK

Qj
ei )

[Answer response]: P
Qj
ei (resp = rj,a) =

∫ te

ts
PR

Qj
ei (t)dt × PEK

Qj
ei × PA(rj,a)

where ts is the time point at which the query was asked, and te is the time point that the
agent will wait until for a response, and PA(rj,a) denotes the probability that the an-

swer to query Qj is rj,a. Note that
∫ te

ts
PR

Qj
ei (t)dt gives the probability of ei responding

to Qj during time frame [ts, te].

4 Examples

We start with a simple example where an agent has to choose between fully transferring
control to a user, or only partially transferring control. An agent is tasked with ordering

3 If we want to be more precise about it, we can modify the waiting cost in the equation from
W (T ) to W (T + x) where x is the expected time for the agent to make a decision.

4 This assumes that the agent will do an FTOC to a user, and that the other relevant user factors
(e.g., probability of response) are the same between Bob and Ed (i.e., they are differentiated
by the EQ value).
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lunch for Bob. While the agent can make the decision by itself, it knows that Bob can
make a much better decision (knowing what he likes to eat). On the other hand, by
asking Bob (query Q1 = “For lunches, do you prefer price or quality?” and getting
an answer, the agent can then make a good decision itself. Suppose the agent has the
following three strategies available to it5: (i) s1 where the agent immediately decides
autonomously, (ii) s2 where the agent first does an FTOC, fully transferring control to
Bob until time point T , and then doing an FTOC back to itself if Bob does not respond
in the time allotted, and (iii) s3 where the agent first does a PTOC with query Q1 until
time T , to gather information from Bob, before deciding itself. Note that the optimal T
value in s2 will most likely be different than the optimal T value in s3.

From history logs, the agent predicts that the probability that Bob prefers price is
PA(r1,1) = 0.4, and that the probability Bob prefers quality is PA(r1,2) = 0.6.
Since Bob knows his preferences, the probability that Bob knows the answer to Q1
is PEKQ1

Bob = 1. The model parameters used will depend on the domain. Different
users will have different response behaviour and bother reaction to transfers-of-control.
For this sample scenario, we’ll use PR

Transferj

Bob (t) = ρje
−ρjt to denote the probability

of user Bob responding to a transfer-of-control of type Transferj at time t. ρj controls

how quickly Bob responds (the higher the ρj , the faster). Similarly, BC
Transferj

Bob de-
notes the bother to Bob for a transfer-of-control of type Transferj . Since asking Bob
a preference query is simpler (e.g., less cognitive effort required) than asking Bob to
make the decision, we’ll model PRQ1

Bob(t) with ρQ1 = 0.3, PRd
Bob(t) with ρd = 0.15,

BCQ1
Bob = 3, and BCd

Bob = 10. For this example scenario, we model the waiting cost
as W (t) = t1.5. This reflects the fact that the longer it takes to make a decision, the
longer Bob has to wait before eating (and Bob is getting hungry).

In this example scenario, we need to distinguish the EQd
agent values between the

different branches in the strategies, since they will differ depending on the branch. To
clarify, if an agent asks a query and gets an answer response, it will probably be able
to make a decision that better suits Bob’s preferences, and so EQd

agent will be higher
than if the agent had no information. Suppose after looking at possible lunch options
and factoring in possible user preferences, the agent arrives at the following expected
decision quality values, EQd

Bob(t) = 95, EQ
d,{r1,1}
agent (t) = 90, EQ

d,{r1,2}
agent (t) = 85,

EQ
d,{r1,?}
agent (t) = 60, EQ

d,{r1,¬resp}
agent (t) = 60, EQ

d,{}
agent(t) = 60. This reflects the fact

that Bob can make the best lunch decision, that the agent can improve its decision-
making ability if it knows more about Bob’s preferences (and that the agent has a
slightly better chance of meeting Bob’s preferences if his preference is price), and that
the agent’s expected decision quality is fairly low if it has no extra preference informa-
tion to work on.

Computing the expected utility of the strategies at their optimal timings then, we get
the following values: EU(s1) = 60, EU(s2) = 63.38, EU(s3) = 68.00, with s3 being
the optimal strategy. For this particular example, it is worth it for the agent to perform
a PTOC, and query Bob about his preference before deciding itself. When comparing

5 In the strategy generation phase, the agent would have generated other (possibly more com-
plex) strategies, such as a PTOC followed by another PTOC. For this example, we will focus
only on these three strategies.
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s3 with s1, the main differences are that s1 has the advantage that the decision is made
sooner and without bothering the user (so less wait and bother cost), but that s3 allows
for the agent to make better ‘informed’ decisions. When comparing s3 with s2, the
main differences are that a successful FTOC results in a better decision being made
by Bob, but that there is the penalty of a lower response rate and higher bother cost
when compared to a PTOC. It is important to note that our model will select different
strategies in different situations. For instance, if both bother costs were raised by 10 (i.e.,
Bob really does not like to be interrupted), then we’ll have EU(s1) = 60, EU(s2) =
53.38, EU(s3) = 58.00, with s1, the strategy where the agent does not interact with
Bob, being selected6. On the other hand, if the ρd value for the FTOC were increased
to 0.20 (i.e., Bob does not take that long to make a decision), then EU(s1) = 60,
EU(s2) = 70.18, EU(s3) = 68.00, with s2 being selected.

We now revisit the meeting example raised in Section 3 and expand the scenario. Ed,
the presenter for an upcoming group meeting, has to cancel and the agent is tasked with
rescheduling the meeting. Suppose the agent generates these strategies: (i) s1 where the
agent just autonomously makes a decision without doing any transfers to other entities
(ii) s2 where the agent gives up autonomy and fully transfers control to Ed until time
point T , after which if Ed hasn’t responded with a decision, then the agent will take
back control and decide autonomously (iii) s3 where the agent asks group leader Bob
query Q1 until time point T , after which the agent will decide itself (iv) s4 (see Fig.1)
which is in some sense, a hybrid of s2 and s3, where the agent first asks Bob query
Q1 until time point T1, after which if the response is: r1,3 (i.e., prioritize presenter
convenience), then the agent will execute a substrategy that is just like s2 (i.e., fully
transfer control to Ed until time point T2, and if no response, then take back control and
make the decision) or if the response is r1,1,r1,2, rj,?, or rj,¬resp, then the agent just
decides itself. Suppose we have the following model parameter values:

– EQ
d,{}
agent = EQ

d,{r1,?}
agent = EQ

d,{r1,�resp}
agent = 45, EQ

d,{r1,1}
agent = 80, EQ

d,{r1,2}
agent = 75,

EQ
d,{r1,3}
agent = 35, EQ

d,{}
Ed = 65, EQ

d,{r1,3}
Ed = 80. Note the difference between EQ

d,{}
Ed

and EQ
d,{r1,3}
Ed to reflect that if the agent knows that the presenter’s convenience is priori-

tized, then Ed’s expected decision quality is better than if the agent does not know the meet-
ing priority, in which case, Ed’s decision (which most likely favors his own convenience),
may not be a very good decision, since other factors may have priority. When the priority is
to value earlier meetings (i.e., r1,1), then the agent is quite capable (hence the higher EQ
value). Similarly for r1,2.

– PA(r1,1) = 0.35, PA(r1,2) = 0.4, PA(r1,3) = 0.25
– PEKQ1

Bob = 1 (since Bob is certain to know the answer to the query).
– BCd

Ed = 10, BCQ1
Bob = 3 (it’s much less bothersome to answer a query than to consider a

lot of facts/constraints and make a decision about the meeting time).
– W (t) = t1.5, and this reflects the cost of waiting to arrive at decision (e.g., less time for

group members to plan to attend rescheduled meeting, etc.).
– For this example, we assume that we derived the probability of response functions

(PRd
Bob(ti), PRd

Ed(ti), PRQ1
Bob(ti) ) empirically, instead of analytically, and so we have a

discretized time step function with the following probability of response values.

6 This strategy can also be optimal in scenarios where the agent is already quite capable of
making the decision itself.
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Timestep 1 2 3 4 5 6 7 8 ...
Probability of Response 0.3 0.35 0.15 0.1 0.01 0.01 0.01 0.01 ...

With the expected utility formulation and the model parameter values, the agent is
able to evaluate the generated strategies. As part of the evaluation, the agent needs
to determine the optimal timings of the transfers-of-control. In this case, it can use a
brute-force approach where it tries all possible time instantiations and uses the time
instantiation which gives the highest expected utility for the strategy7.

Then, the evaluation of the strategies given these model parameters are: EU(s1) =
45; EU(s2) = 49.33 with T = 4; EU(s3) = 54.20 with T = 3; EU(s4) = 59.10 with
T1 = 3 and T2 = 7. So in this case, we see that doing a FTOC to Ed (s2) or doing a
PTOC to Bob (s3) is better than the agent just deciding immediately (s1). Furthermore,
we can improve upon s3 by having the agent do different actions depending on Bob’s
response. While the agent is quite capable at making the decision when told to prioritize
for an early meeting or more attendees, it is much less capable at prioritizing for the
presenter’s convenience. As such, it makes sense to let Ed have decision-making control
when Bob’s response is r1,3. As can be seen, s4 has a higher expected utility value than
s3, and is in fact, the optimal strategy for this example. Note, however, that the optimal
strategy may differ when model parameters change.

5 Discussion and Related Work

In this paper, we presented a domain-independent decision-theoretic adjustable auton-
omy model that enables an agent to reason about the trade-offs between three different
levels of autonomy, namely deciding autonomously; querying another entity for in-
formation while still retaining decision-making control; and fully giving up autonomy
to get a decision from another entity. Rather than restricting to only full transfers-of-
control (as in E-Elves [9]) or to interaction without any transfers of decision-making
control (as in Fleming [3]), our hybrid model allows agents to initiate information seek-
ing interaction to determine the best transfer of decision-making control.

We extend the E-Elves [9] work by introducing the concept of a partial transfer-
of-control, whereby an agent can gather information as part of its strategy. This infor-
mation can be used by the agent to improve its own decision making ability (thereby
reducing the need for full transfers-of-control to other entities), or to help reduce its
uncertainty when reasoning about which full transfers-of-control to perform. An im-
portant advantage is that while the E-Elves model requires the model parameter values
(e.g., EQ, PR(t)) to remain more or less static in order to perform well, our model can
still perform well in a dynamically changing world because agents can always query for
information to obtain an up-to-date view of the world (i.e., reduce uncertainty). In our
model, an agent checks to see if an entity is still available to accept decision-making
control, before actually transferring control to that entity. Essentially, we are no longer

7 For the curious, it took roughly 1.2 milliseconds to evaluate the expected utility of strategy s4

(including finding the optimal timings of the strategy). Also, the evaluation code was unopti-
mized (i.e., not efficient) so it probably takes even less time than that.
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locked into a single strategy, but rather, we are more flexible and can use whichever
strategy is best at the time, given the information gathered. In addition, we incorporate
the concept of a bother cost, in order to model the very real costs of interrupting an
entity when a transfer-of-control occurs, limiting the transfers-of-control to those that
really add more benefit. As well, for possible entity responses to a PTOC, we allow
a response of “I don’t know”, differentiated from the ‘no response’ case because for
certain domains, there may be different information inferred.

It is important to note that since the FTOC-only strategies in E-Elves [9] are also gen-
erated and evaluated by our model, the strategy selected by our model as optimal must be
better than or equal to the strategy selected by the E-Elves model, in terms of EU . Or in
other (more mathematical) words, let SEE denote the set of strategies generated by the
E-Elves model, and let SH denote the set of strategies generated by our hybrid model.
Since SEE ⊆ SH , it must be the case that maxEU(s)s∈SEE ≤ maxEU(s)s∈SH .

However, since we are generating and evaluating more strategies (namely those involv-
ing PTOCs), our model will require more computation time. As with the E-Elves model
presented in [9], our model bounds the length of strategies searched by a value K . For
most domains, the bother cost and waiting cost will eventually overwhelm the benefit
of repeatedly transferring control, and so K can be kept fairly small.

In addition to extending the E-Elves model, we compare favourably with other ap-
proaches for the design of adjustable autonomy systems. Myers and Morley’s work [8]
involves allowing user-based adjustable autonomy [6], based on a user setting permis-
sion requirements and consultation requirements for decision making. Agents will only
act autonomously in the absence of one of these conditions. Although our model is one
of agent-based adjustable autonomy, it can incorporate elements of user-based control.
Agents can now ask the user about his/her preferences, before making a decision. Even
more importantly, the agent will explicitly weigh the benefits of asking a query against
the costs of doing so. Thus, we begin to address the aim expressed in [6] of integrating
aspects of user-based and agent-based adjustable autonomy within one model.

Braynov & Hexmoor [2] suggest that an agent’s decision autonomy is in part a func-
tion of its knowledge of the user’s preferences. Since our model provides a mechanism
for acquiring more accurate knowledge of the user’s preferences as part of the agent’s
reasoning about decision making (namely, allowing for queries to be asked), it clearly
indicates how that information gathering process can be integrated with the agent’s rea-
soning about decision making. Mac Mahon et al. [5] also emphasize the importance
of providing for interaction, for the application of route planning decision making by
robots. This reinforces the need for a framework to reason about interaction as part of
the adjustable autonomy process.

The research being conducted at NASA ([7]) demonstrates the importance of agents
operating with teams of users, reasoning about both collaboration and interaction. Their
solution includes the use of proxy agents for users to facilitate the interaction and co-
ordination. Our model can in fact support multiple users, with the agent reasoning not
only about when to initiate interaction but also about which entity to select for the in-
teraction, in an effort to perform the strategy which maximizes expected utility. The
model, moreover, integrates reasoning about both decision making and interaction as
part of the selection of the optimal strategy.
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6 Conclusions

In this paper, we presented a hybrid transfer-of-control model for agents to reason
about adjustable autonomy. This domain-independent decision-theoretic model allows
an agent to reason about three levels of autonomy: (i) full autonomy, where the agent
just decides by itself without the user’s intervention, (ii) no autonomy, where the agent
gives up autonomy and transfers the decision-making control to some other entity, and
(iii) partial autonomy, where the agent queries another entity for information that de-
termines how the decision should be made. By introducing the concept of a partial
transfer-of-control, we allow for the human user and the agent to collaborate and arrive
at a decision together. In essence, it allows for partial involvement of the user, without
putting the heavy burden on the user to make the decision by him/herself. This middle
ground approach is especially vital in domains where neither the human user nor the
agent alone are capable of making a good decision, while together they can. As well,
since the model is domain-independent, it can be used in any system with autonomous
agents that could benefit from adjustable autonomy. This hybrid approach to reasoning
about adjustable autonomy allows more informed decision making about transfers-of-
control and provides more opportunities for agents to retain their autonomy, even if
initially uncertain, once additional information has been provided. We are currently
working on a set of heuristics to reduce the number of strategies to be evaluated by an
agent, investigating how best to acquire various model parameters and developing more
specific models of bother cost to users.
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Abstract. Computing optimal coalition structures is an important re-
search problem in multi-agent systems. It has rich application in real
world problems, including logistics and supply chains. We study com-
puting optimal coalition structures in linear production domains. The
common goal of the agents is to maximize the system’s profit. Agents
perform two steps: i) deliberate profitable coalitions, and ii) exchange
computed coalitions and generate coalition structures. In our previous
studies, agents keep growing their coalitions from the singleton ones in
the deliberation step. This work takes opposite approach that agents
keep pruning unlikely profitable coalitions from the grand coalition. It
also relaxes the strict condition of coalition center, which yields the min-
imal cost to the coalition. Here, agents merely keep generating profitable
coalitions. Furthermore, we introduce new concepts, i.e., best coalitions
and pattern, in our algorithm and provide an example of how it can
work. Lastly, we show that our algorithm outperforms exhaustive search
in generating optimal coalition structures in terms of elapsed time and
number of coalition structures generated.

1 Introduction

Coalition formation is an important area of research in multi-agent systems.
It studies the process and criteria that lead to cooperation among agents. The
process involves two main inter-related activities: i) negotiation in order to ex-
change information among agents, and ii) deliberation in order to decide with
which agents should they cooperate. Coalition formation research has its roots
in the theory of cooperative game [1, 2] in which a characteristic function assigns
each coalition a coalition value. A coalition value is often economical value, such
as money, that is assumingly created jointly by the coalition. Such a value will be
distributed as payoffs among coalition members. The focus of the study is on i)
what the agents’ payoff should be, that leads to ii) what coalitions would form.
Agents in such a setting are self-interested: they try to form coalition when they
foresee an opportunity to increase their payoffs. Most of the studies in the theory
of cooperative game operate in superadditive environment in which merging of

L. Lamontagne and M. Marchand (Eds.): Canadian AI 2006, LNAI 4013, pp. 13–24, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



14 C. Sombattheera and A. Ghose

two coalitions yields a new coalition value of at least as equal to the sum of the
two coalition values.

However, the assumption of characteristic function is somewhat impragmatic
that it leads to the ignorance of the process of forming coalitions. Also, the
assumption of superadditive environment is not always true in various real world
settings, taking into account multiple factors, including the cost of coalition.
Coalition formation research in multi-agent systems [3, 4, 5, 6, 7] leaves such
assumptions but takes into account reality. This usually involves various factors
and a large number of agents. Thus coalition formation becomes a very complex
process. There is a large number of messages to be sent across while negotiating
and there is a large number of coalitions to be considered while deliberating.
A strategy to reduce such complication in negotiation is that agents focus on
deliberation: generate a list of potential coalitions, yet to be agreed upon by
agents, that are likely to be formed [7]. Most of coalition formation studies
in multi-agent systems involves self-interested agents and are highly successful
[3, 4, 5, 6, 7].

Coalition formation among fully-cooperative agents is also an important, yet
to receive more attention, area of research in multi-agent systems. The common
goal of agents is to maximize the system’s utility–agents are to form coalitions
such that the sum of the coalition values is maximal. This problem is known
as finding optimal coalition structure (see section 2.2). It has rich application in
real world settings, including logistics and supply chains, grid computing sys-
tems, and composite web services. These settings usually involve a large number
of agents that makes the problem intractable for even a small number of agents
(see section 2.2). A handful of previous studies assume the existence of character-
istic function [3, 8]. Although they have achieved high performance algorithms,
they still rely heavily on the existence of characteristic function. This makes the
algorithms impragmatic as mentioned above. For a system of m agents, gener-
ating all coalition values (due to the non-existence of characteristic function)
of m agents is exponentially complex, i.e., 2m, and can also be intractable for
even a reasonably small number of m—let alone the problem of finding optimal
coalition structures.

To our knowledge, our previous work [9, 10] is the only attempt to tackle
the problem of finding optimal coalition structure with realistic assumption,
i.e., agents have to compute their coalition values and the environment is non-
superadditive. They propose a deliberation algorithm that helps reduce the num-
ber of coalitions generated. Each agent generates profitable coalitions. From
its singleton coalition, it keeps adding profitable members based on existing
resources of the coalition. The coalition grows until it cannot produce profit
anymore. This work is different in various ways. Firstly, it takes the opposite
approach: each agent keeps pruning least profitable agents from its grand coali-
tion. Secondly, it relaxes the strict condition of coalition center [9] that agents
merely keep generating profitable coalitions. Thirdly, we introduce pattern into
coalition structure generation. Lastly, we propose a concrete algorithm in for
generating coalition structures. We also provide an example of how it can work.



A Pruning-Based Algorithm 15

The outline of this paper is as follows. We restate the problem domains and
discuss about related issues in optimal coalition structure. We then discuss the
deliberation, coalition structure generation and example. Then we discuss about
the experiment, show empirical results. Lastly, we discuss related work which
followed by conclusion and future work.

2 Coalition Framework

2.1 Coalition in Linear Production Domains

We remodel Owen’s work [11] as in our previous work. For the sake of complete-
ness, we restate our model below. Let A = {a1, a2, . . . , am} be a set of agents,
whose goals are to maximize the system’s profit. Let R = {r1, r2 . . . , rn} be the
set of resources and G = {g1, g2, . . . , go} be a set of goods. Resources themselves
are not valuable but they can be used to produce goods. The linear technol-
ogy matrix L = [αij ]n×o, where αij ∈ Z+, specifies the units of each resource
ri ∈ R required to produce a unit of the good gj ∈ G. The goods can be sold
to generate revenue for the system. The price of each unit of goods produced
is specified by the vector P = [pj ]1×o. Each agent ak ∈ A is given a resource
bundle bk = [bk

i ]n×1. In this setting, agents try to cooperate, i.e. form coalitions,
in order to pool their resources, thus increase revenue for the system. A coalition
S ⊆ A has a total of bS

i =
∑

k∈S bk
i of the ith resource. Each coalition S can use

their resources to produce any vector x = 〈x1, x2, . . . , xo〉 of goods that satisfies
the constraint: ∑

αijxi ≤ bS
i

and
xj ≥ 0

The cooperation cost among agents is specified by the matrix C = [ckl]m×m,
which assigns a cooperation cost between each pair (ak, al) of agents such that
ckl ∈ R+if k 
= l, ∈ {0} otherwise. Agents in the coalition S have to find a vector
x to maximize the revenue accruing to a coalition. Let

PS =
o∑

l=1

plxl.

be the maximal revenue the coalition can generate. Here, we introduce virtual
coalition center. Each agent ak ∈ S can assume itself a coalition center and
computes the virtual coalition cost.

Ck
S =

∑
l∈S

ckl.

The virtual coalition value υk
S computed by ak is

υk
S = PS − CS .

Each agent then can exchange the virtual coalition value. The maximal virtual
coalition value is, of course, the coalition value, υS . Any agent ak who yields the
maximal virtual coalition value can be a coalition center.
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2.2 Optimal Coalition Structures

Once agents agree to form coalitions, they can be viewed as a set has been
partitioned into mutually disjoint proper subsets. Each subset is a coalition,
S ⊂ A. The largest coalition is formed when all agents agree to cooperate. This
set of all agents itself is called the grand coalition. Since a coalition is merely a
set, we shall use the term cardinality to refer to the size of the coalition. Each
instance such a partition is known as a coalition structure, CS. In our setting, the
coalition value is independent of the actions of other agents outside the coalition.
The value of each coalition structure

V (CS) =
∑

S∈CS

υS

indicates the system’ utility yielded by that partitioning. Let L be the set of all
coalition structures. The goal of cooperative agents in coalition formation [3, 8]
is to maximize the system’s utility. That is agents are to find at least a coalition
structure CS∗ such that

CS∗ = argmaxCS∈LV (CS)

In the literature, coalition structures are laid down into m layers. Each layer
Lκ, where 1 ≤ κ ≤ m, is composed if coalition structures, whose number of coali-
tion are equal to κ. We shall call the of number of coalitions within each coalition
structure the size of the coalition structure. The number of coalition structures
within each layer Lκ is known as the Stirling number of the Second Kind [8]:

S(m, κ) =
1
κ!

κ−1∑
ι

(−1)ι

(
κ

ι

)
(κ − ι)m

Hence, the number of all coalition structure is

|L| =
m∑

κ=1

S(m, κ)

Computing the optimal coalition structures in a non-superadditive environ-
ment is non-trivial [3]. Sandholm et. al. show that it is NP-hard [3]. Due to
the large search space, existing algorithms [3, 8] can generate coalition struc-
tures which are within a certain bound from optimal and will get closer as the
algorithms proceed. This work assumes non-superadditive environment and non-
existence of characteristic function. Each coalition value is not known a priori.
Thus agents have to compute all coalition values first. Given a set of m agents,
there are 2m possible subsets, hence the complexity of computing all coalition
structures is substantially worse.

2.3 Best Coalition and Coalition Structure Pattern

In previous studies [3, 8], coalition structures are generated based on the size
of coalition structures and the cardinality of the coalitions. It appears that the
search space is very large. Here, we try to reduce the search space. For each
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cardinality, each agent tries to do local search for a small number of coalitions.
Firstly, we define the agent ak’s best coalition for the cardinality κ the coalition
Sκ

k , whose members include ak, that is found from a search within a given time
and yields the maximal υS . Within the same cardinality, the next coalition that
yields the second highest coalition value is second best coalition, and so on.

We introduce the pattern of generating coalition structures. A pattern of a
coalition structure describes the number of coalitions and their cardinalities in
the coalition structure. It is written in the form

B1 + B2 + . . . + Bκ, where Bι ∈ Z+ and
κ∑

ι=1

Bι = m

This work proposes coalition structure pattern in breaking manner as the
followings. Given a set of 6 agents, for example, the first pattern is 6 in layer L1.
There can be just one coalition, which is the grand coalition, whose cardinality
is 6. In the next layer, L2, the grand coalition will be broken into 2 coalitions by
splitting a member from the grand coalition into the new coalition. Hence the
pattern is 5 + 1. The next pattern is 4+2 and 3+3. The pattern in each layer
cannot grow once the difference between each pair of coalitions’ cardinalities is
≤ 1. Then the pattern breaks into the next layer, i.e., 4 + 1 + 1, 3 + 2 + 1,
2 + 2 + 2. The last pattern is obviously 1 + 1 + 1 + 1 + 1 + 1. The pattern
breaking process for 6 agents is shown below:

No. of coalitions 1 2 3 4 5 6
Patterns 6 5 + 1 4 + 1 + 1 3+1+1+1 2+1+1+1+1 1+1+1+1+1+1

4 + 2 3 + 2 + 1 2+2+1+1
3 + 3 2 + 2 + 2

Agents can use best coalitions to generate coalition structures by following
these patterns. By using the best coalitions alone, agents will achieve some
coalition structures whose best one will be close to the optimal one. Using more
coalitions, i.e., the second, third best and so on, coalition structure values can
be improved.

3 Algorithm for Generating Coalition Structure

Each agent has to do two steps of deliberation: i) Pruning: deliberate over what
coalitions it might form by deleting unprofitable coalition members from the
grand coalition, and ii) Generating: exchange coalitions generated and use the
breaking pattern to generate coalition structures. The sets of such coalitions are
at least close to the optimal coalition structures. The main goal of the algorithm
is to reduce search space for finding the optimal coalition structures. This can
be achieved by reducing the number of coalitions to be considered.

3.1 Deliberating Process

We take opposite approach our previous algorithms [9, 10] for agents’ delibera-
tion. Firstly, we explain the ranking trees that are used as infrastructure in the
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early stage of the deliberation. Each agent ranks other agents based on their suit-
ability to be coalition members. Then we will explain the extended part where
each agent tries to shrink its coalitions.

In the following, we will identify a coalition by the identifier of agent ak.
Thus the coalition Sk refers to a coalition being consider by agent ak. Hence bS

represents the resource vector of Sk. Given a coalition Sk, let Gk refer to the set
of goods whose resource requirements are fully or partially satisfied by bS, the
resources available in Sk (excluding goods whose resource requirement might be
trivially satisfied because these are 0). For each good gj ∈ Gk, the coalition center
agent ak ranks agents not currently in its coalition on a per good basis. For each
resource ri of good gj, agent ak ranks non-member agents by computing for each
al /∈ Sk, whose bl

i > 0, the value πj
i —its proportional contribution to the profit of

the good (using its fraction of the resource requirements for that good provided
by the al) minus the (pair-wise) collaboration cost between al and ak, i.e.,

πj
i =

bl
i

αij
pj − ckl.

The agent ak uses this proportional contribution πj
i to construct a binary tree

for each gj . The only child of the root gj is the first resource α1j , whose left
child is the second resource α2j , and so on. For each αij , its right child is either
i) null if αi

j = 0, or ii) the agent ari
1st, whose πj

i value is the greatest. The right
child of ari

1st is the agent ari

2nd, whose πj
i value is the second greatest, and so on.

Agent ak can use these trees to eliminate surplus agents.
The agent ak uses bS to determine surplus resources not used to produce

additional units of a good gj. For each gj ∈ Gk and resource ri,

βj
i = bS

i − I(αij),

where I ∈ Z+ is the smallest integer such that βj
i > 0, represents the surplus

amount of ri that coalition Sk does not use to produce good gj , provided the
amount is non-negative (β = 0 otherwise). The indicative vector, βj = [βj

i ]1×n,
represents surplus units of each resource ri of good gj.

In this work, the agent ak creates the grand coalition and tries to shrink it
by pruning least profitable members. The agent utilizes indicative vectors βjs
and the the tree T j in order to locate the agent who is the least useful to
its present coalition. For each good, the positive value of βj

i in the indicative
vector indicates surplus resource that the agent who possesses the equivalent
resource should be eliminated from the present coalition. The agent ak create
a trial coalition S′ for each good. The surplus agents will be eliminated from S
for the next smaller quantity of the good possible. Each trial coalition will be
inserted into the pruning members S−. The sub-algorithm for selecting profitable
members is shown in algorithm 1.

In the main algorithm, the agent ak considers itself a virtual coalition center
of the grand coalitin. at the beginning of deliberating. It create the ranking tree
T G of all agent for each good. At this point, it is root and the only member of the
profitable-coalition tree,L−. It prunes the pruning agents S− from the coalition.
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Algorithm 1. Select the most profitable members
Require: A coalition S
Require: ranking trees T G

set highest profit υ∗ = 0
set pruning members S− = S
for all gj ∈ G do

if S is not capable of producing gj then
continue

end if
get surplus agents S′

set trial coalition S′
j = S ∪ S′

j

compute trial coalition’s profit υS′
j

set S− = S− ← S′
j

end for
return S−

Each S′
j ∈ S− will be added as the children of the base coalition. Among all

S′
js, the most profitable agents S∗ are those that provide the highest additional

profit υ∗ and are kept as the base for the further shrinking coalitions. The
coalition keeps shrinking in this fashion until there are no prunable members
left in T G. Then the next profitable sibling of the base S′

j will be the new
base. This repetition goes on until it cannot find the new base. The number of
coalitions each agent ak has to maintain is also much smaller compared to that
of the exhaustive search. The main algorithm is shown in algorithm 2.

Algorithm 2. Main
set L− = N
create ranking trees T G for all goods
collect pruning members S−

while S− �= ∅ do
locate S∗ ∈ S−

set A′ = A′ − S∗

set S = S ∪ S∗

set L− = L− ∪ S
collect pruning members S+

if S+ = null then
set S∗ = the next profitable sibling ofS∗

end if
end while

3.2 Generating Coalition Structure

Once each agent finishes its deliberation in the first stage, it exchanges all the
coalitions generated with all other agents. It then uses the pattern to generate
coalition structures. Start with the best coalitions, it follows the patterss layer
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by layer from left to right and from top to bottom in each layer. For each pat-
tern, the agent will choose a combination of its own best coalitions and those it
received from other agents to generate coalition structures. For example, with a
pattern of 4 + 3 + 2, the agent will place its best coalition of cardinality 4 as the
first coalition of that coalition structure. One of the best coalitions of cardinality
3, whose members are not in the first coalition, will be placed as the second coali-
tion. One of the best coalitions of cardinality 2, whose member is not in the first
two coalitions will be placed as the coalition structure as the last coalition. In
the case the agent can not find appropriate coalitions to fit in, it places an empty
set instead. The coalition structure value is the sum of those coalition values.
In each round of proceeding through all patterns, agent can extend the scope
of best coalitions involved one by one. It, for example, generates the coalition
structure using only the best coalitions in the first round. It then use the best
plus the second best coalitions for the second round, and so on. The following
is the algorithm for generating coalition structures is shown in algorithm 3:

Algorithm 3. Generating Coalition Structures
exchange best coalitions with all other agents
sort coalitions for each cardinality by their coalition values in descending order
generate patterns for each layer
set bestcoal to 1
while time is available do

insert the bestcoal coalitions for each CScardinality
for all layers do

for all patterns do
generate combinations of best coalitions in CScardinality

end for
end for
increase bestcoal by 1

end while

3.3 Example

This section gives an example of how this algorithm works. Let the system is
composed of a set of four agents: A = {a1, a2, a3, a4}. After the first deliberation
process, all the coalition values are computed and sent across. Their values are
as the followings:

v1 = 8 v12 = 13 v123 = 21 v1234 = 22
v2 = 12 v13 = 16 v124 = 23
v3 = 13 v14 = 10 v134 = 16
v4 = 6 v23 = 18 v234 = 19

v24 = 20
v34 = 15
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After exchanging the coalitions generated among each other, each agent can
select for each cardinality its best coalition. Let assume that agents only operate
on the best coalitions. Agents’ best coalitions are as the followings:

Cardinality a1 a2 a3 a4

1 v1 v2 v3 v4
8 12 13 6

2 v13 v24 v23 v24
16 20 18 20

3 v124 v124 v123 v124
23 23 21 23

4 v1234 v1234 v1234 v1234
22 22 22 22

For the system of 4 agents, the breaking patterns of coalitions are as the
followings:

No. of coalitions 1 2 3 4
Patterns 4 3 + 1 2 + 1 + 1 1+1+1+1

2 + 2

Using the algorithm in the second deliberation process, each agent’s coalition
structures computed are shown below. Each agent will achieve the same optimal
coalition structure whose value is 41.

a1 a2

CS1234 = 22 CS1234 = 22
CS124,3 = 23 + 13 = 36 CS124,3 = 23 + 13 = 36
CS1,234 = 8 + 0 = 8 CS2,134 = 12 + 0 = 12
CS13,24 = 16 + 20 = 36 CS24,13 = 20 + 16 = 36
CS13,2,4 = 16 + 12 + 6 = 34 CS∗

24,1,3 = 20 + 8 + 13 = 41
CS1,23,4 = 8 + 18 + 6 = 32 CS2,13,4 = 12 + 16 + 6 = 34
CS1,2,34 = 8 + 12 + 0 = 20 CS2,3,14 = 12 + 13 + 0 = 23
CS∗

1,3,24 = 8 + 13 + 20 = 41 CS2,1,34 = 12 + 8 + 0 = 20
CS1,2,3,4 = 8 + 12 + 13 + 6 = 39 CS1,2,3,4 = 8 + 12 + 13 + 6 = 39

a3 a4

CS1234 = 22 CS1234 = 22
CS123,4 = 21 + 6 = 27 CS124,3 = 23 + 13 = 39
CS3,124 = 13 + 23 = 26 CS4,123 = 6 + 21 = 27
CS23,14 = 18 + 0 = 18 CS24,13 = 20 + 16 = 36
CS23,1,4 = 18 + 8 + 6 = 32 CS∗

24,1,3 = 20 + 8 + 13 = 41
CS∗

3,1,24 = 13 + 8 + 20 = 41 CS4,13,2 = 6 + 16 + 12 = 32
CS3,2,14 = 13 + 12 + 0 = 25 CS4,23,1 = 6 + 18 + 8 = 32
CS1,2,3,4 = 8 + 12 + 13 + 6 = 39 CS1,2,3,4 = 8 + 12 + 13 + 6 = 39
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4 Experiment

We conduct experiment by simulating agents executing our algorithm against
exhaustive search within the range of 10 − 50 agents due the the limitation to
run exhaustive search. We compare the performance of both algorithms in terms
of number of partitions generated and elapsed time of generating best coali-
tion structures. In each round, the agents number increases by 5. The number of
goods and resources are equal, begins from 3 and increases by 1 in every 2 rounds.
The technology matrix, agents’ resources and cooperation costs among agents
are randomly generated with uniform distribution. The number of each resource
αij in the technology matrix is in the range 0 − 10. The prices of the goods are
in the range of 10 − 20 while the cooperation costs are in the range of 0 and
the number of agents in that round, e.g., 10, 15, . . .. We test our algorithm down
to the 5th best coalitions only. As our algorithm deals with non-superadditive
environments, this setting tends to increase the cooperation cost of a coalition as
its size grows. Hence it forces agents to work harder to form profitable coalitions
and to achieve optimal coalition structures. Both algorithms uses the Simplex
algorithm to find the optimal solution for each coalitions. Figure 1 compares
the performance of our algorithm against that of exhaustive search. The left
x-axis is the number of coalition structures generated while the right x-axis is
the elapsed time spent for generating optimal coalition structures in millisec-
onds. Since the data used is randomly generated, we present average values from
various runs which constantly show signficant difference between results of the
two algorithms. The empirical results show that our algorithm performs signifi-
cantly better than exhaustive search. We experienced that exhaustive algorithm
hardly make progress after the number of agents is larger than 40. As shown in
the figure, the number of coalition structures generated by exhaustive algorithm
is much larger than that of our algorithm. Furthermore, the elapsed time for
generating optimal coalition structures of exhaustive search is also much larger
than that of our algorithm.

5 Related Work

Shehory et. al [7] propose an algorithm to allocate tasks to agents in distributed
problem solving manner, i.e., agents try to maximize the utility of the system.
They consider a domain where a task composed of multiple subtasks, each of
which requires specific capacity. These tasks have to be carried out by agents
who have specific capacities to carry out tasks. Each agent prepares its list of
candidate coalitions and proposes to other agents. Shehory et. al. [5] study
overlapping coalition formation in distributed problem solving systems in non-
superadditive environments. Although agents can belong to multiple coalitions
at the same time, agents execute one task at a time. The task allocation process
is completed prior to the execution of the tasks. Agents are group-rational, i.e.,
they form coalition to increase the system’s payoff. Sandholm et. al. [4] ana-
lyze coalition formation among self-interested agents who are bounded-rational.
They consider deliberation cost in terms of monetary cost. The agents’ payoffs
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Fig. 1. This graph shows the number of coalition structures generated and elapsed
time for generating the coalition structures of our algorithm against those of exhaustive
search

are directly affected by deliberation cost. In their work, agents agree to form
coalition and each of the agents can plan to achieve their goals. Soh et. al. [6]
propose an integrated learning approach to form coalition in real time, given
dynamic and uncertain environments. This work concentrates on finding out
potential coalition members by utilizing learning approach in order to quickly
form coalitions of acceptable quality (but possibly sub-optimal.) Sandholm et.
al. [3] study the problem of coalition structure generation. Since the number of
coalition structures can be very large for exhaustive search, they argue whether
the optimal coalition structure found via a partial search can be guaranteed
to be within a bound from optimum. They propose an anytime algorithm that
establishes a tight bound withing a minimal amount of search.

6 Conclusion and Future Work

We propose an algorithm for computing optimal coalition structure for linear
programming domains among fully-cooperative agents. Our algorithm tries gen-
erate best coalitions by pruning the least profitable agents from the grand coali-
tion. Then the coalitions generated will be exchanged among agents. Lastly,
agents use coalitions exchanged to generate coalition structure. The empirical
results show that our algorithm help generate the coalition structures much
faster than exhaustive search. Our algorithm dramatically reduces the number
of coalitions generated hence reducing the number of coalition structures. As a
result, the elapsed time of generating the coalition structures is relatively small.

Although this algorithm helps reduce number of coalitions involved in gen-
erating coalition structures, there is always room to improve. We want to fur-
ther improve our algorithm for larger number of agents, for example, up to 1000



24 C. Sombattheera and A. Ghose

agents. Lastly, we want to study this problem in related domains, e.g., non-linear
programming.
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Abstract. Assistance to people suffering from cognitive deficiencies in
a smart home raises complex issues. Plan recognition is one of them.
We propose a formal framework for the recognition process based on
lattice theory and action description logic. The framework minimizes
the uncertainty about the prediction of the observed agent’s behaviour
by dynamically generating new implicit extra-plans. This approach offers
an effective solution to actual plan recognition problem in a smart home,
in order to provide assistance to persons suffering from cognitive deficits.

1 Introduction

Recent developments in information technology and increasing problems in the
health field, including population ageing and medical staff shortages, have opened
the way to a whole set of new and promising research avenues, most notably,
work on smart homes. A growing literature [3][6][8][11] has explored the process
by which cognitive assistance, inside a smart home, is provided to occupants suf-
fering from cognitive deficiencies such as Alzheimer’s disease and schizophrenia,
for the performance of their Activities of Daily Living (ADL). One of the major
difficulties inherent to cognitive assistance is to identify the on-going inhabitant
ADL from observed basic actions. This problem is known as plan recognition in
the field of artificial intelligence [7].

The problem of plan recognition can be basically synthesized by the need
“. . . to take as input a sequence of actions performed by an actor and to infer
the goal pursued by the actor and also to organize the action sequence in terms
of a plan structure” [15]. Thus, the main objective is to predict the behaviour of
the observed agent. In the context of cognitive assistance, these predictions are
used to identify the various ways a smart home (observer agent) may help its
occupants (patients). An important assumption underlying this problem is that
the observed agent is rational, i.e. that all his performed actions are coherent
with his intentions. However, for patients suffering from cognitive deficiencies,
rationality might indeed be a strong assumption. The purpose of this paper is
then to initiate the development of a generic approach to plan recognition for a
smart home, that could be applied to people with cognitive impairments.
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The literature related to plan recognition [1][3][7], in particular the logical
approaches [10][17], share a significant limitation in that they do not take into
account intra-dependencies between the possible plans in the recognition process.
These intra-dependencies result from the fact that, even if possible plans might
seem connected, the intentions concerning two distinct observations are not nec-
essarily related. In fact, Kautz [10] has pointed out this problem in his work.
Hence, taking into account of this intra-dependency factor should be a solution
to the issue of completing the observer’s plans library. Our approach addresses
this problem and relies on lattice theory and action description logic [5]. We
define algebraic tools allowing to formalize the inferential process of plan recog-
nition in a model of reasoning by classification through a lattice structure. This
interpretation model defines a recognition space. This space will not only serve to
characterize the uncertainty in the prediction of a future action. It will also serve
to determine the appropriate time when the assisting agent could be brought in
to increase his autonomy in order to perform an assistance action in the habitat
by taking over the ADL patient control.

The paper is organized as follows. Section 2 presents our model of plan recog-
nition based on lattice theory. Section 3 shows how the model is implemented to
address the ADL recognition problem that we encounter in the DOMUS project.
Section 4 presents an overview of previous works in the field of plan recognition.
Finally, Section 5 presents our conclusion and future work.

2 Recognition Space Model

For an observer agent, the process of plan recognition consists in finding a recog-
nition space (model of interpretation), based on the set of possible plans. This
space allows the observer to interpret the set of the observed actions, performed
by a human or another observed agent in action, with the aim of predicting
his future actions and thus the plausible plans that would enable us to ex-
plain his behaviour. Let A = {a, b, . . .} be the set of actions that an observed
agent is able to perform and let P = {α, β, . . .} be the set of known plans of
the observer (his knowledge base). Let O be the set of observations such that
O = {o | ∃a ∈ A → a(o)}. The assertion a(o) means that observation o cor-
responds to an a-type action. The definition of a possible plan α that would
explain the observation o is expressed as follows:

Definition 1. A plan α is a possible plan for an action a(o) if and only if
a ∈ α. The action a(o) is a component of the sequence α.

Consequently, the set of all possible plans for the observations O can be defined
by P o

s = {α ∈ P | ∃(a, o) ∈ α×O → a(o)}. Starting with this set of plans, we can
deduce that the agent will at least perform one of them. However, its intentions
can go beyond the set of possible plans. For instance, considering a well-known
Kautz’s example given in [10], we see that if we observe two actions GetGun
and GotoBank, then we cannot automatically conclude that the observed agent
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wants to rob a bank, or deduce a disjunction of possible plans Hunt or RobBank
as proposed by Kautz’s theory. The fact is that his intentions can be to go on
a hunting trip and to cash a check on the way, knowing that the initial set of
possible plans were RobBank and Hunt. Therefore, the model that we designed
formally structures the recognition process to take this reality into account.
In order to algebraically define our recognition model, we need first to show an
overview of the action model on which it is based. This action model is described
in great detail in [5].

2.1 Action Model Overview

Our approach to the formalization of the actions follows the lines of Description
Logic (DL) [2]. We draw on the state-transition action model to develop a the-
oretical model of the action [5]. An action a over a set of states of the world W
is a binary relation a(w) = {e|(w, e) ∈ W × W} where w and e are respectively
the current and next states. The actions operate on the conceptual and assertion
formulas that are used to describe facts about a state of the world (the patient’s
environment). The set of states where an action a may be performed is given by
the domain Dom(a) = {w ∈ W | w |= pre(a)}, where pre(a) is the precondition
of a, defined as a conjunction of assertion formulas concerning the conceptual
objects as well as the roles that bind these objects. The co-domain is given by
CoDom(a) = {e ∈ W | e |= pos(a)}, where pos(a) expresses the effect of a(w),
defined by a set assertions formulas that change the interpretation of concepts
and roles involved in an action a(w). The following definition, described in [5],
defines the subsumption relationship between action concepts:

Definition 2. Let a and b designate two actions. If Dom(a) ⊆ Dom(b) and
CoDom(a) ⊆ CoDom(b), then b subsumes a and we denote a ≺p b.

Based on our action model in DL, a plan structure α may be defined as a sequence
of actions a1, . . . , an, denoted α(an◦an−1◦· · ·◦a1) where ◦ is a sequence operator
and α(w0) = an(an−1(· · · (a1(w0)) · · ·)), allowing the transition from an initial
state w0 to a final state wn. We now need to introduce a new concept of a
variable plan to characterize the uncertainty in the predictions.

2.2 Variable Plan

Let V = {x, y, z, . . .} be the set of the action variables. An action variable x in
a plan α corresponds to a variable for which we may substitute any sequence
of actions included in its substitution domain Sub(x) ⊆ 2A. A variable plan is
then defined as a plan that contain at least one action variable in is sequence.
This kind of plan corresponds to an intention schema, for which the instantiation
allows to generate new implicit extra-plans that are not preestablished in the
plans library. We define a substitution σ : V �→ 2A as a set of variable-actions
pairs: σ = {x ← a1, y ← a2 ◦ a3, . . .}, where σ(α) = (an, . . ., σ(x), . . ., σ(y), . . .,
a1) corresponds to an instantiation of α, computed by substituting each action
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variable in α by the corresponding action sequence specified in σ. The only
possible substitution for an action a is itself such that: ∀a ∈ A then σ(a) = a.

Definition 3. α(an ◦ · · · ◦ x ◦ · · · ◦ a1) is a variable plan if and only if there
exists a substitution σ(x) ∈ 2A such that α(an ◦ · · · ◦ σ(x) ◦ · · · ◦ a1) is a
consistent plan.

We note that the consistency properties will be defined in the next section. An
action variable will be introduced inside a new plan, resulting from the com-
putation of the lower bound between a pair of incomparable possible plans.
Incomparable plans mean that both contain at some i-th position of their se-
quence two actions that cannot both be subsumed by any common action. In
such a case, an action variable whose substitution domain is equal to the com-
position of these two incompatible actions will be introduced. For instance, we
can refer to Kautz’s example and suppose that we have two incomparable pos-
sible plans RobBank(GotoBank ◦ GetGun) and Hunt(GotoWood ◦ GetGun).
The actions GotoBank and GotoWood are incomparable and a variable plan
(x ◦ GetGun) will result from the computation of the lower bound of these
two plans. The substitution domain of the variable x would then be Sub(x) =
{GotoBank◦GotoWood, GotoWood◦GotoBank}. From there, we can define the
subsumption relationship that organizes plans into a taxonomy.

Proposition 1. Let α, β be two plans. We have α ≺p β if there is a sub-
stitution σ = {x ← ai, y ← bj, . . .} such that ∀i ∈ [1, |β|], (ai, bi) ∈ α × β then
σ(ai) ≺p σ(bi), where |β| is the cardinality of plan.

Proof 1. The proof directly follows from that of Definition 2 and the defini-
tion of plans subsumption. Let Dom(σ(ai)) = {w ∈ W | w |= pre(σ(ai))}. If
Dom(σ(ai)) ⊆ Dom(σ(bi)), then ∀(w, e) ∈ Dom(σ(ai)) × CoDom(σ(ai)), we
have (w, e) ∈ Dom(σ(bi)) × CoDom(σ(bi)). Therefore w |= pre(σ(bi)) and e |=
pos(σ(bi)). If action bi ∈ β may be performed in every state where action ai ∈
α is executable, then action bi subsumes action ai. Therefore, α ≺p β. �

With these basic formal elements, the issue then is how to adequately refine the
set of possible plans partially ordered by this subsumption relation. The solution
we propose is to organize them into a taxonomy and make explicit the extra-
plans that are implicit (induced by the existing intra-dependencies) by applying
the composition and the disunification operation on each pair of incomparable
possible plans.

2.3 Plans Composition

Let α, β ∈ P o
s × P o

s be two possible plans interpreting a sequence of observed
actions O at a specific time t. By composition, one seeks to determine all consis-
tent combinations between the future actions succeeding the observations in the
possible plans. The result of the composition of plans α and β, denoted α ⊕ β,
is a set of extra-plans satisfying the following consistency properties:
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1. Stability: each extra-plan in α ⊕ β is formed by: (i) a set of partial plans
included in the knowledge base P of the observer, (ii) at least one action
common to plan α and to plan β, and (iii) a composition of actions that are
component of α or component of β. There is no possibility of introducing
other external actions.

2. Closure: each extra-plan in α ⊕ β must admit an upper bound α∇β and a
lower bound αΔβ. Hence, the extra-plans must be included in the interval
[αΔβ, α∇β].

We note that the composition of a plan α with itself gives the same plan
α. Now, let us reconsider Kautz’s example where GetGun is the observed ac-
tion. The set of possible plans according to this observation is PGetGun

s =
{RobBank(GotoBank ◦ GetGun), Hunt(GotoWood ◦ GetGun)}. The compo-
sition of the plans RobBank and Hunt is (RobBank ⊕ Hunt) = {(GotoBank ◦
GotoWood ◦ GetGun), (GotoWood ◦ GotoBank ◦ GetGun)}. These new extra-
plans are dynamically computed according to the observed action GetGun. One
can ask a question regarding the computational complexity of this composition
operation. The answer is that the combination of the incomparable possible plans
is not done blindly. First, we only consider the consistent possible plans, which
satisfy the stability and closure criteria (first filter). Second, the possible plans
that we consider are those which are in the lattice structure bounded by the
upper and lower bounds (second filter). Finally, for each pair of incomparable
plausible plans, we combine them by using the disunification operation (third
filter), which will be defined in the next section. These filters allow us to reduce
and control the computational complexity of the composition operation.

2.4 Disunification for Recognition Space Lattices

We define the set of plausible plans P o
l as the union of the composition pairs of

possible plans, according to the set of observed actions O, such that:

P o
l =

⋃
α,β ∈ P o

s

α ⊕ β

We consider P o
l as an interpretation model for O if P o

l forms a lattice structure
ordered by the subsumption relation of plans and if each couple of incomparable
possible plans admits an upper bound ∇ and a lower bound Δ.

Proposition 2. The set of plausible plans P o
l ordered by the subsumption re-

lation ≺p, forms a lattice1 structure, denoted �o =< P o
l , ≺p, Δ, ∇ >.

This recognition space is the interpretation model of the observed agent behav-
iour, where the infinimum of the lattice corresponds to the schema of minimal
intention. It is defined as a plan that can contain action variables serving to char-
acterize not only the uncertainty in the prediction of a future action but also

1 The proof is available in http : //www.brunobouchard.com/proposition2 proof.pdf
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the appropriate moment where the observer assisting agent could be brought to
increase its autonomy to perform an assistance action in the habitat.

Definition 4. Let α(an ◦ · · · ◦ a1), β(bm ◦ · · · ◦ b1) ∈ P o
l interpret the ob-

served actions O, where |O| = k. The upper bound α∇β is the least com-
mon partial plan subsumer π(cr ◦ · · · ◦ c1), such that ∀i ∈ [1, r], with k ≤ r ≤
min(n, m), ∀oj ∈[1,k], ∀(ai, bi) ∈ α × β, then cj(oj), oj ∈ O, ai ≺p ci and bi ≺p ci.

The symbol π represents the result of the upper bound computation between two
plans α and β, including the observations. Consequently, the upper bound can-
not be empty as it is minimally composed of the observations. According to the
previous example, the least common partial subsuming plan between the pos-
sible plans RobBank and Hunt is (RobBank∇Hunt) = (GetGun(o1)), where
o1 ∈ O is the only observation corresponding to the action type GetGun. The
lower bound of two incomparable possible plans consists of the observed actions,
followed by the predictions related to the future actions which are represented
by action variables. The interest on computing this lower bound is to find a new
intention schema by disunifying the possible plans using the first-order logic
disunification operation DisU [9]. Thereafter, this intention schema is used to
reunify the possible plans through the composition operation previously defined
to generate new implicit extra-plans.

Definition 5. Let α(an ◦ · · · ◦ a1), β(bm ◦ · · · ◦ b1) ∈ P o
l interpret the observed

actions O, with |O| = k. The lower bound αΔβ is the most common partial plan
subsumed, given as follows:

αΔβ =
{

bm ◦ . . . ◦ bn+1 ◦ DisU(an, bn) ◦ . . . ◦ DisU(ak+1, bk+1) ◦ ok ◦ . . . ◦ o1, if n ≤ m

bn ◦ . . . ◦ bm+1 ◦ DisU(am, bm) ◦ . . . ◦ DisU(ak+1, bk+1) ◦ ok ◦ . . . ◦ o1, if m ≤ n

where DisU is a disunification operation defined as an injective application:
A ∪ V × A �→ A ∪ V , on the set of incomparable actions of plans α, β:

DisU(a, b) =
{

c iff ∃c ∈ A : c ≺p a and c ≺p b
x elsewhere, with Sub(x) = {a ◦ b, b ◦ a}

To summarize, the recognition process consists in finding a recognition space
�o, which is a minimal model of interpretation of the observations O that admits
a supremum ∇sup, corresponding to the most specific common subsumer of all
possible plans, and that admits an infinimum Δinf , corresponding to the min-
imal intention schema predicting the future behaviour of the observed agent.
This space �o = {δ ∈ P o

l |Δinf ≺p δ ≺p ∇sup} constitutes a very interesting
tool to characterize and to control the recognition process. Of course, it is as-
sumed that all the observed actions are related. Consequently, we build a lattice
structure starting from the first observation that will be refined when new ob-
servations will be detected. This refinement will be computed by extracting a
sub-lattice (a new refined recognition space) from the initial lattice structure,
and so on.
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3 Recognition of Activities in a Smart Home

The DOMUS 2 lab consists of a standard apartment with a kitchen, living room,
dining room, bedroom, and bathroom that are equipped with sensors, smart tags
(RFID), location and identification systems for objects and people, audio and
video devices, etc. This smart home is used to explore ways to provide per-
vasive cognitive assistance to people suffering from cognitive deficiencies such
as Alzheimer’s disease, head traumas, and schizophrenia [11]. As we can see
on Figure 1, the current infrastructure allows the connection of sensors (move-
ment detectors, lighting system, pressure mats, etc.) to services that generate
low-level information (for instance, basic actions and localization) [16]. In the
current implementation, most of devices (sensors and effectors) are monitored
and controlled through a Crestron-based infrastructure. Basic events are gener-
ated by sensors and are directly sent to the agents. Consequently, our low-level
activity recognition (LAR) agent can register as an event listener, though a Java
interface, in order to get the inputs sent by the sensors. This agent transforms
low-level inputs into low-level actions that can be analyzed by higher level-agents.
These inputs will then be used as a starting point from high-level recognition
process.

Fig. 1. Achitecture of the system

The LAR agent owns a virtual representation of the habitats environment
encoded in a description logic knowledge base described with the PowerLoom
system [13]. This terminological base is composed of a set of conceptual and
assertional objects that synthesize the elements of the environments. In other
2 The DOMUS lab is sponsored by the Natural Sciences and Engineering Research

Council of Canada (NSERC) and by the Canadian Foundation for Innovation (CFI).
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words, this knowledge base serves to define the current state of the environment.
When new inputs are received from hardware sensors, the LAR agent updates
the state of the world and creates an action structure, representing the changes
that happened to the environment, according to our model of action described in
[5]. This action structure is then classified according to a taxonomy of low-level
actions to identify its conceptual type. Thereafter, the LAR agent notifies the
cognitive assistant that a new low-level action is detected and it sends the actions
type. Actually, we suppose that the low-level sensors give us correct inputs.
Another DOMUS team is working on detection and isolation of sensors failure,
in order to relax this strong assumption and to minimize low-level uncertainty.

3.1 High-Level Recognition Service

The assistant agent is equipped with a high-level recognition service (HLRS),
which provides an interpretation model of the occupant behaviour as input to
assistance service. We now discuss a simple assistance example that illustrates
the principles of our high-level plan recognition process. Let us assume the case
of Peter, a person with Alzheimer’s disease at level 3 (mild cognitive decline) by
referring to the global scale of the deterioration stages of the primary cognitive
functions of an individual [14]. In the morning, Peter gets out of bed and moves
towards the kitchen. The pressure mat located at the base of Peter’s bed has
detected his awakening and has activated the recognition system. The movement
detector located at the kitchen entrance indicates that Peter has entered that
room. The low-level action recognition system receives the sensors inputs, given
by the Crestron infrastructure, and then conceptualizes the changes that have
just occurred in the environment in an action structure that it classifies through
its taxonomy to identify the observed action GoToKitchen. While referring to
the knowledge base of the smart home, the observed action may be performed
for several purposes, that is, to prepare a cup of tea in the kitchen or to wash a
dish. To be able to plan a future assistance task, the agent must initially under-
stand Peter’s intentions by building a minimal interpretation model describing
the plausible plans that can explain his behaviour at this specific moment. This
model takes the form of a lattice built following our recognition model, as shown
in Figure 2. On the left of the figure, one may see the description of low-level
actions (top left) and the high-level activities (bottom left) that has been recog-
nized by the system. On the top right, one can see a graphical tool built in
SVG3 (here showing the kitchen) that allows us to simulate the activation of the
various environment sensors by clicking on the corresponding graphical objects.
On the bottom right, one can see the recognition space lattice resulting from the
high-level recognition.

The set P = {WashDish(StartWashing ◦ GoToKichen), PrepareTea( GetWa-
ter ◦ GoToKitchen), WatchTv(TurnOnTv ◦ GoToLivingRoom), Drink( GetWa-
ter)} constitutes the knowledge base of the assistant agent and includes all the

3 Scalable Vector Graphics. Language for describing two-dimensional graphics in XML.
See SVG web page http://www.w3.org/Graphics/SVG/
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Fig. 2. DOMUS application of activities recognition

plans (ADL) of the occupant. The set O contains all the observed actions o1 de-
tected by the system, in this case, only one action of the GoToKitchen type, such
as O = {GoToKitchen(o1)}. The set P o

s contains all the known plans including,
in their decomposition, the observed action that is the plans PrepareT ea and
WashDish. The lattice supremum corresponds to the smallest common sub-
sumer of the set of possible plans P o

s which is the partial plan made up solely
by the observation. The lattice infinimum corresponds to the minimal intention
schema of the occupant, as shown on the bottom left of Figure 2. The action
variable x, obtained by the disunification operation, characterizes uncertainty
in the prediction of the next action. The substitution domain of this variable is
Sub(x) = {StartWashing ◦ GetWater, GetWater ◦ StartWashing}. The mini-
mal intention schema enables us to generate, by the substitution process of the
action variables, two new coherent extra-plans that did not exist beforehand in
P , that is I1 and I2, as shown in Figure 2. These extra-plans are the result of the
disunification and the composition of the possible incomparable plans according
to their intra-dependencies. Extra-plans I1 and I2 are consistent, according to
the consistency criteria defined in Section 2.3, as there is a decomposition of par-
tial plans where each one subsumes a known plan included in P . The recognition
space �o is composed of all the plans that can be classified between the lattice
infinimum and supremum, such as �o = {WashDish, PrepareTea, WashDish ∇
PrepareTea, WashDish Δ PrepareTea, I1, I2}. These set constitute the whole
plausible plans that can explain the behaviour of the occupant. Now, let us
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suppose that a second observation GetWater(o2) was detected. The new inter-
pretation model would then be the sub-lattice upper bounded by PrepareT ea
and lower bounded by WashDishΔPrepareT ea, as shown in Figure 2. Let us
now suppose that the assistant agent has detected that the inhabitant remains
still for a certain period of time. In such a case, the assistant agent will have to
increase his autonomy level by taking control of the home using the intention
schema of the inhabitant, defined by the infinimum Δinf = (x ◦ GoToKitchen)
of the lattice, to predict what the person wanted to do. In our example, the
occupant wishes to prepare tea or pursues two distinct goals represented by the
extra-plan I1, that is WashDish and DrinkWater. In this context, the smart
home would be authorized to perform an action of assistance, like reminding the
occupant of the procedure to achieve his inferred goals in the event of a memory
lapse (i.e. Alzheimer’s disease).

4 Related Works

Several approaches have been explored to seek solutions to plan recognition, such
as the probabilistic approaches [1][6][7], the learning approaches [3][12] and the
logical approaches [10][17]. The probabilistic methods, primarily based on the
on the Markovian model [6], Bayesian networks [1] and on the Dempster-Shafer
theory [7], use a set of probabilistic rules which enable to update the probability
attributed to each plausible hypothesis following an observation. The conclusion
drawn from the recognition process by the system is simply the hypothesis having
the highest probability. For instance, Boger et al. [6] used such approach in the
development of the COACH system; a cognitive aide for patients with dementia
based on a partially observable Markov decision process (POMDP). This sys-
tem aims to monitor a cognitively impaired user attempting a handwashing task,
and to offer assistance in the form of task guidance (e.g. prompts or reminders).
The weakness of the probabilistic approaches stems from the heuristic methods
used to compute the probability of each competing hypothesis, which are highly
dependent on the context [7]. The learning techniques seek to identify patterns
from the observed actions in order to build a probabilistic predictive model of
the observed agent behaviour. They have been used by [12] in order to develop
the Activity Compass system; a cognitive assistant for early-stage Alzheimer’s
patients. It is based on a Bayesian learning model of a patient moving through
a transportation network. The main limitation of this kind of approaches is due
to the fact that the generalization learned rule might lead to infer inconsistent
behaviour and also to a very large amount of training data. Moreover, these
techniques cannot make useful predictions when novel events occur. The logical
approaches of Kautz [10] and Wobke [17] are closer to our work. In these two
theories, the observer agent starts with a plan library expressed with first-order
axioms forming an abstraction/decomposition hierarchy. Kautz proposes a set
of hypotheses (exhaustiveness, disjointedness, component/use, minimum cardi-
nality), based on McCarthy’s circumscription theory, that serves to extract a
minimal covering model of interpretation from the hierarchy, based on a set of
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observed actions. The weakness of Kautz’s approach is that all plans inferred
as possible through the covering model are considered equiprobable. Wobke has
proposed a solution to this limitation using situation theory [4]. His proposal,
based on Kautz’s work, consists in defining a partial order relation organizing
hierarchy’s elements by level of plausibility. A significant limitation of Wobke’s
work is created by the situation semantics (a particular case of possible worlds
semantics), which is too complex to make operational in a real context. Finally,
these previously explored approaches assume that the observer have a complete
knowledge of the domain and thus, they cannot recognize plans that are not
included in the plans library.

In contrast, our approach defines algebraic tools that allow to exploit the
existing relations between possible plans in order to dynamically generate new
plausible extra-plans that were not preestablished in the knowledge base. Conse-
quently, our work partially addresses the problem of completing the plans library,
which indeed cannot be complete in any domain. Another promising improve-
ment of our model would be to organize the result of the recognition process
into a structured interpretation model, which takes the form of a lattice, rather
than a simple disjunction of possible plans without any classification. Therefore,
our approach minimizes the uncertainty related to observed patient’s behaviour
by bounding the plausible recognition plans set. Moreover, we notice that the
computational complexity of our recognition process is decreasing as the num-
ber of observations increases. This performance is due to the refinement process,
which, instead of creating a whole new lattice, extracts a refined sub-lattice from
the first one created.

5 Conclusion

In this paper, we proposed a non-quantitative approach, based on lattice theory
and action description logic, for re-examining the main issues surrounding the
problem of formalizing plan recognition. This approach provides a viable solution
to plan recognition problems by minimizing uncertainty about the prediction
of the observed agent’s behaviour. This is achieved by dynamically generating
implicit extra-plans resulting from intra-dependencies existing between possible
plans. It should be emphasized that this initial framework is not meant to bring
exhaustive answers to the issues raised by the multiple problems related to plan
recognition. However, it can be considered as a first step towards developing a
complete formal plan recognition theory, based on the classification paradigm. It
should bring effective solutions to concrete problems such as plan recognition in a
smart home. For further work, we plan to extend our logical model by attributing
a probability to each plausible plan according to contextual information, such as
the time of the day, and according to the inhabitant’s specific profile, such as the
learned patient’s habits. Such hybrid approach will address the equiprobability
problem of the possible plans characteristics to logical recognition models and
thus, it will offer a means to favour one explanation over another in the lattice
recognition space.
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Abstract. Thanks to new technological advances, geospatial information is 
getting easier to disseminate via Internet and to access using mobile devices. 
Currently, several mapping applications are providing thousands of users 
worldwide with web and mobile maps generated automatically by extracting 
and displaying pre-processed data which is stored beforehand in specific 
databases. Though rapid, this approach lacks flexibility. To enhance this 
flexibility, the mapping application must determine by itself the spatial 
information that should be considered as relevant with respect to the map 
context of use. It must also determine and apply the relevant transformations to 
spatial information, autonomously and on-the-fly, in order to adapt it to the 
user’s needs. In order to support this reasoning process, several knowledge-
based approaches have been proposed. However, they did not often result in 
satisfactory results. In this paper, we propose a multiagent-based approach to 
improve real-time web and mobile map generation in terms of personalization, 
data generation and transfer. To this end, the agents of our system compete for 
space occupation until they are able to generate the required map. These agents, 
which are assigned to spatial objects, generate and transfer the final data to the 
user simultaneously, in real-time.   

1   Introduction 

Nowadays, users worldwide can readily access spatial data via Internet or using 
mobile devices. However, this data, which is increasingly available thanks to new 
advances in communication technologies, development standards and information 
storing and handling techniques [1], does not always matches users’ requirements. 
Consequently, spatial transformations must often be applied in order to generate new 
data that meets users’ needs. These transformations, which enable a given system to 
generate new data during a scale reduction process, correspond to the so-called 
cartographic generalization process. Currently, several mapping applications, such as 
MapQuest, YahooMaps, and Google Earth, apply transformations to geographic 
objects in a pre-processing mode. They provide maps to users by extracting and 
displaying the pre-processed data which is stored beforehand in specific databases. In 
spite of its rapidity, this automatic map generation approach lacks flexibility 
especially since data was produced once for all at predefined scales. In order to 
enhance the automatic web and mobile map generation process, the mapping 
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application must determine by itself which spatial information should be considered 
as relevant with respect to the map context of use. It must also autonomously 
determine and apply the relevant transformations to spatial objects in order to adapt 
the content of the map to the user’s expectations and display screen. When the user 
expects to get the required map immediately, the map generation process is said to be 
on-the-fly1, otherwise, it is said to be on-demand. Several knowledge-based 
approaches, using case-based reasoning and rule-based systems, have been proposed 
to generate maps for web and mobile users on-the-fly. However, they were limited 
and unable to fully automate the web and mobile map generation process.  

In this paper, we propose a new multiagent-based approach to improve on-the-fly 
web and mobile map generation. The idea is to assign a software agent to every 
spatial object. Due to the reduced sizes of screens, agents are regarded as competing 
for space occupation during the generation of the required maps. During this 
competition, they must cope with several types of constraints. Section 2 presents these 
constraints in the context of web and mobile mapping services. Section 3 outlines the 
knowledge-based approaches that addressed the on-the-fly map generation process. 
Section 4 focuses on the use of multiagent systems for on-the-fly web and mobile 
map generation. Section 5 deals with the interactions of our agents during the map 
generation process. It discusses the types of interactions that seem suitable to real-
time map generation. Section 6 presents the architecture of the multiagent system that 
we propose in order to tackle important problems related to map personalization, 
generation, and transfer. Finally, Section 7 presents examples of web and mobile 
maps generated, on-the-fly, by the SIGERT system in which our multiagent-based 
approach is implemented.  

2   Constraints of Web and Mobile Map Generation  

On-the-fly web and mobile map generation is a challenging task. It has to deal with 
four kinds of constraints: technical constraints, spatial data constraints, user 
constraints and spatial processing constraints (Fig. 1): 

• Technical constraints are independent of the approach used to generate the 
required map. In a web context, these constraints result from limitations, 
opportunities and characteristics of the web such as downloading time and data 
transfer rates. They also result from the limitations of displaying maps on the web 
such as color depth and quality as well as screen sizes and resolution [2]. These 
constraints, which cannot be controlled by map makers due to the variety of client 
systems, are also present in a mobility context in which tracking users is an 
additional constraint.  

• Spatial data constraints are related to data modeling, availability and retrieval. A 
well structured spatial data helps to speed up the extraction of the required spatial 
datasets especially when an efficient spatial data indexation mechanism is 
available.  

1  On-the-fly web and mobile map generation can be defined as the real-time creation and the 
immediate delivery of a new map upon a user’s request and according to a specific scale and 
purpose. 
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• Users’ constraints result from users’ requirements, preferences, cultural 
backgrounds, contexts and spatial reading and reasoning abilities.  

• Spatial processing constraints are related to the challenging task of choosing the 
relevant spatial transformations, their particular implementation algorithms and 
identifying the best sequence to apply them. They are also related to the efficient 
use of spatial data and the real-time adaptation of the contents of maps in order to 
support users and technical constraints. During this adaptation, spatial conflicts 
may appear between cartographic objects, especially because screen sizes are 
often very limited. The resolution of spatial conflicts should comply as much as 
possible with several constraints such as graphical, topological, structural, and 
aesthetic constraints.  

On-the-fly web mapping application

User’s needs, preferences, 

profile, psychology, context, 

cultural background, etc.

Display terminal 
characteristics 

Spatial data 
modeling, availability 

and retrieval 

Generated map

Spatial cognition: how 

does the user interpret 

the map?

Spatial reasoning: how

does the user reason 

about the space?

User’s constraints 

Spatial data  constraints 

Technical  constraints 

Transfer rate 
and time

Spatial data processing constraints 

Automatic
cartographic 
generalization 

Handling objects 
legibility and 

overlap

Fig. 1. Constraints of on-the-fly web and mobile map generation 

Due to the large number of constraints and the time-consuming character of spatial 
processing, it is important to prioritize the issues to be tackled. In the scope of this 
paper, we are particularly interested in finding ways to improve on-the-fly web and 
mobile map generation in terms of personalization and data generation and transfer.  

3   Knowledge-Based Approaches for On-the-Fly Map Generation         

For a long time, new maps used to be generated automatically from existing data 
using algorithmic approaches that apply independent transformations to spatial 
objects. These transformations, which are particularly important during a scale 
reduction process, were generally applied without taking into account the immediate 
environment of spatial objects as well as users’ expectations. In addition, they were 
often applied according to specific sequences that are not always suitable to process 
current space configurations. For these reasons, algorithmic approaches were not 
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always able to generate new maps having a satisfactory quality. To enhance map 
quality, cartographers rely on their expertise and know-how. However, when it comes 
to the automatic map generation process, the mapping application should be able to 
determine and retrieve the relevant objects to be displayed on the final map with 
respect to the user’s needs. It should also be able to determine and apply the suitable 
transformations to cartographic objects in order to adapt the content of the map to its 
context of use.  

In order to take advantage of cartographers’ expertise, several knowledge-based 
approaches have been proposed. Case-based reasoning approaches were set up using 
several types of knowledge, such as: geometric knowledge, procedural knowledge, 
and structural knowledge [5]. These types of knowledge may result in conflicts when 
choosing the suitable transformations to apply to spatial data. In order to minimize 
these conflicts, some works emphasize the use of constraints, such as graphical, 
topological, structural, and aesthetic constraints. In this context, Ruas [6] proposed a 
constraint-based approach that gives to every object the capacity to choose the 
suitable transformation to carry out with respect to its current state. However, this 
approach lacked flexibility and cannot be adapted easily when the specifications of 
the map generation process change.  Furthermore, several authors [7,8] proposed rule-
based approaches to formalize the decisions of cartographers into a set of formalized 
rules. These approaches resulted in interesting solutions for automatic map generation 
process. However, up to now, it has been impossible to develop a large enough set of 
rules to model all the potential situations of this process, especially because rules are 
in competition and cannot be applied to any case. In addition, these rules are related to 
cartographers’ skills and do not take into account users’ needs and abilities to 
interpret maps.   

The existing knowledge-based and algorithmic approaches are limited and unable 
to fully automate the map generation process. In addition, they still lack autonomy 
and intelligence to decide by themselves what to do, when to do and how to do the 
relevant processing during map generation. This autonomy may be obtained using the 
multiagent paradigm [10].  

4   Use of Multiagent Systems for On-the-Fly Map Generation         

The use of multiagent systems in the field of automatic map generation results in 
multiple advantages that further motivate investigations of their application to 
improve on-the-fly web and mobile map generation. As mentioned in previous works 
[11,12,13] these advantages are: their flexibility in solving complex problems [12]; 
their dynamic adaptation to environment changes [13], and their ability to 
successfully model the entire process of automatic map generation, during which 
objects are added, merged, symbolized, or eliminated [11]. Furthermore, in contrast to 
expert systems, a multiagent-based approach supports the holistic nature of on-the-fly 
map generation process.  

The use of multiagent systems in the field of automatic map generation is not new. 
Baeijs [14] used agents to solve spatial conflicts during the map generation process. 
Duchêne [15] used agents in order to generate automatically new data using 
predefined sequences of spatial transformations. Other authors proposed a web-based 
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map information retrieval technique to search for geographical information using 
agents [16]. However, the main research work that investigated the automatic map 
generation process using multiagent systems was the AGENT2 project. The general 
approach used in this project [6,11] consisted in transforming the geographic objects 
contained in the database into agents. The goals of these agents are to satisfy their 
cartographic constraints as much as possible. They choose and apply transformations 
which are adapted to the current configuration of space. They assess and control the 
evolution of their states with respect to performed actions.  

Previous research works based upon multiagent systems were used to support the 
automatic generation of maps without addressing constraints related to on-the-fly map 
generation. In addition, they did not take into account users’ needs. Nevertheless, we 
are convinced that multiagent systems are suitable to improve real-time web and 
mobile map generation thanks to their multiple advantages. In order to prove this, we 
addressed several questions, such as which geographic entities should be modeled as 
agents? Which kinds of interactions should exist between agents? And how can 
agents improve the personalization, generation, and transfer of maps?  

5   Agents’ Interactions         

A map expresses a geographic reality, according to a specific scale and purpose. This 
reality cannot be accurately represented when the scale of the map is reduced (Fig. 2). 
Indeed, scale reduction often diminishes the map’s legibility which then requires 
some modifications in order to be improved. Due to a limited display space, spatial 
objects and symbols may be regarded as competing for the occupation of this space. 
In order to carry out this competition, we propose to assign an agent to every spatial 
object. Since the importance of a given object depends on the user’s query and the 
map’s context of use, we assign a priority to every agent that follows from the 
importance of the object it is assigned to. Using these priorities, we propose to 
categorize, on-the-fly, the initial data into several datasets according to the importance 
of data to the user. We call these datasets layers of interest. Each layer of interest 
contains all the objects that have the same degree of importance for the user. 
Consequently, the automatic map generation process is driven by cartographic rules 
as well as by users’ expectations.  

Fig. 2. Decrease of map legibility as a result of a zoom out operation 

2 AGENT stands for Automated Generalisation New Technology.
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Our agents compete in order to generate the required maps autonomously. The use 
of classical multiagent systems’ techniques (coalition formation, negotiation, etc.) 
during competition is interesting, but not realistic in the context of real-time map 
generation, especially because these techniques require the exchange of too many 
messages between agents, which would result in an extra time that slows down the 
system. In addition, attempts to form coalitions or to negotiate do not always mean 
that an agreement will be reached. Therefore, a user might wait indefinitely the map 
that may not be generated if the agents are not able to find solutions to solve their 
conflicts. In this case, we should better impose rules that restrict the autonomy of 
agents and lead them during their interaction. These rules are particularly important 
since on-the-fly map generation process is time-critical. In this paper, we limit the 
agent interactions to negotiation and cooperation. During these interactions, objects 
may be displaced, scaled-down, exaggerated, merged, or eliminated. At every map 
generation step, every agent checks the changes of its environment. If one or more 
spatial conflicts are detected, the agent verifies the results that it may obtain by the 
different actions it is able to carry out. Then, it chooses the best action to perform.  

In order to facilitate the understanding of the map and adapt its content to users’ 
expectations, we propose to emphasize the objects which are important to the user  
by using multiple representations: graphic, semantic, and geometric representations 
(Fig. 3). Thus, the goal of every agent is to guarantee legible representations of the 
object it is assigned to. When attempting to reach this goal, conflicts may appear due 
to the lack of space. In order to shorten the negotiation time necessary to solve these 
conflicts, we propose the following conflict resolution pattern (Fig. 4): when a spatial 
conflict occurs between two agents, the agent having the lower priority does the first 
attempt to solve the conflict. This attempt does not necessarily result in the 
application of a specific action. If the conflict remains, the agent with the higher  

Fig. 3. Use of multiple representations: geometric (left), geometric-graphic (middle), and 
geometric-graphic-semantic (right) 

1. Carries out the best  possible transformation

:Agent with
lower priority

:Agent with
higher priority

2. notification for the result

3. If conflict unsolved, carries out
the best transformation

3.1 notification for the result

3.2 If conflict unsolved,assumes its
resolution until its end

Fig. 4. Agents’ negotiation pattern 
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priority tries to solve the conflict. If no solution can be found by this latter agent, the 
agent with the lower priority becomes responsible for the resolution of the conflict 
until its end. In some cases, this end may be reached by the elimination of the object 
handled by this agent. 

This negotiation pattern enables us to process data according to its importance. As 
soon as a layer of interest is generated, it is transferred and superimposed on layers of 
interest already transmitted to the user’s terminal. Meanwhile, the processing of the 
remaining data goes on. Our simultaneous generation and transfer of maps is an 
innovative approach. Indeed, existing approaches either focus on the generation of 
maps or on their transmission. In fact, they deal with each process separately. Our 
approach improves the automatic web and mobile map generation. Indeed, since the 
user can stop the map generation process whenever he finds the requested information 
from the data sets already transmitted, his waiting time is reduced. In addition, in a 
mobility context, his costs are reduced since data is reused on the client side.   

6   Architecture of Our Multiagent System  

In order to generate, on-the-fly, the required web and mobile maps, we propose a 
multiagent system that consists of two main modules: a control module and a spatial 
data processing module (Fig. 5). The control module contains a coordinator agent 
which is responsible for the communications with client applications. This agent 
analyzes the user’s query and extracts relevant datasets from the users database
(which stores information to authenticate users and parameters which are used to 
personalize maps’ contents) and the spatial database (which stores spatial data in 
GML3 files). It categorizes these datasets into several layers of interest and sends 
them to the spatial processing module. As soon as the coordinator agent receives the 
final GML file of a given layer of interest from the spatial processing module, it 
carries out a final adaptation of this layer in order to improve its personalization, and 
transfers it to the user’s terminal in order to be displayed. This adaptation consists in 
transforming the GML data file into a new format which can be displayed by the user 
terminal such as SVG4, SVG Tiny, or SVG Basic respectively if the user uses a 
desktop, a PDA or a SmartPhone. The transformation of GML files into SVG files is 
done using XSL (eXtensible Stylesheet Language) transformations.  

The spatial processing module is composed of three layers. The first layer is the 
federation layer which contains several Type agents. Each Type agent is assigned to a 
specific layer of interest issued form data categorization. It creates and assigns an 
agent (called instance agent) to each spatial object of its type. The second layer of the 
spatial processing module is called the spatial processing layer. It contains all the 
instance agents created by the different Type agents. The instance agents are 
responsible for the generation of the required maps and the adaptation of their 
contents according to users’ needs and the characteristics of their display terminals. 
They compete for space occupation as described in Section 5. The third layer of the 
spatial processing module is the control layer. It is composed of container agents.

3 GML: Geography Markup Language. 
4 SVG: Scalable Vector Graphics. 
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Fig. 5. Multi-layer architecture of our Multiagent system 

A container agent is one that controls the generation of a group of objects that should 
be aggregated in the map at a scale inferior to the scale of the map required by the 
user. The importance of container agents lies in the acceleration they give to the map 
production process. Indeed, when instance agents are not able to solve their spatial 
conflicts due to lack of space, the container agents intervene in order to impose an 
arbitration solution and solve bottlenecks.   

7   Application: The SIGERT System       

The SIGERT system [17] was designed in order to provide maps for web and mobile 
users on the basis of cartographic generalization and multiple representations of 
geographic objects. It aims at creating software tools which can provide on-the-fly 
personalized maps to users according to their preferences and to the visualization 
characteristics of their terminals (desktop, PDA, mobile phone, etc.). The SIGERT 
system is based on a Client/Server architecture (Fig. 6). The Client side enables users 
to log in the system and specify their queries. It provides an orientation map that helps 
users to select their areas of interest. The Server side generates the required maps 
according to users’ queries. These maps are generated and transferred to users at the 
same time by our multiagent system which was developed using Java and the Jade 
platform [18].  

In order to get a map, a web user or a mobile user first logs in the SIGERT system. 
Then, he selects an area of interest on the orientation map displayed on his terminal. 
Using SIGERT’s client interface, the user can indicate his destination or choose 
specific elements (buildings, lakes, etc.) he is looking for. When the SIGERT’s server 
receives the user’s query, the multiagent system analyzes it and retrieves the required 
datasets from the spatial database and from the users database. Next, the multiagent 
system stores these datasets in a GML file which will be processed automatically in 
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Fig. 6. SIGERT’s Architecture

order to create a map which fits the user’s needs and profile. As soon as a given layer 
of interest is generated, the multiagent system sends it to the user’s terminal where it 
will be superposed on the data which was already transferred.     

The current application of the SIGERT system addresses the tourist domain. It uses 
a dataset of a part of Quebec City at the scale 1:1000. This dataset was enriched by 
multiple representations of spatial objects. According to its importance to users, spatial 
data is categorized, on-the-fly, into explicitly required objects (ERO), landmark objects 
(LMO), road network (RN) and ordinary objects (OO). Currently, two user interfaces 
have been developed, one for desktops and one for PDAs using ASP.NET and 
ASP.NET Mobile respectively. Figure 7 and 8 are examples of a web and a mobile 
mapping service provided by the SIGERT prototype. When a web user moves the 
mouse over an important object, the SIGERT prototype displays its textual description. 
The user can get the address of this object by clicking on it (Fig. 7, right). A mobile 
    

Selection of the interest zone  Selection of features to be displayed

Fig. 7. (left) Selection of the zone and features to be displayed, (right) Web map provided by 
the SIGERT prototype   
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(a) (b) (c) 

(d) (e) (f) 

Fig. 8. (a) Selection of the interest zone, (b) Selection of features to be displayed, (c) RN layer, 
(d) RN and ERO layers, (e) RN, ERO and LMO layers, (f) Map provided by the SIGERT 
prototype to the mobile user 

user can have the description and the address of any important object by selecting its 
reference which appears on the map from a scroll-down list on the top of the user 
interface (Fig. 8f). An example of results given to mobile users by the progressive 
transmission of layers of interest is illustrated in Figure 8: First, the user selects the area 
that interests him (Fig. 8a), then he specifies the features he is looking for (Fig. 8b). The 
SIGERT’s server gets the user’s query, generates, and transfers the required map layer 
by layer. In our prototype, the user’s terminal gets first the RN layer (Fig. 8c). Next, it  

Fig. 9. Maps respectively generated by Google Earth, MapQuest and SIGERT 
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gets and superimposes the ERO layer (Fig. 8d). Then, it gets and superposes the LMO 
layer (Fig. 8e). Finally, it gets and superposes the OO layer (Fig. 8f). 

Furthermore, in order to make a comparison between our maps and those generated 
by existing web mapping application, we present in Figure 9 the maps respectively 
provided by Google Earth, MapQuest and SIGERT in response to a query looking for 
the address “1084, rue Saint-Jean, Québec Canada”. The Google Earth map is a 
satellite image on which the road network is superimposed. The MapQuest map 
shows the road network as well as the requested location. However, in addition to the 
requested location, our map emphasizes important objects to the users. 

8   Conclusion

In this paper we presented a multiagent-based approach to improve the on-the-fly web 
and mobile map generation process in terms of personalization, generation and 
transfer. In terms of personalization, our approach emphasizes objects which are 
importance to the user. Indeed, in addition to their geometric representations, these 
objects may be represented using graphic and semantic representations. In terms of 
map generation and transfer, our approach is based on an innovative approach that 
generates and transfers the required map to the user simultaneously. To this end, the 
initial data is categorized by layers of interest, on-the-fly, according to its importance 
to the user and map’s context of use. As soon as a layer of interest is generated, it is 
transferred to the user and superimposed on the other layers which are already 
transmitted. This approach is interesting since the user may find the requested 
information from the data sets already transmitted. In this case, he is not obliged to 
wait until the entire map is downloaded. Our approach is particularly interesting in a 
mobile context since it reuses the already transferred data. Indeed, it reduces the costs 
of a mobile user who pays the amount of data transferred to its device. 

Our approach was tested in a tourist domain but can be extended and used in other 
domains in order to generate maps for other needs such as military applications and 
emergency management. However, our prototype is still slow with respect to 
acceptable delays of real-time map generation. For example, our prototype generates 
and transmits a map whose size is 930ko in nearly 46 and 48 seconds to web and 
mobile users respectively. This is due to several factors: the slowness of the Java 
language and of Jade platform; the time required to parse GML files and the fact that 
we can optimize our code further. Moreover, our prototype is slow compared to other 
existing commercial web and mobile mapping system since we carry out a real-time 
map generalization process which is not supported by any other existing system. Our 
future works will focus on the improvement of the performance of our system in 
terms of processing time and data visualization. In addition, we can expect that the 
performance of our system will benefit from the technological advances of platform 
hardware and processing speed, as well as from the improvement of the performance 
of wireless communication that will occur in the coming years. In addition, our future 
works will focus on the enhancement of map personalization. To this end, we are 
planning to conduct a survey in order to determine users’ needs and preferences.
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Abstract. We are interested in contributing to solving effectively a par-
ticular type of real-time stochastic resource allocation problem. Firstly,
one distinction is that certain tasks may create other tasks. Then, pos-
itive and negative interactions among the resources are considered, in
achieving the tasks, in order to obtain and maintain an efficient co-
ordination. A standard Multiagent Markov Decision Process (MMDP)
approach is too prohibitive to solve this type of problem in real-time.
To address this complex resource management problem, the merging of
an approach which considers the complexity associated to a high num-
ber of different resource types (i.e. Multiagent Task Associated Markov
Decision Processes (MTAMDP)), with an approach which considers the
complexity associated to the creation of task by other tasks (i.e. Acyclic
Decomposition) is proposed. The combination of these two approaches
produces a near-optimal solution in much less time than a standard
MMDP approach.

1 Introduction

Resource allocation problems are known to be NP-Complete [12]. Since resources
are usually constrained, the allocation of resources to one task restricts the
options available for other tasks. The action space is exponential according to
the number of resources, while the state space is exponential according to the
number of resources and tasks. The very high number of states and actions in
this type of problem coupled with the time constraint makes it very complex,
and here a reduction in the computational burden associated to the high number
of different resource types is proposed. Many approximations and heuristics have
been proposed ([2], [10], [1]). However, all these cited authors do not consider
positive and negative interactions between resources. These interactions mean
that a resource efficiency to realize a task is changed when another resource is
used on the same task. Their approaches are consequently not very suitable to
the type of problem tackled in this paper, since in many real applications there
are positive and negative interactions between resources. An effective approach,
as considered in the current paper, is to plan for the resources separately as
proposed by Wu and Castanon [10]. Wu and Castanon formulates a policy for
each resource and a greedy global policy is produced by considering each resource
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in turn, producing an approximate policy. Their coordination rules are sometime
very specific to the problem’s characteristics.

Since resources have local and global resource constraints on the number that
can be used, the problem here can be viewed as a constrained Markov Decision
Process ([2], [11]). In this context, dynamic programming [2] or linear program-
ming [11] may be used to obtain a policy. Much work has been done in this field,
but none of it considers positives and negative interactions among resource, as
well as creation of tasks by other tasks.

This paper combines two approaches in a synergic manner to reduce the plan-
ning time. In the first approach, a planning agent manages each specific resource.
These planning agents are coordinated together during the planning process by
a central agent, and produce a near-optimal policy. On the other hand, the sec-
ond approach is a decomposition technique which solves the problem efficiently
by grouping cyclic states in separate components. The results obtained by the
merging of these two approaches are very satisfying. The policy is near-optimal,
while the convergence time is very small compared to a standard Multiagent
Markov Decision Process (MMDP) [3] approach on the joint action and state
space of all agents. The problem is now formulated in more detail.

2 Problem Formulation

An abstract resource allocation problem is described in Figure 1 (a). In this
example, there are four tasks (t1, t2, t3, and t4) and three types of resources (res1,
res2, and res3) each type of resource being constrained by the number that may
be used at a given time (local constraint), and in total (global constraint). The
Figure shows the resource allocation to the tasks in the current state. An action is
considered as the resource allocation to a group of tasks. In this problem, a state
represents a conjunction of the particular state of each task, and the available
resources. Indeed, when the state of the tasks changes, or when the number of
available resources change, then the resource allocation usually changes also.
The solution of this type of problem is called a policy. A policy π maps all states
s into actions a ∈ A(s) to maximize the expectation of realizing all tasks. The
realization of a task is associated with a reward r. Thus, a policy maximizes the
expected reward. The modelling of this type of problem is now detailed.

2.1 Multiagent Task Associated Markov Decision Process
(MTAMDP)

Since resource allocation problems are known to be NP-Complete [12], one may
decompose the previous problem into multiple planning agents. To do so, Multi-
Agent Markov Decision Processes (MMDP) [3] may be a very suitable modelling
framework. In an MMDP the individual actions of many planning agents interact
so that the effect of one agent’s actions may depend on the actions taken by
others. Indeed, an MMDP is like a Markov Decision Process (MDP), except
that the probability of reaching a state by executing an action now refers to
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Fig. 1. Resource Allocation Problem

the probabilities of joint actions. An abstract schematization of the approach
proposed by Plamondon et al. [7], which extends MMDP, to solve efficiently a
resource allocation problem is described in Figure 1 (b). This in an extension of
Figure 1 (a) where each planning agent (m1, m2, and m3) manages one type of
resource to accomplish the tasks. The dotted line in the Figure represents agent
m1 which manages resource type res1 to accomplish all tasks. This way, each
agent can compute a local policy (πm1 , πm2 , πm3). The policies of the agents
are needs to be coordinated for two reasons. First of all, positive and negative
interactions among resource have to be considered as the expectation of realizing
a certain task t1 by resource res1 is changed when allocating another resource
res2 simultaneously on task t1. The second reason why the planning agents
should coordinate is because an efficient allocation divides the resources between
the tasks. Thus, coordination should be considered in the case of simultaneous
actions on a given task.

Multiagent Task Associated Markov Decision Processes (MTAMDP) [7] pro-
poses to coordinate the different agents at each iteration of the planning algo-
rithm considering positive and negative interactions, and simultaneous actions.
Indeed, all existing algorithms to solve an MDP are iterative, thus the approach
presented here should be pretty extensible. Figure 2 (a) describes this process.
For example, if n iterations are needed for each planning agent to converge, then
n coordination activities are made. MTAMDP is now formally described.

A Multiagent Task Associated Markov Decision Process (MTAMDP) [7] is
defined as a tuple 〈Res, Ag, T, S, A, P, W, R, 〉, where:

– Res = {res} is a finite set of resource types available for the global plan-
ning process. The planning process has Res resource types of res number
of resources. Each resource type has a local resource constraint Lres on the
number that may be used on a single step, and a global resource constraint
Gres on the number that may be used in total.

– Ag = {m} is a finite set of agents. In an MTAMDP, a planning agent man-
ages one or many resources which are used to accomplish its tasks. In this
paper, a planning agent for each resource, and a mNoop planning agent for
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the noop (no operation) action are considered. The expected value of the
noop action has to be considered since it may achieve tasks.

– T = {t} is a finite set of tasks to be accomplished by the planning agents.
– S = {sm} is a finite set of states available for each planning agent. A state

sm ∈ S, represents a conjunction of the particular state sm
t , which is the

characteristic of each task t in the environment, and the available resources
for the planning agent m. Also, S contains a non empty set G ⊆ S of goal
states.

– A = {am} is a finite set of actions available for each planning agent. The
actions Am(sm) applicable in a state is the combination of all resource as-
signments that a planning agent m can execute, according to the state sm.
Thus, am is simply an allocation of resources to the current tasks, and am

t

is the resource allocation to task t. The possible actions are limited by Lres

and Gres.
– Transition probabilities Pm

a (s′m|sm) for sm ∈ S and am ∈ Am(sm).
– W = [wt] is the relative weight of each task, as described in [6].

– State rewards R = [rs] :
nbTasks∑

t=1
rst . The relative reward of the state of a task

rst is the product of a real number � by the weight factor wt. The rewards
are not related to any specific planning agent, since they are only associated
to the tasks, and not the resources.

The solution of an MTAMDP is a policy πm for each planning agent in the
environment. In particular, πm

t (sm
t ) is the action (i.e. resources to allocate) that

should be executed on task t by agent m, considering the specific state sm
t . As

in reinforcement learning, the notion of Q-value is used for a planning agent m
in the MTAMDP approach:

Qm(am, sm) =R(sm) +
∑

s′m∈Sm

Pam(s′m|sm)V m(s′m(Resm/{am})) (1)

Let’s consider Qm
t (am

t , sm) as the part of Qm(am, sm) related to task t. This part
is called task-Q-value. A task-Q-value is not a decomposition, it simply means
that the specific Q-value of a task within the global Q-value is referred to. Each
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Q-value is subjected to the local resource constraints for each state task st of a
global state s at a particular step. Furthermore, a Q-value is constrained on the
total amount of resource that may be used by a planning agent m.

In this paper, the agents are coordinated through a central agent. Figure 2
describes the coordination process between the different planning agents and the
central agent. At each iteration of an MDP algorithm, for example, value itera-
tion, the planning agents send their Q-values to the central agent. With these Q-
values, the central agent computes the global value of all action combinations. A
description is made in the following sections how the central agent calculates the
value of a global action, with a set of Q-values in hand. Afterwards, once the cen-
tral agent knows the maximum value of a state, it assigns the value of each agent
to its respective contribution (or to their adjusted Q-value as will be defined in
the next section). The Algorithm 1 (MTAMDP-VI(states S, error ε)) gives a
more formal description of this approach, which uses the following functions:
ADJUST-I(action a), ADJUST-SA(action a), and GLOBAL-VALUE().

2.2 The MTAMDP Functions

Adjusting Considering Interactions. The ADJUST-I(action a) function
[7] adjusts all task-Q-values of each planning agent m in a global state s ac-
cording to the interactions among the actions of each other planning agent m′.
In brief, this function uses an interaction parameter which quantifies the degree
of interaction among two resources. For example an interaction of 0.5 means
that the efficiency of a given resource is half its normal one when another re-
source is used simultaneously. In the case when the interaction is negative, the
task-Q-value Qm

t (am
t , s) of an agent m is adjusted as follow:

Qm
t (am

t , s) = nullam
t

+ ((Qm
t (am

t , s) − nullam
t

) × inter(am
t , s|a′m′

t )), (2)

where nullam
t

= Qm
t (noopam

t
, s(Resm

t /{am
t })) represents the value of an action

which has an interaction of 0. The intuition is that doing nothing (noopam
t

), and
subtracting the resource used by the action, has the same value as doing an
action which is sure of not realizing its purpose. inter(am

t , s|a′m′
t ) is the value

of the interaction between the action of the planning agents m with another
agent m′.

Furthermore, to adjust the value in the case of a positive interaction (i.e.
interaction > 1), an upper bound on the Q-value is needed. The heuristic used
to determine the upper bound for a state s, and action am

t , by agent m, is
the highest value of a possible state transition. A possible state transition is
considered as, a state for which Pam

t
(s′|s) > 0. This way, the upper bound

overestimates the possible value of a state since it is very improbable that an
action would guarantee reaching the upper bound. This upper bound provides
an approximation of sufficient quality to address the problem at hand. Better
approximations remain possible and scheduled for future work.
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Adjusting Considering Simultaneous Actions. The ADJUST-SA
(action a) function [7] adjusts all task-Q-values of each planning agent m in a
global state s according to the simultaneous actions of all other planning agents
m′. An upper bound on the Q-value that an agent may obtain is also used when
adjusting considering simultaneous actions. This function reduces in a formal
way the Q-value of two agents planning their resource simultaneously as exem-
plified in Section 2.1. To do so, the algorithm calculates two main terms: the
sum and val. Firstly, the sum term computes the global value gain the agents
make by planning independently. Then, the val term, computes the maximum
gain the agents may have globally, considering the other agents actions, and the
upper bound. Then all Q-value of the agents are “adjusted” by multiplying the
initial gain to plan for this action by the ratio val/sum. An equation which
summarizes the ADJUST-SA (action a) function is as follow:∑

m∈Ag

Qm
t (am

t , s) = nullam
t

+ ((Qm
t (am

t , s) − nullam
t

)×

∑
m∈Ag

val = val + (((bound − noopG) − val) × (
Qm

t (am
t ,s)−nullam

t

UpBound
am

t
s −nullam

t

))

sum =
∑

m∈Ag

Qm
t (am

t , s) − nullam
t

), (3)

where val = 0 and sum = 0 a priori. UpBound
am

t
s is the upper bound of an action

by an agent in a state. bound is the maximum upper bound of all planning agents.
noopG is nullam

t
for the agent which has the highest upper bound.

Global Q-Value. To determine the action to execute in a state, the central
agent has to calculate a global Q-value, considering each planning agent Q-
values. This is done in a precise manner by considering the task-Q-values. Before
introducing the algorithm, we recall that a planning agent for each resource type,
and a mNoop planning agent for the noop (no operation) action are considered.
The noop action has to be considered since this action may modify the probability
to achieve certain tasks in a state. The global Q-value Q(a, s) of a state is:∑

t∈T

Q(a, s) = Q(a, s) + val
∑

m∈Ag

val =max(Qm
t (am

t , s), val + ((1 − val)×

Qm
t (am

t , s) − QmNoop
t (amNoop

t ))), (4)

where Q(a, s) = 0 a priori. val = 0 every time the m ∈ Ag loop is entered. The
main function that the central agent uses to coordinate the planning agent in a
near-optimal manner at each iteration is now described.

2.3 Value Iteration for MTAMDPs

The value iteration MTAMDP algorithm is presented in Algorithm 1. In Lines
6 to 9 of this algorithm, a Q-value is computed for all task-state-action tuples
for each planning agent. The agents are limited by Lres and Gres while planning
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their respective policies. Afterwards, in Lines 13 and 14, the central agent adjusts
the value of all action combinations, in all possible states using the ADJUST-
I(action a) and ADJUST-SA(action a) functions. When the adjusted value
of each action is determined, the global value V ′(s) is computed in Line 15. If
this global Q-value is the maximum one at present, the value of each planning
agent is assigned to the adjusted Q-value (i.e. V ′m(sm) = Qm(am, sm) in Line
18). The new value of the state is also assigned to the global value obtained
by GLOBAL-VALUE() (i.e. V ′(s) = Q(a, s) in Line 19). When the global
value function has converged, this policy is used for execution. All the performed
experiments (Section 3) resulted in a convergence. This paper does not present a
formal theorem to prove the convergence, or the near-optimality of the algorithm.
These proofs are for future work.

Algorithm 1. MTAMDP-VALUE-ITERATION from [7].
1: Fun MTAMDP-VI(states S, error ε)
2: returns a value function V

{Planning agents part of the algorithm}
3: repeat
4: V ← V ′

5: δ ← 0
6: for all m ∈ Ag do
7: V m ← V ′m

8: for all sm ∈ Sm and am ∈ Am(s) do
9: Qm(am, sm) ← R(sm) +

s′m∈Sm

Pam(s′m|sm)V m(s′m(Resm/{am}))
{Central agent part of the algorithm}

10: for all s ∈ S do
11: V ′(s) ← R(¬s)
12: for all a ∈ A(s) do
13: ADJUST-I(a)
14: ADJUST-SA(a)
15: Q(a, s) ← GLOBAL-VALUE()
16: if Q(a, s) > V ′(s) then
17: for all m ∈ Ag do
18: V ′m(sm) ← Qm(am, sm)
19: V ′(s) ← Q(a, s)
20: if |V ′(s) − V (s)| > δ then
21: δ ← |V ′(s) − V (s)|
22: until δ < ε
23: return V

An important characteristic of the resource allocation problem in this paper
is that tasks may create other tasks. The task transitions in global are acyclic
since these transitions always result in a group of tasks that were never visited
previously, thus implying a partial order on the set of tasks. The acyclic decom-
position algorithm [6] to effectively consider this characteristic is now described.
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2.4 Acyclic Decomposition Algorithm

An efficient decomposition technique generally tries to regroup cyclic states. In
the same sense, it is known that a planning problem which may be represented
with an acyclic graph, instead of a cyclic one, is generally easier to solve. We recall
that an acyclic graph is one where all state transitions always result in states that
were never previously visited, thus implying a partial order on the set of states.
On the other hand, a cyclic graph may visit certain states many times, which
is not computationally efficient. The idea here is to transform our problem into
an abstract acyclic one, which contains many cyclic components. A component
corresponds to a group of tasks, and the graph contains a component for each
possible task combination. On the other hand, the acyclic graph represents the
possible task transitions. One may use Tarjan’s [9] linear algorithm to detect the
strongly-connected components of a directed graph to create the acyclic graph.
Figure 3 shows the acyclic graph when task t1 (a) or t1 and t2 (b), are in the
environment. t1 may create task t3, and t2 may create task t4. So, task t3 and t4,
which are leafs, may produce dire consequences for an executing agent. All nodes
represent a cyclic component. This graph supposes that a task may create one
other task at maximum. The significance of a link in Figure 3, simply means that
the planning agent has a different group of tasks to achieve. Thus, it has a task
transition meaning. Once the abstract acyclic graph is formed, it is solved using a
backward approach just like in the AO* algorithm [5]. Algorithm 2 describes how
the value Vc of each cyclic component c of an acyclic graph AcG is calculated.

(a) : 1 task

(b) : 2 tasks

may create

may create

Fig. 3. The acyclic graph of cyclic components

Algorithm 2. Acyclic decomposition from [6].
1: Function ACYCLIC-DEC(error, ε, graph AcG)
2: while AcG �= null do
3: Remove from AcG a component c, such that no descendent of c is in AcG
4: Vc ←MDP-ALGO(c, ε)
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This algorithm solves each component, using an MDP algorithm (“MDP-
ALGO(c)”), from the leaf to the root of the graph. This way, each component
may only transit to a solved component, and thus each component has to be
solved once. “MDP-ALGO(c)” may be any algorithm to solve an MDP, such
as standard approaches like value iteration or policy iteration. For example, in
Figure 3 (b), one can choose to remove whichever of t3 or t4, and solve it using
MDP-ALGO(c). Then, if t3 is removed in the first iteration, we may now remove
t4, or vice versa. When both t3 and t4 are removed, t1 and t2 may be removed.
Components are removed in this order, until the component t1, t2 is removed and
solved. In [6] the optimality of the acyclic decomposition algorithm is proved.

2.5 Merging the Acyclic Decomposition and MTAMDP Approaches
(MTAMDP Decomposition)

The merging of the acyclic decomposition and the MTAMDP approaches is
pretty straightforward. Indeed the line Vc ←MDP-ALGO(c, ε) in Algorithm 2
is now Vc ←MTAMDP-VI(c, ε). The fact that only this simple change is needed
demonstrates the flexibility and extensibility of both these approaches.

3 Discussion and Experimentations

Modelling a stochastic resource allocation problem using the MTAMDP de-
composition approach allows reducing the number of actions to consider in a
given state. In particular, the difference in complexity between MMDPs and
MTAMDPs resides in the reduction of the computational complexity from using
the complex Bellman equation, in contrast to using the ADJUST-I(action a),
ADJUST-SA(action a), and GLOBAL-VALUE() functions when computing
the value of each action combination.

The domain of the experiments is a naval platform which must counter plat-
forms, which may launch incoming missiles (i.e. tasks) by using its resources
(i.e. weapons, movements). The different resources have their efficiency modified
when used in conjunction on a same task, thus producing positive and negative
interactions among resources. In this kind of problem, a platform may create a
missile, but not vice versa, thus the task transition is acyclic. Thus the acyclic
decomposition algorithm may be employed efficiently. For the experiments, 100
randomly resource allocation problems for all combinations of number of tasks
and different number of resources, where one agent manages each resource type
were generated. There are three types of states, firstly transitional states where
no action is possible to modify the transition probabilities. Then, action states,
where actions modify the transition probabilities. Finally, there are final states.
The state transitions are all stochastic because when a platform or a missile is
in a given state, it may always transit in many possible states.

We have compared four different approaches. The first one is the MMDP
approach as described briefly in Section 2.1. MMDP is computed as a tradi-
tional “flat” MDP on the joint action and state spaces of all agents. The second
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approach is the MTAMDP as described in Algorithm 1. The third one is the
“one step MTAMDP” where the adjustment of the Q-values is made only at the
last iteration for the planning agents. Thus, when each planning agent have con-
verged, their Q-values are adjusted, and used for execution. The fourth approach
is the “no coordination” where each planning agent plans their resource com-
pletely independently of each other. We have compared these four approaches in
both the standard (no acyclic decomposition), and acyclic decomposition mode,
to efficiently consider the creation of tasks by other tasks.

We compare the MTAMDP approach with an MMDP approach in Figure 4,
where each agent manages a distinct resource type. The acyclic decomposition
algorithm further reduces the planning time for the four different approaches as
presented in Figure 5. The results are very encouraging. For instance, it takes
51.64 seconds to plan for an acyclic decomposition MMDP approach with five
agents. The acyclic decomposition MTAMDP approach solves the same type of
problem in an average of 0.72 seconds.
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Table 1 details how far the expected value of the MTAMDP, one step
MTAMDP, and no coordination approaches are from an optimal MMDP ap-
proach. With one agent, all approaches are optimal since no coordination is
needed. This result suggests that the GLOBAL-VALUE() function is optimal.
All the tests performed with two agents resulted in an optimal policy for the
MTAMDP approach. This result suggests that the GLOBAL-VALUE() func-
tion is optimal, and a formal theorem to proof that is for future work. One can
also observe that when the agents do not coordinate, the resulting policy is far
from the optimal, which is not the case for the MTAMDP coordination approach.
The one step MTAMDP could be a viable approach in certain critical situations,



An Efficient Resource Allocation Approach 59

Table 1. The percentage of the optimal obtained with the different approaches

MTAMDP One step MTAMDP No Coordination
1 agent 100% 100% 100%
2 agents 100% 99.89% 97.48%
3 agents 99.84% 99.63% 94.20%
4 agents 99.79% 99.55% 91.63%
5 agents 99.67% 99.41% 89.37%

since the solution is produced much faster than the MTAMDP approach while
providing a near-optimal policy.

4 Conclusion and Future Work

The Multiagent Task Associated Markov Decision Process (MTAMDP) frame-
work has been introduced to reduce the computational burden induced by the
high number of different resource types. The acyclic decomposition approach
aims at reducing the computational leverage burden associated to the state
space in a problem where tasks create other tasks. The merging of these two
approaches gives an efficient, and novel way to tackle the planning problem for
resource allocation in a stochastic environment.

A way to improve the MTAMDP consists of coordinating the agents using
the efficient Partial Global Planning (PGP) [4] approach instead of the central
agent. The PGP approach solves the bottleneck effect induced by the central
agent. Furthermore, the coordination will be less complex, as only interacting
agents will coordinate with each other. The Q-decomposition approach proposed
by Russell and Zimdars [8] may enable to approximate efficiently the resource
allocation problem considered here. Indeed, the Q-decomposition would decom-
pose the problem in tasks, and the MTAMDP method decomposes the problem
in resources. This would permit two degrees of decomposition.

References

1. D. Aberdeen, S. Thiebaux, and L. Zhang. Decision-theoretic military operations
planning. In Proceedings of the International Conference on Automated Planning
and Scheduling, Whistler, Canada, 3–7 June 2004.

2. D. Bertsekas. Rollout algorithms for constrained dynamic programming. Technical
report 2646, Lab. for Information and Decision Systems, MIT, Mass., USA, 2005.

3. C. Boutilier. Sequential optimality and coordination in multiagent systems. In Pro-
ceedings of the Sixteenth International Joint Conference on Artificial Intelligence
(IJCAI-99), pages 478–485, Stockholm, August 1999.

4. K. S. Decker and V. R. Lesser. Generalizing the partial global planning algorithm.
International Journal of Intelligent Cooperative Information Systems, 1(2):319–
346, 1992.

5. N. J. Nilsson. Principles or Artificial Intelligence. Tioga Publishing, Palo Alto,
Ca, 1980.



60 P. Plamondon, B. Chaib-draa, and A.R. Benaskeur

6. P. Plamondon, B. Chaib-draa, and A. Benaskeur. Decomposition techniques
for a loosely-coupled resource allocation problem. In Proceedings of the
IEEE/WIC/ACM International Conference on Intelligent Agent Technology (IAT
2005), September 2005.

7. P. Plamondon, B. Chaib-draa, and A. Benaskeur. A multiagent task associated
mdp (mtamdp) approach to resource allocation. In AAAI 2006 Spring Symposium
on Distributed Plan and Schedule Management, March 2006.

8. S. J. Russell and A. Zimdars. Q-decomposition for reinforcement learning agents.
In ICML, pages 656–663, 2003.

9. R. E. Tarjan. Depth first search and linear graph algorithm. SIAM Journal on
Computing, 1(2):146–172, 1972.

10. C. C. Wu and D. A. Castanon. Decomposition techniques for temporal resource al-
location. Technical report: Afrl-va-wp-tp-2004-311, Air Force Research Laboratory,
Air force base, OH, 2004.

11. J. Wu and E. H. Durfee. Automated resource-driven mission phasing techniques for
constrained agents. In Proceedings of the Fourth International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2005), pages 331–338, August
2005.

12. W. Zhang. Modeling and solving a resource allocation problem with soft constraint
techniques. Technical report: Wucs-2002-13, Washington University, Saint-Louis,
Missouri, 2002.



Satisfaction Equilibrium: Achieving Cooperation
in Incomplete Information Games�
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Abstract. So far, most equilibrium concepts in game theory require
that the rewards and actions of the other agents are known and/or ob-
served by all agents. However, in real life problems, agents are generally
faced with situations where they only have partial or no knowledge about
their environment and the other agents evolving in it. In this context,
all an agent can do is reasoning about its own payoffs and consequently,
cannot rely on classical equilibria through deliberation, which requires
full knowledge and observability of the other agents. To palliate to this
difficulty, we introduce the satisfaction principle from which an equilib-
rium can arise as the result of the agents’ individual learning experiences.
We define such an equilibrium and then we present different algorithms
that can be used to reach it. Finally, we present experimental results
that show that using learning strategies based on this specific equilib-
rium, agents will generally coordinate themselves on a Pareto-optimal
joint strategy, that is not always a Nash equilibrium, even though each
agent is individually rational, in the sense that they try to maximize
their own satisfaction.

1 Introduction

Game theory provides a general framework for decision making in multi-agent
environments, though, general game models assume full knowledge and observ-
ability of the rewards and actions of the other agents. In real life problems,
however, this is a strong assumption that does not hold in most cases.

One game model proposed by Harsanyi [1] considering incomplete information
are Bayesian games. These games allow the modelling of unknown information
as different agent types and a Nature’s move that selects randomly each agent’s
type according to some probability distribution before each play. The agent
must choose the action that maximizes its reward considering the probabilities
it associates to each of the other agents’ types and the probabilities it associates
to the actions of the other agents when they are of a certain type. However, the
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concept of Nash equilibrium in these games can be troublesome if not all agents
have the same common beliefs about the probability distribution of all agents’
types. Furthermore, a Nash equilibrium requires that each agent knows the exact
strategy of the other agents, which is not always the case when an agent faces
unknown agents1.

Another recent approach based on Bayesian games is the theory of learning
in games which relaxes the concept of equilibrium. Instead of considering an
equilibrium as the result of a deliberation process, it considers an equilibrium as
the result of a learning process, over repeated play, and it defines the concept
of self-confirming equilibrium [2] as a state in which each agent plays optimally
considering its beliefs and history of observations about the other agents’ strate-
gies and types. However, they showed that if an agent does not observe the other
agents’ actions, then the set of Nash equilibria and self-confirming equilibria may
differ. While self-confirming equilibrium is a very interesting concept and worth
consideration, we note that when an agent faces unknown agents and does not
observe the other agents’ actions, thinking rationally on possibly false beliefs
may after all, not be optimal.

In order to address this problem, we consider here that an equilibrium is
the result of a learning process, over repeated play, but we differ in the sense
that we pursue an equilibrium that arises as the result of a learning mechanism,
instead of rational thinking on the agent’s beliefs and observations. To make this
equilibrium possible, we introduce the satisfaction principle, which stipulates
that an agent that has been satisfied by its payoff will not change its strategy,
while an unsatisfied agent may decide to change its strategy. Under this principle,
an equilibrium will arise when all agents will be satisfied by their payoff, since
no agent will have any reason to change its strategy. From now on, we will refer
to this equilibrium as a satisfaction equilibrium.

We will show that if the agents have well defined satisfaction constraints,
Pareto-optimal joint strategies that are not Nash equilibria can be satisfaction
equilibria and that henceforth, cooperation and more optimal results can be
achieved using this principle, instead of rational thinking.

In this article, we will first introduce the game model we will use to take into
account the constrained observability of the other agents’ actions and rewards
and we will also present the different concepts we will need to analyze a game
in terms of satisfaction. Afterward, we will present different algorithms that
converge towards satisfaction equilibria with experimental results showing their
strengths and drawbacks in some specific games. Finally, we will conclude with
future directions that can be explored in order to achieve better results.

2 Satisfaction Equilibrium

In this section, we will introduce the game model we will use to formalize a game
where the agents do not know nor observe the actions and rewards of the other
1 By “unknown agents”, we mean that an agent does not know strategies, actions,

outcomes, rewards, etc. of other agents.
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agents. Afterward, we will formally define the satisfaction equilibrium based on
the satisfaction function of the different agents.

2.1 Game Model

The game model we will consider will be a modified repeated game in which we
introduce an observation function and a modified reward function in order to let
the agents observe their rewards but not the other agents’ actions.

Formally, we define the game as a tuple (n, A, Ω, O, R1, R2, . . . , Rn); where
n defines the number of agents, A defines the joint action space of all agents,
i.e., A = A1 × A2 × . . . × An and where Ai represents the set of actions agent
i can do, Ω is the set of possible outcomes in the game observed by the agents,
O the observation function O : A → Ω which returns the observed outcome
by the agents associated to the joint action played and finally Ri the reward
function Ri : Ω → R, which defines the reward of agent i given the outcome it
observed. Each agent participating in the game only knows its own action set
Ai and its reward function Ri. After each play, each agent is given the outcome
o ∈ Ω, corresponding to the joint action played, to compute its own reward.
However, since the agents do not know the observation function O, they do not
know which joint action led to this outcome.

2.2 Satisfaction Function and Equilibrium

To introduce the satisfaction principle in the game model previously introduced,
we add a satisfaction function Si : R → {0, 1} for each agent i, that returns 1 if
the agent is satisfied and 0 if the agent is not satisfied. Generally, we can define
this function as follows:

Si(ri) =
{

0 if ri < σi

1 if ri ≥ σi

where σi is the satisfaction constant of agent i representing the threshold at
which the agent becomes satisfied, and ri is a scalar that represents its reward.

Definition 1. An outcome o is a satisfaction equilibrium if all agents are sat-
isfied by their payoff under their satisfaction function and do not change their
strategy when they are satisfied.

(i) Si(Ri(o)) = 1 ∀i
(ii) st+1

i = st
i ∀i, t : Si(Ri(ot)) = 1

st+1
i defines the strategy of agent i at time t + 1, st

i its strategy at time t and
ot the outcome observed at time t. Condition (i) states that all agents must
be satisfied by the outcome o, and condition (ii) states that the strategy of
an agent i at time t + 1 must not change if it was satisfied at time t. This is
necessary in order to have an equilibrium. As a side note, this definition requires
deterministic payoffs, because if Ri(o) can be higher and lower than σi for the
same observation o, then o will not be an equilibrium.



64 S. Ross and B. Chaib-draa

C D

C -1,-1 -10,0
D 0,-10 -8,-8

σi = −1

=⇒
C D

C 1,1 0,1
D 1,0 0,0

Fig. 1. Prisoner’s dilemma game matrix (left) and its satisfaction matrix (right)

We can now represent a satisfaction matrix by transforming a normal form
game matrix with the satisfaction function of each agents. For example, the
figure 1 shows the prisoner’s dilemma game matrix with its transformed satis-
faction matrix when both agents have a satisfaction constant set to -1.

While the game matrix and satisfaction matrix are not known to the agents,
the satisfaction matrix is a useful representation to analyze the game in terms of
satisfaction. Here, we can easily see that the only satisfaction equilibrium is the
joint strategy (C, C), which is a Pareto-optimal strategy of the original game.
This was the case in this example because we set both satisfaction constants to
−1, which was the reward of the Pareto-optimal joint strategy of each agent.
From this, we can conclude the following theorem 1.

Theorem 1. In any game containing a Pareto-optimal joint strategy s, the out-
come O(s) and its equivalent outcomes2 are the only satisfaction equilibria if
σi = Ri(O(s)) ∀i.

Proof. see [3].

Therefore, we see that a major part of the problem of coordinating the agents on
a Pareto-optimal joint strategy is to define correctly the satisfaction constants of
each agent. While we have assumed so far that these constants were fixed at the
beginning of the learning process, we will show an algorithm in the last section
that tries to maximize the satisfaction constant of an agent such that it learns
to play its optimal equilibrium under the other agents’ strategies.

2.3 Satisfying Strategies and Other Problematic Games

Similarly to the concept of dominant strategies, we can define a satisfying strat-
egy as a strategy si for agent i such that it is always satisfied when it plays this
strategy. The existence of a satisfying strategy in a game can be problematic if
by playing such a strategy, no satisfaction equilibrium is possible. Furthermore,
other games with some specific payoff structure can also be troublesome. For
example, we will consider the following 2 games presented in figure 2.

In the first game (left), we see that the row agent has a satisfying strategy
A. Therefore, if row agent starts playing strategy A, then column agent will be
forced to accept an outcome corresponding to joint strategy (A, A) or (A, B).
This is problematic since none of these outcomes are satisfaction equilibria. In
the second game (right), there exists a unique Pareto-optimal joint strategy

2 We consider that an outcome o′ is equivalent to another outcome o if the rewards of
all agents are the same in o and o′ : Ri(o) = Ri(o′)∀i.
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A B

A 1,0 1,0
B 1,1 0,0

A B C

A 1,1 0,1 0,1
B 1,0 1,0 0,1
C 1,0 0,1 1,0

σi = 1

=⇒

A B C

A 1,1 0,1 0,1
B 1,0 1,0 0,1
C 1,0 0,1 1,0

Fig. 2. A game containing a satisfying strategy (left) and a problematic game (right)

B F

B 2,1 0,0
F 0,0 2,1

σi = 1

=⇒
B F

B 1,1 0,0
F 0,0 1,1

Fig. 3. Battle of sexes game matrix (left) and its satisfaction matrix (right)

(A, A). With the satisfaction constants set to 1 for both agents, the corresponding
satisfaction matrix is the same as the original game matrix. But, what we can
see in this example is that we can never reach the satisfaction equilibrium (A, A)
unless both agents starts with strategy A. Effectively, if one of the agent plays A
but the other agent plays B or C, then the agent playing A will never be satisfied
until it changes its strategy to B or C. This problem comes from the fact that
an agent playing B or C will always be satisfied when the other agent plays A,
and therefore, it will never change its strategy to A when the other agent plays
A. Also, there is no joint strategy where both agents are unsatisfied that could
allow a direct transition to joint strategy (A, A). From this, we conclude that
if both agents do not start at the point of equilibrium (A, A), they will never
reach an equilibrium since there exists no sequence of transitions that leads to
this equilibrium. The effects of such payoff structures on the convergence of our
algorithms will be showed with experimental results in the next sections.

2.4 Games with Multiple Satisfaction Equilibria

In some games, more than one satisfaction equilibrium can exist depending on
how the satisfaction constants are defined. For example, we can consider the
battle of sexes, presented in figure 3 with satisfaction constants set to 1. What
will happen when more than one satisfaction equilibrium exists is that both
agents will keep or change their strategy until they coordinate themselves on
one of the satisfaction equilibrium. From there, they will keep playing the same
action all the time.

2.5 Mixed Satisfaction Equilibrium

In some games, such as zero sum games in which each agent either get the
maximum or minimum reward, it is impossible to find a satisfaction equilibrium
in pure strategy, unless we set the satisfaction constant to the minimum reward.
However, higher expected rewards could be obtained by playing mixed strategies.
This can be achieved by playing a mixed satisfaction equilibrium.
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Definition 2. A mixed satisfaction equilibrium is a joint mixed strategy p such
that all agents are satisfied by their expected reward under their satisfaction
function and do not change their strategy when they are satisfied.

(i) Si(Ei(p)) = 1 ∀i
(ii) pt+1

i = pt
i ∀i, t : Si(Ei(pt)) = 1

Ei(p) represents the expected reward of agent i under the joint mixed strategy
p. Condition (ii), as in definition 2.5, ensures that an agent keeps the same
mixed strategy when it is satisfied at time t. This more general definition of
the satisfaction equilibrium is also applicable in the case of stochastic payoffs,
contrary to definition . However, the only way an agent will have to compute
its expected reward will be to compute the average of the past n rewards it
obtained under its current strategy, since it does not know the strategy of the
other agents.

3 Learning the Satisfaction Equilibrium

We now present an algorithm that can be used by agents to learn over time to
play the satisfaction equilibrium of a game.

3.1 Pure Satisfaction Equilibrium with Fixed Constants

The most basic case we might want to consider is the case where an agent tries
to find a pure strategy that will always satisfy its fixed satisfaction constant.

Our algorithm 1 (called PSEL for Pure Satisfaction Equilibrium Learning)
implements the satisfaction principle in the most basic way: if an agent is sat-
isfied, it keeps its current action, else it chooses a random action in its set of
actions to replace its current action.

Algorithm 1. PSEL: Pure Satisfaction Equilibrium Learning
Function PSEL(σi, K)
si ← ChooseAction()
for n = 1 to K do

Play s and observe outcome o
if Ri(o) < σi then

si ← ChooseAction()
end if

end for
return si

In this algorithm, the constant K defines the allowed number of repeated
plays and the ChooseAction function chooses a random action uniformly within
the set of actions Ai of the agent. Under this learning strategy, once all agents
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are satisfied, no agent will change its strategy and therefore all agents reach
an equilibrium. Once the agent has played K times, it returns its last chosen
strategy. Evidently, in games where there exists no satisfaction equilibrium under
the agents’ satisfaction constants, those agents will never reach an equilibrium.
Furthermore, if agent i has a satisfying strategy si, then we are not sure to reach
a satisfaction equilibrium if si does not lead to an equilibrium (see figure 2 for
an example).

3.2 Using an Exploration Strategy

While we have considered in our previous algorithm 1 that the ChooseAction
function selects a random action within the set of actions of the agent, we can
also try to implement a better exploration strategy such that actions that have
not been explored often could have more chance to be chosen. To achieve this,
the agent can compute a probability for each action, that corresponds to the
inverse of the times it has chosen them, and then normalize the probabilities
such that they sum to 1. Finally, it chooses its action according to the resulting
probability distribution3. The results presented in section 3.3 will confirm that
using this exploration strategy, instead of a uniform random choice, offers a
slight improvement in the average number of plays required to converge to a
satisfaction equilibrium.

3.3 Empirical Results with the PSEL Algorithm

We now present results obtained with the PSEL algorithm in different games.
We have used 2 standard games, i.e. the prisoner’s dilemma with satisfaction
constants set to −1 for both agents (see figure 1 for the corresponding satisfac-
tion matrix) and the battle of sexes with satisfaction constants set to 1 for both
agents (see figure 3 for the corresponding satisfaction matrix). We also tested
our algorithm in a cooperative game and a bigger game to verify the perfor-
mance of our algorithm when the joint strategy space is bigger. These games
are presented in figure 4. Finally, we also present results with the 2 problematic
games introduced in sections 2.3.

In the cooperative game, the satisfaction constants were set to 3 for both
agents such that the only satisfaction equilibrium is joint strategy (C, C). In the
big game, they were set to 5 for both agents and therefore, the only satisfaction
equilibrium is joint strategy (E, D).

For each of these 6 games, we ran 5000 simulations, consisting of 5000 repeated
plays per simulation, varying the random seeds of the agents each time. In table 1,
we present for each of these games the number of possible joint strategies, the
number of satisfaction equilibria (SE ), the convergence percentage to a SE and
a comparison of the average number of plays required to converge to such an
equilibrium (with 95% confidence interval) with the random and exploration
strategies presented.

3 A detailed presentation of this algorithm is available in [3].
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A B C

A 0,0 1,1 0,0
B 2,2 0,0 0,0
C 0,0 0,0 3,3

A B C D E F G H
A 0,0 0,0 -1,4 0,0 2,-2 0,0 3,0 0,0
B 1,2 0,0 0,0 3,0 0,0 0,0 0,3 1,1
C 0,0 3,3 0,0 1,1 0,0 0,0 2,2 0,0
D 4,4 0,0 5,1 0,2 2,2 1,4 0,0 0,0
E 0,1 0,0 0,0 5,5 0,0 0,0 2,1 0,0
F 0,4 2,2 0,2 0,0 0,0 3,3 0,0 4,4
G 0,0 5,3 3,0 0,0 -1,3 0,0 2,-1 0,0
H 0,0 2,4 1,1 0,0 0,0 -3,2 0,0 0,0

Fig. 4. Cooperative game matrix (left) and big game matrix (right)

Table 1. Convergence percentage and plays needed to converge to a SE in different
games with the PSEL algorithm

Random Exploration
Game |A| nSE conv. % Avg. plays Avg. plays Improvement4

Prisoner’s Dilemma 4 1 100% 8.67 ± 0.23 6.72 ± 0.18 22.49%
Battle of Sexes 4 2 100% 1.97 ± 0.04 1.95 ± 0.04 1.02%

Cooperative Game 9 1 100% 8.92 ± 0.23 7.82 ± 0.19 12.33%
Big Game 64 1 100% 67.95 ± 1.89 61.51 ± 1.65 9.48%

Problematic Game 9 1 10.88% - - -
Game with satisfying strategy 4 1 33.26% - - -

In each of these games, the SE were corresponding to Pareto-optimal joint
strategies and the satisfaction constants were set according to theorem 1. In all
non problematic games, we always converged to a SE within the allowed 5000
repeated plays. Therefore, we see from these results that, in non problematic
games, when the satisfaction constants are well defined, we seem to eventually
converge toward a Pareto-optimal satisfaction equilibrium5 (POSE ). However,
in the problematic games, we see that the convergence percentage of the PSEL
algorithm is dramatically affected. We note that in such games, the convergence
of the algorithm is highly dependant on the initial joint action chosen by the
agents, since some initial choices can never reach a SE. This is not the case of the
other non problematic games where a SE is always reachable by doing a certain
sequence of joint strategy transitions.

3.4 Convergence of the PSEL Algorithm

While we have already showed that the PSEL algorithm does not work in all
games, there is a specific class of games where we can easily define the conver-
gence probability of the PSEL algorithm according to theorem 2.

4 The improvement corresponds to the percentage of gain in average plays required to
converge to a SE with the exploration strategy : Avg(Random)−Avg(Exploration)

Avg(Random) ∗100%.
5 We define a Pareto-optimal satisfaction equilibrium as a joint strategy that is a

satisfaction equilibrium and also Pareto-optimal.
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Theorem 2. In all games where all agents have the same satisfaction in all out-
comes, i.e. (Si(Ri(o)) = Sj(Rj(o))∀i, j, o), the PSEL algorithm, using a uniform
random exploration, will converge to a SE within K plays with probability 1−qK

where q = 1 − nSE/|A| and the expected number of plays required to converge is
given by |A|/nSE.

Proof. see [3].

Here, |A| represents the joint action space size and nSE is the number of SE in
the game. This theorem will always be applicable to identical payoffs games6 if
we use the same satisfaction constant for all agents. In this case, since all agents
have the same rewards and satisfaction constants, they will always have the
same satisfaction in all outcomes. From theorem 2, we can conclude that in such
games, as K → ∞, the convergence probability will tend toward 1. In practice,
for the cooperative game (figure 4) where theorem 2 applies, we see that the
the expected number of plays required to converge is 9 and the probability to
converge within 50 plays is around 99.7%.

4 Learning the Satisfaction Constant

While the PSEL algorithm has showed interesting performance in some games,
it has the disadvantage that the satisfaction constant must be correctly set in
order to achieve good results. To alleviate this problem, we present a new learning
strategy that tries to maximize the satisfaction constant while staying in a state
of equilibrium.

4.1 Limited History Satisfaction Learning (LHSL) Algorithm

In order to achieve this, we present an algorithm (called LHSL for Limited
History Satisfaction Learning) that implements the strategy of increasing the
satisfaction constant when the agent is satisfied and decreasing the satisfaction
constant when it is unsatisfied. We also decrease the increment/decrement over
time in order to converge to a certain fixed satisfaction constant. This will be
achieved by multiplying the increment by a certain factor within the interval ]0, 1[
after each play. Moreover, we keep a limited history of the agent’s experience in
order to prevent it from overrating its satisfaction constant, by checking whether
it was unsatisfied by its current strategy in the past when its satisfaction constant
was higher than a certain threshold. We will see in the results, that this technique
really helps the convergence percentage of the algorithm compared to the case
where we do not prevent this, as in the special case where the history size will
be 0.

In this algorithm, the satisfaction constant σi is initialized to the minimum
reward of agent i and the constant δi is used to increment/decrement this satis-
faction constant. More precisely, δi is decremented over time, such that it tends

6 An identical payoffs game is a game where all agents have the same reward function.
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Algorithm 2. LHSL : Limited History Satisfaction Learning
Function LHSL(δi, γi, ni)
σi ← min(ri); si ← ChooseAction()
S[0..|Ai| − 1, 0..n − 1] ← a matrix initialized with true values
Σ[0..|Ai| − 1, 0..n − 1] ← a matrix initialized with min(ri) values
while δi > εi do

Play si and observe outcome o
lastStrategy ← si; satisfied ← (Ri(o) ≥ σi); tmp ← 0
if not satisfied then

si ← ChooseAction(); tmp ← −δi

else if always satisfied playing si with σi ≤ σi + δi in history then
tmp ← δi

end if
If n > 0 add satisfied and σi in history of lastStrategy and remove oldest values
σi ← σi + tmp; δi ← δi · γi

end while
return (si, σi)

toward 0, by multiplying it by the constant γi ∈]0, 1[ after each play. The matrix
S keeps a history of the last n states of satisfaction for each action and the ma-
trix Σ keeps, for each action, a history of the last n satisfaction constants when
the agent played these actions. This history is used to check, before incrementing
the satisfaction constant, whether or not the agent was unsatisfied by its current
strategy in the past when its satisfaction constant was below its new satisfac-
tion constant. Finally, after each play, we update the history of the agent. We
consider that the algorithm has converged to the optimal satisfaction constant
when δi is lower than a certain constant εi � 0. At this point, the algorithm
returns the satisfaction constant and the last strategy chosen by agent i. When
all agents have converged, if they are all satisfied by their strategy, then we have
reach a satisfaction equilibrium since their satisfaction constant will be stable7.
While we are not guaranteed to converge toward a POSE, we will see that in
practice, this algorithm yields a convergence percentage of almost 100% toward
the POSE in any non problematic games.

4.2 Empirical Results with the LHSL Algorithm

To test the LHSL algorithm, we have used the same 6 games we have presented
for the results with the PSEL algorithm and we now try to learn the POSE
without giving a priori its value to set accordingly the satisfaction constant.
The results were obtained over 5000 simulations and we show the convergence
percentage to the POSE obtained with the best γi value and history sizes we

7 The satisfaction constants become stable when the floating point precision is insuf-
ficient to account for the change caused by the addition of δi. Therefore, we must
choose εi such that σi ± δi = σi when δi ≤ εi. In fact, we could use σi ± δi = σi as
our convergence criteria.
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Table 2. Convergence percentage to a POSE in different games with the LHSL algo-
rithm

With history Without history
Game |A| conv. % γi ni conv. % γi

Prisoner’s Dilemma 4 100% 0.99 64 89.96% 0.90
Battle of Sexes 4 100% 0.90 16 97.60% 0.80

Cooperative Game 9 99.66% 0.995 128 97.62% 0.95
Big Game 64 99.66% 0.995 16 93.88% 0.99

Problematic Game 9 9.86% 0.95 128 7.88% 0.50
Game with satisfying strategy 4 98.06% 0.95 128 38.78% 0.95
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Fig. 5. Convergence percentage to a POSE in the prisoner’s dilemma under different
γ values, history sizes and exploration strategies

have tested8. We also compare these results to the special case where we do
not use a history, i.e., n = 0. In all cases, δi was set to 1 and the convergence
threshold εi was set to 10−20.

In all cases, the best results, showed in table 2, were obtained with the ex-
ploration strategy we have presented in section 3.2. In most games, except the
problematic game (figure 2), we were able to get a convergence percentage near
100%. We can also see that the use of a history offers a significant improvement
over the results we obtain without a history. As a side note, the convergence
percentage of the LHSL algorithm seems to vary a lot depending on the history
sizes and gamma values. This is illustrated in figure 5.

The first graphic in figure 5 compares the results with different history sizes
and γ values. We can see that the bigger the history size, the closer to 1 γ must
be in order to achieve better performances. While, in general, the more slowly we
decrement δ and the bigger the history size is, the better are the results, we see
that small histories can also lead to very good results when γ is well defined. Since

8 In these results, γi, δi, εi, σi and the history size were the same for all agents.
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the closer γ is to 1, the more repetition will be needed for δ to reach ε, we can
conclude that if we have only a few plays to learn the equilibrium, than it is better
to use a small history, since it can achieve better convergence percentage when γ
is smaller, and consequently, when the number of allowed repeated play is small.
In the second graphic, we compare the convergence percentage of the 2 different
exploration approaches under different γ values for the prisoner’s dilemma, in
the case where no history was used (n = 0). This graphic confirms that the
exploration strategy presented in section 3.2 improves slightly the convergence
percentage of the LHSL algorithm.

5 Conclusion and Future Works

While this article covered a lot of new concepts, it laid out only the basic theo-
retical foundations of the satisfaction equilibrium. The algorithms we have pre-
sented have shown great performance in practice, but we have seen some games
with specific payoff structures that could pose problems or render impossible
the convergence to a satisfaction equilibrium. We have identified possible solu-
tions, such as allowing mixed satisfaction equilibrium and trying to maximize the
satisfaction constant, that could sometimes palliate these problems. Although,
what we may discover is that in some games it might not always be possible to
converge to a satisfaction equilibrium, or to a POSE. What we might want to
do in these games is to converge toward a Nash equilibrium. If convergence to a
Nash equilibrium is always possible, then we may try to find an algorithm that
converges in the worst case to a Nash equilibrium, and in the best case, to a
Pareto-optimal satisfaction equilibrium. In order to achieve this goal, the next
step will be to develop an algorithm that can converge to a Pareto-optimal mixed
satisfaction equilibrium. Also, a lot of theoretical work needs to be done to prove
and/or bound the efficiency of the presented algorithms and identify clearly in
which cases the algorithms will converge or not to a satisfaction equilibrium.
Afterward, another long term goal is to apply the satisfaction equilibrium to
stochastic games in order to allow agents to learn a Pareto-optimal joint strat-
egy without knowing anything about the other agents in these type of games.

References

1. Harsanyi, J.: Games of incomplete information played by bayesian players. Man-
agement Science 14 (1967) 159–182, 320–334, and 486–502

2. Dekel, E., Fudenberg, D., Levine, D.K.: Learning to play bayesian games. Games
and Economic Behavior 46 (2004) 282–303

3. Ross, S., Chaib-draa, B.: Report on satisfaction equilibria. Technical report,
Laval University, Department of Computer Science and Software Engineering,
http://www.damas.ift.ulaval.ca/∼ross/ReportSatisfactionEquilibria.pdf (2005)



 

L. Lamontagne and M. Marchand (Eds.): Canadian AI 2006, LNAI  4013, pp. 73 – 85, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

How Artificial Intelligent Agents Do Shopping  
in a Virtual Mall: A ‘Believable’ and ‘Usable’ 

Multiagent-Based Simulation of Customers’ Shopping 
Behavior in a Mall 

Walid Ali1,2 and Bernard Moulin1,2 

1 Computer Science and Software Engineering Department, 3904 Pav. Pouliot,  
Laval University, Ste Foy, Québec G1K 7P4, Canada  

2 Research Center on Geomatics, Laval University, Ste Foy, Quebec G1K 7P4, Canada 
{walid.ali, bernard.moulin}@ift.ulaval.ca 

Abstract. Our literature review revealed that several applications successfully 
simulate certain kinds of human behaviors in spatial environments, but they 
have some limitations related to the ‘believability1’ and the ‘usability2’ of the 
simulations. This paper aims to present a set of requirements for multiagent-
based simulations in terms of ‘believability’ and ‘usability’. It also presents 
how these requirements have been put into use to develop a multiagent-based 
simulation prototype of customers’ shopping behavior in a mall. Using software 
agents equipped with spatial and cognitive capabilities, this prototype can be 
considered sufficiently ‘believable’ and ‘usable’ for end-users, mainly mall 
managers in our case. We show how shopping behavior simulator can support 
the decision-making process with respect to the spatial configuration of the 
shopping mall. 

1   Introduction 

This paper deals with multiagent-based simulation and focuses on the simulation of 
human behaviors in spatial environments. This kind of simulation represents an 
interesting and powerful research method to advance our understanding of human 
spatial cognition and the interactions of human beings with their spatial environment. 
MultiAgent Systems (MAS) provide a computing paradigm which has been recently 
used to create such simulations [6]. Our literature review revealed that several 
researchers used this paradigm to develop applications that simulate different kinds of 
human behaviors in spatial environments ([13], [6], [5], [8], [11], etc.). These 
applications successfully simulated certain kinds of behaviors, but they limited by two 
aspects: the ‘believability’ [9] and the ‘usability’ [7].  

In this context, the limitations of the applications which simulate human behaviors 
in spatial environments are related to:  
                                                           
1  In this paper, the term ‘believability’ means the fidelity to the real behavior to be simulated 

and the real simulation environment. 
2 In this paper the term ‘usability’ means the fidelity to the end-user’s goals. 
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(1)  the ‘believability’ of the simulation: we noticed a noteworthy lack in the 
cognitive/spatial capabilities of the agents used in the simulation (perception, 
memorization, decision-making process, etc.); and  

(2)  the ‘usability’ of the simulation: we found that the majority of simulations 
presented in the literature are only used to visualize and display on screens the 
behaviors to be simulated. They do not generate output data which can be used 
by end-users in order to make decisions. To sum up, the majority of these 
applications are used as animations and not as decision-making tools. 

Developing ‘Believable’ and ‘usable’ simulations of behaviors in space is a 
challenging area of computer science. Many of the problems related to the creation of 
lifelike animated models have been solved, but the difficulty now lies in creating 
simulation applications of behaviors that are believable [14] and usable so that they 
can be effectively used by decision-makers (end-users). In this paper, we show how to 
improve the ‘believability’ and the ‘usability’ of simulation applications of human 
behaviors in spatial environments by using intelligent agents with advanced 
cognitive/spatial capabilities and real/empirical input data that feed the simulation 
models. As an illustration, we present a multiagent-based simulation prototype that 
simulates, in real-time, the shopping behavior in virtual geographic environment 
representing a mall. What’s more, this prototype uses empirical data collected from 
real shoppers during a week long survey. This paper also presents how this prototype 
can be used by end-users, which are mainly mall managers, to support decisions about 
the spatial configuration of their mall. 

This paper is organized as follows: In Section 2, we discuss the previous works 
dealing with multiagent-based simulation of human behaviors in spatial 
environments. We also propose some requirements which need to be satisfied by a 
multiagent-based simulation to be ‘believable’ and ‘usable’. In Sections 3 and 4, we 
present a multiagent-based simulation prototype that simulates the shopping behavior 
in a mall. In Section 5, we show why this prototype can be considered to be 
‘believable’ and ‘usable’ and discuss the satisfaction of the requirements defined in 
Section 2. Finally, Section 6 concludes the paper and presents some future works. 

2   Requirements for ‘Believable’ and ‘Usable’ Multiagent 
Simulation of Human Behaviors in Spatial Environments 

2.1   Previous Research Works 

Several researchers used a multiagent system approach to develop simulation 
applications that simulate different human behaviors in spatial environments 
(wayfinding behavior in an airport [13] [6], pedestrian movements in a mall [5], 
people movements in a large scale environment representing a town [8], pedestrian 
movement in a geographic environment [2], [17], [15], [3], etc.). These applications 
successfully simulated certain kinds of behaviors, but they have some limitations 
related to the capabilities of the agents used in the simulation. For example, the agents 
of [13] and [6] perceive their environment using the concept of information and 
affordance [6]. [5] and [8] use a message passing technique between the agents and 
their environment. These perception mechanisms (affordance, message passing, etc.) 
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are efficient to perceive non-spatial information in the environment but do not allow 
agents to perceive the spatial/geographic characteristics of the environment. This is a 
major limitation when the goal of an application is to plausibly simulate the spatial 
behaviors of agents in a geographic environment. Furthermore, in these applications 
the agents do not have a memorization capability to memorize the elements perceived 
in the environment. What’s more, the majority of the aforementioned applications do 
not use real (or empirical): their data is generated randomly using specific algorithms. 

In addition, some applications such as those of [13], [6], [5] and [8] are only used 
to display on screens the behaviors to be simulated. The applications of [2], [17], [15], 
[3] are only used for animation purposes. To be more usable, simulation applications 
should be used beyond the mere visualization function: They should generate 
simulation output data which can help users to make decisions.  

2.2   Requirements for ‘Believable’ Simulation 

[16] have provided some insight into building believable agents for simulation 
applications. Here we refine these requirements with respect to the spatial aspects of 
the simulation. We identify two main types of requirements for multiagent simulation 
of human behaviors in spatial environments: 

- Requirements concerning the simulation models: These models are based on the 
agent paradigm. In order to benefit from the progress in the multiagent domain 
(autonomy, sociability, etc.), the main actors of the simulation can be represented 
using agents. In order to get a ‘believable’ simulation, the structure of such agents 
may involve variables which represent various kinds of characteristics: psychological, 
sociological, demographic, etc [14]. What’s more, the agents should be equipped with 
advanced cognitive and spatial capabilities. As mentioned in [16] here are some 
examples of these capabilities:  

-  perceive the environment: Using this ability, the agent can perceive the elements 
of its environment. 

-  memorize the elements belonging to the environment. 
-  make decisions and reason: The agent can make complex non-spatial and spatial 

reasoning (e.g. make decisions about where to go in the spatial environment), 
perform spatial and temporal reasoning, etc.). 

-  act in and affect the environment (e.g., navigate, communicate, etc.) taking into 
account the physical limitations of the environment (e.g., obstacles) and those of 
the human body simulated by the agent. 

-  hold multiple goals and interleave their achievement. 
-  react to the changing spatial environment and to interleave pursuing goals and 

reacting to the spatial environment. 
-  interact with other agents in the simulation. 
 

- Requirements concerning the simulation data: In order to enhance the believability 
of a simulation and to get meaningful and credible results from such simulation, one 
must use relevant and correct data. This data can be collected respectively from the 
observation of the phenomena to be simulated (human behaviors) and from its spatial 
environment. It is important to mention that relevant and credible data are needed to 
feed the simulation models, to calibrate them, and to verify and validate these models. 
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2.3   Requirements for ‘Usable’ Simulation 

Simulation applications are generally used to support decision making [1]. In the 
literature, there exist several applications that simulate human behaviors in spatial 
environments. Unfortunately, these simulation applications are usually limited to 
display on screens the behaviors to be simulated (they play the role of computer 
animations). To be more usable, simulation applications should be used beyond the 
mere visualization function [1]. In this paper, ‘usable simulation’ means a simulation 
that can: 

-  visualize on the screen the course of the simulation; 
-  allow end-users to control the simulation time of the simulation, to parameterize 

the simulation models, to parameterize the visualization modes (e.g., zoom in, 
zoom out, etc.), ton change the configuration of the spatial environment, etc.; 

-  generate output data that can be used by the users for decision-making purposes. 
Since we deal with simulation in spatial environments, a large part of output data 
has a spatial dimension.  

-  analyze and explore non-spatial and spatial output data in order to support end-
users’ decision-making.  

 

Sections 3 and 4 aim to illustrate the application of these requirements thanks to a 
multiagent prototype that simulates the shopping behavior in a mall. In Section 5, we 
discuss the aspects that make this prototype ‘believable’, while in the Section 6 
discusses its usability.  

3   A ‘Believable’ Agent-Based Geosimulation Prototype: The Case 
of the Square One Shopping Mall (Toronto) 

Before presenting the simulation prototype which aims to simulate the shopping 
behavior in a mall, we present the platform which is used to develop it. This platform 
is called MAGS (MultiAgent GeoSimulation) and presented in the next sub-section. 

3.1   The MAGS: The MultiAgent GeoSimulation Platform 

The shopping behavior simulation prototype is developed using a simulation platform 
called MAGS (MultiAgent Geo-Simulation) [11]. It is a generic platform that can be 
used to simulate, in real-time, thousands of knowledge-based agents navigating in a 
2D or 3D virtual spatial environment. MAGS agents have several knowledge-based 
capabilities such as perception, navigation, memorization, communication and 
objective-based behavior which allow them to display an autonomous behavior within 
a 2D-3D geographic virtual environment. The agents in MAGS are able to perceive 
the elements contained in the environment, to navigate autonomously inside it and 
react to changes occurring in the environment. These agents have several knowledge-
based capabilities. 

- The agent perception process: In MAGS agents can perceive (1) terrain charac-
teristics such as elevation and slopes; (2) the elements contained in the landscape 
surrounding the agent including buildings and static objects; (3) other mobile agents 
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navigating in the agent's range of perception; (4) dynamic areas or volumes whose 
shape changes during the simulation (ex.: smoky areas or zones having pleasant 
odors); (5) spatial events such as explosions, etc. occurring in the agent's vicinity; (6) 
messages communicated by other agents [11]. 

- The agent navigation process: In MAGS agents can have two navigation modes: 
Following-a-path-mode in which agents follow specific paths which are stored in a 
bitmap called ARIANE_MAP or Obstacle-avoidance-mode in which the agents move 
through open spaces avoiding obstacles. In MAGS the obstacles to be avoided are 
recoded in specific bitmap called OBSTACLE_MAP. 

- The memorization process: In MAGS the agents have three kinds of memory: 
Perception memory in which the agents store what they perceive during the last few 
simulation steps; Working memory in which the agents memorize what they perceive 
in one simulation and Long-term memory in which the agents store what they 
perceived in several simulations [12]. Unfortunately, the agents in MAGS can also 
memorize some elements of the simulation environment and do not have learning 
capabilities. 

- The agent's characteristics: In MAGS an agent is characterized by a number of 
variables whose values describe the agent's state at any given time. We distinguish 
static states and dynamic states. A static state does not change during the simulation 
and is represented by a variable and its current value (ex.: gender, age group, 
occupation, marital status). A dynamic state is a state which can possibly change 
during the simulation (ex.: hunger, tiredness, stress). A dynamic state is represented 
by a variable associated with a function which computes how this variable changes 
values during the simulation. The variable is characterized by an initial value, a 
maximum value, an increase rate, a decrease rate, an upper threshold and a lower 
threshold which are used by the function. Using these parameters, the system can 
simulate the evolution of the agents' dynamic states and trigger the relevant behaviors 
[11].   

- The objective-based behavior: In MAGS an agent is associated with a set of 
objectives that it tries to reach. The objectives are organized in hierarchies which are 
is composed of nodes that represent composite objectives and leaves that represent 
elementary objectives which are associated with actions that the agent can perform. 
Each agent owns a set of objectives corresponding to its needs. An objective is 
associated with rules containing constraints on the activation and the completion of 
the objective. Constraints are dependent on time, on the agent's states, and the 
environment's state. The selection of the current agent's behavior relies on the priority 
of its objectives. Each need is associated with a priority which varies according to the 
agent's profile. An objective's priority is primarily a function of the corresponding 
need's priority. It is also subject to modifications brought about by the opportunities 
that the agent perceives or by temporal constraints [11]. 

- The agent communication process: In MAGS agents can communicate with other 
agents by exchanging messages using mailbox-based communication. 

The spatial characteristics of the environment and static objects are generated from 
data stored in Geographic Information System and in related databases. The spatial 
characteristics of the environment are recorded in raster mode which enables agents to 
access the information contained in various bitmaps that encode different kinds of 
information about the virtual environment and the objects contained in it. The 
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AgentsMap contains the information about the locations of agents and the static 
objects contained in the environment. The ObstaclesMap contains the locations of 
obstacles, the ArianeMap contains the paths that can be followed by mobile agents, 
the HeightMap represents the elevations of the environment, etc. The information 
contained in the different bitmaps influences the agent’s perception and navigation. In 
MAGS the simulation environment is not static and can change during the simulation. 
For example, we can add new obstacles, or gaseous phenomena such as smoke, dense 
gases and odors which are represented using particle systems, etc. [11]. 

3.2   The Mall-MAGS Prototype: A Multiagent-Based Simulator of the Shopping 
Behavior in a Mall 

a.   Creating Agent-Based Models with Complex Structures and Advanced 
Capabilities 

In order to create believable shopping behavior simulation models we carried out an 
in-depth literature review related to several disciplines dealing with such behavior 
(consumer behavior, marketing, shopping behavior, etc.). Based on this literature 
review, we developed rich conceptual models representing the shopping behavior in a 
mall. The first part of these models represents the shopper. In this part, we integrated 
the majority of factors that influence the shopping behavior within a mall (e.g., 
demographic factors (age, gender, occupation, marital status, etc.), cultural factors 
(culture, sub-culture), psychological factors (emotions), etc.) as well as the processes 
that compose it (e.g., perception, memorization, alternatives evaluation, decision-
making, displacement, buying, consumption, etc.). The second part of these 
conceptual models represents the environment (i.e. the mall) and contains the main 
elements that influence the shopping behavior (stores, kiosks, colors, music, etc.). 
Then, based on these conceptual models, we developed specific agent models.. We 
specified two categories of agents: 

(1)  The shopper agent: This type of agent corresponds to the main actor of the 
simulation. It represents the real shopper in the simulation. The structure of this 
agent contains several attributes which are demographic (age, gender, 
occupation, marital status, etc.), psychological (perception memory, short- and 
long- term memories), cultural (culture, sub-culture), etc. The behavior of this 
agent focuses on the shopping activities and contains the following processes 
(perception, memorization, reasoning, decision-making, action, navigation, etc.).    

(2)  The agents representing the environment’ elements: In this category we find 
the agents representing stores, kiosks, doors, corridors, etc. 

b.   Collecting Real Data About the Shopping Behavior in a Mall 
To feed the agent-based simulation models related to the shoppers with real data we 
carried out a survey in October 2003 and collected 390 30-pages questionnaires 
completely filled by real shoppers in the Square One shopping mall (in Toronto area). 
This data belongs to two main categories: non-spatial data such as demographic 
information (gender, age group, marital status, occupation, preferences, habits, etc.) 
and spatial data such as preferred entrance and exit doors, habitual itineraries, well-
known areas in the mall, etc.  
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The data concerning the simulation environment (the mall) is stored in a 
geographic information system (GIS) of the Square One shopping mall. It is proven in 
the literature, that GIS is a better mean to store meaningful geographic data about a 
spatial environment. 

c.   Developing the Simulation Prototype 
Using the MAGS platform we developed the multiagent simulation prototype that 
simulates customers’ shopping behavior in a mall. As a case of study we used the 
Square One shopping mall. Using the MAGS platform we benefit from the advanced 
cognitive and spatial capabilities of its agents when developing the agents of our 
shopping behavior prototype: perceive, memorize, make complex decisions, reason 
about distances, navigate autonomously, etc.  

In Fig. 1a and Fig. 1b we display 2D and 3D screenshots of a simulation that 
involved 390 software Shoppers agents navigating in the virtual shopping mall. 

 

  

Fig. 1a. The 2D simulation in MAGS plat-
form (Square One mall) 

Fig. 1b. The 3D simulation in MAGS plat-
form (Square One mall) 

 
In the simulation prototype a Shopper agent comes to the mall in order to visit a list 

of specific stores or kiosks that are chosen before the simulation on the basis of the 
agent’s characteristics. It enters by a particular door and starts the shopping trip. 
Based on its position in the mall, its knowledge (memorization process) and on what 
it perceives in the mall (perception process), it makes decision about the next store or 
kiosk to visit (decision-making process). When it chooses a store or kiosk, it moves in 
its direction (navigation process). Sometimes, when it is moving to a chosen store or 
kiosk, the agent may perceive another store or kiosk (perception process) that is in its 
shopping list and that it did not know it before. In this case, the Shopper agent moves 
to this store or kiosk and memorizes its location (memorization process) for its next 
shopping trips. The Shopper agent accomplishes this behavior continually until it 
visits all the stores or kiosks on its list or until it has not enough time left for the 
shopping trip. If the Shopper agent has still time for shopping and some stores or 
kiosks of its list are in locations unknown by the agent, it starts to explore the 
shopping mall to search for these stores or kiosks. When the Shopper agent reaches 
the maximum time allowed to the shopping trip, it leaves the mall.  



80 W. Ali and B. Moulin 

 

A Shopper agent can also come to the mall without a specific list of stores or 
kiosks to visit: This corresponds to a real person coming to the mall to explore it, to 
see people, or to make exercise, etc. In the exploration mode the Shopper agent takes 
its preferred paths in the shopping mall. In this mode the moving action of the 
Shopper agent to the stores, kiosks, music areas, odor areas, lighting areas, is directed 
by its habits and preferences. For example, if the Shopper agent likes cars and it 
passes in front of a car exhibition, it can move to this exhibition. To extend our 
simulation prototype, we can simulate the Shopper reactions to the mall’s atmosphere. 
We can insert special agents that broadcast music, lighting or odor. If the shopper 
agent is in the exploration mode and likes the music or the lighting or the odor 
broadcasted by these special agents, it may move toward them and possibly enter the 
associated store. 

During its shopping trip a Shopper agent can feel the need to eat or to go to the 
restroom (simulated by a dynamic variable reaching a given threshold). Since these 
needs have a higher priority than the need to shop or to play, the agent suspends 
temporarily its shopping trip and goes to the locations where it can eat something or 
to restrooms. In our geosimulation prototype the priorities of the activities of the 
shopping behavior are defined based on Maslow’s hierarchy of needs [10].  

d.   Verifying and Validating the Simulation Prototype 
Our simulation prototype is intended to be used by end-users as a decision making 
tool about the simulated system. In order to increase the users’ confidence in the 
simulation models of the prototype, it is important to verify and validate these models. 
According to literature, verification and validation of human behaviors are extremely 
complex. The complexity of the shopping behavior in a mall to verified and validated 
leads us to make some choices and define some limits concerning the simulation 
models and especially the shopper’s one. First, we are more interested to verify and 
validate the shopper agent’s decision-making process. Second, we focus on some 
specific shopping situations in order to evaluate the movement decisions made by the 
shopper agent inside the virtual mall. Finally, we focus only on some shopping 
activities during the shopping situations (e.g., go to a shop, go to a snack bar, go to a 
restaurant, leave the mall, etc.). For each shopping activity in a specific situation, we 
observe if the shopper agent behaves (or make decision) like real shopper when he 
does the same activity in the same situation. Comparisons between decisions made by 
real shoppers and those made by software shopper agents give us idea about the 
credibility of the simulation model (decision-making process) in our prototype. 

4   A ‘Usable’ Agent-Based Geosimulation Prototype: The Case of 
the Square One Shopping Mall (Toronto) 

In Section 2, we presented some requirements to be satisfied by a simulation to be 
usable. In this section we aim to present the shopping behavior prototype from a 
usability point of view. Before showing the use of the prototype by end-users, we 
present how we collect output data from the simulation using observer agents. This 
output data, as well as analyses results on it, serve as a basis to the end-users in order 
to make efficient decisions about the shopper agent’s behavior of the shopper agents 
or about the spatial configuration of the mall. 
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4.1   Collecting Simulation Outputs Using Intelligent Agents   

The simulation output data is collected using specific software agents called Observers. 
The mission of an observer agent is to gather non-spatial and spatial data about the 
course of the simulation, and more especially about shopper agents which enter its 
perception field. Observer agents have capabilities that allow them to collect relevant 
non-spatial and spatial data during the simulation execution. The collected data is 
recorded in files and analyzed after the simulation. The analysis results are, then, used 
by end-users in order to make decisions in relation to the shopping behaviors of the 
agents and the spatial configuration of the simulation environment (mall).  

4.2   The Use of the Mall_MAGS Prototype  

A shopping mall manager can change the spatial configuration of the shopping mall 
(change a store location, close a door or a corridor, etc.) and create different 
simulation scenarios. For each scenario the manager can launch the simulation and 
collect the results. By comparing the results of different scenarios he can assess the 
impact of spatial changes in the mall.  

To illustrate the use of our shopping behavior geosimulation tool we used 2 
simulation scenarios. In the first one we launch a simulation with a set of input data 
about the shopping mall (GIS) (see Fig. 2a) and about a population of 390 shoppers. 
For this first scenario the system generates output data about the itineraries that the 
Shoppers agents take in the shopping mall. In scenario 2 we exchange the location of 
two department stores: Wal-Mart and Zellers (Fig. 2b), we launch the simulation 
again and the observer agents generate the output data about the itineraries of the 
same population of Shoppers agents. By comparing the output data of the two 
scenarios we notice the difference of the paths that the Shopper agents followed to 
attend the department stores Wal-Mart and Zellers stores. For example, the simulation 
output analysis shows us that corridor X is less frequented in scenario 2 than in 
scenario 1 (Fig. 3a). However, corridor Y is more frequented in scenario 2 than in 
scenario 1 (Fig. 3b). In these figures the flow of the agents Shoppers which pass 
through a corridor is represented by a line which is attached to this corridor. The 
width and the color of this line are proportional to the flow of Shoppers agents that 
pass through the corridor. If this flow grows, the width of the line grows and its color 
becomes darker. By a data analysis on the attributes of the Shopper agent (e.g., 
gender, age, etc.) we can see that in scenario 2, most of the Shoppers agents that go 
through corridor Y are female and they come to the mall to visit female cloth stores. If 
the mall manager chooses the mall configuration of scenario 2, he may think of 
renting the spaces along corridor Y to female cloth stores.  

It is important to note that: 

- The simulation output data are generated using software agents called Observers.  
- The data analysis of the geosimulation output (non-spatial and spatial data) is 

implemented in an analysis tool that we developed using Microsoft Visual basic 6.0. 
This user-friendly tool uses the data generated by the Observers agents in order to 
make non-spatial and spatial analysis. The data generated from the shopping 
behaviour geosimulation can be also analyzed and explored using a tool called 
SOLAP (Spatial On Line Analytical Processing) [4]. An example of using the SOLAP 
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Zellers Wal-Mart

 

ZellersWal-Mart

 

Fig. 2a. The simulation environment in 
Scenario 1 

Fig. 2b. The simulation environment 
Scenario 2 

Corridor X
Corridor Y 

 

Fig. 3a. The spatial data analysis in Scenario 1 Fig. 3b. The spatial data analysis in Scenario 2 

 

Fig. 4. Geosimulation output data analysis using SOLAP tool [4] 

tool to explore geosimulation output data is presented in Fig. 4. In Fig. 4 the user can 
see the percentage of shopper agents (by age and gender) which visit three big stores 
in Square One mall (Wall-Mart, Zellers, and The Bay). 
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5   Satisfying the Requirements 

Based on the requirements defined in Section 3 of this paper, we think that our 
shopping behavior simulation prototype is: 

- ‘believable’ because:  
- it benefits from the advanced capabilities of the agents offered by the MAGS 

platform. The agents in the prototype exhibit believable shopping behaviors and 
capabilities, in the sense that they can perceive, memorize, make decisions, 
reason, act, navigate, etc. They also have complex structure that integrates 
different types of variables: demographic, psychological, social, etc.; 

- it uses non-spatial and spatial real data related to the shopping behavior (which 
are collected from real shoppers using questionnaires) and data related to the 
simulation environment (mall) (which are stored in geographic information 
systems (GIS)). 

- ‘usable’ because:  
- it can visualize on screen the simulation in 2D and 3D modes; 
- it allows the user to control the simulation (the time, the visualization modes, 

etc.); 
- it can generate output data (non-spatial and spatial) using agents called ‘observer 

agents’. This output data can be used by end-users for decision-making 
purposes; 

- it can be easily combined with analysis tools that can analyze and explore non-
spatial and spatial data generated by the simulation in order to support decision-
making.  

6   Conclusion and Future Works 

In this paper we presented some simulation applications that aim to simulate human 
behaviors in spatial environments. We also presented the main limitations of these 
applications in terms of ‘believability’ and ‘usability’. Then, we presented some 
requirements for the agent-based simulations in order to be more ‘believable’ and 
‘usable’. After that, we presented an agent-based simulation prototype of customers’ 
shopping behavior in a mall and, we discussed how this prototype can be ‘believable’ 
and ‘usable’ for end-users. The main contributions of our work are the following: 

- The development of ‘believable’ agent-based simulation prototype of shopping 
behavior in a mall. The rich structure and behavior of the shopper agents, and 
empirical data used in the simulation, make these agents enough believable to 
simulate the shopping behavior of real shoppers in a mall. 

- The development of a ‘usable’ agent-based simulation prototype that helps end-
users (mall managers) to assess different spatial configurations of their mall. 

- The coupling of the shopping behavior prototype with spatial analysis tools (our 
tool and the SOLAP one) in order to better analyze and explore output data 
generated from the geosimulation. 

 

As future works we plan: (1) to enhance our prototype and especially the spatial 
cognitive capabilities of the intelligent agents in order to simulate more complex 



84 W. Ali and B. Moulin 

 

customers’ shopping behavior in a mall (entertainment behaviors, social and groups 
behaviors, etc.); (2) to extend the usage of the simulator in order to help mall 
managers to make decisions about marketing strategies related to the changes of 
music or odor in a corridor, change of temperature, or wall colours in certain areas, 
etc. For each change they would execute the simulation and collect results. By 
comparing these results they can make decisions about the optimal marketing strategy 
to adopt. How to propose a systematic way to carry out these comparisons is still an 
open research area; and (3) to validate our geosimulation models, document our 
prototype and deliver a final version of the Mall_MAGS prototype to the managers of 
the Square One shopping mall in Toronto. 
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Abstract. We focus on clustering gene expression temporal profiles,
and propose a novel, simple algorithm that is powerful enough to find an
efficient distribution of genes over clusters. We also introduce a variant of
a clustering index that can effectively decide upon the optimal number of
clusters for a given dataset. The clustering method is based on a profile-
alignment approach, which minimizes the mean-square-error of the first
order differentials, to hierarchically cluster microarray time-series data.
The effectiveness of our algorithm has been tested on datasets drawn
from standard experiments, showing that our approach can effectively
cluster the datasets based on profile similarity.

1 Introduction

Grouping (or clustering) genes based on the similarity of their temporal profiles
is important to researchers as genes with similar expression profiles are expected
to be functionally related or co-regulated [3][4][6]. Many unsupervised methods
for gene clustering based on similarity (or dissimilarity) of their microarray tem-
poral profiles have been proposed in the past few years [1][6][12]. These methods
have used different kinds of distance measures to group genes based on similarity
(or dissimilarity) among the microarray time-series profiles. The most commonly
used distance measures are the Euclidean distance, the Mahalanobis distance,
the Manhattan distance and its generalization, the Minkowski distance [5]. One
of the methods for clustering microarray time-series data is based on a hidden
phase model (similar to a hidden Markov model) to define the parameters of a
mixture of normal distributions in a Bayesian-like manner, which are estimated
by using the expectation maximization algorithm [2]. This model has been re-
cently introduced and, to the best of our knowledge, has only been tested on
synthetic data. On the other hand, some authors have proposed linear-correlation
methods for clustering genes using microarray time-series data [3][7]. The method
proposed in [3] requires computing the mean expression levels of some candidate
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Fig. 1. (a) Two genes that are likely to be clustered as in [10]. (b) Two genes with
different profiles that are likely to be clustered together by linear-correlation methods.
(c) Two genes with similar profiles in terms of level of expression ratio changes between
different time points.

profiles using some pre-identified, arbitrarily selected profiles. The authors of [7]
proposed a method for clustering microarray time-series data employing a jack-
knife correlation coefficient with or without using the seeded candidate profiles.
Clustering using the correlation distance may not always group genes that are
closer in terms of their temporal profiles. For example, as shown in Fig. 1, using
the correlation distance, genes in Fig. 1(b) are most likely to be clustered to-
gether (as it has the largest value for the correlation coefficient among all three,
which is 0.9053), but if the prime interest is to cluster genes according to the
variation of their expression level at different time points, then, genes from Fig.
1(c) would be better candidates to be clustered together than the genes in Fig.
1(a) and (b). However, the value of the correlation coefficient between the pairs
of genes in Fig. 1(c) is the minimum (0.8039) among all three pairs of genes
shown in Fig. 1.

In [10], the authors proposed a method to select and cluster genes using the
ideas of order-restricted inference, where estimation makes use of known inequal-
ities among parameters. Although their method does not require arbitrarily se-
lected genes to specify candidate profiles, it is necessary to specify the candidate
profiles a priori. Also, as shown in Fig. 1 (a) and (c), by following this procedure,
genes from Fig. 1(a) are more likely to be clustered together as they show similar
profiles in terms of direction of the changes of expression ratios (e.g. up-up-up-
down-down), even though, for one gene, the expression ratio increases sharply
between the first three time points and decreases sharply between time points 3
and 4, whereas such increments/decrements are much softer for the second gene.
However, in reality, it may be more desirable to cluster genes of Fig. 1(c) in the
same group as they differ only a little amount of increase/decrease between the
time points 2 and 3 and the time points 3 and 4.

In this paper, we propose a mean-square-error profile alignment approach to
cluster temporal gene expression data. We propose to use a profile-alignment
algorithm, which minimizes the mean-square-error of the first order differentials,
to hierarchically cluster microarray time-series data. The alignment algorithm
is also used to define a variant of a well-known clustering validity index that
optimizes the number of clusters.



88 A. Bari and L. Rueda

2 Minimum-Square-Error Profile Alignment

Consider a dataset D = {x1, x2, ..., xn}, where xi = [xi1 , xi2 , ..., xim ]t is an m-
dimensional feature vector that represents the expression level of gene i at m dif-
ferent time points. The aim is to partition D into k disjoint subsets D1, D2, ..., Dk,
where D = D1 ∪D2 ∪ ...∪Dk, and Di ∩Dj = ∅, for ∀i, j, i 
= j, in such a way that
a similarity (dissimilarity) cost function φ : {0, 1}n×k → � is maximized (mini-
mized). We propose an efficient algorithm that takes two features vectors, and
produces two new vectors in such a way that the mean-square-error difference
between “aligned” vectors is minimized. Let x1, x2 ∈ D be two feature vectors.
The aim is to find two new vectors x1 and x′

2 = x2 − a (e.g. to find a scalar a)
such that, f(a) = ‖x2 − a − x1‖2 is minimized. The value of a that minimizes
f(a) is given by a = 1

m

∑m
i=1(x2i − x1i) (see [11]). Using the latter expression to

obtain the value of a, i.e. the scalar that minimizes f(a), we align two vectors
by following the procedure given in Algorithm Profile-Alignment. The algorithm
takes two feature vectors from the original space as input (which are two tem-
poral gene expression data in this case) and outputs two feature vectors in the
transformed space after aligning them in such a way that the mean-square-error
is minimized.

Using the Profile-Alignment algorithm and a conventional distance function,
we define a new distance function, namely dMSE(x1, x2), which aligns x1 and
x2, and invokes a conventional metric [11]. In [11], it has been shown that the
Profile-Alignment algorithm used in conjunction with any metric d is also a
metric. Let d : �d × �d → � be a metric and let dMSE (x1, x2) be the result of
Profile-Alignment and d, with input (x1, x2), then:

1. dMSE(x1, x2) � 0
2. dMSE(x1, x2) = dMSE(x2, x1)
3. dMSE(x1, x3) � dMSE(x1, x2) + dMSE(x2, x3)

Note that once the Profile-Alignment algorithm is applied, any metric d can be
used. In our experiments, we have used the Euclidean distance.

An example of temporal profile alignment for two genes (those of the example
shown in Fig. 1) is given in Fig. 2, which shows the same gene profiles from
Fig. 1 after aligning them using the Profile-Alignment algorithm. A simple visual

Algorithm 1. Profile-Alignment
Input: Two vectors, x1 = [x11 , x12 , . . . , x1m ] and x2 = [x21 , x22 , . . . , x2m ].
Output: Two vectors y1 and y2 such that the mean-square error is minimized.
begin

y1 ←− x1 − x11

a ←− 1
m

m
i=1(x2i − y1i).

y2 ←− x2 − a
end
return y1, y2
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Fig. 2. (a) Result after aligning the two genes from Fig.1(a). (b) Result after aligning
two genes from Fig.1(b). (c) Result after aligning two genes from Fig.1(c). As expected,
the distances after applying the profile-alignment algorithm to the genes of Fig. (a) and
(b) are larger than that of Fig.(c).

inspection shows that the genes in Fig. 2(c) are closer to each other compared to
the genes from the other two figures, Fig. 2(a) and (b). Therefore their distance
after alignment will be smaller compared to the distance of the other pair of
genes, and hence, these two genes are more likely to be grouped together, as we
will presently observe.

3 Hierarchical Agglomerative Clustering

In our clustering model, we have used complete linkage hierarchical clustering [4]
with the profile alignment and a conventional distance, as discussed in Section 2.
The generalized algorithm for hierarchical agglomerative clustering was slightly
modified to obtain the desired number of clusters and is given in Algorithm 2.
The algorithm receives two parameters as input, a complete microarray temporal
dataset, D, and the desired number of clusters, k, and returns the dataset after
partitioning it into k clusters. The decision rule is based on the furthest-neighbor
distance between two clusters [4], which is computed using dMSE(x1, x2). The
latter involves the alignment of each pair of profiles before applying a conven-
tional (the Euclidean in our case) distance function.

4 Optimizing the Number of Clusters

Finding the optimal number of clusters is a well known open problem in cluster-
ing. For this, it is desirable to validate the number of clusters that is the best for
a given dataset using a validity index. For the validity purpose of our clustering,
we have used a variant of the I-index [9]. Although this index has been found
to work well in many cases, we have encountered that it is not appropriate for
the time-series microarray data clustering due to a few reasons [11].

One of them is that, if finding differentially expressed genes is important,
which, in many cases, are better to form clusters containing only one or two
genes. Since this is penalized by the I-index (also in the case of other indices
found in the literature [9]), we propose the following variant of the I-index:
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Algorithm 2. Agglomerative-Clustering
Input: The complete dataset, D = {x1, x2, ..., xn}, and k, the desired number of

clusters.
Output: k disjoint subsets D1, D2, ..., Dk.
begin

Create n clusters, D1, D2, ..., Dn, where Di = {xi}
DcurrentClustersSet ←− {D1, D2, ..., Dn}
for q ←− n down to k do

Find two clusters Di, Dj ∈ DcurrentClustersSet, where, i �= j, such that the
furthest-neighbor distance between Di and Dj is the minimum among all such
distances, dMSE (., .), between all pair of clusters.
DmergedClusters ←− {Di ∪ Dj}
DcurrentClustersSet ←− {DcurrentClustersSet ∪ DmergedClusters} − {Di, Dj}

end
end
return DcurrentClustersSet

IMSE(k) =
(

1
k

)q

×
(

E1

Ek
× Dk

)p

, (1)

where, Ek =
∑k

i=1
∑n

j=1 uij‖xj − μi‖, Dk = maxk
i,j=1‖μi − μj‖, n is the total

number of samples in the dataset, {uij}k×n is the partition (or membership)
matrix for the data, μi is the center of cluster Di, and k is the number of clusters.
The partition matrix {uij} is defined as a membership function such that uij =
1, if xj belongs to cluster Di, and zero otherwise. The best number of clusters is
the value of k that maximizes IMSE(k). Note, however, that the implementation
of index IMSE(k) is not straightforward. It includes the mean and scatter for
each cluster, and we meant these two to include the profile alignment concept
that we have introduced. For the mean, we use algorithm Cluster-Mean, given
in Algorithm 3, and once the Cluster-Mean is defined, we use it to compute the
scatter of a cluster. For this, we introduce the algorithm Within-Cluster-Scatter,
given in Algorithm 4.

Algorithm 3. Cluster-Mean
Input: A cluster Di with ni samples Di = [xi1 , xi2 , . . . , xini

].
Output: The mean of cluster Di, μi .
begin

μi ←− xi1

for j ←− 2 to ni do
[y1, y2] ←− dMSE(μi , xij )
μi ←− 1

2 (y1 + y2)
end

end
return μi



A New Profile Alignment Method for Clustering Gene Expression Data 91

Algorithm 4. Within-Cluster-Scatter
Input: A cluster Di with ni samples, Di = [xi1 , xi2 , . . . , xini

], and its mean, μi .
Output: The sum of the distances of each gene from the cluster mean, Ei.
begin

Ei ←− 0
for j ←− 1 to ni do

Ei ←− Ei + dMSE(μi, xij )
end

end
return Ei

5 Experimental Results

We have tested the performance of our clustering method that consists of mean-
square-error profile-alignment and hierarchical clustering (MSEHC) on a real-life
dataset obtained from the experimental data [8], on the transcriptional response
of cell cycle-synchronized human fibroblasts to serum. These experiments have
measured the expression levels of 8,613 human genes after a serum stimulation
at twelve different time points, at 0 hr. 15 min. 30 min. 1 hr. 2 hrs. 3 hrs. 4 hrs.
8 hrs. 16 hrs. 20 hrs. and 24 hrs. From these 8,613 gene profiles, 517 profiles
were separately analyzed, as their expression ratio has changed substantially at
two or more time points. Our experiments and analysis have focused on this
dataset1.

First, we applied our method to 260 gene profiles, arbitrarily selected from the
dataset of 517 gene profiles. It is well known that, in general, the best number
of clusters for any real-life detaset is usually less than or equal to

√
n, where

n is the number of samples in the dataset [9]. However, we encountered that
some useful clusters contain one or two differentially expressed genes. Thus,
we considered a range for potential numbers of clusters, which includes values

of k that lie between
⌈√

1
2n
⌉

and
⌊√

3
2n
⌋
. We have, thus, run our algorithm

on this experimental dataset for k = 12 to 20. The values of the IMSE-index
were computed for each of these values of k, and for each k, the IMSE-index was
computed using values of q from 0.3 to 1.0 (a table with all values of IMSE-index
can be found in [11]). We have picked q = 0.6 for which the value of the index
reaches to a maximum level when k = 13. Therefore, we have taken the value of
k = 13 as the optimal number of clusters and plotted the profiles, as clustered
using the MSEHC method. The plots are shown in Fig. 3. The x-axis in each
plot represents the time in hours and the y-axis represents the expression ratio.
Each plot represents a cluster. To compare our results with another method,
we have clustered these 260 gene temporal profiles into 13 clusters, using the
correlation distance and the same hierarchical agglomerative clustering method,
applied to the original data, resulting in the 13 clusters (Fig. 4). Visual inspection

1 Expression data for this subset were obtained from the website: http://genome-
www.stanford.edu/serum/
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of the figures reveal that genes placed in the same cluster in Fig. 3 contain closer
temporal profiles as compared to those of Fig. 4. For example, cluster 5 in Fig. 3
(indicated by i = 5) shows the temporal profiles for three genes IDs 488488,
359769 and 470008 belong to cluster 5, obtained using the MSEHC method.
Visual inspection justifies the clustering of these genes in a single group, as the
profiles are closely aligned all the way. Clustering using the correlation distance
also placed them into a single cluster (Fig. 4, i = 5), but along with some other
genes. The difference in the level and rate of expression ratio changes between
these genes and the rest of the genes in the cluster is apparent from the figure.
Also, gene ID 320355 was placed alone in cluster 1 by the MSEHC method
(Fig. 3, i = 1), whereas this gene was placed in cluster 4 by the correlation
method. Compared to the other profiles placed in cluster 4 (Fig. 4, i = 4), it
is obvious that the gene has a completely different temporal profile. Therefore,
we argue that this gene is better to be left alone in a single cluster, which is
clearly done by the MSEHC method. Also, the correlation method has produced
two clusters containing a single gene each, (IDs 112179 and 40630 in Fig. 4,
i = 1 and 2, respectively). These genes were placed in cluster 13 by MSEHC
(Fig. 3, i = 13). But it is visually clear that these genes are closely aligned to
the other genes placed in cluster 13 as they are not easily distinguishable within
the cluster.

Then, we have applied our method to the complete dataset (all 517 gene
profiles). This time, we have computed the values of the IMSE-index for k = 16
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Fig. 3. Different clusters obtained using the MSEHC on the 260 gene temporal expres-
sion profiles, where k = 13
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Fig. 4. Different clusters obtained using the correlation distance on the 260 gene tem-
poral expression profiles, where k = 13

Table 1. Values of the IMSE index for 517 genes, where k = 16 to 27 and q = 0.3 to 1.0

k q=0.3 q=0.4 q=0.5 q=0.6 q=0.7 q=0.8 q=0.9 q=1.0

16 17344.58 13144.73 9961.84 7549.67 5721.58 4336.14 3286.18 2490.46

17 18791.87 14155.50 10663.02 8032.21 6050.49 4557.70 3433.21 2586.16

18 18685.75 13995.33 10482.28 7851.07 5880.32 4404.27 3298.73 2470.70

19 27333.00 20361.60 15168.29 11299.55 8417.55 6270.62 4671.27 3479.84

20 27169.35 20136.14 14923.59 11060.39 8197.23 6075.25 4502.58 3337.02

21 29057.98 21431.06 15805.99 11657.35 8597.61 6340.97 4676.64 3449.15

22 29577.07 21712.65 15939.35 11701.14 8589.86 6305.85 4629.15 3398.28

23 29554.55 21599.89 15786.24 11537.35 8432.05 6162.55 4503.89 3291.66

24 29493.69 21463.87 15620.21 11367.52 8272.65 6020.38 4381.29 3188.46

25 29981.57 21730.04 15749.49 11414.91 8273.29 5996.32 4346.01 3149.90

26 30081.89 21717.39 15678.71 11319.13 8171.76 5899.54 4259.13 3074.85

27 29959.90 21547.85 15497.71 11146.31 8016.69 5765.79 4146.89 2982.54

to 27, while keeping the range of values for q the same (from 0.3 to 1.0). These
values for the IMSE-index for the corresponding values of k and q are shown
in Table 1. Each row in the table corresponds to each value of k, each column
corresponds to a value of q, and each cell shows the value of the index for the
corresponding values of k and q. For q = 0.6, we found that the value of the index
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Fig. 5. Different clusters obtained using the MSEHC on the 517 gene temporal expres-
sion profiles, where k = 22

reaches to a maximum level when k = 22, and decreases when k > 22 or k < 22.
Therefore, we have taken the value of k = 22 as the optimal number of clusters
and plotted the profiles, as clustered using the MSEHC method corresponding
to k = 22. The plots are shown in Fig. 5. Then, similar to the first experiments,
we have clustered the complete dataset into 22 clusters using the correlation
distance and the same hierarchical agglomerative clustering method, applied to
the original data, resulting in 22 clusters as shown in Fig. 6.
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Fig. 6. Different clusters obtained using the correlation distance on the 517 gene tem-
poral expression profiles, where k = 22

The comparison among the plots from Figs. 5 and 6, again, reveal the effective-
ness of the MSEHC method. For example, the MSEHC method left clusters 1 to
6 containing a single gene each (IDs 328692, 470934, 361247, 147050, 323946 and
310406, respectively in Fig. 5). The correlation method, however, placed these
genes in clusters 21, 2, 2, 13, 2 and 21, respectively (Fig. 6). Again, by visual
inspection of all the temporal expression profiles, we noticed that these genes
are differentially expressed and should be left alone in separate clusters, which
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is clearly done by the MSEHC method. Also, as shown in Fig. 5, the MSEHC
method produced four clusters containing only two profiles each, clusters 7 (IDs
356635 and 429460 ), 9 (IDs 280768 and 416842), 14 (IDs 130476 and 130482)
and 20 (IDs 26474 and 254436). The correlation method clustered these genes as
follows: 356635 and 429460 in cluster 18, 280768 and 416842 in cluster 2, 130476
and 130482 in cluster 18, and 26474 and 254436 in cluster 6 (Figs. 5 and 6).
Although the correlation method placed each pair of genes in the same cluster,
it also placed some other genes with them. By looking at the plots of the profiles
of the clusters produced by the correlation method (Fig. 6) and comparing them
to the plots of the clusters of the corresponding genes produced by the MSEHC
method (Fig. 5), it is clear that these pairs of genes are differentially expressed.
Therefore, the gene profiles placed in the same cluster by the MSEHC method
are more similar than those of the correlation method.

6 Conclusions

We have proposed a novel method to cluster gene expression temporal profile
microarray data. On a sample and a complete real-life dataset, we have demon-
strated that using hierarchical clustering with our method for similarity measure
produces superior results when compared to that of the linear correlation sim-
ilarity measure. We have introduced a variant of the I-index that can make
a trade-off between minimizing the number of useful clusters and keeping the
distinctness of individual clusters.

The MSEHC method can be used for effective clustering of gene expression
temporal profile microarray data. Although we have shown the effectiveness of
the method in microarray time-series datasets, we are planning to investigate
the effectiveness of the method as well in dose-response microarray datasets,
and other time-series microarray data.
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Abstract. Gliomas are diffuse, invasive brain tumors. We propose a
3D classification-based diffusion model, cdm, that predicts how a glioma
will grow at a voxel-level, on the basis of features specific to the patient,
properties of the tumor, and attributes of that voxel. We use Supervised
Learning algorithms to learn this general model, by observing the growth
patterns of gliomas from other patients. Our empirical results on clinical
data demonstrate that our learned cdm model can, in most cases, predict
glioma growth more effectively than two standard models: uniform radial
growth across all tissue types, and another that assumes faster diffusion
in white matter.

1 Introduction

Primary brain tumors originate from a single glial cell in the nervous system,
and grow by invading adjacent cells, often leading to a life-threatening condi-
tion. Proper treatment requires knowing both where the tumor mass is, and
also where the occult cancer cells have infiltrated in nearby healthy tissue. Some
conventional treatments implicitly assume the tumor will grow radially in all
directions — e.g., the standard practice in conformal radiotherapy involves ir-
radiating a volume that includes both the observed tumor, and a uniform 2cm
margin around this border [6, 7]. Swanson’s model [16] claims the tumor growth
rate is 5 times faster in white matter, versus grey matter. Our empirical evidence,
however, shows that neither model is particularly accurate.

We present an alternative approach to modeling tumor growth: use data from
a set of patients to learn the parameters of a diffusion model. In particular,
given properties of the patient, tumor and each voxel (based on MRI scans; see
Fig. 1[a–g]) at one time, our cdm system predicts the tumor region at a later time
(Fig. 1[h]). This model can help define specific treatment boundaries that would
replace the uniform, conventional 2cm margin. It can also help find regions where
radiologically occult cancer cells concentrate but do not sufficiently enhance on
the MRI scan. Therefore, the model can help define the appropriate radiation
doses to deliver to the relevant regions adjacent to the visible tumor.

L. Lamontagne and M. Marchand (Eds.): Canadian AI 2006, LNAI 4013, pp. 98–109, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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T1 T1c T2
(a) T1-weighted (b) T1-contrast (c) T2-weighted

(d) white matter (e) grey matter (f) CSF

(g) initial tumor region (h) predicted tumor region

Fig. 1. Axial slices of brain tumor patient: (a) T1-weighted scan; (b) T1-weighted scan
using gladolinium contrast; (c) T2-weighted scan; (d) white matter; (e) grey matter;
(f) CSF — cerebrospinal fluid; (g) segmented patient tumor; (h) predicted patient
tumor, after adding 30, 000 voxels in 3D, overlayed on T1c (light grey represents the
true positives, dark grey the false positives and black the false negatives)

Section 2 reviews standard glioma diffusion models, and Section 3 formally
defines the diffusion models we are considering. Finally, Section 4 describes our
experiments testing cdm, comparing it with two other models: näıve uniform
growth and tissue-based diffusion. Additional details are in [1, 12].

2 Related Work

In recent decades, glioma growth modeling has offered important contributions to
cancer research, shedding light on tumor growth behaviour and helping improve
treatment methods. In this section, we describe two types of tumor modeling:
volumetric at the macroscopic level, and models based on white matter invasion.

2.1 Macroscopic and Volumetric Modeling

Mathematical modeling of gliomas at the macroscopic level has represented the
traditional framework in predicting glioma diffusion, using growth and prolifer-
ation parameters. We review three of these models:

Kansal et al. [9] simulate the gompertzian growth, which views the tumor as a
population of cells and the growth as a dynamic process where proliferating and
inactive classes of cells interact. Kansal et al. use cellular automata to model
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the different states of tumor cells, from dividing cells at the periphery, to non-
proliferating, and finally to the necrotic state at the centre of the tumor. This
model is designed to predict the growth of glioblastoma multiforme (GBM), the
most aggressive, grade IV gliomas. The model does not account for various tumor
grades, brain anatomy, nor the infiltrating action of cancer cells in tissue near
the tumor.

Tabatabai et al. [19] simulate asymmetric growth as in real tumors and accom-
modate the concept of increasing versus decreasing tumor radii (due to treatment
effects), but do not account for various clinical factors involved in malignant dif-
fusion. Instead, their model describes tumors as self-limited systems, not incor-
porating the interactions between healthy and cancer cells at the tumor border
and the competition of cells inside the tumor. This is not a realistic representa-
tion of clinical cancer diffusion.

Zizzari’s model [21] describes the proliferation of GBMs using tensor product
splines and differential equations, the solutions of which give the distribution of
tumor cells with respect to their spatio-temporal coordinates. Zizzari extends
his growth model to introduce a treatment planning tool that incorporates a
supervised learning task. However, his growth predictions are based only on
geometric issues, and do not consider biological factors nor patient information.

2.2 Glioma Modeling Based on White Matter Invasion

The trend in glioma research is to study biological and clinical factors involved in
cancer diffusion through healthy tissue. Recent models provide a more promising
direction, which can also help provide more effective treatment. In this section,
we review models that incorporate the heterogeneity of brain tissue and histology
of cancer cells.

Swanson et al. [16] develop a model based on the differential motility of glioma
cells in white versus grey matter, suggesting that the diffusion coefficient in white
matter is 5 times that in grey matter. This model was extended to simulate
virtual gliomas [18] and to assess the effectiveness of chemotherapy delivered to
different tissue types in the brain [17]. This modeling is different from our cdm
system as we do not a priori assume the cancer diffusion rates in different tissue
types, but rather our system can learn glioma diffusion behaviour from clinical
data.

Price et al. [14] use T2-weighted scans and Diffusion Tensor Imaging (DTI)
to determine whether DTI can identify abnormalities on T2 scans. Regions of
interest particularly include white matter adjacent to the tumor, and areas of
abnormality on DTI that appeared normal on T2 images. Results demonstrated
further glioma invasion of white matter tracts near the observed tumor.

Clatz et al. [3] propose a model that simulates the growth of GBM based on
an anatomical atlas that includes white fibre diffusion tensor information. The
model is initialized with a tumor detected on the MRI scan of a patient, and re-
sults are evaluated against the tumor observed six months later. However, model
results are reported for only one patient, leaving in question how it performs on
a variety of patients, and with various tumor types.
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2.3 Discussion

Each of the glioma diffusion models presented above describes the geometrical
growth of gliomas as evolving objects. Few of these models use the biological
complexity of cancerous tumors, the heterogeneity of the human brain anatomy,
or the clinical factors of malignant invasion. Moreover, none of these earlier sys-
tems attempts to learn general growth patterns from existing data, nor are they
capable of predicting growth of various tumor grades (as opposed to methods
specifically designed to predict GBM growth only).

The literature does suggest that the following factors should help us predict
how the tumor will spread — i.e., whether the tumor is likely to infiltrate to a
new voxel:

– Anatomical features of the brain: regions that represent pathways versus
brain structures that act as a boundary to the spreading action of the ma-
lignant cells.

– Properties of the tumor: the grade of the tumor (as high-grade gliomas grow
much faster than low-grade ones); the location of the tumor within the brain
(as the shape of the tumor depends on surrounding anatomical structures).

– Properties of the voxels (at the periphery of the tumor where there can
be interaction between malignant and normal cells): its tissue type — grey
versus white matter; whether it currently contains edema1.

We incorporate these diffusion factors as learning features into our ‘general’
diffusion model, cdm. The remainder of this paper describes the diffusion models
we implemented, presents the experiments, and evaluates the performance of the
three models given our dataset of MRI scans.

3 Diffusion Models

In general, a diffusion model (Fig. 2) takes as input an image whose voxels
are each labeled with: the current “voxel label”, VL, which is “1” if that voxel is
currently a tumor and “0” otherwise (see Fig. 1[g])2 as well as general information
e = ePatient ∪ eTumor ∪ {ei}i about the patient ePatient, the tumor eTumor and
the individual voxels ei (see Section 3.1). The third input is an integer s that
tells the diffusion model how many additional voxels to include. See line 1 of
Fig. 2. The output is the prediction of the next s additional voxels that will
be incorporated into the tumor, represented as a bit-map over the image. For
example, if the tumor is currently 1000 voxels and the doctor needs to know
where the tumor will be, when it is 20% larger — i.e., when it is 1200 voxels —
he would set s = 200.
1 Swelling due to accumulation of excess fluid.
2 Here, expert radiologists have manually delineated the “enhancing regions” of tumors

based on their MRI scans. Note this does not include edema, nor any other labels.
We then spatially interpolate each patient image to fill inter-slice gaps and to obtain
voxels of size 8mm3.
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1. Diffusion( VoxelLabel: VL; GeneralInfo: e; int: s )
% VL[i, j, k]=1 if position 〈i, j, k〉 is a tumor
% Initially VL corresponds to current tumor
% When algorithm terminates, VL will correspond to tumor containing “s” additional voxels

2. total count := 0
3. Do forever:

4. Compute N :=

⎧⎪⎪⎨⎪⎪⎩〈x, y, z〉

∣∣∣∣∣∣∣∣ VL[x, y, z] = 0 &

⎛⎜⎜⎝
VL[x + 1, y, z] = 1 ∨
VL[x − 1, y, z] = 1 ∨

...
VL[x, y, z − 1] = 1

⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭

5. For each location vi ∈ N

6. Determine if vi becomes a tumor
7. If so,
8. Set VL[vi] := 1
9. total count++;
10. If (total count == s), return

Fig. 2. Generic Diffusion Model

A diffusion model first identifies the set of voxels N just outside the border
of the initial tumor; see line 4 of Fig. 2. In the following diagram

v1 v2 v6 v7 v5

X X v3 v4 X
X X X X X

(1)

(where each X cell is currently a tumor), N would consist of the voxels labeled
v1 through v5, but not v6 nor v7 (as we are not considering diagonal neighbors).
In the 3D case, each voxel will have 6 neighbors.

The diffusion model then iterates through these candidate voxels, vi ∈ N . If
it decides that one has become a tumor, it then updates VL (which implicitly
updates the tumor/healthy border) and increments the total number of “trans-
formed voxels”; see lines 5−9 of Fig. 2. After processing all of these neighbors (in
parallel), it will then continue transforming the neighbors of this newly enlarged
boundary. If a voxel is not transformed on one iteration, it remains eligible to
be transformed on the next iteration. When the number of transformed voxels
matches the total s, the algorithm terminates, returning the updated VL assign-
ment (Fig. 2, line 10).

The various diffusion models differ only in how they determine if vi has become
tumor — line 6 of Fig. 2. The uniform growth model, UG, simply includes every
“legal” voxel it finds (where a voxel is legal if it is part of the brain, as opposed
to skull, eye, etc.). The tissue-based model, GW, assumes the growth rate for
white matter is 5 times faster than for grey matter [16], and 10 times faster than
other brain tissue. Here, whenever a neighboring voxel vi is white matter, it is
immediately included. If vi is grey matter (other tissue), its count is incremented
by 0.2 (resp., 0.1). GW does not allow diffusion into the skull. This is easy to
determine as the ei part of the GeneralInfo e specifies the tissue type of each
vi voxel, as computed by SPM [5] (see Fig. 1[d–f]).
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3.1 cdm Diffusion Model

Our cdm model is more sophisticated. First, its decision about each voxel de-
pends on a number of features, based on:

the patient, ePatient: the age (which may implicitly indicate the tumor grade).
the tumor, eTumor: volume-area ratio, edema percentage, and volume increase.
each individual voxel {ei}i: various attributes for every voxel vi — spatial

coordinates, distance-area ratio, minimum euclidean distance from the tumor
border, whether the voxel is currently in an edema region, white matter, grey
matter, or CSF (automatically determined by SPM [5]), and image intensities
of T1, T1-contrast and T2 axial scans [2] (obtained both from the patient’s
scan and a standard template3 [8] — after normalization and registration
using SPM [4]).

neighborhood of each voxel {ei}i: attributes of each of the 6 neighbors of
the voxel — whether a neighbor voxel nj is edema, white matter, grey matter,
or CSF, and image intensities from the template’s T2 and T1-contrast.

(The webpage [1] provides more details about each of these features, as well as
some explicit examples.)

cdm then uses a probabilistic classifier to compute the probability qi that
one tumor neighbor vi of a tumor voxel will become tumorous, qi = PΘ( �(vi) =
Tumor | ePatient, eTumor, ei ). Some voxels can have more than one such tumor-
neighbors; e.g., in diagram (1), the voxels v1, v2 and v5 each have a single
tumor-neighbor, while v3 and v4 each have 2. Each tumor-neighbor of the voxel
vi has a qi chance to transform this vi; hence if there are k such neighbors, and
each acts independently, the probability that vi will be transformed on this it-
eration is pi = 1 − (1 − qi)k. cdm will then transform this voxel to be a tumor
with probability pi. We then assign it to be a tumor if pi > τ using a proba-
bility threshold of τ = 65%.4 cdm performs these computations in parallel —
hence on the first iteration, even if v3 is transformed, v4 still has only 2 tumor-
neighbors (on this iteration). We discuss below how cdm learns the parameters
Θ used in PΘ( · ).

4 Experiments

We empirically evaluated the three models, UG, GW and cdm, over a set of 17
patients. For each patient, we had two sets of axial scans R1 and R2 taken at
different times, each with known tumor regions. Let si refer to the size of the
tumor in scan Ri. For each patient, we then input that patient’s initial scan (R1)
to each model, and asked it to predict the next s = s2 − s1 voxels that would be

3 Several images of a normal brain of an individual, averaged and registered to the
same coordinate system.

4 We experimented with several thresholds, and chose this τ = 0.65 value as it provided
the best observed accuracy.
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transformed. We then compare the predicted voxels with the truth — i.e., the
tumor region of the second scan, R2.

To measure the quality of each model, let “nt” be a set of tumor cells for the
patient that are actually transformed (i.e., this is the “truth”, associated with
R2) and “ptχ” be the cells that the χ model predicts will be transformed. We
then use the standard measures: “precision” of χ (on this patient) is |nt∩ptχ|

|ptχ|
and “recall” is |nt∩ptχ|

|nt| . In our case, as our diffusion models stop when |ptχ| =
|nt| = s, the precision and recall values will be the same5 (see tables in [1, 12]).
We report results in terms of the “F-measure” = 2×precision×recall

precision+recall [20], where
F-measure = precision = recall, for each patient.

While UG and GW are completely specified, cdm must first be trained. We
use a “patient level” cross-validation procedure: That is, we trained a learner
(e.g., Logistic Regression [11] or SVM [13]) on 16 patients, then tested on the
17th. Each training instance corresponded to a single voxel vi around the initial
tumor in the first scan R1, with features ePatient, eTumor, and ei, and with the
label of “1” if this voxel was in the tumor in R2, or “0” otherwise. Training voxels
represent the set difference between the tumor in R1 and R2 for each patient
(i.e., the region that a ‘perfect’ diffusion model would consider), in addition
to a 2-voxel border around the tumor in R2 to account for the segmentation
error margin at the tumor border. The total number of training voxels was
approximately 1

2 million for the 17 patients. Notice this training is at the voxel
level, and is only implicitly based on the diffusion approach (in that this is how
we identified the specific set of training voxels).

Results appear in Fig. 3 and in [1, 12]. Below we analyze these results in
terms of best, typical, and special cases; describe system performance versus
tumor grade; and statistically assess of the three models.

4.1 Feature Selection

Here, we consider finding the best subset of the 75 features described in
Section 3.1, called S0. We first computed the Information Gain (IG) of each
feature, then ranked the features based on their IG scores. We observed that
patient-specific tissue features have the lowest IG scores (likely due to SPM’s
segmentation errors and the presence of tumors in patients’ scans). We formed
two subsets of features based on the IG scores and the feature type (e.g., tumor-
specific, tissue-based features, spatial coordinates, etc.). The first subset S1 con-
tains 28 features only; it excluded all patient-specific tissue features since these
have lower IG scores (see [1, 12]), as well as spatial coordinates and template-
specific tissue features, to help generalize the learned tumor growth model (i.e.,
without making any assumptions about the spatial location of the tumor). The
second subset S2 contains 47 features, excluding only CSF features as these
are associated with the lowest IG scores, likely due to errors in SPM’s tissue

5 In some patients, precision and recall can be slightly different if the algorithm ter-
minates prematurely, i.e., before reaching the target size of the tumor.
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Fig. 3. Empirical Results
The F-measure for the three Models with 17-fold “patient-level” CV
(Note F-measure = precision = recall, for each patient — see Section 4).
Results correspond to the output of a logistic regression classifier, learned with feature
set S1. The name of each patient identifies their tumor grades — Astrocytoma grade I
(A) and grade II (A.GBM) that progressed into GBM, Mixed Oligo-astrocytoma grade
II (MOA), Anaplastic astroyctoma grade III (AA), and the most common GBM.

Fig. 4. Tumor-induced pressure deforms the ventricles in patients A.GBM 4 and
GBM 12 (two image slices for each patient)

segmentation process. (Note tumors do not grow into CSF regions, e.g., ven-
tricles6, but induced tumor pressure can deform them, which allows tumors to
appear in a region that had been ventricles, etc.)

By excluding tissue-based features from S1, we allow the model to perform
more accurately for subjects whose tumors have altered the basic brain anatomy
— e.g., tumors that have deformed the ventricles, such as patients A.GBM 4 and
GBM 12 (see Fig. 4). But accuracy slightly decreased for scenarios that rely on
specific training information (i.e., voxel locations and tissue information). Since
S2 includes spatial and tissue information, classifiers that used these features
performed almost the same as S0. Fig. 3 reports results obtained when training
on S1 feature set only. Results with the other feature sets appear in [1, 12].

6 Cavities in the brain filled with cerebrospinal fluid (CSF).



106 M. Morris et al.

4.2 Tumor Growth Patterns Learned from the Data

Here, we considered training voxels a perfect diffusion algorithm will
consider over our 17 patients — these are the voxels that were normal in the
first scan but tumor in the second. Of the voxels that went from normal
to tumor, 45% were edema, 23% had T2 ≥ 0.75, 42% had T1 < 0.5, 45%
were grey matter, and 32% white matter. Of the remaining voxels that stayed
normal, we observed 25%, 15%, 51%, 39%, and 24%, respectively. (Generally,
white matter voxels are more likely to become tumor than grey matter.)
P (class(v) = ‘tumor′ | edema(v) = 1, T 2(v) ≥ 0.75, tissue(v) = w) = 86% .
We then ran Logistic Regression, training on 16 patients, and testing on GBM 7,
the conditional probability was 99.9% .

These probabilities confirm our assumption that voxels located in edema re-
gions (bright on T2, dark on T1 scans) and in the grey or white matter (the last
being a diffusion pathway for tumor cells) are likely to become diseased. See [1]
for other patterns we found in the data.

4.3 Typical, Best, and Special Case Results

Patients GBM 1, GBM 2, and GBM 3 represent typical case results, where cdm
performs more accurately than UG and GW by at least a small percentage.
In these cases, the tumor tends to grow along the edema as glioma cells have
already infiltrated into the peritumoral edema regions. These diffuse occult cells
did not enhance at first on T1-contrast images as these cells may exist only in
very low concentration. But on the next scan of the patient, enhancing tumors
appeared in these regions as glioma cells built up into detectable masses.

Infiltration of glioma cells in edema regions is particularly more obvious on
the MRI scans for patient GBM 7 (Fig. 5), which represents the best case results
as cdm models tumor diffusion more accurately than UG and GW, by 20% and
12% respectively (see Fig. 3 and tables in [1, 12]).

In typical and best case scenarios, the prediction is based on what the classifier
recognizes as ‘tumor’, which are often voxels located in edema regions. Glioma
cell infiltration in peritumoral edema may be even more detectable if the truth
volume was obtained from a patient scan before that patient underwent a surgical
procedure or received radiation treatment.

Patients GBM 10, GBM 12, and GBM 13 are examples of special tumor
growth cases where tumors do not follow usual diffusion patterns (e.g., the tu-
mor shrinks due to treatment and recurs a few months later in regions near the
original mass). In these cases, cdm performed the same as the standard models.
The effect of treatment is present in all of our data, but is more prominent in
these patients.

4.4 Model Performance Versus Tumor Grade

Our dataset consists of four different glioma grades ranging from low-grade as-
trocytomas to the most invasive GBM. GBMs are the most common among
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Fig. 5. Top: MR T1-contrast images of Patient GBM 7, showing lower to higher axial
brain slices from left to right, corresponding to the “truth” volume (R2). Bottom: the
initial images (R1) augmented with shades of grey corresponding to results from cdm
model: initial tumor volume is colored white, true positives are light grey, false positives
are dark grey, and false negatives are black (see color version in [1]).

glioma patients, and represent 2
3 of our data. Because cdm is a general learning

model, it is not restricted to predicting a particular tumor grade, but it requires a
fair representation of various tumor types in training data. Currently, low-grade
tumors are under-represented in our data since they are less common among
glioma patients.

Also, cdm’s prediction is based on probabilities assigned by classifiers to the
unlabeled voxels. High-probability tumor voxels are likely to be located in peri-
tumoral edema regions (edema features have the highest IG scores), particularly
more pronounced in high-grade, larger tumors (e.g., patients GBM 1, GBM 3,
and GBM 7). This is because peritumoral edema regions harbour diffuse malig-
nant cells that infiltrated through tissue near the visible tumor. These malignant
cells form detectable tumor masses over time.

4.5 Statistical Evaluation of the Three Models

Over the 17 patients, the average leave-one-out recall (≡ precision) values for
the cdm, UG and GW models are 0.598, 0.524 and 0.566 respectively. We ran
a t-test [15] for paired data to determine if these average values are statistically
significant from one another, at the 95% confidence interval (i.e., p < 0.05).

– Comparing cdm versus UG, the t value is 4.14 meaning the probability of
the null hypothesis (i.e., values are not significantly different) is 0.001. In
this case, we reject the null hypothesis and conclude that the average recall
obtained with cdm and UG are significantly different.

– Comparing cdm versus GW, the t value is 3.61 meaning the probability of
the null hypothesis is 0.002, which suggests that the average recall obtained
with cdm and GW are significantly different as well.

Given the above t-test results, we conclude that our cdm model is performing
more accurately, in general, than either of UG and GW.
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4.6 Computational Cost of the Three Models

cdm requires several preprocessing steps of the MRI scan followed by feature
extraction (which require approximately one hour). Given a segmented tumor,
and a learned classifier (e.g., Logistic Regression), cdm produces its prediction
of tumor growth in 10 minutes on average7. UG and GW require the same
data processing, and produce their predictions in 1 and 10 minutes on average,
respectively. Note UG performs the fewest number of iterations.

5 Contributions and Future Work

Our team has produced a system that can automatically segment tumors based
on their MRI images [1]; we are currently using this system to produce tumor
volume labels for hundreds of patients, over a wide variety of tumor types and
grades. We plan to train our diffusion model on this large dataset. We will also
experiment with other learning algorithms, including Conditional and Support
Vector Random Fields [10], as these may better account for neighborhood in-
terpendencies between tumor and normal voxels. We will also investigate other
attributes, e.g., estimated tumor growth rate, and features from other types of
data such as Magnetic Resonance Spectroscopy. We may also incorporate diago-
nal neighbors in the diffusion algorithm, which may help improve the accuracy,
and will also help decrease the number of iterations required to grow the tumor,
making the algorithm more efficient.

Contributions. This paper has proposed a classification-based model, cdm, to
predict glioma diffusion, which learns ‘general’ diffusion patterns from clinical
data. (To the best of our knowledge, this is the first such system.) We empirically
compare cdm with two other approaches: a näıve uniform growth model (UG)
and a tissue-based diffusion model (GW), over pairs of consecutive MRI scans.
Our results, on real patient data (as opposed to simulating virtual tumors [18]),
show statistically that cdm is more accurate. See [1] for more details.
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Abstract. There are some neural network applications in proteomics; however, 
design and use of a neural network depends on the nature of the problem and 
the dataset studied. Bayesian framework is a consistent learning paradigm for a 
feed-forward neural network to infer knowledge from experimental data. 
Bayesian regularization automates the process of learning by pruning the un-
necessary weights of a feed-forward neural network, a technique of which has 
been shown in this paper and applied to detect the glycosylation sites in epi-
dermal growth factor-like repeat proteins involving in cancer as a case study. 
After applying the Bayesian framework, the number of network parameters de-
creased by 47.62%. The model performance comparing to One Step Secant 
method increased more than 34.92%. Bayesian learning produced more consis-
tent outcomes than one step secant method did; however, it is computationally 
complex and slow, and the role of prior knowledge and its correlation with 
model selection should be further studied. 

1   Introduction 

Proteomic data are huge, sparse and redundant, and dealing with these characteristics 
is a challenge and requires powerful methods to infer knowledge. Soft computing 
techniques have been extensively used to mine and extract as much necessary infor-
mation as possible from a large set of protein sequences. Generally speaking, the soft 
computing methods used to solve optimization problems are divided into computa-
tional, statistical, and metaheuristic frameworks. Computational approaches optimize 
the learning algorithm by predicting the future state of a solution based on the past 
evaluation of data in both supervised and unsupervised ways. Artificial neural net-
works are obvious examples of such methods. Statistical learning theory emphasizes 
on the statistical methods used for automated learning; for example, kernel-based 
methods such as support vector machines [24] find an optimal separating hyperplane 
by mapping data to a higher dimensional search space. Metaheuristic algorithms are 
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usually used to find a best solution through other combinatorial optimizers; in fact, 
metaheuristic approaches suggest a framework for other heuristic frameworks. Fuzzy 
systems and genetic algorithms are examples of metaheuristic methods [25, 9]. 

In this paper, we have employed a statistical approach (Bayesian learning) in order 
to find a better structure for a computational learning tool (feed-forward network); 
consequently, it is possible to manipulate the proteomic data more intelligently. A 
Bayesian regularization neural network (BPROP-BRNN) takes the large weights into 
account to regularize and measure the complexity of the network [20]. A similar ap-
proach has been applied in this study to examine the consistency of Bayesian learning 
for the large proteomic data set. 

Protein glycosylation [19] is the molecular process in which a protein attaches to a 
simple carbohydrate molecule and makes a protein-sugar complex called a glycopro-
tein. The attachment residue in protein is literally known as a glycosylation site. The 
glycoprotein is then sent out of the cell for performing its biological tasks, a mecha-
nism called secretion. Secretion is crucial for intercellular interaction, cell growth, 
and protein folding [12, 13]. Abnormal increase of the number of glycosylation sites 
causes irreversible diseases such as brain and lung cancer [12]; as a result, study on 
the number of glycosylation sites is very essential. Furthermore, the proteins focused 
in this paper belong to the epidermal growth factor-like (EGFL) family [1, 8], which 
are glycosylated and important for cell adhesion and growth [15, 22]. In addition, to 
better analyze the three dimensional distribution of glycosylation sites in the future, it 
is necessary to focus on one superfamily of proteins. EGFL repeat proteins are well-
studied in terms of glycosylation process, making them a good candidate for this 
research. 

There are various studies about glycosylation sites detection or prediction using 
neural networks [17]. Hansen et al has launched a prediction website for a specific 
type of glycosylation which predicts the glycosylation sites between 65-90% of accu-
racy [14]. Gupta et al has revised the neural predictor of glycosylation sites using a 
majority vote for the collection of neural networks used in their approach [10]. Gupta 
and Brunak have developed a neural network method to infer the correlation between 
the function of proteins and glycosylation sites in human cells [11]. Cai et al has pro-
posed a more specific application of neural network prediction to model the function-
ality of the enzyme responsible for attaching a sugar to a protein [7]. Nevertheless, 
none of those techniques specifically study the non-linear functionality between the 
number of glycosylation sites and the epidermal growth factor-like repeats based on 
statistical learning approaches such as Bayesian learning. 

The objective of this study was to examine the response of the neural model when 
the size of the network decreases. This model was then applied to detect the glycosy-
lation sites in EGFL protein data involving in cancer. 

In section 2, the materials and methods will be discussed. Moreover, the algorithm 
applied for Bayesian regularization will be explained. Section 3 will cover the results 
and discussion, and the last section will review the objectives and lessons learned 
from the study; in addition, it will raise an open question, which could be carried out 
later during further studies. 
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2   Materials and Methods  

2.1   Data Specification 

Epidermal growth factor-like protein sequences were collected from biological web 
repositories such as PROSITE [16] and UniProt Knowledgebase (UniProtKB) [2]. 
The sequences we selected from the mammalian EGFL sequences stored in the re-
positories. Pfam’s Hidden Markov Models [5] were run through the EGFL protein 
sequences, and the sequences with more than 80% of similarity were ignored to avoid 
the redundancy in the data. Furthermore, the sequences without signal peptides are 
not glycosylated, and those sequences were also removed. To build a more general-
ized classifier, it is necessary to feed control data to the classifier. Thus, 412 control 
sequences were used for training. Control data were the glycosylated sequences which 
did not participate in any form of carcinogenesis.  

The test set consisted of 880 sequences, divided into 5 groups. The first 220 se-
quences were glycosylated ones, as indicated by “+” in Table 1. The second subset 
included the EGFL sequences not glycosylated. Non-glycosylated sites were assumed 
to be the ones which either had not been annotated or had been considered as the 
putative glycosylated sites. They tagged as negative sequences and marked “-“. The 
third category was the same as the first subset and the fourth set, indicated by “*” in 
Table 1, corresponded to non-EGFL, glycosylated sequences. The last set represented 
noise to the data as a measure of reliability of the model. In fact, the noise sequences 
were any kind of not glycosylated, not EGFL protein sequences. 

Target set was labeled as { }0.1,0.9
n
, where 0.9 and 0.1 represented the model re-

sponse for glycosylated and not glycosylated sets respectively. n denotes the number 
of the underlying sequences. The labels were substituted for ‘0’ and ‘1’ since using 
binary set in sigmoid function shifts the function response to large values and signifi-
cantly increases the weights of the network. This phenomenon, so-called shifting 
effect, leads to an unstable network; consequently, the target values are usually set to 
0.1 and 0.9 instead of their respective binary counterparts. 

Table 1. Data specification. Control set were glycosylated but not participated in any kind of 
malignancy. Glycosylated and not glycosylated sets are shown in + and – respectively. Noisy 
data are indicated as *. Target values were chosen to be [0.1,0.9] to avoid the shifting effect. 

No. of Sequences Description Target Value 
3400 Training set 0.9 
412 Control set 0.1 

880 

                     220 – Glyco + 
                     220 – Glyco – 
 Test Set:      220 – Glyco + 
                     175 – Glyco * 
                       45 – Noise  

0.9 
0.1 
0.9 
0.1 
0.1 
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To study the effect of altering the number of inputs fed to back-propagation net-
work, all sequences were divided into five different window frames around the glyco-
sylation site with the size of 5, 11, 15, 19, and 29 amino acids (Table 2). Orthogonal 
encoding [18] was used as a scheme to preprocess the sequences before feeding into 
the network. In this scheme, only one amino acid has the binary value ‘1’ while the 
rest of the residues in the sequence remain ‘0’. Although this technique is redundant 
and increases the number of weights in the neural network, it prevents the network to 
learn a false correlation between amino acids [23].  

Table 2. Window frame specification. The sequences were divided into five classes: 5-, 11-, 
15-, 19-, and 29-residue frames, each of which fed the Bayesian regularization neural network. 
The assumption made for encoding was orthogonal scheme. X is an arbitrary amino acid, and 
XGlycosite is the residue participating in glycosylation, i.e. Asparagine, Serine, or Threonine 
(glycosylation site). HU indicates the number of hidden units in the hidden layer. 

No. of Parameters in Networks 
Window Frame        Sequence Pattern 

HU=5 HU=10 

5 2(X)- XGlycoSite-2(X) 511 1021 
11 5(X)- XGlycoSite-5(X) 1111 2221 
15 7(X)- XGlycoSite-7(X) 1511 3021 
19 9(X)- XGlycoSite-9(X) 1911 3821 
29 14(X)- XGlycoSite-14(X) 2901 5821 

2.2   Neural Network Model 

One hidden-layer feed-forward network was used in this study to restrict our approach 
to search in a moderate solution space rather than a complex one. One hidden layer, 
consisting of h hidden units for a sequence of length , according to the orthogonal 

encoding scheme, has ( )20 2 1h + + parameters (weights and biases). For model 

selection, the networks with h=5 and h=10 were selected.  
In terms of learning, the Levenberg-Marquardt algorithm was used along with  

a Bayesian automated regularization (BPROP-BRNN); Moreover, the back-
propagation network was separately trained with One Step Secant (OSS) algorithm 
[4] along with a backtrack minimization approach as a line search function (BPROP-
OSS) as a benchmark to Bayesian learning. One hidden layer with either 5 or 10  
hidden units was also selected for BPROP-OSS, and it was validated using 10-fold 
cross validation. 

2.3   Learning by Bayesian Inference 

The non-linear functionality between the search space and the target set is inferred by 
a back-propagation network, and the model should cover the new unseen data as well. 
Consequently, it is not only necessary to estimate targets by minimizing the mean 
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squared error of the model output, but also by including a regularized term as a cost 
term to penalize the large values of weights in the network. The regularization term 
applied was the squared sum of the weights of the neural network: 

( )
1 12 2

N M

T D R k k i
k i

y t w
β αε βε αε

= =

= + = − + . (1) 

whereα and β are coefficients assigned to each term. The second term in (1) is some-

times called weight decay, as it guarantees that the weights of the network do not 
exceed than the total error of the network.  

Instead of cross validation, the weights and biases of back-propagation network 
were assumed as the random variables with specific distribution and unknown vari-
ances [20, 21]. As a result, it is possible to estimate these parameters using Bayesian 
inference. This process maximizes the posterior probabilities of the parameters’ dis-
tribution given the data: 
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where θ  is the network parameters along with regularization and mean squared error 
coefficient terms in (1). BPROP-BRNN first estimates the optimal weights of the 
networks, and then maximizes the posteriors by adjusting α  and β . Therefore, the 

model automatically finds the best coefficients for each MSE and regularization terms 
in (1). To find a practical algorithm which could calculate (2), prior, likelihood and 
posterior probabilities were computed individually. 

2.3.1   Prior Probability 
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where W, WE and ( )αWZ  are the number of weights, weight decay and normalization 

factor respectively.  

2.3.2   Likelihood Estimation 
The likelihood expresses how data energy is likely to decay through the learning proc-
ess. Hence, the following approach was used to reach at the model likelihood: 
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where ( )ixM , ( )βDZ  and DE  are model output given an input sequence, normaliza-

tion factor and output error respectively. 

2.3.3   Posterior Probability 
Posterior probability is simply calculated from (2), (3), and (4): 
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Maximizing the posterior probability is easier by minimizing the total error of the 
network according to (5).  

2.3.4   Updating α  and β  
It has been shown that the priors are reliable for every re-parameterization when they 

are proportional reciprocally to the parameters themselves [21], i.e., ( )
α

α 1=P  

and ( )
β

β 1=P .  By plugging these values in (2) and then expanding a Taylor-

approximation of (5), one can get the following inference: 
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where the starred parameters referred to optimized values of energies obtained from 
the last procedure. (7) is Hessian of (9) at optimized weights *W . 

The goal is to find the optimum energy parameters, which is done by calculating 
the partial derivatives of (6) with respect to α  and β , and set the result equal to zero 

to find the optimum values for the parameters: 
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where N is the number of parameters and 
1*−

H is inverse of the Hessian matrix. Hav-
ing obtained the updated parameters of energy function, one can simply implement an 
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Fig. 1. The Bayesian learning algorithm for pruning feed-forward neural network 

iterative algorithm embedded with any learning technique. Fig. 1 shows the flowchart 
of embedded Bayesian regularization to a learning algorithm. 

2.4   Developing Environment 

MATLAB was used as the developing environment. The Levenberg-Marquardt Algo-
rithm along with Bayesian automated regularization was applied to the data sets. A 
general purpose cross validation code was developed, and its argument was set to 
perform a 10-fold cross validation over the BPROP-OSS network. Also, a general-
purpose encoder was implemented to convert the protein sequences to orthogonal 
encoded sets. In addition, the routines for standard assessments such as precision, 
recall and correlation coefficient were implemented using Visual Studio .NET C++ 
2003. 

The average run time for each window frame using Bayesian learning was 30 min-
utes on a PC with Dual Processor Pentium 4 (3.99-2.99GHz) with 1GB of RAM. 
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3   Results and Discussion 

According to the findings demonstrated in Table 4, after applying the Bayesian learn-
ing framework to the feed-forward neural network, the average size of the network  
 
Table 3. Standard measurement for BPROP-BRNN and BPROP-OSS. WF indicates the win-
dow frame size. SPEC%, SENS% and MCC are specificity and sensitivity percentage as well as 
Matthews’ Correlation Coefficient value respectively. The highest values for SPEC% and MCC 
are highlighted. 

Window Name Assess BRNN OSS 
SPEC% 66.37 38.91 

SENS% 69.22 51.00 5-residue 

MCC 0.674 0.111 

SPEC% 70.99 47.11 

SENS% 68.17 54.83 11-residue 

MCC 0.790 0.165 

SPEC% 66.25 43.29 

SENS% 75.23 55.17 15-residue 

MCC 0.715 0.153 

SPEC% 75.16 57.15 

SENS% 70.19 60.90 19-residue 

MCC 0.821 0.341 

SPEC% 77.00 50.11 

SENS% 76.19 49.35 29-residue 

MCC 0.851 0.313 

 

Fig. 2. The left figure shows the network response after applying Bayesian learning with 
Levenberg-Marquardt (LM) algorithm, and the right one is the network output for the quasi-
Newton One Step Secant (OSS) learning algorithm with backtracking minimization parameters. 
Both networks had a hidden layer consisting of 5 hidden units, and they were applied to 29-
residue window frame.  The test set was 880 EGFL sequences, as described in Table 1. 



118 A. Shaneh and G. Butler 

 

Table 4. BRNN-BPROP Structure. The columns from l-r: window frame size, no. of hidden 
units, no. of total parameters, no. of effective parameters, and the network reduction factor.  

  

WF 
HU BRNNBPROP−Γ  Eγ  100×

Γ
−Γ

=
−

−

BRNNBPROP

EBRNNBPROP γ
ρ  

1 106 66.95 36.84 

2 212 100.98 52.37 

3 318 156.97 50.64 

4 424 156.97 62.98 

5 530 156.97 70.38 

5 

6 636 156.97 75.32 

1 232 166.22 28.35 

2 464 342.25 26.24 

3 696 542.51 22.05 

4 928 763.64 17.71 

5 1160 811.00 30.09 

6 1392 811.00 41.74 

11 

7 1624 811.00 50.06 

1 316 22.93 92.74 

2 632 209.61 66.83 

3 948 794.15 16.23 

4 1264 826.00 34.65 

5 1580 826.00 47.72 

6 1896 826.00 56.44 

15 

7 2212 826.00 62.66 

1 400 258.99 35.25 

2 800 665.79 16.78 

3 1200 836.00 30.33 

4 1600 835.97 47.75 

5 2000 836.00 58.20 

6 2400 836.00 65.17 

19 

7 2800 835.92 70.15 

1 610 442.93 27.39 

2 1220 804.19 34.09 

3 1830 846.99 53.72 

4 2440 847.00 65.29 

29 

5 3050 847.00 72.23 
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decreases by 47.62% which shows that this approach has been successfully reduced 
the number of unnecessary parameters of the neural network. Table 3 shows the situa-
tion of the network parameters for each window frame. 

There are several assessment methods for proteomic data [3]; however, the speci-
ficity, sensitivity, and correlation of the data were measured through the following 
standard performance measurement for bioinformatics data: 

( ) ( ) ( ) ( )
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= ×
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× − ×=
+ + + + + + +

 

(9) 

where TP, TN, FP, and FN are true positives, true negatives, false positives, and false 
negative glycosylation sites respectively. Matthews’ Correlation Coefficient (MCC) 
[3] was higher for longer frames. The exception was 15-residue window frame  
in which there was no evidence found for stability of the results. The results also 
showed a 62.22% in the maximum correlation coefficient using Bayesian automated 
regularization, which is a significant improvement for the neural network. BRNN 
could detect the true positive hits by 34.92% when 29-residue window frame was 
used. Fig. 2 shows that the response of the network is noisier in BPROP-OSS than 
BPROP-BRNN. This suggests that the Bayesian learning could lead to a stronger 
generalization than that of BPROP-OSS. 

4   Conclusion 

A Bayesian framework was applied to a feed-forward network to study the neural 
network structure and topology. The network was initially implemented by the maxi-
mizing the posterior probabilities. After that, the network parameters were pruned 
such that the less important weights and biases were neglected. As a benchmark, the 
performance of a quasi-Newton learning method, one step secant, was measured. 
Bayesian learning outperformed the semi Newton one in terms of both accuracy and 
consistency over the networks parameters as well as model response. The neural net-
work with both Bayesian and semi Newton learning approaches was employed to 
detect the glycosylation sites of the epidermal growth factor-like repeat proteins. The 
true positive hits were much higher in the network trained with Bayesian learning. 
This would suggest applying this framework for knowledge inference from proteomic 
data. In fact, with enough prior information, it is possible to estimate the model pa-
rameters even with large number of protein sequences. Nonetheless, Bayesian learn-
ing is expensive and computationally complex. Using other encoding schemes such as 
adaptive encoding may suggest a solution to overcome that disadvantage of BPROP-
BRNN. Furthermore, evolutionary-related EGFL sequences may affect the accuracy 
of the model due to an unavoidable similarity among those sequences. Removing the 
sequences with the same origin from the dataset introduces less prior knowledge to 
the model whereas keeping them may influence the model response. Therefore, the 
trade-off between keeping and removing evolutionary-related EGFL sequences is a 
challenging issue for further studies. 
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Although Bayesian regularized neural network significantly improved the model 
response, biologists should validate the results of this network to evaluate to what 
extend in-silico detection of glycosylation sites would provide them with worth study-
ing protein sequences. Moreover, the validation procedure avoids the wrong analysis 
of outcomes of the model which may influence the biological interpretation of the 
results used, for example, in an analysis toward knocking out or silencing a gene.  

Finally, Bayesian learning should be studied in terms of correlation between prior 
knowledge, which will be carried out through further studies. 
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Relaxation of Soft Constraints Via a Unified Semiring
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Abstract. The semiring framework for constraint satisfaction allows us to model
a wide variety of problems of choice. Semiring constraint satisfaction problems
are able to represent both classical consistency and optimisation problems, as
well as soft constraint problems such as valued and weight CSPs. In this paper
we pose and answer the question: how can we represent and ‘solve’ the relaxation
of a semiring constraint satisfaction problem?

1 Introduction

Example 1. Consider the following marking scheme for artwork produced by students
of an art class. Each artwork is given a mark of Platinum, Gold, Silver or Bronze for
the ‘colour brightness’ and ‘colour harmony’ aspects of their work. The final mark is
the lowest received for either aspect of the artwork. We want to find the top student to
receive an award. Their component and final marks are presented below:

Brightness Harmony Final Mark
Amy Gold Bronze Bronze
Bob Silver Silver Silver
Col Bronze Bronze Bronze
Dan Bronze Silver Bronze

None of the students scored well; perhaps our marking was too harsh? While Bob was
the only student to receive a final mark of Silver, we cannot give him an award while
admitting our marking was flawed. We need to investigate what happens if we relax our
marking scheme. . .

The semiring framework [2, 3, 4] for constraint satisfaction allows us to model a wide
variety of problems of choice. It generalises many other soft constraint satisfaction
frameworks [1, 5], while retaining useful properties for algorithm development.

It is trivial to represent the marking scheme in this example as a semiring constraint
satisfaction problem (SCSP). However, it is much more difficult to represent the ways
in which the marking scheme can be adjusted, specifically relaxed, as a SCSP. We
will describe a semiring constraint relaxation problem (SCRP) which extends a SCSP,
providing optimal solutions under all attempts to relax the marking scheme. We will
then pose the question: how can we represent a semiring constraint relaxation problem
as a semiring constraint satisfaction problem?

L. Lamontagne and M. Marchand (Eds.): Canadian AI 2006, LNAI 4013, pp. 122–133, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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The concept of ‘relaxation’ introduced in this paper should not be equated with that
of ‘optimisation’ or ‘satisfaction’ commonly found in the semiring constraint frame-
work. A semiring constraint satisfaction problem involves finding the optimal assign-
ment of values to variables, using constraints as measures of satisfaction. However, we
work under the presumption that the original semiring constraints are themselves some-
how flawed and too ‘tight’. We will treat the constraints as representations that may be
modified (in a consistent fashion!) to achieve some goal. In the above example, and in
this paper, our goal is to find a better set of constraints for a given problem.

2 Constraint Relaxation with Two Semirings

We will define the semiring constraint relaxation problem by extending the semiring
constraint satisfaction problem, with detailed examples to follow. First, we give a sim-
plified description of semiring constraint satisfaction problems.

Definition 1. A c-semiring is a tuple A = 〈A,+A ,×A ,0A ,1A〉 satisfying (for α ∈ A):

– A is a set with 0A ,1A ∈ A
– +A is a commutative, associative, and idempotent operator on A.
– ×A is a commutative, associative, and binary operator on A.
– ×A distributes over +A
– α+A 0A = α and α+A 1A = 1A
– α ×A 1A = α and α ×A 0A = 0A

We can derive the partial ordering ≤A from a c-semiring by (α ≤A β) ⇔ (α +A β =
β). As a result of this definition, +A and ×A are both monotone on ≤A , 〈A,≤S 〉 is a
complete lattice and α +A β = lub(α,β). Note that we will often use the symbols ∑
and ∏ to refer to the semiring operators in prefix notation. We forgo the subscripting of
these for convenience; the precise operator to be used should be clear from the context.

Definition 2. A semiring constraint satisfaction problem is a tuple P =
〈
V ,D,A ,C

〉
:

– V is a set of variables
– D is a set of values to be to assigned to variables.
– S denotes the set of all assignments, written as functions s : V → D.
– A is a c-semiring used to evaluate each assignment.
– C is a set of constraints, written as functions ci : S → A .

Definition 3. Given a semiring constraint satisfaction problem P =
〈
V ,D,A ,C

〉
, we

define the solution as the function:

sol(s) = ∏
ci∈C

ci(s)

and the abstract solutions as the set:

{s ∈ S : ∀t ∈ S ,sol(s) 
<A sol(t)}
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Definitions 1, 2, and 3 provide a shortened description of the semiring constraint satis-
faction problem. We have deliberately left out details not used in this paper. For a more
complete treatment of c-semirings and SCSP, and how they generalise many forms of
constraint satisfaction and optimisation problems, see [3].

Using the above simplified definition of a semiring constraint satisfaction problem,
we will now define a semiring constraint relaxation problem. Whereas the aim of an
SCSP is to find the ‘best’ solutions satisfying some constraints, a SCRP aims to find the
best solutions for any relaxation of those constraints.

We define a relaxation as being a set of uniform substitutions a ⇒ a′, where a,a′ ∈ A.
For example, in our introductory example we could relax the Harmony marks for all
students by changing all Silver marks to Gold. We could not however change the Silver
mark in Harmony for Bob and not change it for Dan. Therefore, with respect to SCSP,
a ‘relaxation’ will be the modification of the value a constraint uses from a semiring,
but not a modification of the way in which individual solutions are evaluated. This is an
explicit but intuitive restriction we place on the concept of relaxations; we are relaxing
the constraints, not arbitrarily rewriting the problem.

Definition 4. Given a pair of c-semirings A and B , we define a relaxation function as
a function r : A × A → B satisfying (where a1,a2,a3,a4 ∈ A):

– if a1 ≤A a2 and a3 ≤A a4 then r(a2,a3) ≤B r(a1,a4)
– if a1 ≤A a2 then r(a2,a1) = 1B

A relaxation function measures the ‘amount of relaxation’ if one c-semiring value was
to be substituted for another. The conditions imposed in this definition ensure that rais-
ing a c-semiring value further always requires a greater amount of relaxation. Also,
leaving a c-semiring value unchanged (performing no substitution) involves no relax-
ation, and so is measured as 1B .

Definition 5. A semiring constraint relaxation problem is a tuple Q =
〈
V ,D,A ,C ,

B ,R 〉:

– V is a set of variables
– D is a set of values to be assigned to variables
– S denotes the set of all assignments, written as functions s : V → D.
– A and B are c-semirings, and either ×A is idempotent or ≤B is a total order.
– C is a set of constraints, written as functions ci : S → A .
– R is a corresponding set of relaxation functions ri : A × A → B .

The definition of a relaxation problem extends that of a satisfaction problem with a new
c-semiring B and relaxation functions R . The relaxation functions are used to express
preferences on the possible relaxations. The following definitions are all given with
respect to a semiring constraint relaxation problem Q =

〈
V ,D,A ,C ,B ,R

〉
.

Definition 6. A sequence Δ ∈ A|C | is an r-delta. An r-delta, when viewed in conjunction
with a complete assignment s ∈ S , provides a replacement ‘relaxed’ value for each con-
straint in C . We can measure the total amount of relaxation for a complete assignment
s and r-delta Δ by:

∏
ci∈C

ri(ci(s),Δi)
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Definition 7. We will then define the relaxed solution of Q as the function (where ∏Δ
denotes Δ1 ×A . . .×A Δ|C | and s ∈ S , a ∈ A):

rsol(s,a) = ∑
(∏Δ)=a

(
∏
ci∈C

ri(ci(s),Δi)

)

We can read this definition as “the minimum amount of relaxation required to change
each constraint in such a way that the combined evaluation of s is a”. We are then able to
define the abstract solutions of a semiring constraint relaxation problem as those which
require a minimal amount of relaxation for any relaxation target a.

Definition 8. For a pair of assignments s, t we write s ! t to mean ∀a ∈ A,rsol(s,a) ≤B
rsol(t,a). We will define the abstract relaxed solutions of Q as the set:

{s ∈ S : ∀t ∈ S , s ⊀ t}

2.1 Example Satisfaction Problem

The original problem from our introductory example is: which student should receive an
award? In this problem there exists only one variable; the student. The possible marks,
in ascending order, are Bronze, Silver, Gold and Platinum. Two constraints (Brightness
and Harmony) determine the marks for each student.

Formally, we have variables V = {v} with domain D = {Amy,Bob,Col,Dan}, and
a c-semiring A = 〈{Bronze,Silver,Gold,Platinum},max,min,Bronze,Platinum〉. The
constraints C = {c1,c2} represent the Brightness and Harmony marks respectively:

s(v) c1(s) c2(s) c1(s)×A c2(s)
Amy Gold Bronze Bronze
Bob Silver Silver Silver
Col Bronze Bronze Bronze
Dan Bronze Silver Bronze

The abstract solution is obviously ‘Bob’ as he received the highest final mark. How-
ever, as described in the introduction, we are not satisfied with the abstract solution and
wish to relax out constraints.

2.2 Example Relaxation Problem

The relaxation problem from our introductory example is: which student should be
awarded if we relax our constraints? The variables, domains, and constraints of our orig-
inal problem are retained. However, we add an additional relaxation c-semiring B and
set of relaxation functions R . For simplicity we will use the same relaxation function
for both constraints (so r1 = r2 = r), and the c-semiring B = 〈Z+ ∪ {∞},min,+,∞,0〉.

Within the context of our example, the relaxation function r can be said to measure
the ‘sacrifice’ in our marking standards. One possible relaxation function is:
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a1 a2 r(a1,a2)
Gold Platinum 2
Silver Platinum 4
Silver Gold 1
Bronze Platinum 5
Bronze Gold 4
Bronze Silver 1
All others 0

Note that r measures sacrifice for component marks (ie. the individual constraints)
and not the final mark. To determine the sacrifice for changing a students final mark we
must combine relaxation measures as per Definition 7:

– to change Amy’s final mark to Gold would require changing the Bronze in Harmony
to Gold, which amounts to r(Bronze,Gold) = 4.

– to change Bob’s final mark to Gold would require changing the Silver in both con-
straints to Gold, which amounts to r(Silver,Gold)+ r(Silver,Gold) = 1 + 1 = 2.

– to change Amy’s final mark to Platinum would require changing the Bronze in
Harmony and the Gold in Brightness, which amounts to r(Bronze,Platinum) +
r(Gold,Platinum) = 5 + 2 = 7.

– to change Bob’s final mark to Platinum would require changing the Silver in both
constraints to Platinum, which amounts to r(Silver,Platinum)+r(Silver,Platinum)
= 4 + 4 = 8.

We can tabulate the relaxation amounts for each student and each final mark, giving the
‘relaxed solution’ of Definition 7:

s(v) Platinum Gold Silver Bronze
Amy 7 4 1 0
Bob 8 2 0 0
Col 10 8 2 0
Dan 9 5 1 0

By inspection we can see that the two abstract relaxed solutions are ‘Amy’ and ‘Bob’.
If we wish to relax our marks to give a student Gold, then Bob is the best choice,
requiring only a relaxation amount of 2. However, if we wish to relax our marks to give
a student Platinum, then Amy is the best choice, requiring only a relaxation amount of
7. So depending on how far we wish to relax our constraints we may end up awarding
different students. Note that we can never award Col or Dan under any relaxation.

2.3 Relaxing Other Solutions

As a sidenote, it is interesting also to consider how we might adjust final marks for other
students if, for example, Amy receives a final mark of Platinum. To give Amy a final
mark of Platinum requires a relaxation of 6, and the highest final mark Bob can receive
with the same relaxation amount is Gold. Therefore it can be argued that if we relax our
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marking to assign Amy Platinum, we should also assign Bob Gold. Col and Dan should
also be assigned at least Silver and Gold respectively. Following this reasoning we can
determine the new final marks for different relaxations amounts:

Relaxation Amy Bob Col Dan
0 Bronze Silver Bronze Bronze
1 Silver Silver Bronze Silver
2 Silver Gold Silver Silver
4 Gold Gold Silver Silver
5 Gold Gold Silver Gold
7 Platinum Gold Silver Gold
8 Platinum Platinum Gold Gold
9 Platinum Platinum Gold Platinum
10 Platinum Platinum Platinum Platinum

However, this reasoning assumes that we are trying to find ‘a relaxed final mark for
each student’ and not ‘a new relaxed marking scheme’. Note that, by the above table,
to assign Amy Gold we must also assign Bob Gold, and this would supposedly require
a relaxation amount of 4. However, these each require a different relaxation; to find
a single marking scheme which gives them both Gold simultaneously may require a
greater relaxation amount.

To find ‘a relaxed final mark for each student’ is subtly different to finding ‘a relaxed
marking scheme to achieve some goal’. They correspond to the tasks of ‘exploring
the possible outcomes of all relaxed SCSPs’ and ‘finding a single new relaxed SCSP’.
Either is a valid task and achievable within our framework, but not simultaneously.

3 Constraint Relaxation with One Semiring

The two-semiring formulation of the semiring constraint relaxation problem obviously
deviates from the usual semiring constraint satisfaction framework, making application
of existing algorithms and results difficult. We wish to define a new c-semiring which
unifies the two c-semirings, and appropriate constraints to model the semiring con-
straint relaxation problem as a semiring constraint satisfaction problem. In capturing
the constraint relaxation problem as a regular semiring constraint satisfaction problem
we also demonstrate the flexibility of the semiring framework in solving a wider variety
of choice problems.

Let Q =
〈
V ,D,A ,C ,B ,R

〉
be a semiring constraint relaxation problem. We wish to

define a new semiring constraint satisfaction problem P ′ =
〈
V ,D,U,E

〉
such that the

abstract solutions are the same as that of Q . We will define a unified c-semiring which
captures all possible relaxations, and describe the adaptation of existing constraints.
These definitions will then be demonstrated in a detailed worked example.

Definition 9. Given a pair of c-semirings A ,B we define the unified c-semiring U =
〈U,+U,×U ,0U,1U〉 as follows:

– U is the set of monotonic decreasing functions u : A → B, where u(0A) = 1B .
– 0U(a3) = 1B when a3 = 0A ; 0B otherwise
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– 1U(a3) = 1B

– (u1 +U u2)(a3) = u1(a3)+B u2(a3)

– (u1 ×U u2)(a3) = ∑
a1×A a2=a3

u1(a1)×B u2(a2)

Note that c-semiring values in U describe the level of relaxation required to be able to
use each A-semiring value. Therefore we have defined the operators and elements of U
as functions mapping A-semiring value to B-semiring values.

Also note that our intent with the c-semiring U is to capture the concept of ‘re-
laxation functions mapping A → B’ within the c-semiring itself. As will be described
later, we are able to develop new constraints ei for U which, given a variable-value as-
signment, return an element of U describing the amount of relaxation required for any
choice of a ∈ A. Keeping this in mind, we will describe the formulation of ×U and +U
in detail:

u1(a3)+B u2(a3) A U-semiring value encapsulates all possible (relaxed) A-
semiring values, with corresponding B-semiring (penalty for do-
ing the relaxation) values. u1(a1) may be read as ‘the amount of
relaxation required to change an original constraint to give a1

for a particular variable-value assignment’. For the +U oper-
ator we wish to determine the minimum amount of relaxation
given the choice between u1 and u2. Therefore, for each relaxed
A-semiring value a3 we choose the best possible amount of re-
laxation: u1(a3)+B u2(a3).

u1(a1)×B u2(a2) Whereas the +U operator is defined to select between two U-
semiring values, the ×U operator must combine two U-semiring
values. Again, a U-semiring value encapsulates all possible
(relaxed) A-semiring values, with corresponding B-semiring
(penalty for doing the relaxation) values. Therefore we read
u1(a1) ×B u2(a2) as ‘the total amount of relaxation required to
change a pair of distinct original constraints to give a1 and a2

for a particular variable-value assignment’.

∑
a1×A a2=a3

Recall that we are attempting to minimise the penalty values
(ie. find the minimal relaxation), and so the B-semiring value
(u1 ×U u2)(a3) must be ‘the minimum amount of relaxation re-
quired to use the A-semiring value a3’. To that end, we explore
the combined amount of relaxation required for all pairs of val-
ues a1,a2 such that a1 ×A a2 = a3. This can be seen as ‘consid-
ering all possible relaxations of the pair of original constraints,
and determining the total relaxation required in each case’. The
∑ operator (which is the basis for the ≤B ordering) then deter-
mines the minimum amount of relaxation required.
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Lemma 1. +U is a commutative, associative and idempotent operator on U, and ×U
is a commutative, associative, and binary operator on U

Proof. All properties for +U follow trivially from the matching properties of +B . Com-
mutativity of ×U follows from the symmetry in the definition of ×U and the commu-
tativity of the +A ,×A and ×B operators used. It is also evident that ×U is binary. We
must then prove that ×U is associative. The following steps provide a simplification of
(u1 ×U u2)×U u3 which, through symmetry, is obviously equal to u1 ×U (u2 ×U u3).

((u1 ×U u2)×U u3)(a3) = ∑
a1×A a2=a3

( ∑
a′

1×A a′
2=a1

u1(a′
1)×B u2(a′

2))×B u3(a2)

[by distributivity of ×B ] = ∑
a1×A a2=a3

( ∑
a′

1×A a′
2=a1

u1(a′
1)×B u2(a′

2)×B u3(a2))

[by associativity of +B ] = ∑
a′

1×A a′
2×A a2=a3

u1(a′
1)×B u2(a′

2)×B u3(a2)

Theorem 1. U = 〈U,+U,×U ,0U,1U〉 satisfies the requirements of a c-semiring.

Proof. By the above lemmas, and inspection of the 1U and 0U elements, it is evident
that all requirements of Definition 1 except distributivity are proven to be satisfied. We
can prove distributivity as follows:

((u1 +U u2)×U u3)(a3) = ∑
a1×A a2=a3

(u1(a1)+B u2(a1))×B u3(a2)

[by distributivity of ×B ] = ∑
a1×A a2=a3

(u1(a1)×B u3(a2))+B (u2(a1)×B u3(a2))

[by associativity of +B ] = ∑
a1×A a2=a3

(u1(a1)×B u3(a2))+B

∑
a1×A a2=a3

(u2(a1)×B u3(a2))

[by definition of ×U] = (u1 ×U u3)(a3)+B (u2 ×U u3)(a3)
[by definition of +U] = ((u1 ×U u3)+U (u2 ×U u3))(a3)

Using this unified c-semiring U we must now model each constraint/relaxation pair as
a constraint. The following definition gives that transformation:

Definition 10. Given a constraint ci and a relaxation function ri we can form a unified
constraint ei mapping variable-value tuples to a function in U. For any given variable-
value assignment s we have ei(s) = u ∈ U where u(a) = ri(ci(s),a) for all a ∈ A.

This definition allows us to construct a new set of constraints E to replace the con-
straints and relaxations ci,ri of the semiring constraint relaxation problem. We are then
able to construct a new semiring constraint satisfaction problem P ′ =

〈
V ,D,U,E

〉
from the relaxation problem Q =

〈
V ,D,A ,C ,B ,R

〉
. We must now prove that they are

equivalent.
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Theorem 2. Given a semiring constraint relaxation problem Q =
〈
V ,D,A ,C ,B ,R

〉
and a matching semiring constraint satisfaction problem P ′ =

〈
V ,D,U,E

〉
derived

by the above definitions, then the relaxed solution of Q is equal to the solution of P ′.
Formally, rsol(s,a) = sol(s)(a).

Proof. By a sequence of algebraic substitutions we can prove that rsol(s,a) =
sol(s)(a).1

rsol(s,a) = ∑
a=∏Δ

(
∏
ci∈C

ri(ci(s),Δi)

)

[by definition of ei(s)] = ∑
a=∏Δ

(
∏

ei∈E
ei(s)(Δi)

)

[by definition of ×U] =

(
∏

ei∈E
ei(s)

)
(a)

[by definition of sol(s)] = sol(s)(a)

The abstract solutions of P ′ are thus equal to the relaxed abstract solutions of Q due to
the semantic equivalence of ≤U (derived from +U) and ! (from Definition 8).

3.1 Example

We are now able to reformulate our example semiring constraint relaxation problem
Q as a semiring constraint satisfaction problem P ′. First we construct the semiring U
consisting of functions mapping A to B , as per Definition 9. Simple examples of the
operators for U are presented below:

Platinum Gold Silver Bronze
u1 5 3 2 0
u2 8 2 1 0
u1 ×U u2 13 5 3 0
u1 +U u2 5 2 1 0

Note that each row of the above table corresponds to a value from U. For
example, the first row describes a semiring value u1 where u1(Platinum) = 5 and
u1(Gold) = 3. We will use this table layout for values in U throughout the following
example.

Using Definition 10 we are able to convert each constraint ci and relaxation ri of Q
to a new constraint ei for P ′. We begin with the Brightness constraint:

1 From the proof of Lemma 1 we have a general expression for combining u1, . . .,un ∈ U .
(∏ui)(a) = ∑

a=∏Δ

(
∏ui(Δi)

)
.
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Combine c1 with r1

from the old semiring
constraint relaxation
problem. . .

s(v) c1(s)
Amy Gold
Bob Silver
Col Bronze
Dan Bronze

a1 a2 r1(a1,a2)
Gold Platinum 2
Silver Platinum 4
Silver Gold 1
Bronze Platinum 5
Bronze Gold 4
Bronze Silver 1
All others 0

. . . to get constraint e1

for the new semiring
constraint satisfaction
problem.

s(v) e1(s)
Platinum Gold Silver Bronze

Amy 2 0 0 0
Bob 4 1 0 0
Col 5 4 1 0
Dan 5 4 1 0

Note well that e1 remains a unary constraint mapping the assignment of v to a semiring
value from U. For example, if s represents the complete assignment in which Bob is se-
lected as ‘best student’, then e1(s) = {〈Platinum,4〉 ,〈Gold,1〉 ,〈Silver,0〉 ,〈Bronze,0〉}
∈ U. We can perform the same transformation to obtain a new Harmony constraint:

Combine c2 with r2

from the old semiring
constraint relaxation
problem. . .

s(v) c2(s)
Amy Bronze
Bob Silver
Col Bronze
Dan Silver

a1 a2 r2(a1,a2)
Gold Platinum 2
Silver Platinum 4
Silver Gold 1
Bronze Platinum 5
Bronze Gold 4
Bronze Silver 1
All others 0

. . . to get constraint e2

for the new semiring
constraint satisfaction
problem.

s(v) e2(s)
Platinum Gold Silver Bronze

Amy 5 4 1 0
Bob 4 1 0 0
Col 5 4 1 0
Dan 4 1 0 0

We then find the solution for each student by sol(s) = e1(s) ×U e2(s). An example,
showing the calculation of sol(s) when s(v) = Amy, is as follows:

Platinum Gold Silver Bronze
e1(s) 2 0 0 0
e2(s) 5 4 1 0
sol(s) 7 4 1 0

Once the solution has been generated, the abstract solutions can be assembled by use of
≤U . The complete calculation of solution and abstract solutions is presented below:
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Compute sol by
e1 ×U e2 to get
the solution to the new
semiring constraint
satisfaction problem . . .

s(v) sol
Platinum Gold Silver Bronze

Amy 7 4 1 0
Bob 8 2 0 0
Col 10 8 2 0
Dan 9 5 1 0

. . . and use ≤U
to obtain the abstract
solutions.

s(v) Platinum Gold Silver Bronze
Amy 7 4 1 0
Bob 8 2 0 0

As found in the relaxed abstract solutions of Q , Amy and Bob are unable to be com-
pared and no relaxation can make Col or Dan our best student. The difference between
Q and P ′ is that we are able to use existing algorithms and results of semiring constraint
satisfaction to solve P ′.

3.2 Notes on Efficiency and Correctness

Note that in our example the calculation of ×U was quite trivial, requiring only simple
application of ×B . This will always occur if ×A is idempotent.

Theorem 3. If ×A is idempotent, then (u1 ×U u2)(a3) = u1(a3) ×B u2(a3). If ×B is
also idempotent, then ×U is idempotent.

Proof. Let a1,a2,a3 ∈ A be any values such that a1 ×A a2 = a3 and so a3 ≤A a1,a2.
By Definition 9 we know that u1 is monotonic decreasing, and so u1(a1) ≤B u1(a3)
and u2(a2) ≤B u2(a3). Therefore (a1 ×A a2 = a3) ⇒ (u1(a1)×B u2(a2) ≤B u1(a3)×B
u2(a3)). Using this result we can show the following:

(u1 ×U u2)(a3) = ∑
a1×A a2=a3

u1(a1)×B u2(a2)

[by above results] = u1(a1)×B u2(a2), where a1 = a2 = a3

[by substitution] = u1(a3)×B u2(a3)

Assuming that ×B is also idempotent, then (u1×U u1)(a3)=u1(a3)×B u1(a3)=u1(a3).

Note that when ×A is not idempotent, the calculations may be non-trivial and involve
the consideration of many pairs a1,a2 ∈ A . However, by Definition 5 we know that if
×A is not idempotent then ≤B must be a total order. This restriction ensures that for
each a3 that there exists some a1,a2 such that (u1 ×U u2)(a3) = u1(a1)×B u2(a2).

Without the ability to identify a specific a1,a2 for each a3 the operator ×U may be
‘overly optimistic’ and fail to identify a real relaxation. The idempotency of A , or the
total order of ≤B , ensure the correctness of ×U .

4 Applications

We have formally presented a concept of ‘relaxation’ for semiring constraint satis-
faction problems. It has been deliberately limited, permitting less freedom than some
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alternative notions [6], but more than our previous work DBLP:conf/ausai/GhoseH02.
However, we argue that little is lost and have shown how the resulting relaxation prob-
lem itself can be modelled as a semiring constraint satisfaction problem. In doing so we
have extended the usefulness of SCSP, while retaining properties useful for algorithm
development.

Although the example used is trivial (one variable, two unary constraints) it serves
to demonstrate how relaxation can be performed on a semiring constraint satisfaction
problem. The formulation of the operators has been made with few assumptions on
the c-semirings or constraints themselves, ensuring applicability to many domains and
generalisation of some existing work. For example:

– finding the optimal solutions of a semiring constraint satisfaction problem when
subjected to different numbers of original constraints

– determining the most cost-effective upgrade to manufacturing machinery to permit
a configuration with increased reliability (reliability measured with A , cost to alter
reliability measured with B)

Note that the unified semiring approach generalises the example of constraint relax-
ation presented in [1]. For example, given any semiring A we can measure the number
of constraints ‘satisfied’ with a simple integer-based B = 〈Z+ ∪ {inf}, min, +, inf, 0〉
and relaxation function r where r(a1,a2) = 1 iff a2 
≤A a1. The resulting SCSP with
semiring U will have, as abstract solution, those value assignments which require dis-
carding the least number of constraints to reach any threshold in A .
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Abstract. Recommender systems, using information personalization methods, 
provide information that is relevant to a user-model. Current information 
personalization methods do not take into account whether multiple documents 
when recommended together present a factually consistent outlook. In the realm 
of content-based filtering, in this paper, we investigate establishing the factual 
consistency between the set of documents deemed relevant to a user. We 
approach information personalization as a constraint satisfaction problem, 
where we attempt to satisfy two constraints—i.e. user-model constraints to 
determine the relevance of a document to a user and consistency constraints to 
establish factual consistency of the overall personalized information. Our 
information personalization framework involves: (a) an automatic constraint 
acquisition method, based on association rule mining, to derive consistency 
constraints from a corpus of documents; and (b) a hybrid of constraint 
satisfaction and optimization methods to derive an optimal solution comprising 
both relevant and factually consistent documents. We apply our information 
personalization framework to filter news items using the Reuters-21578 dataset. 

1   Introduction 

Information seekers are different in nature in that they manifest different information 
seeking behavior, therefore their information seeking experience and outcome should 
not only be unique but it should be tailored to their individual persona, purpose, 
interests, educational backgrounds, demographics and preferences. Information 
Personalization (IP) research purports strategies to either filter or adapt information 
items based on both the user’s characteristics and information retrieval criterion [1, 2, 
3]. The ensuing information personalization systems employ adaptive hypermedia, 
information retrieval and artificial intelligence methods to (a) formulate a user-model 
and (b) leverage this user-model to personalize the information to be recommended to 
an individual user. From an AI perspective, a variety of techniques have been 
employed for pursuing IP. Foltz used latent semantic indexing (LSI) to perform 
information personalization [4]; Mooney and Roy developed a book recommending 
system based on a Bayesian text classifier [5]; Malone et al built a rule-based system 
to filter e-mail messages [6]; Jennings and Higuchi helped users get better access to 
news service using neural-networks [7]; Desjardins and Godin use genetic algorithms 
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for personalization [8]. However, pursuing IP as a constraint satisfaction problem is a 
novel approach. 

Notwithstanding the efficacy of intelligent IP systems to determine the relevance 
of the recommended information item towards a user-model, it can nevertheless be 
argued that the underlying information personalization mechanism do not account for 
the factual consistency between the recommended information items—i.e. whether 
multiple recommended information items when presented together present a 
consistent outlook or inadvertently lead to a contradictory outlook. We believe that 
whilst two information items may be relevant to the user model, there may be 
instances when their simultaneous presentation to the user can potentially lead to a 
situation whereby one information item is stating a certain fact/recommendation 
whilst the other information item maybe contradicting the same fact/recommendation. 
Alternatively, users may seek information items that present divergent views in which 
case factually inconsistent information items need to be presented to the user. In each 
case, the requirement is to establish the factual similarity/dissimilarity between two 
information items. 

We approach IP as a constraint satisfaction problem. Intuitively speaking, the 
problem of information personalization entails the satisfaction of two different 
constraints for each information item: (a) relevancy constraints to establish the 
relevance of the document to the user; and (b) consistency constraints to establish the 
factual consistency between the selected documents. Our approach to IP involves the 
satisfaction of the abovementioned constraints such that: (i) given a large set of 
documents we select only those documents that correspond to the user-model; (ii) 
given the selected user-compatible documents, we retain only those documents that 
cumulatively present a level of factually consistency as specified by the user; and (iii) 
we attempt to maximize the information coverage of the personalized information by 
selecting the largest possible set of documents that satisfy the above two constraints. 
In our work IP is achieved without deep content analysis, rather by leveraging the pre-
defined classification of documents in terms of topics. 

In this paper, we build on our previous work on IP [9, 10] by extending it in terms 
of (a) an automatic constraint acquisition method based on association rule mining 
[11] to derive consistency constraints from a corpus of documents. This current 
method eliminates the need for acquiring consistency constraints from domain experts 
which was previously viewed as a bottleneck; (b) adding more flexibility to the 
constraint satisfaction framework by solving IP as an Over-constrained CSP through a 
hybrid of partial constraint satisfaction and optimization methods; and (c) a user 
preference setting mechanism whereby users can set the personalization criteria, such 
as tolerance to inconsistency or degree of information comprehensiveness in line with 
their information needs. We demonstrate the working of our IP framework for news 
item selection for a personalized news delivery service using the Reuters-21578, 
Distribution 1.0 data-set.  

2   Specification of an IP Problem 

Computationally, constraint satisfaction methods allow the efficient navigation of 
large search spaces to find an optimal solution that entails the assignment of a value 
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from its domain to every problem variable, in such a way that every constraint is 
satisfied. This may involve finding (a) just one solution with no preferences, (b) all 
solutions, or (c) an optimal solution given some objective function [12, 13, 14]. In our 
work, the problem of IP is specified as follows:  

2.1   User-Model 

The user-model characterizes the user in terms of: (a) user’s interests represented as a 
list of topics, (b) user’s tolerance towards inter-document inconsistency, and (c) 
user’s preference towards the coverage of the solution—i.e. whether the solution 
should satisfy all user-interests or instead it should satisfy all consistency constraints.  

2.2   Information Items 

The information items (i.e. documents) comprise two sections: (a) Content section 
that contains the actual information; and (b) Context section that contains a list of 
topics categorizing the document. During the IP process, the topics in the context 
section are compared with the topics mentioned within user-model to determine the 
relevance of a document to a particular user.  

2.3   Information Personalization Constraints 

Two types of constraints are used to pursue IP: (a) Relevancy constraints to ensure 
that the selected documents are relevant to the user’s interest as specified in the user-
model; and (b) Consistency constraints to (i) ensure that the personalized information 
is factually consistent. This is achieved through negative consistency constraints, 
which define what pairs of topics cannot co-exist together. Negative consistency 
constraints are represented as the tuple nc (topic1, topic2, degree), where degree is 
the degree of inconsistency between the two topics. Two documents cannot be 
simultaneously presented to the user if the topics they represent cannot coexist; and 
(ii) to maximize the coverage of the personalized information. This is achieved 
through positive consistency constraints, which define what topics’ if simultaneously 
presented would likely be of interest to the user. Positive consistency constraints are 
represented as the tuple pc (topic1, topic2, degree), where degree is the degree of 
similarity between the two topics. For example, recently in the news the topics Ice-
Skating and Winter Olympics 2006 appeared quite frequently, thus suggesting a 
positive consistency constraint between Winter Olympics 2006 and Ice-Skating. Such 
a constraint can be used to recommend additional information about Winter Olympics 
2006 if the user is interested in Ice-Skating and vice versa.  

2.4   Information Personalization Requirements 

Given a user-model, a corpus of documents and a set of constraints, our solution to an 
IP problem needs to address the following requirements:  

1. The personalized information should be relevant to the interests of the user. The 
user may choose the degree of relevance to include either all or a partial list of 
topics of interest.  
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2. The personalized information should be factually consistent—i.e. the set of 
documents being presented to the user should mutually satisfy the consistency 
constraint.  

3. The IP process should attempt to find the largest set of consistent documents in 
terms of the coverage of topics defined in the user-model.  

2.5   Defining IP as a Constraint Satisfaction Problem 

In our constraint satisfaction approach for information personalization, the topics 
representing the user’s interest are viewed as variables, and domains of the variables 
comprise any combination of available documents. Requirement 1 can be solved as a 
unary constraint to the variables and represented by constraint c1. Requirement 2 can 
be represented by a unary constraint c2 and a binary constraint c3. Requirement 3 can 
be addressed through an objective function O. c1, c2, c3 and O are explained below.  

We define our IP problem as P (V, D, C, O).  

• Variable set V = {v1, v2, … , vn}, where n is the number of topics of a user’s 
interest; vi, ni ≤≤1 , represents the ith topic of a user’s interest.  

• Domain set D = {d1, d2, … , dn}; di, ni ≤≤1 , represents the domain of vi. 
Suppose s = {t1, t2, … , tm } is a set consisting of all documents, then di is the 
power set of s without the empty set . E.g. If {t1, t2} is the set of documents, the 
domain of the variable will be {{t1}, {t2}, {t1, t2}}. 

• Constraint set C = {c1, c2, c3}; c1 = rel(vi), where ni ≤≤1 , is a unary constraint, 
and means the value of vi must be relevant to users’ interest (Requirement 1). 
Suppose vi represents the ith topic of a user’s interest, and the domain of vi is 
{{t1}, {t2}, {t1, t2}}. By checking the topics of t1 and t2, we know t1 is relevant to 
the ith topic of the user’s interest, but t2 is not. To satisfy c1, {t2} and {t1, t2} will 
be removed from the domain of vi. c2 = con1(vi), where ni ≤≤1 , is a unary 
constraint, and means the documents assigned to vi must be consistent to each 
other (Requirement 2). Suppose the system is trying to assign {t1, t2} to v1. To 
decide whether c2 is satisfied or not, we can check the consistency between t1 
and t2. Suppose t1 presents topics ‘acquisition’ and ‘stocks’, and t2 presents 
topics ‘acquisition’ and ‘gold’. We take one topic from t1 and t2 respectively to 
form pairs of topics ordered alphabetically. Then we get four pairs - 
(acquisition, acquisition), (acquisition, gold), (acquisition, stocks) and (gold, 
stocks). We check these four pairs against the effective negative consistency 
constraints, and find that (acquisition, gold) triggers a negative constraint. So 
we know c2 is violated and the assignment fails. c3 = con2(vk, vj), where jk ≠  

and njk ≤≤ ,1 , is a binary constraint, and means the value of vk and vj must be 

consistent to each other (Requirement 2). When checking c3, we take a 
document from the value of both variables to form pairs of documents. If any 
pair is inconsistent, c3 is violated.   

• O = i (ni * weighti is the objective function, where i is a member of the set of 
satisfied positive consistency constraints--S. ni is the time the constraint i is 
satisfied.  weighti is the correlation value of the constraint i. The target is to find 
a complete valuation that maximizes the objective function. This function will 
be used in step3 (coverage maximization) of our CSP process solving.  
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• From the above specification, it can be seen that our IP problem is an Over-
constrained CSP (OCSP)—i.e. a complete valuation that satisfies all hard 
constraints cannot be guaranteed—because the settings of the user’s information 
personalization preferences may lead to the non-satisfaction of the negative 
consistency constraints. In this case, (a) if a user prefers maximum coverage of 
the topics of interest then the solution that covers the largest possible number of 
topics of interest whilst violating the least number of negative consistency 
constraints will be selected, and (b) If the user prefers a certain degree of 
consistency in the adapted information then the solution will allow only the 
corresponding violation of negative consistency constraints. In order to address 
OCSP, we have modified our CSP as follows: (i) add the empty set φ  to the 

domain of variables; and (ii) add a collection of constraints, c4= {no_empty(vi), 
ni ≤≤1 }. It means the empty set is a variable’s last choice. Now the constraint 

set C = {c1, c2, c3, c4}. 

3   Constraint Satisfaction Based IP Framework 

Our IP framework performs two related functions: (a) given a corpus of documents it 
automatically finds the consistency constraints; and (b) given a user-profile it 
generates an information personalization solution. The functional steps (in shaded 
boxes) and the technical methods used in our IP framework are illustrated in Figure 1.  

 

Fig. 1. The functional steps and the corresponding methods used in our IP framework 

Our information personalization strategy works in three main stages: (1) Find all 
the information items relevant to the user-model; (2) Find a simplified solution 
whereby each user interest is accounted for by a single information item, whilst 
ensuring factual consistency between the selected information items; (3) Use the 
simplified solution as the basis to maximize the scope of the solution by including 
more information items that satisfy both relevance and consistency constraints.  
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3.1   Our Approach for Consistency Constraint Acquisition 

One problem that we faced in our previous work was the acquisition of consistency 
constraints from domain experts. The literature is inconclusive in this regard. 
Padmanabhuni et al [15] suggest a framework for learning only positive constraints 
for discrete domain; O’Sullivan et al [16] use an interactive approach to acquire 
constraints from users by searching through a ‘hypothesis space’ of constraints.  

In our current work, we addressed this problem by acquiring consistency 
constraints directly from the given corpus of information items (with pre-assigned 
topics) by using the association rule-mining approach [5]. The premise of the 
approach is that when information is composed it entails some inherent relationships 
between discussion topics that can meaningfully co-occur within a given document. 
Such relationships between topics are largely determined by the authors’ working 
knowledge. We leverage these intrinsic relationships between topics to establish 
consistency constraints such that the frequency of co-occurrence of information topics 
may reflect the degree of consistency between the topics. We treat topics as items in 
the Apriori rule association method to find 2-itemsets [5]. We select the 2-itemsets 
with high support value and calculate the correlation between the two items as 

corr(A,B) = p(AB)

p(A)p(B)
. The correlation value is used to distinguish between positive 

and negative consistency constraints as follows:   

• If 0 < corr(A, B) < 1, A and B are correlated negatively it means these two topics 
are inconsistent to each other, so a negative consistency constraint can be 
established between these two topics.  

• If corr(A, B) > 1, A and B are positively correlated, and they encourage the co-
occurrence of each other, so a positive consistency constraint is found between 
these two topics.  

• If corr(A, B) = 1, A and B are independent to each other.   

After our experiments with the Reuters-21578 dataset, we acquired 913 frequent  
2-itemsets We used the Chi-Square statistical significance test to measure the 
interestingness of the 2-itemsets [17], where the Chi-Square significance level was set 
 

Table 1. Illustration of some 2-itemsets and their selection as consistency constraints 

Topic1 Topic2 Frequency Correlation Chi_Square Action 
crude natural-gas 81 11.171 803.615 Positive Constraint 
rice wheat 20 11.089 189.774 Positive  Constraint 
livestock soy-meal 3 11.079 .345 Removed 
… … … … … … 
grain trade 20 .657 3.984 Negative Constraint 
… … … … … … 
coffee crude 3 .371 3.433 Removed 
acquisition natural-gas 10 .357 14.914 Negative Constraint 
… … … … … … 
acquisition money-fx 1 5.797E-03 233.783 Negative Constraint 
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to 95% and we acquired a smaller-sized but high quality set of consistency 
constraints. The consistency constraints were sub-divided into positive and negative 
consistency constrains based on their correlation values (as shown in Tables 1 and 2).  

Table 2. Final distribution of the consistency constraints 

Positive/Negative 2-item rules Interesting 2-item rules 
Positively correlated 768 120 
Negatively correlated 145 57 
TOTAL 913 177 

3.2   Solving the Constraint Satisfaction Problem for Information 
Personalization 

We highlighted earlier that our information personalization is an OCSP, and hence its 
solution can be viewed as a partial constraint satisfaction problem (PCSP) in which a 
complete valuation is made with some constraints unsatisfied, and the valuation with 
the smallest distance is selected as the final solution. The distance can be defined as 
the number of constraints violated by a valuation [18]. Our strategy to solve the PCSP 
is explained using an exemplar user profile (in Table 3) and dataset (in Table 4). 

Table 3. User profile used in the working example 

Component Value 
Interests Acquisition, Gas, Income, Jobs 
Tolerance  20% factual inconsistency 
Preference Satisfy all consistency constraints 

Table 4. Dataset used for the example 

News Item Topics News Item Topics 
t1 acquisition t9 jobs 
t2 acquisition, crude, nat-gas t10 bop, cpi, gnp, jobs 
t3 acquisition, gold, lead, silver, zinc t11 jobs, trade 
t4 gas t12 gnp, jobs 
t5 CPI, crude, fuel, gas, nat-gas t13 acquisition 
t6 fuel, gas t14 fuel, gas 
t7 crude, gas t15 jobs, trade 
t8 GNP, income, ipi, retail, trade   

From the user’s interests we get four variables, each representing a topic of the 
user’s interest. We refer to these variables as vacq, vgas, vincome and vjobs. The domain of 
these four variables is the power set of the 15 news items that are shown in Table 4. 

Step 1: Filter User-Relevant Information  
The first step involves finding all the documents that correspond to the user’s interest 
as per requirement 1of the information personalization specification. This involves the 
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satisfaction of the relevancy constraint by enforcing node consistency to satisfy the 
unary constraint c1 = rel(vi) by comparing the topics of the various documents against 
a user’s interest as noted in the user-model. The node representing the variable v in a 
constraint graph is node consistent if for every value x in the current domain of v, 
each unary constraint on v is satisfied. Functionally, if the variable vacq has a value (i.e. 
news item) that is not equal to the topic ‘acquisition’ (one of the four interests of the 
user) then the value will be filtered out from vacq’s domain. The same process is 
repeated for vgas, vincome and vjobs in case of our working example. At the end of step one 
we get user-relevant news items for each variable as shown in the second column of 
Table 5. For example, the relevant set of vacq is found to be {t1, t2, t3, t13} and for vgas the 
relevant set is {t4, t5, t6, t7, t14}. After step1, the domain of a variable is the power set of 
its relevant set, i.e. the domain of vacq is the power set of {t1, t2, t3, t13}. 

Table 5. User relevant items for the variables 

Variable Retained 
Relevant item 

Removed 
Relevant item Variable Retained 

Relevant item
Removed 

Relevant item 
vacq t1 ,t2 ,t3 t13 vincome t8  
vgas t4 ,t5 ,t6 ,t7 t14 vjobs t9 ,t10 ,t11 ,t12 t15 

Step 2: Find the Basic Information Set  
At the end of stage 1, the size of the set of user-relevant items is typically quite large, 
and likewise the resulting power set is quite large. We feel that in such a situation it is 
unwise to use systematic methods to solve OCSP because we will probably just be 
able to find a partial solution for the problem, whereas there may exist the possibility 
to completely solve the problem—i.e. the adapted information is imperfect and does 
not meet a user’s requirements as perfectly as it is possible. In order to personalize the 
information with respect to all the constraints in the constraint set C, we attempt to 
solve a simplified version of the original problem in order to find out:  (a) whether the 
problem can be satisfied completely or not? If not, what is the least number of 
violated constraints? and (b) what feasible solutions can be used as the starting point 
for the optimization process in order to maximize the coverage of the personalized 
information. To answer the above questions, we pursue domain reduction—i.e. 
eliminate some elements from the domain of variables to make it feasible to search 
the solution space systematically to find a basic information set. A solution is called 
basic information set if (i) each user interest is assigned at most one information item; 
and (ii) it violates the least number of consistency constraints; and (iii) least number 
of user-interests have no information item. Domain reduction is done in three steps. 

First, we delete duplicate items from the set of user-relevant documents. If a 
document represents a group of topics that are also represented exactly by other 
documents, then we keep one document and remove the others. 

Second, we delete values with multiple elements from the domain of variables 
because values with multiple elements can unnecessarily violate more consistency 
constraints. This enables the domain size of a variable with k relevant items to be 
reduced from 2k to k+1.   

Third, we delete dominating values (sets) from the domain. If the topic set of item 
t1 is a subset of the topic set of item t2, we say t2 dominates t1, and t2 is a dominating 
item. If a value contains only dominating items, it is a dominating value. Since a 
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dominating item comprises extra topics it offers a stronger likelihood to violate more 
consistency constraints as compared to the item that it dominates. It may be noted that 
if t2 dominates t1 and t1 is inconsistent with t3, t2 is inconsistent to t3 too. Hence, if we 
have checked the consistency between the value of {t1} and {t3}, we do not need to 
check the consistency between {t2} and {t3} any more. So we can eliminate all 
dominating values from the domain without changing the characteristics of the 
problem. Here, we just show for vacq the details of deleting multi-elements and 
dominating values in Table 6, and the resulting domain of the four variables is shown 
in Table 7. 

Table 6. Deleting multi-element and dominating values 

Retained Removed (dominating) Removed (multi-elements) 
Ø, {t1} {t2},{t3} {t1, t2},{t1, t3},{t2, t3},{t1, t2, t3} 

Table 7. The domain of the variables 

Variable Domain Variable Domain 
vacq { ø , {t1}} vincome { ø , { t8}} 
vgas { ø , { t4}} vjobs { ø , { t9}} 

Step 3: Establish Factual Consistency of User-Relevant Information 
This step involves establishing the factual consistency between the selected 
information. After domain reduction we have managed to simplify the solution space 
to apply a variant of branch and bound method—i.e. Partial Forward Checking 
(PFC)—that systematically searches for the solutions by satisfying the constraints c2, 
c3 and c4. PFC being a variant of forward checking has been shown to perform better 
than most systematic methods used to solve PCSP [12]. It may be noted that in 
comparison with step1, which can be realized quite efficiently, and step4, which can 
be terminated at any time according to the availability of resources, step3 involves a 
systematic search and hence is the key to the success of the whole process of 
information personalization. To ensure this we conducted compared variants of PFC. 

We apply PFC algorithm to our PCSP using two different distances: (i) the number 
of variables assigned to the empty set (violating c4), referred to as dempty and (ii) the 
number of times the negative consistency constraints are violated, referred as dviolation. If 
a user’s preference is ‘Satisfy all topics of interest’, dviolation will be used; otherwise, 
dempty will be used. For our example, the results of using PFC is shown in Table 8.  

Table 8. Factually consistent solutions after domain reduction 

Solution acquisition gas income jobs 
1 {t1} {t4} Ø {t9} 
2 Ø {t4} {t8} {t9} 

It may be noted that {t1} and {t8} are inconsistent to each other because of  
the effectiveness of nc(acquisition, trade, 0.034). For both solutions, the distance is 
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dempty = 1. It means there is one topic of interest left empty. And this calculated 
distance is the minimum distance that solutions to the original problem can achieve. 

Step 4: Maximize Information Coverage 
In this step we attempt to maximize the information coverage of the solution obtained 
in step 3. Note that the solution at this stage contains at most one information item for 
every topic defined in the user’s interest. This condition is in line with requirement 3 of 
our information personalization specification. We use local search based optimization 
techniques to improve the solution by assigning values with more elements 
(information items) to variables (topics of a user’s interest) whilst maintaining the 
factual consistency.  

The iterative improvement method [19] used works as follows: First, it sets the 
solution at step 3 as the current solution and then searches the current solution’s 
neighborhood for a better solution. If there is such a solution, the current solution is 
set to this ‘improved’ solution, and the search goes on. Else, the current solution is 
returned as the result of optimization. The neighborhood of the current solution 
consists of all solutions whose difference from the current solution is just the value 
of one variable. Two criteria are used to determine which solution is better: (1) 
higher value of the objective function, i.e. a higher sum of degrees of the satisfied 
positive consistency constraints. The positive consistency constraints are checked in 
the same way the negative consistency constraints are checked, i.e. first construct 
item pairs from assigned values, then construct topic pairs from item pairs, and 
finally check topic pairs against positive consistency constraints. The optimization 
round using this criterion is called positive consistency round; and (2) higher number 
of information items. The optimization round using this criterion is called cardinality 
round.  

For optimization purposes, the non-null variables in the factually consistent 
solution (i.e. Table 8) are restored with their original domain representing information 
items corresponding to the user’s interests (as shown in Table 5). For instance, the 
domain of vacq is restored to be the power set of {t1, t2, t3}.  

The optimization results (shown in Table 9) lead to two solution—i.e. solution3 
and solution4. However, solution4 has the higher objective function value and hence 
is designated as the final optimized solution. Finally, the information items 
comprising solution4 will be presented to the user as the information personalization 
solution based on his/her user-model.  

Table 9. Final optimized solutions 

Solution acquisition gas income jobs Objective function 
3 { t1} { t4, t6} NULL { t9, t10, t12} 45.28 
4 NULL { t4, t6} { t8} { t9, t10, t11, t12} 121.65 

4   Evaluations of Variants of Partial Forward Checking 

In general, variable and value ordering heuristics are effective in improving efficiency 
of systematic search methods. In this section we compare the performance of partial 
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forward checking (basic_pfc), partial forward checking with variable ordering 
(order_pfc), partial forward checking with variable and value ordering (full_pfc) in 
terms of the number of constraint checks that is a standard measure of efforts for CSP 
algorithms. The basic branch and bound method was tested to compare it against PFC. 
The variable ordering heuristic used in this evaluation is the smallest-domain heuristic 
[20]. The value ordering heuristic used in this evaluation is to select first the value 
with minimal inconsistency count [20]. 

For Reuters-21578 dataset and a list of topics of a user’s interest, we compare the 
performance of these algorithms by varying the user’s preference (Fig. 2) and 
tolerance (Fig. 3). From our experiments we note that any variant of PFC performs 
better than branch and bound method. Furthermore, the full_pfc always gave the best 
performance which vindicates are decision to use PFC in step 3 for establishing 
factual consistency. 

 

  

Fig. 2. Performance of algorithms (satisfy-
ing all consistency constraints) 

Fig. 3. Performance of algorithms (satisfy-
ing all user-interests) 

5   Concluding Remarks and Future Work 

Viewing information personalization as a constraint satisfaction problem offers an 
interesting AI based perspective to an information retrieval issue. We have 
demonstrated the successful application of a hybrid of constraint satisfaction methods 
that offer personalized information that is based on user’s interests and personalize-
tion preferences. Our information personalization strategy makes it possible to find 
better sub-optimal solutions by combining systematic search and local search for the 
information personalization problem, and we believe this approach can be applied to 
other fields as well. In this work, we additionally addressed the core issue of cons-
traint acquisition from the domain knowledge as opposed from domain experts. Our 
current association rule based approach works with the a priori defined classification 
of the documents. In future we plan to analyze the content of the document, as 
opposed to meta-level topics, to establish richer consistency constraints using auto-
mated text categorization techniques involving learning mechanisms.  
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Abstract. Stochastic local search (SLS) methods are underlying some of the
best-performing algorithms for certain types of SAT instances, both from an em-
pirical as well as from a theoretical point of view. By definition and in practice,
random decisions are an essential ingredient of SLS algorithms. In this paper we
empirically analyse the role of randomness in these algorithms. We first study the
effect of the quality of the underlying random number sequence on the behav-
iour of well-known algorithms such as Papadimitriou’s algorithm and Adaptive
Novelty+. Our results indicate that while extremely poor quality random num-
ber sequences can have a detrimental effect on the behaviour of these algorithms,
there is no evidence that the use of standard pseudo-random number generators is
problematic. We also investigate the amount of randomness required to achieve
the typical behaviour of these algorithms using derandomisation. Our experimen-
tal results indicate that the performance of SLS algorithms for SAT is surprisingly
robust with respect to the number of random decisions made by an algorithm.

1 Introduction

The Propositional Satisfiability Problem (SAT) is the prototypical N P-complete prob-
lem and a prominent hard combinatorial decision problems. Some of the best known
methods for solving certain types of SAT instances are Stochastic Local Search (SLS)
algorithms; these are typically incomplete, i.e., they cannot determine that a formula is
unsatisfiable, but they often find models of satisfiable formulae surprisingly effectively.
Many SLS algorithms are probabilistically approximate complete (PAC) and will solve
a soluble instance with arbitrarily high probability when allowed to run long enough [1].

A typical SLS algorithm for SAT consists of an initialisation phase, in which a truth
value is assigned to each variable, and a search phase, during which the values of indi-
vidual, heuristically selected variables are changed in an attempt to reach a satisfying
assignment. The search phase is a sequence of search steps known as flips because in
each step typically one variable’s assignment is changed (or flipped). Stochastic (ran-
dom) decisions are typically used in both phases, and in the following we describe the
most common ways SLS algorithms for SAT make use of random decisions:

Variable initialisation is heavily randomised in most SLS algorithms for SAT; typi-
cally, the initial variable assignment is obtained by assigning each variable a truth
value {", ⊥} chosen uniformly and independently at random.

Heuristic tie-breaking occurs when a choice needs to be made between several alter-
natives that are ranked identically by a given heuristic evaluation function; many
SLS algorithms for SAT break these ties randomly.

L. Lamontagne and M. Marchand (Eds.): Canadian AI 2006, LNAI 4013, pp. 146–158, 2006.
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Variable selection often includes randomised choices; examples include the noise
mechanisms in Novelty and variable selection in Simulated Annealing.

Neighbourhood selection occurs when an algorithm narrows the list of flip candidates
to a subset of all the variables. For example, in the WalkSAT algorithms, in each
step an unsatisfied clause is selected uniformly at random, and then only variables
in occurring in this clause are considered as flip candidates.

Random walk steps involve flipping randomly selected variables; they can help to in-
crease search diversification, to avoid stagnation, and to render an algorithm PAC.
In a uniform random walk all variables can be selected with uniform probability.
In a conflict-directed random walk only variables occurring in currently unsatisfied
clauses can be selected, such as in Papadimitriou’s algorithm [2] and WalkSAT [3].

Random restarts cause an algorithm to randomly re-initialise all variables; most SLS
algorithms for SAT, including algorithms of purely theoretically interest, such as
Schöning’s algorithm [4], perform periodic random restarts.

Search control mechanisms can also make use of randomised decisions; examples
include the probabilistic smoothing mechanism in the SAPS algorithm [5] and the
random selection of the tabu tenure parameter in Robust Tabu Search [6].

The prominent use of random decisions in many components of SLS algorithms raises
some interesting questions: Why are most algorithms so heavily randomised? How im-
portant are those random decisions? How important is the quality of the underlying
random numbers? How much randomness is necessary? Can randomness be eliminated
altogether? In this paper, we attempt to shed light on some of these questions.

Some of these questions have been addressed in previous work. Gent and Walsh in-
vestigated the role of random decisions in GSAT [7]. They found that random decisions
were neither important in the initialisation phase nor for tie breaking, and that determin-
istic substitutions could be made in both cases. Much of their analysis revolved around
the ability of the algorithm to diversify the search during re-initialisation. They did not
study the impact of the quality of random decisions, and it is not clear to which extent
their observations apply to more powerful SLS algorithms for SAT that do not require
restart mechanisms and their application to a broad range of SAT instances.

There has been a large body of work dedicated to the quest for increasingly higher
quality random number generators. In the Monte Carlo simulation literature, there has
been evidence that even good random number generators can produce very undesirable
errors in their results [8, 9]. In work related to this paper, Ribeiro et al. recently surveyed
random number generators to find a good candidate for randomised algorithms [10].
In our previous work [11] we investigated the role of random decisions in the SAPS
algorithm, which we will develop further in Section 4.

The remainder of this paper is structured as follows: In Section 2 we briefly introduce
the algorithms and problem instances used in our computational experiments reported
later. In Section 3 we investigate how important the quality of the random decisions are,
while in Section 4 we explore the quantity of random decisions required to achieve the
typical behaviour of these algorithms. Finally, Section 5 contains a brief discussion of
our main findings and points out some directions for future work.
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2 Preliminaries

The first algorithm we consider in this work is conflict-directed random walk (CR-
WALK). After randomly initialising all variables, in each search step this algorithm
selects a currently unsatisfied clause and flips a randomly chosen variable from that
clause. This algorithm was first studied by Papadimitriou, who proved that it solves
2-SAT in expected quadratic time [2]. Extending it with a simple periodic restart mech-
anism leads to Schöning’s algorithm, whose run-time on 3-SAT instances was proven
to be bounded from above by O(1.334n) [4]. More recently, Iwama and Tamaki’s have
extended Schöning’s algorithm to improve this bound to O(1.324n) [12].

We chose to include CRWALK in our study because it is a prominent, yet very sim-
ple algorithm that is purely based on random decisions. Originally, we had decided to
include Schöning’s algorithm in our study because of its provably excellent worst-case
behaviour, but in preliminary experiments on a large set of instances from SATLIB we
found no empirical evidence for any differences between its behaviour and that of CR-
WALK (which, given well-known empirical results on the behaviour of WalkSAT algo-
rithms [13, 1] is not surprising). As will also be apparent from the results reported later in
this paper, CRWALK performs quite poorly when compared against high-performance
SLS algorithms for SAT, because it completely lacks heuristic guidance.

The two other algorithms we used in this study, Adaptive Novelty+ (ANOV+) [14]
and SAPS [5] are amongst the best performing SLS algorithms for SAT currently
known. ANOV+, a member of the WalkSAT family, placed first in the random cate-
gory of the 2004 SAT competition [15]. In addition to random initialisation it uses ran-
domised neighbourhood selection, randomised heuristic variable selection, and conflict
directed random walk steps. ANOV+ employs a deterministic mechanism for adapting
its noise setting p during the search and therefore requires no parameter tuning.

Scaling and Probabilistic Smoothing (SAPS) changes the space it is searching by dy-
namically modifying penalty weights associated with the clauses of the given CNF for-
mula [5]. In addition to random initialisation it uses randomised heuristic tie-breaking,
randomised search control mechanisms, and uniform random walk steps. SAPS shows
performance that is competitive with ANOV+. We mainly included it in this study be-
cause (as we will discuss in more detail later) in long search trajectories SAPS ap-
proaches deterministic behaviour [11]. In all experiments reported in this study we used
the default parameters for SAPS (α = 1.3, ρ = 0.8, Psmooth = 0.05, wp = 0.01).

All three algorithms (CRWALK, ANOV+ and SAPS) are available as part of the
UBCSAT software package [16] which is available for download from the UBCSAT
website1. Unless otherwise stated (as in Section 3) all experiments have been conducted
using the default random number generator in UBCSAT, Mersenne Twister [17].

For our experiments, we have used individual satisfiable instances obtained from
SATLIB [18]. We provide brief descriptions here, while more detailed information is
available from the SATLIB website2. The uniform random 3-SAT instance sets
(ufN-*) are all randomly generated with N variables at the phase transition. The hard-
est, median and easiest instance from these sets are referred to as -hard, -med and

1 http://www.satlib.org/ubcsat
2 http://www.satlib.org
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-easy, respectively. The flatN-* instances are encodings of randomly generated flat
graph 3-colouring problems with N vertices; these instances share structure induced by
the SAT-encoding. The ii and ssa instances are from the DIMACS challenge set, and
are a formulation of Boolean function synthesis problem and encodings from circuit
fault analysis, respectively. The bw instances are encodings of a blocks world planning
problem and have been popular instances in the literature. The ferry instances are
from the SAT 2003 competition industrial category. The anov10M-struct set con-
tains over two thousand instances and includes all structured (non-random) instances
currently available on SATLIB where ANOV+ has a median run-time between 1 000
and 10 000 000 steps.

3 The Quality of Random Decisions

When implementing SLS algorithms, all random decisions are realised using a ran-
dom number generator (RNG). In principle, a true random number generator (TRNG),
which obtains a sequence of random numbers from a truly random source could be
used. Hardware implementations of TRNGs that obtain random data from physical phe-
nomae, such as atmospheric noise or radioactive decay, are available and are popular in
applications such as gambling3 and cryptography [19]. However, most computer imple-
mentations use pseudo-random number generators (PRNG) instead. A PRNG is a finite
state machine with memory, and performs deterministic mathematical operations on the
state information to generate a sequence of numbers. Once a PRNGs is initialised with
a numerical seed, it will produce a series of numbers that may have the appearance of
being random, but in fact can all be deterministically calculated from the seed. The qual-
ity of a PRNG is solely determined by the mathematical operations it performs. Ideally,
sequences will be uniform and unbiased (i.e., equal fractions of numbers from the se-
quence should fall into equal intervals), uncorrelated (i.e., the numbers in the sequence
should be statistically independent of one another), and have long periods (because the
state information in a PRNG is finite, all PRNGs will eventually cycle, but the period
between cycles should be very large) [1].

Because of the importance of high quality random numbers in cryptography and
other applications, tests have been developed that measure the quality of a sequence of
random data. The American National Institute of Standards and Technology (NIST) has
produced a document [20] with companion software4 to test the quality of random data.
The NIST software includes 16 groups of tests that cover a wide variety of statistical
properties. Another popular software tool for quickly analysing the quality of random
numbers is known as ent and was developed by John Walker at Fourmilab5.

There are numerous PRNGs available that use a wide variety of mathematical meth-
ods. We have selected a few characteristic PRNGs to test, in addition to data generated
by a TRNG. The following are brief descriptions of the RNGs we used:

True Random Data. This data was obtained from random.org and was generated
by a hardware device measuring atmospheric noise.

3 http://www.first.fraunhofer.de/owx download/keno-engl.pdf
4 http://csrc.nist.gov/rng
5 http://www.fourmilab.ch/random
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Table 1. Randomness quality tests on 160MB of data generated by various RNGs. The Bias
value is the average value of all bits (the ideal value is 0.5). The χ2 analysis from ent shows the
distribution value and a percentage which indicates how frequently a TRNG would have a larger
distribution value, where values > 95% or < 5% are highly suspect. The Monte Carlo π analysis
from ent gives an estimated value of π and the respective error. For the NIST tests, we report
the overall percentage of the tests passed by the respective data, where each of the 16 groups of
tests was weighted equally.

Bias χ2 Analysis Monte Carlo π NIST %

True random 0.5000290 235.9 (75%) 3.14094 (0.021%) 97.80
Unix C random() 0.4999988 224.6 (90%) 3.14148 (0.004%) 99.50
LCG 0.5000000 0.0 (99.99%) 3.14123 (0.011%) 93.53
LFG 0.5000129 237.3 (75%) 3.14139 (0.007%) 96.69
MT 0.5000204 278.5 (25%) 3.14203 (0.014%) 98.37

Random: Skewed 1.25:1 0.5554831 2165538.1 (0.01%) 2.76998 (11.829%) 16.39
Random: Cycled 16k 0.5000086 4327.3 (0.01%) 3.14631 (0.150%) 59.18

‘C’ random(). We chose the linux gcc ‘C’ random() function because it is the de-
fault PRNG for many programmers, and is also currently the default PRNG for the
original WalkSAT software package by Kautz [3] when compiled under Linux. We
used gcc v3.3.3 on SuSE Linux v9.1.

LCG. The Linear Congruential Generator (LCG) we chose was based on the ANSI ‘C’
specification: Ij+1 = (Ij × 1103515245 + 12345) except that only one byte (bits
11-18) of random data was collected per iteration, a common practice to improve
the quality of this particular PRNG.

LFG. The Lagged Fibonacci Generator (LFG) we chose was from the book by Knuth
[21], and the source code is available from his website6.

MT. The Mersenne Twister (MT) we chose is the MT19937 algorithm [17], which has
an astounding period of (219937−1). This is the default PRNG in the current release
of the UBCSAT software package [16].

In Table 1 we examine the relative quality of the some of these RNGs. There is little
difference between the results for the PRNGs and the TRNG, with the exception of
LCG, which is clearly the worst of the tested PRNGs. It is often the case that individual
sequences of TRNGs fail more tests than individual sequences of PRNGs [20]. The
bottom two rows of Table 1 will be discussed later.

We now investigate to which extent the quality of the source of randomness affects
SLS behaviour. Intuitively, bias in the random number sequence can be expected to
have a negative impact on SLS performance for the following reason. For most random
decisions made within an SLS algorithm, there are more bad choices (that increase the
length of the current run) than good choices. Most forms of bias would therefore tend to
increase the relative probability of making a bad choice. However, note that even when
using a TRNG with extreme bias, as long as the probability of generating 0 or 1 at
any position of the sequence is greater zero, the PAC property of a given SLS algorithm

6 http://www-cs-faculty.stanford.edu/˜knuth/programs/rng.c
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Table 2. The effect of different types of random data streams on the CRWALK algorithm. For
the true random data, the mean number of search steps (run-length) required to find a solution
is given, while for all other sources the mean search steps is given as a fraction of the number
required for the true random source. The c.v. is calculated as the standard deviation divided by
the mean (σ/x̄). Note that c.v. = 1 characterises an exponential run-length distribution, which is
typical for high-performance SLS algorithms for SAT. All experiments results are based on 500
runs with a maxiumum run-length of 232 (4.3B) steps. For the cycled streams with a reported ∞
mean, we confirmed cyclic behaviour by examining the respective search trajectories.

ii8c2 ssa7552-159 flat50-med uf100-med uf50-hard
x/xrand c.v. x/xrand c.v. x/xrand c.v. x/xrand c.v. x/xrand c.v.

True random 300k 0.99 2.21M 0.97 631k 0.97 76.1M 0.94 372k 0.97

Unix C random() 1.13 0.94 1.02 0.91 0.96 0.93 1.10 0.99 1.10 0.99
LCG 1.13 1.02 1.02 1.00 0.95 0.98 1.02 0.96 1.02 0.96
LFG 1.15 0.99 1.05 1.02 0.94 1.03 0.98 0.97 0.98 0.97
MT 0.97 0.95 0.99 0.98 0.90 0.93 0.93 0.96 0.93 0.96
Skewed 1.25:1 0.48 0.97 3.39 1.08 0.93 0.97 0.97 1.03 0.97 1.03
Skewed 1.5:1 0.29 0.92 15.27 0.97 0.85 1.04 1.10 0.96 1.10 0.96
Skewed 2:1 0.13 0.94 > 368 0.97 0.93 1.03 1.03 0.99 1.03 0.99
Skewed 4:1 0.06 1.00 > 2 000 0.02 0.88 1.02 0.96 1.05 0.96 1.05
Cycled 16k 1.28 0.86 0.66 0.96 0.92 0.87 0.82 1.16 0.82 1.16
Cycled 4k 1.23 0.85 0.82 1.15 0.89 0.83 0.61 1.11 0.61 1.11
Cycled 1k 0.89 0.76 2.17 0.91 0.55 0.83 0.52 1.00 0.52 1.00
Cycled 512 0.68 1.22 ∞ 0 0.10 0.75 0.63 1.12 ∞ 0
Cycled 256 2.38 0.56 ∞ 0 0.41 0.70 0.41 0.69 ∞ 0

would remain intact, since the required sequence of ‘correct decisions’ would still occur
(albeit with much lower probability).

The effect of correlation in the random number sequence, as long as it does not
involve deterministic dependencies, would be very similar for analogous reasons. (Note
that correlation, in this context, corresponds to bias for certain subsequences.)

Deterministic cycles in the random number sequence, on the other hand, could easily
lead to a loss of the PAC property, because in combination with the finite state infor-
mation held by the algorithm (which in addition to the search position may include
search control variables, such as tabu status information or dynamic penalty weights),
they could cause cycles in the search trajectory that do not include any solutions to the
given problem instance. Note that all PRNGs are periodic; whether or not this leads to
observable stagnation of a given SLS algorithms depends on the period of the PRNG as
well as on the amount and nature of state information used by the SLS algorithm.

In order to empirically study the effect of poor quality RNGs on SLS algorithms, we
generated some intentionally bad random number sequences by manipulating the data
we had from the TRNG. First, we introduced a skew s in our data by converting 32-bits
of our random data to obtain fixed-point binary values in the range [0,1), generating a 1
if the value was greater than s/(s+1). Next, we generated cycled data where we simply
truncated the random data at a fixed number of bytes and repeated the same sequence.
We ran our new poor streams through the same tests we performed on the PRNGs, and
from Table 1 it is clear that our poor RNGs do not meet very high standards of quality.
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Table 3. The effect of different sources of random data streams on the ANOV+ algorithm (above)
and the SAPS algorithm (below) on the same instances. See Table 2 for details.

Random Data uf100-med uf250-hard bw-large.c ferry9u
x/xrand c.v. x/xrand c.v. x/xrand c.v. x/xrand c.v.

Random Source 998 0.63 3.00M 0.96 10.0M 0.99 880k 0.88

Skewed 1.25:1 1.17 0.61 1.29 1.06 0.91 1.05 0.57 0.87
Skewed 2:1 1.61 0.65 4.16 1.01 0.99 0.95 0.68 0.90
Skewed 4:1 3.02 0.76 96.31 0.62 1.30 1.00 > 3 122 0.75
Cycled 16k 1.06 0.80 0.85 0.95 0.93 1.17 0.98 0.40
Cycled 512 1.26 0.50 ∞ 0 0.13 1.61 1.03 0.80
Cycled 256 0.33 0.79 ∞ 0 0.66 1.33 ∞ 0

Random Source 1.06k 1.01 304k 1.07 14.6M 0.99 1.92M 1.01

Skewed 1.25:1 1.31 0.97 1.33 1.01 0.54 1.04 0.39 0.97
Skewed 2:1 1.89 1.16 3.03 1.08 0.34 0.97 0.26 0.97
Skewed 4:1 2.37 1.09 5.45 1.04 0.42 1.02 0.11 0.90
Cycled 16k 1.10 0.99 0.99 1.00 0.95 0.97 0.78 0.90
Cycled 512 0.55 0.72 0.96 0.49 0.88 1.18 2.18 0.89
Cycled 256 1.39 0.89 1.44 0.83 1.26 0.99 0.39 1.23

In what follows, we made the streams progressively worse, and so the data in Table 1
can be considered the best of the bad streams we generated.

To examine the effects of different RNGs on our selected algorithms, we ran CR-
WALK, ANOV+ and SAPS with the different sources of random data, and present the
results in Tables 2, 3 (top), and 3 (bottom) respectively. We provided the PRNG com-
parison for CRWALK, and we can see the algorithm was very robust w.r.t. the selection
of the PRNGs; analogous observations were made for ANOV+ and SAPS.

For the skewed data, the data streams had an increasing amount of ones, and we shall
consider what effect it would have on the specific implementations of the algorithms.
For CRWALK, the bias would be toward arbitrarily specific clauses and literals. For the
ANOV+ algorithm, the same bias would exist for clause selection, but more importantly
the frequency of random walk steps and noisy heuristic decisions would decrease. For
SAPS, the only significant change is a decrease in the smoothing frequency. Not all of
the changes were negative, and in some cases such as the CRWALK algorithm on the
ii8c2 instance, the skew greatly improved the performance of the algorithm.

For the cycled data, we continued to shorten the length of the cycles and thereby
increased the likelihood that the algorithms would cycle. In Tables 2 and 3 we present
results from situations where both the CRWALK and the ANOV+ algorithm became
stuck in endless loops. Note that although CRWALK and ANOV+ are both PAC, our
empirical results show that these algorithms can become essentially incomplete when
using cyclic random number streams. The fact that all finite PRNGs eventually cycle
suggests that no conventional implementation of an SLS algorithm is truly PAC. (An
implementation may be PAC for a given instance, but with a countably infinite number
of SAT instances there is no hope of guaranteeing that an implementation will be PAC
for any arbitrary instance.)
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Given this conclusion, it might seem wise to implement algorithms with TRNGs. If
efficient TRNGs were readily available it would be an ideal solution. However, TRNGs
are far from efficient when compared to PRNGs. We must add perspective to this discus-
sion and consider how incredibly unlikely the aforementioned circumstances are with a
good PRNG. For example, the Mersenne Twister PRNG has a period of (219937 − 1),
which makes it very unlikely to ever encounter cycling behaviour in practice. Rather,
if cyclic behaviour is observed for an algorithm using a PRNG of this type, the cyclic
behaviour is far more likely due to a design flaw, an implementation error, or simply
because (even when using true random numbers) the algorithm is not PAC.

When implementing an SLS algorithm and selecting a PRNG, there are several fac-
tors to be considered. To assess the quality of a given PRNG, one of the many available
test suites can be used; however, any reasonable PRNG will have sufficient quality w.r.t.
bias and correlation to render impacts on the performance of typical SLS algorithms
very unlikely. However, in order to minimise the chance of encountering cycling be-
haviour of an SLS algorithm in practice, it is generally advisable to chose a PRNG with
a large period. Another potentially important factor is the efficiency of a PRNG; this
is particularly relevant in the context of highly randomised SLS algorithms that make
random decisions in every (or almost every) search step. Finally, especially in the con-
text of scientific research, the use of platform-independent PRNGs makes it possible to
reproduce unusual algorithm behaviour exactly across different hardware and operat-
ing systems. The previously mentioned Mersenne Twister has all of the qualities that
are desirable for a PRNG and overall appears to be the best choice in the context of
implementing SLS algorithms.

4 Quantity of Randomness

In the previous section, we examined how the quality of random numbers can affect
SLS behaviour. In this section, we will study the quantity of random decisions made by
SLS algorithms, and consider how many random decisions are truly required. We first
investigate random decisions in the SAPS algorithm and give a quick review of our pre-
vious work [11]. It has been observed that high-performance dynamic local search al-
gorithms, such as ESG or SAPS, become essentially deterministic after an initial search
phase [22]. Intuitively, the clause penalties become unique after numerous scaling and
smoothing steps, and so there is no heuristic tie breaking necessary. To further investi-
gate the role of randomness in these algorithms, we have previously created and studied
a mostly derandomised variant of SAPS known as SAPS/NR [11].

SAPS/NR does not perform any random walk steps at local minima, uses periodic
smoothing after every ($1/Psmooth%) local minima, and breaks all ties by selecting
the variable with the smallest index. At first glance, it may seem that SAPS/NR is
completely deterministic, but we must emphasise that the initialisation of SAPS/NR is
identical to the initialisation in SAPS, and consequently the initial starting position for
each run of SAPS/NR is completely random. In Figure 1 we compare the performance
differences between SAPS and SAPS/NR. The ferry9u instance is one of the few
cases in which we have found significant performance differences; in the overwhelming
majority of cases, both algorithms show no significant performance differences.
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Fig. 1. Performance comparison of SAPS and SAPS/NR. Left: For each instance, SAPS and
SAPS/NR were run 1000 times. For a description of the c.v., see Table 2. Right: Correlation
of median run-time over 100 runs on each instance of set anov10M-struct. Using the Mann-
Whitney U-test with sample size 100, performance ratios below 1.8 (corresponding to data points
inside the band drawn around the main diagonal of the plot) are not statistically significant at
standard significance and power levels [1].

After restricting all of the random decisions to the initialisation phase, we will next
consider what happens when we remove the random decisions from the initialisation
phase as well. If we deterministically initialise the variable assignments, SAPS/NR will
always take the same number of steps to solve an instance, reducing the variability in the
run-time to zero, which can be seen in Figure 3 (left) as a vertical line. The deterministic
initialisation method we used was a simple greedy approach: for each variable, if the
positive literal appears more frequently than the negative, the variable is assigned a
value of ", otherwise ⊥. When variables with an equal number of positive and negative
literals are encountered, they are deterministically assigned " or ⊥, alternating between
variables.

We next consider what happens if between the initialisation and the search phase we
select one variable uniformly at random and flip it 7. Remarkably, as can be seen in
Figure 3 (left), the variability introduced by just that one random decision is close to
the full variability seen by the regular, fully randomised version of SAPS. Because this
instance has 250 variables, there are 250 discrete levels in the curve, corresponding to
each of the 250 variables that could have been flipped. It is quite remarkable and rather
counter-intuitive that flipping just one variable between the initialisation and search
phase could have such a dramatic effect on the run-time behaviour of the algorithm. We
note that this phenomenon is very reminiscent of the extremely sensitive dependence
on initial conditions found in chaotic dynamic systems.

Next, we consider similar derandomisations for CRWALK and ANOV+, two algo-
rithms that depend on random decisions to a much greater extent than SAPS. It should
be noted that the derandomised versions of these algorithms described in the following
were chosen for their simplicity rather than for their performance or their exceptionally
strong correlation to the original algorithms. We did not invest time in tuning and engi-
neering our algorithms with different derandomisation strategies to meet higher quality

7 Parameters -varinitgreedy -varinitflip 1 in UBCSAT.

SAPS SAPS/NR
Instance Mean c.v. Mean c.v.
uf100-med 1 075 0.95 1 041 1.01
uf250-hard 287 907 0.98 292 488 0.96
bw-large.c 13 413 962 0.98 14 510 361 1.05
ferry9u 1 883 606 1.03 3 179 808 1.06
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Fig. 2. Comparison of left: CRWALK and DCRWALK and right: ANOV+ and DANOV+. In-
stance sets left: flat30-* and right: anov10M-struct. For each instance, 100 runs were
performed. See Figure 1 for further details.

standards. Our goal was to illustrate that our simple, straightforward approach works
reasonably well for most instances.

Recall that CRWALK uses random decisions to select unsatisfied clauses and to de-
cide which variable in a selected clause is to be flipped. To implement clause selection
in DCRWALK, our deterministic version of CRWALK, we keep track of the number of
times each clause has been selected (count) and the number of steps that each clause
has been unsatisfied (unsat) and we simply select the clause that has the smallest (count:
unsat) ratio, breaking ties by selecting the clause with the smallest index. This method
ensures that clauses are selected in a uniform, fair, and deterministic manner. For lit-
eral selection, we simply keep a counter for each clause, selecting the first literal the
first time the clause is selected, the second literal the second time, and so on, returning
to the first literal when all have been exhausted. Thus, DCRWALK removes all of the
randomness from the heuristic search phase, while still allowing for random decisions
at the initialisation phase. Note that our approach differs substantially from some of the
published theoretical methods for derandomising Schöning’s algorithm [23], which use
Hamming balls to eliminate randomness from the initialisation phase and depart from
traditional SLS by using backtracking in the local search phase.

To derandomise the ANOV+ algorithm, we need to replace three types of random
decisions: clause selection, random walk steps, and noisy variable selection. For clause
selection, we maintain a list of the currently false clauses and simply step through that
list, selecting the clause in the list that is the current search step number modulo the size
of the list. Instead of random walk steps, every ($1/wp%) steps a variable is selected to
be flipped using the same variable selection scheme used by DCRWALK. For the noisy
variable selection, we use two integer variables n and d. If the ratio ( n

d ) is less than the
current noise setting p a noisy decision is made and n is incremented, conversely, if ( n

d )
is greater than p the greedy decision is made and d is incremented. Whenever the adap-
tive mechanism modifies the noise parameter p, the values of n and d are reinitialised
to $256 · p% and (256 − n), respectively.

In Figure 2 we compare the performance of DCRWALK and DANOV+ with their
fully randomised versions. In general, we do not see the same tight correlation observed
for SAPS/NR, however, for the most part our derandomised algorithms show very
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Fig. 3. A run-length distribution comparison of left: SAPS and SAPS/NR, centre: CRWALK and
DCRWALK and right: ANOV+ and DANOV+ (with [N ] total random decisions per run) based
on 1000 runs. See the text for the deterministic initialisation method used for the derandomised
algorithms. The vertical bar ([0]) reflects when all random decisions have been replaced, while
the [1] curve shows the behaviour when one single random variable has been flipped after the
deterministic initialisation in each run. Instances are left: uf250-hard, centre: uf50-hard
and right: bw-large.c.

similar behaviour. Our DCRWALK algorithms seems to outperform CRWALK for the
vast majority instances, possibly because the clause selection scheme is fair and un-
biased. Gent and Walsh observed similarly improved behaviour for a fair deterministic
version of GSAT [7]. Our DANOV+ algorithm suffers from slightly worse performance
on average, and there are significant outliers that indicate some inherent problems with
our derandomisation approach on some specific instances, but for most instances the
performance of DANOV+ resembles that of ANOV+.

In Figure 3 we see evidence that the same ‘chaotic’ behaviour observed for SAPS/NR
is also present for DCRWALK and DANOV+. Using the same deterministic initiali-
sation as in SAPS/NR, we obtain the same behaviour: with just one simple random
decision in DCRWALK and two in DANOV+, the full variability found in the run-
time distributions of the original, heavily randomised versions of these algorithms is
achieved. What makes this observation remarkable is not so much that in principle, the
amount of random decisions can be drastically reduced without any substantial effect
on the behaviour of the algorithm (after all, any implementation of an SLS algorithm
using a PRNG is fully deterministic), but rather that it can be done using very simple
derandomisation schemes.

5 Conclusions

In this paper we have investigated the role of random decisions in SLS algorithms for
SAT. Most of these algorithms heavily use various types of random decisions, and we
have argued that from a theoretical point of view, their performance can be expected to
be severely compromised by some of the features associated with poor-quality random
number sequences. Nevertheless, our our empirical results indicate that in practice, the
behaviour of these algorithms is remarkably robust with respect to the quality of the



On the Quality and Quantity of Random Decisions in SLS for SAT 157

RNG used to implement these random decisions. This is in contrast to some other types
of randomised algorithms, such as algorithms used for Monte Carlo simulations. As a
consequence, there is no reason to consider the use of true random number generators
(which have the disadvantage of typically being rather slow), or to worry about mi-
nor differences in the quality of readily available pseudo-random number generators,
especially if their period is high. Because of its extremely high period, efficiency and
platform-independent availability, we recommend to use the Mersenne Twister PRNG
for the implementation of SLS algorithms.

We have also found that at least the three prominent SLS algorithms for SAT we
studied (SAPS, ANOV+, CRWALK) can be almost completely derandomised using
very simple mechanisms to replace the random decisions without significantly changing
their behaviour. In particular, versions of these algorithms that use only a single random
decision during intialisation exhibit basically the full variability in the run-time required
to solve a given SAT instance as the original, fully randomised algorithms. Eliminating
this last random decision leads to completely deterministic algorithms which may often
perform similarly well as their fully randomised versions on average. At the same time,
these deterministic algorithms can no longer benefit from easy and efficient paralleli-
sation by means of performing multiple independent tries in parallel [1].Additionally,
at least for the deterministic version of ANOV+ we observed substantially degraded
performance on a very small number of instances. Therefore, we see no practical ad-
vantages in using completely or partially derandomised SLS algorithms.

Overall, our results are fully consistent with the widely held view that the role of ran-
dom decisions in SLS algorithms is primarily to provide search diversification. There-
fore, neither the quality of the RNG nor the quantity of random decisions used by an
SLS algorithm is of crucial importance to its behaviour.

In future work, it would be interesting to conduct a detailed empirical analysis on the
implementation costs of various PRNGs and the difference in run-time behaviour be-
tween randomised and derandomised algorithms. With respect to the quantity of random
decisions, more algorithms can be tested for straightforward derandomisation, and more
robust derandomisation methods should be explored. For individual instances on which
derandomised algorithms are found to perform poorly (i.e. ferry9u for SAPS/NR), it
would be interesting to further explore the reasons underlying the loss of performance,
and to investigate which specific type of derandomisation is causing the problem; this
information could be used to help identify how to use random decisions more effec-
tively. Finally, it would be very worthwhile to extend our methods to other combinator-
ial problem domains (e.g., constraint satisfaction or travelling salesperson problems) to
test the generality of our observations.
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Abstract. Distributed Constraint Satisfaction Problems provide a nat-
ural mechanism for multiagent coordination and agreement. To date, al-
gorithms for Distributed Constraint Satisfaction Problems have tended to
mirror existing non-distributed global-search or local-search algorithms.
Unfortunately, existing distributed global-search algorithms derive from
classical backtracking search methods and require a total ordering over
agents for completeness. Distributed variants of local-search algorithms
(such as distributed breakout) inherit the incompleteness properties of
their predecessors, or depend on the creation of new communication links
between agents. In [5, 4] a new algorithm was presented designed explic-
itly for distributed environments so that a global ordering is not required,
while avoiding the problems of existing local-search algorithms. This pa-
per presents a significant improvement on that algorithm in performance
and provability.

1 Introduction

Constraint Satisfaction Problems (CSPs) have proven applicable in a wide vari-
ety of domains. A CSP is classically defined by a set of variables V , a domain for
each variable Dv, and a set of constraints C. A solution to a CSP is a complete
assignment of values to variables which satisfies every constraint.

A Distributed CSP (DisCSP) is formed when the description and solution
procedure of a CSP are separated amongst multiple agents. The distributed
environment extends the applicability of CSPs to domains such as distributed
scheduling and resource contention. Of particular interest is the use of DisC-
SPs as models for solving other multiagent problems, with DisCSP algorithms
defining a protocol for agent communication. Common examples of such prob-
lems include scheduling, task assignment, and limited forms of negotiation where
simple decision(s) must be made per agent. A DisCSP can be constructed by rep-
resenting each of the agents decisions as a variable, with constraints describing
any inter-agent relationships.

A DisCSP can be solved by distributed variants of existing global-search or
local-search algorithms. However, local-search algorithms [12] are incomplete in
both the distributed and non-distributed case. Distributed variants of global-
search [1, 3, 8, 10] presented to date make use of a total order over variables.
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We argue that any total order impacts the characteristics of backtracking-style
search in undesirable ways for use in many multiagent problems. For example,
an agent which has a ‘higher’ rank in the ordering has more ‘authority’ and
is therefore less likely to change its value than a ‘lower’ ranking agent. In an
anytime environment this results in higher-ranked agents being granted more
stable answers. While some problems may desire such behaviour our concern
lies with those problems which do not.

We also argue that, when using a total order, it is difficult to add constraints
between two previously independent DisCSPs. To do so would require a re-
computation of the variable ordering and/or an arbitrary decision that one
DisCSP ranks higher than the other. If a problem is frequently altered by the
addition of groups of variables, as is likely to occur in large DisCSP networks,
global re-computation will become increasingly difficult. If variable ordering is
instead made arbitrarily (for example, ordering by variable identifier) the prob-
lem of stability is exacerbated.

We have previously demonstrated these arguments [5, 4] by reference to large-
scale meeting scheduling systems. In such systems, it is expected that the solution
will be accessed and the constraint network modified at any time by distributed
users. The relationship between users, agents and variables also ensures that
fairness in frequency of variable assignment is also important. The specific diffi-
culties of large-scale distributed meeting scheduling motivated us to develop an
algorithm which:

– has no need for ‘authority’ between variables, effectively avoiding the need
for a total order on variables.

– provides fairness in the level of stability for variables.
– does not add links between variables, avoiding the eventual need for ‘broad-

casting’ assignments.
– addresses the risk of cyclic behaviour exhibited by local search algorithms.

Section 2 will present a model of a simple meeting scheduling problem as
a DisCSP, and present how arguments can form the basis of communication
between agents. Section 3 will describe the internal decision processes of each
agent to handle arguments in an appropriate manner. Section 4 will present
analysis of the algorithm.

2 Modelling Arguments

Example 1. Consider the following small distributed constraint satisfaction
problem. Alice, Bob, Carla and Dennis must organise meeting times:

– Bob must meet with Carla.
– Bob must meet with Alice before his meeting with Carla.
– Dennis must meet with Alice.
– Bob, Carla and Dennis must have a separate group meeting.
– Available times are 1pm, 2pm and 3pm.
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To find the solution they state arguments (proposals and rejections) in turn,
providing further detail if two arguments are contradictory or if they need to
alter a previous argument:

Alice to Dennis ⇒ I propose a 1pm meeting
Dennis to Carla ⇒ I propose a 2pm group meeting
Dennis to Bob ⇒ I propose a 2pm group meeting
Carla to Bob ⇒ I propose a 1pm meeting
Alice to Bob ⇒ I propose a 2pm meeting
Bob to Alice ⇒ I have a group meeting at 2pm,

so I propose a 1pm meeting instead
Bob to Carla ⇒ I completely reject your proposal,

so I propose a 3pm meeting instead
Alice to Dennis ⇒ I now have another meeting at 1pm,

so I propose a 3pm meeting instead

Example 1 demonstrates how a distributed constraint satisfaction problem can
be solved through arguments. We will describe a formal model of this problem
with corresponding notation able to represent the dialogue. This transformation
will then lead us to a simple distributed constraint satisfaction algorithm called
Support-based Distributed Search.

To construct a distributed constraint satisfaction problem we translate the
time of attending a meeting for each person into a variable. Equality constraints
are used to ensure meeting times are agreed to by all users. For example, a pair
of variables a and b may represent the scheduled time of the meeting between
Alice and Dennis. The constraint a = b is interpreted as ‘the time Alice decides
to meet with Dennis must be the same as the time that Dennis decides to meet
with Alice’. Inequality constraints ensure that meetings occur at distinct times.

V = {a, b, c, d, e, f, g, h, i}

D = {1pm, 2pm, 3pm}

C =

⎧⎪⎪⎨
⎪⎪⎩

a = b b 
= c c = d
c = g d 
= e d = g
e = f f 
= g f > h
g 
= h h = i a 
= i

⎫⎪⎪⎬
⎪⎪⎭

Note that there is significant redundancy in the constraints and variables. This
occurs as the constraints upon one person are not automatically known to others.
Relaxing this requirement would generate a simpler constraint graph, but would
conflict with our aim to solve in a distributed manner. Using this constraint
model as an example, we will now define suitable notation for representing the
dialogue.



162 P. Harvey, C.F. Chang, and A. Ghose

Definition 1. An isgood is an ordered partial assignment for a sequence of
connected variables, and so represents a ‘proposal’.

Consider the argument in Example 1 where Bob says to Alice: “I already have
a group meeting at 2pm, so I propose a 1pm meeting for us instead”. This is a
proposal, and so can be written as an ordered partial assignment or ‘isgood’:

〈(g, 2pm) , (h, 1pm)〉

This isgood is read as “variable g took on value 2pm, and so h took on value 1pm”.
Note that variables in an isgood must be connected to their immediate predeces-
sor, and therefore 〈(d, 2pm) , (h, 1pm)〉 is not an isgood. Also note that we use the
operator + to represent the appending of a variable assignment to an isgood. For
example, 〈(g, 2pm) , (h, 1pm)〉 + (i, 1pm) = 〈(g, 2pm) , (h, 1pm) , (i, 1pm)〉.

Note that this definition of an isgood has an important difference from that
presented in [5, 4], in that no measure of ‘strength’ is defined. We address the
lack of such a measure within the algorithm itself, described later.

Definition 2. A nogood is an unordered partial assignment which is provably
not part of a solution, and so represents a ‘rejection’.

Consider the argument in Example 1 where Bob says to Carla: “I reject your
proposal, and I propose a 3pm meeting for us instead” This is a rejection (he
must meet Carla before Alice, so 1pm is not a possible meeting time) followed
by a proposal, which written in sequence are:

{(e, 1pm)} and 〈(f, 3pm)〉

They are read as “variable e cannot take value 1pm” and “variable f took on
value 3pm” respectively. As demonstrated in Example 1 a nogood is usually
accompanied by an isgood.

3 Solving with Arguments

Using the above notation, and the dialogue of Example 1 as a guide, it is possible
to construct a distributed search algorithm in which agents will:

– send and receive proposals (isgoods) and rejections (nogoods)
– convince neighbours to change by progressively longer proposals
– reject a proposal from a neighbour if it is inconsistent
– justify their variable assignment by the proposal of just one neighbour
– communicate only with agents for which they share a constraint

To achieve this, each agent records the most recent proposals sent/received by
neighbouring agents and an unbounded nogood store. Unlike other distributed
algorithms, SBDS does not regard all information from neighbours as a consistent
‘agent view’. Instead, the isgood received from just one neighbour is chosen as
justification for our current assignment and combines to form our ‘agent view’.
Formally, the information stored by each agent is:
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– sent(v) - last isgood sent to each neighbour v , initially empty
– recv(v) - last isgood received from each neighbour v , initially empty
– nogoods - set of all nogoods ever received, initially empty
– support - the neighbour chosen for our ‘agent view’
– view - current agent view (recv(support) extended by an assignment to our

own variable)

The main loop of our algorithm processes all messages before choosing support
and view and sending new isgoods. Incoming isgoods are stored in recv(v) by the

Procedure 1. main ()
1: while true do
2: for all received nogoods N (in fifo order) do
3: receive-nogood(N )
4: for all received isgoods I (in fifo order) do
5: receive-isgood(I )
6: select-support()
7: for all neighbours v do
8: send-isgood(v)
9: wait until at least one message in the queue

Procedure 2. receive-isgood (I )
1: let v be the variable which sent I
2: set recv(v) to I
3: if no choice of value is consistent wrt recv(v) then
4: send-nogood(v)

Procedure 3. receive-nogood (N )
1: if N in nogoods then
2: break, as this nogood was already known
3: add N to nogoods
4: if no value is consistent then
5: terminate algorithm
6: for all neighbours v do
7: if no choice of value is consistent wrt recv(v) then
8: send-nogood(v)

Procedure 4. select-support ()
1: update-view ()
2: if our current value is inconsistent wrt some recv(v)

and |recv(v)| ≥ |view | then
3: set support to a neighbour u, maximising |recv(u)|
4: update-view ()



164 P. Harvey, C.F. Chang, and A. Ghose

Procedure 5. update-view ()
1: let view ′ be recv(support) extended by a consistent

assignment to self, and maximal with respect to ≺
2: let v be the first variable assigned in view ′

3: if scope(view) 
= scope(view ′) or view ≺ view ′ or
the assignment of v is equal in view ′ and recv(v) or
the assignment of v is unequal in view and recv(v) then

4: set view to view ′

Procedure 6. send-nogood (v)
1: let N be an inconsistent subset of recv(v)
2: send N to v
3: set recv(v) to 〈 〉
4: if support = v then set support to self

Procedure 7. send-isgood (v)
1: if our current value is consistent wrt recv(v) and

sent(v) & view then
2: break, as a new isgood is not necessary
3: lock communication channel with v
4: if there are no unprocessed isgoods from v then
5: let R be the longest isgood such that R & view and v /∈ scope(R)
6: let L be max(|recv(v)|, |sent(v)|) + 1
7: let I be the isgood such that I & R and |I | = min(L, |R|)
8: send I to v
9: set sent(v) to I

10: unlock communication channel with v

receive-isgood procedure. If no assignment to our own variable is consistent with
respect to the new isgood and current known nogoods, the procedure send-nogood
is called to derive and send a nogood. Similarly the receive-nogood procedure
handles an incoming nogood; each recv(v) is re-tested for consistency, and send-
nogood is called if appropriate.

The select-support procedure determines which neighbouring variable will be
considered as our support for this iteration. A new support must be chosen if a
received isgood from a neighbour is longer than our current view and conflicts
with our current value.

The update-view procedure refreshes the current view according to the isgood
recv(support). In most cases update-view will replace view by selecting and ap-
pending a consistent assignment for our variable to the tail of recv(support).
As our algorithm is asynchronous, and agents can determine their assignments
simultaneously, there is the possibility of cyclic behaviour. As in [5, 4], we make
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use of orderings for isgoods defined over the same set of variables to pause the
algorithm when a cycle is deemed likely.

Formally, let scope(I) be the sequence of variables in the isgood I. For ex-
ample, with I = 〈(c, 1pm), (b, 2pm)〉 we have scope(I) = 〈c, b〉. We assume an
ordering ≺ is known to all agents and is total for isgoods of the same unordered
scope. We will not replace a view with view ′ if each of the following is true:
– view ′ is easily demonstrated to be out-of-date, but view is not
– view ′ and view are defined over the same cycle in the constraint network
– view ′ is lower in the ordering than view

This scheme causes an agent to postpone changing its value if its new view
would be out-of-date, would propagate a cycle, and the old view is regarded as
‘superior’ by the ordering. As the definition of the ordering is uniform across
all agents, any cyclic behaviour will quickly resolve in favour of a single view.
Theorem 1 contains a formal statement and proof of this result.

The send-nogood procedure generates and sends an appropriate nogood when
a received isgood is found to be inconsistent. The send-isgood procedure con-
structs the strongest possible isgood to send to agent v while satisfying certain
‘minimality’ requirements. To prevent trivial cycles we dot not sent an isgood to
a neighbour v if there are unprocessed isgoods in the communication channel.

To avoid more complex cycles of oscillating agent values in inconsistent prob-
lems, we increase the length of successive arguments which are sent. As any
cycle must be finite, eventually the arguments (isgoods) being transmitted will
contain the cycle itself. If the cycle is formed from inconsistent values it will
generate a nogood and break the cycle; otherwise the cycle-breaking mechanism
of update-view will take effect.

4 Results

In the introduction we have described desirable properties of an algorithm for
distributed constraint satisfaction. The fact that we do not add links between
variables is evident from the algorithm itself. Similarly, we note the absence of
any total ordering over the variables, which avoids any notion of ‘authority’.

We can provide empirical evidence that no variables change value significantly
more often than any other. Figure 1 presents the number of value changes per
variable while using our algorithm to solve a randomly constructed problem
of 100 variables, 300 constraints and domain size of 5. Each graph plots the
frequency of value change for each variable, sorted in ascending order, and a line
of best fit. When using constraint tightness of 0.3 (easy to solve), 0.325 (hard to
solve) and 0.35 (unsolvable) we observe the same results; no variable is forced
to change value significantly more often than most others.

We have also provided a novel method to address cyclic behaviour which
plagues distributed local search algorithms [12]. Below we present proof that
cyclic behaviour has been eliminated:
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Fig. 1. Frequency of assignment changes per variable, for a random problem of 100
variables, 300 constraints, domain size of 5, and constraint tightness of 0.3 (easy),
0.325 (hard) and 0.35 (unsolvable)

Lemma 1. Eventually no new nogoods will be generated.

Proof. Each agent keeps all nogoods it ever receives. A nogood is sent when a
received isgood is found to be inconsistent, ensuring that the isgood will never
be received twice from the same source. As the set of possible isgoods must be
finite, eventually no new nogoods will be generated.

Note that it appears possible to use a nogood-deletion policy derived from that of
Dynamic Backtracking [2], though caution must be taken. Dynamic Backtrack-
ing has just one single variable ordering at any one time, allowing for nogoods
to be deleted while guaranteeing that some information is always retained. It is
common for SBDS to have multiple conflicting variable orderings and to con-
tain cycles, and so information can be lost permanently if a nogood is deleted.
To prevent information loss, it is possible to annotate a nogood with the vari-
able ordering that was in use at the time of the nogood construction. Using
this annotation it is possible to apply the nogood-deletion policy of Dynamic
Backtracking safely, though the impact on algorithm performance has not been
tested.

Lemma 2. If no new nogoods are generated, then eventually the length of view
will become stable for each agent.

Proof. If no new nogoods are generated, the length of view becomes monotonic
increasing, with one exception. If an agent chooses a new support that forms a
cycle, then the length of arguments for agents in the cycle may be limited (line
5 of send-isgood), causing a decrease in view for those (and other) variables.

However, within the set of variables that are affected by such a choice, we can
guarantee that the minimum length of view increases. As the length of view is
bounded above, we are guaranteed that the length of view will become stable
for each agent.

The above proof is best illustrated with an instance of our meeting scheduling
example. Consider the following table showing possible views for each variable.
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A diagram showing the direction of the support relation is also provided. In the
diagram, c has chosen b as support, d has chosen c as support, etc.

Example view held by each variable
b: 〈(b, 1pm)〉
c: 〈(b, 1pm), (c, 2pm)〉
d: 〈(b, 1pm), (c, 2pm), (d, 2pm)〉
e: 〈(b, 2pm), (c, 1pm), (d, 1pm), (e, 2pm)〉
f : 〈(b, 2pm), (c, 1pm), (d, 1pm), (e, 2pm), (f, 2pm)〉
g: 〈(c, 1pm), (d, 1pm), (e, 2pm), (f, 2pm), (g, 1pm)〉

In the above table, b, c and d have recently changed value, so the view held by g
is contradictory to that held by d. However, g can provide a longer argument to d
in the form of an isgood 〈(e, 2pm), (f, 2pm), (g, 1pm)〉. As the argument provided
by g is longer, and contradicts the current view of d, it forces d to choose g as a
new support and update it’s view accordingly. Following this choice, and after a
few iterations, we can have the following situation:

Example view held by each variable
b: 〈(b, 1pm)〉
c: 〈(b, 1pm), (c, 2pm)〉
d: 〈(e, 2pm), (f, 2pm), (g, 1pm), (d, 1pm)〉
e: 〈(f, 2pm), (g, 1pm), (d, 1pm), (e, 2pm)〉
f : 〈(g, 1pm), (d, 1pm), (e, 2pm), (f, 2pm)〉
g: 〈(d, 1pm), (e, 2pm), (f, 2pm), (g, 1pm)〉

The view held by each of d, e, f and g were affected by d’s choice. Importantly,
the length of view for f and g decreased. However, the minimum |view | for
affected variables has increased from 3 to 4. This demonstrates in a concrete
way that mechanism described in the proof of Lemma 2.

Note that, in the above table, the view held by c is shorter and contradictory
to that held by d and g. Therefore c and subsequently b would change their
choice of support and view , giving us the following:

Example view held by each variable
b: 〈(g, 1pm), (c, 1pm), (b, 2pm)〉
c: 〈(e, 2pm), (f, 2pm), (g, 1pm), (c, 1pm)〉
d: 〈(e, 2pm), (f, 2pm), (g, 1pm), (d, 1pm)〉
e: 〈(f, 2pm), (g, 1pm), (d, 1pm), (e, 2pm)〉
f : 〈(g, 1pm), (d, 1pm), (e, 2pm), (f, 2pm)〉
g: 〈(d, 1pm), (e, 2pm), (f, 2pm), (g, 1pm)〉
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While we do not argue that these examples provide any theoretical results,
they do illustrate the proof of Lemma 2. A formal proof of soundness and ter-
mination (completeness) is presented below.

Theorem 1. The algorithm is sound, and will terminate.

Proof. The algorithm uses sound nogood derivation techniques and will termi-
nate with ‘no solution’ only if the empty nogood is derived. Inversely, each agent
ensures that its neighbours know its current value, and will continue to com-
municate if an inconsistency exists. Therefore the algorithm will not terminate
unless it has a correct answer, and so is sound.

By Lemmas 1 and 2 we know that eventually no new nogoods will be generated
and the length of view will become stable for each agent. Therefore the support
for each agent will also become stable, and so value selection for each variable
will become dependant only upon information from its support . In such a situ-
ation the algorithm will only fail to terminate if there exists some directed tour
of agents v1, . . ., vn which are ‘supporting’ each other and oscillating between
candidate solutions. However, each candidate solution has the same unordered
scope, and so by the postponement scheme outline above we know that solutions
ranked lower by ≺ will be removed until the oscillating stops and the algorithm
terminates.

5 Comparisons

A number of centralised and distributed algorithms have been used as inspiration
in the construction of SBDS. Many contain similar elements, such as dynamic
distributed variable ordering [13], nogood construction [8, 2, 1], and heuristic
search [7, 6, 12]. There are however, some differences in the way the techniques
from this previous work have been used.

As noted in the introduction, most algorithms that rely on variable ordering
require that ordering to be total, though it may be a preorder as in [9]. In SBDS,
each isgood describes an order over variables within only a local context. The
purpose of the ordering in this instance is to provide support for nogoods in
the style of Dynamic Backtracking [2, 1]. The combination of these local orders
does not necessarily end in the construction of a total order over variables, and
may contain cycles. Permitting cycles clearly distinguishes SBDS from previous
algorithms.

In our own previous work [5, 4] we attempted to limit the progressive length-
ening of isgoods by a complicated measure of ‘strength’. To minimise the rate
of growth of L, and to increase performance, we have replaced this measure in
implementation with a min-conflict heuristic. To ensure completeness we use
iteration limits to revert to provably complete search.

Finally, Figure 2 presents a comparisons of SBDS and Distributed Breakout,
each using a min-conflict heuristic. We compare with Distributed Breakout as
it is simple to implement, and is often very fast on feasible problem instances.
We ran each on approximately 13000 feasible random binary problem instances,
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with an upper limit of 10000 iterations per instance. We also ran SBDS on ap-
proximately 350 infeasible random problem instances generated in the same way.

We have plotted each random problem instance found feasible by SBDS, com-
paring the number of iterations taken for each algorithm. We also present the
percentage of completed problems for Distributed Breakout and SBDS within
iteration bounds. As can be seen, the vast majority of problems are more eas-
ily solved by SBDS than by Distributed Breakout. Given a 4000-iteration limit,
SBDS is able to solve 98% of problems, whereas Distributed Breakout can solve
only 50%, and just 55% within 10000 iterations.

Note that we have not used the stochastic variant of Distributed Breakout [11],
and we are not measuring communication cost. Future work will involve further
comparisons to other algorithms, and investigation of compression techniques for
isgoods. In our experiments the majority of isgoods involved changes to just one
or two variables; using a delta-compression scheme would significantly reduce
any communication costs.
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Fig. 2. Comparison of SBDS and Distributed Breakout for feasible random problems
with 200 variables and 400 constraints, domain size of 5, and constraint tightness of 0.4

6 Conclusion

Distributed Constraint Satisfaction Problems provide a natural mechanism for
multiagent coordination and agreement. To date, algorithms for Distributed
Constraint Satisfaction Problems have tended to mirror existing non-distributed
global-search or local-search algorithms. However, there exist natural examples
of DisCSPs for which a total variable ordering and/or linking of variables is
not desired. If we are to solve such DisCSPs we must develop new algorithms
designed specifically for distributed environments.

In this paper we have presented one such algorithm. Key to the success of
the algorithm is the use of argumentation as a model for agent operation. This
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technique avoids fixed ranks for agents and the resultant behaviour which is
undesirable in natural problems such as meeting scheduling. The placing of a
total order over solutions for subsets of variables also provides a novel approach
to solving the issue of cyclic behaviour in local search algorithms. This paper
also represents a significant simplification, with formal proof results and better
performance, of the algorithm presented in [5, 4].
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Modeling Causal Reinforcement and
Undermining with Noisy-AND Trees

Y. Xiang and N. Jia
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Abstract. When data are insufficient to support learning, causal mod-
eling, such as noisy-OR, aids elicitation by reducing probability parame-
ters to be acquired in constructing a Bayesian network. Multiple causes
can reinforce each other in producing the effect or can undermine the
impact of each other. Most existing causal models do not consider their
interactions from the perspective of reinforcement or undermining. We
show that none of them can represent both interactions. We present the
first explicit causal model that can encode both reinforcement and un-
dermining and we show how to use such a model to support efficient
probability elicitation.

1 Introduction

A Bayesian network (BN) [7] encodes concisely probabilistic knowledge about
a large problem domain. But when a variable has many parent variables in
the BN, acquisition of the corresponding conditional probability table (CPT)
is exponential on the number of parents. The CPT may be acquired through
learning. However, in a given problem domain, there may be insufficient data to
support learning, but experts are available for elicitation. Hence, how to elicitate
the CPT from them efficiently is still a practical need.

To support such elicitation, Pearl pioneered idea of a noisy-OR model [7].
Henrion [5] added to the noisy-OR model a leaky probability. Diez [1] and Srini-
vas [9] extended noisy-OR from binary to multi-valued variables. Heckerman
and Breese [4] analyzed a collection of causal independence relations that allows
efficient acquisition of conditional probability tables in BNs. Recently, Lemmer
and Gossink [6] proposed the recursive noisy-OR model.

When multiple causes are present, they can reinforce each other in producing
the effect or they can undermine the impact of each other. Unlike [6], previous
work do not consider causal interactions among variables from the perspective of
reinforcement or undermining, and model parameters are limited to probabilities
of single cause events. All previously proposed causal models, including noisy-
OR, recursive noisy-OR, noisy-MAX, noisy-AND and noisy-addition, are limited
to represent either reinforcement or undermining, but not both.

In this work, we present an noisy-AND tree model that represents arbitrary
causal interactions among a set of causes, some of them are reinforcing and
others are undermining. Reinforcement and undermining are encoded explicitly
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to support probability elicitation and probabilities for multi-cause events can be
incorporated as model parameters if so desired.

In Section 2, we introduce the terminology and define formally reinforcement
and undermining. Section 3 presents how reinforcement and undermining can be
modeled uniformly using noisy-AND gates. Section 4 proposes the noisy-AND
tree model and how to use it to obtain causal probability is described in Section 5.
We present, in Section 6, how to use noisy-AND trees to model causal interaction
when default independence assumptions do not hold. We demonstrate elicitation
of CPTs with noisy-AND trees in Section 7. Section 8 compares related causal
models with noisy-AND trees.

2 Background

We aim to assess a conditional probability distribution of a variable x conditioned
on a set of variables Y based on their causal relation. The causes that we consider
are uncertain causes. Following Lemmer and Gossink [6], an uncertain cause is
a cause that can produce an effect but does not always do so. We denote a set
of binary cause variables as X = {c1, ..., cn} and their effect variable (binary) as
e. For each ci, we denote ci = true by ci1 and ci = false by ci0. Similarly, we
denote e = true by e1 and e = false by e0.

We refer to the event that a cause ci causes an effect e to occur as a causal
event. We denote this causal event by e1 ← {ci1} or simply e1 ← ci1, and we
denote its negation that ci does not cause e as e1 
← ci1. Note that causal event
e1 ← ci1 is not just the concurrence of ci1 and e1. With the above notation, ci

is an uncertain cause of e if and only if 0 < P (e1 ← ci1) < 1.
We denote the causal event that a set X = {c1, ..., cn} of causes causes e by

e1 ← {c11, ..., cn1}, or simply e1 ← c11, ..., cn1 or e1 ← x1. When the cause set is
indexed, such as Wi = {c1, ..., cn}, the causal event may be denoted e1 ← wi1.
We allow broad interpretations of causal event by a set of causes, as will be seen
in later sections. For instance, we are not limited to the interpretation in [6]: the
effect is caused by at least one of the causes.

Pearl [7] regards a cause as an event whose occurrence always results in an
effect. He encodes the causal uncertainty using an uncertain inhibitor. The con-
junction of a certain cause and an inhibitor in his formulation is equivalent to
an uncertain cause.

When modeling a domain with a BN, the set of all causes of an effect variable
e is its parents. We denote the set of all causes of e by C. To capture causes
that we do not wish to represent explicitly, we include a leaky cause variable in
C (as one of c1 through cn).

Probability of causal event can be used to assess CPT P (e|C). For example,
if C = {c1, c2, c3, c4}, then P (e1|c11, c20, c31, c41) = P (e1 ← c11, c31, c41). Note
that only cause variables of value true are included in the right-hand side of the
causal probability.

When multiple causes are present, they may reinforce each other in producing
the effect. That is, their combined influence is greater than that from only some
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of them. Alternatively, multiple causes may undermine each other in producing
the effect. Below, we define reinforcement and undermining formally.

Definition 1. Let R = {W1, W2, ...} be a partition of a set X of causes, R′ be
a proper subset of R, and Y be the union of elements in R′. Sets of causes in R
are said to reinforce each other, if for every subset R′ ⊂ R, it holds that

P (e1 ← y1) ≤ P (e1 ← x1).

Otherwise, sets of causes in R are said to undermine each other.

When each Ri is a singleton, reinforcement corresponds to positive causality in
[6] and undermining corresponds to inhibition. Hence, reinforcement and under-
mining are more general. They allow modeling of reinforcement of sets of causes
when causes in some set are undermining. Similarly, they allow modeling of un-
dermining of sets of causes when causes in some set are reinforcing. This will
become more clear in Section 4.

3 Noisy-AND Gates for Reinforcement and Undermining

We propose to model reinforcement as well as undermining uniformly based on
AND gate, which we refer to as noisy-AND gate. It builds on previous work
with noisy-OR [7] and noisy-AND [2], but takes a different perspective from
reinforcing and undermining interactions among uncertain causes.

We assume that, by default, sets of reinforcing causes R = {W1, ..., Wm},
where Wi and Wj are disjoint for all i and j, satisfy failure conjunction:

(e1 
← w11, ...,wm1) = (e1 
← w11) ∧ ... ∧ (e1 
← wm1). (1)

That is, sets of reinforcing causes fail to produce effect if each set of causes has
failed to produce the effect. We also assume that, by default, sets of reinforcing
causes satisfy failure independence:

P (e1 
← w11, ...,wm1) = P (e1 
← w11) ... P (e1 
← wm1). (2)

That is, failure events e1 
← w11, ..., e1 
← wm1 are independent of each other.

(a)

e     c1        11
e     c1        n1...

(b) 1        11          n1e     c   ,...,c

...

1        11          n1e     c   ,...,c

e     c1        11
e     c1        n1

Fig. 1. Noisy-AND gate

We model the default reinforcing interaction graphically with the noisy-AND
gate in Fig. 1 (a), where each Wi = {ci} is a singleton, m = n, failure conjunction
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is expressed by the AND gate, and failure independence is expressed by lack
of direct connection between individual failure events. The following Lemma
confirms their reinforcement. Due to space limit, we omit proofs for all formal
results.

Lemma 1. Let R = {W1, W2, ...} be a partition of a set X of uncertain causes
of effect e and sets in R satisfy Eqns (1) and (2). Then, interaction among sets
of causes in R is reinforcing.

When each Wi is a singleton, Eqn (2) can be alternatively written as

P (e1 ← c11, ..., cn1) = 1 −
n∏

i=1

(1 − P (e1 ← ci1)), (3)

which is the noisy-OR model [7]. Therefore, Lemma 1 also formalizes relation
between noisy-OR and reinforcement. We refer to the noisy-AND gate in Fig. 1
(a) as the default model for reinforcement. The default model represents only
one possible reinforcement among sets of causes. We present representation for
different reinforcements in Section 6.

Next, we consider undermining. We assume that, by default, sets of under-
mining causes satisfy success conjunction:

e1 ← x1 = (e1 ← w11) ∧ ... ∧ (e1 ← wm1). (4)

That is, when sets of undermining causes succeed in causing the effect in under-
mining way, each set of causes must have been effective. We emphasize that the
success occurs in an undermining way. If any set of causes has occurred but has
failed to be effective, it would not undermine the other sets of causes. We also
assume that, by default, sets of undermining causes succeed independently, i.e.,

P (e1 ← x1) = P (e1 ← w11) ... P (e1 ← wm1). (5)

The following lemma confirms their undermining interaction, whose proof is
straightforward.

Lemma 2. Let R = {W1, W2, ...} be a partition of a set X of uncertain causes
of effect e and sets in R satisfy Eqns (4) and (5). Then, interaction among sets
of causes in R is undermining.

Again, the default model represents only one possible undermining interaction
among sets of causes. We describe representation of other undermining interac-
tions in Section 6.

4 Noisy-AND Trees

Consider two sets X and Y of causes that reinforce each other. It is possible that
causes within X undermine each other, and so do causes within Y . In general,
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such interplay of causal interactions of different natures can form a hierarchy.
In this section, we present a graphical representation to model such a hierarchy.
It is based on noisy-AND gates and has a tree topology. We term it noisy-AND
tree. We assume that a domain expert is comfortable to assess reinforcing and
undermining interactions among causes according to some partial order and is
able to articulate the hierarchy.

For example, consider a patient in the process to recover from a disease D.
Taking medicine M helps recovery and so does regular exercise. Patient’s nor-
mal diet contains minerals that facilitate recovery but taking with medicine M
reduces effectiveness of both.

The causes and effect involved are defined as follows:

– e1 : Recovery from disease D within a particular time period.
– c11: Taking medicine M .
– c21: Regular exercise.
– c31: Patient takes his/her normal diet.

For the purpose of prognosis, one needs to assess P (e1 ← c11, c21, c31). To
ease the task, a physician may consider first undermining interaction between
c1 and c3. (S)he then considers reinforcing interaction between sets {c1, c3} and
{c2}. Thus, the physician has articulated an order for stepwise assessment. In
addition, the physician also assesses

P (e1 ← c11) = 0.85, P (e1 ← c21) = 0.8, P (e1 ← c31) = 0.7.

If this is all the information that the physician can provide, the causal interaction
can be modeled as the noisy-AND tree in Fig. 2 (a).

e     c   1        21

e     c   1        31

(b)(a) 1        11    21    31e     c   ,c   ,c

1        11    21e     c   ,c

e     c   1        111        11e     c   

1        11    21    31e     c   ,c   ,c

e     c   1        21

e     c   1        31

1        11    31e     c   ,c

Fig. 2. (a) Noisy-AND tree model of disease example. (b) Alternative model.

From the upper AND gate and Eqn (5), we derive P (e1 ← c11, c31) = 0.595,
an effect of undermining. The output of the upper AND gate is negated (shown
by the white oval) before entering the lower AND gate and the corresponding
event has probability P (e1 
← c11, c31) = 0.405. From the lower AND gate and
Eqn (2), we derive

P (e1 
← c11, c21, c31) = P (e1 
← c11, c31)P (e1 
← c21) = 0.081,

and P (e1 ← c11, c21, c31) = 0.919. The following defines a noisy-AND tree in
general.
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Definition 2. Let e be an effect and X = {c1, ..., cn} be a set of uncertain
causes that is known to have occurred. An noisy-AND tree for modeling causal
interaction among elements of X is a directed tree where the following holds:

1. There are two types of nodes on the tree. An event node is shown as a black
oval and a gate node is shown as an AND gate. Each event node has an
in-degree ≤ 1 and an out-degree ≤ 1. Each gate has an in-degree ≥ 2 and an
out-degree 1.

2. Every link connects an event node with a gate node. There are two type of
links: forward links and negation links. Each link is directed from its tail
node to its head node consistently along the input-to-output stream of gates.
A forward link is shown as a line and is implicitly directed. A negation link
is shown as a line with a white oval at the head and is explicitly directed.

3. All terminal nodes are event nodes and each is labeled by a causal event in
the form e1 ← y or e1 
← y. Exactly one terminal node, called the leaf,
is connected to the output of a gate and has y = x1. Each other terminal
node is connected to the input of a gate and is a root. For each root, y is a
proper subset of x1, it holds

⋃
i yi = x1 with i indexing roots, and for every

two roots with yj and yk, it holds yj ∩ yk = ∅.
4. Multiple inputs of a gate g must be in one of the following cases:

(a) Each is either connected by a forward link to a node labeled with e1 ← y,
or by a negation link to a node labeled with e1 
← y. Output of g is
connected by a forward link to a node labeled with e1 ← ∪iyi.

(b) Each is either connected by a forward link to a node labeled with e1 
← y,
or by a negation link to a node labeled with e1 ← y. Output of g is
connected by a forward link to a node labeled with e1 
← ∪iyi.

Degree restriction in Condition 1 ensures that an event represents the output of
no more than one gate and is connected to the input of no more than one gate.
Condition 4 ensures that inputs to each gate either all corresponds to causal
events in the form of e1 ← y, or all corresponds to causal events in the form of
e1 
← y. Semantically, 4 (a) corresponds to undermining sets of causes and 4 (b)
corresponds to reinforcing sets.

5 Noisy-AND Tree Evaluation

A noisy-AND tree can be used to evaluate P (e1 ← x1) given P (e1 ← y) or
P (e1 
← y) for each root node. The computation can be performed recursively
by decomposing the noisy-AND tree into subtrees. The following lemma shows
that such decomposition is valid.

Lemma 3. Let T be a noisy-AND tree, the leaf of T be v, and the gate connected
to v be g. Let v and g be deleted from T , as well as the links incoming to g. In
the remaining graph, each component is either an isolated event node or a noisy-
AND tree.
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A noisy-AND tree can be evaluated according to the following algorithm.

Algorithm 1. GetCausalEventProb(T)
Input: A noisy-AND tree T.

denote leaf of T by v and gate connected to v by g;
for each node w directly connected to input of g, do

if probability P (w) for event at w is not specified,
denote sub-AND-tree with w as the leaf by Tw;
P (w) = GetCausalEventProb(Tw);

if (w, g) is a forward link, P ′(w) = P (w);
else P ′(w) = 1 − P (w);

P (v) =
∏

w P ′(w);
return P (v);

The following theorem establishes soundness of GetCausalEventProb. We de-
fine the depth of a noisy-AND tree to be the maximum number of gate nodes
contained in a path from a root to the leaf.

Theorem 1. Let T be a noisy-AND tree where probability for each root node is
specified in the range (0, 1) and P (v) be returned by GetCausalEventProb(T ).
Then P (v) is a probability in the range (0, 1) and it combines given probabilities
according to reinforcement or undermining specified by the topology of T .

Note that the topology of T is a crucial piece of knowledge. For the above
example, suppose the physician articulates a different order, which is shown in
Fig. 2 (b). The physician feels that reinforcing interaction between c1 and c2
should be considered first. The undermining interaction between sets {c1, c2}
and {c3} should then be considered. Applying GetCausalEventProb, we obtain
P (e1 
← c11, c21) = 0.03 and P (e1 ← c11, c21, c31) = 0.679.

6 Relaxing Default Assumptions

A noisy-AND tree assumes, by default, failure independence for reinforcing sets
of causes and success independence for undermining sets of causes. For given
sets of causes, the expert may disagree with such assumptions. This may man-
ifest in terms of disagreement of the expert with output event probability of a
noisy-AND gate. When this occurs, noisy-AND tree representation allows easy
modification by deleting the corresponding AND gate from the tree. In partic-
ular, let g be the gate in question and its output be connected to node v. If
the expert disagrees with the event probability computed for node v, the entire
subtree with v as the leaf can be discarded by deleting the link (g, v). Node v
remains in the resultant new noisy-AND tree as a root node. The expert can
then specify a proper event probability for v.

For instance, with the noisy-AND tree in Fig. 2 (a), suppose that the expert
disagrees with P (e1 ← c11, c31) = 0.595. Instead, (s)he feels that 0.4 is more
appropriate. Note that this assignment is consistent with the undermining in-
teraction between c1 and c3, but the degree of undermining is different from
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what the default assumption dictates. We can then remove root nodes labeled
by e1 ← c11 and e1 ← c31 as well as the gate that they are connected to. As the
result, node e1 ← c11, c31 becomes a root node and P (e1 ← c11, c31) = 0.4 can
be assigned to it. Applying GetCausalEventProb to the new noisy-AND tree, we
obtain P (e1 ← c11, c21, c31) = 0.88.

This flexibility of noisy-AND tree allows it to be used interactively, increasing
its expressive power as a tool for probability elicitation: An expert can start by
articulating a noisy-AND tree where each root is labeled by a single cause ci. The
default assumptions on failure and success independence now allow computation
of probability for each non-root causal event. This can be viewed as the first
approximation of the expert’s subjective belief. The expert can then examine
each computed event probability and decide if it is consistent with his/her belief.

Upon identification of disagreement over a node v connected to the output of a
gate g, the expert can trace backward to input events connected to g. The expert
will decide whether (s)he disagrees with the probabilities of any input events. If
no such disagreement is identified, then the expert must be disagreeing with the
degree of reinforcement or undermining implied by the assumption on failure or
success independence. (S)he can then assess a probability for the output event as
we illustrated above. Note that this assessment, with the computed probability
as reference, is easier than an assessment to be made from vacuum. On the other
hand, if disagreement with the probability of an input event is identified, the
processing continues by tracing further back towards root nodes.

It is possible that as the expert traces disagreements, makes modifications to
event probabilities, and deletes subtrees, a deep noisy-AND tree started with
becomes shallow in the end. Many root node labels now consist of a subset of
causes, instead of a single one at the start. The resultant noisy-AND tree becomes
topologically very different. This does not mean that the original noisy-AND tree
was wrong. It has disappeared after serving its useful role in elicitation.

7 Elicitation of CPTs with Noisy-AND Trees

We demonstrate how to use noisy-AND trees to elicit CPTs in BNs with an ex-
ample 1. Consider an effect (child) variable e with a set of seven causes (parents)
in a BN: c1, ..., c7. Suppose that a domain expert identifies the following three
subsets of causes and interaction within each subset:

– Subset s1: c1 and c2 are undermining each other.
– Subset s2: c2, c3 and c4 are reinforcing each other.
– Subset s3: c6 and c7 are reinforcing each other.

The expert assesses that interaction between subsets s1 and s2 is also under-
mining and, together as a group, they reinforce s3. Without further quantitative
information, these assessments produce the noisy-AND tree in Fig. 3 (a). Sup-
pose that the following probabilities for single-cause events are also provided:
1 To demonstrate in a more general setting, we use here an example that is more

challenging than the medical example used above.
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e     c   ,c   , ...,c1        11    21           n1

e     c   , ...,c1        31           n11        21e     c   e     c   , ...,c1        21           n−1,1

e     c   , ...,c1        21           n−1,1

...

(a) (b)

1        11e     c   

e     c   , ...,c1        31           n1

e     c   , ...,c1        21           n1

e     c   , ...,c1        11           n−1,1g1 g2

g5

e     c   ,c   ,c   ,c   ,c   ,c   ,c1        11    21    31     41    51     61    71

e     c   ,c   ,c   ,c   ,c
  1        11    21    31     41    51

e     c   ,c1        11    21

e     c   ,c1        61    71

e     c   ,c   ,c1        31    41     51

1        21e     c   

1        31e     c   

g

1        71e     c   

g43

e     c   1        11

1        51e     c   
1        41e     c   

e     c   1        61

Fig. 3. (a) An example noisy-AND tree. (b) Graphical model for recursive noisy-OR.

P (e1 ← c11) = 0.65, P (e1 ← c21) = 0.35, P (e1 ← c31) = 0.8,

P (e1 ← c41) = 0.3, P (e1 ← c51) = 0.6, P (e1 ← c61) = 0.75, P (e1 ← c71) = 0.55.

To assess P (e1|c11, ..., c71), we apply GetCausalEventProb to obtain

P (e1|c11, ..., c71) = P (e1 ← c11, ..., c71) = 0.912.

To assess P (e1|c11, c21, c30, c41, c51, c61, c71), eliminate node e1 
← c31 from Fig. 3
(a) and modify output labels for g2, g3 and g5. The evaluation gives

P (e1|c11, c21, c30, c41, c51, c61, c71) = P (e1 ← c11, c21, c41, c51, c61, c71) = 0.906.

We have used the same noisy-AND tree to assess both probabilities above.
This is not necessary. That is, noisy-AND trees do not require that different
causal probabilities to be assessed using the same tree. If the expert feels that
a particular combination of a subset of causes follows a different pattern of
interaction, a distinct noisy-AND tree can be used, without producing invalid
CPT. Commonly, we expect that one tree can be used for assessment of all
probabilities in a CPT. If the expert is happy with the result, the complexity of
his/her assessment task is only O(n), where n is the number of causes.

Suppose that the expert believes that 0.906 is too high for P (e1|c11, c21, c30,
c41, c51, c61, c71) and (s)he attributes to the output from gate g4 P (e1 
← c61, c71)
= 0.113 as too low. Instead, (s)he believes 0.2 is a better assessment. In response,
we remove the subtree with g4 as the leaf and specify 0.2 as the probability
for the new root event node e1 
← c61, c71. GetCausalEventProb now generates
P (e1|c11, c21, c30, c41, c51, c61, c71) = 0.833.

8 Related Models of Causal Interaction

We compare noisy-AND trees with related models of causal interaction. As we
have defined reinforcement and undermining under the binary context, the fol-
lowing analysis is restricted to such context if appropriate.
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Some models of causal interaction are limited to represent either reinforcement
or undermining but not both. Noisy-MAX model [1] becomes noisy-OR model
when variables are binary. Therefore, from Lemma 1, when domain is binary,
noisy-MAX represents only reinforcing interaction.

Similarly, noisy-MIN model [2] becomes noisy-AND when variables are binary.
Hence, according to Lemma 2, when domain is binary, noisy-MIN represents only
undermining interaction.

Lemmer and Gossink [6] proposed RNOR to model reinforcement. To as-
sess effect probability due to a set of causes, RNOR model can combine causal
probabilities due to subsets of causes, where each subset may not be singleton.
Their combination at subset level has influenced our thinking in formulation of
noisy-AND trees. According to RNOR, for a set of causes X = {c1, ..., cn}, if
P (e1 ← c11, ..., cn1) is not provided by the expert, it is estimated as

P (e1 ← c11, ..., cn1) = 1 −
n∏

i=1

1 − P (e1 ← c11, ..., ci−1,1, ci+1,1, ..., cn1)
1 − P (e1 ← c11, ..., ci−1,1, ci+2,1, ..., cn1)

(6)

as long as causes in X are reinforcing. However, if causes in X are undermining,
the result from the equation may not be a valid probability.

No graphical representation of RNOR was proposed in [6]. We present a graph-
ical model which reveals the independence assumption underlying RNOR. Using
failure events, we rewrite Eqn (6) below:

P (e1 
← c11, ..., cn1) =
n∏

i=1

P (e1 
← c11, ..., ci−1,1, ci+1,1, ..., cn1)
P (e1 
← c11, ..., ci−1,1, ci+2,1, ..., cn1)

(7)

=
n∏

i=1

P ((e1 
← ci+1,1) ∧ (e1 
← c11, ..., ci−1,1, ci+2,1, ..., cn1))
P (e1 
← c11, ..., ci−1,1, ci+2,1, ..., cn1)

(8)

=
n∏

i=1

P (e1 
← ci+1,1|e1 
← c11, ..., ci−1,1, ci+2,1, ..., cn1) (9)

Fig. 3 (b) shows the graphical model of RNOR based on Eqn (7) and Eqn (9).
A gate representing ”conditioning” has been introduced and is shown as a tri-
angle with a vertical bar in the center. We refer to the gate as a COND gate.
The output of a COND gate is the event of its left input event conditioned on
its right input event. Note that e1 
← ci+1,1|e1 
← c11, ..., ci−1,1, ci+2,1, ..., cn1 is a
well defined event. Each input event to a COND gate is associated with a real
potential. Its output event is assigned a potential defined by the division of the
two input potentials (the one in the left divided by that in the right). For the
AND gate, its output event is assigned a potential defined by the product of
potentials of its inputs. Inputs of each gate are not connected in any path other
than through the gate.

Eqn (9) and Fig. 3 (b) reveal that RNOR model assumes that conditional
failure event denoted by e1 
← ci+1,1|e1 
← c11, ..., ci−1,1, ci+2,1, ..., cn1 (where i
runs from 1 to n) is independent of each other. This is not surprising as RNOR
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is derived from rewriting Eqn (3) and it assumes failure independence among all
causes. However, when RNOR is used recursively by replacing default probabili-
ties on input of some COND gates, the independence assumption is invalidated,
while the topology of the graphical model and the rule of probability combination
(Eqn (6)) remain and do not reflect such invalidation.

On the other hand, independence assumptions made in noisy-AND trees are
local to each gate. Assumption made relative to a gate governs only the probabil-
ity combination at the output of the gate and is independent of the assumptions
made at other gates. When the default probability produced by a gate is replaced
and the corresponding subtree removed, it does not invalidate any independence
assumptions at other gates in the remaining noisy-AND tree. That is, modifi-
cation of a noisy-AND tree does not invalidate the coherence of the underlying
independence assumptions.

Noisy-addition [3] can represent neither reinforcement nor undermining. Con-
sider a noisy-adder with two binary causes c1 and c2 whose domains are {0, 1}.
It has the following DAG model, where i1 and i2 are intermediate variables and
effect e = i1 + i2:

c1 −→ i1 −→ e ←− i2 ←− c2

The model assumes P (ij = 0|cj = 0) = 1 and 0 < P (ij = 1|cj = 1) < 1 for
j = 1, 2. For simplicity, we assume P (i1 = 1|c1 = 1) = P (i2 = 1|c2 = 1) and
denote their value by q. Note that P (e = 1|c1 = 1) = P (i1 = 1|c1 = 1). To
decide whether this model can represent reinforcement or undermining, P (e =
1|c1 = 1, c2 = 1) should be compared with q. We derive the following:

P (e = 1|c1 = 1, c2 = 1)
= P (i1 = 0, i2 = 1|c1 = 1, c2 = 1) + P (i1 = 1, i2 = 0|c1 = 1, c2 = 1)
= P (i1 = 0|c1 = 1)P (i2 = 1|c2 = 1) + P (i1 = 1|c1 = 1)P (i2 = 0|c2 = 1)

Denoting P (e = 1|c1 = 1, c2 = 1) by r, we have r = 2q(1−q). If q < 0.5, then r >
q. If q > 0.5, then r < q. By Definition 1, if a causal model is reinforcing, then no
matter what value P (e1 ← y1) is, the relation P (e1 ← y1) ≤ P (e1 ← x1) must
hold and reverse of the inequality must hold for undermining. Being unable to
maintain the inequality across the entire range of values for P (e1 ← y1) implies
that noisy-addition is unable to represent either reinforcement or undermining.

Noisy-AND trees differ from those considered in [4] in that the amechanis-
tic model has essentially a star topology and other three models (decompos-
able, multiply decomposable and temporal) are essentially binary trees. When
the binary tree is instantiated according to noisy-OR, noisy-AND, noisy-MAX,
noisy-MIN, noisy-addition, it inherits limitations of these models as discussed
above. In these models, each root node must be a single cause variable, while
noisy-AND trees allow a root node to represent a causal event of multiple causes.

Pearl [8] analyzed causation using functional causal models. Our work is con-
sistent with his functional approach and in particular proposes noisy-AND trees
as a useful boolean functional model.
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9 Conclusions

Causal interactions may be reinforcing or undermining. Their distinction can fa-
cilitate causal modeling and CPT elicitation in constructing Bayesian networks.
We have shown that existing causal models can model either only one type of in-
teractions (such as noisy-OR, noisy-AND, noisy-MAX, noisy-MIN and recursive
noisy-OR) or none of them (such as noisy-addition). We present the first explicit
causal model, termed noisy-AND trees, that can encode both reinforcement and
undermining. Furthermore, existing causal models, except recursive noisy-OR,
limit model parameters to probabilities of single cause events. Recursive noisy-
OR introduces inconsistent dependence assumptions when probabilities of multi-
cause events are integrated through recursion. On the other hand, noisy-AND
trees integrate probabilities of both single cause events and multi-cause events
coherently. Therefore, noisy-AND trees provide a simple yet powerful new ap-
proach for knowledge elicitation in probabilistic graphical models.
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Abstract. We propose LAZY arc-reversal with variable elimination
(LAZY-ARVE) as a new approach to probabilistic inference in Bayesian
networks (BNs). LAZY-ARVE is an improvement upon LAZY arc-
reversal (LAZY-AR), which was very recently proposed and empirically
shown to be the state-of-the-art method for exact inference in discrete
BNs. The primary advantage of LAZY-ARVE over LAZY-AR is that the
former only computes the actual distributions passed during inference,
whereas the latter may perform unnecessary computation by construct-
ing irrelevant intermediate distributions. A comparison between LAZY-
AR and LAZY-ARVE, involving processing evidence in a real-world BN
for coronary heart disease, is favourable towards LAZY-ARVE.

1 Introduction

Bayesian networks (BNs) [1, 2, 10, 14] are an established framework for uncer-
tainty management in artificial intelligence. A BN consists of a directed acyclic
graph (DAG) and a corresponding set of conditional probability tables (CPTs).
The probabilistic conditional independencies (CIs) [15] encoded in the DAG in-
dicate the product of CPTs is a joint probability distribution. Exact inference
algorithms in BNs can be broadly classified into two categories. One approach
is join tree propagation (JTP), which systematically passes messages in a join
tree (JT) constructed from the DAG of a BN. The classical JTP methods were
proposed by Lauritzen and Spiegelhalter [5], Shafer and Shenoy [14], and Jensen
et al. [3]. Madsen and Jensen [7] suggested a JTP algorithm, called LAZY prop-
agation, and empirically demonstrated a significant improvement in efficiency
over the traditional JTP methods. A second approach to BN inference is direct
computation (DC), which performs inference directly in a BN. The classical DC
algorithms are variable elimination (VE) [17, 18, 19], arc-reversal (AR) [9, 13] and
symbolic probabilistic inference (SPI) [6, 12]. The experimental results provided
by Zhang [17] indicate that VE is more efficient than the classical JTP methods
when updating twenty or less non-evidence variables, given a set of twenty or
fewer evidence variables.

Very recently, Madsen [8] examined hybrid approaches to BN inference. In-
ference is still conducted in a JT, but DC computation is utilized to perform

L. Lamontagne and M. Marchand (Eds.): Canadian AI 2006, LNAI 4013, pp. 183–194, 2006.
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the physical computation. Of the three hybrid approaches tested, LAZY arc-
reversal (LAZY-AR) was empirically shown to be the state-of-the-art method
for exact inference in discrete BNs [8]. When a JT node is ready to send its
CPT messages to a neighbour, the LAZY-AR approach eliminates all variables
not appearing in the neighbour node. In particular, eliminating variable v may
require directed edges (arcs) to be reversed in the DAG (defined by the CPTs
at the sending JT node) in order to make v barren [13]. Such arc reversals are
useful, since it is well-known that barren variables can be exploited for more
efficient inference [7]. The missing CPTs of the newly constructed DAG are
physically built from the existing CPTs. We point out that the LAZY-AR ap-
proach is sometimes wasteful as it can construct intermediate CPTs that are
immaterial.

In this paper, we propose LAZY arc-reversal with variable elimination (LAZY-
ARVE) as a new approach to BN inference. As the name suggests, our method
is based upon the LAZY-AR approach. Whereas LAZY-AR iterates between
semantic modeling and physical computation, LAZY-ARVE performs semantic
modeling and physical computation separately. More specifically, LAZY-ARVE
first performs semantic modeling in order to identify those CPT messages to
be sent to a neighbour JT node. LAZY-ARVE next physically constructs the
distributions of the passed CPTs using the VE inference algorithm. There are
important advantages to uncoupling the independent tasks of semantic modeling
and physical computation. By treating these two tasks as dependent, LAZY-
AR can construct intermediate CPTs that will neither be sent to a neighbour,
nor needed in the construction of the propagated CPTs. Physically construct-
ing these irrelevant intermediate CPTs not only wastes computation but also
the time required to build these distributions. As the screen shot in Fig. 5 il-
lustrates, we have implemented the AR approach to identify the CPTs to be
propagated. Using a real-world BN for coronary heart disease (CHD) [2], we
compared our approach of applying VE to build only the propagated CPTs
with the state-of-the-art method. The results in Table 1, in which roughly eigh-
teen percent of the BN variables are instantiated as evidence variables, show
promise.

This paper is organized as follows. Section 2 contains background knowledge.
In Section 3, we discuss a new approach to probabilistic inference. Related works
are provided in Section 4. The conclusion is presented in Section 5.

2 Background Knowledge

Here we review Bayesian networks, probabilistic inference and the AR method.

2.1 Bayesian Networks

Let U = {v1, v2, . . . , vn} denote a finite set of discrete random variables. Each
variable vi is associated with a finite domain, denoted dom(vi), representing
the values vi can take on. For a subset X ⊆ U , we write dom(X) for the
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Cartesian product of the domains of the individual variables in X . Each ele-
ment x ∈ dom(X) is called a configuration of X. A potential [2] on dom(X) is a
function φ on dom(X) such that φ(x) ≥ 0, for each configuration x ∈ dom(X),
and at least one φ(x) is positive. For brevity, we refer to a potential as a prob-
ability distribution on X rather than dom(X), and we call X , not dom(X), its
domain [14]. A joint probability distribution (JPD) [14] on U , denoted p(U), is a
potential on U that sums to one. Given X ⊂ U , a conditional probability table
(CPT) [14] for a variable v 
∈ X is a distribution, denoted p(v|X), satisfying
the following condition: for each configuration x ∈ dom(X),

∑
c ∈ dom(v) p( v =

c | X = x ) = 1.0.
A Bayesian network (BN) [10] on U is a pair (D, C). D is a directed acyclic

graph (DAG) on U . C is a set of CPTs defined as: for each variable vi ∈ D, there
is a CPT for vi given its parents Pi in D. Based on the probabilistic conditional
independencies [15] encoded in D, the product of the CPTs in C is a JPD
p(U).

Example 1. The DAG of one real-world BN for coronary heart disease (CHD) [2]
is shown in Fig. 1. The corresponding CPTs are not pertinent to our discus-
sion. For pedagogical reasons, we have made the following minor adjustments
to the DAG: edge (a, f) has been removed; edges (c, f) and (g, i) have been
replaced with edges (c, d), (c, e), (d, f), (e, f) and (g, j), where d and e are
dummy variables.

Fig. 1. The coronary heart disease (CHD) BN [2] in Example 1

We will use the terms BN and DAG interchangeably if no confusion arises. The
family Fi of a variable vi in a DAG is {vi} ∪ Pi. A numbering ≺ of the variables
in a DAG is called ancestral [1], if the number corresponding to any variable vi is
lower than the number corresponding to each of its children vj , denoted vi ≺ vj .
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In the CHD BN in Fig. 1, we will always use the fixed ancestral numbering as
a ≺ b ≺ . . . ≺ k.

2.2 Probabilistic Inference

In this paper, we only consider exact inference in discrete BNs. Probabilistic
inference (or query processing) means computing p(X) or p(X |E = e), where X
and E are disjoint subsets of U . The evidence in the latter query is that E is
instantiated to configuration e, while X contains target variables. Barren vari-
ables can be exploited in inference [7]. A variable is barren [13], if it is neither an
evidence nor a target variable and it only has barren descendants. Probabilistic
inference can be conducted directly in the original BN [6, 9, 12, 13, 17, 18, 19]. It
can also be performed in a join tree [3, 5, 7, 8, 14].

Shafer [14] emphasizes that join tree propagation (JTP) is central to the theory
and practice of probabilistic expert systems. A join tree (JT) [10, 14] is a tree
with sets of variables as nodes, with the property that any variable in two nodes
is also in any node on the path between the two. The separator S between any
two neighbour nodes Ni and Nj is S = Ni ∩Nj . The task of transforming a DAG
into a JT has been extensively studied in probabilistic reasoning literature. Note
that constructing a minimal JT is NP-complete [16]. For example, recall the
CHD BN in Fig. 1. One possible JT with nodes {ab, bfg, cdefgh, ghij, gk} is
depicted in Fig. 2 (ignoring the messages at the moment).

bfg

{ p(a), p(b|a) }
{ p(c), p(d|c), p(e|c), p(f|d,e), p(h|c) }

{ p(k|g) } { p(i|h), p(j|g,h,i) }

{ p(g|b,f) }

cdefgh

ghij

gk

ab

p(g
|f)

p(b)

p(g
)

p(f)

p(g) p(h|g)

b

g

f

g

g h

Fig. 2. A JT for the CHD BN in Fig. 1

Unlike traditional JTP approaches [3, 5, 14], LAZY propagation [7] maintains
structure in the form of a multiplicative factorization of potentials at each JT
node and each JT separator. Maintaining a decomposition of potentials offers
LAZY the opportunity to exploit barren variables and independencies induced by
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evidence. Doing so improves the efficiency of JTP remarkably as the experimental
results in [7] clearly emphasize.

2.3 Arc Reversal

The basic idea of Arc-reversal (AR) [9, 13] is to make a variable barren via a
sequence of arc reversals prior to eliminating it. Suppose variable vi is to be
eliminated and arc (vi, vj) needs to be reversed. The arc (vi, vj) is graphically
reversed as (vj , vi) by setting the new parents of vi as Pi ∪ Fj − {vi}, while
making Pi ∪ Pj − {vi} the new parents of vj . Note that AR uses an ancestral
numbering ≺ of the given BN to avoid creating directed cycles. Hence, a DAG
structure is maintained after eliminating a variable by applying AR [4, 8]. The
next example illustrates how AR reverses arcs when eliminating variables during
inference not involving evidence.

Example 2. Consider how node cdefgh sends the CPT messages {p(g), p(h|g)}
to node ghij in the JT in Fig. 2. Node cdefgh collects the CPT p(g|f) sent from
bfg. A DAG in Fig. 3 (i) is defined on the set C = {p(c), p(d|c), p(e|c), p(f |d, e),
p(g|f), p(h|c)} of CPTs at cdefgh. Applying AR to eliminate variables {c, d, e, f}
gives the sub-DAG in Fig. 3 (ii). For pedagogical purposes, let us eliminate the
variables in the order d, c, e, f . To eliminate d, arc (d, f) needs to be reversed.
Here, vi = d, Pi = {c}, vj = f , Pj = {d, e} and Fj = {d, e, f}. The reversed
arc (f, d) is created by setting P ′

i = {c, e, f} and P ′
j = {c, e}, as shown in Step

1 of Fig. 4 (i). Variable d becomes barren and can be removed. The remaining
sub-DAG under consideration is illustrated in Step 2 of Fig. 4 (i). For variable
c, arcs (c, e), (c, f) and (c, h) need to be reversed. According to ≺ of the CHD
BN in Fig. 1, arc (c, e) will be reversed first. Here, vi = c, Pi = ∅, vj = e,
Pj = {c} and Fj = {c, e}. The reversed arc (e, c) is created by setting P ′

i = {e}
and P ′

j = ∅, as shown in Step 1 of Fig. 4 (ii). In a similar manner, arcs (c, f)
and (c, h) are reversed as shown in Step 2 and Step 3 of Fig. 4 (ii), respectively.
Variable c becomes barren and can be removed giving the sub-DAG in Step 4

c

d e

f

h

g

h

g
(i) (ii) 

Fig. 3. (i) The initial DAG for Example 2. (ii) Applying AR to eliminate {c, d, e, f}
yields this sub-DAG.
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h
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(iii) (iv)

gg

e

c
h

e
h

h

h

Fig. 4. Illustrating Arc-Reversal (AR) by eliminating variables d (i), c (ii), e (iii) and
f (iv) from the initial DAG in Fig. 3 (i). The final DAG is shown in Fig. 3 (ii).

of Fig. 4 (ii). Similarly, variables e and f are removed via the arc reversals as
shown in Fig. 4 (iii) and (iv), respectively.

3 New Approach LAZY-ARVE for BN Inference

In this section, we introduce LAZY Arc-Reversal with Variable Elimination
(LAZY-ARVE) as a new algorithm for BN inference. LAZY-ARVE is built
upon the AR Message Identification (ARMI) and VE [17, 18, 19] algorithms.
First, the sub-algorithm ARMI applies AR for the graphical identification of
the propagated CPTs. Next, VE is applied to compute only the propagated
CPTs.

Algorithm 1. LAZY-ARVE(C, X)
Input: a set C of CPT distributions at a JT node,

the set X of variables to be eliminated from C.
Output: the set C of CPT distributions sent from a JT node to a neighbour.
begin
1. Call ARMI to identify the labels of the propagated CPTs.
2. for each CPT label p(v|X) output from Step 1

Call VE to physically construct the actual distribution.
3. return the physical distributions output from Step 2
end

The sub-algorithm ARMI applies AR to identify the labels of the actual CPT
messages to be sent from a JT node to a neighbour.
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Algorithm 2. ARMI (C,X,≺)
Input: a set C of CPT labels at a JT node,

the set X of variables to be eliminated from C,
an ancestral numbering ≺ of the variables in the BN.

Output: the set C of CPT labels sent from a JT node to a neighbour.
begin
Construct the DAG G = (V, E) defined by C.
for each variable vi in X
{

Let Y = {v1, . . . , vk} be the set of all children of vi in G, where v1 ≺ . . . ≺ vk.
for j = 1, . . . , k
{

P ′
i = Pi ∪ Fj − {vi}

P ′
j = Pi ∪ Pj − {vi}

C = C ∪ { p(vi|P ′
i ), p(vj |P ′

j) } − { p(vi|Pi), p(vj |Pj) }
}

Remove barren variable vi from G and its CPT from C.
}
return(C)
end

After identifying the CPT labels to be sent from a JT node, the VE [17, 18, 19]
algorithm is called to physically compute the propagated CPTs. To compute
p(X |Y = Y0), VE calls the sub-algorithm sum-out to eliminate variables outside
X ∪ Y from a list of factors one by one, according to an elimination ordering σ.

Algorithm 3. [19] VE(F , X, Y , Y0, σ)
Input: F - the list of conditional probabilities in a BN,

X - a list of query variables,
Y - a list of observed variables,
Y0 - the corresponding list of observed values,
σ - an elimination ordering for variables outside X ∪ Y .

Output: the physical distribution of p(X|Y = Y0).
begin
Set the observed variables in all factors to their corresponding observed values.
While σ is not empty,
{

Remove the first variable z from σ,
F = sum-out(F ,z).

}
Set h = the multiplication of all the factors on F .
Return p(X|Y = Y0) = h(X)/ X h(X).
end

Algorithm 4. [19] sum-out(z,F)
Input: F - a list of factors,

z - a variable.
Output: another list of factors.
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begin
Remove from F all the factors, say f1, . . . , fk, that contain z.
Add the new factor z

k
i=1 fi to F .

Return F .
end

The next example illustrates our LAZY-ARVE inference algorithm.

Example 3. Recall Fig. 3 (i). In Step 1, ARMI returns the CPT labels {p(g),
p(h|g)}, as depicted in Fig. 3 (ii), to be sent from node cdefgh to ghij in the JT
in Fig. 2. In Step 2, LAZY-ARVE calls VE to compute the physical distributions
for p(g) and p(h|g).

Consider physically computing p(h|g). Here, F = {p(c), p(d|c), p(e|c),
p(f |d, e), p(g|f), p(h|c)}, X = h, Y = g and Y0 = ∅. Suppose the elimina-
tion ordering σ is {d, c, e, f}. The first variable d in σ is removed by call-
ing sum-out, which computes φ(c, e, f) =

∑
d p(d|c) · p(f |d, e) and then sets

F = {p(c), φ(c, e, f), p(e|c), p(g|f), p(h|c)}. Next, sum-out removes variable c as
φ(e, f, h) =

∑
c p(c) · φ(c, e, f) · p(e|c) · p(h|c) leaving F = {φ(e, f, h), p(g|f)}.

It can be verified that F = φ(g, h) after removing {e, f}. Lastly, VE computes
p(h|g) by normalizing φ(g, h), i.e., p(h|g) = φ(g, h)/

∑
h φ(g, h). The CPT p(g)

can be similarly constructed.

The important point to remember is that LAZY-ARVE uses AR to maintain
CPT structure during the elimination of variables, yet applies VE to physically
compute only those CPTs propagated in the JT.

4 Related Works

This section compares the computation work required by LAZY-ARVE with
LAZY-AR, the state-of-the-art algorithm recently proposed by Madsen [8] for
exact inference in discrete BNs. Our comparison is conducted in the real-world
CHD BN of Fig. 1. Since the work for identification of the passed CPTs is the
same for both algorithms, we only contrast the physical computation.

LAZY-AR implements arc-reversal (AR) as the engine for performing infer-
ence in LAZY propagation with impressive experimental results [8]. Roughly
speaking, LAZY-AR maintains a sub-BN at a JT node after eliminating a vari-
able by applying AR and constructing the corresponding CPTs of the sub-BN.
The following outline draws from [4, 8]. Let variable vi be eliminated and arc
(vi, vj) needs to be reversed. Assume vi has parents Pi = Xm ∪ Xn and variable
vj has parents Pj = {vi} ∪ Xn ∪ Xk, where Xm ∩ Xn = Xm ∩ Xk = Xn ∩ Xk = ∅
such that Xm = Pi − Pj are the parents of vi but not vj , Xn = Pi ∩ Pj are
parents of both vi and vj , and Xk = Pj − Fi are the parents of vj but not vi

and its parents. Arc (vi, vj) is reversed by setting Pi = Xm ∪ Xn ∪ Xk ∪ {vj}
and Pj = Xm ∪ Xn ∪ Xk. Next, new CPTs for vi and vj in the modified DAG
are physically constructed as follows:

p(vj | Xm, Xn, Xk) =
∑
vi

p(vi | Xm, Xn) · p(vj | vi, Xn, Xk), (1)
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p(vi | vj , Xm, Xn, Xk) =
p(vi | Xm, Xn) · p(vj | vi, Xn, Xk)

p(vj | Xm, Xn, Xk)
. (2)

Note that it is not necessary to perform the last invocation of Equation (2) when
the last arc from vi is reversed, since vi will be eliminated as a barren variable.

The next example shows how LAZY-AR physically constructs a sequence of
intermediate CPTs by applying Equations (1) and (2).

Example 4. Recall Example 2. Let us show the physical computation performed
by LAZY-AR to construct the propagated CPTs p(g) and p(h|g) from the JT
node cdefgh to the JT node ghij. In Step 1 of Fig. 4 (i), the two new CPTs are
p(d|c, e, f) and p(f |c, e). While the former need not be computed as d is barren,
the latter is constructed by Equation (1) as:

p(f |c, e) =
∑

d

p(f |d, e) · p(d|c) .

In Step 4 of Fig. 4 (ii), computing three new CPTs p(e), p(f |e) and p(h|e, f)
after elimination of c requires the construction of five intermediate CPTs:

p(e) =
∑

c

p(c) · p(e|c),

p(c|e) = p(c) · p(e|c)/p(e),

p(f |e) =
∑

c

p(c|e) · p(f |c, e),

p(c|e, f) = p(c|e) · p(f |c, e)/p(f |e),
p(h|e, f) =

∑
c

p(c|e, f) · p(h|c).

To eliminate e and f , LAZY-AR needs to construct six intermediate CPTs:

p(f) =
∑

e

p(e) · p(f |e), (3)

p(e|f) = p(e) · p(f |e)/p(f), (4)

p(h|f) =
∑

e

p(e|f) · p(h|e, f), (5)

p(g) =
∑

f

p(f) · p(g|f), (6)

p(f |g) = p(f) · p(g|f)/p(g), (7)

p(h|g) =
∑

f

p(f |g) · p(h|f) . (8)

The next example illustrates that LAZY-AR physically constructs interme-
diate CPTs that will neither be passed during inference, nor required in the
construction of those CPTs actually passed in the JT.
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Example 5. In Example 4, after variables d and c are removed, variable e can
be simply eliminated as follows:∑

e

p(e) · p(f |e) · p(h|e, f). (9)

On the contrary, by reversing (e, f) as (f, e), LAZY-AR eliminates e as:∑
e

p(f) · p(e|f) · p(h|e, f), (10)

which requires the physical construction of p(f) and p(e|f) in Equations (3)
and (4), respectively. By substituting Equation (3) into Equation (10), we obtain∑

e

[
∑

e

p(e) · p(f |e) ] · p(e|f) · p(h|e, f). (11)

By substituting Equation (4) into Equation (11), we have∑
e

[
∑

e

p(e) · p(f |e) ] · p(e) · p(f |e)
p(f)

· p(h|e, f). (12)

By Equation (3), we can rewrite Equation (12) as∑
e

p(e) · p(f |e) · p(h|e, f) ·
∑

e p(e) · p(f |e)∑
e p(e) · p(f |e) . (13)

During its physical computation, Equation (13) indicates that LAZY-AR mul-
tiplies and divides the same term∑

e p(e) · p(f |e).

By comparing Equations (9) and (13), it is explicitly demonstrated that LAZY-
AR performs unnecessary computation by physically constructing intermediate
CPTs that will neither be passed during inference, nor required in the construc-
tion of the actual propagated CPTs. Although intermediate CPTs are useful for
message identification, they are not necessarily needed for message construction.
Any redundant work will delay the construction of the actual CPTs required for
BN inference.

Similar to the comparisons made by Schmidt and Shenoy [11], we conclude this
section by providing the following comparison between LAZY-AR and LAZY-
ARVE. Approximately eighteen percent of the CHD BN variables are instan-
tiated as evidence variables, such as was done for the largest BN used in the
experimental results of [7].

Example 6. Given b = 0 and g = 0 as collected evidence in the CHD JT in
Fig. 2. The screen shot of our implemented system in Fig. 5 shows all identified
CPT messages. Table 1 shows the work needed by our LAZY-ARVE approach
and LAZY-AR to physically construct the CPT messages p(b = 0), p(f), p(g =
0|b = 0), p(g = 0|b = 0, f), and p(h|b = 0, g = 0) in Fig. 5.
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Fig. 5. In the CHD JT in Fig. 2, given evidence b = 0 and g = 0, our implemented
system identifies the CPT messages to be propagated

Table 1. Given evidence b = 0 and g = 0, the computation needed in LAZY-AR versus
LAZY-ARVE to physically construct the CPTs passed in the CHD JT

CPT LAZY-AR LAZY-ARVE
message + × ÷ + × ÷
p(b = 0) 1 2 0 1 2 0

p(f) 14 36 8 11 20 2
p(g = 0|b = 0) 13 34 8 11 24 1

p(g = 0|b = 0, f) 0 0 0 0 0 0
p(h|b = 0, g = 0) 29 80 22 19 44 2

The results in Table 1 suggest that our LAZY-ARVE has promise. In fact,
the LAZY-ARVE can be fine-tuned by re-using some calculations. For instance,
some work required to build p(h|g) in Example 3 can be utilized when computing
p(g). Formal experimental results consisting of running times for exact inference
in large, discrete, real-world BNs will be presented in a forthcoming paper.

5 Conclusions

In this paper, we propose LAZY-ARVE as a new approach to probabilistic infer-
ence in BNs. LAZY-ARVE is an improvement upon LAZY-AR, which was very
recently proposed and empirically shown to be the state-of-the-art method for
exact inference in discrete BNs [8]. However, intermediate CPTs computed by
LAZY-AR may be irrelevant to BN inference. The reason for this unnecessary
computation is that LAZY-AR iterates between semantic modeling and physical
computation. Although intermediate CPT labels are useful for semantic mod-
eling, the corresponding distributions do not necessarily have to be physically
computed. We suggest separating these two independent tasks. Semantic com-
putation is carried out first by implementing AR only to graphically identify the
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CPTs passed between JT nodes. Next, the VE [17, 18, 19] inference algorithm is
applied to physically construct the distributions of the propagated CPTs. Ta-
ble 1 seems to imply that LAZY-ARVE could be the state-of-the-art algorithm
for exact probabilistic inference in discrete BNs. Formal experimental results
will be presented shortly.
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Abstract. Reiter’s default logic suffers the triviality, that is, a single contradic-
tion in the premise of a default theory leads to the only trivial extension which
everything follows from. In this paper, we propose a default logic based on four-
valued semantics, which endows default logic with the ability of handling incon-
sistency without leading to triviality. We define four-valued models for default
theory such that the default logic has the ability of nonmonotonic paraconsistent
reasoning. By transforming default rules in propositional language L into lan-
guage L+

, a one-to-one relation between the four-valued models in L and the
extensions in L+

is proved, whereby the proof theory of Reiter’s default logic is
remained.

1 Introduction

Reiter’s default logic [1] is an important nonmonotonic logic. It has been studied widely
for its clarity in syntax as well as strong power in reasoning. In the default logic, a set
of formulae W and a set of default rules D form a default theory (W, D). Reiter’s de-
fault logic is supposed to reason with consistent knowledge: even a single contradiction
presented in W will lead to the unique trivial extension which includes everything.

One way to make default logic handle inconsistent knowledge is to resolve the con-
tradictions in the premise of a default theory. The signed system [2] decomposes the
connection between positive atoms and negative ones by formulae transformation and
then restores a consistent set of formulae by default logic. The set of formulae trans-
formed from the original one is consistent and it is used as W in a default theory. It
follows that all extensions are nontrivial. Roughly speaking, the signed system does not
aim at handling inconsistencies in a nonmonotonic logic, since the default rules are not
used in knowledge representation. In the bi-default logic [3], all parts of default rules
are transformed in the same way, and then default theories are transformed into the bi-
default theories. Because of the differences between its proof theory and that of default
logic, it will take much effort to implement the bi-default logic.

The systems listed above have a similar character, that is they provide procedures of
two steps: transforming and then computing. However, they lack semantics. Also it is
hard to point out the direct connections between the inconsistent default theory and its
conclusions.

Some nonmonotonic paraconsistent logics (see [4, 5] among others) have been pro-
posed by directly introducing nonmonotonicity into paraconsistent logics, especially
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Belnap’s four-valued logic [6, 7]. However, at the level of computing, there are chal-
lenges in implementing effective theorem provers for them.

Our main contribution in this paper is to provide the four-valued semantics for de-
fault logic whereby we gain a nonmonotonic paraconsistent logic, named four-valued
default logic, in which we can reason under a nice semantics but by a classical proof the-
ory. So the semantics works as an interface of nonmonotonic paraconsistent reasoning,
and the procedure of transforming and computing just serves as a tool to compute the
models of default theories. This novel reasoning method makes the four-valued default
logic applicable in commonsense reasoning. Inheriting the proof theory of Reiter’s de-
fault logic and equipped with semantics of Belnap’s four-valued logic, our four-valued
default logic is a paraconsistent version of the former and a nonmonotonic extension of
the latter.

We develop our work in the following steps. First of all, four-valued models are
defined as semantics of default logic. As we know, an extension of a default theory is a
minimal set satisfying both W and D in the context expressed by the extension itself.
We adopt the similar approach. A four-valued model of a default theory is minimal in
the sense of “information” and satisfies both W and D in the context expressed by the
model itself. Similarly, our method can be extended to any other minimalities.

Secondly, we propose a uniform procedure to compute four-valued models in the
context of Reiter’s default logic. A transformation of default rules is provided with
which default theories in L are transformed into those in L+

, and then the computa-
tion of models is converted to that of extensions. The reason we can do this is that we
have gotten the one-to-one relation between the four-valued models in L and the ex-
tensions in L+

. Consequently, the four-valued semantics for default logic can be easily
implemented by classical reasoning systems for the original default logic [8].

The logic DL3 presented in [9] also combines default logic with a multi-valued logic,
Lukasiewicz three-valued logic. But DL3 also suffers the triviality. On the other hand,
the proof theory of Reiter’s default logic is modified in DL3 unlike that of the four-
valued default logic. Comparison details appear in Section 6.

By briefly reviewing Reiter’s default logic and Belnap’s four valued logic in
Section 2 and 3 respectively, we focus on the k-minimal model in Section 4, its compu-
tation and the transformation of default theories in Section 5. Finally, we compare our
work with some others in Section 6 and conclude this paper in Section 7.

2 Default Logic

Let L be a propositional language. A theory is a set of formulae, and Th(·) denotes the
consequence operator on propositional logic.

A default theory is a pair (W, D), where W is a theory of L and D is a set of default
rules of the form: α:β

γ . The formulae α, β, γ of L are called prerequisite, justification
and conclusion respectively. For the sake of simplicity, we assume that there is one and
only one justification in a default rule, and this restriction is not essential (see [10]).
We denote the prerequisite, justification and conclusion of a default rule δ as Preq(δ),
Jus(δ) and Cons(δ) respectively. A default theory may have none, a single or multiple
extensions defined by a fixed point of the following definition.
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Definition 1 ([1]). Let T = (W, D) be a default theory. For any set S of formulae, let
Γ (S) be the smallest set that satisfies:

(D1) Γ (S) = Th(Γ (S));
(D2) W ⊆ Γ (S);
(D3) if α:β

γ ∈ D, α ∈ Γ (S) and ¬β /∈ S, then γ ∈ Γ (S).

A set E is an extension of T iff Γ (E) = E.

An extension represents a possible belief set expressed by the default theory.
The next theorem provides a more intuitive characterization of extensions of a default

theory.

Theorem 1 ([1]). If T = (W, D) is a default theory, then a set E of formulae is an
extension of T iff E =

⋃∞
i=0 Ei, where

E0 = W, and for i ≥ 0

Ei+1 = Th(Ei) ∪ {γ | α : β

γ
∈ D, where Ei ( α and ¬β /∈ E}

Proposition 1 (Minimality of Extensions [1]). If E and F are extensions of a default
theory (W, D) and E ⊆ F then E = F .

Reiter’s default logic can not deal with inconsistencies:

Proposition 2 ([1]). A default theory T = (W, D) has an inconsistent extension iff W
is inconsistent, and it is the only extension of T .

3 Four-Valued Logic

As four truth-values in Belnap’s logic [6, 7, 5], FOUR = {t, f, ", ⊥} (also written
as (1, 0), (0, 1), (1, 1) and (0, 0) respectively) intuitively represent truth, falsity, incon-
sistency and lack of information respectively. The four truth-values form a bilattice
(FOUR, ≤t, ≤k) named FOUR , where the partial orders are defined as the follow-
ing rules: for every x1, x2, y1, y2 ∈ {0, 1},

(x1, y1) ≤t (x2, y2) iff x1 ≤ x2 and y1 ≥ y2;
(x1, y1) ≤k (x2, y2) iff x1 ≤ x2 and y1 ≤ y2.

Intuitively, the partial order ≤t reflects differences in the amount of truth, while ≤k

reflects differences in the amount of information. The first element x of the truth-value
pair (x, y) stands for a formula and the second against it.

It follows the operators of FOUR : ¬(x, y) = (y, x), (x1, y1) ∧ (x2, y2) = (x1 ∧
x2, y1 ∨ y2), (x1, y1) ∨ (x2, y2) = (x1 ∨ x2, y1 ∧ y2), (x1, y1) ⊃ (x2, y2) = (¬x1 ∨
x2, x1 ∧ y2), and (x1, y1) → (x2, y2) =df ¬(x1, y1) ∨ (x2, y2).

In four-valued logic, internal implication is interpreted as operator ⊃ and material
implication is interpreted as operator → in FOUR . We use the same symbols to denote
connectives in L and operators on FOUR .

A four-valued valuation v is a function that assigns a truth value from FOUR to
each atom in L. Any valuation is extended to complex formulae in the obvious way. A
valuation v is a four-valued model of (or satisfies) a formula ψ if v(ψ) ∈ {t, "}.
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Definition 2 ([5]). Let Σ be a set of formulae and ψ a formula in L. Denote Σ |=4 ψ,
if every four-valued model of Σ is a four-valued model of ψ.

Let v and u be four-valued valuations, denote v ≤k u if v(p) ≤k u(p) for every atom
p. Given a formulae set Σ in L, the minimal elements w.r.t. ≤k in all models of Σ are
called the k-minimal models of Σ.

Definition 3 ([5]). Let Σ be a set of formulae and ψ a formula in L, Denote Σ |=4
k ψ

if every k-minimal model of Σ is a model of ψ.

4 Four-Valued Default Logic

Let L be a propositional language that does not contain constants t, f , " and ⊥. All
logic connectives in L are ¬, ∨, ∧, → and ⊃, where → is defined by ¬ and ∨ in the usual
way. Suppose Δ is a set of models, we denote Δ(φ) ∈ truthSet if ∀M ∈ Δ, M(φ) ∈
truthSet, where truthSet is a subset of FOUR and φ is a formula in L.

In Reiter’s default logic, a single (classical) model cannot represent beliefs. One of
the reasons is that a single model cannot differentiate “being false” and “not being
true”. By deductive closed theory, which is equal to a set of (classical) models, we can
say that φ is false if ¬φ is in that theory, and that φ is not known (i.e. “not being true”
and “not being false”) if both φ and ¬φ are not in the theory. In the case of four-valued
logics, we can distinguish them by non-classical truth values. So, we can use one single
four-valued model to represent beliefs expressed by default theories.

A default theory may have none, a single or multiple k-minimal models defined by:

Definition 4. Let T = (W, D) be a default theory in L. For any four-valued valuation
N on L, let Γk(N) be the biggest set of four-valued valuations on L satisfying that:

(Ax) If N ′ ∈ Γk(N) then N ′ is a four-valued model of W .
(K-min) If N ′ ∈ Γk(N) then N ′ ≤k N .
(Def) If α:β

γ ∈ D, Γk(N)(α) ∈ {t, "} and N(β) ∈ {t, ⊥}, then Γk(N)(γ) ∈ {t, "}.

A valuation M is a k-minimal model of T iff Γk(M) = {M}.

Example 1. Let W = {p}, D = {p : q/r}, T = (W, D). In Reiter’s default logic, T
has its unique extension: E = Th(p, r). And T has a unique k-minimal model M such
that M(p) = t, M(q) = ⊥, M(r) = t.

In Definition 4, a singleton is required in the condition Γk(M) = {M}, because any
other model in the set Γk(M) includes less information than the context M does and it
should be eliminated when reconstructing the context. The condition K-min indicates
that all information achieved should be restricted by the context.

Definition 5. We say a model M ′ satisfies a default theory T in the context of M , if

– M ′ is a four-valued model of W , and
– If α:β

γ ∈ D, M ′(α) ∈ {t, "} and M(β) ∈ {t, ⊥}, then M ′(γ) ∈ {t, "}.
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It is easy to show that M satisfies T in the context of M itself, if M is a k-minimal
model of T = (W, D), and what’s more, M is the ≤k-minimal one:

Theorem 2. If M is a k-minimal model of a default theory T = (W, D), then M is a
≤k-minimal model that satisfies T in the context of M .

Example 2. Let W = {p, ¬p}, D = { p:r
q }, T = (W, D). W has four models that

assign r the value ⊥: M1(q) = t, M2(q) = f , M3(q) = ", M4(q) = ⊥ and they
all assign p the value ". If N is a model of W and N(r) 
= ⊥, there exists a model
Mi ∈ Γk(N), 1 ≤ i ≤ 4. Since Γk(M1) = {M1}, Γk(M2) = Γk(M4) = ∅, and
Γk(M3) = {M1, M2, M3, M4}, M1 is the only k-minimal model of T .

In this example, from an inconsistent prerequisite p, we inferred that q is “consistent”
true. But in practice, we may expect that the conclusion is also inconsistent or we do not
want any conclusions at all, given that the prerequisite is inconsistent. The next example
shows how these things can be represented in the four-valued default logic.

Example 3. Let W = {p, ¬p}, D1 = { p:p∧r
q }. T1 = (W, D1) has only one k-minimal

model M1 s.t. M1(p) = ", M1(q) = ⊥, M1(r) = ⊥. Let D2 = { p:r
q , p∧¬p:r

q∧¬q }. T2 =
(W, D2) has only one k-minimal model M2 s.t. M2(p) = ", M2(q) = ", M2(r) = ⊥.

Notice that, when we replace W by the set {p}, each default theory in the above exam-
ples has only one k-minimal model M s.t. M(p) = t, M(q) = t, M(r) = ⊥.

Some contradictions introduced by default rules can also be handled “properly”:

Example 4. Let T = (∅, { :p
q , :p

¬q }). T lacks extensions, while T has one k-minimal
model: M(p) = ⊥, M(q) = ".

Example 5. Let T = {{p}, { :q
¬p}. T lacks extensions, while T has a unique k-minimal

model M such that M(p) = ", M(q) = ⊥.

Example 6 (Tweety dilemma). A representation in four-valued logic is given as follows
(see [5]):

W0 =

⎧⎨
⎩

bird Tweety → fly Tweety
penguin Tweety ⊃ bird Tweety
penguin Tweety ⊃ ¬fly Tweety

W = W0 ∪ {bird Tweety}, W ′ = W0 ∪ {penguin Tweety}.
The k-minimal four-valued models of W and W ′ are shown in Table 1.

Table 1. k-minimal models of W and W ′

bird Tweety fly Tweety penguin Tweety

W M1 t t ⊥
M2 � ⊥ ⊥

W ′ M3 � f t
M4 t � t
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When all we know about Tweety is that it is a bird, we can not draw the reasonable
conclusion that Tweety can fly by four-valued logic (in its k-minimal reasoning). When
knowing more about Tweety that Tweety is a penguin, we are confused with whether
Tweety is a bird (for we have the negative knowledge that Tweety is not a bird).

In the four-valued default logic, we can get an alternative representation:

T0 =

⎧⎪⎪⎨
⎪⎪⎩

p ∧ ¬p
penguin Tweety ⊃ bird Tweety
penguin Tweety ⊃ ¬fly Tweety
bird Tweety : fly Tweety/fly Tweety

where (p ∧ ¬p) stands for any contradiction. Denote T0 = (W1, D), W2 = W1 ∪
{bird Tweety}, T = (W2, D) and W ′ = W2 ∪ {penguin Tweety}, T ′ = (W ′, D).

The k-minimal models of T and T ′ are shown in Table 2.

Table 2. k-minimal models of T and T ′

bird Tweety fly Tweety penguin Tweety p

T M ′
1 t t ⊥ �

T ′ M ′
2 t f t �

Just as expected, when what we know about Tweety is only that it is a bird, we think
it can fly. After knowing that Tweety is a special bird: a penguin, we revise our beliefs
and claim that it can’t fly without being confused.

In Example 6, because of the presence of contradictions in p, Reiter’s default logic
will collapse, but in the four-valued default logic, the inconsistencies are successfully
localized and do not do any harm to reason about Tweety.

Definition 6. Let T = (W, D) be a default theory and φ be a formula in L. Denote
T |=k φ, if for any k-minimal model M of T , M(φ) ∈ {t, "} holds.

Theorem 3. W |=4
k φ iff (W, ∅) |=k φ.

Theorem 3 shows that the four-valued default logic in its k-minimal reasoning pattern
can be viewed as an extension of four-valued logic in k-minimal reasoning. And as a
consequence, only the skeptical consequence relation (defined in Definition 6) is suit-
able for the four-valued default logic.

The next theorem provides a more intuitive characterization of k-minimal models of
a default theory.

Theorem 4. If T = (W, D) is a default theory in L, then a four-valued valuation M
is a k-minimal four-valued model of T iff

⋂∞
i=0 M i = {M}, where

M0 = {N ≤k M | N is a four-valued model of W}

M i+1 = {N ∈ M i | N(γ) ∈ {t, "},
α : β

γ
∈ D,

where M i(α) ∈ {t, "} and M(β) ∈ {t, ⊥}}
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The four-valued default logic has some nice properties shown in the following.

Theorem 5. Let M be a four-valued valuation in L and define F = {α ⊃ γ | α:β
γ ∈

D, M(β) ∈ {t, ⊥}}. M is a ≤k-minimal valuation that satisfies T in the context of M
iff M is a k-minimal model of (W ∪ F ).

Corollary 1. If M is a k-minimal model of T then M is a k-minimal model of (W∪F ),
where F = {α ⊃ γ | α:β

γ ∈ D, M(β) ∈ {t, ⊥}}.

Definition 7. Suppose T = (W, D) is a default theory and M is a k-minimal model of
T . The set of generating defaults for M w.r.t. T is defined to be GD(M, T ) = {α:β

γ ∈
D | M(α) ∈ {t, "}, M(β) ∈ {t, ⊥}}.

Theorem 6. Suppose T = (W, D) is a default theory. If M is a k-minimal model of T
then M is a k-minimal model of (W ∪ Cons(GD(M, T ))).

Theorem 7 (Minimality of k-minimal models). Let = (W, D) be a default theory,
where Jus(D) does not include the internal implication ⊃. Suppose that M and N are
k-minimal models of T . If M ≤k N then M and N are identical.

Theorem 7 indicates that sometimes we need restrict the occurrences of internal impli-
cation in Jus(D) to achieve nice properties, but we also need internal implication in
W , Preq(D), and Cons(D) to strengthen the expressive power.

5 Computing k-Minimal Models of Default Theories

Let L+
be the objective language of formulae transformation satisfying that L∩L+

= ∅
and A(L+

) = {p+, p− | p ∈ A(L)}, where operator A(L) denotes all atoms in L. And

L+
only includes logic connectives: ¬, ∨, ∧ and →. Notice that the internal implication

and the material implication coincide in the classical logic.

5.1 Transformation of Formulae

In [11, 12, 2, 3], the technique of transformation has been proved very useful. In this
subsection, we show this method in a convenient way.

Definition 8. For every formula φ in L, φ
+

in L+
is a transformation of φ if:

1. φ
+

= p+, where φ = p, p ∈ A(L)
2. φ

+
= p−, where φ = ¬p, p ∈ A(L)

3. φ
+

= ϕ+ ∨ ψ
+

, where φ = ϕ ∨ ψ

4. φ
+

= ϕ+ ∧ ψ
+

, where φ = ϕ ∧ ψ

5. φ
+

= ¬ϕ+ ∨ ψ
+

, where φ = ϕ ⊃ ψ

6. φ
+

= ψ
+

, where φ = ¬¬ψ

7. φ
+

= ¬ϕ+ ∧ ¬ψ
+

, where φ = ¬(ϕ ∨ ψ)
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8. φ
+

= ¬ϕ+ ∨ ¬ψ
+

, where φ = ¬(ϕ ∧ ψ)
9. φ

+
= ϕ+ ∧ ¬ψ

+
, where φ = ¬(ϕ ⊃ ψ)

In the rest of the paper, we denote Σ
+

= {φ
+ | φ ∈ Σ}.

Theorem 8. W
+

is (classical) consistent for any theory W .

We call a theory E complete if it contains p or ¬p for every atom p ∈ A(E).

Definition 9. Let E+ be a theory in L+
,define a map vE+ on L w.r.t. E+ as:

vE+(φ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

" = (1, 1) φ
+ ∈ E+, ¬φ

+ ∈ E+

t = (1, 0) φ
+ ∈ E+, ¬¬φ

+ ∈ E+

f = (0, 1) ¬φ
+ ∈ E+, ¬φ

+ ∈ E+

⊥ = (0, 0) ¬φ
+ ∈ E+, ¬¬φ

+ ∈ E+

Obviously, the map vE+ is a valuation when E+ is consistent and complete.

Theorem 9. If E+ is a consistent and complete theory in L+
, then the map vE+ is a

four-valued valuation on L, i.e.: vE+(¬φ) = ¬vE+(φ), vE+(φ∨ψ) = vE+(φ)∨vE+(ψ),
vE+(φ ∧ ψ) = vE+(φ) ∧ vE+(ψ), and vE+(φ ⊃ ψ) = vE+(φ) ⊃ vE+(ψ).

Definition 10. Let v be a valuation on L, define the complete and deductive closed

theory E+
v w.r.t. v in L+

by:

E+
v = Th

(
{p+ | p ∈ L, v(p) ∈ {t, "}} ∪ {p− | p ∈ L, v(p) ∈ {f, "}}

∪ {¬p+ | p ∈ L, v(p) ∈ {f, ⊥}} ∪ {¬p− | p ∈ L, v(p) ∈ {t, ⊥}}
)

Proposition 3. The theory E+
v w.r.t. v is (classical) consistent.

Theorem 10. Let E+
v be the theory w.r.t. a given valuation v, then

1. φ
+ ∈ E+

v if v(φ) ∈ {t, "}; ¬φ
+ ∈ E+

v if v(φ) ∈ {f, "}.

2. ¬φ
+ ∈ E+

v if v(φ) ∈ {f, ⊥}; ¬¬φ
+ ∈ E+

v if v(φ) ∈ {t, ⊥}.

Thus the correspondence between consistent and complete deductive closed theories
and four-valued valuations is built up completely.

Corollary 2. Let v be a valuation on L and E+ be a consistent complete and deductive
closed theory, then v is w.r.t. E+ iff E+ is w.r.t. v.

5.2 Relation Between Models and Extensions

From Definition 9, we can see that under the transformation it is reasonable to declare
φ is true (or false) when φ

+
(or ¬φ

+
) is present, while the presence of ¬φ

+
(or ¬¬φ

+
)

states the lack of information of “being true (or false)”. In the sense of information
keeping, transformation is naturally extended to commit default rules:
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Definition 11. T (D) = {α+ : ¬¬β
+

/γ+ | α : β/γ ∈ D}

In Definition 11, the prerequisite and the justification are transformed in such different
ways that we can easily distinguish different beliefs they stand for.

In order to minimize the statements drawn by the default theory, we explicitly import
¬p+ and ¬p− by default to declare that we lack the information about whether p is true
and false respectively.

Definition 12. Dk = { :¬p+

¬p+ , :¬p−

¬p− | p ∈ A(L)}.

Definition 13. The k-minimal transformation of default theory T is defined by

T k(T ) = (W
+

, T (D) ∪ Dk).

Theorem 11. All extensions of T k(T ) are consistent and complete.

The following example shows how our technique of transformation works:

Example 7. Suppose that T = (∅, { :p
q , :p

¬q }). T has no extensions. By transformation,

we get that T k(T ) = (∅, { :¬p−
q+ , :¬p−

q− , :¬p+

¬p+ , :¬p−
¬p− , :¬q+

¬q+ , :¬q−
¬q− }), and T k(T ) has a

unique extension: E+ = Th({¬p+, ¬p−, q+, q−}), which means that p is neither true
nor false in E+ and q is both true and false in E+.

Theorem 12. Let M be a four-valued model in L, M i is defined as in Theorem 4. Then
E+ w.r.t. M is an extension of T k(T ) iff E+ =

⋃∞
i=0 E+

i , where E+
i =

⋂
N∈Mi

E+
N ,

and E+
N is the theory w.r.t. N .

Theorem 13. Let M be a k-minimal model of a default theory T = (W, D). If E+ is
the theory w.r.t. M , then E+ is an extension of T k(T ).

Theorem 14. Let T = (W, D) be a default theory in L and E+ is an extension of
T k(T ). If M is the valuation w.r.t. E+, then M is a k-minimal model of T .

Corollary 3. Let T be a default theory in L and φ ∈ L. Then T |=k φ iff φ
+

is in
every extension of T k(T ).

Thus we can get four-valued models of a default theory by computing extensions of its
counterpart transformed from itself and vise versa as shown in Fig. 1.

Example 8. We can get the k-minimal model(s) of T = (∅, { :p
q , :p

¬q }) by:

1. Computing T k(T ) (see Example 7).
2. Computing the extension of T k(T ), that is: E+ = Th({¬p+, ¬p−, q+, q−}).
3. By Definition 9, computing the model M = vE+ , i.e. M(p) = ⊥, M(q) = ".

And M is the unique k-minimal model of T as shown in Example 4.
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T = (W, D) T k(T )

M E+

�k-minimal
transformation

�

k-minimal model

�

extension

�E+= E+
M

�
M = vE+

the four-valued default logic Reiter’s default logic

Fig. 1. The relationship between the four-valued default logic and Reiter’s default logic

6 Related Work

The default logic in the signed system [2] is only used to restore contents from formulae
in L+

, which are transformed from the original ones in L. In this paper, we presented a
paraconsistent variant of default logic.

In terms of proposing a variant and an extension of Reiter’s default logic, one of the
previous work is the bi-default logic [3]. The bi-default logic (or Reiter’s default logic)
is incomparable to the four-valued default logic in reasoning power. For example, the
default theory in Example 4 has a k-minimal four-valued model but lacks bi-extensions
(and extensions). But when there is no default rules present, the four-valued default
logic may infer less conclusions than the bi-default logic (or default logic) does, which
is based on classical logic. Secondly, although a map from the bi-extensions to FOUR
is given, we can not get four-valued models of a default theory. In fact, the map is even
not a four-valued valuation, e.g. there is a map which gives both φ and ψ the same value
" but assigns φ∧ψ the value f . But we explicitly defined four-valued models for default
theory. Finally, in the four-valued default logic, the prerequisite and the justification of a
default rule are transformed into different forms, unlike the case of the bi-default logic,
in which the bi-extension is defined to justify whether a default rule is applicable. One
advantage of our method is that the proof theory of Reiter’s default logic is preserved.

In the method proposed in [11, 12], circumscription is used as a tool to calculate
multi-valued preferential models in classical logic. But circumscription is weaker than
default logic [13], so their method is also weaker than ours in expressive and reasoning
power.

The three-valued default logic DL3 [9] is based on Lukasiewicz three-valued logic
LUK3. By introducing modal like operators M and L, a formula can be declared to
be “possibly” true or “certainly” true in DL3. Since LUK3 is not paraconsistent [14],
DL3 also collapses whenever the premise is not consistent. Considering the adopted
approaches, there are two main differences between DL3 and the four-valued default
logic. First, we defined four-valued models for default theory instead of extensions
done in DL3. Second, we can get all four-valued models of every default theory by
computing extensions in standard default logic. But Radzikowska only discussed the
proof theory limited to normal default theories in the original paper [9], by simulating
that of Reiter’s default logic.
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7 Conclusion

In this paper, we proposed the k-minimal four-valued semantics for default theory. As
an extension of Belnap’s four-valued logic [6, 7, 5] and a paraconsistent version of Re-
iter’s default logic [1], the four-valued default logic can handle inconsistencies and it
still uses default theories in knowledge representation.

A novel technique was also provided to transform default theories into the ones with-
out trivial extensions. The one-to-one correspondence between the extensions of default
theory gained by transformation and the four-valued models of the original one was set
up as shown in Fig.1. Thus, four-valued models of default theory can be computed by
default logic theorem provers (e.g. [8]).

In this paper, we defined k-minimal models for default theory, and we confirmed
that our method can be applied to other minimalities. The results of this paper are lim-
ited to propositional level, we will extend it to first-order case, as well as consider the
applications of the four-valued default logic in commonsense reasoning in the future.
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Abstract. A conditioning graph (CG) is a graphical structure that at-
tempt to minimize the implementation overhead of computing probabil-
ities in belief networks. A conditioning graph recursively factorizes the
network, but restricting each decomposition to a single node allows us to
store the structure with minimal overhead, and compute with a simple
algorithm. This paper extends conditioning graphs with optimizations
that effectively reduce the height of the CG, thus reducing time com-
plexity exponentially, while increasing the storage requirements by only
a constant factor. We conclude that CGs are frequently as efficient as
any other exact inference method, with the advantage of being vastly
superior to VE and JT in terms of space complexity, and far simpler to
implement.

1 Introduction

Recently, we proposed conditioning graphs (CGs) which are runtime representa-
tions of belief networks [6]. CGs have a number of important properties. First,
they require only linear space, in terms of the size of the original network, whereas
a join tree for example, requires space that is exponential in the width of the
network. Second, a CG consists of simple node pointers and floating point val-
ues; no high-level elements of belief network computation are included. As well,
inference algorithms for conditioning graphs are small recursive algorithms, eas-
ily implementable on any architecture, without requiring monolithic runtime
libraries, or worse, the implementation of complex inference techniques such as
variable elimination [15, 4] or junction tree propagation [9].

Conditioning graphs are a form of recursive factorization of belief networks.
Recursive decomposition [10] and recursive conditioning [2] restrict the number
of children at each internal node to two, and no restriction is made on the number
of variables at each internal node. In contrast, conditioning graphs have exactly
one variable at each internal node, and no restriction on the number of children.
This difference simplifies the implementation of inference substantially.

Conditioning graphs are also related to Query-DAGs [3] in which simple for-
mulae are precomputed and stored as DAGs. The evaluation engine for this
approach is very lightweight, reducing system overhead substantially. However,
the size of a Q-DAG may be exponential in the size of the network.

L. Lamontagne and M. Marchand (Eds.): Canadian AI 2006, LNAI 4013, pp. 206–217, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Inference in belief networks allows the calculation of posterior probabilities
while considering only essential information. Any information deemed irrelevant
to the current query is ignored by certain inference algorithms (such as Variable
Elimination (VE) [15]). Such pruning can provide enormous efficiency gain in
application, both space and time-wise. The complexity of pruning is linear on
the size of the network model, making it fast in comparison to inference.

Because precompiled structures like conditioning graphs must be general
enough to allow any query, they do not inherently exploit the use of variables
that are irrelevant for a given query. In previous work, we exploited certain
domain-dependent observation variables for faster calculation [6]. In this paper,
we show how to exploit irrelevant variables for a given query. We show that with
a small amount of additional memory, we can achieve exponential speedup for
inference using conditioning graphs. In some cases, the time complexity is very
competitive with other exact methods such as VE and JTP, with the advantage
of requiring only linear space, and being very simple to implement.

The remainder of this paper is as follows. Section 2 reviews conditioning
graphs and their methods. Sections 3 and 4 present two improvements to the
basic algorithm. Section 5 shows empirical analysis of these improvements over
some well-known networks. Section 6 summarizes current and future research.

2 Elimination Trees and Conditioning Graphs

We denote a random variable with capital letters (eg. X, Y, Z), and sets of vari-
ables with boldfaced capital letters X = {X1, ..., Xn}. Each random variable X
has an associated domain of size mX , and can be assigned a value or instan-
tiated. An instantiation of a variable is denoted X = x, or x for short, where
x ∈ {0, ..., mX − 1}. A context, or instantiation of a set of variables, is denoted
X = x or x.

An elimination tree [6] over a belief network is a tree in which each leaf
corresponds to a conditional probability table (CPT) in the network, and each
non-leaf corresponds to a random variable from the network. The tree is struc-
tured such that for any non-leaf node N in the tree, the variable at N and its
ancestor variables in the tree d-separate all variables of one subtree directly be-
low N from all variables in another subtree below N . An elimination tree can be
derived from an elimination ordering using a modified version of elimination [15]
(see Grant & Horsch [6, 7] for details). Figure 1(b) shows the elimination tree
for the Fire example, shown in Figure 1(a)

An algorithm for computing probabilities in elimination trees is presented in
Figure 2. At each internal node T , we condition over its variable (denoted by
VT ), unless it is observed. To compute probability P (e) from elimination tree T ,
we call P(T , e). The context is extended as the tree is traversed in a depth-first
manner, and when a leaf node T is reached, its CPT (denoted by φT ) is indexed
by that context.

A conditioning graph [6] is a low-level representation of an elimination tree.
The abstract algorithm in Figure 2 is given a compact efficient implementation
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R eport 

L eaving 

S moke 

T ampering F ire 

A larm 

(a) The fire network [12]
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(b) An elimination tree for the fire network

Fig. 1. Elimination tree construction

P(T , c)
1. if T is a leaf node
2. return φT (c)
3. elseif VT is instantiated in c
4. Total ← 1
5. for each T ′ ∈ chT

6. Total ← Total ∗ P(T ′, c)
7. return Total
8. else
9. Total ← 0

10. for each vT ∈ dom(VT )
11. Total ← Total + P(T, c ∪ {vT })
12. return Total

Fig. 2. Algorithm P , for processing an elimination tree given a context

in terms of conditioning graphs, and primitive computational operations such as
arithmetic and pointer manipulation.

An example of a conditioning graph is shown in Figure 3(a). Note that at each
leaf, we store the CPT as an array of values, and an index as an integer variable,
which we call pos. In each internal node, we store a set of primary arcs, a set
of secondary arcs, and an integer representing the current value of the node’s
variable. The primary arcs are used to direct the recursive computation, and are
obtained from the elimination tree. The secondary arcs are used to make the
associations between variables in the graph and the CPTs that depend on them.
The secondary arcs are added according to the following rule: there is an arc
from an internal node A to leaf node B iff the variable X associated with A is
contained in the definition of the CPT associated with B.

We implement P as a depth-first traversal. When we reach a leaf node, we
need to retrieve the CPT parameter that corresponds to the context. To do this,
we store each CPT as a linear array of parameters, as follows. Let {C1, · · · , Ck}
be the variables of the CPT φ, ordered according to the order of their depth in
the tree. The index of φ(c1, · · · , ck) is calculated as follows:

index ([]) = 0
index ([c1, · · · , ck]) = ck + mk × index ([c1, · · · , ck−1])

(1)
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(a) Conditioning graph

Query(N)
1. if N is a leaf node
2. return N.cpt[N.pos]
3. else if N.value �= �
4. for each S′ ∈ N.secondary do
5. S′.pos ← S′.pos ∗ N.m + N.value
6. Total ← 1
7. for each P ′ ∈ N.primary do
8. Total ← Total ∗ Query(P ′)
9. for each S′ ∈ N.secondary do

10. S′.pos ← S′.pos/N.m
11. return Total
12. else
13. Total ← 0
14. for i ← 0 to N.m − 1 do
15. N.value ← i
16. Total ← Total + Query(N)
17. N.value ← �
18. return Total

(b) Algorithm

Fig. 3. Conditioning graph of the Fire example and the algorithm for computing prob-
abilities from it

where mi is the size of the domain of variable Ci. By choosing an ordering that
is consistent with the path from root to leaf in the elimination tree, we can com-
pute the CPT’s index as the context is constructed, that is, while we traverse
the tree.

Inference in a CG consists of summing out ‘hidden’ variables. Variables that
are either being queried or used as evidence are instantiated in advance of calling
P . To do this, we maintain one global context over all variables, denoted g.
Each variable Vi is instantiated in g to a member of D(Vi) ∪ {�}). The symbol
� (borrowed from Darwiche and Provan [3]) is a special symbol that means the
variable is unobserved (we use -1 in our implementation). Initially, all nodes are
assigned � in g, as no variables have been instantiated. To calculate P (E1 =
e1, · · · , Ek = ek), we set Ei = ei in g for i = 1 . . . k. While performing the
algorithm, when conditioning a node to Vi = vi, we set Vi = vi. To reset the
variable (after conditioning on all values from its domain), we set Vi = � in g.

Figure 3(b) shows Query, the final low-level implementation of P . We use dot
notation to refer to the data members of the variables. For a leaf node N , we use
N.cpt and N.pos to refer to the CPT and its current index, respectively. For an
internal node N , we use N.primary, N.secondary, N.value, and N.m to refer
to the node’s primary children, secondary children, variable value, and variable
size, respectively. The variable’s value represents the evidence, if any. To set the
evidence V = vi, the application would set V.value = i. It is assumed that a
constant-time mapping exists between the variable and the node that contains
it: such a mapping can be constructed during compilation of the graph.

To avoid confusion regarding the notions of parents and children in the various
graphs and trees, we refer to the parents (children) of a variable in the belief
network as its network parents (children), while those in the conditioning graph
will be graph parents (children).
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3 Optimizing Indexing

Conditioning graphs index CPTs as variables are instantiated using a depth-first
traversal. For each variable that has been observed or conditioned, the indices for
its CPTs (linked through secondary pointers) are updated (Line 4 and 5 of the
Query algorithm). These values must be unset once the child values have been
calculated (Line 9 and 10 of the Query algorithm). This linear-time indexing
occurs once for each time the node is visited; the number of times a variable is
visited in exponential in the depth of the variable in the elimination tree. This
approach is simple to implement, but inefficient. We can dramatically improve
the efficiency of indexing by precomputing some of parameters involved, at a
small cost in terms of memory.

The function index takes a context over the variables of a CPT and returns a
unique index for that context’s entry in the CPT. We showed index in its Horner
form (Equation 1), but we can also represent it as a linear function over its para-
meters. Let Mi =

∏k
j=i+1 mj . This means that index (c1, · · · , ck) =

∑k
i=1 ciMi.

The cardinality of a variables never changes during inference, so Mi is a constant
that can be calculated during the compilation of the conditioning graph. The
commutativity of addition means that we can add the terms in the above equa-
tion in any order. Consequently, evidence values can be determined and their
effect on the indexing computation is independent of any query. Furthermore,
evidence only needs to be set once. This is in contrast to the original algorithm,
where the evidence was factored into the index when an evidence variable was
visited in the traversal, and evidence variables were reset when the traversal
of the subtree was completed. Hence, the number of times the evidence is set
and reset reduces from exponential to constant (per query). This decrease in the
number of operations is exponential on the height of the tree, although this is not
evident in terms of asymptotic complexity. If the evidence remains unchanged
over multiple queries, then the savings propagates over these queries as well.

Figure 4 gives the new algorithm for updating evidence, and querying the
graph. We represent the scalar value between a node N and a respective sec-
ondary child S using the function scalar(N, S). Notice that the query algorithm
does not compute over the secondary links for an observed variable.

4 Relevant Variables

When computing a posterior probability, the variables in the belief network can
be classified into three sets.

1. The query variables, including the variable over which a posterior distribu-
tion is to be computed, as well as all the evidence variables.

2. The relevant variables, whose CPTs must be included.
3. The irrelevant variables, whose CPTs may be safely left out.

The irrelevant variables include barren variables [13] and d-separated variables
[5]. Barren variables are variables whose marginalization would produce inter-
mediate distributions full of 1s. Barren variables often comprise a considerable
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SetEvidence(N, i)
1. diff ← i − N.value {� = 0 in this equation}
2. for each S′ ∈ N.secondary do
3. S′.pos ← S′.pos + scalar(N, S′) ∗ diff
4. N.value ← i

Query2 (N)
1. if N is a leaf node
2. return N.cpt[N.pos]
3. else if N.value <> �
4. Total ← 1
5. for each P ′ ∈ N.primary do
6. Total ← Total ∗ Query2 (P ′)
7. return Total
8. else
9. Total ← 0

10. for i ← 0 to N.m − 1 do
11. SetEvidence(N, i)
12. Total ← Total + Query2 (N)
13. SetEvidence(N, �)
14. return Total

Fig. 4. Algorithms for setting evidence and querying, given that secondary scalar values
are used

portion of the belief network, especially when the observations and queries are
localized to a particular section of the network, and even more so when those ob-
servations/queries are shallow (closer to the root than the leaves). D-separated
variables are variables in the belief network that are irrelevant to the current
query given the current evidence. These variables can also be ignored.

Finding barren and d-separated variables requires traversal through the be-
lief network, but the conditioning graph does not store the belief network in a
convenient manner for this. Two possibilities are immediately apparent:

1. At each node, store two tertiary sets of pointers, that correspond to the
original belief network. That is, node N storing variable V would have two
sets, parents and children, that point to the nodes containing V ’s network
parents and network children, respectively.

2. Make the secondary arcs bi-directional. In other words, each leaf node in
the conditioning graph stores pointers up to its variables in the conditioning
graph. As the leaf node stores a CPT for a variable V , and a CPT represents
a relationship between V and its network parents, every leaf node has a
distinguished arc to V (called a root arc), and a set of pointers to V ’s network
parents (a non-root arc).

Tertiary pointers are more intuitive, and require only one step to traverse to a
neighbour (rather than the two step process of traversing to a tree leaf first).
However, including tertiary pointers is more space-expensive than making exist-
ing secondary arcs bidirectional. In a highly connected graph, the difference can
be substantial. For simplicity, we will use the first option, but the algorithms are
easily modified to use the second option if space is limited.

There exist several algorithms for finding nodes that are relevant to the query.
One of the more recent ones, the Bayes-ball algorithm [14], finds both d-separated
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and barren variables simultaneously, and is a very good choice. However, since
barren variables can be identified prior to the query, our algorithm performs
these tasks separately: first non-barren variables are identified, and from these,
the set of dependent variables are found.

The simplest definition of a barren variable is recursive: a variable in a belief
network is barren if (a) it is not observed or part of the query and (b) either it
is a leaf node, or all of its children are barren. For our algorithm, we maintain
the collection of non-barren variables dynamically, as follows: whenever a barren
variable becomes observed (or part of a query), then it becomes non-barren, and
notifies its network parents of its non-barren state. This process continues in a
recursive manner. Conversely, when a non-barren variable becomes unobserved,
it checks whether or not its children are all barren. If they are, it becomes barren,
and notifies its parents of its barren-ness. To accomplish this in a timely fashion,
each internal node in the conditioning graph maintains an integer, nonbarren,
that represents the number of nonbarren children that variable has in the net-
work. When a variable becomes non-barren, it notifies its network parents, which
update their nonbarren status by incrementing it. The opposite process occurs
when a non-barren node becomes barren. A variable is barren if it is not observed
and its nonbarren value is 0. Figure 5 shows SetEvidence2, our new evidence
entry method that maintains barren variables. Note that SetEvidence2 is called
whenever the observed value of a variable changes, independent of any query.

SetEvidence2(N, i)
1. SetEvidence(N, i)
2. if i �= �
3. ResetBarren(N)
4. else
5. SetBarren(N)

ResetBarren(N)
1. if N .barren = true
2. N.barren ← false
3. for each Pa ∈ N .parents do
4. Pa.nonbarren ← Pa.nonbarren + 1
5. ResetBarren(Pa)

SetBarren(N)
1. if N.barren = false AND N.nonbarren = 0 AND N.value = �
2. N.barren ← true
3. for each Pa ∈ N .parents do
4. Pa.nonbarren ← Pa.nonbarren - 1
5. SetBarren(Pa)

Fig. 5. Algorithm for setting the evidence, maintaining labeling of barren nodes

From the set of nonbarren variables, we can select the relevant information.
The relevant information of a query in a belief network is information that is
not independent of the query; it is not d-separated from the query [11]. Space
precludes a detailed discussion on d-separation, however, it suffices to say that
a query is dependent on a variable if there exists at least one (undirected) path
between the query and that variable that is not blocked by the evidence.
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A variable is relevant if its local distribution is relevant to the query. Given
that all non-barren nodes have been identified, relevant variables can be iden-
tified recursively (we assume that a query variable is not observed), using the
rules of d-separation [11]:

1. A query variable is marked as a relevant variable.
2. An unmarked barren variable is marked as an irrelevant variable.
3. Given a relevant variable, its unmarked, unobserved parents are relevant.
4. Given a relevant unobserved variable, its unmarked children are relevant.

It must be noted that the above definition of a relevant variable only applies
if the barren variables are identified. This simple recursive definition allows us
to write a depth-first search algorithm for marking the relevant nodes. This
algorithm, SetRelevant, is given in Figure 6. To identify relevant variable, a
boolean value relevant is attached to each node, and is given the value true for
each graph node which contains a relevant variable.

SetRelevant(N)
1. for each node N’ in the conditioning graph
2. N’.relevant ← N’.active ← false
3. MarkRelevant(N,N)

MarkRelevant(N, Q)
1. N .relevant ← true
2. MarkActive(N.root)
3. for each P ∈ N.pa s.t. P.barren = false AND P.relevant=false AND P.value= � do
4. MarkRelevant(P, Q)
5. if N = Q OR N .value �= �
6. for each C ∈ N.ch s.t. C.barren=false AND C.relevant=false do
7. MarkRelevant(C, Q)

MarkActive(N)
1. N .active ← true
2. if N .parent.active = false
3. MarkActive(N.parent)

Fig. 6. The SetRelevant algorithm, which marks the active part of the conditioning
graph for processing a particular query

In addition to marking the relevance of each node, we need to mark the
active paths through the conditioning graph. A leaf node is active if the query is
dependent on its CPT. An internal node is active iff (a) the query is dependent
on its variable or (b) it has a dependent primary child. Only the active nodes
are traversed, the rest are ignored. In addition, the active nodes that are not
dependent are treated as observed nodes: they are not conditioned over, they
only combine results from their active children. We identify each active node in
the conditioning graph by setting a value active=true. We use the MarkActive
algorithm in Figure 6 to mark the active nodes in the graph as we identify
relevant information. Note that MarkActive requires that each node N have a
pointer to its parent node, which we identify as N.parent in the algorithm. As
well, we denote N ’s root arc (described previously) as N.root.
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Query3 (N)
1. if N is a leaf node
2. return N.cpt[N.pos]
3. else if N.value �= � OR N.relevant = false
4. Total ← 1
5. for each P ′ ∈ N.primary s.t. P ′.active = true do
6. Total ← Total ∗ Query3(P ′)
7. return Total
8. else
9. Total ← 0

10. for i ← 0 to N.m − 1 do
11. SetEvidence(N, i)
12. Total ← Total + Query3 (N)
13. SetEvidence(N, �)
14. return Total

Fig. 7. The Query algorithm, utilizing active and relevant nodes (Lines 03 and 05)

Given that we have marked the active and relevant nodes in the condition-
ing graph (that is, we have called SetRelevant on the query node), Query3 in
Figure 7 shows the new query algorithm. The new query algorithm only tra-
verses the active part of the network. It only conditions over relevant nodes.
Each node now additionally stores pointers to the nodes containing its net-
work parents and children, and maintains nonbarren, relevant, and active flags.
These additions cumulatively contribute a constant factor to the current network
storage.

5 Results

Conditioning graphs offer linear-space computation, and easy portability to any
architecture. However, they have a worst-case time complexity that is exponen-
tial on the size of the network. Methods for balancing elimination trees have
been developed [7], however, the subsequent heights are still a function of net-
work size. Elimination methods, on the other hand, compute in time exponential
on the tree-width of the network [4]. This value is typically small in compari-
son to the network size, so elimination methods will typically be quicker to
answer queries than conditioning methods, but they require much more space.
In this section, we show that the proposed optimizations provide considerable
speedup in inference, and that the inference times are reasonable compared to
elimination.

We refer to the height of a conditioning graph as its actual height h, while its
height after ignoring irrelevant nodes will be its effective height h∗. We will refer
to the effective conditioning graph as the conditioning graph with its irrelevant
nodes ignored. To draw a comparison between conditioning graph methods and
elimination methods, we compare the effective height h∗ of the conditioning
graph to the width w∗ of the network generated using the min-fill heuristic [8].
By comparing the CG height to induced width, we are comparing the complexity
of inference in CGs with the complexity of inference in VE and JTP, by looking
at the exponent involved in the worst case analysis.
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Fig. 8. Height difference between actual and relevant conditioning graph

We compared the approaches over ten well-known networks, obtained from
the Bayesian network repository.1 We tested the algorithms using different per-
centages of evidence variables (ranging from 0 − 50% of the variables in the
network). For each test, we generated 100 random sets of evidence, and tested
50 different query variables on for each set of evidence, for a total of 5000 runs
per evidence set size, per network.

Figure 8 shows the difference h − h∗ for each network (for readability, we
have presented the results in two graphs). The graphs show that ignoring the
irrelevant information of the network offers a substantial speedup over computing
over it. The speedup is most prominent when there is no evidence; there is also
a tendency for the difference to increase when the amount of evidence is greater
than 20%. An explanation for these results is offered below.

We next compare the height of the effective relevant graph to the width of
the network (generated using the standard min-fill algorithm), i.e., h∗ − w∗.
Figure 9 shows the result of this comparison. While the actual height of the
conditioning graph is typically much worse than the width of the network, the
effective height of the relevant conditioning graph is not that much worse than
the network width - in fact, it’s typically better when the amount of evidence
is greater than 20%. The curves are similar for all graphs: an initial growth,
followed by a decline. This shows that in many cases, the complexity of recursive
decompositions is within the width of the network, meaning that we obtain
reasonable time while maintaining the benefits of conditioning graphs, namely,
linear space implementation and portability.

The results for both sets of graphs are easily explained by considering where
the hardest inference problems are in terms of amount of evidence. When a
network has no evidence, the number of barren variables is typically high, so the
complexity is low. As evidence is added, the number of barren variables declines,
increasing the complexity. However, this increase in the number of variables is
eventually offset by the number of d-separated variables, so the complexity begins

1 http://www.cs.huji.ac.il/labs/compbio/Repository/
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Fig. 9. Difference between relevant height of conditioning graph and network width

to decline. Hence, the hardest problems for inference in our example networks
occur when the amount of evidence is greater than 0% and less than 20%.

6 Conclusions and Future Work

This paper presents two optimizations to conditioning graphs, to improve their
efficiency while still maintaining linear space. The first optimization improved
the efficiency of indexing in the CPTs of the conditioning graph. The second op-
timization demonstrated how to leave irrelevant variables out of the conditioning
technique. These optimizations required simple extensions to the original code
which are consistent with the original goal of CGs: easily implementable, making
them universally portable. The optimizations attempt to avoid repeat calculation
and irrelevant information. They take advantage of current model state.

The first optimization saves us an exponential number of arithmetic opera-
tions for a given query, and these savings can be realized across queries in cases
where the evidence remains the same. For the second optimization, we mea-
sured its performance according to the effective height of the conditioning graph
(the maximum number of relevant non-observed variables along any path). We
observed that the effective height of the network is typically better than the
actual height, which means an exponential speedup in the run-times of condi-
tioning graphs. We also observed that this speedup allows conditioning graphs to
be competitive in runtime to elimination algorithms in certain cases, especially
when the percentage of observed nodes does not fall between 5% and 20%. Both
of these optimizations increase the storage requirements of the algorithm by only
a constant factor.

While these optimizations provide some speedup, providing caching of in-
termediate values at internal nodes ultimately produces the fastest recursive
structures [2]. Caching is easily implemented in conditioning graphs (caches are
indexed the same as distributions). However, naive caching seems to require ex-
ponential space. Darwiche et al. have provided good methods for optimal caching
given limited space for d-trees [1]. We are currently investigating the most effec-
tive use of space in a conditioning graph.
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Abstract. We propose a representation for musical chords that allows
us to include domain knowledge in probabilistic models. We then in-
troduce a graphical model for harmonization of melodies that considers
every structural components in chord notation. We show empirically that
root notes progressions exhibit global dependencies that can be better
captured with a tree structure related to the meter than with a simple
dynamical HMM that concentrates on local dependencies. However, a
local model seems to be sufficient for generating proper harmonizations
when root notes progressions are provided. The trained probabilistic
models can be sampled to generate very interesting chord progressions
given other polyphonic music components such as melody or root note
progressions.

1 Introduction

Probabilistic models for analysis and generation of polyphonic music would be
useful in a broad range of applications, from contextual music generation to
on-line music recommendation and retrieval. However, modeling music involves
capturing long term dependencies in time series. This has proved very difficult
to achieve with traditional statistical methods. Note that the problem of long-
term dependencies is not limited to music, nor to one particular probabilistic
model [1]. This difficulty motivates our exploration of chord progressions and
their interaction with melodies. In its simplest definition, a chord is a group of
note names. Chord progressions constitute a fixed, non-dynamical structure in
time and thus can be used to aid in describing long-term musical structure in
tonal music. A harmonization is a particular choice of chord progression given
other components of tonal music (e.g. melodies or bass lines). In this paper,
we propose a graphical model to generate harmonizations given melodies based
on training data. In general, the notes comprising a chord progression are not
played directly. Instead, given that a particular temporal region in a musical
piece is associated with a chord, notes comprising that chord or sharing some
harmonics with notes of that chord are more likely to be present.
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Graphical models can capture the chord structures and their interaction with
melodies in a given musical style using as evidence a limited amount of symbolic
MIDI1 data. One advantage of graphical models is their flexibility, suggesting
that our models could be used either as an analytical or a generative tool to
model chord progressions. Moreover, models like ours could be integrated into
more complex probabilistic transcription models [2], genre classifiers, or auto-
matic composition systems [3].

Cemgil [2] uses a somewhat complex graphical model that generates a map-
ping from audio to a piano-roll using a simple model for representing note tran-
sitions based on Markovian assumptions. This model takes as input audio data,
without any form of preprocessing. While being very costly, this approach has
the advantage of being completely data-dependent. However, strong Markov-
ian assumptions are necessary in order to model the temporal dependencies
between notes. Hence, a proper chord transition model could be appended to
such a transcription model in order to improve polyphonic transcription perfor-
mance. Raphael [4] use graphical models for labeling MIDI data with traditional
Western chord symbols. Lavrenko and Pickens [5] propose a generative model of
polyphonic music that employs Markov random fields. While being very general,
this model would benefit from having access to more specific musical knowledge.
For instance, we go a step further in this paper by including abstract chord repre-
sentation in the model2 as a smoothing technique towards better generalization.
Allan and Williams [8] designed a harmonization model for Bach chorales us-
ing Hidden Markov Models (HMMs). While generating excellent musical results,
this model has to be provided polyphonic music with specific 4 voice structure
as input, restricting its applicability in more general settings. Our proposed
model is more general in the sense that it is possible to extract the appropri-
ate chord representation from any polyphonic music, without regard to specific
labeling or harmonic structure. One can then use it to generate harmonization
given any melody without regard to the musical style of the corpus of data at
hand.

2 Graphical Models

Graphical models [9] are a useful framework to describe probability distributions
where graphs are used as representations for a particular factorization of joint
probabilities. Vertices are associated with random variables. A directed edge
going from the vertex associated with variable A to the one corresponding to
variable B accounts for the presence of the term P (B|A) in the factorization of
the joint distribution for all the variables in the model. The process of calculating
probability distributions for a subset of the variables of the model given the joint
distribution of all the variables is called marginalization (e.g. deriving P (A, B)
from P (A, B, C)). The graphical model framework provides efficient algorithms
1 In our present work, we only consider notes onsets and offsets in the MIDI signal.
2 The proposed model is defined using standard jazz chord notation as described in

[6, 7].
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for marginalization and various learning algorithms can be used to learn the
parameters of a model, given an appropriate dataset.

The Expectation-Maximization (EM) algorithm [10] can be used to estimate
the conditional probabilities of the hidden variables in a graphical model. This
algorithm proceeds in two steps applied iteratively over a dataset until conver-
gence of the parameters. First, the E step computes the expectation of the hidden
variables, given the current parameters of the model and the observations of the
dataset. Secondly, the M step updates the values of the parameters in order to
maximize the joint likelihood of the observations and the expected values of the
hidden variables.

Marginalization must be carried out in the proposed model both for learning
(during the expectation step of the EM algorithm) and for evaluation. The in-
ference in a graphical model can be achieved using the Junction Tree Algorithm
(JTA) [9]. In order to build the junction tree representation of the joint distrib-
ution of all the variables of the model, we start by moralizing the original graph
(i.e. connecting the non-connected parents of a common child and then removing
the directionality of all edges) so that some of the independence properties in
the original graph are preserved. In the next step (called triangulation), we add
edges to remove all chord-less cycles of length 4 or more. Then, we can form
clusters with the maximal cliques of the triangulated graph. The Junction Tree
representation is formed by joining these clusters together. We finally apply a
message passing scheme between the potential functions associated to each clus-
ter of the Junction Tree. These potential function can be normalized to give the
marginalized probabilities of the variables in that cluster. Given evidence, the
properties of the Junction Tree allow these potential functions to be updated.
Exact marginalization techniques are tractable in the proposed model given its
limited complexity.

3 Interactions Between Chords and Melodies

Each note in a chord has a particular impact on the chosen notes of a melody
and a proper polyphonic model should be able to capture these interactions.
Also, including domain knowledge (e.g. A major third is not likely to be played
when a diminished fifth is present) would be much easier in a model dealing
directly with the notes comprising a chord. While such a model is somewhat
tied to a particular musical style, it is also able to achieve complex tasks like
melodic accompaniment.

3.1 Melodic Representation

A simple way to represent a melody is to convert it to a 12-dimensional con-
tinuous vector representing the relative importance of each pitch class over a
given period of time t. We first observe that the lengths of the notes comprising
a melody have an impact on their perceptual emphasis. Usually, the meter of
a piece can be subdivided into small time-steps such that the beginning of any
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note in the whole piece will approximately occur on one of these time-steps. For
instance, let t be the time required to play a whole measure. Given that a 4-beat
piece (where each beat is a quarter note in length) contains only eight notes or
longer notes, we could divide every measure into 8 time-steps with length t/8
and every notes of the piece would occur approximately on the onset of one of
these time-steps occurring at times 0, t/8, 2t/8, . . . , 7t/8. We can assign to each
pitch-class a perceptual weight equal to the total number of such time-steps it
covers during time t.

However, it turns out that the perceptual emphasis of a melody note depends
also on its position related to the meter of the piece. For instance, in a 4-beat
measure, the first beat (also called the downbeat) is the beat where the notes
played have the greatest impact on harmony. The second most important one is
the third beat. We illustrate in Table 1 a way of constructing a weight vector
assessing the relative importance of each time-step in a 4-beat measure divided
into 12 time-steps with swing eight notes, relying on the theory of meter [11]. At
each step represented by a row in the table, we consider one or more positions
that have less perceptual emphasis than the previous added ones and increment
all the values by one. The resulting vector on the last row accounts for the
perceptual emphasis that we apply to each time-step in the measure.

Table 1. This table illustrates a way to construct a vector assessing the relative im-
portance of each time-step in a 4-beat measure divided into 12 time-steps. On each
row, we add positions that have less perceptual importance than the previous added
ones, ending with a weight vector covering all the possible time-steps.

Beat 1 . . 2 . . 3 . . 4 . .

.

. .

. . . .

. . . . . . . .

. . . . . . . . . . . .
5 1 2 3 1 2 4 1 2 3 1 2

Although this method is based on widely accepted musicological concepts,
more research would be needed to assess its statistical reliability and to find
optimal weighting factors.

3.2 Modeling Root Note Progressions

One of the most important notes in a chord with regard to its interaction with
the melody may be the root note3. For example, bass players play the root note
of the current chord very often when accompanying other musicians in a jazz
3 The root note of a chord is the note that gives its name to the chord. For instance,

the root note of the chord Em7b5 is the note E.
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Fig. 1. A graphical model to predict root note progressions given melodies. White
nodes are hidden random variables while gray nodes are observed.

context. Figure 1 shows a model that learns interactions between root notes (or
chord names) and the melody.

Discrete nodes in levels 1 and 2 are not observed. The purpose of the nodes
in level 1 is to capture global chord dependencies related to the meter [11, 12].
Nodes in level 2 are modeling local chord dependencies conditionally to the global
dependencies captured in level 1. For instance, the fact that the algorithm is
accurately generating proper endings is constrained by the upper tree structure.

Such a model is able to predict sequences of root notes given a melody, which
is a non-trivial task even for humans. Nodes in level 1 and 2 are discrete hidden
variables and play the same role than in previous models. Nodes in level 2 are
tied according to the numbers shown inside the vertices. Probabilities of tran-
sition between levels 3 and 4 are fixed with probabilities of substitution related
to psychoacoustic similarities between notes [13]. These random variables have
12 possible states corresponding to each possible root note. We thus model the
probability of substituting one root note for one another. Nodes in level 3 are
hidden while nodes in level 4 are observed. Discarding level 4 and directly ob-
serving nodes in level 3 would assign extremely low probabilities to unseen root
notes in the training set. Instead, when observing a given chord on level 4 during
learning, the probabilities of every root notes are updated with respect to the
fixed probabilities of substitution. Nodes in level 5 are continuous 12-dimensional
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Gaussian distributions that are also observed during training where we model
each melodic observation using the technique presented in Section 3.1.

Evaluation of Root Notes Prediction Given Melody. In order to evalu-
ate the model presented in Figure 1, a database consisting of 47 standard jazz
melodies in MIDI format and their corresponding root note progressions taken
in [6] has been compiled by the authors. Every sequence was 8 bar long, with
a 4-beat meter, and with one chord change every 2 beats (yielding observed
sequences of length 16). It was required to divide each measure into 24 time-
steps in order to fit each melody note to an onset. The technique presented in
Section 3.1 was used over a time span t of 2 beats corresponding to the chords
lengths.

The proposed tree model was compared to an HMM (built by removing nodes
in level 1) in terms of prediction ability given the melody. In order to do so,
average negative conditional out-of-sample likelihoods of sub-sequences of length
4 on positions 1, 5, 9 and 13 have been computed. For each sequence of chords
x = {x1, . . . x16} in the appropriate validation set, we average the values

− log P (xi, . . . , xi+3|x1, . . . , xi−1, xi+4, . . . , x16). (1)

with i ∈ {1, 5, 9, 13}. Hence, the likelihood of each subsequence is conditional
on the rest of the sequence taken in the validation set and the corresponding
melody.

Double cross-validation is a recursive application of cross-validation [14] where
both the optimization of the parameters of the model and the evaluation of the
generalization of the model are carried out simultaneously. We let the num-
ber of possible states for random variables in levels 1 and 2 go independently
from 2 to 15. This technique has been used to optimize the number of possi-
ble values of hidden variables and results are given in Table 2 in terms of av-
erage conditional negative out-of-sample log-likelihoods of sub-sequences. This
measure is similar to perplexity or prediction ability. We chose this particular
measure of generalization in order to account for the binary metrical structure
of chord progressions, which is not present in natural language processing, for
instance.

Table 2. Average conditional negative out-of-sample log-likelihoods of sub-sequences
of root notes of length 4 on positions 1, 5, 9 and 13 given melodies. These results are
computed using double cross-validation in order to optimize the number of possible
values for hidden variables. The results are better (lower negative likelihood) for the
tree model than for the HMM.

Model Negative log-likelihood

Tree 6.6707

HMM 8.4587



224 J.-F. Paiement, D. Eck, and S. Bengio

The fact that results are better for the tree model than for the HMM tells
us that non-local dependencies are present in root notes progressions [12]. Gener-
ated root notes sequences given out-of-sample melodies are presented in
Section 3.4 together with generated chord structures.

3.3 Chord Model

Before describing a complete model to learn the interactions between complete
chords and melodies, we introduce in this section a chord representation that
allows us to model dependencies between each chord component and the proper
pitch-class components in the melodic representation presented in Section 3.1.

The model that we present in this section is observing chord symbols as they
appear in [6] instead of actual instantiated chords (i.e. observing directly musical
notes derived from the chord notation by a real musician). This simplification
has the advantage of defining directly the chord components as they are con-
ceptualized by a musician. This way, it will be easier in further developments
of this model to experiment with more constraints (in the form of independence
assumptions between random variables) derived from musical knowledge. How-
ever, it would also be possible to infer the chord symbols from the actual notes
with a deterministic method, which is done by most of the MIDI sequencers
today. Hence, a model observing chord symbols instead of actual notes could
still be used over traditional MIDI data.

Each chord is represented by a root note component (which can have 12
possible values given by the pitch-class of the root note of the chord) and 6
structural components detailed in Table 3. While it is out of the scope of this
paper to describe jazz chord notation in detail [7], we just note that there exists
a one-to-one relation between the chord representation introduced in Table 3
and chord symbols as they appear in [6].

We show in Table 4 the mappings of some chord symbols to structural vec-
tors according to this representation. The fact that each structural random

Table 3. Interpretation of the possible states of the structural random variables. For
instance, the variable associated to the 5th of the chord can have 3 possible states.
State 1 corresponds to the perfect fifth (P), state 2 to the diminished fifth (b) and
state 3 to the augmented fifth (#).

Values

Component 1 2 3 4

3rd M m sus -
5th P b # -
7th no M m M6
9th no M b #
11th no # P -
13th no M - -
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Table 4. Mappings from some chord symbols to structural vectors according to no-
tation described in Table 3. For instance, the chord with symbol 7#5 has a major
third (M), an augmented fifth (#), a minor seventh (m), no ninth, no eleventh and no
thirteenth.

Symbol 3rd 5th 7th 9th 11th 13th

6 1 1 4 1 1 1
M7 1 1 2 1 1 1
m7b5 2 2 3 1 1 1
7b9 1 1 3 3 1 1
m7 2 1 3 1 1 1
7 1 1 3 1 1 1
9#11 1 1 3 2 2 1
m9 2 1 3 2 1 1
13 1 1 3 2 1 2
m6 2 1 4 1 1 1
9 1 1 3 2 1 1
dim7 2 2 4 1 1 1
m 2 1 1 1 1 1
7#5 1 3 3 1 1 1
9#5 1 3 3 2 1 1

variable has a limited number of possible states will produce a model that is
computationally tractable. While such a representation may not look general
for a non-musician, we believe that it is applicable to most of tonal music by
introducing proper chord symbol mappings. Moreover, it allows us to directly
model the dependencies between chord components and melodic components.

3.4 Chord Model Given Root Note Progression and Melody

Figure 2 shows a probabilistic model designed to predict chord progressions given
root note progressions and melodies. The nodes in level 1 are discrete hidden
nodes as in the root notes progressions model. The gray boxes are subgraphs
that are detailed in Figure 3.

The H node is a discrete hidden node modeling local dependencies and cor-
responding to the nodes on level 2 in Figure 2. The R node corresponds to the
current root note. This node can have 12 different states corresponding to the
pitch class of the root note and it is always observed. Nodes labeled from 3rd
to 13th correspond to the structural chord components presented in Section 3.3.
Node B is another structural component corresponding to the bass notation (e.g.
G7/D is a G seventh chord with a D on the bass). This random variable can have
12 possible states defining the bass note of the chord. All the structural com-
ponents are observed during training to learn their interaction with root note
progressions and melodies. These are the random variables we try to predict
when using the model on out-of-sample data. The nodes on the last row labeled
from 0 to 11 correspond to the melodic representation introduced in Section 3.1.
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1

2

Fig. 2. A graphical model to predict chord progressions given root notes progressions
and melodies. The gray boxes correspond to subgraphs presented in Figure 3.

...

..

.

H

R

3rd 5th 7th 9th 11th 13th B

0 1 2 3 4 5 6 7 8 9 10 11

Fig. 3. Subgraph of the graph presented in Figure 2. Each chord component is linked
with the proper melodic components on the bottom.

It should be noted that the melodic components are observed relative to the
current root note. In Section 3.2, the model is observing melodies with absolute
pitch, such that component 0 is associated to note C, component 1 to note C#,
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and so on. On the other hand, in the present model component 0 is associated
to the root note defined by node R. For instance, if the current root note is G,
component 0 will be associated to G, component 1 to G#, component 2 to A,
and so on. This approach is necessary to correctly link the structural components
to the proper melodic components as shown by the arrows between the two last
rows of nodes on Figure 3.

Generation of Harmonization. It is possible to evaluate the prediction abil-
ity of the model for chord structures. We present in Table 5 the average negative
conditional out-of-sample log-likelihoods of chord structures of length 4 on po-
sitions 1, 5, 9 and 13, given the rest of the sequences, the complete root note
progressions and the melodies for the tree model and an HMM model built by
removing the nodes in level 1 in Figure 2.

Table 5. Average negative conditional out-of-sample log-likelihoods of sub-sequences
of chord structures of length 4 on positions 1, 5, 9 and 13, given the rest of the sequences
and the complete root note progressions and melodies using double cross-validation

Model Negative log-likelihood

Tree 9.9197
HMM 9.5889

Again, we used double cross-validation in order to optimize the number of
hidden variables in the models. We observe that the HMM gives better results
than the tree model in this case. This can be explained by the fact that the root
note progressions are given in these experiments. This would mean that most
of the contextual information would be contained in the root note progression,
which make sense intuitively. Further statistical experiments could be done to
investigate this behavior. Table 6 shows three different harmonizations of the
last 8 measures of the jazz standard Blame It On My Youth [6] generated by the
proposed model.

When observing the predicted structures given the original root notes pro-
gression, we see that most of the predicted chords are the same as the originals.
When the chord differs, the musician will observe that the predicted chords
are still relevant and are not in conflict with the original chords. It is more in-
teresting to look at the sequence of chords generated by taking the sequence
of root notes with the highest probability given by the root note progression
model presented in Section 3.2 and then finding the most likely chord struc-
tures given this predicted root note progression and the original melody. While
some chord change are debatable, most of the chords comply with the melody
and we think that the final result is musically interesting. These results show
that valid harmonization models for melodies that could learn different mu-
sical styles could be implemented in commercial software in the short term.
More generated results from the models presented in this paper are available on
http://www.idiap.ch/∼paiement/canai.
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Table 6. Three different harmonizations of the last 8 measures of the jazz standard
Blame It On My Youth. Rows beginning with OC correspond to the original chord pro-
gression. Rows beginning with OR correspond to the most likely chord structures given
the original root note progression and melody with respect to the model presented in
Section 3.4. Finally, rows beginning with NH correspond to a new harmonization gen-
erated by the same model and the root note progression model presented in Section 3.2
when observing original melody only.

OC (1-8) AbM7 Bb7 Gm7 Cm7 Fm7 Fm7/Eb Db9#11 C7
OR AbM7 Bb7 Gm7 C7 Fm7 Fm7 Db7 Cm7
NH C7 C7 Gm7 Gm7 Fm7 Fm7 Bb7 Bb7

OC (9-16) Fm7 Edim7 Fm7 Bb7 Eb6 Eb6 Eb6 Eb6
OR Fm7 E9 Fm7 Bb7 Eb6 Eb6 Eb6 Eb6
NH Edim7 Gm7 Fm7 Bb7 Eb6 Eb6 Eb6 Eb6

4 Conclusion

In this paper, we introduced a representation for chords that allows us to eas-
ily introduce domain knowledge in a probabilistic model for harmonization by
considering every structural components in chord notation.

A second main contribution of our work is that we have shown empirically
that chord progressions exhibit global dependencies that can be better captured
with a tree structure related to the meter than with a simple dynamical HMM
that concentrates on local dependencies. However, the local (HMM) model seems
to be sufficient when root notes progressions are provided. This behavior suggest
that most of the time-dependent information may already be contained in root
note progressions.

Finally, we designed a probabilistic model that can be sampled to generate
very interesting chord progressions given other polyphonic music components
such as melody or even root note progressions.
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Abstract. In current constraint-based (Pearl-style) systems for discov-
ering Bayesian networks, inputs with deterministic relations are prohib-
ited. This restricts the applicability of these systems. In this paper, we
formalize a sufficient condition under which Bayesian networks can be re-
covered even with deterministic relations. The sufficient condition leads
to an improvement to Pearl’s IC algorithm; other constraint-based al-
gorithms can be similarly improved. The new algorithm, assuming the
sufficient condition proposed, is able to recover Bayesian networks with
deterministic relations, and moreover suffers no loss of performance when
applied to nondeterministic Bayesian networks.

1 Introduction

Learning Bayesian networks is an important topic in artificial intelligence. Ear-
lier works by Spirtes, Glymour, Scheines [15], and Pearl [11] have shown that it is
possible to recover Bayesian networks from observational data, if there exist no
deterministic relations among variables. That is, it is assumed that every relation
among variables is inherently stochastic or is a functional relation with stochastic
inputs [11, Sect.1.4] [14, Ch.2]. In many applications (e.g., robotics, games, data-
bases), however, some relationships are deterministic (functional, c.f., [13]). In
such cases, the current algorithms (e.g., the Inductive Causation (IC) algorithm
[11] and the PC algorithm [15]) may output erroneous Bayesian networks [6].
In this paper, we show that, assuming a sufficient condition introduced later,
deterministic relations do not prevent us from recovering the correct Bayesian
network, provided we correctly detect the deterministic relations.

In this section, we briefly review the assumptions and mechanisms underlying
current constraint-based algorithms. In Section 2, we analyze how deterministic
relations affect the identifiability of Bayesian networks. In section 3, we modify
the IC algorithm so that we can recover a Bayesian network given a set of
deterministic relations. We also discuss how to use association-rule miners to
detect deterministic relations. The last section shows experimental results on a
robotics dataset.

1.1 d-Separation, Stochastic Independence, and the Faithfulness
Assumption

We employ notation and terminology from [11] and [15]. A Bayesian network
is a directed acyclic graph (DAG) in which nodes represent random variables

L. Lamontagne and M. Marchand (Eds.): Canadian AI 2006, LNAI 4013, pp. 230–241, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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and edges represent dependence among variables. In this paper, we assume that
every random variable is discrete. We use E(G) to denote edges in a DAG G.
A path in G is a sequence of nodes such that every two consecutive nodes in
the sequence are adjacent in G. We shall use X → Y to denote a directed edge
(X, Y ) ∈ E(G), and use X − Y to denote the undirected edge.

Definition 1. Let G be a directed graph and p be a path in G. Then a node X
is a collider on p if X is an interior node on p and X’s left and right neighbors
on p both have edges pointing to X.

Fig. 1 shows a Bayesian network from [11, p.15]. In this network, node wet is
a collider on the path sprinkler− wet − rain; in contrast, node wet is not a
collider on the path sprinkler− wet − slippery.

season

sprinkler rain

wet

slippery

Fig. 1. The sprinkler example

Random variables A and B are stochastically independent given S in
a distribution P , denoted by (A⊥⊥ B|S)P , if P (A, B|S) ≡ P (A|S) · P (B|S). A
Bayesian network G generates a joint probability distribution P that satisfies
the following condition.

Definition 2 (Markov Condition). Let V be a set of variables, G a Bayesian
network over V , and P a joint probability distribution over V . Then G and P
satisfy the Markov condition if for every X ∈ V , variable X is stochastically
independent of its non-descendants in G given its parents in G. (The notions
descendant and parent carry the standard meaning as in graph theory.)

Definition 3 (d-separation). Let G be a Bayesian network over variables V .
Two nodes X and Y are d-separated by a set of nodes S ⊆ V \ {X, Y } if for
every path p connecting X and Y ,

1. there exists some collider Z on p such that S does not contain Z or any
descendant of Z, or

2. set S contains a node in p which is not a collider on p.

For example, in Fig. 1, nodes sprinkler and rain are d-separated by {season},
but sprinkler and rain are not d-separated by {season, wet}. In this paper,
we use (A⊥⊥ B|S)G to denote that A and B are d-separated by S in graph G.
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The Markov condition tells us that, in a distribution P generated by a
Bayesian network G, (A⊥⊥ B|S)G implies (A⊥⊥ B|S)P . The current constraint-
based methods for recovering Bayesian network also assume the converse:
(A⊥⊥ B|S)P implies (A⊥⊥ B|S)G. This is the so-called faithfulness assump-
tion [15, p.13]. Hence given a sample generated by a Bayesian network, we can
get the d-separation information through testing stochastic independence among
variables. With the d-separation information, we can then reconstruct the topol-
ogy of the Bayesian network. This is the theoretical basis of constraint-based
algorithms. For example, the IC algorithm [11, p.50] is based on this idea.

1.2 Deterministic Relation and Stable Distribution

Definition 4 (deterministic relation). Let V be a set of variables, and P be
a distribution over V . A set of variables S ⊆ V determines a variable X ∈ V
in P , denoted by S ⇒P X, if there exists a (partial) function f such that for
every instantiation s of S, if P (S = s) 
= 0, then

1. P (X = f(s)|S = s) = 1, and
2. P (X 
= f(s)|S = s) = 0.

Therefore the relation S ⇒P X gives us a function from S to X .
A distribution P satisfies a set D of deterministic relations if every relation

in D holds in P .

Definition 5 (stable distribution). A distribution P generated by a Bayesian
network G is stable with respect to a set of deterministic relations D if

1. P satisfies D, and
2. every stochastic independence relation that holds in P also holds in other

distributions generated by G that satisfy D.

Therefore when there exist no deterministic relations, a distribution is faithful
to a Bayesian network if and only if it is stable.

2 How Deterministic Relations Affect Bayesian-Network
Discovery

This section shows why deterministic relations are not allowed in the current
constraint-based algorithms, by presenting an example where the IC algorithm
fails because of deterministic relations.

2.1 An Example Where the IC Algorithm Fails

Pearl’s IC algorithm is a typical constraint-based algorithm. The IC algorithm
outputs a pattern of the target Bayesian network. Every Bayesian network G
defines an equivalence class CG of Bayesian networks that have the same set of
d-separation relations. A pattern G′ of G is a partially directed graph with the
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skeleton of G such that an arrow is in G′ if and only if it is in every Bayesian
network in CG.

The main steps of the IC algorithm are sketched in Fig. 2.

Input: A sample from a faithful distribution P generated by a Bayesian network G
over variables V .

Output: The pattern of G.
Stage 1: Form the skeleton of the graph. For every pair of variables X and Y in V ,

connect X − Y in G if X and Y are dependent conditional on every set
S ⊆ V \ {X, Y }.

Stage 2: Identify colliders. For every pair of variables X and Y nonadjacent in the
resulted graph and every common neighbor Z, if (X⊥⊥ Y |S)P for some S
not containing Z, then Z must be a collider on path X − Z − Y and we can
direct the edges as X → Z ← Y .

Stage 3: Maximally complete the partial directed graph by the constraints that (1)
a Bayesian network is acyclic and (2) no more unshielded collider should
appear in any consistent DAG extension. (A collider on a path is unshielded
if its left and right neighbors and itself do not form a clique in the graph.)

Fig. 2. Outline of the IC algorithm [11]

To see how the IC algorithm fails when deterministic relations exist, we first
examine a simple example.

Example 1. Suppose the Bayesian network in Fig. 1 has no deterministic rela-
tion among variables, then, given a sample generated from the structure, the IC
algorithm is expected to output a partially directed graph as shown in Fig. 3(a).
Now impose a deterministic relation: the sidewalk is wet whenever it rains or
the sprinkler is on, and not wet otherwise (i.e., wet = T ⇐⇒ sprinkler =
T ∨ rain = T ). With this seemingly harmless restriction on data, the IC algo-
rithm fails to recover the Bayesian network. Actually, the IC algorithm outputs
a partially directed graph as shown in Fig. 3(b). In this partially directed graph,
slippery is shown to have no causal relation with any other variables, a claim
which is not reasonable.

The IC algorithm outputs an incorrect Bayesian network because the faith-
fulness assumption fails when deterministic relations exists among variables.
In this particular example, {sprinkler, rain} determines wet; therefore wet
and slippery are stochastically independent given sprinkler and rain (i.e.,
(wet⊥⊥ slippery|{sprinkler, rain})P ). Hence the IC algorithm removes the
edge between wet and slippery because of this stochastic independence (see
Stage 1 of Fig. 2). But on the other hand, in Fig. 1, wet and slippery are not
d-separated by other variables (in particular, ¬(wet⊥⊥ slippery|{sprinkler,
rain})G). Hence the edge between wet and slippery should not be removed.

2.2 Failure of Faithfulness Due to Deterministic Relations

We have seen in the previous section that deterministic relations may introduce
stochastic independence relations which do not correspond to d-separations in a
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season

sprinkler rain

wet

slippery

(a)

season

sprinkler rain

wet

slippery

(b)

Fig. 3. Outputs of the IC algorithm. 3(a) is the output when there exists no determin-
istic relation; 3(b) is the output when {sprinkler,rain} determines wet.

Bayesian network. In this section, we try to characterize the additional indepen-
dence relations introduced by deterministic relations so that we can distinguish
them in our algorithm.

Lemma 1. Let P be a distribution over variables V . Let S ⊆ V and X ∈ V .

1. If S ⇒P X, then U ⇒P X for every U such that S ⊆ U ⊆ V .
2. If S ⇒P X, then there exists a minimal set W ⊆ S such that W ⇒P S.

Proof. 1. Let X = f(S) and πU
S be the projection function from U to S. Then

f ◦ πU
S is a function that maps U into X .1

2. This is a direct consequence of S’ being finite. -.

The following lemma shows how a deterministic relation introduces a set of
stochastic independence relations.

Lemma 2. Let P be a distribution over a set of variables V . Let X ∈ V and
S ⊆ V . If S ⇒P X, then (X⊥⊥ Y |W )P for every Y ∈ V and for every W such
that S ⊆ W ⊆ V .

Proof. Suppose S ⇒P X . Then W ⇒P X by Lemma 1. Let X = f(W ); then

P (X = x|W = w) =

{
1 if x = f(w)
0 otherwise.

On the other hand

P (X = x, Y = y|W = w) =

{
P (Y = y|W = w) if x = f(w)
0 otherwise.

Therefore P (X = x, Y = y|W = w) ≡ P (X = x|W = w) · P (Y = y|W = w).
That is, (X⊥⊥ Y |W )P . -.
1 Readers familiar with Armstrong’s axioms may recognize that the statement follows

from the augmentation rule and the decomposition rule [16, p. 218].



Learning Bayesian Networks in Semi-deterministic Systems 235

In Example 1, {sprinkler, rain} is the minimum set that determines wet.
Then the stochastic independencies introduced by this deterministic relation in-
clude (wet⊥⊥ slippery|{sprinkler, rain})P and (wet⊥⊥ season|{sprinkler,
rain})P . Therefore at Stage 1 of the IC algorithm, the edges wet − slippery
and season− wet are removed.

We have seen that a deterministic relation S ⇒P X introduces probability
values 0 and 1, and hence a conditional independence relation (X⊥⊥ Y |W )P for
every W ⊇ S and every Y ∈ V \ (W ∪ {X}). We argue that no other condi-
tional independence relations will be introduced in a stable distribution. Let P
be a stable distribution generated by G. Suppose that W 
⇒P X , W 
⇒P Y ,
and ¬(X⊥⊥ Y |W )G. Then there exists x, y, and w such that 0 < P (X =
x|W = w) < 1 and 0 < P (Y = y|W = w) < 1. Assume for contradiction
that P (X = x, Y = y|W = w) = P (X = x|W = w) ·P (Y = y|W = w). Then we
can perturb distribution P such that P (X = x, Y = y|W = w) 
= P (X = x|W =
w) ·P (Y = y|W = w), which contradicts P ’s being stable. The perturbation can
be achieved, for example, by perturbing the marginal distribution P (X |Pa(X)),
where Pa(X) contains all parents of X , provided Pa(X) 
⇒P X . Such perturba-
tion breaks the equality P (X = x, Y = y|W = w) = P (X = x|W = w) · P (Y =
y|W = w) because on the one hand X and Y are not d-separated and on the
other hand P (X = x|W = w) and P (Y = y|W = w) do not take extreme
values 0 or 1.

3 Recover Bayesian Networks with Deterministic
Relations

In this section, we discuss how to recover a Bayesian network if we already know
all the deterministic relations. First we look at a problem that determinism may
impose on a learning algorithm.

3.1 Statistical Indistinguishability Imposed by Determinism

We have seen that deterministic relations may introduce stochastic independence
relations which do not correspond to d-separations in a Bayesian network. If we
can remove just those additional independence relations, then we get a com-
plete set of d-separations and hence can recover the Bayesian network. However,
some stochastic independence relation can be explained by both a determinis-
tic relation and a d-separation. Therefore, we may not know which stochastic
independence relation is additional.

Example 2. In Fig. 4, we are asked to distinguish two Bayesian networks from a
stably generated distribution P . Suppose that we know {sprinkler, rain} ⇒P

wet, and hence expect to observe the stochastic independence (season⊥⊥ wet|
{sprinkler, rain})P . Should there be an edge between season and wet? Actu-
ally we cannot tell. If there exists no edge between season and wet (see Fig. 4(a)),
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season

sprinkler rain

wet

slippery

(a)

season

sprinkler rain

wet

slippery

(b)

Fig. 4. Two possible structures with the same set of stochastic independence relations,
when sprinkler and rain together determine wet

then the stochastic independence (season⊥⊥ wet|{sprinkler, rain})P can be
explained by both the deterministic relation {sprinkler, rain} ⇒P wet and
the d-separation (season⊥⊥ wet|{sprinkler, rain})G. If there exists an edge be-
tween season and wet (see Fig. 4(b)), then the stochastic independence (season
⊥⊥ wet|{sprinkler, rain})P can still be explained by the deterministic relation
{sprinkler, rain} ⇒P wet alone.

3.2 A Sufficient Condition for Identifiability

Example 2 shows a situation where deterministic relations prevent us from sin-
gling out the correct Bayesian network. Therefore, we need to find a subclass of
problems in which we can avoid such situations. One observation from Exam-
ple 2 is that {sprinkler, rain} is the only set that d-separates season and wet,
and it also determines wet. This motivates the following condition.

Condition 1. Let G be a Bayesian network and P be a stable distribution gen-
erated by G. For every pair of variables X and Y nonadjacent in G, there exists
a set S such that the following three statements are satisfied:

1. S d-separates X and Y ,
2. S 
⇒P X,
3. S 
⇒P Y .

In Example 2, network G and distribution P do not satisfy Condition 1, since
{sprinkler, rain}, the only set that d-separates season and wet, determines
wet.

Condition 1 first guarantees that we can identify the skeleton of a Bayesian
network.

Lemma 3. If G and P satisfy Condition 1, then the adjacency between every
pair of variables in G is identifiable from P , provided we know all deterministic
relations in P .
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Proof. Let X and Y be two variables in G. We check if there exists a set S
such that (*) S 
⇒P X , S 
⇒P Y , and (X⊥⊥ Y |S)P . If such an S is found, we
know that X and Y are nonadjacent, since (X⊥⊥ Y |S)G follows from (*) and
P ’s being stable. If no such S is found, then by Condition 1, X and Y must be
adjacent. -.

Condition 1 also guarantees that we can identify the colliders on a Bayesian
network, provided we have a correct skeleton.

Lemma 4. Let G and P be satisfying Condition 1, and (X, Y ) be a pair of
nonadjacent nodes with a common neighbor Z. Then it is identifiable from P
whether Z is a collider on the path X−Z−Y , provided we know all deterministic
relations in P .

Proof. Since G and P satisfy Condition 1, there exists a set S such that S d-
separates X and Y , S 
⇒P X , and S 
⇒P Y . Suppose that Z is a collider on
the path X − Z − Y . Then Z 
∈ S, otherwise X and Y are d-connected by path
X − Z − Y . On the other hand, suppose that Z is not a collider on the path
X −Z −Y . Then Z ∈ S, otherwise X and Y are d-connected by path X −Z −Y .
In other words, Z is a collider if and only if Z 
∈ S. -.

Proposition 1. Let G be a Bayesian network and P be a stable distribution
generated by G. If G and P satisfy Condition 1, then the pattern of G is identi-
fiable from P .

Proof. Theorem 1 in [17] states that a skeleton and a set of colliders on it
uniquely define a pattern. Then the proposition follows directly from Lemma 3
and Lemma 4. -.

3.3 Improved IC Algorithm

With Proposition 1, we are ready to introduce our algorithm.
If a Bayesian network and its stable distribution satisfy Condition 1, and if

we abstain from relating the additional independencies to d-separations in the
Bayesian network, then we can avoid the situation in Section 2.1. Fig. 5 shows
a modest modification to the IC algorithm. Given an independence relation
caused by deterministic relations, the algorithm simply ignores it. Proposition 1
guarantees that the algorithm returns a valid pattern under Condition 1.

3.4 Detecting Deterministic Relations

Given a set of deterministic relations, the algorithm described in Fig. 5 recov-
ers the Bayesian network. But how can we get the deterministic relations in a
dataset?

There are various ways to detect deterministic relations among variables.
Here we only consider detecting deterministic relations using association-rule
miners. The advantage of this choice is that there are many reliable and efficient
association-rule mining algorithms (e.g., Apriori [1], Tertius [2]). Since we are
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Input: A sample from a stable distribution P of G.
Output: A pattern of G.
Stage 1: Form the skeleton of the graph. For every pair of variables X and Y in V ,

connect X − Y in G if X and Y are dependent conditional on every set
S ⊆ V \ {X, Y } such that S �⇒P X and S �⇒P Y .

Stage 2: Identify colliders. For every pair of variables X and Y nonadjacent in the
resulted graph and every common neighbor Z, if (X⊥⊥ Y |S)P for some S
not containing Z and S �⇒P X and S �⇒P Y , then direct the edges as
X → Z ← Y .

Stage 3: Maximally complete the partial directed graph by the constraints that (1)
a Bayesian network is acyclic and (2) no more unshielded colliders should
appear in any consistent DAG extension.

Fig. 5. A modified IC algorithm

interested in only the rules with confidence equal to 100%, the execution of a
miner is expected to be relative fast.

Given two sets of disjoint variables W and V , if for every possible instantiation
w of W with nonzero support, there exists a rule “if W = w then V = v” with
confidence 100%, then we know that every variable in V is determined by W .
We are interested in only the deterministic relations of singleton right-hand-side.
For every pair of sets W and V , we then need to decompose V so that we have
a set containing a deterministic relation W ⇒P X for each X ∈ V .

4 Experimental Results

In this section, we evaluate our method with a dataset from the University
of Regina Artificial Life (URAL) program [4, 5, 3, 6]. This dataset is about the
interaction between a robot and environment. The robot moves around on an
8×8 square board. The location of the robot is described by coordinate variables
x and y. The robot can take an action, denoted by a, to move left, right, up, or
down. Food, denoted by f , is located somewhere on the board, and, if found by
the robot, enables it to continue moving around. Each of the variables (x, y, f ,
and a) is measured at three consecutive times. Karimi used twelve variables to
describe them: x1, y1, f1, a1, x2, y2, f2, a2, x3, y3, f3, a3. The system can be

a3

f1

a1

x1

y1

f2

a2

x2

y2

x3

y3

f3

Fig. 6. The target Bayesian network
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summarized as a Bayesian network in Fig. 6. In this system, we expect that a1
and x1 determine x2, and a1 and y1 determine y2. Similarly, a2 and x2 determine
x3, and a2 and y2 determine y3.

The dataset contains 9998 examples sampled from the causal system. Karimi
reported in his PhD thesis [4] that both the PC algorithm and the FCI algo-
rithm from the Tetrad program [12] return incorrect Bayesian networks over this
dataset. We replicate the experiment with an implementation of the PC algo-
rithm in the Bayes Net Toolbox (BNT) for Matlab [9]. The structure returned
by the PC algorithm is shown in Fig. 7(a). It shows that nodes f2 and f3 are
isolated variables which do not have causal connections with other variables,
which is certainly incorrect.

a3

f1

a1

x1

y1

f2

a2

x2

y2

x3

y3

f3

(a) The network returned by the original IC algorithm

a3

f1

a1

x1

y1

f2

a2

x2

y2

x3

y3

f3

(b) The network returned by the modified IC algorithm

Fig. 7. Outputs from the IC algorithm and the modified IC algorithm

We use the association rule miner Apriori in Weka 3 [18] to discover deter-
ministic relations. The returned rules include: {a1, x1} ⇒P x2, {a1, x2} ⇒P x1,

{a1, y1} ⇒P y2, {a1, y2} ⇒P y1,
{a2, x2} ⇒P x3, {a2, x3} ⇒P x2,
{a2, y2} ⇒P y3, {a2, y3} ⇒P y2.

The rules such as {a1, x2} ⇒P x1 show that an event may functionally depend
on another event that happened later. We initially failed to realize this; but the
association rule miner effectively discovered this kind of deterministic relations.

We feed the discovered deterministic relations to the modified IC algorithm
in Fig. 5. The returned Bayesian network is shown in Fig. 7(b); it is identical
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to the one in Fig. 6. Hence, by using the detected deterministic relations, we
prevent the edges y2 − f2, x2 − f2, y3 − f3, and x3 − f3 from being removed, and
recover the correct Bayesian network.

5 Discussion and Open Problems

In this paper, we have shown that the existence of deterministic relations does
not necessarily prevent us from inferring Bayesian networks from observational
data, as long as we can correctly identify those deterministic relations and a
certain condition about the network and distribution is satisfied. Note that noise
in data actually breaks deterministic relations; hence noise is not a special issue
for our method compared to the IC algorithm.

Several open questions are worth pursuing. First, it would be interesting to
know in what situations we can infer causal direction through deterministic
relations. For example, suppose we have a partial order over variables such that
a variable with lower order cannot be a cause of a variable with higher order.
We know that A determines B, but not the other way around. If A has a higher
order than B, can we infer that variables in A are direct causes of variables in
B? In our robotics example, we have the deterministic relation {x1, a1} ⇒P x2
and we know that x2 is always realized after x1 and a1; then we may infer that
x1 and a1 are direct causes of x2. Mackie’s INUS explanation of causality [8]
may help here.2 Second, compared to mining association rules, is there a more
efficient way to detect deterministic relations? It is well known that the existence
of deterministic relations may introduce an unusual Markov boundary [10]. We
may be able to use Markov boundaries to infer deterministic relations.
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Abstract. Abstract argumentation systems are formalisms for defeasi-
ble reasoning where some components remain unspecified, the structure
of arguments being the main abstraction. In the dialectical process car-
ried out to identify accepted arguments in the system some controver-
sial situations may appear. These relate to the reintroduction of argu-
ments into the process which cause the onset of circularity. This must be
avoided in order to prevent an infinite analysis. Some systems apply the
sole restriction of not allowing the introduction of previously considered
arguments in an argumentation line. However, repeating an argument is
not the only possible cause for the risk mentioned. A more specific re-
striction needs to be applied considering the existence of subarguments.
In this work, we introduce an extended argumentation framework where
two kinds of defeat relation are present, and a definition for progressive
defeat path.

1 Introduction

Different formal systems of defeasible argumentation have been defined as forms
of representing interesting characteristics of practical or common sense reason-
ing. The central idea in these systems is that a proposition will be accepted
if there exists an argument that supports it, and this argument is regarded as
acceptable with respect to an analysis performed considering all the available
counterarguments. Therefore, in the set of arguments of the system, some of
them will be acceptable or justified or warranted arguments, while others will be
not. In this manner, defeasible argumentation allows reasoning with incomplete
and uncertain information and is suitable to handle inconsistency in knowledge-
based systems.

Abstract argumentation systems [1, 3, 12] are formalisms for defeasible reason-
ing where some components remain unspecified, being the structure of arguments
the main abstraction. In this type of systems, the emphasis is put on elucidating
semantic questions, such as finding the set of accepted arguments. Most of them
are based on the single abstract notion of attack represented as a relation among
the set of available arguments. From that relation, several argument extensions
are defined as sets of possible accepted arguments.
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For example, the argumentation framework defined by Dung in [1] is a pair
(AR, attacks), where AR is a set of arguments, and attacks is a binary relation
on AR, i.e. attacks ⊆ AR × AR. In Dung’s approach several semantic notions
are defined as argument extensions. For example, a set of arguments S is said
to be conflict-free if there are no arguments A, B in S such that A attacks B.
The set of accepted arguments is characterized using the concept of acceptabil-
ity. An argument A ∈ AR is acceptable with respect to a set of arguments S
if and only if every argument B attacking A is attacked by an argument in S.
It is also said that S is defending A against its attackers, and this is a central
notion on argumentation. A set R of arguments is a complete extension if R
defends every argument in R. A set of arguments G is a grounded extension
if and only if it is the least (with respect to set inclusion) complete exten-
sion. The grounded extension is also the least fixpoint of a simple monotonic
function:

FAF (S) = {A : A is acceptable wrt S}.

In [1], theorems stating conditions of existence and equivalence between these
extensions are also introduced.

Although the area of abstract argumentation has greatly evolved, the task of
comparing arguments to establish a preference is not always successful. Having a
preference relation in the set of arguments is essential to determine a defeat rela-
tion. In [5], an abstract framework for argumentation with two types of argument
defeat relation are defined among arguments. In the dialectical process carried
out to identify accepted arguments in the system, some controversial situations
may be found, as previously presented in [10, 2]. These situations are related to
the reintroduction of arguments in this process, causing a circularity that must
be avoided in order to prevent an infinite analysis. Consider for example three
arguments A, B and C such that A is a defeater of B, B is a defeater of C and C
is a defeater of A. In order to decide the acceptance of A, the acceptance of its
defeaters must be analyzed first, including A itself.

An argumentation line is a sequence of defeating arguments, such as [A, B]
or [A, B, C, A] in the system above. Whenever an argument A is encountered
while analyzing arguments for and against A, a circularity occurs. Some sys-
tems apply a single restriction to argumentation lines: no previously consid-
ered argument is reintroduced in the process. In [10], the relation between cir-
cularity in argumentation and the comparison criteria used in the system is
established. Arguments in such situations are called fallacious arguments and
the circularity itself is called a fallacy. In somes systems such as [3, 4], these
arguments are classified as undecided arguments: they are not accepted nor
rejected.

In this work, we show that a more specific restriction needs to be applied,
other than to the prohibit reintroduction of previous arguments in argumentation
lines. In the next section, we define the extended abstract framework in order to
characterize progressive argumentation lines.
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2 Abstract Argumentation Framework

Our abstract argumentation framework is formed by four elements: a set of
arguments, the subargument relation, a binary conflict relation over this set,
and a function used to decide which argument is preferred given any pair of
arguments.

Definition 1. An abstract argumentation framework is a quartet 〈AR, &,C, π〉,
where AR is a finite set of arguments, & is the subargument relation, C is a
symmetric and anti-reflexive binary conflict relation between arguments, C ⊆
AR×AR, and π : AR×AR −→ 2AR is a preference function among arguments.

Here, arguments are abstract entities [1] that will be denoted using calligraphic
uppercase letters. No reference to the underlying logic is needed since we are ab-
stracting the structure of the arguments (see [6, 11, 8, 9, 2] for concrete systems).
The symbol & denotes subargument relation: A & B means “A is a subargument
of B”. Any argument A is considered a superargument and a subargument of
itself. Any subargument B & A such that B 
= A is said to be a non-trivial
subargument. Non-trivial subargument relation is denoted by symbol �. The
following notation will be also used: given an argument A then A− will repre-
sent a subargument of A, and A+ will represent a superargument of A. When
no confusion may arise, subscript index will be used for distinguishing different
subarguments or superarguments of A.

Example 1. Let Φ = 〈AR, &,C, π〉 be an argumentation framework, where:
AR = {A, B, C, D, E}, B & A, D & C, C = {{C, B}, {C, A}, {E , D}, {E, C}}1,
π(C, B) = {C}, and π(E , D) = {E} 2.

The conflict relation between two arguments A and B denotes the fact that these
arguments cannot be accepted simultaneously since they contradict each other.
For example, two arguments A and B that support complementary conclusions
cannot be accepted together. Conflict relations are denoted by unordered pairs
of arguments, and the set of all pairs of arguments in conflict on Φ is denoted
by C. Given a set of arguments S, an argument A ∈ S is said to be in conflict
in S if there is an argument B ∈ S such that (A, B) ∈ C. Given an argument A
we define Conf (A) as the set of all arguments X ∈ AR such that (A, X ) ∈ C.
As stated by the following axiom, conflict relations have to be propagated to
superarguments.

Axiom 1 (Conflict inheritance). Let Φ =〈AR, &,C, π〉 be an argumentation
framework, and let A and B be two arguments in AR. If A and B are in conflict,
then the conflict is inherited by any superargument of A and B. That is, if
(A, B) ∈ C, then (A, B+) ∈ C, (A+, B) ∈ C, and (A+, B+) ∈ C, for any
superargument A+ of A and B+ of B.
1 When describing elements of C, we write {A, B} as an abbreviation for

{(A, B), (B, A)}, for any arguments A and B in AR.
2 Note that only the relevant cases, those involving conflicting arguments, of function

π are shown.
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The constraints imposed by the conflict relation lead to several sets of possible
accepted arguments. For example, if AR = {A, B} and (A, B) ∈ C, then {A}
is a set of possible accepted arguments, and so is {B}. Therefore, some way of
deciding among all the possible outcomes must be devised. In order to accomplish
this task, the function π is introduced in the framework along with the set of
arguments and the conflict relation. The function π will be used to evaluate
arguments, comparing them under a preference criterion.

Definition 2. Given a set of arguments AR, an argument comparison criterion
is a preference function π : AR × AR −→ 2AR, and π(A, B) ∈ ℘({A, B}).

Remark 1. If π(A, B) = {A} then A is preferred to B. In the same way, if
π(A, B) = {B} then B is preferred to A. If π(A, B) = {A, B} then A and B
are arguments with equal relative preference. If π(A, B) = ∅ then A and B are
incomparable arguments. Observe that π(A, B) = π(B, A).

Given an argumentation framework 〈AR, &,C, π〉 where A and B are in AR,
and (A, B) ∈ C, according to definition 2 there are four possible outcomes:
– π(A, B) = {A}. In this case a defeat relation is established. Because A is

preferred to B, in order to accept B it is necessary to analyze the acceptance
of A, but not the other way around. It is said that argument A defeats
argument B, and A is a proper defeater of B.

– π(A, B) = {B}. In a similar way, argument B defeats argument A, and
therefore B is a proper defeater of A.

– π(A, B) = {A, B}. Both arguments are equivalent, i.e. there is no relative
difference of conclusive force, so A and B are said to be indistinguishable
regarding the preference relacion π. No proper defeat relation can be estab-
lished between these arguments.

– π(A, B) = ∅. Both arguments are incomparable according to π, and no proper
defeat relation is inferred.

In the first two cases, a concrete preference is made between two arguments,
and therefore a defeat relation is established. The preferred arguments are called
proper defeaters. In the last two cases, no preference is made, either because both
arguments are indistinguishable from each other or because they are incompa-
rable. These cases are slightly different. If the arguments are indistinguishable,
then according to π they have the same relative conclusive force. For example, if
the preference criterion establishes that smaller3 arguments are preferred, then
two arguments of the same size are indistinguishable. On the other hand, if the
arguments are incomparable then π is not able to establish a relative difference
of conclusive force. For example, if the preference criterion states that argument
A is preferred to B whenever the premises of A are included in the premises of
B, then arguments with disjoint sets of premises are incomparable. This situ-
ation seems to expose a limitation of π, but must be understood as a natural
behaviour. Some arguments just cannot be compared.
3 In general, the size of an argument may be defined on structural properties of argu-

ments, as the number of logical rules used to derive the conclusion or the number of
propositions involved in that process.
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When two conflictive arguments are indistinguishable or incomparable, the
conflict between these two arguments remains unresolved. Due to this situation
and to the fact that the conflict relation is a symmetric relation, each of the
arguments is blocking the other one and it is said that both of them are blocking
defeaters [7, 11]. An argument B is said to be a defeater of an argument A if B
is a blocking or a proper defeater of A.

Example 2. Let Φ = 〈AR, &,C, π〉 be an argumentation framework, where:
AR = {A, B, C, D}, C = {{A, B}, {B, C}, {C, D}} and π(A, B) = {A}, π(B, C) =
{B} and π(C, D) = {C, D}. Here, argument A is a proper defeater of argument
B, while C is a blocking defeater of D and vice versa, D is a blocking defeater
of C.

Abstract frameworks can be depicted as graphs, with different types of arcs. We
use the arc ( • ) to denote the subargument relation. An arrow ( �� ) is
used to denote proper defeaters and a double-pointed arrow ( �� �� ) connects
blocking defeaters. In figure 1, a simple framework is shown. Argument C is a
subargument of A. Argument B is a proper defeater of C and D is a blocking
defeater of B and viceversa.

A � �

����
��

��
��

�
B

C �

•

�
��

����������
D

Fig. 1. Defeat graph

Some authors leave the preference criteria unspecified, even when it is one
of the most important components in the system. However, in many cases it is
sufficient to establish a set of properties that the criteria must exhibit. A very
reasonable one states that an argument is as strong as its weakest subargument
[12]. We formalize this idea in the next definition.

Definition 3 (Monotonic preference relation). A preference relation π is
said to be monotonic if, given π(A, B) = {A}, then π(A, B) = π(A, B+

i ), for any
arguments A and B in Φ.

We will assume from now on that the criterion π included in Φ is monotonic.
This is important because any argument A defeated by another argument B
should also be defeated by another argument B+.

In figure 2, a simple framework is depicted corresponding to example 2. Here
argument C defeats B, but it should also be a defeater of A, because B is its
subargument. The same holds for arguments E , C and D.

In figure 3, argument B is shown defeating argument A via its subargument
Ai and two valid ways to depict this situation. The arrow denoting the defeat
relation between B and A as shown in (a), may be omitted if subargument arcs
are drawn in the graph, as in (b).
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A � C �

������������� E �

������������

B �

•

D �

•

Fig. 2. An abstract framework

� A � A

B � ��

		��������
� Ai B � �� �

•

Ai

(a) (b)

Fig. 3. Defeating subarguments

3 Argumentation Semantics

In [1], several semantic notions are defined. Other forms of clasifying arguments
as accepted or rejected can be found in [3, 4]. However, these concepts are ap-
plied to abstract frameworks with single attack relation, as the one originally
shown by Dung. It is widely accepted that defeat between arguments must be
defined over two basic elements: contradiction and comparison. The first one
states that when two arguments are contradictory and therefore cannot be ac-
cepted simultaneously. The second one determines which of these argument is
preferred to the other, using a previously defined comparison method. Due to the
possibility of lack of decision at comparison stage, the outcome of this process is
not always equivalent to an attack relation as in [1]. According to this situation,
our framework includes two kind of relations: proper defeat and blocking defeat.
We will focus in this section on the task of defining the structure of a well-formed
argumentation line, from an abstract point of view.

Definition 4 (Defeat path). A defeat path λ of an argumentation framework
〈AR, &,C, π〉 is a finite sequence of arguments [A1, A2, . . . , An] such that ar-
gument Ai+1 is a defeater of argument Ai for any 0 < i < n. The number of
arguments in the path is denoted |λ|.

A defeat path is a sequence of defeating arguments. The length of the defeat
path is important for acceptance purposes, because an argument A defeated by
an argument B may be reinstated by another argument C. In this case, it is said
that argument C defends A against B. Note that three arguments are involved
in a defense situation: the attacked, the attacker and the defender.

Definition 5 (Defeat paths for an argument). Let Φ =< AR,C, π > be an
argumentation framework and A ∈ AR. A defeat path for A is any defeat path
starting with A [A, D1, D2, . . . , Dn]. With DP (A) we will denote the set of all
defeat paths for A.
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If the length of a defeat path for argument A is odd, then the last argument in
the sequence is playing a supporting or defender role. If the length is even, then
the last argument is playing an interfering or attacker role [10, 2].

Definition 6 (Supporting and interfering paths). Let Φ be an argumen-
tation framework, A an argument in Φ and λ a defeat path for A. If |λ| is odd
then λ is said to be a supporting defeat path for A. If |λ| is even, then λ is said
to be an interfering defeat path for A.

The notion of defeat path is very simple and only requires that any argument in
the sequence must defeat the previous one. Under this unique constraint, which
is the basis of argumentation processes, it is possible to obtain some controversial
structures, as shown in the next examples.

Example 3. Let Φ = 〈AR, &,C, π〉 an argumentation framework where

AR = {A, B, C},
C={{A, B}, {B, C}, {A, C}} and
π(A, B) = {B}, π(B, C) = {C}, π(A, C) = {}

The sequence λ = [A, B, C, A] is a defeat path in Φ, because B is a proper
defeater of A, C is a proper defeater of B and A and C are blocking defeaters of
each other. The argument A appears twice in the sequence, as the first and last
argument. Note that in order to analyze the acceptance of A, it is necessary to
analyze the acceptance of every argument in λ, including A. This is a circular
defeat path for A.

Example 4. Let Φ = 〈AR, &,C, π〉 an argumentation framework where

AR = {A, B, C A1
−}

C={{A1
−, B}, {B, C}, {A1

−, C}} and
π(A, B) = {B}, π(B, C) = {C}, π(A1

−, C) = {}, π(A, C) = {}

In this framework a subargument of A is included. By Axiom 1 if (A1
−, B) ∈ C

then also (A, B) ∈ C. The same is true for (A, C), due the inclusion of (A1
−, C)

in C. According to this, the sequence λ = [A, B, C, A1
−] is a defeat path in Φ,

because B is a proper defeater of A, C is a proper defeater of B and A1
− and

C are blocking defeaters of each other. Note that even when no argument is
repeated in the sequence, the subargument A1

− was already taken into account
in the argumentation line, as argument B is its defeater. This sequence may be
considered another circular defeat path for A.

Controversial situations are clear in examples 3 and 4. In the next example some
piece of information is repeated in the sequence, but this is not a controversial
situation.

Example 5. Let Φ = 〈AR, &,C, π〉 an argumentation framework where

AR = {A, B, C A1
−, A2

−}
C={{A1

−, B}, {B, C}, {A2
−, C} . . .} and

π(A, B) = {B}, π(B, C) = {C}, π(A2
−, C) = {}, π(A, C) = {}
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Again, because (A1
−, B) ∈ C then (A, B) ∈ C. Also (A, C) ∈ C, because

(A1
−, B) ∈ C. According to this, the sequence λ = [A, B, C, A2

−] is a defeat
path in Φ, because B is a proper defeater of A, C is a proper defeater of B and
A2

− and C are blocking defeaters of each other. In this case, a subargument
A2

− of A appears in the defeat path for A. However, this is not a controversial
situation, as A2

− was not involved in any previous conflict in the sequence.
Argument B is defeating A just because (A1

−, B) ∈ C, and is not related to
A2

−. Defeat path λ is correctly structured.
Note that [A, C] is also a defeat path for A. In this case, as stated in example

4, A2
− should not appear in the sequence.

The initial idea of restricting the inclusion of arguments previously considered
in the sequence is not enough. The examples 3, 4 and 5 show that the character-
ization of well-formed argumentation lines requires more restrictions. Two main
problematic situations must be taken into account, as shown in figures 4(a) and
4(b). The marked argument is reinserted in the defeat path. In the first case, it
appears again as a defeater of C. In the second case, Ai is indirectly reinserted
by including a superargument in the sequence.

� � ��� · · ·�� A���

Ai B
�

•

��� · · ·�� ��� �
� ��
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�

�
� �

��

•

�
� ��

�

�

�� �

•

���

A B C A Ai B
(a) (b)

Fig. 4. (a) Direct reinsertion and (b) indirect reinsertion

Both situations are controversial and some well-formed structure must be
devised. In the next section we explore these ideas.

4 Progressive Defeat Paths

In this section, we present the concept of progressive defeat paths, a notion
related to acceptable argumentation lines defined for a particulary concrete sys-
tem in [2]. This characterization of well-formed defeat path is introduced in the
context of our abstract argumentation framework. First, we formalize the con-
sequences of removing an argument from a set of arguments. This is needed
because it is important to identify the set of arguments available for use in
evolving defeat paths.

Suppose S is a set of available arguments used to construct a defeat path λ. If
an argument A in S is going to be discarded in that process (i.e., its information
content is not taken into account), then every argument that includes A as a
subargument should be discarded too.
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Definition 7 (Argument extraction). Let S be a set of arguments and A an
argument in S. The operator  is defined as

S  A = S − Sp(A)

where Sp(A) is the set of all superarguments of A.

In figure 5, the extraction of arguments is depicted: S  A excludes A and all
of its superarguments.
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Fig. 5. Argument extraction

Example 6. Let S = {A, A+, B, B−, C} be a set of arguments. Then
S  A = {B, B−, C} and
S  B = {A, A+, B−, C}

As stated in Axiom 1, conflict relations are propagated through superarguments:
if A and B are in conflict, then A+ and B are also conflictive arguments. On
the other hand, whenever two arguments are in conflict, it is always possible to
identify conflictive subarguments. This notion can be extended to defeat rela-
tions. Let A and B be two arguments such that B is a defeater of A. Then both
arguments are in conflict and π(B, A) 
= {A}. By axiom 1, there may exist
a non-trivial subargument Ai � A such that (B, Ai) ∈ C. It is clear, as π is
monotonic, that π(B, Ai) 
= {Ai}, and therefore B is also a defeater of Ai. Thus,
for any pair of conflictive arguments (A, B) there is always a pair of conflictive
arguments (C, D) where C & A and D & B. Note that possibly C or D are trivial
subarguments, that is the reason for the existence of the pair to be assured.

Definition 8 (Core conflict). Let A and B be two arguments such that B is
a defeater of A. A core conflict of A and B is a pair of arguments (Ai, B) where

– Ai & A,
– B is a defeater of Ai and
– there is no other argument Aj � Ai such that Aj is defeated by B.

The core conflict is the underlying cause of a conflict relation between two ar-
guments, due to the inheritance property. Observe that the core conflict is not
necessarily unique. It is possible to identify the real disputed subargument, which
is causing other arguments to fall in conflict.

In figure 6, argument C defeats A because it is defeating one of its subargu-
ments B. The core conflict of A and C is B. In this case the defeat arc between
the superarguments may not be drawn.
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Fig. 6. Argument B is a core conflict

Definition 9 (Disputed subargument). Let A and B be two arguments such
that B is a defeater of A. A subargument Ai & A is said to be a disputed
subargument of A with respect to B if Ai is a core conflict of A and B.

The notion of disputed subargument is very important in the construction of de-
feat paths in dialectical processes. Suppose argument B is a defeater of argument
A. It is possible to construct a defeat path λ = [A, B]. If there is a defeater of
B, say C, then [A, B, C] is also a defeat path. However, C should not be a dis-
puted argument of A with respect to B, as circularity is introduced in the path.
Even more, C should not be an argument that includes that disputed argument,
because that path can always be extended by adding B again.

The set of arguments available to be used in the construction of a defeat path
is formalized in the following definition.

Definition 10 (Defeat domain). Let Φ = 〈AR, &,C, π〉 be an argumentation
framework and let λ = [A1, A2, . . . , An] be a defeat path in Φ. The function
Di(λ) is defined as

– D1(λ) = AR
– Dk(λ) = Dk−1(λ)  Bn, where Bn is the disputed subargument of Ak−1 with

respect to Ak in the sequence, with 2 ≤ k ≤ n.

The defeat domain discards controversial arguments. The function Dk(λ) de-
notes the set of arguments that can be used to extend the defeat path λ at stage
k, i.e., to defeat the argument Ak. Choosing an argument from Dk(λ) avoids
the introduction of previous disputed arguments in the sequence. It is important
to remark that if an argument including a previous disputed subargument is
reintroduced in the defeat path, it is always possible to reintroduce its original
defeater.

Therefore, in order to avoid controversial situations, any argument Ai of a
defeat path λ should be in Di−1(λ). Selecting an argument outside this set im-
plies the repetition of previously disputed information. The following definition
characterizes well structured sequences of arguments, called progressive defeat
paths.

Definition 11 (Progressive defeat path). Let Φ = 〈AR, &,C, π〉 be an ar-
gumentation framework. A progressive defeat path is defined recursively in the
following way:

– [A] is a progressive defeat path, for any A ∈ AR.
– If λ = [A1, A2, . . . , An], n ≥ 1 is a progressive defeat path, then for any de-

feater B of An such that B ∈Dn(λ), λ′ = [A1, A2, . . . , An, B] is a progressive
defeat path.
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Observe that defeat paths of examples 3 and 4 are not progressive. Progressive
defeat paths are free of circular situations and guarantees progressive argumen-
tation, as desired on every dialectical process. Note that it is possible to include
a subargument of previous arguments in the sequence, as long as it is not a
disputed subargument.
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�����
���

� B �






C
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•

•

�

•

�

•

C−

B−

A2 �

���������

Fig. 7. Controversial Situation

In figure 7 a controversial abstract framework is shown. For space reasons
we do not provide the formal specification, although it can be deduced from
the graph. There are seven arguments A1, A2, A−, B, B−, C, C−. There exists an
infinite defeat path [A1, B, C, A2, B, C..] which is not progressive. Lets construct
a progressive defeat path λ for argument A1. We start with λ = [A1]. The pool of
arguments used to select a defeater of A1 is D1(λ) = {A2, A−, B, B−, C, C−}.
The only defeater belonging to D1(λ) is B, with disputed subargument A−,
so we add it to λ. Now λ = [A1, B] and the pool of available arguments is
D2(λ) = {B, B−, C, C−}, where A− and its superarguments were removed.
C ∈ D2(λ) is a defeater of B so we add it to the path and now λ = [A1, B, C].
The potential defeater arguments are now in D3(λ) = {C, C−}. As there are no
defeaters of C in D3(λ), then the path can not be extended. Thus, the resulting
sequence [A1, B, C] is a progressive defeat path.

5 Conclusions

Abstract argumentation systems are formalisms for argumentation, where some
components remains unspecified, usually the structure of arguments. In the di-
alectical process carried out to identify accepted arguments in the system, some
controversial situations may be found, related to the reintroduction of arguments
in this process, causing a circularity that must be treated in order to avoid an
infinite analysis process. Some systems apply a single restriction to argumenta-
tion lines: no previously considered argument is reintroduced in the process. In
this work, we have shown that a more specific restriction need to be applied,
taking subarguments into account in the context of an extended argumentation
framework. We finally presented a new definition of progressive defeat path, based
on the concept of defeat domain, where superarguments of previously disputed
arguments are discarded.
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Abstract. Honorific agreement is one of the main properties of lan-
guages like Korean or Japanese, playing an important role in appropriate
communication. This makes the deep processing of honorific information
crucial in various computational applications such as spoken language
translation and generation. We argue that, contrary to the previous lit-
erature, an adequate analysis of Korean honorification involves a system
that has access not only to morpho-syntax but to semantics and prag-
matics as well. Along these lines, we have developed a typed feature
structure grammar of Korean (based on the framework of HPSG), and
implemented it in the Linguistic Knowledge Builder (LKB). The results
of parsing our experimental test suites show that our grammar provides
us with enriched grammatical information that can lead to the develop-
ment of a robust dialogue system for the language.

1 Basic Properties of Honorific Agreement

1.1 Subject Agreement

Honorification, one of the main features of spoken language in Korean, plays a
key role in proper and successful verbal communication ([1, 2, 3]).1 The Korean
honorific system basically requires that when the subject is in the honorific form
(usually with the marker -nim), the predicate also be inflected with the honorific
form -(u)si as in (1):2
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raphy), PST (past), SYN (syntax), SEM (semantics), RELS (relations), and POS
(part of speech).
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This type of agreement is often assumed to be purely pragmatic, mainly because
certain contexts allow disagreeing cases between the subject and the verb: the
utterance of (1b) can be felicitous when the speaker does not honor the referent
of the subject (marked by #). The possibility of having such disagreement has
often led to an assumption in the literature that the cooccurrence of -nim on the
subject and -si on the verb is a matter of gradience and appropriateness rather
than grammaticality (cf. [1, 4, 5]).

However, one often neglected fact is that this agreement constraint must be
observed when the subject is non-human as in (2) (cf. [3]):

In both examples, the nonhuman subject does not allow the presence of the
honorific marker -si in the verb. If we rely only on pragmatic information, we
would have difficulty understanding why, in contrast to the disagreement in (1b),
disagreement like that in (2) are rarely found in real language usages.

In addition, there exist agreement-sensitive syntactic phenomena such as aux-
iliary verb constructions. Consider examples with the negative auxiliary verb
anh- ‘not’:

As noted here, even though the subject is honored in each case, the honorific
marker on the main predicate in (3a) is optional with the auxiliary verb anh-
‘not’; in (3b) the marker must appear only on the auxiliary verb twu- ‘hold’;
meanwhile in (3c) the marker cannot appear on the auxiliary po ‘seem’. Such
clear contrasts, we can hardly attribute to pragmatic factors.

1.2 Addressee Agreement

Matters become more complicated when we consider the agreement triggered
by different types of verbal endings. Korean has at least two different endings
depending on the honoring relationship between speaker and addressee (cf. [1]):
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As noted here the verbal endings -e and -eyo are different with respect to ad-
dressee agreement. The ‘respectful declarative (resp.DECL)’ ending -eyo is used
when the social status of the addressee is higher than that of the speaker. The
data implies that not only the speaker but also the addressee plays a role in
proper communication strategies with respect to the honorification system.

2 Honorification in a Typed Feature Structure Grammar

A closer look at the honorific phenomena of the language in the previous section
suggests that an adequate theory of honorification aiming for integration into a
proper communication system requires not just complex pragmatic information
but also syntactic and semantic information. The basic framework of the gram-
mar we adopt for modelling the language is the typed feature structure grammar
of Head-Driven Phrase Structure Grammar. This framework, HPSG, seeks to
model human languages as systems of constraints on typed feature structures.
In particular, the grammar adopts the mechanism of a type hierarchy in which
every linguistic sign is typed with appropriate constraints and hierarchically or-
ganized. This system then allows us to express cross-classifying generalizations
about linguistic entities such as lexemes, stems, words, and phrases in the lan-
guage (cf. [6, 7, 4]).

2.1 Lexicon and Subject Agreement

Our grammar, named KPSG (Korean Phrase Structure Grammar), first assumes
that a nominal with -nim and a verbal with -si bear the head feature specification
[HON +]. This is supported by the contrast in the following:

As seen here, it is the honorific information on the head noun sensayng-nim in
(5a) that agrees with that of the verb.

With this head feature information, the grammar builds the honorific nominal
type (n-hon) from the basic lexeme (n-lxm) as represented in the following feature
structures:3

3 The information our grammar encodes for such lexeme entries is only the shaded
part: all the other information is inherited from its supertypes defined in the gram-
mar. For a more comprehensive system of morphology built within such a system,
see [6, 7].
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As seen in (6a), a nominal lexeme with no honorific marker -nim is underspecified
for the HON feature.4

Meanwhile, the subject of an honorific verbal element carries the feature
[HON +] in addition to the relevant pragmatic information:

The basic verbal lexeme type v-lxm in (7) does not carry any restriction on its
subject. However, the v-hon type with the -(u)si suffix adds the information that
its subject (the first element in the ARG-ST (argument structure)) is [HON +],
in addition to the information that the speaker is honoring the subject referent
as given in the CTXT value.

One of the key points in this system is that even though the [HON +] verb
selects a [HON +] subject, the subject of a nonhonorific verb can be either in
the honorific or nonhonorific form since its value is underspecified with respect

4 The boxed number here is used as a way of showing that semantic value of the
lexeme, n-lxm is identical with that of the honorific noun n-hon.
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to the verb. This then correctly allows disagreeing examples like (1)b where the
subject is [HON +] and the verb’s HON value is ‘boolean’:

The nonhonorific verb combines with the honorific subject with no honoring in-
tention from the speaker since the nonhonorific verb does not bear the pragmatic
constraint that the speaker honors the referent of the subject.

Yet the grammar blocks disagreeing cases like ( ) where an honorific verb
combines a nonhonorific subject:

These are simply not parsed since the honorific verb here would combine with the
[HON −] subject, violating the constraint in (6b). A noun like sensayng ‘teacher’
is [HON boolean], while sensayng-nim is [HON +], and canonical lexeme nouns
are [HON −].5

2.2 Object and Oblique Agreement

While subject honorification has a productive suffixal expression, there are some
lexically suppletive forms like poyp-e ‘see.HON-DECL’ and mosi-e ‘take.HON-
DECL’, which require their object to be in the honorific form:

Our grammar lexically specifies that these suppletive verbs require the object
to be [HON +] together with the pragmatic honoring relation. The following
is the lexical information that a suppletive verb like this accumulates from the
inheritance hierarchy:

5 Nouns such as taythonglyeng (‘president’) are inherently [HON +] without the hon-
orific marker nim.
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Such lexical information can easily block examples like (8a) where the object is
[HON −].6

Lexically suppletive forms like tuli-e ‘give.HON-DECL’ and yeccup-e
‘ask.HON-DECL’ require their oblique argument to be in the HON form
(nonhonorific forms are cwu-e and mwul-e, respectively). This is why the non-
honored oblique argument haksayng-eykey ‘student-DAT’ in (10b) is not accept-
able here:

Just like object agreement, our grammar assigns the HON restriction on its
dative argument together with the pragmatic honoring constraint:

Once again the grammar rules out examples like (10b) in which the dative ar-
gument haksayng-eykey ‘student-DAT’ is nonhonorific. However, nothing blocks
the grammar from generating examples like (12) where the dative argument
sensayng-nim-eykey ‘teacher-HON-DAT’ is [HON +] even if the verb cwu- ‘give’
is in the nonhonorific (unspecified) form:

2.3 Multiple Honorification

Given this system, we can easily predict that it is possible to have multiple
honorific examples in which subject agreement cooccurs with object agreement:
6 Notice here that unlike the case with subject agreement, here the pragmatic back-

ground information involves the honoring relationship between the subject and the
object. This implies that if there is a situation where the speaker honors the object,
a given example can be felicitous. In fact, we find a corpus example like the following
from our test suites:

We leave the issue of dealing with such examples for future research.
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The honorific suffix -si on the verb here requires the subject to be [HON +]
whereas the suppletive verb stem asks its object to be [HON +]. In such exam-
ples, the honorific marker in the verb can be optional or the verb can even be
replaced by the nonsuppletive form po- ‘seem’. However, the grammar does not
generate cases like the following:

(14a) is ruled out since the HON form -(u)si requires the subject to be [HON
+] whereas (14b) is ruled out since the suppletive form poyp- selects a [HON +]
object. We also can see that oblique agreement can occur together with subject
agreement:

Since the nonhonorific verb places no restriction on the subject, the grammar
allows the disagreement in (15b) and (15c). However, (15d) and (15e) cannot be
generated: the former violates subject agreement and the latter violates object
agreement.

2.4 Agreement in Auxiliary Constructions

The present honorification system in the KPSG can offer us a streamlined way
of explaining the agreement in auxiliary verb constructions we noted in sec-
tion 1.1. Basically there are three types of auxiliaries with respect to agreement
(see [8]):

Type I: In the construction with auxiliary verbs like anh- ‘not’, when the subject
is in the honorific form, the honorific suffix -si can optionally appear either on
the preceding main verb or on the auxiliary verb or on both:
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Type II: When the head auxiliary verb is one like po- ‘try’, twu- ‘hold’, and ci-
‘become’, subject honorification occurs only on the auxiliary verb. That is, the
preceding main verb with the specific COMP suffix form -a/e cannot have the
honorific suffix -si:

Type III: Unlike Type II, auxiliary verbs like po- ‘see’ and kath- ‘seem’ cannot
have the honorific suffix -si even if the subject is in the honorific form:

First, the agreement in Type I simply follows from the general assumption
that this kind of auxiliary verbs acts like a raising verb whose subject is identical
with that of the main verb:7

7 The semantic relation not-rel represents the predicate relation induced by the neg-
ative auxiliary verb anh-.
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The negative auxiliary verb with or without the -(u)si suffix selects as its argu-
ments a subject and a lexical complement whose subject is identical with the
auxiliary’s subject. This means when either one of the verbs requires an HON
subject, then the combination of the main verb as a complex predicate will also
require an HON subject.8

The verb in Korean cannot be an independent word without inflectional suf-
fixes. The suffixes cannot be attached arbitrarily to a stem or word, but need to
observe a regular fixed order. Reflecting this, the verbal morphology has tradi-
tionally been assumed to be templatic:

The absence of the HON on the main verb for the Type II AUX is due to
the language’s morphological constraints. Such an auxiliary verb forms a verbal
complex together with a main verb that bears the COMP suffix -a/e: this suffix
morphologically requires its verb stem to have no honorific -(u)si (cf. [6]). As can
be seen from the above template, verb suffixes, attaching to the preceding verb
stem or word, mark honorific, tense, and mood functions. COMP suffixes are
classified depending on which slot they can occur here: for example the COMP
suffix a/e occupies the HON slot:

Within the grammar we developed where each specific verb stem has its own
type constraint, the stem value of the COMP suffix -a/e must be a verb lexeme
with no suffix -si.

As for the Type III AUX, the grammar needs to rely on semantics: AUX verbs
like po- ‘seem’ and kath- ‘seem’ select an event (e1 or e2) as their semantic
argument:

8 This treatment assumes that the auxiliary verb combines with the preceding (main
or auxiliary) verb and forms a complex predicate. See [6] for this line of treatment.
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The honoring relation applies not to a proposition but to a human individual:
it is such a semantic property that places a restriction on the HON value of the
auxiliary verb.

2.5 Addressee Agreement

As noted in Section 1.1, Korean mood marking may also indicate an honoring
relationship between the addressee and the speaker. Our grammar, in which the
inflected verbal element is built from a basic verbal lexeme within a type hierar-
chy system (cf. [6]), systematically allows addition of this honoring relationship
in the lexical information:
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The plain declarative ending adds the information that the speaker is higher than
the addressee whereas the respective one the opposite relation. The treatment
of address agreement follows the same vein as subject/object agreement.

3 Testing the Feasibility of the Analysis

In testing the performance and feasibility of the grammar, we implemented our
grammar in the LKB (Linguistic Knowledge Builder) (cf. [9]). The test suites
we used consist of the SERI Test Suites ’97 ([10]), the Sejong Corpus, and sen-
tences from the literature on honorification. The SERI Test Suites ([10]), de-
signed to evaluate the performance of Korean syntactic parsers, consists of a
total of 472 sentences (292 test sentences representing the core phenomena of
the language and 180 sentences representing different types of predicate). Mean-
while, the Sejong Corpus has 179,082 sentences with about 2 million words. We
randomly selected 200 simple sentences (the average number of words in each
sentence is about 5) from the corpus. These sentences are classified according to
their honorification types (agreement target × predicate) and the ratio of parsed
sentences:9

In addition to these sentences, we selected 100 sentences (including the ones given
in the paper) from the literature on Korean honorification: 51 sentences with -si
marked verbs, 31 with auxiliary verb constructions, and 18 with suppletive verb
forms. We obtained similar results: the grammar parsed a total of 96 sentences.10

Among the total of 691 parsed sentences, we checked the meaning representa-
tions (minimal recursion semantics: MRS) and the pragmatic representations of
100 randomly selected sentences, and could see that the representations contain
the correct information that the grammar is designed for. We believe that the en-
riched deep processing of grammatical honorific information that the grammar
successfully composed in the parsing process can well function for the proper
understanding of natural data.

9 The four nonHON × HON sentences are cases where the nominals are not in the
honorific form. One way to accept such examples is to remove the [HON +] restric-
tion on the object of such verbs while keeping the pragmatic honoring relationship
between the subject and object.

10 The failed sentences are due to the unwritten parts of our grammar. For example,
the current version of our grammar does not cover postposing, floating quantifiers,
gapping, and so forth.
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4 Conclusion

Honorification, one of the most salient features of the language, involves various
grammatical levels of information: morphology, syntax, semantics, and prag-
matics. It is thus necessary for a parser to have not only shallow but also deep
processing of the honorific information, so that we can check that a given sen-
tence is felicitous. Such deep processing is a prerequisite to the success of dialogue
processing, zero pronominal/anaphoric resolution, and so forth.

The grammatical architecture we adopt is a typed feature structure grammar,
based on HPSG, that allows us to handle morpho-syntactic, semantic, and also
pragmatic information. The implementation of this grammar in the LKB system
proves that a typed feature structure grammar can provide us with a proper deep
processing mechanism for Korean honorification that opens doors for promising
applications in such areas as machine translation and dialogue systems.
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Abstract. In this paper, we propose a named-entity recognition (NER) system 
that addresses two major limitations frequently discussed in the field. First, the 
system requires no human intervention such as manually labeling training data or 
creating gazetteers. Second, the system can handle more than the three classical 
named-entity types (person, location, and organization). We describe the 
system’s architecture and compare its performance with a supervised system.  
We experimentally evaluate the system on a standard corpus, with the three 
classical named-entity types, and also on a new corpus, with a new named-entity 
type (car brands). 

1   Introduction 

This paper builds on past work in unsupervised named-entity recognition (NER) by 
Collins and Singer [3] and Etzioni et al. [4]. Our goal is to create a system that can 
recognize named-entities in a given document without prior training (supervised 
learning) or manually constructed gazetteers. (We use the term gazetteer interchange-
ably with the term named-entity list.) 

Collins and Singer’s [3] system exploits a large corpus to create a generic list of 
proper names (named-entities of arbitrary and unknown types). Proper names are 
collected by looking for syntactic patterns with precise properties. For instance, a 
proper name is a sequence of consecutive words, within a noun phrase, that are tagged 
as NNP or NNPS by a part-of-speech tagger and in which the last word is identified 
as the head of the noun phrase. Like Collins and Singer, we use a large corpus to 
create lists of named-entities, but we present a technique that can exploit diverse types 
of text, including text without proper grammatical sentences, such as tables and lists 
(marked up with HTML). 

Etzioni et al. [4] refer to their algorithm as a named-entity extraction system. It is 
not intended for named-entity recognition. In other words, it is used to create large 
lists of named-entities, but it is not designed for resolving ambiguity in a given 
document. The distinction between these tasks is important. It might seem that having 
a list of entities in hand makes NER trivial. One can extract city names from a given 
document by merely searching in the document for each city name in a city list. 
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However, this strategy often fails because of ambiguity. For example, consider the 
words “It” (a city in Mississippi State and a pronoun) and “Jobs” (a person’s surname 
and a common noun). The task addressed by Etzioni et al. could be called automatic 
gazetteer generation. Without ambiguity resolution, their system cannot perform 
robust, accurate NER. This claim is supported by the experiments we present in 
Section 3. 

In this paper, we propose a named-entity recognition system that combines named-
entity extraction (inspired by Etzioni et al.[4]) with a simple form of named-entity 
disambiguation. We use some simple yet highly effective heuristics, based on the 
work of Mikheev [9], Petasis et al. [13], and Palmer and Day [12], to perform named-
entity disambiguation. We compare the performance of our unsupervised system with 
that of a basic supervised system, using the MUC 7 NER corpus [1]. We also show 
that our technique is general enough to be applied to other named-entity types, such as 
car brands, or bridge names. To support this claim, we include an experiment with car 
brands. 

The paper is divided as follows. First, we present the system architecture in 
Section 2. Then, we compare its performance with a supervised baseline system on 
the MUC 7 NER corpus in Section 3. Next, we show that the system can handle 
other type of entities, in addition to the classic three (person, location, and 
organization), in Section 4. We discuss the degree of supervision in Section 5.  
We conclude in Section 6 by arguing that our system advances the state-of-the-art 
of NER by avoiding the need for supervision and by handling novel types of 
named-entities. The system’s source code is available under the GPL license at 
http://balie.sourceforge.net. 

2   Unsupervised Named-Entity Recognition System 

The system is made of two modules. The first one is used to create large gazetteers of 
entities, such as a list of cities. The second module uses simple heuristics to identify 
and classify entities in the context of a given document (i.e., entity disambiguation). 

2.1   Generating Gazetteers 

The task of automatically generating lists of entities has been investigated by several 
researchers. In Hearst [6], lexical patterns are studied that can be used to identify 
nouns from the same semantic class. For instance, a noun phrase that follows the 
pattern “the city of” is usually a city. In Riloff and Jones [14], a small set of lexical 
patterns and a small set of entities are grown using mutual bootstrapping. Finally, Lin 
and Pantel [7] show how to create large clusters of semantically related words using 
an unsupervised technique. Their idea is based on examining words with similar 
syntactic dependency relationships. They show they can induce semantic classes such 
as car brands, drugs, and provinces. However, their technique does not discover the 
labels of the semantic classes, which is a common limitation of clustering techniques.  

The algorithm of Etzioni et al. [4] outperforms all previous methods for the task of 
creating a large list for a given type of entity or semantic class; the task of automatic 
gazetteer generation. Nadeau [11] shows that it is possible to create accurate lists of 
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cities and car brands in an unsupervised manner, limiting the supervision to a seed of 
four examples. In the remainder of this section, we summarize how to generate a list 
of thousands of cities from a seed of a few examples, in two steps (repeated if 
necessary).  

2.1.1   Retrieve Pages with Seed 
The first step is information retrieval from the Web. A query is created by conjoining 
a seed of k manually generated entities (e.g., “Montreal” AND “Boston” AND “Paris” 
AND “Mexico City”). In our experience, when k is set to 4 (as suggested by Etzioni et 
al. [4]) and the seed entities are common city names, the query typically retrieves 
Web pages that contain many names of cities, in addition to the seed names. The basic 
idea of the algorithm is to extract these additional city names from each retrieved 
Web page. 

The same strategy can be applied to person names, company names, car brands, 
and many other types of entities. Although it is outside of the scope of this paper, we 
should mention that we successfully applied this technique to more than 50 named-
entity types.  

2.1.2   Apply Web Page Wrapper 
A Web page wrapper is a rule-based system that identifies the location of specific 
types of information within a Web page. For example, a wrapper for identifying the 
location of news headers on the Web site radio-canada.ca might contain the rule, “A 
header is an HTML node of type <a>, with text length between 10 and 30 characters, 
in a table of depth 5 and with at least 3 other nodes in the page that satisfy the same 
rule.” 

The gazetteer generation algorithm proceeds by learning rules that identify the 
locations of positive examples. For each page found in 2.1.1, a Web page wrapper is 
trained on the k positive examples that are known to appear in the page, but only if 
they are strictly contained in an HTML node (e.g., <td> Boston </td>) or surrounded 
by a small amount of text inside an HTML node (e.g., <td> Boston hotel </td>). The 
remaining HTML nodes in the page are treated as if they were negative examples, but 
we only include in the negative set the nodes with the same HTML tags as the 
positive examples [11]. For instance, if the k positive nodes are tagged as bold (i.e., 
“<b>”), then the negative examples will be restricted to the remaining bold text in the 
Web page. The Web page wrapper we used is similar to Cohen and Fan’s [2] wrapper, 
in terms of the learning algorithm and the feature vector.  

As described above, Web page wrapping is a classification problem. A supervised 
learning algorithm is used to classify unknown entities in the current Web page. In 
this application, the training set and the testing set are the same. The learning 
algorithm is trained on the given Web page and then the learned model is applied to 
reclassify the text in the same Web page. The idea is to learn rules, during training, 
that identify the locations of the known entities (the seed entities) and can be applied, 
during testing, to identify entities appearing in similar contexts, which may be further 
positive examples. 

Two main problems make this task difficult. First, there is noise in the class labels 
in the training data, because everything except the seed words are initially labeled as 
negative. If the page contains more than k entities of the desired type, the very nodes 
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we want to extract were labeled as negative. The second problem is the class 
imbalance in the data. Along with the k positive examples, there are usually hundreds 
or thousands of negative examples. These two problems are handled by noise filtering 
and cost-sensitive classification, respectively. 

At this point, our technique goes beyond the system of Etzioni et al. [4], which 
uses a simple Web page wrapper, consisting of hand-crafted rules. To handle the 
problem of noise in the class labels, we use a filtering approach inspired by Zhu et al. 
[16]. The noise filtering strategy is to simply remove any instance similar to a positive 
instance. We say that two nodes are similar when their feature vectors are identical, 
except for the text length feature. (Refer to Cohen and Fan [2] for a description of the 
Web page wrapper’s features.) Using this filter, an average of 42% of the examples 
that are initially labeled as negative are removed from the training set. These 
examples are left in the (unlabeled) testing set. When the trained model is later 
applied to the testing set, some of the removed examples may be classified as positive 
and some may be classified as negative. 

To handle the class imbalance problem, we use a cost-sensitive supervised learning 
system. Using the original unbalanced dataset, the wrapper is almost incapable of 
extracting new entities. It mainly guesses the majority class (negative) and only 
extracts the initial seed from Web pages. To discourage the learning algorithm from 
using the trivial solution of always guessing the majority class, a high cost is assigned 
to misclassification errors in which a positive example is classified as negative. This 
cost-sensitive approach over-samples the positive examples to rebalance the dataset. 
This rebalancing must be done for each individual Web page, to take into account the 
imbalance ratio of each wrapper. Rebalancing is performed automatically, by 
randomly choosing HTML nodes to add to the dataset, up to the desired ratio of 
positive to negative examples. 

Past research suggests that supervised learning algorithms work best when the ratio 
is near 1:1 [8]. We hypothesized that the wrapper would work best when we 
rebalanced the dataset by duplicating positive instances until the ratio reached 1:1. To 
verify this hypothesis, we studied the behavior of the wrapper with different ratios on 
a set of 40 Web pages. As expected, we found that the wrapper performance is 
optimal when the ratio is 1:1. We therefore use this ratio in the experiments in 
Sections 3 and 4. 

2.1.3   Repeat 
The two steps above (2.2.1, 2.2.2) are repeated as needed. Each iteration brings new 
entities that are added to the final gazetteer. At each iteration, k new randomly chosen 
entities are used to refresh the seed for the system. Entities are chosen from the 
gazetteer under construction. Preference is given to seed entities that are less likely to 
be noise, such as those appearing in multiple Web pages.  

2.2   Resolving Ambiguity  

The list lookup strategy is the method of performing NER by scanning through a 
given input document, looking for terms that match a list entry. The list lookup 
strategy suffers from three main problems: (1) entity-noun ambiguity errors, (2) entity 
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boundary detection errors, and (3) entity-entity ambiguity errors. Due to these three 
problems, the gazetteer generating module presented in Section 2.1 is not adequate, 
by itself, for reliable named-entity recognition. We found heuristics in the literature to 
tackle each of these problems. 

2.2.1   Entity-Noun Ambiguity 
Entity-noun ambiguity occurs when an entity is the homograph of a noun. The plural 
word “jobs” and the surname “Jobs” is an example of this problem. To avoid this 
problem, Mikheev [9] proposes the following heuristic: In a given document, assume 
that a word or phrase with initial capitals (e.g., “Jobs”) is a named-entity, unless (1) it 
sometimes appears in the document without initial capitals (e.g., “jobs”),  (2) it only 
appears at the start of a sentence or at the start of a quotation (e.g., “Jobs that pay well 
are often boring.”), or (3) it only appears inside a sentence in which all words with 
more than three characters start with a capital letter (e.g., a title or section heading).  

2.2.2   Entity Boundary Detection 
A common problem with the list lookup strategy is errors in recognizing where a 
named-entity begins and ends in a document (e.g., finding only “Boston” in “Boston 
White Sox”). This can happen when a named-entity is composed of two or more 
words (e.g., “Jean Smith”) that are each listed separately (e.g., “Jean” as a first name 
and “Smith” as a last name). It can also happen when an entity is surrounded by 
unknown capitalized words (e.g., “New York Times” as an organization followed by 
“News Service” as an unlisted string). Palmer and Day [12] propose the longest match 
strategy for these cases. Accordingly, we merge all consecutive entities of the same 
type and every entity with any adjacent capitalized words. We did not, however, 
merge consecutive entities of different types, since we would not have known the 
resulting type. 

The rule above is general enough to be applied independently of the entity type. 
We found that other merging rules could improve the precision of our system, such as 
“create a new entity of type organization by merging a location followed by an 
organization”. However, we avoided rules like this, because we believe that this type 
of manual rule engineering results in brittle, fragile systems that do not generalize 
well to new data. Our goal is to make a robust, portable, general-purpose NER 
system, with minimal embedded domain knowledge.  

2.2.3   Entity-Entity Ambiguity 
Entity-entity ambiguity occurs when the string standing for a named-entity belongs to 
more than one type. For instance, if a document contains the named-entity “France”, 
it could be either the name of a person or the name of a country. For this problem, 
Petasis et al. [13], among others, propose that at least one occurrence of the named-
entity should appear in a context where the correct type is clearly evident. For 
example, in the context “Dr. France”, it is clear that “France” is the name of a person.  

We could have used cues, such as professional titles (e.g., farmer), organizational 
designators (e.g., Corp.), personal prefixes (e.g., Mr.) and personal suffixes (e.g., Jr.), 
but as discussed in the preceding section, we avoided this kind of manual rule 
engineering.  
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Definitions  
D = a given input document. 

},...,{ 1 naaA =  = the set of all sets of aliases in the document D .

},...,{ 1 mi eea =  = a set of aliases = a set of different entity instances, referring to 

the same actual entity in the world. 
psDe ,,=  = a unique instance of a named-entity, consisting of a string s  in 

document D  at position p .

),(overlap ji ee  = a Boolean function; returns true when iii psDe ,,=  and 

jjj psDe ,,=  and the strings is  and js  share at least one word with more 

than three characters; returns false otherwise. 

Algorithm  
Let {}=A .

For each instance of a named-entity e  in document D :
If  there is exactly one alias set ia  with a member je  such that 

),(overlap jee , then modify A  by adding e  to ia .

If there are two or more alias sets ia , ja  with members ke , le  such that 

),(overlap kee  and ),(overlap lee , then modify A  by creating a new 

alias group pa  that is the union of ia , ja , and }{e , add pa  to A , and 

remove ia  and ja  from A .

Otherwise, create a new alias set  qa , consisting of }{e , and add qa  to A .

 

Fig. 1. Simple alias resolution algorithm 

Instead, we applied a simple alias resolution algorithm, presented in Figure 1. 
When an ambiguous entity is found, its aliases are used in two ways. First, if a 
member of an alias set is unambiguous, it can be used to resolve the whole set. For 
instance, “Atlantic ocean” is clearly a location but “Atlantic” can be either a location 
or an organization. If both belong to the same alias set, then we assume that the whole 
set is of type location. A second way to use the alias resolution is to include unknown 
words in the model. Unknown words are typically introduced by the heuristic in 
Section 2.2.2. If an entity (e.g., “Steve Hill”) is formed from a known entity (e.g., 
“Steve”) and an unknown word (e.g., “Hill”), we allow occurrences of this unknown 
word to be added in the alias group.  

3   Evaluation with the MUC-7 Enamex Corpus 

In the Message Understanding Conferences (MUC), the Named-Entity Recognition 
(NER) track focuses on the three classical types of named-entities: person, location, 
and organization. These three types of named-entities are collectively called Enamex. 
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In this section, we compare the performance of our system with a baseline supervised 
system, using the Enamex corpus from MUC-7. For this experiment, a portion of the 
corpus is given to the supervised system in order to train it. Our unsupervised system 
simply ignores this portion of corpus.  

The same baseline experiment was conducted on MUC-6 and MUC-7 by Palmer 
and Day [12] and Mikheev et al. [10] respectively. Their systems work as follows. A 
training corpus is read and the tagged entities are extracted and listed. Given a testing 
corpus, the lists are used in a simple lookup strategy, so that any string that matches a 
list entry is classified accordingly. 

Table 1 presents the results of Mikheev on MUC-7 (in the “Learned lists” 
columns). There is also a comparison with a system that uses hand-made lists of 
common entities (in the “Common lists” columns).  The “Combined lists” columns 
are based on a combination of both approaches. These results are from Mikheev’s 
published experiments [10]. 

In Table 1, “re” is the recall, “pr” is the precision, and “f” is the f-measure (the 
harmonic mean of precision and recall), expressed as percentages.  

Table 1. Results of a supervised system on MUC-7 

 Learned lists  Common lists  Combined lists 
 re Pr f  re pr f  re pr f 
organization 49 75 59  3 51 6  50 72 59 
person 26 92 41  31 81 45  47 85 61 
location 76  93 84  74 94 83  86 90 88 

 
For the purpose of comparison, we ran our system on MUC-7 using gazetteers that 

we generated as described in Section 2.1. We generated gazetteers for some of the 
subtypes of named-entities given by Sekine [15]. The generated gazetteers are 
described in Table 2. We also used a special list of the months of the year, because we 
noticed they were an abnormally important source of noise on the development (dry 
run) set.1 Many months are also valid as personal first names.  

List size depends on the performance of the Web page wrapper at extracting 
entities. Nadeau [11] showed that lists have a precision of at least 90%. We did not 
restrict the web mining to a specific geographic region and we did not enforce strict 
conditions for the list elements. As a result, the “state / province” list contains 
elements from around the world (not only Canada and the U.S.) and the “first 
name” list contains a multitude of compound first names, although our algorithm is 
designed to capture them by merging sequences of first names, as explained in 
Section 2.2.2. 

 

                                                           
1 It can be argued that the month list is a form of manual rule engineering, contrary to the 

principles discussed in Section 2.2.2. We decided to use it because most of the noise was 
clearly corpus-dependent, since each article contains a date header. For results without the 
month list, subtract 5% from the precision for the person type. 
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Table 2. Type and size of gazetteers built using Web page wrapper 

Gazetteer Size 
Location: city 14,977 
Location: state / province 1,587 
Location: continent / country / island 781 
Location: waterform 541 
Location: astral body 85 
Organization: private companies 20,498 
Organization: public services 364 
Organization: schools 3,387 
Person: first names 35,102 
Person: last names 3,175 
Person: full names 3,791 
Counter-examples: months 12 

 
Table 3 shows the result of a pure list lookup strategy, based on our generated 

gazetteers (in the “Generated lists” columns). For comparison, Table 3 also shows the 
best supervised results from Table 1 (in the “Mikheev combined lists” columns). The 
results we report in Tables 1, 3, 4, and 5 are all based on the held-out formal corpus of 
MUC-7. 

Table 3. Supervised list creation vs. unsupervised list creation techniques 

 Mikheev combined lists  Generated lists 
 Re pr f  re pr f 
organization 50 72 59  70 52 60 
person 47 85 61  59 20 30 
location 86 90 88  83 31 45 

 
We believe the comparison in Table 3 gives a good sense of the characteristics of 

both approaches. The supervised approach is quite precise but its recall is lower, since 
it cannot handle rare entities. The unsupervised approach benefits from large 
gazetteers, which enable higher recall at the cost of lower precision.  

The case of locations is interesting. There is evidence that there is a substantial 
vocabulary transfer between the training data and the testing data, which allows the 
supervised method to have an excellent recall on the unseen texts. Mikheev’s lists get 
a high recall with a list of only 770 locations. The supervised method benefits from 
highly repetitive location names in the MUC corpus. 

These results are slightly misleading. The MUC scoring software that produces 
these measures allows partial matching. That means, if a system tags the expression 
“Virgin Atlantic” when the official annotated key is “Virgin Atlantic Group”, it will 
be credited with a success. In Table 4, we provide another view of the system’s 
performance, which may be less misleading. Table 4 gives, for our system, the 
precision and recall of all entity types at the level of text; that is, the performance on 
finding exact string matches.  
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Table 4. Generated list performance on text matching 

Generated lists  
re pr f 

text 61 29 39 

 
The next step in our evaluation consists in adding the heuristics presented in 

Sections 2.2.1 to 2.2.3. These heuristics are designed to be unsupervised; that is, they 
require no training (unlike n-gram contexts, for example) and they are not deduced 
from our domain knowledge about a specific entity type. Table 5 shows the 
contribution of each heuristic. The “Generated lists” columns are copied from Tables 
3 and 4, to show the performance of the list lookup strategy without disambiguation 
(i.e., Section 2.1 without Section 2.2).   

Table 5. Performance of heuristics to resolve named-entity ambiguity 

  
Generated lists 

 H1 (Entity-noun 
ambiguity)  

 H1 + H2 (Entity 
boundary) 

 H1 + H2 + H3 
(Entity-entity 
ambiguity) 

 re pr f  re pr f  re pr f  re pr f 
org. 70 52 60  69 73 71 69 74 71  71 75 73 
per. 59 20 30  58 53 55 66 63 64  83 71 77 
loc. 83 31 45  82 69 75 81 77 79  80 77 78 
text 61 29 39  61 57 59 72 72 72  74 72 73 

 
The contribution of each heuristic (H1, H2, H3) is additive. H1 (Section 2.2.1) 

procures a dramatic improvement in precision with negligible loss of recall. The main 
source of ambiguity is entity-noun homographs such as “jobs”, “gates”, and “bush”. 

Heuristic H2 (Section 2.2.2) gives small gains in precision and recall of individual 
entity types (the first three rows in Table 5). As explained, these scores are misleading 
because they count partial matches and thus these scores are not sensitive to the 
boundary detection errors that are corrected by H2. However, the performance of text 
matching is greatly improved (last row in Table 5). We noticed that most corrected 
boundaries are attributable to person entities composed of a known first name and an 
unlisted capitalized string standing, presumably, for the surname. 

H3 (Section 2.2.3) mainly increases precision and recall for named-entities of the 
person type, due to the the alias resolution algorithm. An occurence of a full person 
name is usually unambiguous and thus can help with annotating isolated surnames, 
which are often either ambiguous (confused with organization names) or simply 
unlisted strings.  

4   Evaluation with Car Brands 

There are many more types of named-entities than the three classical types in 
Enamex. Sekine et al. [15] propose a hierarchy of 200 types of named-entities. Evans 
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[5] proposes a framework to handle such wide variety. His approach is based on 
lexical patterns, inspired by Hearst [6]. He paired this technique with a heuristic for 
handling ambiguity in capitalized words. Our system is similar, but it is based on a 
method proven to give better recall at finding entities [4].  

In this section, we show how the system performs on the task of recognizing car 
brands. Intuitively, it seems that this type is easier to handle than a type such as 
persons that has an almost infinite extension. However, recognizing car brands poses 
many difficulties. Car brands can be confused with common nouns (e.g., Focus, 
Rendez-Vous, Matrix, Aviator) and with company names (e.g., “Ford” versus “Ford 
Motor Company”). Another difficulty is the fact that new car brands are created every 
year, so keeping a gazetteer of car brands up-to-date is challenging. 

We created a small pilot corpus composed of news specifically about cars from 
some popular news feeds (CanWest, National Post, and The Associated Press). We 
use eight documents, for a total of 5,570 words and 196 occurrences of car brands.  

The Web-page wrapper technique was used to generate a list of 5,701 car brands 
and the heuristics of sections 2.2.1 to 2.2.3 were applied without any modifications. 
Table 6 reports the results. 

Table 6. System performance for car brand recognition 

 Generated list  H1, H2 and H3 
 Re pr f  re pr f 
cars 86 42 56  85 88 86 
text 71 34 46  79 83 81 

 
The performance on this task is comparable to the Enamex task. Without 

ambiguity resolution (in the “Generated list” columns), the precision is low, typically 
under 50%. This is the impact of frequent and ambiguous words like “will” (Toyota 
Will) and noise in our list (e.g., new, car, fuel). The ambiguity resolution algorithms 
(in the “H1, H2, and H3” columns) raise the precision above 80%. The remaining 
recall errors are due to rare car brands (e.g., “BMW X5 4.8is” or “Ford Edge”). The 
remaining precision errors are due to organization-car ambiguity (e.g., “National” as 
in “National Post” versus “Chevrolet National”) and noise in the list (e.g., Other, 
SUV). We believe that the good performance of gazetteer generation combined with 
ambiguity resolution on an entirely new domain emphasizes their domain-
independent character and shows the strength of the unsupervised approach. 

5   Supervised Versus Unsupervised 

We describe our system as unsupervised, but the distinction between supervised and 
unsupervised systems is not always clear. In some systems that are apparently 
unsupervised, it could be argued that the human labour of generating labeled training 
data has merely been shifted to embedding clever rules and heuristics in the system.  

In our gazetteer generator (Section 2.1), the supervision is limited to a seed of four 
entities per list Less than four examples results in lower precision and more than four 
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examples results in lower recall [4]. In our ambiguity resolver (Section 2.2), we 
attempt to minimize the use of domain knowledge of specific entity types. Our system 
exploits human-generated HTML markup in Web pages to generate gazetteers. 
However, because Web pages are available in such a quantity and because the 
creation of Web pages is now intrinsic to the workflow of most organization and 
individuals, we believe this annotated data comes at a negligible cost. For these 
reasons, we believe it is reasonable to describe our system as unsupervised.  

6   Conclusion 

In this paper, we presented a named-entity recognition system that advances the state-
of-the-art of NER by avoiding the need for supervision and by handling novel types 
of named-entities. In a comparison on the MUC corpus, our system outperforms a 
baseline supervised system but it is still not competitive with more complex 
supervised systems. There are (fortunately) many ways to improve our model. One 
interesting way would be to generate gazetteers for a multitude of named-entity types 
(e.g., all 200 of Sekine’s types) and use list intersection as an indicator of ambiguity. 
This idea would not resolve the ambiguity itself but would clearly identify where to 
invest further efforts.  
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Abstract. Semantic knowledge is important in many areas of natural
language processing. We propose a new unsupervised learning algorithm
to annotate groups of nouns with hypernym labels. Several variations
of the algorithm are presented, including a method that utilizes seman-
tic information from WordNet. The algorithm’s results are compared
against an independently-developed labeling method. The evaluation is
performed using labels assigned to noun clusters by several participants
of a specially designed human study.

1 Introduction

Ontologies, also known as semantic networks and lexical databases, are impor-
tant resources in natural language processing. These resources all encode a spe-
cific type of semantic knowledge. Constructing them manually is expensive and
time-consuming. In this paper, we focus on the task of automatic construction
of ontologies from large corpora of texts.

A well-known example of a hand-built ontology is WordNet [8]. Lexical en-
tries in WordNet are organized into comprehensive networks of synonym sets
(synsets). Words that have more than one meaning (polysemous words) may
participate in several different synsets. The synsets are linked by various lexical
relations. The principal lexical relation in WordNet is hypernymy, the is-a re-
lation between nouns. For example, bird is a hypernym of robin. Hyponymy is
the inverse of hypernymy. The hypernymy/hyponymy links form the backbone
of the noun hierarchy. They link each synset to its immediately more general
and more specific synsets. A chain of hypernymy links can be traversed from
each synset to one of the eleven abstract concepts that are at the top of the
hierarchy.

The labeling of groups of nouns can be seen as automatic identification of
hyponymy relations. We do not differentiate between instances and hyponyms.
For example, the set of terms (table, chair, desk, sofa, dresser, bookcase) can
be labeled with the term furniture. For a group of movie titles such as (Deep
Impact, Armageddon, Godzilla, Titanic, Truman Show), possible labels include
movie, or film. By providing a label for a set of terms, we implicitly define a
number of hypernymy relations between the label and the terms in the set.

L. Lamontagne and M. Marchand (Eds.): Canadian AI 2006, LNAI 4013, pp. 278–287, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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We propose an unsupervised algorithm for the purpose of labeling groups of
nouns. It addresses a specific subset of the problem of automatic gathering of
semantic relations. Since the algorithm is unsupervised, it can produce labels
quickly, and without the prohibitive cost of human involvement in annotating
training data.

The principal features that we use for labeling noun clusters are dependency
relations, which are syntactic relationships between words in a sentence. For ex-
ample, from the sentence “Smith, the chairman, is a workaholic”, we can extract
the nominal subject relation (N:subj:N ) between Smith and workaholic, and the
appositive relation (N:appo:N ) between Smith and chairman. The presence or
lack of a minus sign indicates whether the head of the relationship is the right or
left noun. For example, the above appositive relation is denoted as a N:appo:N
relation in the context of the word Smith, and a -N:appo:N relation in the con-
text of the word chairman. We use dependency relations extracted from a corpus
by a dependency parser Minipar [6] to build clusters of nouns.

The noun clusters that are labeled by our algorithm are constructed using the
Clustering by Committee method [10]. The basic idea behind the method is to
select a small number of representative terms (a committee) that form the core
of each cluster. This approach prevents polysemous concepts from interfering
with the cluster creation. The algorithm can be summarized as follows. For
each element, a small number of its closest neighbors are identified. Next, the
algorithm defines as many cluster committees as possible, but discards those that
are too similar to other committees. Finally, each element in the data is assigned
to its most similar cluster.

The applications of noun labeling include question answering and named en-
tity classification. In generating an answer to a question such as “Who was the
first prime minister of Canada?”, it may be very helpful to know that there
exist a hypernymy relationship between Sir John A. Macdonald and prime min-
ister. Given the named entity Carnegie Mellon, it is more useful to classify it
specifically as a university than as an organization.

The organization of this paper is as follows. Section 2 is devoted to the related
work. Section 3 introduces our approach to unsupervised labeling of noun clus-
ters. Section 4 contains description of the experiments and their results. Section 5
concludes the paper.

2 Related Work

In this section, we discuss several techniques that have been used in the au-
tomatic gathering of semantic relations, including the method of Pantel and
Ravichandran [9] which addresses virtually the same task as this paper.

Chodorow et al. [4] extract hypernyms from the definitions of nouns in ma-
chine readable dictionaries with the goal of producing a semantic network. Typ-
ically, the head of the definition phrase is taken to be the hypernym of the noun.
For example, if a definition of golden retriever is a golden-haired dog, then dog
would be identified as the hypernym of golden retriever. Heuristic rules are used
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to extract the head of the definition, and then the information is worked into a
hierarchical structure, with substantial human involvement.

A later paper by Ide and Veronis [5], examines the progress made with these
methods, with the conclusion that a dictionary by itself is not enough to auto-
matically produce the correct results. This conclusion is attributed to the varied
structure in the dictionary definitions, missing information, and the fact that
different dictionaries produce markedly different hierarchies.

Hearst [3] extracts hypernymy relations directly from text by the means of
syntactic patterns. For instance, a phrase such as dolls, tops and other toys yields
toy as a hypernym of doll. She proposed six different patterns, but used only one
of them for the evaluation against WordNet. Out of 152 hypernymy relations
extracted from an encyclopedia using the pattern, 106 had both terms present
in WordNet, including 61 in existing hypernymy relations.

Fleischman and Hovy [2] propose a feature-based system for classifying names
into a few categories, such as politician, businessman and entertainer. Features
like previous and following n-grams, topic features, and WordNet features were
used to train several classifiers on a semi-automatically produced training set.
The classifiers included decision trees, neural networks, SVM, and a Naive Bayes
classifier. The best results were obtained with the decision tree method, which
achieved 70.4% accuracy.

Caraballo [1] aims at automatically creating a hierarchical semantic lexicon
from a body of text. The hierarchy consists of noun clusters grouped under their
hypernyms. First, groups of similar nouns are extracted from a few syntactic
relationships, such as conjunctions and appositives. The hypernyms are added
during the latter part of the construction. Clustering the nouns with a bottom-
up method produces the general hierarchy, as similar nouns are placed under the
same parent in a binary tree. The percentage of correct hypernyms ranged from
33% under a strict evaluation, to 60% under a lenient evaluation.

Independently of our work, Pantel and Ravichandran [9] proposed a method
for automatically labeling the clusters produced by the Clustering by Committee
method. Their method involves three stages. Stage 1 requires calculating two
vectors for each word in the clusters: a frequency count vector, and a mutual
information vector, which is discounted to reduce the effect of data sparseness.
Stage 2 produces a committee for each cluster, with the goal of isolating the
most representative members of the cluster. Stage 3 forms a signature for each
cluster, derived from the feature vectors of the committee members. The candi-
date labels are selected by considering a set of four dependency relations, which
the authors identified as the most important. The relative scores for possible
labels are calculated using the pointwise mutual information values between the
labels and the dependency relations.

Pantel and Ravichandran tested their method on 1432 noun clusters extracted
from the Aquaint corpus. The results of automatic labeling were evaluated by
human judges. The top answer was judged correct 72% of the time. Among the
top five answers, a correct label was present in 85.6% of the cases. No name was
produced for 21 (1.5%) of the clusters.
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3 Cluster Labeling

Our new algorithm for cluster labeling is an unsupervised learning method,
which removes the need for the time-consuming manual annotation of the data.
The idea is to utilize the labels that are frequently present in the aggregate
data.

Consider Table 1, which shows a cluster containing horse-race names taken
from the dependency data. We refer to terms that occur in the dependency
relations as feature words. A term is said to be a feature word of a feature
if it is listed as an instance of that feature. It turns out that good labels for
clusters, such as race in this case, are often present among feature words in their
dependency data. However, most of the feature words are not appropriate as
labels, leaving the problem of how to identify the good labels.

Table 1. Sample dependency data for a noun group

Cluster Features Feature words
Preakness Stakes -N:before:N 23
Preakness day 19
Belmont Stakes start 2
Travers race 2
Santa Anita Derby -N:subj:N 80
Kentucky Derby race 51
Florida Derby run 7

goal 7
event 8
victory 3
start 2
history 2

...
...

Our algorithm learns weights for each feature in order to pick out the good
labels from the rest of the data. It is not merely a case of choosing the most
common feature or the most frequently occurring feature word. Our solution
is to assign variable weights to features, which reflect their relative importance
with respect to the likelihood of containing appropriate cluster labels. We refer
to these weights as feature scores. Each iteration of the algorithm redistributes
the feature scores to better represent their values in relation to possible labels.
As a feature score increases (or decreases) through iterations, so do the label
scores of the feature words associated with that feature. As a result, the feature
scores of important features are amplified by the presence of good labels in that
feature, while unimportant features are given low scores. Consequently, the good
labels are more likely to be present in features with high scores than in features
with low scores.
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3.1 The Algorithm

The input to our unsupervised labeling algorithm is the dependency data of the
clusters, and the list of features. The dependency data are extracted with the
LaTaT package [7]. The output of the training process is a feature score for each
feature f in the feature set F . The labeling is performed on the basis of the
feature scores computed by the algorithm. The final output is a ranked list of
possible labels for each cluster.
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Fig. 1. The cluster labeling algorithm

The algorithm is shown in Figure 1. First, the feature scores FS(f) are initial-
ized (lines 1–2). The main loop (lines 3–14) encompasses the learning process.
During an iteration, the label scores LS(a) for each feature word are calculated
by summing the scores of the features in which the feature word occurs (lines
7–8). (The predicate C(f, a) is true if and only if the feature f has a as a feature
word.) For each feature, a temporary score (FS’(f)) accumulates the label scores
of each feature word in that feature (lines 9–10). After each cluster has had the
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values calculated, the feature scores of each feature are replaced with the nor-
malized temporary score (lines 12–13). The iterative learning process continues
until the feature scores converge. In principle, a threshold might be set for con-
vergence, but in practice the values for the feature scores have always converged,
so the algorithm stops when the values of the feature scores stop changing. The
feature word with the maximum sum of feature scores is selected as the final
cluster label (lines 15-17).

3.2 Variations on the Basic Method

The algorithm described in the previous section to automatically assigns weights
to all features for the purpose of selecting labels. We also experimented with
methods that use fixed subsets of features with equal weights. The baseline ap-
proach is to use all the available features. The second set, referred to as Answer
Distribution Features (ADF), contains four features and their complements that
we identified as the most important on the basis of the analysis of our devel-
opment set. The final set, referred to as PRF, is composed of the four features
selected by Pantel and Ravichandran [9] in their labeling method. The ADF and
PRF feature sets are shown in Table 2.

Table 2. The feature subsets used in the experiments

The ADF subset: -N:appo:N, -N:subj:N, -N:conj:N, -N:nn:N,
N:appo:N, N:subj:N, N:conj:N, N:nn:N

The PRF subset: N:appo:N, -N:subj:N, -N:like:N, -N:such as:N

WordNet is a useful source of hypernymy relations.1 For all terms in a given
cluster, we recursively collected all WordNet hypernyms up to the top of the
hierarchy. Then, we intersected the set of hypernyms with the output of our
learning algorithm. We refer to this combined approach as the intersection
method.

We also experimented with two other methods of improving the accuracy of
the algorithm: filtering out low-frequency feature words, and considering only
clusters containing mostly names. However, in both cases, the accuracy gains on
the development set did not translate into substantial improvements on the test
set.

4 Experimental Setup and Results

The entire data consisted of 1088 clusters. We used the first one hundred clusters
as the development set. The test set was constructed by randomly selecting
one hundred clusters form the remaining data. The training set consisted of all
available clusters, except the ones included in the test set.
1 For accessing WordNet, version 2.0, we used the QueryData interface [11].
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4.1 Evaluation

We conducted a study in order to produce the answer key to our test set, and
to examine human performance on the task of classifying clusters. Eight partic-
ipants were asked to come up with one or more labels for all clusters in the test
set. without accessing any external resources nor conferring with other partici-
pants.

For example, for the set of terms {din, noise, roar, sound, rumble, sonic
boom, explosion, buzz, hum, noise level, cacophony, echo, drone, clatter, flash,
loud noise, thunder, gunfire, whir}, the participants of the study provided the
following labels: sound (4 times), noise (2), audio (1), decibel (1), level of noise
(1), noise pollution (1), and can hear these (1). For comparison, the algorithm
described in Section 3 produces the following labels and scores: sound 113.4,
noise 106.5, light 74.9, rework 70.6, echo 68.7, all 64.8, scream 63.4, hiss 63.4,
smoke 63.4, band 63.4.

Several of the participants indicated that the labeling was quite difficult. The
average number of labels given by a participant was .96 per cluster. Agreement
between labels from different testers was at 42.8%. This was calculated as the
average number of participants who agree on a label that is the result for the
highest number of participants. In some instances the most common response
was “no label”. There were no instances where all the participants assigned the
same label to a cluster, but there were several where no two participants gave
the same label.2

The performance of various methods was measured by computing precision
and recall against the labels provided by the participants of the study. A cluster
label was considered correct if it was proposed by at least one of the participants.
Precision was the percentage of generated labels that were correct. Recall was
calculated as the percentage of clusters that were assigned at least one correct la-
bel. The maximum possible recall was 86%, because none of the human-proposed
labels occurs in the dependency data for 14% of the clusters.

Our evaluation method is different from the one adopted by Pantel and
Ravichandran [9]. They presented human evaluators with a list of possible labels
that included the top five labels generated by their algorithm, one label proposed
by an independent annotator, and up to five names extracted from WordNet.
The evaluators were asked to judge the labels as correct, partially correct, or in-
correct. In contrast, our evaluation approach did not restrict the choice of labels
to a fixed list. In order to perform a fair comparison, we asked the authors of
the other labeling algorithm to run it on our test set. The results are discussed
in the following section.

4.2 The Test Set Results

Figure 2 shows the results of various methods on the test set. In most cases.
the graph has data points corresponding to recall and precision for the following
2 The complete cluster data and detailed results of the study are publicly available at
http://www.cs.ualberta.ca/~kondrak
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numbers of possible labels returned: 1, 2, 4, 8, 10, 14, 18, 20. The intersection
between WordNet and our iterative training method is represented by data points
for 1 and 5 labels returned, reflecting a small size of the majority of intersection
sets. The results of Pantel and Ravichandran have data points for 1, 2, and 3
labels returned. The pure WordNet method, which produces an unordered set
of hypernyms, is represented by a single data point.
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Fig. 2. Results on the test set

The algorithm presented in Section 3 performs substantially better than the
baseline and the PRF feature set, except when only one label is returned. How-
ever, it does not do better than the ADF Feature Set. The pure WordNet method
yields a high recall rate of 70%, combined with a low precision rate of 9.3%. Com-
pared to our results, the algorithm of Pantel and Ravichandran, which makes
extensive use of word mutual information vectors, appears to achieve similar
recall, but with higher precision. However, our intersection method yields much
higher precision at a comparable recall level.
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4.3 Discussion

The overall accuracy of most of the approaches tested on the Test Set is quite
low. The labels assigned by humans were often compound phrases, while the
automated methods generate mostly single word labels. In addition, many of
the human labels are too general, and some are plain wrong. While most names
are easily labeled as referring to people by the human participants, the specific
professions or roles that those people have in common are not so easily identified.
There were frequent cases of an algorithmic method identifying more specific la-
bels than the human participants. For example, in the case of a cluster including
names Tim Couch, Peyton Manning and Doug Pederson, only one person gave a
relatively specific label: sportsman. The remaining participants provided general
labels such as people, an inaccurate one (football), or no label at all. In contrast,
the top label generated by our algorithm was quarterback.

5 Conclusion

We proposed a new unsupervised learning algorithm for labeling clusters of nouns
with hypernyms. The algorithm uses only the dependency information for the
clusters, and does not require annotated data. We investigated several variations
of the algorithm, including an intersection method that combined the results of
the algorithm with information obtained by WordNet. For the purpose of an un-
biased evaluation of various methods and a comparison with an independently
proposed alternative approach, we conducted a human study that included sev-
eral participants. The results of the experiments indicate that our algorithm does
substantially better than the baseline, and that the combination of the algorithm
with WordNet achieves over 65% precision.
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Abstract. The paper shows how to construct language patterns that
signal influence strategies and tactical moves corresponding to such
strategies. We apply corpus analysis methods to the extraction of certain
multi-word patterns from the text data of electronic negotiations. The
patterns thus acquired become features in the task of classifying those
texts. A series of machine learning experiments predicts the negotiation
outcome from the texts associated with first halves of negotiations. We
compare the results with the classification of complete negotiations.

1 Introduction

Communication between people, in which participants pursue their goals in or-
der to reach an agreement, can be described as negotiation. The negotiators’
language exposes their strategies which serve to achieve their goals [22]. Negoti-
ations conducted by electronic means (e-negotiations) exhibit the characteristics
of the negotiation process; the characteristics are reflected in texts exchanged
in negotiations. At the syntactic level, personal pronouns, modal verbs, volition
verbs, mental verbs and temporal adjectives are the language signals of such
influence strategies as logical necessity, appeal or intention to continue negotia-
tions; [18] proposes them as a data representation for electronic negotiations.

This work investigates how a strategy can be implemented in language by
means of multi-word expressions. To this end, we look at syntactic represen-
tations of the negotiator’s influence. The communicative grammar of English
[11] supplies a structure for such representations, which we will call language
patterns. Corpus analysis techniques help find the types of patterns common in
real data. A similar framework is used in extraction pattern acquisition; for an
overview see [20].

The work we present here has focussed on the construction of the knowledge-
based data features, which pertains to knowledge-based feature generation [6]. In
a series of experiments we use the words in language patterns for early prediction
of the negotiation outcomes. In these experiments, the outcomes of the whole
negotiations are classified from the text of the first half of a negotiation. The
obtained results are compared with the classification of complete negotiations.

L. Lamontagne and M. Marchand (Eds.): Canadian AI 2006, LNAI 4013, pp. 288–299, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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We run our experiments on the texts gathered in e-negotiations. The data come
from the Web-based negotiation support system Inspire [7].

Our findings tie into active research topics outside the negotiation studies.
Language expressions of strategies and tactics can show attitudes and emotional
involvement of negotiators, thus they directly relate to subjectivity and senti-
ment analysis [14]. Language patterns can be a valuable resource for the predic-
tion of strategies in many forms of electronic communication. Extending patterns
to include expressions of threats and intimidation may help detect a possibility
of breakdown of interpersonal electronic communication [23].

2 Negotiation Strategies and Communication

Negotiation is a process in which two or more parties aim to settle what each shall
give and take in a transaction between them. This section surveys strategies and
tactics which negotiators employ in order to reach their goals. Strategies depend
on many factors, including the negotiation protocols, criteria of success, or the
roles of negotiators (such as buyer or facilitator). Negotiation strategies and
their verbal communication are intensively studied for face-to-face negotiations
[15, 22]. In e-negotiations participants employ strategies just like participants
in more traditional face-to-face and phone negotiations. The use of electronic
means, however, tends to influence the negotiators’ conduct. Researchers have
yet to agree how deep this influence is.

The behaviour of e-negotiators involves more risk and aggression than in face-
to-face negotiations [3]. There is a tendency to adopt an aversive emotional style
to achieve negotiation goals. There are suggestions that e-negotiators behave
differently if they negotiate within their social group [22]. On the other hand,
personal power (it includes emotions and adverse behaviour) diminishes when
negotiations are conducted electronically [19]. The researchers cited here agree
on the “weak get strong” effect of e-negotiations. Due to relaxed social norms, the
effect allows some e-negotiators perform better than they would in face-to-face
negotiations.

Electronic negotiations give us only written communication between negotia-
tors. As a result, negotiation strategies affect, and are affected by, the interper-
sonal nature of communication, depend on the negotiation type (e-negotiations
are an example) and influence it. At the same time, the scope of written com-
munication affects interpersonal exchange and negotiation; the converse holds as
well. Figure 1 summarizes our points.

Negotiators apply strategies to the big picture of negotiations. In interpersonal
communications this is done through the influence strategies which employ argu-
mentation, substantiation, appeal and so on. The language signals of influence –
strategic words – form a feature set that allows machine learning methods to link
e-negotiation outcomes with the negotiators’ strategies [18]. A more detailed
strategy implementations are given by tactics in negotiations [15, 22]. Tactics
are applications of both influence and affective, or emotion-based, strategies. A
negotiator delivers tactics using either such moves as commands, requested
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   Negotiation Strategies
Communication

Interpersonal 

Electronic Negotiations Written Communication

Fig. 1. Strategies and communication

actions, questions, or responses to those moves. The negotiator’s tactics aim
to bring the negotiator closer to a goal. They work on a smaller time scale than
strategies and are multi-dimensional. Tactics depend on one’s role in negotiation
(buyer, facilitator and so on) and in communication (such as speaker or hearer).
There may be various initiative or response. With respect to interpersonal com-
munication, tactics correspond to propositions, questions, and demands.

Research on negotiations usually describes qualitatively the language repre-
sentations of propositions, questions, and demands. See [2, 15] for further refer-
ences. Such descriptions tend to be hard to quantify and turn into an algorithm
or procedure. We study the language patterns and look for ways of detecting
the outcome of negotiations from pattern-based representations. This work con-
tinues research on the language signals of strategies in e-negotiations and on
features for electronic negotiation texts [17, 18].

3 Language and Strategies

Language discloses information about the e-negotiator’s feelings and evaluation
of issues (exposing affects) and allows inference about their abilities and inten-
tions (forming impressions). Such disclosure is characterized by five parameters:
polarization, immediacy, intensity, lexical diversity, and powerful or powerless
style [15]. We focus on immediacy and on powerful and powerless language. Im-
mediacy signals a negotiator’s desire to move closer to the opponent 1 who is
positively evaluated and to move away from the disliked one. It shows positive
or negative directions of the negotiator’s affect. High immediacy is more explicit
than low immediacy. Powerful language is consistent and direct, but its specific
characteristics usually are not defined. In research, powerful language is defined
as the one that does not have characteristics of powerless language: hesitation,
hedges, tag questions, disclaimers and so on. Powerful language positively corre-
lates with the use of influence strategies. For an overview of these issues, see [2].

The main purpose of tactical moves is to influence the opponent. The nego-
tiator wants to argue the necessity of the next action or prevent an undesirable

1 We refer like this to the other party in bilateral negotiation, though in general
negotiation need not be adversarial.
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step. It is done via logical necessity and appeal and the use of modal verbs,
personal pronouns and volition and mental verbs [18]. Here we extend the study
by considering various implementations of influence and building their language
patterns. Leech and Svartvik’s approach to language in communication [11] gives
the necessary systematic background for our study. It combines pragmatics, the
communicative grammar, and the meaning of English verbs. Propositions, ques-
tions, and demands – the strategy implementations at the level of pragmatics –
are conveyed by declarative, interrogative and imperative sentences respectively.
Depending on the situation, various grammatical structures and the choice of
words allow the implementation of different types of instances: commands, sug-
gestions, prohibitions and so on [10, 11]. Figure 2 illustrates these relations.

Propositions

Questions

Demands

Declarative Imperative

Interrogative

Suggestions

Commands Prohibitions

Tactics

Sentences

Instances

Fig. 2. Tactics and language

4 Building Language Patterns for Influence

When the goal is to convince the opponent to perform an action, logical ne-
cessity and appeal can be further sub-categorized as command, request, advice,
suggestion, tentative suggestion (positive actions). The categories are listed in
the order of decreasing strength with which the negotiators impose their will.
When the goal is to prevent the opponent from performing an action, the fol-
lowing categories appear: prohibition and negative advice (negative actions) [9].
All the categories for positive actions may involve the speaker. The categories
for the speaker’s negative actions become refusal and denial, depending on the
main verb.

We build language patterns from personal pronouns and content nouns (for
example those denoting negotiation issues), modal verbs and their negations,
main verbs and optional modifiers. They have the forms
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– I/we μ ModalVerb μ MainVerb (when the speaker signals involvement by using
a first-person pronoun),
– You μ ModalVerb μ MainVerb,
– ContentNoun μ ModalVerb μ MainVerb,

where ContentNoun can be a noun phrase and μ denotes an optional modifier.
We will concentrate on how the use of pronouns and content nouns, modal verbs
and main verbs is connected with influence strategies, their directness and power
of delivery.

The choice between a personal pronoun and a content noun (or noun phrase) is
the choice between high and low immediacy [15]. The use of personal pronouns
signals higher immediacy. In that case the negotiator explicitly says what he
wants the opponent to do. The use of nouns shows a more subtle strategy.
The negotiator states what he wants to have but avoids asking the opponent
explicitly.

The directness of speech and the intensity of influence can be studied through
the use of the modal auxiliary verbs, or modals. The primary modals are more
direct; they deliver the strongest influence. The secondary modals are moderate;
they deliver a weaker influence. See Table 1.

Table 1. Primary and secondary modals

Primary modals can, may, must (need), will, shall, have (got) to
Secondary modals could, might, ought to, would, should

Modals have both logical and pragmatic meanings. They express permission,
possibility, and necessity as the representatives of logic, and condescension, po-
liteness, tact, and irony as the representatives of practice. In Table 2 we list the
most common meanings of the primary modals in positive statements.

Table 2. The meaning of the primary modals

Modals Meaning
can possibility, ability, permission
may possibility, permission, exclamatory wish
must (need) obligation or requirement (speaker’s authority), logical necessity
will prediction, willinness, insistence, intention
shall prediction, intention
have (got) to obligation or requirement, logical necessity

The secondary modals tend to be more hypothetical, polite, tentative, formal,
and indirect than the primary modals. The secondary modals refer to the past,
while the primary modals refer to the present. In general, the difference between
the primary and the secondary modals can be stated thus: the secondary modals
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are more conditional than the primary modals. The presence of secondary modals
also makes the statement less powerful than the presence of primary modals.
Table 3 lists the patterns.

Table 3. Tactics and the language patterns

Tactic Pattern
Command, You should/must/will/have to/need to MainVerb
Requests, ContentNoun should/must/will/has to/needs to MainVerb
involv. a speaker I/we should/must/will/have to/need to MainVerb
Advise, Suggestion, You can/could/would/might/may MainVerb
Tentative Suggestion ContentNoun can/could/would/might/may MainVerb
involv. a speaker I/we can/could/might/may Verb
Prohibition, You cannot/do not/have not MainVerb

ContentNoun cannot/does not/has not MainVerb
Negative Advice You could not/would not/should not MainVerb

ContentNoun could not/should not/does not MainVerb
Refusal, I/we cannot/could not/should not/do not Verb
denial I/we cannot/could not/should not/do not Verb

One of indicators of directness and influence is the category of the main verb
in a pattern. We employ a set of categories from [10] where the main verbs are
categorized by the meaning of the actions they describe. The mental activity
verbs such as cognition or perception verbs have a special place in communi-
cation. They are common as a face-saving technique and signal influence by
politeness [2]. Event verbs denote actions that have a beginning and an end,
whereas state verbs correspond to actions without defined limits and strong
differentiation between them. Activity and process verbs are those that show
a goal-oriented action and a series of steps towards a defined end. The verbs
of perception and cognition, as well as attitude, are necessarily subjective and
more personal than the verbs denoting activity, process, event and state of hav-
ing or being. The use of perception, cognition and attitude verbs signals the
openness to feedback from the opponent. The examples of verbs in all these cat-
egories are: read, work, negotiate (activity); tell, say, explain (communication);
hope, know, suppose, understand (cognition); become, reply, agree, pay (event);
feel, see, hear (perception); like, love, hate (attitude); change, increase, continue
(process); consist, cost, depend, be (state of having or being)[10].

5 Extraction of Language Patterns from E-Negotiation
Texts

We conduct an empirical study of e-negotiation textual data. E-negotiations take
place in various domains (for example, in a legal or business setting), and involve
various users (such as buyers, sellers, mediators, facilitators). As in traditional
negotiations, participants in e-negotiations have established goals and exhibit



294 M. Sokolova and S. Szpakowicz

strategic behaviour [1]. The negotiation outcome – success or failure – is the
result of those strategic choices. E-negotiations held by humans, however, share
the uncertainty intrinsic to any human behaviour.

The case study data come from the Inspire negotiations [7]. They contain the
records of 2557 negotiations, 1461 of them successful. The Inspire text data is
the largest text collection gathered through e-negotiations. It is a training ne-
gotiation between a buyer and a seller who may exchange free-form messages.
Negotiation is successful if the virtual purchase has occurred within the desig-
nated time, and is unsuccessful otherwise. The system registers the outcome.
We consider a transcript as a single example, with all messages concatenated
chronologically, preserving the original punctuation and spelling. A successful
negotiations is a positive example, an unsuccessful negotiation – a negative ex-
ample. The Inspire data contain 1,514,623 word tokens and 27,055 word types.
The types constitute the initial feature set. Figure 3 presents a sample of nego-
tiations; patterns in italic appear in the Inspire data 3 or more times.

... This should help you propose a deal that is mutually beneficial. This could also be
determined by a matrix that adds your package ratings to mine to find the maximum
joint points...I put it back to the 60 days we discussed earlier. I think it’s a little
early to be making positional commitments on single issues. You should seriously
re-consider this tactic.

Fig. 3. A sample of e-negotiation

To acquire language patterns from the data, we use a bootstrapping proce-
dure with increasing window [18]. The procedure starts with a trigram model
of Inspire data. The three-word patterns from Table 3 are extracted for all the
MainVerb categories [10]. Next, a 4-gram model provides the four-word patterns
with one modifier, either before or after ModalVerb. Finally, a 5-gram model
gives the patterns with two modifiers. Tables 4 and 5 present the number of
patterns and their diversity for each of tactical moves, verb categories, personal
pronouns (Pron) and content nouns (ContN). We found few five-word patterns,
because the data contain surprisingly few modifiers.

Table 4. Tactics and verbs, the number of instances of the patterns

Main Verb Command, Suggestion Prohibition, Refusal
Categories Request Negative Advice

Pron ContN Pron ContN Pron ContN
Activity, Communication 43 11 501 49 50 11
Cognition 203 15 804 87 80 10
Event 307 36 3800 491 1700 123
Perception 27 6 909 286 36 7
Process 65 17 818 80 194 32
State of Having, Being 213 335 1279 966 113 173
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Table 5. Tactics and verbs, the number of different patterns

Main Verb Command, Suggestion Prohibition, Refusal
Categories Request Negative Advice

Pron ContN Pron ContN Pron ContN
Activity, Communication 24 9 126 45 23 5
Cognition 56 11 258 71 36 7
Event 105 36 635 318 187 66
Perception 14 5 171 74 8 4
Process 37 15 168 70 48 21
State of Having, Being 41 108 171 345 21 36

The distribution of the patterns corresponds to the relations presented by
the scheme in Figure 1. The patterns cover several well-known types of commu-
nication. We found that the most frequently used tactical move is suggestion.
This move is typical of business communication, including e-negotiations. The
prevalence of patterns with personal pronouns is the hallmark of interpersonal
communication. The dominance of the event verbs among other verb categories
is due to the fact that we are dealing with negotiation processes. Finally, the
high number and diversity of the cognition and perception verbs typify written
communication.

Here are examples of the most frequent patterns (in parentheses, the number
of occurrences in the Inspire data): you can accept (293), i would be (272), you
can see (271), we can make (243), i cannot accept (230).

6 Early Classification of the Negotiation Outcomes

Early prediction of upcoming events is an important learning task in many do-
mains. So far only the outcomes of the complete negotiations have been classified
using either non-textual data [8, 13] or textual data [17]. In this section we aim to
find the empirical setting that gives a reliable prediction of the negotiation out-
comes from the first part of negotiations. Prediction is reliable if the classification
results are statistically close to those achieved on complete negotiations. When
we classify the Inspire data, the accuracy on the binary attributes of the com-
plete negotiations is 71.2%±2.6 and the equally-weighted F-score – 74.1%±4.8
[17]. Mean and standard deviation are calculated for the results of Naive Bayes2

[5], Support Vector Machine [4] and Decision Trees [16] on four features sets,
including the strategic words and the most frequent features.

In the machine learning experiments we present here, the learning data consist
of the texts of the first half of negotiations. This segment is labelled by the
outcome of the whole negotiation. We employ the language patterns and their
variations to investigate the effect on the classification results. First, the acquired
patterns are used as data features. Next, the data features are all word types
2 High standard deviation is due to the poorer performance of Naive Bayes compared

with other classifiers.
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that appear in the patterns. Next, we add the condition words that often appear
before the patterns. Attributes have binary values: 1 if a word or a pattern
appears in the first part of a negotiation, and 0 otherwise.

According to the Information Gain estimation [24], in the first part of negoti-
ations the use of the following patterns influences the negotiation outcome: you
should not be, we must be, I cannot accept, I should do, you cannot/can’t accept,
we cannot/can’t agree, I cannot/can’t make (in the order from the most to the
least important). The patterns, however, are very sparse. In further experiments
we use these:

Tact I, the word types that constitute the language patterns;
Tact II, the pattern word types and condition words, for example, as, if, what-

ever;
Top 500, 500 most frequent unigrams of the Inspire data; their total occur-

rences equal to 1,255,445, thus making 81% of the data.

Tact I and Tact II are two knowledge-based representations, and Top 500 is a
baseline.

We use Support Vector Machines (SVM), Decision Trees (DT) and Naive
Bayes (NB). Kernel methods, especially SVM, have been successfully used for
text classification. The accuracy and running time of SVM greatly depend on the
polynomial which the algorithm builds. We performed an exhaustive accuracy
search for the polynomial’s defining parameters: the degree and the upper bound
on coefficients. We apply Decision Tree induction mainly because people can
analyze its results (in contrast with the results of kernel methods). We showed in
previous work that Decision Trees give high accuracy on successful negotiations.
We apply the Naive Bayes classifier (NB) because it is fast and because it gave us
high accuracy on unsuccessful negotiations [17]. In the present experiments with
NB, we have used the normal distribution and the kernel density estimators.

To estimate how the classification algorithms work, we calculate the accuracy
(Acc) and equally-weighted F-score (F ) on the test data.3 The results are esti-
mated by tenfold cross-validation. To ensure that all data splits are the same, we
use the Weka 3 toolkit [24]. Table 6 reports the results. Columns Acc and F list
the best accuracy and corresponding F-score. For the best accuracy the tuned
parameter values are: c=0.1 for DT, C=0.01 on Tact I and Tact II, C=0.005
on Top 500 for SVM, kernel estimation for NB. Column Gap reports the gap
between the best and the worst accuracy across the adjustable parameters. The
highest accuracy and F-score are in italic.

Our results show that the knowledge-based representations provide reliable
prediction, more steady when contrasted with the classification accuracy and F-
score on the complete negotiations (70.8%±1.6 versus 71.2%±2.6 and 75.4%±2.0
versus 74.1%±4.8, respectively).

Compared with the performance on the most frequent features, all three clas-
sifiers marginally improve the prediction accuracy and narrow the gap between

3 Acc equals 55.8%, when all negotiations are classified as positives. Corresponding F
is equal to 71.6.
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Table 6. F-score, accuracy, and the accuracy gap; first half of negotiations

Representations Attr NB SVM DT
F Acc Gap F Acc Gap F Acc Gap

Tact I 124 73.9 70.5 0.1 77.9 72.8 1.2 74.5 69.3 1.9
Tact II 137 73.2 69.7 0.1 77.8 72.7 1.5 74.9 69.8 1.5
Top 500 500 71.3 68.9 0.4 75.1 70.6 7.1 73.1 68.4 2.6

the best and the worst accuracy. Parallel increase of F-score indicates that this
is due to the increase of true positive rates. The higher accuracy and F-score
of SVM can be attributed to its overall ability to perform well on the binary
data. True positive (Pos) and true negative (Neg) rates show how the classifiers
work on different data classes; see Table 7 for the rates contributing to the best
accuracy.

Table 7. True positive and true negative rates, first half of negotiations

Representations Attr NB SVM DT
Pos Neg Pos Neg Pos Neg

Tact I 124 75.1 64.7 85.9 56.2 80.2 55.6
Tact II 137 74.1 64.2 85.5 56.3 80.7 55.9
Top 500 500 69.4 68.2 81.8 57.4 77.1 57.3

The results in Table 7 demonstrate that the language signals of influence
tactics assist in the correct prediction of successful negotiations. For all three
classifiers, true positive rates have been improved compared with the baseline
results. The correct prediction of unsuccessful negotiations, however, diminishes
when knowledge-based representations are used. We conclude that the language
implementations of strategies are more easily detected in successful negotiations
than in unsuccessful negotiations.

True positive and true negative rates underline that Naive Bayes always
outperforms other classifiers in the correct classification of negative examples.
Its classification of positive examples, however, is substantially better on the
knowledge-based representations than on the most frequent unigrams. The per-
formance of Naive Bayes is more balanced on the most frequent words than
on the words learned by the patterns. The latter applies to Decision Trees and
SVM, but on the lesser extent. Decision Trees and SVM are consistently cor-
rect in classifying positive examples. SVM’s true positives being > 85% on the
knowledge-based representations, and DT’s – more than 80%.

7 Conclusions and Future Work

We have presented a method of building language patterns for the tactical moves
of influence strategies. A pattern consist of a modal verb, a main verb, and a
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personal pronoun or a content noun. The modal defines which move corresponds
to the pattern and the power of language. The main verb contributes to the
power of language, and the pronoun or noun – to the immediacy of disclosure.

In our empirical study, we acquired the patterns from the data of electronic
negotiations. The patterns and words used in them have been employed to learn
the negotiation outcomes in machine learning experiments. We have considered
their influence on the correct early prediction of the negotiation outcome. The
obtained results have shown that the language signals of influence strategies and
their tactics give a reliable prediction of the negotiation outcome from the first
half of the negotiation.

One of the most natural extensions of the present study is the application of
the method to communication other than electronic negotiations. From a ma-
chine learning point of view, future analysis of the NB’s strong performance on
unsuccessful negotiations and somehow weak performance on successful negoti-
ations will contribute to an investigation of its learning bias. We also suggest
another interesting direction for future work. Language implementation of strate-
gies conveys opinions, emotions and personal viewpoints of the negotiator [15].
They deliver information, express the negotiator’s attitude towards the given in-
formation and the reality he deals with. A study of the language signals relates
to sentiment analysis, a field that recently has attracted much attention of Nat-
ural Language Processing and Machine Learning researchers [12]. Our research
is especially close to sentiment analysis in dialogues [25] because they both study
language in interpersonal communication. The next direction is to incorporate
semantic knowledge from lexical resources such as Longman Dictionary of Con-
temporary English [21]. This will broaden the application area of the study we
have presented here.
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Abstract. Over the last decades, more and more visually handicapped
students have attempted post-secondary studies. This situation has cre-
ated many new challenges. One of them is the need to study text and
electronic documents in depth and in a reasonable time. Blind students
cannot flip through the pages of a book, skim through the text or use a
highlighter. In this paper, we propose a solution in the form of an exper-
imental prototype and show how natural language processing techniques
can profitably assist blind students in meeting their academic objectives.
The techniques used include the automatic creation of indices, passage
retrieval and the use of WordNet for query rewriting. The paper presents
a technology application of a practically usable software.

The system was evaluated quantitatively and qualitatively. The eval-
uation is very encouraging and supports further investigation.

1 Introduction

The visually handicapped have consistently progressed over the last decades in
their efforts towards inclusion in the mainstream[7]. Integration in education and
professional life in particular was possible due to the deployment of computers in
every day life, without which it would not have been possible, or at least not to
the same degree. In the wake of this integration, more and more blind students
are attempting post-secondary studies.

This situation has created many new challenges and new needs specifically
related to the in depth study of documents in a reasonable time so as to produce
assignment submissions and research papers. In this paper, we discuss how Nat-
ural Language Processing (NLP) techniques can assist blind students in meeting
their academic objectives. We present a prototype system built as an informa-
tion probing and gathering environment. Its goal is to reduce the time it takes
a student to do research on a specific topic and ultimately produce a paper in a
time frame close to their sighted friends.

1.1 The Problem

On a regular basis, post-secondary students, especially those in Liberal Arts,
have to do research on specific topics. Their task consists in consulting a wide
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variety of books, documents and Web sites and producing an essay, anything
from a few pages to a full-fledged thesis. To be able to better understand the
difficulties that visually handicapped students face when trying to write a paper,
we need to give a quick description of the tools they use to read and write.

The visual handicap can be divided into two broad categories, the partially
sighted and the totally blind. We only address the latter here. One way to make
up for the absence of sight is the use of speech. The way computer technology
is used in this case is to provide spoken output as screen readers that use an
internal speech synthesizer. Words appearing on the screen are read aloud. The
major problem with using speech as a medium is that it provides a very small
working window due to the constraints of short term memory and linearity of
speech. [6] provided evidence that people can remember about 7 chunks (in our
case, terms) in short-term memory. [3] goes even further and suggested as little
as 3 to 5 terms.

The other way to compensate for the loss of visual ability is through the sense
of touch. For two centuries now, the blind have been able to read by moving
their fingers across raised dots on thick paper. The appearance of computer
based ’Braille displays’ in which each dot can be raised or lowered through
electromechanical devices has caused a huge leap in the accessibility to elec-
tronic documents. The major constraint here is that the user can only ’see’ a
40-character window.

1.2 A Comparison

To write a paper, a student normally scans a substantial amount of documents
quickly and easily using fast reading techniques; develops an outline while read-
ing one or more of these documents more systematically, highlighting and taking
notes; reviews and rearranges his notes and uses them to create a draft of his
document; refines the document iteratively until it is complete; at all times,
refers back to previous readings and versions.

At first sight, all these steps may seem easy, even mundane. However, for the
visually handicapped, several problems exist. To name only a few:

– The amount of material to be read is, by itself, often a challenge – even for
a sighted student.

– Reading difficulties go from very mild to very severe for handicapped stu-
dents. This can be due to many factors such as a lack of reading and sum-
marization skills, visual handicaps, dyslexia, . . .

– Note taking is an art in itself. The classic index card method facilitates
sorting of notes but is tedious and can hardly be used by students with
visual handicaps.

– Contrary to sighted users who can see a full screen of information, the blind
have no overview of documents. Everything is always seen through a 40
character window for Braille users, or a window of less than 8 spoken words
for speech users.

What is more, the above problems are encountered while performing all major
steps in writing compositions: Research, Analysis, Outlining and Composition.



302 J. Chelin, L. Kosseim, and T. Radhakrishnan

2 Previous Work

As witnessed by the CSUN series of conferences (e.g. [1, 2]), the topic of hard-
ware and software applications to help the visually disabled has received a lot of
attention. However, the resulting software applications are either geared at read-
ing or writing, but not both. In addition, most of the features provided are text
annotation tools and very little NLP techniques are used. As many of these sys-
tems are commercially available, no paper describing their inner working seems
to be available.

WYNN1, Kurzweil 10002 and textHELP3 are all tools to read and create
documents mainly targeted for learning disabled students or users with learn-
ing difficulties like dyslexia, attention deficit disorder (ADD) and other literacy
difficulties. These products typically provide text annotation tools such as book-
marking, note taking or outlining facilities. However, these facilities are often
crude. For example, the user often cannot directly go to the position of a book-
mark in the original document (through a hyperlink for example), or integrate
bookmarks into existing outlines; thus limiting his access.

To our knowledge, NLP techniques used to improve the reading and writing
tasks of the visually handicapped include only word prediction (in textHELP and
WYNN) and homonym checking (in textHELP). Homonym support provides au-
ditory and visual reinforcement of commonly confused like-sounding words. To
avoid the confusion between homophones, the program color codes confusable
words and lists possible alternatives with audible definitions and sample sen-
tences. Word prediction allows the application to predict the most likely word
to be typed given the previous context. The user types a letter and the program
offers a list of the most likely words beginning with that letter. If the required
word is on the list, it can be quickly selected. If the word is not on the list,
typing the next letter will bring up a different choice and so on. Again, as these
systems are commercial, it is not clear if a language model is used, or if a simple
dictionary look-up is performed.

A related research project is that of [9], who developed an authoring environ-
ment to assist users in writing hypermedia documents. The system, based on a
cognitive model of writing, offers features such as an outliner to help organise
ideas and for creating and manipulating view areas. However, as this tool was
not designed for the visually impaired, these features do not specifically address
their needs. In addition, it provides no feature for skimming documents or other
features to help find the content to be presented in the final document.

3 Proposed Solution

In order to assist the visually handicapped, a prototype system called escas4

was developed. The system can be seen as an information probing and gathering
1 http://www.freedomscientific.com/LSG/products/wynn.asp
2 http://www.kurzweiledu.com
3 http://www.texthelp.com
4 c©Jacques Chelin, 2006



Using NLP to Assist the Visually Handicapped in Writing Compositions 303

environment or more practically as a text editor with features to assist in reading
and writing documents. Its goal is to reduce the time it takes a student to do
research on a specific topic and ultimately produce a paper in a time frame close
to their sighted friends. To achieve this, the system assists the user in:

– Determining the relevance of documents without having to read them en-
tirely.

– Accessing information related to a user specific theme or subject much faster
than traditional methods.

– Freeing the user from tedious searches and reading chores for more produc-
tive and creative work.

The purpose here is to investigate where and how far NLP techniques can
facilitate the access of students to information pertinent to their research. These
techniques will convey additional information about the content of a document
and faster access to relevant positions within the document.

Text annotation tools, such as the facility to create and annotate outlines,
bookmarks, notes . . . are the typical tools offered to help the visually handi-
capped (see section 2). These tools facilitate the access and the composition of
documents, but cannot help in manipulating their content. We therefore looked
at various NLP techniques to zoom in on material within an input document
that is particularly relevant to the subject being developed by the user. In the
case of sighted users, this can be achieved by skimming or fast reading through
the material. Our intent here is not only to replace skimming with what NLP
can offer but also go beyond skimming and implement such functionality that
could be of help even to those who have no handicaps.

3.1 Indexing

When skimming literature, the user is looking for specific information quickly.
To achieve this, a useful support is an index. In a standard index at the end of a
paper book, important terms (words or phrases) are arranged alphabetically and
are associated with the page numbers where they can be found. Blind students
generally use scanned versions of paper documents. As the books were designed
for paper medium, they do not contain hyperlinks to help users navigate quickly.
The scanned version of an paper-book index is therefore of no help to blind
users. They need direct access to the actual segment of text (be it a paragraph,
a sentence . . . ).

Many approaches to index generation have been proposed to find terms that
are representative of the document and to relate them to each other semantically
(e.g. [4], [10]). In escas, our goal is to generate many automatic pointers to text
excerpts and to perform this task on the fly whenever a new document is loaded
in the system. A syntactic analysis or chunking of the document is therefore
not an option as it may not be fast enough and may not be able to parse all
sentences. As we are more interested in recall than in precision, we opted for a
non-linguistic approach.
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Fig. 1. Collocation-based index in escas

In escas, each index term is considered as a text node. Visually, under that
node, instead of a page number, the user can see the actual text excerpt which
contains the entry. By just pressing a key (Enter in our case) on an occurrence,
the user is taken to its exact location in the text. For the user, the index is handy
because, in addition to giving access to the original text segment, the index can
be used to scan through a list of sentences rather than to have to keep switching
to the text from a list of page numbers. The index includes both single-word
terms and two-word terms. First, the text is tokenised, stopwords are removed
and the remaining words are stemmed using the Porter stemmer [8]. For each
stem, we then keep a list of pointers to the paragraphs in which they occur and
to the position of the stem in the text. We also keep one of the original words
from which the stem was derived such that the user is presented with a word
and not a stem.

Single words are often not enough to convey the full meaning that the user
wishes to explore. Most of the time, the user is looking for material that is
characterized by a combination of two or more words rather than just one. For
example, no one would contend that Supreme Being together is more semanti-
cally rich than Supreme and Being taken separately. The idea here is to establish
the set of word combinations that reflect the meaning of the document.
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In escas, we thus extract collocations of 2 consecutive words. Collocations are
of interest to us for two reasons. First, they are important for computational lex-
icography. Being a multi-word term combined together in a significant way, they
are used to create a more useful index. Second, since the process of generating
collocations uses a ranking scheme which integrates the importance of specific
words within a document, this process produces a set of terms that characterize
the documents. These terms can then be selected by the user to perform query
rewriting (see section 3.3) with a single touch of a function key.

To identify collocations, we used the standard technique of Hypothesis testing
with the Pearsons chi-square test described in [5]. Essentially, Pearsons chi-
square test compares the observed frequency of pairs of words with the frequency
expected if the two words were independent. For more technical details, the
interested reader is referred to [5].

Figure 1 shows a screen shot of the system with a collocation-based index.
The index term age modern is found twice in the text. By clicking on either
excerpts For two hundred years, people . . . or They tackled all their practical
and . . . , the user is taken directly in the right position in the document.

3.2 Paragraph Retrieval

As discussed in section 1.1, blind students have a difficult time skimming docu-
ments because they do not have an overall view of the text. They currently must
read each document to determine their relevance, then select only a few and read
them back again to analyze their content. The idea behind paragraph retrieval
is to suggest to the user places where he would start reading that would be the
most relevant to the subject being treated. If he could do a structured reading
of the material, he would save time by having less to read or not having to read
the material more than once. This problem can be reformulated as an Informa-
tion Retrieval (IR) task where the query is the subject of the thesis or paper
being written. We wish to provide a student with search facilities when reading
a document and cater at the same time for the different levels of understanding
of that student.

In escas, the document being studied is divided into a set of paragraph vectors
using the data accumulated during the parsing of the document for index terms
(see previous section). We implemented the standard vector-space IR model
with a tf-idf weighting scheme, where partial matching allows the ranking of the
degree of similarity measured by the cosine of the angle between a paragraph
vector and the query vector. Initially, the query is taken to be the topic of the
composition. Only the paragraphs relevant to the topic (or those having the
highest cosines) are retrieved.

3.3 Query Rewriting and Reformulation

The problem with IR is that often very pertinent paragraphs containing terms
semantically close to the query (such as synonyms) are not retrieved while noise
is introduced in the retrieval set with paragraphs that are not pertinent. As
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Fig. 2. Paragraph retrieval in escas

an example, let’s assume that a Philosophy term paper has to be written on
Potentiality and Actuality: Aristotle’s reintroduction of unrealized possibilities
and reaffirmation of becoming. A query based on this subject would not include
the word Being since that word is not among the words in the query. So the
student has to somehow add this word to the query to improve the retrieval.
Based on the new retrieval results, new words or phrases will suggest themselves
(through the index for example) and the user will start exploring the material
with different queries.

Figure 2 shows a screen shot of the system with paragraph retrieval. The
benefit that can be derived from this feature is faster access to pertinent ma-
terial within the text or exploring the material in unexpected but interesting
directions. One must remember here that we are trying to find a substitute for
skimming. Furthermore, this iterative reformulation exercise suggests that the
problem can be viewed as having three dimensions or can be positioned within
a three-dimensional space, the type of retrieval, the expansion of the query and
the level of understanding of the user.

WordNet. Query Reformulation can quickly turn short if the user does not
have some help in getting more ideas on the subject. WordNet was thus incor-
porated into the system. The idea was to make available to the user synonyms,
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Fig. 3. Example of using WordNet in escas

hypernyms, hyponyms, and other lexically and semantically related terms. Their
respective links allow the user to explore a certain domain and thus structure
and enrich his query reformulation process. With a function key, escas allows
the user to expand his query from where the cursor is in the Wordnet data so he
can resubmit that query within his exploration process. Figure 3 shows a small
excerpt of the links available when a search is done on hyponyms of the word
Being in WordNet.

4 Evaluation

To evaluate the system, both a quantitative and a qualitative evaluation were
performed, but with only one blind university student. We also showed the sys-
tem to the coordinator of Concordia University’s Office for Students with Dis-
abilities - himself blind, and gathered his opinion. One of the major difficulties in
performing the evaluation, is to find blind students who are willing and have the
time to evaluate the system. Remember that blind students require more time
to do their course work. Asking them to spend time on the evaluation of a proto-
type adds a load to their already busy schedule. Nevertheless, as discussed later,
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a more complete evaluation with several blind and non-blind post-secondary
students is planned for.

4.1 Qualitative Evaluation

From the beginning, a blind student was involved in the project. Didier is now
a 2nd year Concordia University student enrolled in Philosophy and Religion.
Since CECEP (Québec’s pre-university level), he had to write compositions for
his course work. He was involved in the project since 2001, helping us determine
the requirements of blind students, and since 2002, Didier had been given various
prototypes to try out and evaluate.

Through Didier’s use of the system, we interviewed him and asked him to
describe his experience. After some training period where he had some good and
some bad experiences, Didier characterizes his experience as follows: If you know
where you are going, ESCAS is a fantastic and indispensable tool. If you don’t, it
is a bad tool. More concretely, you must first have a good idea of your topic and
your material first before creating an outline and fleshing it out into a paper. In
the beginning he retrieved many documents and paragraphs, then spend a lot of
time reviewing it all. He was falling into the familiar trap of beginning students
who would highlight the whole book.

Today, Didier claims that it takes him about half the time to write a com-
position when using the system. He can skim literature more quickly and can
concentrate on more creative thinking than he could without the system. All in
all, Didier has been using the system every semester since we offered it to him
and he considers it a necessary tool for reading and writing.

We also showed the system to the coordinator of Concordia University’s Office
for Students with Disabilities - himself blind. Although he did not use the system
for an actual essay writing exercise, he was very enthusiastic about it and will
recommend it to his peers at various local colleges (Dawson, Vanier, Marianopolis
and Cégep du Vieux-Montréal).

4.2 Quantitative Evaluation

From the beginning, the goal of the system was to reduce the time gap between
blind and regular students in writing compositions. To measure the utility of
the NLP tools, we therefore needed to compare the time it took a typical user
to write a composition with and without the system. Dider feels that it now
takes him about half the time to write an essay; but we wanted hard data to
support this claim. The difficulty here, is that any person (hopefully students,
too) get better at a task each time they perform it. We cannot ask the same
person to write a composition on the same topic twice; the second time will
surely be faster and better. We cannot compare different compositions written
by the same person, as they may be of different levels of difficulty, different level
of research will be involved . . . Since Didier had kept record of all his course
work since 2001, we then compared the time it took him to write compositions
for his courses compared to the professors’ requirements for regular students. In
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2001, Didier did not have the software, in 2002 and 2003, he was given various
prototypes that did not include NLP tools, and since 2004, he was given escas.
Table 1 shows the data for years 2001, 2004 and 2005.

Table 1. Time to write a composition with/without the system compared to professors’
requirements

Regular Students Didier’s Actual Time Time
Year Given Due Time Given Handed-in Time Ratio Diff.
2001 - w/o escas 01-Mar 15-Apr 45 days 01-Mar 30-May 90 days 2.00 45
2001 - w/o escas 09-Feb 30-Apr 81 days 09-Feb 27-Jun 138 days 1.70 57

2004 - w/ escas 08-Sep 02-Dec 84 days 08-Sep 06-Dec 88 days 1.05 4
2004 - w/ escas 08-Sep 13-Dec 95 days 08-Sep 19-Dec 101 days 1.06 6
2005 - w/ escas 07-Feb 07-Mar 30 days 07-Feb 30-Mar 53 days 1.77 23
2005 - w/ escas 16-Nov 09-Dec 23 days 02-Nov 12-Dec 40 days 1.74 17
2005 - w/ escas 09-Nov 23-Nov 14 days 16-Nov 15-Dec 29 days 2.07 15

In 2001, it took Didier about twice as long to write a composition than regular
students. If the professor gave 45 days to regular students, it would take him 90
days to achieve the same task. In 2004, the data seems to show a net reduction in
time - he handed in his work about the same time as regular students. However,
for 2005, it takes him twice as long again . . . The data was inconclusive.

However, when looking at the difference between the time of a regular student
and that of the evaluator, we see three clusters of data corresponding to each
of the three years. escas does show an improvement. The higher differences in
2005 compared to 2004, can be explained by more material having to be read and
more courses taken simultaneously. Why would differences reflect reality better
than ratios? Given the evaluator is adamant that he takes less time when using
the application, we would like to suggest an explanation. The student doing the
evaluation has a physical deficiency, not an intellectual one. Using a ratio would
assume that every task takes more time affecting the overall proportion uniformly
on all the variables. This would correspond more to an intellectual deficiency.
In the case of a physical deficiency, accessing the material takes more time. But
once the material is available, the creative and intellectual skills come into play.
escas does not help at all at the intellectual level. Considering the differences
instead of the ratios amounts to looking at the extensions in time required to
finish the paper. Let us apply this rule to the first and last entries. We can safely
assume that the time to access the material for a sighted person is marginal
when compared to the problems met by a blind person. Giving this access time
a value of 1, we have 44 days and 13 days of intellectual work respectively. We
also assume parity at the intellectual level. We have a resulting 46 days (90-44)
and 16 days (29-13) of access time. This gives us a true ratio difference of 46.0
to 16.0 which is a huge difference when compared with the 2.0 and 2.07 pair.

To conclude, with the small amount of data analysed, we have not scientifi-
cally demonstrated that escas helps. Future work definitely includes a formal
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evaluation of the system with several students, and compare their use of the sys-
tem. The goal here is to make sure that we have not developed a system geared
towards the personal preferences of one person, but that it is actually useful
for most blind students. For this, we plan on asking the participation several
blind and non-blind subjects from a post-secondary school. However, we doubt
that a truly quantitative evaluation can be performed. As with any software, the
perceived benefits may not correspond to the actual benefits. Overall, if the user
freely chooses to use the system, it may be enough to declare it useful.

5 Conclusion and Future Work

In this paper, we presented escas5, a prototype system to assist the visually
handicapped in writing compositions. The system can be seen as an information
probing and gathering environment that offers features based on NLP techniques.
The purpose here is to investigate where and how far existing NLP techniques
can facilitate the access of students to information pertinent to their research.
These techniques convey additional information about the content of a document
and faster access to relevant positions within the document.

Currently, the evaluation of the system is more qualitative, than formal. Fu-
ture work definitely includes a formal evaluation of the system with several
students, and compare their use of the system. The goal here is to make sure
that we have not developed a system geared towards the personal preferences
of one person, but that it is actually useful for most blind students. For this,
we plan on asking the participation several blind and non-blind subjects from a
post-secondary school. However, we doubt that a truly quantitative evaluation
can be performed. As with any software, the perceived benefits may not corre-
spond to the actual benefits. Overall, if the user freely chooses to use the system,
it may be enough to declare it useful.
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Abstract. We present a method for text compression, which relies on pruning
of a syntactic tree. The syntactic pruning applies to a complete analysis of sen-
tences, performed by a French dependency grammar. Sub-trees in the syntactic
analysis are pruned when they are labelled with targeted relations. Evaluation
is performed on a corpus of sentences which have been manually compressed.
The reduction ratio of extracted sentences averages around 70%, while retaining
grammaticality or readability in a proportion of over 74%. Given these results on
a limited set of syntactic relations, this shows promise for any application which
requires compression of texts, including text summarization.

1 Introduction

This paper is a contribution to work in text summarization, whose goal is to produce a
shorter version of a source text, while still retaining its main semantic content. Research
in this field is flourishing (see namely [14, 15, 16]); it is motivated by the increasing size
and availability of digital documents, and the necessity for more efficient methods of
information retrieval and assimilation.

Methods of automatic summarization include extracting (summarizing by using a
limited number of sentences extracted from the original text) and abstracting (produc-
ing a new, shorter text). Extraction algorithms have a strong tendency to select long
sentences from the text (since word frequency and distribution are often crucial, and
are higher in long sentences even when sentence length is factored in). Shortening the
extracted sentences can be a way to further reduce the resulting summary, provided that
the (essential) meaning of the sentence is preserved. Such summaries can presumably
allow for shorter reading time. We have thus developed a method for sentence reduction.

After presenting our objectives and previous related work, this article details the
methodology, and then presents and discusses experimental results. The conclusion out-
lines future work.

2 Objectives

Three objectives are sought in this paper. First, we present the method for text compres-
sion based on syntactic pruning of sentences after a dependency-analysis tree has been
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computed. Secondly, although we recognize the existence of numerous resources for the
syntactic analysis of English texts (and the evaluation thereof), equivalent systems for
French are scarce. Given resources at our disposal, namely a broad-coverage grammar
for French, we present a system for compression of French sentences. Finally, we give
evaluation results for the sentence reduction approach on a corpus of manually-reduced
sentences; this aims to determine whether, after compression, the resulting reduced sen-
tences preserve the grammaticality and essential semantics of the original sentences.
Success would suggest this approach has potential as a summarization method.

3 Related Work

3.1 Text Compression in Abstracting

An abstract is "a summary at least some of whose material is not present in the input"
([14], page 129). An abstract may reduce sentences from the source text, join sentence
fragments, generalize, etc. Work under this banner has occasionally involved sentence
reduction, for instance by identifying linguistic reduction techniques which preserve
meaning [11, 17]. Also related is work on information selection and fusion: Barzilay et
al. [2] focus on fusing information from different sentences into a single representation,
and Thione et al [18] apply reduction and fusion techniques to a representation of text
structure based on discourse parsing. Sentence reduction techniques vary considerably
and some are much harder to implement than others; however, all require a fairly good
syntactic analysis of the source text. This implies having a wide-coverage grammar, a
robust parser, and generation techniques which defy most existing systems.

3.2 Text Reduction Based on Syntactic Analysis

We hypothesize that a robust syntactic analysis can be valuable as a basis for text reduc-
tion. Grefenstette [8] experiments with sentence reduction based on a syntactic analysis
provided by a robust phrase structure parser [9]. Only some of his reductions guar-
antee keeping grammatical sentences. Mani et al. [10] compress sentences (extracted
from a text) based on a phrase-structure syntax analysis indirectly based on Penn Tree-
bank data; pruning is performed (among other operations) on certain types of phrases
in specific configurations, including parentheticals, sentence-initial PPs and adverbial
phrases such as "In particular,", "Accordingly," "In conclusion," etc. Knight and Marcu
[12] compare a noisy-channel and a decision-tree approach applied to a phrase-structure
analysis; they conclude that retaining grammaticality and information content can be
two conflicting goals. [13] studies the effectiveness of applying the syntactic-based
compression developed by [12] to sentences extracted for a summary.

3.3 Potential for Dependency Analyses

With the exception of [12], previous work on summarization based on a syntactic analy-
sis mostly reports disappointing evaluation results. Significantly, no system involves
dependency-based grammars. We are interested in exploring the potential of pruning
a dependency-syntax analysis; the latter is based on a representation which directly
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encodes grammatical relations and not merely phrase structure. We believe that this
allows a better characterization of the sub-parts of the tree that can safely be pruned
while retaining essential meaning. Indeed, grammatical relations such as subject and
direct object should correlate with central parts of the sentence, whereas subordinate
clauses and temporal or locative adjuncts should correlate with peripheral information.
Phrase structure tags such as "PP" (prepositional phrase) or "AdvP" (adverbial phrase)
are ambiguous as to the grammatical contribution of the phrase to the sentence. Prun-
ing decisions based on syntactic function criteria appear to us better motivated than
those based on phrase structure. (Note that this is still different from pruning a semantic
representation (e.g. [5]).

We are aware of no similar work on French. An equivalent of the Penn TreeBank for
French is available [1], but is based on phrase structure. For our part, we were granted
access to the source code for a robust, wide-coverage grammar of French, developed
within a commercial grammar-checking product (Le Correcteur 101TM, by Machina
Sapiens and now Lingua Technologies1). The grammar is dependency-based: syntactic
trees consist of nodes corresponding to the words of the sentence, and links between
nodes are labelled with grammatical relations (of the type "subject", "direct object",
"subordinate clause", "noun complement", etc.).

Les médias sont-ils responsables de l’efficacité des publicités qu’ils véhiculent ?
Arbre sont/verbe

Sujet les médias/nom
RepriseSujet ils/pronPers
Attrib responsables/adj

ComplAdj de l’efficacité/nom
ComplNom des publicités/nom

Relat véhiculent/verbe
ObjetDirect qu’/pronRelat
Sujet ils/pronPers

FinProp ?/ponctFinale

Fig. 1. Sample dependency tree: main verb is labelled as "Arbre". Some sub-trees are simplified.

The grammar aims to perform a complete syntactic analysis of the sentence (see
Figure 1 for an indented presentation). In case of failure (due to severe writer error
or to limits of the grammar), it provides a series of partial analyses of fragments of the
sentence. In all cases, the parser ranks analyses using a weighting mechanism which is a
function of weights of individual sub-trees and their combination. The detailed analysis
produced by the grammar can be the basis of syntactic pruning for text reduction (this
is illustrated in Figure 1).

This grammar has many advantages. In addition to its large coverage, it is able to
provide a full analysis even with erroneous input (given its embedding within a gram-
mar checking software product). It is indeed wide-coverage: its 80,000 lines of C++
code represent many person-years of development; the grammar consists of over 2500

1 www.LinguaTechnologies.com
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grammar rules and a dictionary containing over 88,000 entries. Note that other recent
work [4] also uses this grammar in a non-correcting context, pertaining to controlled
languages. The grammar does, however, have peculiarities which we discuss below. In
brief, certain linguistic phenomena are ignored when they have no effect on correction.

[Dans le monde en pleine effervescence d’Internet, ]locAdj l’arrivée de

HotWired marque le début de la cybermédiatisation [, le premier véritable média
sur Internet]app.
→
L’arrivée de HotWired marque le début de la cybermédiatisation.

Fig. 2. Sample reduction: locative adjunct (locAdj) and apposition (app)

4 Methodology

We developed an algorithm which performs sentence reduction using syntactic pruning
of the sentences. It proceeds by analyzing the sentence, then filtering the targeted rela-
tions, while applying anti-filters which prevent certain unwanted pruning by the filter.
We should be able to maintain the sentence’s grammaticality, insofar as we prune only
subordinate material, and never the main verb of the sentence.

4.1 Analysis

The grammar of Le Correcteur 101 is used in its entirety. Extracted sentences are sub-
mitted one by one and a complete syntactic analysis of each is performed. Although
the parser usually supplies all plausible analyses (more than one, in the case of ambigu-
ous syntactic structures), our algorithm uses only the top-ranking one. This has some
limitations: sometimes the correct analysis (as determined by a human judge) is not
the highest-ranking one; in other instances, it shares the top rank with another analy-
sis which appears first in the list, given the arbitrary ranking of equal-weight analyses.
Our algorithm systematically chooses the first one, regardless. The impact of incorrect
analyses is great, as it radically changes results: complements may be related by a dif-
ferent relation in the different analyses, and thus the reduction performed may not be
the one intended. This fact (which has no bearing on the appropriateness of the syntactic
pruning) has an impact on the evaluation of results.

4.2 Filtering

A filtering operation follows, which removes all sub-trees in the dependency graph that
are labelled with relations from a predefined list. The entire sub-tree is removed, thus
reducing the sentence (for example giving the result in Figure 1). The list of syntactic
relations that trigger reduction is kept in an external file, allowing for easy testing of
various sets of relations. We adapted the output of Le Correcteur 101 to produce parses
corresponding to the full tree and to the pruned tree. The simplest version of a filter
consists of a single mother-daughter pair related by relation R, where either node may
be specified with a part-of-speech tag or by a lexical item. A more complex version
involves multi-daughter structures, or grandmother-granddaughter pairs.
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A preliminary test was performed using a wide number of relations. Only obliga-
tory complements and phrasal specifiers (such as determiners) were kept. This resulted
in a large reduction, producing much shorter sentences which however tended to be
ungrammatical. It was determined that a much more focused approach would have a
better chance of reducing the text while still preserving important elements and gram-
maticality. A second run, reported in [6], involved only the following relations: optional
prepositional complements of the verb, subordinate clauses, noun appositions and in-
terpolated clauses ("incises", in French). These are encoded with 6 relations, out of the
246 relations used by 101. For the current experiment, we used evaluation results from
the previous one to fine tune our filtering algorithm. The present system targets 33 dif-
ferent relations (out of a possible 246), including the 6 mentioned above, and whose
dsitribution is given in Table 1.

Table 1. Distribution of pruned relations

Relation category Number of relations
Relative clauses 9
Subordinate clauses 5
Appositions and interpolated clauses 7
Noun modifiers 2
Emphasis markers 4
Adverbial modifiers 6
Total 33

The list was determined through introspection, on the grounds that these relations
typically introduce peripheral syntactic information (see the conclusion for planned
work on this aspect).

4.3 Anti-filters

The purpose of anti-filters is to prevent the removal of a sub-tree despite the relation it is
labelled with. Two aspects of the anti-filters must be described. First, anti-filters can be
lexically-based. For example, special processing must be applied to verb complements,
to avoid incomplete and ungrammatical verb phrases. The grammar attaches all (oblig-
atory) prepositional complements of the verb (for example, the obligatory locative "à
Montréal" in "Il habite à Montréal") with the same relation as optional adjuncts such
as time, place, manner, etc. This was done during the development of the grammar to
reduce the number of possible analyses of sentences with prepositional phrases (given
that this type of ambiguity is rampant, yet never relevant for correction purposes). To
circumvent this problem, lexically-specified anti-filters were added for obligatory com-
plements of the verb (e.g. the pair "habiter" and "à"). Since this is not encoded in the
lexical entries used by the grammar, it had to be added; for our tests, we hand-coded
only a number of such prepositional complements, for the verbs identified in our corpus
(while pursuing a related research project of automatically identifying most interesting
verb-preposition pairs through corpus analysis).

Secondly, anti-filters may examine more than a local sub-tree (i.e. one level). In-
deed, anti-filters are expressed using the same "syntax" as the filter and may involve
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Subordinated verb

"se demander"

si ...

Subord

ConjSubord

Fig. 3. Sample pattern for 3-level anti-filters

three-level trees. This is useful for sentences containing specific types of complement
clauses. Verbs which require an if-clause ("complétive en si"), such as "se demander"
("to wonder if/whether"), have their complement labelled with a subordinate clause re-
lation (again, to reduce the number of unnecessary ambiguous analyses by the grammar)
and the complementizer "si" is a dependent of the embedded verb. Yet this clause is an
obligatory complement and should not be pruned (just as direct objects and predicative
adjectives are not), but would be subject to pruning due to the "subordinate clause" label
it receives and the distance between the main verb and the complementizer "si", which
allows its identification as an obligatory clause. This requires a more complex pattern,
since two relations are involved (see Figure 3).

5 Evaluation

In order to evaluate the performance of the pruning algorithm, we first built a cor-
pus of sentences which were compressed by a human judge and then compared the
automatically-reduced sentences to the manually reduced ones.

The test corpus consisted of 219 sentences of various lengths, extracted from the
Corfrans corpus2 which contains approximately 3000 sentences. We extracted random
sentences, equally distributed among the different lengths of the sentences. We wished
to have different lengths, so that we could evaluate how the reduction performance
correlated with sentence length. Intuitively, short sentences should be hard to reduce,
since the information they contain tends to be minimal. Longer sentences are expected
to contain more unessential information, which makes them easier to reduce, but are
also difficult to analyse, which may cause errors in the reduction.

For our tests, sentences of 5 or fewer words were discarded altogether. Among the
rest, about 25% of sentences have between 6 and 15 words, about 25% have between 16
and 24 words, about 25% have between 25 and 35 words, and the remaining 25% have
between 36 and 131 words (with a large spread in sentence length for that last interval).
The final distribution is shown in Table 2.

The manual reduction was done using the following guidelines: the only operation
allowed is the removal of words (no addition, rewording nor reordering); truth values
and logical inferences must be preserved; only optional complements can be removed;
resulting sentences are not syntactically nor semantically ill-formed; the only "errors"

2 http://www.u-grenoble3.fr/idl/cursus/enseignants/tutin/corpus.htm
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Table 2. Details of the evaluation corpus

Sentence length # sentences Total
6-15 5 sentences each 50
16-24 6 sentences each 54
25-35 5 sentences each 55
36-80, 82-86, 88, 89, 91, 94, 95, 99, 100, 104, 113, 131 1 sentence each 60

tolerated are unadjusted punctuation, affixation (agreement) or capitalization. An ex-
ample is that shown in Figure 2 above.

The methodology used explains the small size of the corpus: evaluation necessitated
a careful, manual reduction of all sentences. No evaluation corpus was at our disposal
for this collection of dependency analyses of French texts and their reduced equiva-
lent. According to [3], there is only one genuine annotated corpus for French, devel-
oped by Abeillé and her team [1]. The same lack of resources in French is remarked
in [7].

6 Results

Each sentence was examined to determine (i) if it had been pruned, (ii) whether the
result preserved essential content and (iii) how it compared to a manual reduction by
a human expert. Of 219 sentences, 181 were reduced by our algorithm (82.6%). We
partitioned the corpus into two halves, containing the shorter and longer sentences,
respectively. In the short sentence partition (sentences with at most 28 words), 82 of
110 (74.5%) have been reduced, and in the second partition (sentences with more than
28 words), 99 of 109 (90.8%). This gives more evidence that short sentences are harder
to reduce than long sentences.

Good (slightly ungrammatical)
Je désire que la vérité éclate et que si vraiment, comme tout semble le faire croire, c’est cet
épicier qui était le diable, il est convenablement châtié. I want the truth to shine and the gro-
cer to be apropriately punished, if really, as everything make us believe it, he was the devil→
Je désire que la vérité éclate et que si vraiment, c’est cet épicier qui était le diable, il est conven-
ablement châtié. I want the truth to shine and the grocer to be apropriately punished, if really,
he was the devil
Acceptable
Le Soleil lui-même a de nombreuses répliques dans le ciel ; The Sun itself has many replicas
in the sky ;→
Le Soleil lui-même a de nombreuses répliques ; The Sun itself has many replicas;
Bad
Je n’entretiens aucun doute sur le caractère national qui doit être donné au Bas-Canada ; I
have no doubt about the national character that must be given to Low-Canada ;→
Je n’entretiens aucun doute ; I have no doubt ;

Fig. 4. Sample of good, acceptable and bad reductions
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Table 3. Quality of reductions

Sentences Good Acceptable Bad Total
Overall 106 (58.6%) 29 (16.0%) 46 (25.4%) 181
Short sentences 56 (68.3%) 13 (15.9%) 13 (15.9%) 82
Long sentences 50 (50.5%) 16 (16.2%) 33 (33.3%) 99

6.1 Semantic Content and Grammaticality

Correct reductions are those which are either good (i.e. the main semantic content of
the original sentence is retained in the reduction - as in Figure 2) or acceptable (i.e. a
part of the semantic content is lost, but the meaning of the reduced sentence is compat-
ible with that of the original). Bad reductions are those where crucial semantic con-
tent was lost, or which are strongly ungrammatical. Some cases were ungrammati-
cal but still considered acceptable (e.g. punctuation errors). See Figure 4 for sample
reductions.

Table 3 shows that about 58% of the reductions were judged, by a human judge, to
be "good"; 16% were "acceptable" and 25% "bad". If we consider separately the short
sentences of the test corpus (with sentence length not exceeding 28 words), we see that
the number of good reductions is greater in the short sentence partition (68% compared
to 50%); there are more bad reductions among long sentences (33% compared to about
16%). The system thus appears weaker in the task of reducing longer sentences.

Table 4 shows the proportion of correctly reduced sentences (good or acceptable),
among the 181 sentences that have been pruned. We see that most of the reduced sen-
tences are correctly reduced and, as expected, the proportion of long sentences that are
correctly reduced is significantly low, compared to short sentences.

Table 4. Ratio of reduced sentences

Sentences Proportion of correctly reduced sentences (out of 181)
Overall 74.6%
Short sentences 84.2%
Long sentences 66.7%

6.2 Compression

We calculated the compression rate for each reduced sentence (i.e. the size of the pruned
sentence, in words, compared to the number of words of the original sentence). We
compared this to the "ideal" compression rate, corresponding to the manual reduction
(which we refer to as the "Gold standard"). To estimate the performance of the reduction
for different length sentences, results are shown for the corpus overall, and for both
long and short sentence partitions. The first two columns give the average reduction
rate for the reduction realized by the human judge (the Gold standard) and our system,
respectively. The next three columns give some evaluation of the reduction. Classic
precision and recall are calculated in terms of the number of words retained by the
system, based on the Gold standard. Finally, agreement is a measure of the number of
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shared words between reduced sentence and Gold standard (divided by the total number
of words in both). These simple measures (based on an ordered "bag of words") appear
warranted, since word order had been preserved by the reduction method.

We note that, considering the overall reduction rate, 70.4% of words have been re-
tained by the system. This shows potential for useful reduction of an extract. This result
is not far from the ideal reduction rate (65.9%), but looking at the figures in Table 2,
we see that 25.4% of the reduced sentences are incorrectly reduced. Correct pruning
in some sentences is offset by incorrect pruning in others. Also, agreement is not very
high, but precision and recall show that much of the content is preserved in our reduc-
tions, and that these reduced sentences do not contain too much noise. The reason for
low agreement values is that a reduced sentence usually differs from its Gold standard
by the presence or absence of a whole phrase, which usually contains many words.

Table 5. Reduction rate in terms of words (%)

Sentences Gold standard
vs Original
sentence (%)

System re-
duction vs
Original
sentence (%)

Precision Recall Agreement
(%)

Overall 65.9 70.4 79.1 83.8 67.6
Short sentences 78.4 80.7 86.9 89.2 77.4
Long sentences 53.6 60.3 71.3 78.4 57.9
Among “correct” reductions 67.3 73.9 80.5 87.9 71.4
Among “bad” reductions 60.0 57.1 73.4 68.1 52.8

The reduction rate in the last two lines of Table 5 separates correct (good or accept-
able) reductions from bad ones. Thus, if only the correctly reduced sentences are con-
sidered, our system achieved 73.9% compression, while the human expert compressed
by a ratio of 67.3% for the same sentences. Hence our correct reductions were still not
reduced enough by human standards. Considering only the bad reductions, our com-
pression rate is lower (57.1%) than that of the human judge (60%), but only slightly.

Where the reduction rate is smaller, reductions are typically worse (57.1% compres-
sion for bad reductions compared to 73.9% for correct ones). We can make the same
observation for the sentence length (60.3% compression for long sentence compared to
80.7% for short ones). By analyzing the bad sentences, we see that most of them are
long sentences that are incorrectly analyzed by the parser. Thus, long sentences, which
would usually benefit more from the reduction process, unfortunately suffer from their
difficulty to be correctly analyzed.

6.3 Some Problems with the Grammar or the Corpus

As expected, some incorrectly reduced sentences (28, or 12.8%) are due to the fact that
no correct analysis has been returned by the parser. And when the grammar had trouble
finding the right analysis among several, it sometimes suggested corrections that were
inappropriate (in 2 cases). In 6 cases, severe errors in the original sentence prevented the
parser from finding a good analysis (for example, the sentence contained both a short
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title and the actual sentence, not separated by a dash or other punctuation; or it lacked
the proper punctuation). In 6 cases, the parser was unable to give a complete analysis,
but provided analyses of fragments instead. Finally, in 14 cases (6.4%), adjuncts were
removed but were actually obligatory and should not have been.

7 Discussion

7.1 Shortcomings of the System

By a closer inspection of sentences that are incorrectly reduced, we found that in some
cases, a good reduction would necessitate major changes in our model, or some seman-
tic information that is beyond the scope of the parser. In the example in Figure 5, the
prepositional modifier "dans une opposition rigide et unilatérale" (in a rigid and uni-
lateral opposition) cannot be argued to be required (syntactically) by either "peuvent"
(can), nor "être" (to be) nor "pensés" (thought). Yet, semantically, removing the phrase
produces an ungrammatical or semantically incoherent sentence. Although our goal is
to test the hypothesis that syntactic pruning can yield useful sentence compression, we
must recognize that the system suffers from its lack of semantics. Indeed, for each rela-
tion, the semantics of the pruned element should actually be taken into account before
deciding whether pruning is appropriate.

L’histoire des sciences est venue quant à elle montrer que le vrai et le faux ne peuvent être
pensés dans une opposition rigide et unilatérale. History of science showed, as far as it is
concerned, that the true and the false cannot be thought in a rigid and unilateral opposition.→
L’histoire des sciences est venue montrer que le vrai et le faux ne peuvent être pensés. History
of science showed that the true and the false cannot be thought.

Fig. 5. Sample unrecoverable reduction

The system is limited by the fact that it only takes the first analysis from the parser.
It also does not adapt its processing according to sentence length, yet we have observed
that this is not independent of the correctness of the pruning. We suspect that certain
relations have a greater impact (a systematic comparison of relations pruned by the
human judge and by the system has yet to be performed).

7.2 Possible Improvements

Two methods could be explored to control the pruning. Since sentences judged to be
incorrectly reduced are those which undergo more reduction, it suggests that a com-
pression threshold could be determined, below which pruning should not be applied
(this could take the relation name into account). Also, we could use the fact that the
system uses a grammar which can detect errors in sentences: submitting reduced sen-
tences to parsing and correction could provide a way of refusing reduction when the
result is ungrammatical.

We can also suggest a way of circumventing the problem of our system only using
the first analysis (and hence sometimes going astray): the first N analyses could be used
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and pruned, comparing output; this output could be ranked according to compression
ratio, rank of the original tree and frequency (as two original trees may be pruned to
the same one)3. Finally, an experiment could be devised to compare the efficiency of
different sets of pruning rules.

8 Conclusion and Future Work

We have proposed a method for text reduction which uses pruning of syntactic relations.
The reduction rate achieved by our system (about 70% reduction of sentences) shows
great promise for inclusion in a text reduction system such as summarization. Compared
to previous work [6], we got a higher number of reduced sentences (82.6% vs 70.0%)
and a better reduction rate (70.4% vs 74%). At the same time, the ratio of correctly
reduced sentences has been significantly increased (74.6% vs 64%). Precision and recall
values are about 80%, which is not bad, but should be improved to make our system
suitable to be used in a real application. The loss of performance is due principally to
the lack of semantic analysis and the limitations of the parser, which are beyond the
scope of our model.

Future work will mainly focus on comparing our results with similar syntactic prun-
ing based on phrase structure and other corpora and parsers (for French texts, initially).
The Corfrans corpus at our disposal is tagged with phrase-structure analyses, so a com-
parison of both approaches should prove interesting. We also have access to a similar
dependency grammar for English (developed as part of a grammar checker as well),
in addition to other well-known freely-available English parsers. Its coverage is not as
wide as that of Le Correcteur 101, but has a lexicon of verbs completely specified as to
obligatory prepositional complements. For this reason, we intend to pursue experiments
on English texts. The limits of the parser seem to strongly influence the results, so more
experiments should be realized with very good parsers.
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Abstract. Sentence selection shares some but not all the characteristics of 
Automatic Text Categorization. Therefore some but not all the same techniques 
should be used. In this paper we study a syntactic and semantic enriched text 
representation for the sentence selection task in a genomics corpus. We show 
that using technical dictionaries and syntactic relations is beneficial for our 
problem when using state of the art machine learning algorithms. Furthermore, 
the syntactic relations can be used by a first order rule learner to obtain even 
better performance. 

1   Introduction 

Sentence selection (SS) consists in identifying the relevant sentences for a particular 
purpose. This is a necessary step in many document-processing tasks, such as Text 
Summarization (TS) and Information Extraction (IE). The proportion of sentences 
considered relevant for the above tasks in a given document is usually low, making 
some pre-filtering a prerequisite.  

Sentence selection can be considered a particular case of Automatic Text Categori-
zation (ATC), which consists in automatically building programs capable of labeling 
natural language texts with categories from a predefined set. ATC is performed using 
standard Machine Learning methods in a supervised learning task. The standard text 
representation used in ATC is the Bag of Words (BOW), which consists of represent-
ing each document by the words that occur in it. This representation is also used in 
related tasks such as Information Retrieval (IR) and IE. Different ways of expanding 
this representation have been tried on these areas of research, some of the expansions 
aiming to add some semantic or syntactic knowledge. For example, on the semantic 
side, stemming words1, clustering similar terms together [10], and using background 
knowledge [25] have been tried. Less work has been done on the syntactic side. The 
latest include using noun phrases [11] [14] and statistical phrases [13] [1] in the repre-
sentation, defining position related predicates in an Inductive Logic Programming 
(ILP) system [2], and incorporating the order of noun phrases in the representation [8].  
                                                           
1 Even when stemming requires only morphological processing, we consider it to semantically 

expand the representation since several words will represent the same sense once stemmed. 
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Even when SS and ATC are related, not all their characteristics are the same. One 
of the differences is that the sentences are short in length, with few words from the 
vocabulary happening in each of them. That would result in an even more sparse 
representation than in the ATC case. Another difference is that ATC is usually used to 
recognize the general topic of a document, while SS concentrates on more specific 
details. Because of these differences, some variations to the standard representations 
and techniques usually used for ATC might be beneficial for SS. 

We address the task of sentence selection working on a corpus of texts on genetics. 
The sentences are short in length and the vocabulary of this corpus is highly specific. 
We believe that, because of these characteristics, the use of syntactic and semantic 
knowledge could be even more beneficial than in a collection of a more general na-
ture. The extensions that we propose in this paper have, to our best knowledge, been 
tried neither for document classification nor for sentence selection. 

Our work is devoted to identification of relevant sentences in scientific abstracts on 
genetics. Those abstracts are written in natural language and can be searched via the 
Internet using keyword queries. However, the queries would retrieve a large superset 
of relevant papers [17] from which we would like to identify the sentences that ex-
press an interaction between genes and/or proteins. Due to the continuous submission 
of new abstracts, this task becomes repetitive and time consuming. Because of that, 
automatic sentence selection is considered of interest to the scientific community. We 
automatically learn classifiers that categorize the sentences from the abstracts into two 
classes: those that describe an interaction between genes and/or proteins and those 
that do not. In those classifiers we study the usefulness of including syntactic and 
semantic knowledge in the text representation. We accomplish this by adding into the 
representation pairs of related words (to which we will refer as syntactic bi-grams) 
obtained from a syntactic parser together with technically related dictionaries. Our 
experiments include the state of the art machine learning algorithms Naïve Bayes and 
Support Vector Machine, as well as a relational learner for which a particular rela-
tional representation was created. 

In the remainder of this paper we first introduce some related work and we present 
the details of our approach and our dataset. Afterwards we present the representations 
that we used and the experiments we performed together with their results and their 
analysis. We finish the paper presenting our conclusions and future work. 

2   Related Work 

The usefulness of syntactic and statistical phrases compared to the BOW was first 
studied by Fagan [4] in the IR context. In these experiments it was shown that statisti-
cal phrases were not only easier to obtain but they also improved performance more 
than syntactic phrases.  

In [11] and [12] Lewis compared different representations using either words or 
syntactic phrases (but not a combination of both) for IR and ATC. The results with 
the phrases representation showed no significant improvement with respect to the 
representation using the BOW. Mitra et al. [14] study the usefulness of linguistic 
knowledge for an IR system. The results indicate that the noun phrases are useful for 
lowly ranked answers but not so much for the highly ranked answers where the words 
alone perform well. Similar results were obtained in ATC by Furnkranz et al. [6] 
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when building syntactic phrases following some particular syntactic patterns learned 
from the data by an extraction system. Dumais et al. [3] studied the use of syntactic 
phrases with a variety of text classifiers on the Reuters-21578 collection showing no 
benefit at all from the use of this representation. Scott and Matwin [19] also noted no 
significant improvement of the performance by adding noun phrases to the representa-
tion of the same corpus but using a different Machine Learning algorithm.  

Furnkranz et al. [5], Mladenic and Grobelnik  [13] and Caropreso et al. [1] studied 
the usefulness of statistical phrases in ATC. The more discriminating phrases were 
added to the BOW. The experiments showed that the use of these phrases could in 
some cases improve the classification.   

Maarek’s system GURU [27] used lexical affinities for indexing purposes in an IR 
task. Linguistically, lexical affinities are words that are involved in a modifier-
modified relationship and that appear often together in the language. This work, how-
ever, only takes into consideration the closeness of the chosen words.  

Cohen and Singer [2] study the importance of introducing the order of the words in 
the text representation by defining position related predicates in an ILP system. This 
has been extended by Goadrich et al. [8] in recent research in the IE area, incorporat-
ing the order of noun phrases into the representation. In other work in IE, Ray and 
Craven [18] incorporate syntactic phrases to a Hidden Markov Model (HMM) that 
recognizes the grammatical structure of sentences expressing biomedical relations. 
The results show that this approach learns more accurate models than simpler HMMs 
that do not use phrases in the representation. One more approach to IE that uses syn-
tactic information is Temkin and Gilder work [23]. In this work a Context Free 
Grammar (CFG) was defined to recognize protein, gene and small molecule interac-
tions. The results show that efficient parsers can be constructed for extracting these 
relations.  

Several studies have introduced semantic knowledge in ATC. Siolas [20] does that 
by building a kernel that take into account the semantic distance: first between the 
different words based on WordNet, and then using Fisher metrics in a way similar to 
Latent Semantic Indexing (LSI). Zelikovitz and Hirsh [25] show that the ATC accu-
racy can be improved by adding extra semantic knowledge into the LSI representation 
coming from unclassified documents.  

3   Our Approach and Dataset 

We study the usefulness of including syntactic and semantic knowledge in the  
text representation for the selection of sentences from technical genomic texts. In this 
specific context, the occurrence (or not) of specialized terms is expected to discrimi-
nate between sentences that contain information about genes and/or proteins interac-
tion, and those that do not contain that information. We expect syntactic bi-grams 
formed by words that are syntactically linked to provide detailed information  
on whether two genes and/or proteins are interacting with each other. Such phrases 
could be formed for example by an adjective modifying a noun, the main noun in  
the subject or object role of a sentence together with its verb, or the main noun in  
a prepositional phrase together with either the noun or verb it modifies. Using the 
syntactic bi-grams together with their single words, we represented the sentences and 
we evaluated the classification performance of this representation compared to the 
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BOW. Our experiments include state of the art machine learning algorithms Naïve 
Bayes and Support Vector Machine, and they were performed using Weka [24].  
A relational representation was also obtained using the links information, and its  
performance evaluated using the relational learner Aleph [21]. 

It is understood by linguistics that syntactically related words express semantic 
concepts [26]. By using syntactic bi-grams we are then already incorporating into the 
representation some basic semantics. We further enrich the representation by intro-
ducing some more semantic knowledge to help with the specific vocabulary. A list of 
proteins and genes was extracted from the SwissProt Protein Knowledgebase2. The 
words found in this list were replaced in our representation by a lexical marker (the 
word geneprot). A list of words commonly used in the genetic bibliography to  
denote interactions was borrowed from Temkin and Gilder work [23] and included as 
facts in one of the experiments with the relational representation. 

Our experiments were done on a corpus created by, the CADERIGE project3. The 
examples consist of only one sentence, which were automatically selected from Med-
Line abstracts with a query Bacillus subtilis transcription. The sentences were then 
pre-filtered to keep only those 932 that contain at least two names of either genes or 
proteins. The remaining sentences were manually categorized as positive or negative 
according to whether they describe or they do not describe a genomic interaction. The 
resulted was a balanced dataset with 470 positive and 462 negative examples.  

Some earlier work done on this corpus is presented in [15]. It reports the recall and 
precision result obtained by the C4.5 algorithm and a variation of Naïve Bayes (NB)  
algorithm (that specializes it for the case of short documents). The attributes were all 
words after stemming, stop word removal and some filtering using Information Gain. 
The best results were 84.12% recall and 87.89% precision with the variation of NB. 

While modifying the representation of the corpus for our experiments, around 5% 
of the examples were lost due to failure of the parser on those sentences. Our final 
dataset contains 885 examples, being 440 positive and 445 negative. 

4   Syntactic Representation and Experiments 

In this section we present an example of the analysis performed by the Link Parser 
[22], the links it recognized in our collection and how they are used in the text repre-
sentation. We then present the experiments that we performed and the results that we 
obtained when using that representation to learn a classifier for the positive examples 
of our dataset. 

The Link Parser was selected for specifically providing the relation between words 
in the sentence by establishing a link between them In order to create a syntactic rep-
resentation we ran the parser on each sentence of the data collection, identified some 
syntactic links, such as the object of a verb, and we built syntactic bi-grams with the 
linked words. Out of the many links identified by the parser, we only took into con-
sideration those ones that we believe could help enrich our representation: 
                                                           
2  Swiss-Prot is an annotated protein sequence database available on-line at http:// 

ca.expasy.org/sprot/. Among all the information provided is a “Short description of entries in 
Swiss-Prot” from which we extracted the names of proteins and genes.  

3 CADERIGE Project, http://caderige.imag.fr/ 
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• A and AN: link an adjective or a noun (respectively) to the noun it modifies. 
• Ss: links the head of a noun phrase to the verb to which the phrase is the subject. 
• Os: links the head of a noun phrase to the verb to which the phrase is the object. 
• Pa: links forms of the verb “have” to a participle verb. 
• Mg: links nouns with present participles 
• MVp and J (or Jp): MVp links the verb to a preposition at the beginning of a 
prepositional phrase, and J (or Jp) links that preposition to the noun that is head of the 
noun phrase inside the prepositional phrase. We established the M relation, which 
links the verb in a MVp to the noun in a corresponding Js. 

Figure 1 shows all the links we identified among the set of links returned by the 
Link Parser for the first sentence of our collection.4 From this analysis, the following 
syntactic bi-grams could be built: spo0a_mutant, s210a_mutant, spoiie_activation, 
promoter_activation, mutant_exhibited, it_was, exhibited_change, exhibited_wild-
type, defective_activation, wild-type_binding, was_defective. 

The previous are all the syntactic bi-grams we built. In the following experiments 
only some of them were used at a time, according to the kind of link we were permit-
ting (e.g. when representing noun phrases only the A and AN links were permitted). 
The type of the link and the morphological information (i.e. which words are nouns, 
adjectives and verbs, which is also provided by the Link Parser) were not included in 
the representation. We are planning to include this information in our future work. 
Some of the previous syntactic bi-grams were modified because they contained a gene 
or protein name from the SwissProt list. Thus s210a_mutant was replaced by gene-
prot_mutant. Unfortunately spo0a and spoiie were not found in the list and therefore 
were not replaced by our lexical marker. 

 

Fig. 1. Links identified for the first sentence of our collection 

It must be noticed that the extra effort of parsing is reduced in our experiments 
since the abstracts were pre-filtered and only few sentences possibly containing an 
interaction between genes/proteins were kept. In larger datasets a more efficient pars-
ing approach could be taken, as for example the partial parsing within a fixed size 
window presented by Jacquemin [28]. 
                                                           
4 The Link parser returns for each sentence several different links sets, and a cost vector value 

associated to each of them. Only the highest ranked links set was used in these experiments.  
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After learning and evaluating classifiers for the different representations, the re-
sults were compared using Accuracy, Precision, Recall and F1-measure. Given a 
contingency table containing TP (True Positives), FP (False Positives), FN (False 
Negatives) and TN (True Negatives), the previous measures are defined as: 

 Accuracy = (TP + TN) / (TP + TN+ FP +FN)  
 Precision (Pr) = TP / (TP + FP) 
 Recall (Re) = TP / (TP + FN) 
 F1 = 2*Pr*Re / (Pr + Re) 

As a baseline we use the BOW representation (all the words that appear in any of 
the links.) We compare its performance with the one obtained when using it together 
with some or all of the recognized syntactic bi-grams. We differentiate the Noun 
Phrases representation, the Subject and Object representation, the Prepositional 
Phrases representation and the representation using all the links together. 

Previous to the classification, a subset of the total set of features was selected using 
the information gain metric. This filter kept some of the syntactic bi-grams among the 
most discriminating features, giving a first confirmation of their usefulness for the 
classification task [1]. Among the selected syntactic bi-grams, several include our 
lexical marker, even when by itself it was not selected as discriminant when using the 
BOW representation. Some examples of these syntactic bi-grams are geneprot-
protein, mutant-geneprot, encodes-geneprot. Some examples of other 
syntactic bi-grams also kept after filtering are bacillus-subtilis, indicated-
analysis, protein-encodes. 

Table 1 shows the Accuracy, Precision, Recall and F1-measure obtained by the  
Naïve Bayes Simple and the Support Vector Machine learners of the Weka Package. 
The experiments were performed using the default parameters for each learner and the 
number of features that resulted in the best accuracy in preliminary experiments.  

Table 1. Averaged Accuracy, Precision, Recall and F1-measure in 10 runs of 10-fold cross-
validation. The results in bold denote a statistically significant increase over the BOW (first 
column). The use of italic denotes a statistically significant decrease with respect to the BOW. 

Learning 
Algorithm 

Performance 
measure 

Words in 
links 

Noun Phrases
Bi-grams 

Subject and 
Object 

Bi-grams 

Prep. 
Phrases 

Bi-grams 

All the 
syntactic 
Bi-grams 

Accuracy 0.81 0.81 0.81 0.80 0.83 

Precision 0.81 0.80 0.81 0.82 0.83 

Recall 0.82 0.83 0.81 0.78 0.85 

Naïve Bayes

500 features

F1-measure 0.82 0.81 0.81 0.80 0.84 

Accuracy 0.77 0.77 0.77 0.78 0.81 

Precision 0.78 0.79 0.78 0.80 0.84 

Recall 0.76 0.76 0.77 0.75 0.79 

SVM 

500 features

F1-measure 0.77 0.77 0.77 0.77 0.81 



330 M.F. Caropreso and S. Matwin 

In most cases, the results do not show statistically significant difference with re-
spect to the BOW when using noun phrase bi-grams and subject/object bi-grams to 
enrich the BOW representation. When using prepositional phrase bi-grams the results 
are mixed depending on the measure of choice. However, when using all the syntactic 
bi-grams together, the results show a consistent statistically significant increase for 
the four considered measures. That indicates that at least two kinds of the used syntac-
tic bi-grams are relevant to the classification when combined.  

We also performed preliminary experiments using the Decision Tree Learner from 
the Weka Package. Although the pattern of increased accuracy when using all the 
syntactic bi-grams holds, the values were only in the 70% range. This low perform-
ance was already noticed by Ould [16] who argued that it might be due to the sparse-
ness of the representation. 

5   Relational Representation and Experiments 

As noted in the previous experiments, the syntactic relation between some words in a 
sentence seems to be relevant to the sentence selection task we are performing. It is 
natural then to think of a relational representation that can capture these relations. 
This new representation can then be used by a relational learner system, exploiting the 
advantages of this kind of systems [7]. Among others, predicates to help the classifi-
cation can be easily defined, and relations among three words could be discovered (as 
two bi-grams with a transitive relation). 

In order to obtain this relational representation, the same links obtained for the syn-
tactic representation were used and relations were built between the linked words. The 
predicate “link(s,w1,w2)” used in our representation expresses that in the sentence s1 
there is a relation between the two words w1 and w2 as indicated by the presence of a 
link found by the parser.  

Given the same sentence from figure 1, the following relations could be built: 
link(s1,mutant,s210a), 
link(s1,mutant,geneprot), 
link(s1,exhibited,mutant),  
link(s1,change,exhibited), 
link(s1,wildtype,exhibited), 
link(s1,binding,wildtype), 

link(s1,was,it), 
link(s1,defective,was), 
link(s1,activation,defective), 
link(s1,activation,spoiie), 
link(s1,activation,promoter) 

This relational representation introduces the syntactic relations of the words in the 
sentences. This representation was compared in our experiments with a baseline using 
propositional logic denoting whether a word occurs or not in a sentence but missing 
the information of the relations between words, which is equivalent to the BOW. 
Instead of physically creating the propositional representation, we simulated it by 
defining the predicate lexexist that represents the presence of a word in a particular 
sentence and the fact that the word is involved in a link (some words, as for example 
the articles, were not included in any of the considered links). For this, we use the 
unbounded variable “_” that will take any value. The predicate definition is: 

lexexist(S,W) :- link(S,W,_). 
lexexist(S,W) :- link(S,_,W). 
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We also compared the previous relational representation performance with the one 
obtained when adding extra background knowledge. For this purpose, we added to the 
representation the list of words denoting interactions presented in [23]. Each of the 
words in the list was given as a parameter of the fact interaction. The predicate inter-
acts was defined representing the fact that a particular word in a sentence is linked to 
an interaction word. 

 
interaction(initiate). 
interaction(stimulate). 
interaction(regulate).  
. . . . 

 
interacts(S,W):-link(S,W,I),interaction(I). 
interacts(S,W):-link(S,I,W),interaction(I). 

 
In this way we performed three different experiments by providing Aleph with 

only one file containing the genomic information in a relational representation and by 
instructing it on what kind of rules could be learned. Figure 2 shows some of the rules 
learned when allowing words, syntactic links and interactions. In the following we ana-
lyze those rules. 

Our first observation is that few training examples are covered by each rule, the 
first one covering 29 positive examples and 1 negative example, and thereafter drop-
ping to 16 examples (approximately 2% of the training examples.) The second obser-
vation is that geneprot is already chosen in the third rule, marking the usefulness of 
having replaced the technical vocabulary by this lexical marker. However, the 
gene/protein sigmak, which was not found in the Swissprot list and therefore was not 
replaced, seems to be very discriminating in this dataset. This gives us the hint that we 
might want to consider different levels in a hierarchy of genes/proteins instead of a 
single-level list. We will consider this in our future work. 

 
[Rule1]pos(S):-lexexist(S,sigmak).[29;1] 
[Rule2]pos(S):-lexexist(S,_expression),lexexist(S,fusion).[16;0] 
[Rule3]pos(S):-lexexist(S,geneprot),lexexist(S,vivo).[15;1] 
[Rule4]pos(S):-link(S,processing,B).[14;1] 
[Rule5]pos(S):-link(S,B,geneprot),link(S,B,bdependent).[14;1] 
[Rule6]pos(S):-link(S,geneprot,transcription),link(S,is,B).[13;0] 
[Rule7]pos(S):-link(S,show,B),interacts(S,C).[12;1] 
. . . . 
[Rule12]pos(S):-link(S,geneprot,protein).[11;1] 
[Rule13]pos(S):-link(S,geneprot,gene).[10;1] 
. . . . 
[Rule17]pos(S):-interacts(S,transcription),interacts(S,geneprot).[11;0] 
. . . . 

Fig. 2. Some rules learned when allowing words, syntactic links and interactions 

Starting with rule 4 the links help to discover discriminating rules. In rule 4 we no-
tice that it is not always a pair of words that is important, but as in this case, the fact 
that the word processing is linked to another one makes it discriminating of the class. 
In rule 5 there is a word linked to both geneprot and bdependent, being the double 
link relevant for the discriminating rule. In rules 6, 12 and 13 we find the pairs gene-
prot_transcription, geneprot_protein and geneprot_gene being the most discriminat-
ing after various other rules have been applied.  
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Finally, we observe the use of the predicate interacts in rule 7 where it establishes 
that there is a word linked to an interaction term. In rule 17 it establishes that both 
transcription and geneprot are linked to an interaction word. 

When running the experiments, around 80 rules were learned. They were used 
without any pruning on the test sets. The average Accuracy, Precision, Recall and F1-
measure obtained after 10 runs of 10-fold cross-validation for the 3 experiments are 
shown in table 2.  

We observe a higher accuracy with respect to the results obtained by Naïve Bayes 
and Support Vector Machine, even when the representation equivalent to the BOW is 
used. We explain this as the result of two main characteristics: 

1. the flexibility of the relations: letting the learner choose what are the important 
parts of a relation, as if only one or both words were fixed, makes them more 
flexible than the pre-fixed phrases used in the syntactic representation. The rela-
tional representation also gives the opportunity of bridging two non-linked words 
by the mean of a third one linked to both (see rule 5 in the examples). 

2. the sparseness of the collection: having many rules, each one adjusted to the few 
examples it covers, seems to be beneficial for this short sentences collection with 
very sparse vocabulary. 

Table 2. Averaged Accuracy, Precision, Recall and F1-measure in 10 runs of 10-fold cross-
validation running Aleph. The results in bold denote a statistically significant increase over the 
basic relational representation (Words and Links, in the central column). The use of italic 
denotes a statistically significant decrease with respect to the basic relational representation. 

Learning 
Algorithm 

Performance 
measure 

Only Words Words and 
Links 

Words, Links and 
Interactions 

Accuracy 0.90 0.93 0.94 
Precision 0.94 0.95 0.96 

Recall 0.87 0.92 0.93 

 

Aleph 

F1-measure 0.90 0.94 0.94 

Similar to the previous results, we observe a statistically significant increase  
in the performance (according to the four considered measures) when the links are  
used in the representation. That marks once again the importance of a syntactic  
representation. 

Finally we also observe a statistically significant increase in accuracy and recall 
when adding some semantic background knowledge to the representation, i.e. the 
interactions list (the last column in table 3). This increase in the recall was not at the 
expense of the precision. 

6   Conclusions and Future Work 

In this paper we have presented the problem of sentence selection from a genetic 
corpus and how we envisioned the contribution of semantic and syntactic knowledge 
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in this task. We directly introduced semantic knowledge in the representation by re-
placing the words found in a list of genes/proteins. Basic semantic knowledge was 
also incorporated in the representation by mean of syntactic relations. This was ac-
complished extending the set of features with bi-grams obtained from a syntactic 
parser. We have empirically showed that this knowledge is useful for sentence selec-
tion from this genetic corpus when using several different machine learning methods. 
We have also shown that the relational learner Aleph performs better than the other 
algorithms tried, even when an analogous to the BOW was used. The use of the syn-
tactic information in the relational representation highly significantly improved the 
performance (e.g. an increase of 0.04 for the F1 measure with respect to the represen-
tation using only words). This confirmed the results previously obtained with other 
algorithms using the syntactic bi-grams. Adding extra semantic knowledge to this 
representation by identifying the interaction words further helped with the classifica-
tion by improving the recall with no decrement of the precision. 

In the future we plan to extend the use of semantic background knowledge to in-
clude hierarchies of genes/proteins. One possible source for that could be the publicly 
available Gene Ontology. We also plan to extend the use of syntactic knowledge by 
differentiating the links according to the kind of relation they denote (noun phrases, 
subject, etc.) and introducing morphological information (whether a word is a noun, 
an adjective, a verb, etc.) We would also like to use the relational representation in 
state of the art classification methods by transforming the predicates into features in a 
vector space or probabilistic model. We plan to do this by applying propositionaliza-
tion as presented by Kramer [9]. Finally, we plan to try this approach on a similar but 
larger dataset in the genetic abstracts context, as well as on a different domain on 
Legal documents, the HOLJ Corpus created by Hachey and Grover [29]. 
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Abstract. We present a sentiment tagging system which is based on
multiple bootstrapping runs on WordNet synsets and glosses using differ-
ent non-intersecting seed lists of manually annotated words. The system
is further enhanced by the addition of a module for partial sense disam-
biguation of sentiment-bearing adjectives using combinatorial patterns.
This (1) enables sentiment annotation at the sense, rather than whole
word level, and (2) provides an effective tool for the automatic cleaning of
the lists of sentiment-annotated words. The resulting cleaned list of 2907
English sentiment-bearing adjectives achieved a performance compara-
ble to that of human annotation, as evaluated by the agreement rate
between two manually annotated lists of sentiment-marked adjectives.
The issues of sentiment tag extraction, evaluation and precision/recall
tradeoffs are discussed.

1 Introduction

In recent years, the task of sentiment tagging, or tagging language elements —
usually phrases or texts — as positive, negative or other (neutral or mixed) ac-
cording to the sentiment they express, has attracted considerable attention of
researchers (e.g., [1, 2, 3, 4, 5]). Multiple-perspective question answering, summa-
rization, information extraction, and other applications can benefit substantially
from systems that are able to identify the sentiment of a text or phrase.

The existing approaches to sentiment tagging of texts or phrases use infor-
mation about the sentiment conveyed by the words that make up the text. This
information can be acquired either at run time, as done by [1], or in advance
by creating a lexicon of sentiment-tagged words (e.g., [4, 6, 7, 8, 9]). A number
of systems use automatic or, more often, semi-automatic or custom-made man-
ual lists as input for sentiment tagging of texts. One of the common features
of such lists of words is that they are annotated with sentiment at the word,
rather than at the individual meaning level. Since some meanings of a word can
be sentiment-laden, while others are not, word-level annotations of sentiment
markers in such lists substantially limit the performance of sentiment tagging
systems. For example, there is a considerable number of adjectives that have
both neutral and sentiment-laden meanings, and the neutral meaning is often
the most frequent one. Table 1 shows frequency scores assigned to some of such

L. Lamontagne and M. Marchand (Eds.): Canadian AI 2006, LNAI 4013, pp. 336–346, 2006.
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adjectives in WordNet [10]. These scores reflect the number of occurrences of a
given sense in semantic concordances created by WordNet editors.

Table 1. Frequencies of sentiment-marked and neutral meanings (based on WordNet)

Word Total frequency Total frequency Total
of neutral senses of sentiment senses occurrences1

great 141 (75%) 46 (25%) 187
dark 90 (90%) 10 (10%) 100
cold 41 (76%) 13 (24%) 54
right 20 (28%) 50 (71%) 70

The Table 1 shows that in the corpus used by WordNet authors, on every oc-
currence of the word great, which manual lists classify as positive [11, 12], there
is a 75% chance that this word is used in one of its neutral, non-sentiment-
bearing meanings. This would lead to sentiment annotation system error in up
to 75% of cases where great is found in a text. While 75% error rate attributable
to the presence of neutral senses represents an extreme case, the error rate of
20% to 50%, according to our manual analysis, appears to be very common for
polysemous words with at least one sentiment-laden meaning. Since the senti-
ment of each meaning for every English word has not been identified yet, this
problem cannot be addressed by sentiment aggregation to the word level using
probabilities of the occurrence of a given sense in a text: to date, the only way
to arrive at the conclusion that a word appears in texts in neutral meanings at
a certain rate is through manual annotation at the sense level. An additional
problem with such aggregation is that it would still lead to a substantial number
of errors where words used in sentiment-bearing meanings are deemed neutral.

Thus, the inclusion of such adjectives at the word level into the lists of
sentiment-bearing words that are then used as sentiment markers in sentiment
tagging of phrases and texts introduces errors and has a detrimental effect on
the overall system performance. This problem is often further exacerbated by
the high frequency of such words in natural language. The analysis of this exam-
ple suggests that sense-level annotation of sentiment markers can substantially
improve the accuracy of sentiment tagging of texts and phrases.2

The first step in the development of such fine-grained sentiment tagging sys-
tems is the development of the lists of words annotated with sentiment at the
sense level. To date, no lists manually annotated with sentiment at the mean-
ing level have been created. In this paper we first describe the system used to

1 The number in this column is the sum of all WordNet frequency scores for all the
senses of the given word. If there was no frequency assigned to the sense in WordNet
it was considered to be equal to 0.

2 Kennedy and Inkpen (2006) use more fine-grained annotations for rare cases where
the same word can have positive and negative meanings, but they are not considering
words that can be both neutral and sentiment-bearing.
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produce a list of sentiment-bearing words with sense-level annotations for the
use in sentiment tagging systems and then evaluate the performance of this list
vs. the manually annotated General Inquirer Harvard IV list (GI, [12]), which is
used here as the gold standard.

2 Sentiment Tag Extraction at the Meaning Level

The algorithm developed to produce a list of sentiment-bearing words with sense-
level annotations is based on a two-phase process that uses a manually annotated
seed list compiled by Hatzivassiloglou and McKeown [11] (HM), as well as the
information contained in WordNet [10] and in the eXtended WordNet [14] to
assign sentiment tags to words and their senses. The general architecture of the
system is presented in Fig. 1.

2.1 Sentiment Tag Extraction from WordNet Glosses

The system starts with multiple runs of the Semantic Tag Extraction Pro-
gram (STEP) algorithm, developed by the authors for word sentiment tag
extraction at the word level [15]. The STEP algorithm represents a three-pass
bootstrapping system that makes use of WordNet entries as a special kind of
structured text, which is built to establish semantic equivalence between the
left-hand and the right-hand parts of the dictionary entry, and therefore are
designed to match as close as possible the components of meaning of the word.
The STEP algorithm starts with a small set of seed words of known sentiment
(positive or negative) drawn from HM [11]. This list is augmented during the
first pass by adding synonyms, antonyms and hyponyms of the seed words pro-
vided in WordNet.3 This step yields an average 5-fold increase in the size of the
original list; the average accuracy of the resulting lists is comparable to manual
annotations (78%, which is similar to the agreement on sentiment tags between
HM and GI). On the second pass, the system goes through all WordNet glosses
and identifies the entries that contain in their definitions the sentiment-bearing
words from the seed list produced in pass 1. These words are added to the cor-
responding category — positive, negative or neutral (the remainder). The third,
clean-up pass is then performed to partially disambiguate the identified Word-
Net glosses with Brill’s part-of-speech tagger [17]. The tagger performs with up
to 95% accuracy and eliminates errors introduced into the list by part-of-speech
ambiguity of some words acquired during the first pass and from the seed list.
At this step, we also filter out all words that have been assigned contradicting,
that is positive and negative, sentiment values within the same run.

In order to increase the reliability of the assigned tags and expand the list
of sentiment-tagged adjectives, we performed multiple runs of the system with
non-intersecting seed lists of 22 words each, extracted at random from HM. The
results of these 58 independent runs were then collapsed, producing a union of all
adjectives considered positive or negative in at least one run. For each word we
3 WordNet is queried using the WordNet:QueryData interface [16].
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computed a Net Overlap Score by subtracting the total number of runs assigning
this word a negative sentiment from the total of the runs that consider it positive.
Words that were not tagged as sentiment-bearing by STEP were deemed neutral
by default. Since many of the clearly sentiment-laden adjectives that form the
core of the category of sentiment were identified by STEP in multiple runs and
had, therefore, multiple duplicates in the combined list, the collapsing procedure
resulted in a lower accuracy (66.5% — when GI neutrals were included4) but
produced a much larger list of English adjectives marked as positive (n = 3, 908)
or negative (n = 3, 905). The remainder of WordNet’s 22, 141 adjectives was not
selected by any STEP run and hence was deemed neutral (n = 14, 328).

2.2 NP-Based Filtering: Senti-Sense System

The analysis of STEP’s output showed that most errors made by the system oc-
cur at the boundary between neutral and sentiment-marked adjectives, while the
4 Overall, the system’s 66.5% accuracy on the collapsed runs is comparable to the accu-

racy reported in the literature. Esuli and Sebastiani (2006) achieved 67.6% accuracy
in their experiments with classification into three categories: positive, negative and
objective. Kamps et al. (2004) achieved 67.3% accuracy on 663 adjectives reachable
through WordNet relationships from good and bad. In order to make a meaningful
comparison with the results reported in [18], we also did an evaluation of STEP’s
results on positives and negatives only (i.e., the neutral adjectives from GI were ex-
cluded) and compared our labels to the remaining 1266 GI adjectives. The accuracy
on this subset was 73.4%, which is comparable to the numbers reported by Turney
and Littman (2002) for experiments with a very large corpus.



340 A. Andreevskaia and S. Bergler

confusion between positive and negative sentiment was rare. In many cases, seed
adjectives fed into STEP (e.g., great, cold, etc.) had both neutral and sentiment
marked meanings and, therefore, could appear in the glosses of sentiment-bearing
as well as neutral words, for example:

readheaded — having red hair and unusually fair skin.
sporty — exhibiting or calling for sportsmanship or fair play.

This led to erroneous inclusion of neutral adjectives into either the positive or
negative categories. Therefore, the two critical tasks that the system had to ad-
dress were (1) the improvement of differentiation between neutral and sentiment-
bearing adjectives, and (2) the identification of occurrences of sentiment-laden
meaning(s) of a given polysemous adjective from the occurrences of its neutral
meaning(s). In order to address these tasks, we developed a filtering procedure
that builds upon the observation that nouns are good indicators of the senses
of adjectives that modify them [19, 20]. Thus, we used co-occurrence patterns of
nouns and adjectives to differentiate neutral and sentiment-bearing adjectives at
the meaning level.

A number of approaches successfully use syntactic patterns to assign seman-
tic tags, such as ‘subjectivity’, ‘humans’, ‘locations’, ‘buildings’, etc., to words
[21, 22]. Riloff et al. (2003) describe a machine learning approach used in the
Meta-bootstrapping and Basilisk systems for learning subjective nouns based on
an extraction pattern bootstrapping algorithm. In both systems, the algorithm
starts with a seed list of subjective nouns and an unannotated corpus to create a
pool of patterns which, in turn, is used to classify other nouns as ‘subjective’ or
‘objective’. Hatzivassiloglou and McKeown (1997) developed a system that was
looking for a specific co-occurrence pattern — a conjunction linking two adjec-
tives — to draw conclusions about the sentiment value of one member of the pair
based on the known sentiment of the other member. Automated pattern learn-
ing and matching has also been employed in general word-sense disambiguation
systems (e.g., [23]).

Our approach uses machine learning to generate and generalize the patterns
that permit differentiation between sentiment-laden and neutral adjectives based
on the semantic category of the noun they modify. The system that we developed
for partial word sense disambiguation in sentiment-bearing words using combi-
natorial patterns (thereafter Senti-Sense system) proceeded as follows. First, the
list of all non-ambiguous, monosemous sentiment-bearing adjectives has been
extracted from HM. The resulting list of 363 positive or negative adjectives was
then used as a seed list for the pattern extraction algorithm. As was the case
in STEP, this seed list was then augmented by all the synonyms of these words
found in their WordNet synsets, which resulted in 1019 word-senses. All en-
tries in this extended list have a WordNet sense number assigned to them.5 The

5 It is also possible to use synset offset to identify the sense by the synset it belongs
to, but we chose to record the sense numbers instead, because eXtended WordNet
uses this notation.
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system then searched the eXtended WordNet6 for glosses that contain adjectives
from this sense-tagged list. If an adjective was found, the parses and sense-tags
provided in eXtended WordNet (XWN) were used to identify the noun that this
adjective modified as well as the sense in which this noun was used. Then the
full hypernym ancestry of that noun was extracted from WordNet’s hypernym
hierarchy.

When all adjective-noun pairs have been extracted from XWN, the Senti-
Sense system performed pattern induction and matching. It grouped the nouns
that can take on sentiment-bearing modifiers, identified common hypernyms of
these nouns, and then generalized the pattern to the level of that hypernym.
The example below illustrates the generalization algorithm on the example of
several adjective-noun pairs.

selfisha1 actorn1

actorn1 → performern1 → entertainern1 → personn1 → organismn1 →
living thingn1 → objectn1

high-rankingn1 administratorn1

administratorn1 → headn4 → leadern1 → personn1 → organismn1 →
living thingn1 → objectn1

skillfula1 opponentn2

opponentn2 → personn1 → organismn1 → living thingn1 → objectn1

The three adjective-noun pairs presented above were returned by the search
for occurrences of the unambiguous sentiment-marked adjectives selfish, high-
ranking, and skillful. For every occurrence of these adjectives in WordNet glosses,
the system pulled out the adjective, the noun it modified, and the complete list of
hypernyms in the WordNet hierarchy for this noun. The hypernym trees leading
to each of the three nouns — actor, administrator, and opponent — converged
at the hypernym person and reached the highest level hypernym object.7 Thus,
the system derived the pattern that all of the nouns found under the hypernym
person could take sentiment-bearing modifiers.

Based on the 1006 adjective-noun pairs found in XWN, the system produced
48 such patterns that were then used to evaluate the positive and negative
adjectives retrieved by the multiple STEP runs. For example, the adjective
bright identified as positive by STEP when fed into the Senti-Sense system,
returned a candidate pair brighta3 personn1, where personn1 → organismn1 →
6 The eXtended WordNet provides parses for most WordNet glosses as well as part-

of-speech and sense assignments for words in them. The project is currently under
development (the current version is XWN 2.0-1) and the quality of the tags varies
and may be based on manual annotations (“gold” quality), on the results of multi-
ple automatic disambiguation systems (“silver” quality) or on single system output
(“normal” quality). Nevertheless, it still provides useful information that can be used
to discover and apply syntactic patterns for sentiment tagging.

7 In order to avoid overgeneralization and to maintain the discriminating ability of
the patterns, the top of the hypernym tree is not included in matching. Thus, in this
case, no generalization to the highest hypernym level object was made.
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living thingn1 → objectn1. Given the pattern rule formulated in the example
above, the Senti-Sense system concluded that the adjective bright in the sense
3 is sentiment-bearing. The WordNet gloss for bright in sense 3 is character-
ized by quickness and ease in learning. At the same time, another pair with the
same adjective — brighta2 plumagen1, where plumagen1 → body coveringn1 →
coveringn1 → natural objectn1 → objectn1, was not matched to any pattern
characteristic of sentiment bearing words, and the adjective bright in sense 2
was deemed neutral.

Since positive and negative adjectives usually modify nouns from the same
semantic classes, the Senti-Sense system can be effective in differentiating neutral
and sentiment-laden adjectives. However it would not be particularly suitable
for differentiation of the sentiment-bearing words into positives and negatives.
Nevertheless, since the boundary between neutral and sentiment-bearing words
represents the greatest source of errors in word sentiment determination, Senti-
Sense can be a valuable extension for sentiment tag extraction systems, such
as STEP. Moreover, given that Senti-Sense operates at the word meaning level,
it can be used to identify which senses of a given adjective actually bear the
sentiment value, and, by bringing sentiment tagging to a more refined sense
level, it can further contribute to the accuracy of sentiment tagging systems.

In the section that follows, we describe the experiment that applied Senti-
Sense to the list of positive and negative words generated by the multiple STEP
runs. The performance gain associated with the use of Senti-Sense is evaluated
relative to the GI, which is used here as a gold standard.

3 Results and Evaluation

The 58 STEP runs on non-overlapping seed lists drawn from HM produced,
after collapsing the results of all runs, a list of 3, 908 English adjectives marked
as positive and a list of 3, 905 negative adjectives. The remainder of WordNet’s
22, 141 adjectives was either not found in any STEP run or was assigned a zero
Net Overlap Score and hence was deemed neutral (n = 14, 328).

Table 2 summarizes the results produced by these STEP runs before and after
cleaning with Senti-Sense. We evaluated the tags produced by the multiple STEP
runs against the General Inquirer Harvard IV list of 1904 adjectives. The GI list
also contains adjectives that were not classified as “Positiv” or “Negativ”, and,
by default were considered in our evaluation as neutrals. The system performance
was evaluated only on the words that are present both in our results and in GI.
Since Senti-Sense assigns the sentiment tags at the sense level and the GI list is
annotated with sentiment at the word level, for the purposes of this evaluation
only, the sense-level positive or negative tags were reassigned to the whole word:
if at least one sense of an adjective was classified by Senti-Sense as sentiment-
laden, the whole word was deemed to have that sentiment value. The words that
were left in the neutral category, thus, had only neutral senses.

Since there is a substantial inter-annotator disagreement in word sentiment
annotation, the evaluation of machine-made annotations should take into account
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the baseline level of inter-annotator agreement that can be achieved in this task
by independent teams of human annotators. The agreement statistics between
the manually annotated lists of adjectives created by Hatzivassiloglou and McK-
eown and the General Inquirer team of annotators is presented in the table below
for comparison.

Table 2. System results

STEP 22-58 vs. GI Senti-Sense vs. GI HM vs. GI

Total tagged words 1904 1415 774
Agreement on tags 1267 1081 609
% of same tags 66.5% 76.6% 78.7%

Overall, the accuracy of the adjective list increased considerably after it was
cleaned using Senti-Sense: differentiating between sentiment-marked and neutral
senses of seed words added another 10% to the accuracy on the intersection
between the system results and the gold standard (Table 2). Since Senti-Sense
was based on NP patterns that identify only sentiment-laden senses, filtering
was done only on those adjectives that were classified by STEP as positive or
negative, while the composition of the category of neutrals was left intact.8

Table 3 provides detailed statistics for each of these three categories.

Table 3. Precision (P), recall (R) and F-scores (F) on three sentiment categories

Sentiment STEP 22-58 vs. GI Senti-Sense vs. GI HM vs. GI
P R F P R F P R F

Positive 0.68 0.77 0.72 0.95 0.61 0.74 0.90 0.51 0.67
Negative 0.75 0.70 0.72 0.91 0.54 0.68 0.98 0.46 0.63
Neutral 0.57 0.53 0.55 0.57 0.53 0.55 - - -

The absence of an exhaustive list of sentiment-tagged words (which makes
the task of machine-made annotation meaningful) does not allow the reliable
assessment of the recall measure on STEP and Senti-Sense outputs. The closest
available proxy is the GI list itself: the proportion of GI adjectives correctly
identified by the system as positive, negative or neutral and the total number
of GI adjectives that were not found can give an idea of system performance
on this measure. The tradeoffs between system precision and recall before and
after Senti-Sense filtering are presented in Table 3. Table 3 shows that the gain
associated with Senti-Sense filtering of positive and negative adjectives was sub-
stantial: the precision on positive adjectives increased from 68% to 95%, while
8 The adjectives that were marked as sentiment-bearing by STEP but for which no

occurrences in NP-patterns were found were not included in any of the three groups,
since no definite conclusion about their sentiment could be made on this data.
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on negatives it went up from 75% to 91%. These results are comparable to the
precision of human annotation (Table 3). This gain, however, came with a con-
siderable reduction in the size of the filtered list: Senti-Sense filtering reduced
the list of sentiment-laden adjectives found by multiple STEP runs from 7813
to 2907. The gain in precision accompanied by the drop in recall has left the
F-scores practically unchanged.

4 Conclusions and Future Work

This paper presented a sentiment tagging system which is based on multiple runs
of the Semantic Tag Extraction Program (STEP) on non-intersecting seed lists
drawn from manually annotated HM list. We demonstrated how the addition of
a module for partial word sense disambiguation of sentiment-bearing adjectives
using combinatorial patterns (Senti-Sense system) (1) enables sentiment annota-
tion at the sense, rather than the whole word level, and (2) provides an effective
tool for the automatic cleaning of the lists of sentiment-annotated words. In our
experiment, the cleaned list of 2907 adjectives achieved an accuracy comparable
to that of human annotation, as evaluated by the agreement rate between two
manually annotated lists: HM and GI.

The availability of a list of words annotated with sentiment tags at the sense,
rather than word level, and the ability to use Senti-Sense system to partially
disambiguate adjectives in texts based on the semantic category of the noun
they modify, opens up the possibility to develop more accurate sentiment tag-
ging systems. Moreover, sentiment tagging systems that make use of sense-level
sentiment information would be able to perform accurate tagging of small snip-
pets of text (such as e-mails), where scarcity of lexical markers would hinder the
effectiveness of sentiment tagging systems that rely on probabilistic assessment
of multiple low-accuracy textual markers.

One of the promising directions for future research is the application of the
Senti-Sense algorithm to sense-level annotation of other semantic categories.
One of the first candidate categories on the list is that of increase/decrease
in magnitude, intensity or quality (e.g., reduce, add, improve); such words are
known to interact with the category of sentiment by escalating the intensity of
the sentiment conveyed by sentiment-marked words (the words with “increase”
semantics) or by reversing the sentiment expressed by these words to the opposite
(the words with “decrease” semantics) [24]. This property makes the study of the
increase/decrease category particularly relevant for sentiment tagging research.

The improvement of Senti-Sense recall represents another important direction
for future research. To date, the system has been trained only on 1003 adjective-
noun pairs extracted from the eXtended WordNet glosses, which are annotated
with word senses. Training Senti-Sense on a larger corpora annotated with Word-
Net senses is likely to reveal additional combinatorial patterns that can be used
for partial sense disambiguation in suspected sentiment-laden words. This would
result in a more comprehensive set of combinatorial patterns that would further
improve the Senti-Sense recall.
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Finally, most of the current NLP research on sentiment annotation of words
for use in sentiment tagging of texts and phrases is focused on annotation of
adjectives. While adjectives are one of the most important sentiment markers in
texts [25], other parts of speech, such as nouns and verbs, also play an important
role in producing the overall sentiment of phrases and texts. The development of
the lists of sentiment-laden nouns and verbs can contribute to further improve-
ment of the accuracy of sentiment tagging systems.
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Abstract. Adaptive Benford’s Law [1] is a digital analysis technique that speci-
fies the probabilistic distribution of digits for many commonly occurring
phenomena, even for incomplete data records. We combine this digital analy-
sis technique with a reinforcement learning technique to create a new fraud dis-
covery approach. When applied to records of naturally occurring phenomena, our
adaptive fraud detection method uses deviations from the expected Benford’s Law
distributions as an indicators of anomalous behaviour that are strong indicators of
fraud. Through the exploration component of our reinforcement learning method
we search for the underlying attributes producing the anomalous behaviour. In a
blind test of our approach, using real health and auto insurance data, our Adap-
tive Fraud Detection method successfully identified actual fraudsters among the
test data.

1 Introduction

In this paper we illustrate the implementation of a fraud discovery system which uses a
new approach for discovering fraud that combines a reinforcement learning (RL) tech-
nique with a digital analysis method. The idea behind this approach is to use the digital
analysis to uncover data anomalies and then utilize the reinforcement learning compo-
nent to reveal the attributes contributing to the anomaly, thereby uncovering underlying
fraudulent behaviour.

As Bolton and Hand [2] noted, fraud detection methods may be divided into both
supervised and unsupervised methods. For supervised methods, both fraudulent and
non-fraudulent records are used to train a system, which then searches and classifies
new records according to the trained patterns. The limitation to supervised methods is
that one must have both classes of records identified for the system to train on. Thus,
this approach is limited to only previously known methods of committing fraud.

Unsupervised methods, in contrast, typically identify records that do not fit expected
norms. The advantage of this approach is that one may identify new instances of fraud.
The common approach to this method is to use forms of outlier detection. The main
limit to this approach is that we are essentially identifying anomalies that may or may
not be fraudulent behaviour. Just because a behaviour is anomalous does not neces-
sarily mean that the behaviour is fraudulent. Instead they can be used as indicators of
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possible fraud, whereby the strength of the anomalous behaviour (how much it devi-
ates from expected norms), may be used as a measure of ones confidence in how likely
the behaviour may be fraudulent. Investigators may then be employed to analyze these
anomalies. However, given the often enormous numbers of records involved in typical
fraud application areas such as credit card, cellular phone and healthcare records, even
with identified anomalies, investigating the anomalies can be a considerable burden to
resources. The novelty of our approach is that we extend the typical outlier detection
methods with a reinforcement learning component.

The reinforcement learning component of our algorithm builds on identified out-
liers by associating with our outliers, underlying attributes that may be linked together
to build a case for fraud. Reinforcement learning has typically been used in the past
to find the best choice of actions when trying to perform some physical task requir-
ing a sequence of actions to accomplish a desirable goal such as navigating through a
maze. The core idea which makes reinforcement learning useful to fraud discovery is
its ability to link together states through a pattern of state-action pairs in a policy. In our
algorithm we will link together anomalies according to their underlying attributes using
the magnitude of the anomalous behaviour as a measure of its desireablity within the
reinforcement learning context (in other words anomalies are equivalent to the rewards
in an RL environment).

To identify our outliers, we use a digital analysis technique known as adaptive Ben-
ford’s Law [1]. Benford’s Law specifies the distribution of the digits for naturally oc-
curring phenomena. For a long time this technique, commonly used in areas of taxation
and accounting, was considered mostly a mathematical curiosity as it described the
frequency with which individual and sets of digits for naturally growing phenomena
such as population measures should appear [3]. Such naturally growing phenomena,
however, has been shown to include practical areas such as spending records and stock
market values [4]. One of the limits to the use of classic Benford’s Law in fraud detec-
tion has been its requirement that analyzed records have no artificial cutoffs. In other
words, records must be complete. However, in many practical application areas, one
only has information for a subset, such as a single year, of financial records. Recent
work by Lu and Boritz [1] has removed this limitation with an adaptive Benford’s Law,
making it more practically useful.

In our paper we will explain the algorithm for our technique and test our new fraud
discovery technique against outlier detection methods using real healthcare and auto
insurance records, demonstrating improvements in classifying fraudsters.

1.1 Complications in Practical Fraud Detection Research

Two major complications for fraud detection researchers are:

1. Secrecy with regards to details on fraud detection techniques.
2. Limits on available real fraud records.

Both of these complications stem from the nature of the application area. It is quite nat-
ural that in order to stay ahead of fraudsters, those employing fraud detection methods
tend to keep secret their algorithm details in order to avoid fraudsters from knowing
these details and developing methods to circumnavigate them. This secrecy makes it



Adaptive Fraud Detection Using Benford’s Law 349

difficult to compare new fraud detection techniques with previous methods. The sec-
ond complication is due to the fact that companies do not generally like to reveal the
amounts of fraud within their field as it tends to have a detrimental impact on share-
holder confidence as well as consumer confidence. In addition, laws in Canada as well
as many other countries do not require the explicit reporting of fraud losses. Without
available real fraud records, many researchers use artificially created synthetic fraud
records to test their methods. However, synthetic records for testing are only as useful
as they are truly representative of actual fraudulent and non-fraudulent records.

We deal with the first complication by developing a general technique that is not
meant to be application area specific but is meant as an improvement over the gen-
eral Benford’s Law outlier detection approach. Many fraud detection techniques are
ad hoc and use specific details about their application area for detection. For instance,
cellular phone detection uses the fact that one can uncover phone usage stealing by
identifying that the same phone is calling from two different locations at the same time,
which would imply at least one of the calls is from an illegitimate user. Since our fraud
discovery technique is meant as an improvement over previous Benford’s Law out-
lier detection methods, we compare our method specifically with that outlier detection
approach.

We deal with the second complication by testing our method on real auto insurance
records that have been audited and classified for actual fraud. In order to demonstrate
robustness, we also apply our method to real healthcare insurance records. However,
these records have yet to be audited for fraud and thus we use it only to demonstrate
the technique’s operation on a differing application area and to illustrate the adaptive
Benford’s Law component of our fraud detection method on a real fraud application.

2 Background

2.1 Benford’s Law

Benford’s Law is a probability distribution with strong relevance to accounting fraud.
Much of the research on Benford’s Law has been in areas of statistics [5, 6] as well as
auditing [7, 8].

Benford’s Law is a mathematical formula that specifies the probability of leading
digit sequences appearing in a set of data. What we mean by leading digit sequences is
best illustrated through an example. Consider the set of data

S = {231, 432, 1, 23, 634, 23, 1, 634, 2, 23, 34, 1232}.

There are twelve data entries in set S. The digit sequence ‘23’ appears as a leading digit
sequence (i.e. in the first and second position) 4 times. Therefore, the probability of the
first two digits being ‘23’ is 4

9 ≈ 0.44. The probability is computed out of 9 because
only 9 entries have at least 2 digit positions. Entries with less than the number of digits
being analyzed are not included in the probability computation.

The actual mathematical formula of Benford’s law is:

P (D = d) = log10(1 +
1
d
), (1)
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where P (D = d) is the probability of observing the digit sequence d in the first ‘y’
digits and where d is a sequence of ‘y’ digits. For instance, Benford’s Law would state
that the probability that the first digit in a data set is ‘3’ would be log10(1+ 1

3 ). Similarly,
the probability that the first 3 digits of the data set are ‘238’, would be log10(1 + 1

238 ).
The numbers ‘238’ and ‘23885’ would be instances of the first three digits being ‘238’.
However this probability would not include the occurrence ‘3238’, as ‘238’ is not the
first three digits in this instance.

2.2 Benford’s Law Requirements

In order to apply equation 1 as a test for a data set’s digit frequencies, Benford’s Law
requires that:

1. The entries in a data set should record values of similar phenomena. In other words,
the recorded data cannot include entries from two different phenomena such as both
census population records and dental measurements.

2. There should be no built-in minimum or maximum values in the data set. In other
words, the records for the phenomena must be complete, with no artificial start
value or ending cutoff value.

3. The data set should not be made up of assigned numbers, such as phone numbers.
4. The data set should have more small value entries than large value entries.

Further details on these rules may be found in [3]. Under these conditions, Benford
noted that the data for such sets, when placed in ascending order, often follows a geo-
metric growth pattern.1 Under such a situation, equation 1 specifies the probability of
observing specific leading digit sequences for such a data set.

The intuitive reasoning behind the geometric growth of Benford’s Law is based on
the notion that for low values it takes more time for some event to increase by 100%
from ‘1’ to ‘2’ than it does to increase by 50% from ‘2’ to ‘3’. Thus, when recording
numerical information at regular intervals, one often observes low digits much more
frequently than higher digits, usually decreasing geometrically.

Adaptive Benford’s Law modifies classic Benford’s Law by removing the second
requirement of ‘no built-in minimum or maximum values’, thus allowing for the tech-
nique to be more generally applicable to a wider array of real records which often are
incomplete. For more details on the Adaptive Benford method see [1].

2.3 Reinforcement Learning

In reinforcement learning, an environment is modelled as a network of states, {s ∈ S}.
Each state is associated with a set of possible actions, as ∈ As and a reward for entering
that state {rs ∈ Rs}. We can transition from one state s(i) to another s(j) by choosing
an action as and with a certain probability P (sj |si, asi) we transition to another state.
A policy is a mapping of states to action. The objective is to find an optimal policy that
maximizies the long-term rewards one may obtain as one navigates through the net-
work. In order to find an optimal policy, we perform a task known as policy evaluation

1 Note: The actual data does not have to be recorded in ascending order. This ordering is merely
an illustrative tool to understand the intuitive reasoning for Benford’s law.
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which determines value estimates for states given a fixed policy, π. The value estimate
for a state represents the sum of the discounted future rewards for a state following a
policy π. A variety of methods for policy evaluation have developed over time such as
the maximum likelihood approach[9], the temporal differencing method [10] and the
monte carlo matrix inversion method [11].

One property of the reinforcement learning approach is that it is designed to handle
intractably large state spaces. This trait makes it well suited to an environment such as
fraud detection where there are usually extremely large numbers of records to process in
order to find the relatively small number of occurences of fraud among the total amount
of data available. Reinforcement learning also incorporates an exploration component
that allows it to search for better actions leading to higher long-term reward values. Such
an exploration component is key also for finding new instances of previously unknown
fraud cases as we wish our fraud discovery method to be able to do. These two traits
are the main components motivating our use of a reinforcement learning approach for
fraud detection.

3 Algorithm

As we noted in the introduction, our fraud detection method’s objective is to improve
over outlier detection methods for finding instances of fraud. Outlier detection meth-
ods, as we stated previously, actually only indicate anomalous instances. In order to
determine whether an anomalous instance is actually a result of a fraudulent occurence
typically requires the careful analysis of an auditor. Therefore, we need to consider how
an auditor actually determines fraud. Without domain specific knowledge, such as the
cell phone example we gave in the introduction, one typically builds a case for fraud
by linking together suspicious occurences. Even with domain specific knowledge, such
as our cellular phone example, one may still need to link suspicious (anomalous) cases
together. For example, even in the cellular phone example where we know that the same
cell phone cannot be calling from two different locations at the same time, we do not
necessarily know which of the two calls is the fraudulent one and indeed both may be
from illegal users. Thus, what is needed is to build a case of fraud by linking together
anomalous instances that are related by some set of traits.

Reinforcement learning is well suited to linking together states through its state-
action policy mapping. For reinforcement learning to be used as a fraud detection
method, we need to be able to relate rewards with anomalies. We do so by setting
the reward values as the magnitude that our anomalous instances deviate from ex-
pected values. In turn, the states of our RL environment relate to individual records
of our application environment and the actions are the attributes of a record. In such a
way, two records, with the same attributes are linked together by a common attribute
just as an action can relate two states of a classic reinforcement learning environment
network.

The best way to illustrate our fraud detection algorithm is through an example.
Figure 1 is an example of purchase records for some consumer. Included in the record
are the purchased item, the store it was purchased in, the location of the store, the
form of payment used to buy the item and the amount of the purchase under ‘Digit
Sequences’. We apply our fraud detection algorithm by first determining if there are
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Fig. 1. Sample Application: Purchase Records

Fig. 2. Sample Application: Analysing Digits with Rewards

any sets of digit sequences that conform to a Benford distribution. In our example there
is only one set of numbers, the purchase values that can be compared with a Benford
distribution. We compute the frequency with which each digit sequence from 1 to 999
appears in our purchase value records.2 We then compare these actual digit frequen-
cies with Benford’s Law’s expected frequencies. If they fall within a certain confidence
interval, we will accept that the numerical data follows a Benford’s Law distribution.

Assuming the purchase records are a Benford distribution, then we compute a mea-
sure of how much any given purchase value deviates from expected Benford value by:

Reward(i) =
f1i

b1i
+

f2i

b2i
+

f3i

b3i
, (2)

where fji is the frequency that a digit sequence of length j for state i appears in the
dataset and bji is the expected Benford’s Law distribution frequency that the digit se-
quence of length j for state i should appear.

As an example, consider figure 2 where state 2 has a purchase value of $38. In our
algorithm we consider only leading digit sequences.3 Therefore there are two leading
digit sequences, the sequence of just ‘3’ as well as ‘38’. If 3 appears 22 times in our
record, while 38 appears 5 times, then f12 = 22 and f22 = 5. Assuming that Benford’s
Law states that the sequence ‘3’ should appear 10 times and ‘38’ should appear 5 times,
then b12 = 10 and b22 = 5. Note since there are not three digits in our purchase value
f33 = 0 and does not contribute to the reward function of equation 2. We thus produce a
Reward value for state 2 of Reward(2) = 22

10 + 5
5 = 3.2. We thus can compute reward

values associated with each state. Figure 2 illustrates our records with their associated
computed rewards.

2 Benford’s Law works with digit sequences of any length. For most practical purposes, the
frequencies of sequences of three digits or less are evaluated. For longer digit lengths, the
probabilities become so small that they are of little practical value.

3 See [1] for a justification for this choice.
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Fig. 3. Sample Application: Choosing a Record/State

Once the reward values have been computed, we can now explore our environment
as a reinforcement learning network. We do so by first choosing a start state. In fig-
ure 3 we chose state 2. This results in a reward value of 3.2. We then need to choose
an action. Our actions are any unused attributes of our record. In this case we have
four possible actions. There are numerous methods for choosing an action. See [9] for
various techniques.

Fig. 4. Sample Application: State to Action to Next State Transition

If we choose action/attribute ‘Store’. The specific instance of this action in state
2 is ‘storeB’. We therefore search the store column for any other states/records with
‘storeB’ as an entry. Every possible record with such an entry is a possible next state.
In our example state 4 is a possible next state which, as figure 4 illustrates will be our
next state. We use a uniform random distribution to choose which of our possible next
state candidates will be selected.

Now that we have a method of exploring our environment, we can apply a reinforce-
ment learning algorithm such as temporal differencing or maximum likelihood to find
an optimal policy to our system. Any such policy will link together records with the
greatest anomalies forming a pattern that builds a case of fraudulent activity just as an
auditor may do.

Once you have an optimal policy, the states/records that the auditor wishes to build a
case for fraud for, may be used as the start state and then the auditor simply executes the
optimal policy choices to find all states that are most strongly linked to that given start
state. In this way, the auditor finds all underlying attributes/actions that are in common
with the high reward returning states. This requires only a single trace through the
system since the optimal policy has already done the exploration that an auditor would
have traditionally had to do saving time and man-hours.

A few details which we have not gone into due to space constraints include how to
choose when to stop your explorations, handling records that contain multiple columns
with digits conforming to a Benford distribution as well as dealing with exploring non-
optimal policies. An important reason to obtain less than optimal policies is that less
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than optimal policies may still also contain fraudulent patterns. One method to obtain
such less than optimal policies is by iteratively removing the optimal policy and then
rerunning the algorithm.

In addition, two points for those unfamiliar with Benford’s Law and auditing in gen-
eral may question are that the reward structure of equation 2 does not give higher re-
wards for digits that appear less frequently than the Benford’s Law predicts and that
numbers with more digits will possibly have a bias to higher rewards since there are
more digits that can contribute to the reward value. Regarding the first point, one could
use an alternative formula to equation 2 such as:

Reward(i) = q1i + q2i + q3i, (3)

where

qji =

{
fji

bji
for fji > bji

bji

jji
otherwise

. (4)

We use equation 2 in our implementation due to our application area of insurance where
generally, auditors are most interested in over-charges rather than under-charges. Natu-
rally, this may not be the case in other application areas such as tax filings where one
may be concerned with under reporting of figures. In regards to the second point about
numbers with more digits having higher rewards, this situation is a Benford’s Law phe-
nomenon. Certainly more digits provide more information to the auditor, but this bias
is generally not of concern in practical auditing terms as successive digits have geomet-
rically (10 times less for ever digit position to the left you move) less influence on the
over all reward relative to the higher leading digits. Further discussions on the influence
of successive significant digits may be found in [3]. The authors will gladly provide
further details on any of these points on request.

4 Experiments

As stated in section 3 our application analyzes the first, the first two and the first three
digit sequences of a dataset, comparing them to expect Benford frequencies. Therefore,
for each data set analyzed, we are comparing it to three different Benford’s Law digit
frequency distributions, one of only length 1 digit, another of length 2 digits and a
third of length 3 digits. For conciseness we have reported our digit frequency analyzes
through graphs whereby we include the first digit frequencies 1 to 9 on the x-axis values
from 1 to 9, the first two digit sequences composed of 10, 11,...,99 on the x-axis from
10 to 99 and the first three digit sequences on the x-axis from 100,...999. When looking
at the numerical results, one should keep in mind a single graph is actually three sets
of different distributions. The expected Benford curve will contain disjunction points at
the points between 9 to 10, and 99 to 100 because they are the points at which a new
Benford probability distribution starts and ends.

As stated in section 1.1, we have two databases with which to test our fraud detection
method on, a record of healthcare insurance claims provided by Manulife Financial as
well as records of auto insurance claims. However, the healthcare insurance claims have
yet to be audited and therefore we use it only to illustrate both the robustness of how
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Fig. 5. Healthcare Digit Frequencies compared with their Benford Distributions

our system is generalized enough to operate on differing application areas as well as
the operation of identifying anomalous data in conjunction with the attributes related
to those anomalies. The second database composed of auto insurance has been audited
with identified fraudulent and non-fraudulent records with associated attributes. We
therefore use the second database as a test of the utility of our system for identifying
real fraud cases.

The healthcare data consisted of 94 columns/attributes with 31,804 rows/records. We
therefore had 94 candidate data sets to test to see if they conform to a Benford distri-
bution. 83 of the columns were eliminated due to one of the three Adaptive Benford’s
Law requirements not being satisfied. Of the remaining 11 data sets, 5 were elimi-
nated using a 90% confidence interval based on training data provided by Manulife.
Figure 5 illustrates the frequencies of the digit sequences for the remaining six data sets
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Fig. 6. Auto Insurance Digit Frequencies

that do conform to the Benford distributions. Included on the graphs are the 90% lower
and upper bound confidence intervals as well as the the expected Benford frequencies.4

The six graphs from a to e of figure 5 resulted in 23, 31, 8,21, 14 and 18 respectively
of total suspicious attributes, which are currently being investigated for by auditors for
fraud.

For our auto insurance database, Ernst and Young provided data which was already
audited for fraud. The researchers conducted a test of the system as a blind test where
we were unaware of which, if any, of the records and attributes were fraudulent. In this
case, only one column of the database conformed to a Benford distribution satisfying
the three requirements of Adaptive Benford. Figure 6 illustrates the digit frequencies of
the auto insurance data. There were 30 remaining non-Benford attribute columns which
may be used as actions to match on in our Reinforcement Learning environment. The
database consisted of 17,640 records.

Figure 7 illustrates corresponding rewards resulting from our most optimal policy to
our fourth most optimal policy. We obtained the most optimal, second most optimal, etc.
polices by successively eliminating the optimal policy currently found and rerunning the
optimal policy search. The thirty columns of our graphs represent the thirty attributes
that are possible to be chosen from. The height of the bars is the sum of the reward
values that would be obtained following the respective policy for each type of attribute
the policy chooses. As one can see, the heights for the successively worsening policies
result in, not surprisingly, worsening reward values.

Our optimal policy successfully identified the one company that was producing sev-
eral fraudulent insurance claims. This single fraud generating company corresponds
to two of the large spikes appearing in figure 6. However, an important note on our

4 Confidence intervals were computed based on variance values of training data provided by
Manulife and used 2 standard deviations from the expected Benford frequencies for the upper
and lower bounds.
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Fig. 7. The attributes of successively worsening policies and the reward values they correspond
to across all records

method is that standard Benford outlier methods would have not identified this com-
pany because although there was a ‘company name’ attribute field, this company was
not listed consistently in the same way in that field. Instead, they used variations on the
name such as abbreviations and reorderings of the words that the name consisted of. Our
policy was able to identify the company instead by linking together agents who submit-
ted fraudulent claims on behalf of the company with their locations and in turn to the
company. This linking is exactly the kind of fraud case building that the reinforcement
learning component is designed to build.

5 Conclusions

In this paper we have presented a new fraud detection method which expands on the
current simpler outlier detection approaches. We specifically used a Benford distribu-
tion as a benchmark for our unsupervised learning method to discover new fraud cases.
We enhanced the method with a reinforcement learning model of our environment in
order to link together anomalous outliers to build a case for fraud. In so doing, we are
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essentially simulating the behaviour of human auditors. We tested our system with a
blind test on auto insurance data successfully identifying instances of fraud perpetrated
by several people but linked to one underlying company.

In terms of future research, we plan to incorporate other outlier detection methods
with our current Benford method as well as apply our method to greater amounts of
audited data from a variety of different application areas.
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Abstract. Real world multiagent coordination problems are important
issues for reinforcement learning techniques. In general, these problems
are partially observable and this characteristic makes the solution com-
putation intractable. Most of the existing approaches calculate exact
or approximate solutions using the world model for only one agent. To
handle a special case of partial observability, this article presents an ap-
proach to approximate the policy measuring a degree of observability for
pure cooperative vehicle coordination problem. We compare empirically
the performance of the learned policy for totally observable problems
and performances of policies for different degrees of observability. If each
degree of observability is associated with communication costs, multi-
agent system designers are able to choose a compromise between the
performance of the policy and the cost to obtain the associated degree of
observability of the problem. Finally, we show how the available space,
surrounding an agent, influence the required degree of observability for
near-optimal solution.

1 Introduction

In real world cooperative multiagent problem, each agent has often a partial
view of the environment. If communication is possible without cost, the mul-
tiagent problem becomes totally observable and can be solved optimally using
reinforcement learning techniques. However, if the communication has a cost,
the multiagent system designer has to find a compromise between increasing the
observability and consequently the performance of the learned policy and the
total cost of the multiagent system. Some works present formal models to take
into account the communication decision into the multiagent decision problem
[1], [2]. For the non-cooperative multiagent problem, some works introduce also
explicitly communication into general sum games [3] [4].

To allow the multiagent system designer to choose a compromise between
performance and partial observability, we propose, in this article, to take into
account the degree of observability for a cooperative multiagent system by mea-
suring the performance of the associated learned policy. In this article, the degree
of observability is defined as the agent’s vision distance. Obviously, decreasing

L. Lamontagne and M. Marchand (Eds.): Canadian AI 2006, LNAI 4013, pp. 359–370, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



360 J. Laumonier and B. Chaib-draa

the observability reduces the number of accessible states for agents and therefore
decrease the performance of the policy. A subclass of coordination problems is
purely cooperative multiagent problems where all agents have the same utility
function. This kind of problems is known as team games [5]. In this kind of
games, if we consider problems where agents’ designer neither has the transition
function nor the reward function, we can use learning algorithms. Many of these
algorithms have been proven to converge to Pareto-optimal equilibrium such
as Friend Q-learning [6] and OAL [7]. Consequently, one can take an optimal
algorithm to find the policy for the observable problem.

As we restrict our problem to team problems, the following assumptions are
defined: (1) Mutually exclusive observations, each agent sees a partial view of the
real state but all agents together see the real state. (2) Possible communication
between agents but not considered as an explicit part of the decision making. (3)
The problem involves only negative interactions between agents. One problem
which meets these assumptions is the choosing lane decision problem [8] related
to Intelligent Transportation Systems [9]. In this problem, some vehicles, which
have to share a part of the road, decide to change lane or not, in order to
increase traffic flow and reduce collisions. In this article, we show empirically
that the performance of the learning algorithm is closely related to the degree
of observability. Moreover, we show that there exists a relation between the
available space for each agent and a ”correct” degree of observability that allow
a good policy approximation.

This paper is organized as follows. Section 2 describes the formal model and
algorithms used in our approach. Section 3 describes the vehicle coordination
problem with more details. Section 4 explains our approach by introducing a
partial local state. Section 5 provides the results and a discussion about them.
Section 6 presents the related works and Section 7 concludes.

2 Formal Model and Algorithms

Reinforcement learning allows an agent to learn by interacting with its envi-
ronment. For a mono agent system, the basic formal model for reinforcement
learning is Markov Decision Process [10]. Using this model, Q-Learning algo-
rithm calculates the optimal values of the expected reward for the agent in a
state s if the action a is executed. To do this, the following update function is
used:

Q(s, a) = (1 − α)Q(s, a) + α[r + γ max
a∈A

Q(s′, a)]

where r is the immediate reward, s′ is the next state and α is the learning rate.
An episode is defined as a sub-sequence of interaction between the agent and its
environment.

On the other hand, game theory studies formally the interaction of rational
agents. In a one-stage game, each agent i has to choose an action to maximize its
own utility U i(ai, a−i) which depends on the others’ actions a−i. An action can
be mixed if the agent chooses it with a given probability and can be pure if it is
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chosen with probability 1. In game theory, the solution concept is the notion of
equilibrium. For an agent, the equilibria are mainly based on the best response
to other’s actions. Formally, an action ai

br is a best response to actions a−i of
the others agents if

U i(ai
br, a

−i) ≥ U i(a′i, a−i), ∀a′i.

The set of best responses to a−i is noted BRi(a−i).
The Nash equilibrium is the best response for all agents. Formally, a joint

action aN , which regroups the actions for all agents, is a Nash equilibrium if

∀i, ai
N ∈ BRi(a−i)

where ai
N is the action of the ith agent in the Nash equilibrium and a−i

N is the
actions of other agents at Nash equilibrium. A solution is Pareto optimal if there
does not exist any other solution such that one agent can improve its reward
without decreasing the reward of another.

The model which combines reinforcement learning and game theory, is sto-
chastic games [11]. This model is a tuple < Ag, S, Ai, P , Ri > where

– Ag is the set of agents where card(Ag) = N ,
– S = {s0, · · · , sM } is the finite set of states where |S| = M ,
– Ai = {ai

0, · · · , ai
p} is the finite set of actions for the agent i,

– P : S × A1 × · · · × AN × S → Δ(S) is the transition function from current
state, agents actions and new state to probability distribution over state,

– Ri : S × A1 × · · · × AN → R is the immediate reward function of agent i. In
team Markov games, Ri = R for all agents i.

Among the algorithms which calculate a policy for team Markov games, Friend
Q-Learning algorithm, introduced by Littman [6], allows to build a policy which
is a Nash Pareto optimal equilibrium in team games. More specifically, this
algorithm, based on Q-Learning, uses the following function for updating the
Q-values:

Q(s, a) = (1 − α)Q(s, a) + α[r + γ max
a∈A

Q(s′, a)]

with a, the joint action for all agents (a = (a1, · · · , aN )).

3 Problem Description

Vehicle coordination is a sub-problem of Intelligent Transportation Systems
which aims to reduce congestion, pollution, stress and increase safety of the
traffic. Coordination of vehicles is a real world problem with all the difficulties
that can be encountered: partially observable, multi-criteria, complex dynamic,
and continuous. Consequently, we establish many assumptions to apply the mul-
tiagent reinforcement learning algorithm to this problem.

The vehicle coordination problem presented here is adapted from Moriarty
and Langley [8]. More precisely, three vehicles, each of them represented by



362 J. Laumonier and B. Chaib-draa

an agent, have to coordinate to maintain velocity and to avoid collisions. Each
vehicle is represented by a position and a velocity and can change lane to the
left, to the right or stay on the same lane. The objective for a learning algorithm
is to find the best policy for each agent in order to maximize the common reward
which is the average velocity at each turn and to avoid collision.

Figure 1 represents the initial state. The dynamic, the state and the actions are
sampled in the easiest way. The vehicles’ dynamic are simplified to the following
first order equation with only velocity y(t) = v × t + y0. For this example, we
simulate the road as a ring meaning that a vehicle is placed on the left side
when it quits through the right side. The state of the environment is described
by the position xi, yi and the velocity vi of each agent i. Collisions occur when
two agents are in the same tile. The agents do not know the transitions between
states which is calculated according to the velocities of the agents and their
actions. At every step, each vehicle tries to accelerate until a maximum of 5 m/s
is reached. If another vehicle is in front of him, the agent in charge of the vehicle,
sets its velocity to the front vehicle’s velocity. At each step, a vehicle can choose
three actions: stay on the same lane, change to the right lane and change to the
left lane. Each episode has a maximum of 10 steps. The reward at each step is
set to the average velocity among all vehicles. If a collision occurs, the episode
stops. The size of the set of states is in O((X ×Y ×|V |)N ) with X the number of
lane, Y the length of the road, V the set of possible velocity and N the number
of agents. We assume, in this problem, that each agent is able to see only its own
local state (position, velocity). To obtain the states of other agents, we assume
that communication is needed.

Road direction

Come Back

Ag1Ag2

Ag3

Fig. 1. Initial state for problem

4 Partial Observability

In this section, we introduce our approach describing Friend Q-learning algo-
rithm with a local view for the agents. Then, we introduce the same algorithm
that use the partial local view for a distance d. This partial local view can reduce
the set of state and/or the set of joint actions. If no reduction is done, the exact
algorithm associated is Friend Q-learning. When only the set of states is reduced,
we propose Total Joint Actions Q-learning (TJA). From this algorithm, we re-
duce the set of joint actions and we propose another algorithm: Partial Joint
Actions Q-learning (PJA). In this article, we do not consider the reduction of
joint actions alone, because this reduction is lower than the reduction of the set
of states.
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4.1 FriendQ with a Local View

To introduce partial observability, we use the notion of local Q-Value and local
state. Each agent uses the same algorithm but on different state. A local state is
defined from the real state of the multiagent system for a center agent. All other
agents positions are defined relatively to this central agent. This means that the
same real state belongs to the set S will give different local states. For an agent
i, the set possible local state is Si. We introduce a function f i which transforms
the real state s to a local state si for agent i. Formally, ∀s ∈ S, ∃si ∈ Si such
that f i(s) = si for all agents i. In this version of the algorithm, each agent
uses Friend Q-learning algorithm as described in section 2 but by updating its
Q-values for the local states and not for the real state.

4.2 FriendQ with a Partial Local View

To measure the effect of partial observability on the performance we define the
partial state centered on one agent by introducing a distance of observalibity
d. Consequently, the initial problem becomes a d-partial problem. The distance
d can be viewed as an influence area for the agent. Increasing this distance
increases the degree of observability. We define dtotal as the maximal possible
distance of observability for a given problem. Moreover, from a communication
point of view, in real world problems, the communication cost between two
agents depends on the distance between them. Communicating with a remote
agent is costlier than with a close agent.

In d-partial problem, the new state is defined as the observation of the center
agent for a range d. More precisely, an agent j is in the partial state of a central
agent i if its distance is lower or equal than d from the central agent i. Formally,
the function f i

d uses the parameter d to calculate the new local state. Figure 2
provides an example of the application of f i

d on a state s and get the result partial
states for each agent with a distance d = 2. Agent 1 sees only Agent 3 but Agent
3 sees both other agents. The new size of the set of state is O(((2d+1)2 ×V )N ).
The number of state is divided by around (Y/(2d+1))N , if we neglect the number
of lanes which is often small compared to the length of the road.

TJA Q-Learning. In a first step, as in classical Friend Q-learning, we consider
an algorithm that takes into account the complete joint actions. This assumption
implies that all agents are able to communicate their actions to others at each
step without cost. The Q-value update function is now :

Q(f i
d(s), a) = (1 − α)Q(f i

d(s), a) + α[r + γ max
a∈A

Q(f i
d(s

′), a)]

for agent i. When d = dtotal, we have a small reduction factor on the state set of
XY , because we do not take into account, in our specific problem, the absolute
position of the center agent.

PJA Q-learning. In a second step, the algorithm takes into account only the
actions where agents are in the partial local view as specified by d. This reduce
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Ag1

Ag1

Ag1

Ag2

Ag2

Ag2

Ag3

Ag3

Ag3

Ag3Agent 1

Agent 2

Agent 3

Fig. 2. State and Partial States for d = 2

dramatically the number of joint actions which have to be tested during the
learning. This partial local observability allows us to consider a variable number
of agents in the multiagent system.

Formally, we define a function gi which transforms the joint action a into a
partial joint action gi

d(a, s). This partial joint action contains all actions of agent
which are in the distance d of agent i. The Q-value update function is now :

Q(f i
d(s), g

i
d(a, s)) = (1 − α)Q(f i

d(s), g
i
d(a, s)) + α[r + γ max

ad∈Gi
d(A,S)

Q(f i
d(s

′), ad)]

for agent i where Gi
d(A, S) returns the set of joint actions with a central agent i

and a distance d. We can see that the result of the partial joint action depends
on the current state.

5 Results

In this section, we compare empirically the performance of the totally observable
problem (FriendQ) and the performance of approximated policy (TJA and PJA).
We present three kind of results: first of all, we compare the algorithms on a small
problem P1 defined by size X = 3, Y = 7, the set of velocities V = 0, · · · , 5
and the number of agents N = 3. Consequently, in this problem, the maximal
distance that we can use to approximate the total problem is dtotal = 3. The
3-partial state is a local representation of the totally observable state because
we are sure that all agents are visible from others in this representation. In the
initial state (Figure 1), velocities of the agents are v1 = 1, v2 = 2 and v3 = 3.
We present, for all results, the average total sum reward over 25 learnings with
each episode lasts 10 steps.
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Fig. 3. Rewards for Total Joint Action Q-learning for problem P1
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Fig. 4. Rewards for Partial Joint Action Q-learning for problem P1

Figure 3 shows the result of TJA Q-learning with distance from d = 0 to
d = 3. This algorithm is compared to the total observation problem resolved
by Friend Q-Learning. For d = 0, d = 1 and d = 2, TJA converges to a local
maximum, which increases with d. In these cases, the approximated values are
respectively about 86%, 89% and 94% of the optimal value. When d = 3, that
is, when the local view is equivalent to the totally observable view, the average
sum rewards converges to the total sum rewards of Friend Q-learning. However,
since we do not take into account the absolute position of the center agent, TJA
converges quickly than Friend Q-learning. Figure 4 shows the results of PJA Q-
Learning on the same problem. As previously, for d = 0, d = 1 and d = 2, PJA
converges to local maxima respectively about 76%, 86% and 97% of the optimal
value. These values are lower than TJA’s values but, for d = 2, the value is still
close to the optimal.

For the second result, we compare PJA Q-learning for two different problems.
We define a correct approximation distance dapp for each problem, where the
associated policy is closed to the optimal value. The first problem is the same
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as previously (Figure 4) and we can show that dapp = 3 for this problem. In the
second problem P2, we enlarge the number of lanes and the length of the road
(X = 5, Y = 20, V = 0, · · · , 5 and N = 3). This problem increases the number of
states but decreases the possible interactions between vehicles because they have
more space. For the second problem P2, Figure 5 shows the comparison between
Friend Q-learning and PJA Q-learning from d = 0 to d = 7. We can see that
from d = 4, there is only small differences between PJA and Friend Q-learning.
Consequently, for this problem, we can see that dapp = 4. The problem of this
approach is the need of calculating the optimal policy, which can be intractable,
to get dapp.

 30

 32

 34

 36

 38

 40

 42

 0  10000  20000  30000  40000  50000

S
um

 R
ew

ar
d

Episodes

d=0
d=1
d=2
d=3
d=4
d=5
d=6
d=7

FriendQ

Fig. 5. Rewards for Partial Joint Action Q-learning for problem P2

As we can see, we need to generalize this result to know the dapp parameter
without calculating the optimal policy, which can be absolutely intractable for
big problems. To present the third result, we calculate the ratio DS = XY/N
which represents the degree of space for each agent. Obviously, if the space
(X or Y ) increases, then each agent has more space for itself. As we study a
problem where the team of agent has to handle only negative interaction, the
higher the ratio, the more space agents have. We compare the performance of
our PJA algorithm for different ratios. The ratio for the two first problems is
respectively DSP1 = 7 and DSP2 = 33. We add two new problems P3 (X = 5,
Y = 20, V = 0, · · · , 5 and N = 5) and P4 (X = 6, Y = 28, V = 0, · · · , 5 and
N = 4) where the ratio are respectively 20 and 42. Table 1 presents the results
for each problem after 50000 episodes. For each problem, we define the correct
approximation distance dapp such as 1−(

Rdapp

RfriendQ
) < ε. When ε = 0.01, dP1

app = 3,
dP2

app = 4, dP3
app = 2 and dP4

app = 2.
To discover a relation between the ratio DS and the value of dapp, we compare

in Figure 6, the link between DS and the degree of observability defined as dapp

dtotal

where dtotal is the maximal distance for a given problem. For example, dtotal for
the problem P1 is 3. We can see that the degree of observability decreases with
the degree of space for each agent. We calculate an interpolated curve assuming
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Table 1. Average Rewards and standard deviation after 50000 episodes

Algorithms P1 εP1 P2 εP2 P3 εP3 P4 εP4

FriendQ 38.4 ± 1.1 - 40.6 ± 0.3 - 37.0 ± 1.2 - 37.6 ± 0.3 -
PJA d = 7 - - 40.6 ± 0.2 ∼ 0% 37.2 ± 0.7 ∼ 0% 38.4 ± 0.2 ∼ 0%
PJA d = 6 - - 40.5 ± 0.2 ∼ 0% 37.9 ± 0.7 ∼ 0% 38.8 ± 0.4 ∼ 0%
PJA d = 5 - - 40.6 ± 0.2 ∼ 0% 37.8 ± 0.9 ∼ 0% 38.7 ± 0.4 ∼ 0%
PJA d = 4 - - 40.5 ± 0.2 ∼ 0% 38.3 ± 0.8 ∼ 0% 38.7 ± 0.2 ∼ 0%
PJA d = 3 39.1 ±0.2 ∼ 0% 40.0 ± 0.2 ∼ 2% 38.7 ± 0.6 ∼ 0% 38.9 ± 0.2 ∼ 0%
PJA d = 2 37.3 ±0.2 ∼ 3% 38.6 ± 0.2 ∼ 5% 37.7 ± 0.5 ∼ 0% 38.5 ± 0.1 ∼ 0%
PJA d = 1 33.5 ±0.2 ∼ 14% 33.9 ± 0.3 ∼ 15% 35.2 ± 0.3 ∼ 5% 35.1 ± 0.4 ∼ 8%
PJA d = 0 29.4 ±0.3 ∼ 24% 34.4 ± 0.4 ∼ 15% 33.5 ± 0.4 ∼ 10% 34.3 ± 0.3 ∼ 11%
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Fig. 6. Link between observability and degree of space

that the degree of observability cannot be higher than 1 when DS < 7. We can
see that the needed observability decreases and tends to 0 when DS increases.
With this relation between both parameters, observability and degree of space,
we can evaluate, for other problems how would be the dapp value.

Thus, introducing the locality of the view allows us to limit the observability
of the state. More precisely, this approach allows us to use partial version of
Friend Q-learning in real world problems where the state is always partially
observable. We obtain an approximation of the optimal policy without knowing
the transition function. This approximation can be very close to the optimal
policy.

In our approach, we do not take into account communication explicitly for
many reasons. First of all, in real world problem, choosing the right communica-
tion cost is not an easy task. Furthermore, as we said previously, the communica-
tion cost depends not only on the sent message but also on the distance between
sender and receivers. This problem complicates design of communication cost.
Consequently, knowing the value of the approximated policy and the associated
communication policy (and consequently, the cost of this policy) to obtain the
n-partial state, the multiagent system designer can find a good approximation
for the real world problem.
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6 Related Work

The most general model which is related to our work is Partially Observable
Stochastic Games (POSG). This model formalizes theoretically the observations
for each agent. The resolution of this kind of games has been studied by Emery-
Montermerlo [12]. This resolution is an approximation using Bayesian games.
However, this resolution is still based on the model of the environment unlike
our approach which do not take into account this information explicitly since we
assume that the environment is unknown.

Concerning the space search reduction, Sparse Cooperative Q-Learning [13]
allows agents to coordinate their actions only on predefined set of states. In the
other states, agents learn without knowing the existence of the other agents.
However, the states where the agents have to coordinate themselves are selected
statically before the learning process, unlike in our approach. The joint actions
set reduction has been studied by Fulda and Ventura who propose Dynamic Joint
Action Perception (DJAP) [14]. DJAP allows a multiagent Q-learning algorithm
to select dynamically the useful joint actions for each agent during the learning.
However, they concentrated only on joint actions and they tested only their
approach on problems with few states.

Introducing communication into decision has been studied by Xuan, Lesser,
and Zilberstein [1] who proposed a formal extension to Markov Decision Process
with communication when each agent observes a part of the environment but all
agents observe the entire state. Their approach proposes to alternate communi-
cation and action in the decentralized decision process. As the optimal policy
computation is intractable, the authors proposed some heuristics to compute
approximation solutions. The main differences with our approach is the implicit
communication and the model-free learning in our approach. More generally, Py-
nadath and Tambe [2] has proposed an extension to distributed POMDP with
communication called COM-MTDP, which take into account the cost of com-
munication during the decision process. They presented some complexity results
for some classes for team problems. As Xuan, Lesser, and Zilberstein [1], this
approach is mainly theoretical and does not present model-free learning.

The locality of interactions in an MDP has been theoretically developed by
Dolgov and Durfee [15]. They presented a graphical approach to represent the
compact representation of an MDP. However, their approach has been developed
to solve an MDP and not to solve directly a multiagent reinforcement learning
problem where the transition function is unknown.

Regarding the reinforcement learning in a vehicle coordination problem,
Ünsal, Kachroo and Bay [16] have used multiple stochastic learning automata
to control longitudinal and lateral path of one vehicle. However, the authors
did not extend their approach to multiagent problem. In his work, Pendrith [17]
presented a distributed variant of Q-Learning (DQL) applied to lane change
advisory system, that is closed to our problem described in this paper. His ap-
proach uses a local perspective representation state which represents the rela-
tive velocities of the vehicles around. Consequently, this representation state is
closely related to our 1-partial state representation. Contrary to our algorithms,
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DQL does not take into account the actions of the vehicles around and update
Q-Values by an average backup value over all agents at each time step. The
problem of this algorithm is the lack of learning stability.

7 Conclusion

In this article, we proposed an approach to evaluate a good approximation of
a multiagent decision process, introducing a degree of observability for each
agents. Without taking into account explicit communication to obtain a degree
of observability, we proposed Friend Q-learning algorithms extension which uses
only observable state and observable actions from the other agents. We show
that only partial view is needed to obtain a good policy approximation for some
team problems, especially the changing lane problem between vehicles. We show
a relation between a good degree of observability and the space allowed for
each agent. However, this relation is only empirical and our approach is only
restricted to negative interaction management problems. It is possible that in
other problems, this relation could be different.

Adapting multiagent learning algorithm for real world problems is really chal-
lenging and many works need to be done to achieve this goal. For future work,
we plan to evaluate more theoretically the relation between the degree of ob-
servability, the performance of the learned policy and the speed of learning. To
define some formal bounds, we will certainly need to use complex communication
cost. Finally, introducing the distance for a measure of observability is basic. We
plan to discover others kind of distance between observability to generalize our
approach to positive and negative interaction management problems in teams.
Also, it will be very interesting to study the effect of partial local view to non
cooperative cases.
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Abstract. In the context of probabilistic verification, we provide a new
notion of trace-equivalence divergence between pairs of Labelled Markov
processes. This divergence corresponds to the optimal value of a par-
ticular derived Markov Decision Process. It can therefore be estimated
by Reinforcement Learning methods. Moreover, we provide some PAC-
guarantees on this estimation.

1 Introduction

The general field of this research is program verification. Typically, the goal is
to check automatically whether a system (program, physical device, protocol,
etc.) conforms to its pre-established specification. Both the specification and
the implementation are represented using a formal model (generally a transition
system) and then a verification algorithm checks for conformance between the
two models. This is usually done with the knowledge of the models of the two
processes. Our work fits in a more realistic setting where we want to check the
conformance between a specification and an implementation (physical device,
piece of code, etc.) for which only the model of the specification is available.

The model we work with is called a Labelled Markov Process (LMP) [2]; it
is a labelled transition systems where transitions are labelled by an action and
weighted by a probability (see Figure 1). The action is meant to be synchronized
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Fig. 1. Labelled Markov Processes

through interaction with the environment. Apart from the modelling of intrinsi-
cally probabilistic systems like randomized protocols, probabilities are also used
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as an abstraction mechanism, for example to hide complex details in suitably
chosen probability distributions. The state space of an LMP can be infinite; fi-
nite LMPs are also called Probabilistic labelled transition systems or Markov
decision processes without rewards. In this paper we will always suppose that it
has a tree like representation which, up to bisimulation [2], is always possible.
In recent years, a lot of work has been done on pseudo-metrics between prob-
abilistic systems. The reason is that when one wants to compare systems, an
equivalence like bisimulation is quite limited: systems are equivalent or they are
not. In the presence of probabilities this is even worse because, for one thing, a
slight change in the probabilities of equivalent processes will result in non equiv-
alent processes. A pseudometric is an indication of how far systems are. Few
pseudometrics have been defined but none of them come with an efficient way to
compute it. Moreover, these metrics can only deal with processes whose models
are known.

This paper is a first step towards the computation of a suitable measure of
non equivalence between processes in the presence of unknown models. We have
observed that while verification techniques can deal with processes of about 1012

states, Reinforcement Learning (RL) algorithms do a lot better; for example,
the TD-Gammon program deals with more than 1040 possible states [13]. Thus
we define a divergence notion between LMPs, noted divtrace( . ‖ . ), that can be
computed with RL algorithms. We call it a divergence rather than a distance
because it is not symmetric and does not satisfy the triangle inequality. However,
it does have the important property that it is always positive or zero and it is
equal to zero if and only if the processes are probabilistic trace-equivalent [9]. Two
processes are probabilistic trace-equivalent (we will simply say trace-equivalent)
if they accept the same sequences of actions with the same probabilities. For
example, T1 and T2 in Figure 1 accept the same traces: ε, a, aa, ab, ac, aac, aca
but they are not trace-equivalent since PT1(aac) = 1

4 whereas PT2(aac) = 1
6 .

2 The Approach

We first informally expose our approach through a one-player stochastic game.
Then, we will define a divergence between a specification model (denoted “Spec”)
and a real system (denoted “Impl”) for which the model is not available but on
which we can interact (exactly as a black-box). This divergence will be the
value of the maximal expected reward obtained when playing this game. The
formalization and proofs will follow.

2.1 Defining a Game Using Traces

A trace is a sequence of actions (possibly empty) that is meant to be executed
on a process. Its execution results in the observation of success or failure of each
action1. For example, if trace aca is executed, then four observations are possible:
1 Note that the execution is sometimes called the trace itself whereas the sequence of

actions is called a test.
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a×, a�c×, a�c�a× and a�c�a�, where a� means that a is accepted whereas a×

means that it is refused. To each trace is associated a probability distribution on
observations. For example, in T2 of Figure 1, the observations related to trace
aca have the distribution pa× = 0, pa�c× = 1

1
1
2 = 1

2 , pa�c�a× = 1
1

1
2

3
4 = 3

8 ,
pa�c�a� = 1

8 . Based on this setting, we have the straightforward result [12]:

Proposition 1. Two processes are trace-equivalent iff they yield the same prob-
ability distribution on observations for every trace.

In the light of this result, a suitable choice to define our divergence could sim-
ply be the maximum value, over all traces τ , of the Kullback-Leibler divergence
between the probability distributions on observations when running each trace
τ on “Spec” and “Impl”. The Kullback-Leibler divergence between two distri-
butions Q and P is defined as KL(Q‖P ) := Eh∼Q ln 1

P (h) − Eh∼Q ln 1
Q(h) [4].

Unfortunately, because of the high number of possible traces (on huge systems),
the maximum value over all Kullback-Leibler divergences is not tractable.

However, Eh∼Q ln 1
Q(h) , the entropy of Q, can be seen as as a quantification

over the likeliness to obtain different observations when interacting with “Spec”
and a perfect clone of it (which we call “Clone”). “Clone” is simply a copy of
the specification but given in the form of a black-box (exactly as “Impl”). In
some sense, Eh∼Q ln 1

P (h) can also be seen as how likely we can obtain different
observations when interacting (via some τ) with both “Spec” and “Impl”. Hence,
the maximum possible Kullback Leibler divergence should be obtained when
executing a suitable trade-off reflecting the fact that the probability of seeing
different observations between “Spec” and “Impl” should be as large as possible,
and as small as possible between “Spec” and “Clone”. Here is a one-player
stochastic game on which a similar tradeoff underlies the optimal solution (see
Figure 2).

Impl

• 0
a[1]

�������� c[1]

���
��

�

• 1
a[ 14 ]

����
�� a[ 24 ]

���
��

� • 2

c[1]
• 3 • 4

c[1]
����

�� a[1]
���

��
� • 5

• 6 • 7

Spec Clone

Fig. 2. Implementation, Specification, and Clone

Game0: The player plays on “Spec”, starting in the initial state; then

Step 1 : The player chooses an action a.
Step 2 : Action a is run on “Spec”, “Impl” and on a clone of “Spec”.
Step 3 : If a succeeds on the three processes, the new player’s state is the

reached state in “Spec”; go to Step 1. Else the game ends and the player
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gets a (+1) reward for different observations between “Spec” and “Impl”
added up with a (−1) reward for different observations between “Spec”
and “Clone”. That is, writing I for “Impl”, C for “Clone” and Obs for
observation,

R := (Obs.I 
= Obs(Spec)) − (Obs(Spec) 
= Obs.C)

where 0 and 1 are used as both truth values and numbers.

For example, if action a is executed on the three LMPs and observation FSS
is obtained (i.e., Failure in “Impl”, Successes in “Spec” and “Clone”), then an
immediate reward of (+1) is given. Notice that once an action fails in one of the
three processes the game is stopped. Hence the only scenario allowing to move
ahead is: SSS. It is easy to see that if “Spec” and “Impl” are trace-equivalent, the
optimal strategy will have expected reward zero, as wanted. Unfortunately the
converse is not true: there are trace-inequivalent LMPs for which every strategy
has expected reward zero. Here is a counterexample: consider three systems with
one a-transition from one state to another one. The probability of this transition
is 1

2 for the “Spec” (and “Clone”) and 1 for the implementation.
Thus, the maximal possible expected reward of Game0 will not lead to a

notion of trace-equivalence divergence, but we will show that the following slight
modification of Game0 does lead to a suitable notion of divergence.

Definition 1. Game1 is Game0 with Step 1 replaced by
Step 1’ : The player chooses an action and makes a prediction on its success

or failure on “Spec”
and the reward function is replaced by

R :=
(
Obs(Spec) = Pred

)(
(Obs.I 
= Obs(Spec)) − (Obs(Spec) 
= Obs.C)

)
(1)

For example, if a� is selected and the observation is FSS we obtain a reward of
1((F 
= S) − (S 
= S)) = 1 (1 − 0) = 1, but for FFS, we obtain 0 (0 − 1) = 0.

Observe that because the player has a full knowledge of what is going on
in “Spec”, the prediction in Step 1’ together with this new reward signal gives
(implicitly) more control to the player. Indeed, the latter has the possibility to
reduce or augment the probability to receive a non zero reward if he expects this
reward to be negative or positive. Next section will formalize these ideas in a
more Reinforcement Learning setting.

2.2 Constructing the MDP M
In artificial intelligence, Markov Decision Processes (MDPs) offer a popular
mathematical tool for planning and learning in the presence of uncertainty [10].
MDPs are a standard formalism for describing multi-stage decision making in
probabilistic environments (what we called a one-player stochastic games in the
preceding section). The objective of the decision making is to maximize a cumu-
lative measure of long-term performance, called the reward.
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In an MDP, an agent interacts with an environment at a discrete, low-level
time scale. On each time step, the agent observes its current state st ∈ S and
chooses an action at from an action set A. One time step later, the agent transits
to a new state st+1, and receives a reward rt+1. For a given state s and action a,
the expected value of the immediate reward is denoted by Ra

s S and the transition
to a new state s′ has probability Pr

M
s s′(a), regardless of the path taken by the

agent before state s (this is the Markov property). The goal in solving MDPs is
to find a way of behaving, or policy, which yields a maximal reward. Formally, a
policy is defined as a probability distribution for picking actions in each state. For
any policy π : S×A → [0, 1] and any state s ∈ S, the value function of π for state
s is defined as the expected infinite-horizon discounted return from s, given that
the agent behaves according to π: V π(s) := Eπ{rt+1+γrt+2+γ2rt+3+· · · |st = s}
where s0 is the initial state and γ is a factor between 0 and 1 used to discount
future rewards. The objective is to find an optimal policy, π∗ which maximizes
the value V π(s) of each state s. The optimal value function, V ∗, is the unique
value function corresponding to any optimal policy.

If the MDP has finite state and action spaces, and if a model of the en-
vironment is known (i.e., immediate rewards Ra

s s′ and transition probabilities
PrM

s s′(a)), then DP algorithms (namely policy evaluation) can compute V π for
any policy π. Similar algorithms can be used to compute V ∗. RL methods, in
contrast, compute approximations to V π and V ∗ directly based on the interac-
tion with the environment, without requiring a complete model, which is exactly
what we are looking for in our setting.

We now define the MDP on which the divergence between two LMPs will be
computed. The model of the first LMP, (called “Spec”) is needed and must be in
a tree-like representation. It is a tuple (States, s0, Actions, PrSpec) where s0 is
the initial state and Pr

Spec

s s′ (a) is the transition probability from state s to state s′

when action a has been chosen (for example, in Figure 2, Pr
Spec

1 4 (a) = 2
4 )). Since

it has a tree-like structure, for any state s ∈ States, there is a unique sequence
of actions (or trace, denoted tr.s) from s0 to s. For the second LMP (called
“Impl”), only the knowledge of all possible conditional probabilities P I(a�|τ)
and P I(a×|τ) of observing the success or failure of an action a given any suc-
cessfully executed trace τ is required. For example, in Figure 2, PC(c�|aa) =
2
4 ÷ (2

4 + 1
4 ) = 2

3 . Finally, we write PC(a�|τ) and PC(a×|τ) for the conditional
probabilities of a copy of the first LMP (called “Clone”): this is for readability
and is no additional information since PC(a�|τ)=PS(a�|τ)2.

Definition 2. Given “Impl”, “Spec”, and “Clone”, the set of states of the MDP
M is S := States ∪ {Dead}, with initial state s0; its set of actions is Act :=
Actions×{ �, ×}. The next-state probability distribution is the same for a� and
a× (which we represent generically with a-); it is defined below, followed with
the definition of the reward function.

2 Note that the complete knowledge of P I( . | . ) and P C( . | . ) is needed to construct the
MDP, but if one only wants to run a Q-learning algorithm on it, only a possibility
of interaction with “Clone” and “Impl” is required.
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Pr
M
s s′(a-) :=

{
Pr

Spec

s s′ (a) P I(a�|tr.s) PC(a�|tr.s) if s′ 
= Dead

1 − PS(a�|s) P I(a�|tr.s) PC(a�|tr.s) if s′ = Dead

Ra-

s s′ :=

{
0 if s′ 
= Dead

1
PrM

s s′(a-)
PS(a-|s) Δa-

tr.s if s′ = Dead

where • PS(a�|s) :=
∑

s′∈States Pr
Spec

s s′ (a), and PS(a×|s) := 1 − PS(a�|s),
• Δa�

τ := P I(a×|τ) PC(a�|τ) − P I(a�|τ) PC(a×|τ) and Δa×
τ := −Δa�

τ .

The additional Dead state in the MDP indicates the end of an episode and is
reached if at least one of the three systems refuses the action. This is witnessed
by the next state probability distribution.

Let us now see how the reward function Ra-

s s′ accords with Game1 presented
in the previous section. The simplest case is if the reached state is not Dead : it
means that the action succeeded in the three systems (SSS) which indicates a
similarity between them. Consequently the reward is zero for both a� and a×,
as indicated by Step 3 of the game. Let us now consider the case s′ = Dead. We
want the following relation between Ra-

s s′ and Ra-

s S , precisely because the latter
represents the average reward of running action a- on a state s:

Ra-

s S = Pr
M
sDead(a

-) Ra-

sDead +
∑

s′∈S\{Dead}
Pr

M
s s′(a-) Ra-

s s′︸︷︷︸
0

= Pr
M
sDead(a

-) Ra-

sDead (2)

However Game1 and Equation (1) give us another computation for Ra-

s S . In the
case where a- = a� is chosen, then the reward is computed only if a succeeds in
“Spec”, that is, we get a (+1) reward on observation FSS, a (−1) on SSF , and
(+0) on observations SSS or FSF . If a fails, the reward is (+0). Thus,

Ra�
s S = P I(a×|tr.s) PS(a�|s) PC(a�|tr.s)︸ ︷︷ ︸

F SS �→ (+1)

− P I(a�|tr.s) PS(a�|s) PC(a×|tr.s)︸ ︷︷ ︸
SSF �→ (−1)

= PS(a�|s) Δa�
tr.s.

In the case where a× is chosen, the opposite mechanism is adopted, that is, the
reward is computed only if a fails in “Spec” and hence only the situations SFF
(+1) and FFS (−1) are relevant. We therefore obtain the following equation:

Ra-

s S := PS(a-|s) Δa-

tr.s. (3)

The reward Ra-

sDead in Definition 2 is obtained by combining Equations (2) and (3).

2.3 Value of a Policy in M
In order to define a formula for policy evaluations on any state s in our setting,
we start from the Bellman Equation [13].
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V π(s) =
∑

a-∈Act

π(s, a-)
∑
s′∈S

Pr
M
s s′(a-) (Ra-

s s′ + γ V π(s′))

=
∑

a-∈Act

π(s, a-) (Pr
M
sDead(a

-)Ra-

sDead +
∑

s′∈S\{Dead}
Pr

M
s s′(a-)(0 + γ V π(s′)))

=
∑

a-∈Act

π(s, a-) (Ra-

s S +
∑

s′∈S\{Dead}
Pr

M
s s′(a-) γ V π(s′)) (4)

where the second equality follows from Equation (2).
Now, let us denote by Si the set of states of S\{Dead} at depth i (i.e.,

that can be reached from s0 in exactly i steps3). We call trace-policy a de-
terministic (not stochastic) policy for which the same action is selected for
states at the same depth. A trace-policy can thus be represented by a trace
of the MDP (e.g.: π = a�

1 a×
2 a×

3 a�
4 a×

5 ). Let P
M+π
j (s) be the probability to

be in s, j steps away from the initial state when following
trace-policy π. For example, starting from the LMPs of Figure 2 with trace-
policy π := a�a�b�, P

M+π
2 (4) = Pr

Spec

0 1 (a) Pr
Spec

1 4 (a) = 2
4 , but P

M+π
3 (7) = 0. The

value of the trace-policy π = a-
1a

-
2 . . . a-

n on s0 is thus determined as follows from
Equation (4):

V π(s0) =
∑

a-∈Act

π(s0, a
-) (Ra-

s0 S +
∑

s′∈S\{Dead}
Pr

M
s0 s′(a-) γ V π(s′))

= R
a-
1

s0 S +
∑

s′∈S\{Dead}
Pr

M
s0 s′(a-

1) γ
(
R

a-
2

s′ S +
∑

s′′∈S

Pr
M
s′ s′′(a-

2) γ V π(s′′)
)

...
=

n−1∑
i=0

∑
s∈Si

P
M+π
i+1 (s) γi R

a-
i+1

s S (5)

=
n−1∑
i=0

γi
∑
s∈Si

P
M+π
i+1 (s) PS(a-

i+1|s) Δ
a-

i+1
tr.s

=
n−1∑
i=0

γi PS(a-
i+1|a1 . . . ai) Δ

a-
i+1

a1...ai (6)

Note that there is an abuse of language when we say that a trace-policy is a
policy of the MDP, because we assume that after the last action of the sequence,
the episode ends even if the Dead state is not reached.

3 Theorems and Definition of divtrace( . ‖ . )

We prove in this section that solving the MDP induced by a specification and
an implementation yields a trace equivalence divergence between them which is
positive and has value 0 if and only if the two processes are trace-equivalent.

Let us first state three easy lemmas which will be useful in this section.

3 Since “Spec” is assumed tree-like, the Si’s are pairwise disjoint.
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Lemma 1. The following are equivalent.

1. P I(a×|τ) = PC(a×|τ).
2. P I(a�|τ) = PC(a�|τ).
3. Δa-

τ = 0.

Lemma 2. Let π = a-
1a

-
2 . . . a-

n be a trace-policy, and τπ = a1a2 . . . an its corre-
sponding trace. Then for any a- ∈ Act, writing πa- for a-

1a
-
2 . . . a-

na-, we have(
V πa-

(s0) = V π(s0)
)

iff
(
P I(a-| τπ) = PC(a-| τπ) or PS(a-| τπ) = 0

)
.

Proof. By Equation (6), we have V πa-
(s0) − V π(s0) = γn Δa-

τπ
PS(a-| τπ); this

implies the result because by Lemma 1, Δa-

τπ
= 0 ⇔ P I(a-| τπ) = PC(a-| τπ). -.

Lemma 3. ∀ a- ∈ Act, s ∈ S\{Dead} PS(a-|tr.s) = 0 ⇒ PS(a-| s ) = 0

Proof. Because “Spec” is tree-like, the probability of reaching s by following tr.s
is strictly positive. By contraposition, assume that the probability of observing a-

from s is strictly positive, then so is the probability of observing a- after tr.s. -.

From now on, we will use the notation a- to mean the opposite of a-, that is, if
a- = a� then a- = a× and if a- = a× then a- = a�.

Theorem 1. The following are equivalent:

(i) The specification and implementation processes are trace-equivalent.
(ii) ∀a- ∈ Act, s ∈ S\{Dead} Ra-

s S = 0
(iii) ∀ trace-policy π V π(s0) = 0

Proof. (i) ⇒ (ii). Since tr.s is a trace ∀ s 
=Dead, and since PS( . | . ) = PC( . | . ),

PS( . | . ) = P I( . | . ) ⇒ ∀a- ∈ Act, s ∈ S\{Dead} PC(a-|tr.s) = P I(a-|tr.s)
⇔ ∀a- ∈ Act, s ∈ S\{Dead} Δa-

tr.s = 0 (by Lemma 1)

⇒ ∀a- ∈ Act, s ∈ S\{Dead} Ra-

s S = 0 (by Equation (3))

(ii) ⇒ (i). Let τ be a trace and a- ∈ Act. Case 1: there exists an s ∈ S\{Dead}
such that τ = tr.s. Then by (ii) and Equation (3), we have Δa-

tr.s PS(a-|s) = 0.
This implies either Δa-

tr.s = 0 or PS(a-|s) = 0. By Lemma 1, we know that
the first case implies the result. The second case requires to see the opposite
action. Indeed, PS(a-|s) = 0 implies that PS(a- |s) = 1. By (ii), Ra-

s S = 0. By
the same argument, we can deduce that either Δa-

tr.s = 0 or PS(a-|s) = 0, and
therefore that Δa-

tr.s = 0. Since a- = a-, by Lemma 1(replacing a- by a- ), we
have P I(a-|tr.s) = PC(a-|tr.s), as wanted. Case 2: if no such s exists, then τ has
probability zero in “Spec” and trivially PS(a-|τ) = 1 = P I(a-|τ) as wanted.

(ii) ⇒ (iii) follows from Equation (5).
(iii) ⇒ (ii). Fix a- ∈ Act and s ∈ S\{Dead}, and let n ≥ 0 such that s ∈ Sn,

and let a1 . . . an = tr.s. Now, define π = a�
1 . . . a�

n . By (iii) and Equation (6),
we have 0 = 0−0 = V a-

1...a-
na-

(s0)−V π(s0) = γn Δa-

tr.s PS(a-|tr.s). By Lemma 3,
Δa-

tr.s PS(a-|s) = 0, which, by Equation 3, implies the result. -.
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Theorem 2. Two LMPs are not trace-equivalent if and only if V π(s0) > 0 for
some trace-policy π.

Proof. (⇒): by Theorem 1, we have that V π(s0) 
= 0 for some trace-policy
π = a-

1a
-
2 . . . a-

n. Define J := {j ∈ {1, . . . n} | PC(a-
j |a1 . . . aj−1) Δ

a-
j

a1...aj−1 < 0},

and note that PC(a-
j |a1 . . . aj−1) > 0 and Δ

a-
j

a1...aj−1 < 0 for any j ∈ J . Thus,

for any such j, Δ
a-

j
a1...aj−1 > 0 (see Definition 2). Let π1 be the policy obtained

from π by replacing each action a-
j ∈ J by its opposite. Then, by Equation (6),

V π1(s0) > 0, as desired. (⇐): follows from Theorem 1. -.

Lemma 4. For every trace-policy π and every a- ∈ Act,

V π(s0) ≤ V πa-
(s0) or V π(s0) ≤ V πa-(s0).

Proof. As for Theorem 2, the result follows from Equation (6) and the fact that
Δa-

τπ
= −Δa-

τπ
where τπ is the trace corresponding to π. -.

Theorem 3. Let M be the MDP induced by “Spec”, “Impl”, and “Clone”. If
γ < 1 or |M| < ∞ then V �(s0) ≥ V π(s0) for any trace-policy π.

Proof. As explained in the preceding section, a trace policy a-
1 . . . a-

n is not a
policy of M but of the sub-MDP whose state space is S \∪∞

i=n+1Si. If |M| < ∞,
the result is a direct consequence of Lemma 4. Otherwise, it is sufficient to show

∀ε > 0 ∀ trace-policy π ∃ policy π′ such that |V π′
(s0) − V π(s0)| < ε.

Let ε > 0 and π = a-
1 . . . a-

n be a trace-policy. Because of Lemma 4, w.l.o.g.,
we may suppose n to be large enough to satisfy

∑∞
i=n+1 γi < ε. Since on each

episode, the reward signal is (−1), (0) or (+1), it is easy to see that any policy
π′ of M that coincides with π on Mπ will have the desired property. -.

We can now give the definition of the central notion of this paper.

Definition 3. Let “Spec” and “Impl” be two LMPs and M their induced MDP.
We define their trace-equivalence divergence as

divtrace(“Spec”‖“Impl”) := V �(s0).

Clearly, divtrace(“Spec”‖“Impl”) ≥ 0, and = 0 iff “Spec” and “Impl” are trace-
equivalent.

4 Implementation and PAC Guarantees

As mentioned in Section 2, the full model of the MDP might not be available.
Therefore, it is not appropriate to use a Dynamic Programming [1] algorithm
such as value iteration [13] to solve the MDP. Instead, we use a Q-Learning
algorithm [15]. Q-Learning is an off-policy Temporal Difference (TD) control
algorithm which directly approximates V �(s0). The algorithm has been proven
to converge to the optimal value [8, 14, 16]. Moreover, some results about its
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convergence rates have been proposed [5]. However, in the field of verification,
the main goals are (∗) to find the difference between the implementation of a
system and its specification and also (∗∗) to have a guarantee on the fact that
this difference is very small in the case where we do not find any such difference
during the investigation. Hence, from that perspective, a PAC-guarantee for the
Q-Learning algorithm is the most appropriate tool.

Definition 4. We say that we have a PAC (Probably Approximately Correct)
guarantee for a learning algorithm on an MDP M if, given an a priori precision
ε > 0 and a maximal probability error δ, there exists a function f(M, ε, δ) such
that if the number of episodes is greater than f(M, ε, δ), then

Prob{|V π̂(s0) − V �(s0)| ≤ ε} ≥ 1 − δ (7)

where π̂ is the policy returned by the Q-learning algorithm and V π̂(s0) is the
estimation of V �(s0) given by this algorithm.

The Q-learning algorithm does have a PAC guarantee [11], but the function
f(M, ε, δ) is very difficult to compute, which makes this guarantee unusable in
practice. The Fiechter RL algorithm [6] comes with a simpler PAC guarantee and
hence one can use it in the current setting. The main drawback of the Fiechter
algorithm remains its inefficiency compared to Q-Learning.

However we can still reach goal (∗) using any RL learning algorithm. Indeed,
in the case where the two processes are not trace-equivalent, we can guarantee a
bottom bound for the optimal value using Hoeffding inequality [7] based on the
following idea. Let π̂ be the policy returned by the RL algorithm. Let V π̂(s0) be
the estimation of V π̂(s0) using a Monte Carlo [13] algorithm with m episodes.
Given ε, δ ∈]0, 1[, according to the Hoeffding inequality, if m ≥ 1

ε2 ln(2
δ ), we have

Equation (7) with V �(s0) replaced by V π̂(s0). Since V π̂(s0) never exceeds the
optimal value V �(s0), we have the following PAC guarantee: Prob{V π̂(s0) −
V �(s0) ≤ ε} ≥ 1 − δ. Note that, in addition, the algorithm returns the policy
π̂ that proves the result. A specific difference between the implementation and
its specification is therefore identified, orienting the debugging phase that would
follow. This is a major difference with the traditional testing approach consisting
of simply running an a priori defined test during the debugging phase.

Finally, observe that if V π̂(s0) is too close to zero, or exactly zero, then the
Hoeffding inequality gives no guarantee on the trace equivalence or inequivalence.
Recall that this difficulty occurs only if we use an algorithm without a tractable
PAC guarantee: the problem does not happen with the Fiechter RL algorithm.
Nevertheless, even with Q-Learning, we think that our approach is better than
traditional testing because, as explained above, it can find new tests by its own.

4.1 Experimental Results

The approach described so far has been implemented using Java. Two action
selection algorithms have been experimented: ε-greedy and SoftMax. For both
methods, we tried several functions to decrease the ε (resp. the τ) values. The
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combination that produced the best results is SoftMax such that the temperature
τ is decreasing from 0.8 to 0.01 according to the function : τ = k

currentEpisod+l

(variables k and l are constants). The learning rate α (also called step size)
must decrease in order to assure convergence of the Q-Learning algorithm. We
tried several decreasing functions and the best convergence results are with 1

x
where x is the number of times the state-action has been visited. The discount
factor γ is fixed to 0.8 in our algorithm. The two following graphics show how the

Q-Learning algorithm converges to the optimal value. This value is, in our set-
ting, the trace-equivalence divergence between the specification and the imple-
mentation processes. In the above graphics, we tracked the optimal value in one
execution of 10000 episodes. In graphic (a), it is easy to see that the estimated
value gets close to the real optimal value (0.132 represented by the line) as the
number of episodes increases. Graphic (b), however, is obtained by running the
algorithm on trace-equivalent processes. It shows how the estimated value for
that case converges to zero.

5 Conclusion

The main contribution of this paper is a completely new approach to estimate
how far two LMPs are from being trace-equivalent. Indeed, we introduce a no-
tion of trace-equivalence divergence divtrace( . ‖ . ) that can be estimated via some
Monte-Carlo estimation using Reinforcement Learning algorithms. Traditional
approaches, on the other hand, are based on costly complete calculations on
the models. The advantage of using an RL approach therefore opens a way for
analyzing very huge systems and even infinite ones.

In this paper, we showed that divtrace( . ‖ . ) is a real divergence operator and
gave some related PAC-guarantees. However, we did not have enough room to
show how divtrace( . ‖ . ) is increasing as the LMPs are farther from being trace-
equivalent. This is intuitively clear. The proof, however, is related to the fact
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that, as for Kullback-Leibler divergence, the divergence Dπ induced by any fixed
trace-policy π is of Bregman [3] (here the Bregman function related to Dπ is∑

i∈I xi (1 − 1
2xi)).

For future work, we want to improve our PAC-guarantees, and even obtain a
PAC-guarantee that will not depend on the state space S of the MDP M. We also
want to modify the construction of M, in order to speed up the calculation. For
example, we could generalize our notion of divergence in a setting where the FFF
observation does not stop the episode anymore. Finally, since the LMP formalism
is mathematically quite similar to the MDP and HMM (Hidden Markov Model)
formalisms, the next step will be to apply our approach on these formalisms.
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Abstract. Current point-based planning algorithms for solving partially observ-
able Markov decision processes (POMDPs) have demonstrated that a good ap-
proximation of the value function can be derived by interpolation from the values
of a specially selected set of points. The performance of these algorithms can be
improved by eliminating unnecessary backups or concentrating on more impor-
tant points in the belief simplex. We study three methods designed to improve
point-based value iteration algorithms. The first two methods are based on reach-
ability analysis on the POMDP belief space. This approach relies on prioritizing
the beliefs based on how they are reached from the given initial belief state. The
third approach is motivated by the observation that beliefs which are the most
overestimated or underestimated have greater influence on the precision of value
function than other beliefs. We present an empirical evaluation illustrating how
the performance of point-based value iteration (Pineau et al., 2003) varies with
these approaches.

1 Introduction

Partially Observable Markov Decision Processes (POMDPs) are a standard framework
for studying decision making under uncertainty. In POMDPs, the state of the system
in which the decisions take place is never fully observed. Only observations that de-
pend probabilistically on the hidden state are available. The best exact algorithms for
POMDPs can be very inefficient in both space and time. Therefore a huge research ef-
fort has been devoted to developing approximation techniques in this field. Most plan-
ning algorithms attempt to estimate values for belief states, i.e. probability distributions
over the hidden states of the system.

Recent research has been devoted to algorithms that take advantage of the fact that
for most POMDP problems, a large part of the belief space is never experienced by the
agent. Such approaches, which are known as point-based methods, consider only a finite
set of belief points and compute values for the different actions only for these points.
The plan generalization over the entire simplex is done based on the assumption that
nearby points will have nearby values. Point-based value iteration methods (Pineau et
al., 2003) have been very successful in solving problems which are orders of magnitude
larger than classical POMDP problems. This algorithm performs point-based updates
on a small set B of reachable points. The error of the approximation is proved to be
bounded and it can be decreased by expanding the set of beliefs. However, value im-
provement depends to a large extent on which belief points are added to this set. Hence,
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the choice of belief points is a crucial problem in point-based value iteration, especially
when dealing with large problems, and has been discussed by several authors. Spaan
and Vlassis (2004) explored the use of a large set of randomly generated reachable
points. Pineau et al. (2003) discussed several heuristics for sampling reachable belief
states. Smith and Simmons (2004) designed a heuristic search value iteration algorithm
which maintains an upper and lower bound on the value function to guide the search for
more beneficial beliefs to consider for backups.

In this paper we address the issue of dynamically generating a good ordering of be-
liefs in an efficient way. We explore the point-based value iteration algorithm in combi-
nation with several belief point selection heuristics. First, we make some corrections to
the reachability metric proposed by Smith and Simmons (2005). This metric is designed
to give more priority of being selected to points that are reachable in the near future. The
intuition is that in discounted reward problems, belief points that are only reachable in
many time steps do not play an important part in the computation of the value function
approximation and we can ignore them. We compare this metric to the 1-norm distance
metric previously suggested by Pineau et.al (2003) and study the applicability of this
metric to the point-based value iteration algorithm. We also propose and investigate new
methods for point selection in belief space for PBVI based on reachability analysis and
belief value estimation error. Empirical results comparing these approaches is provided.

2 Background on Partially Observable Markov Decision Processes

Formally, a POMDP is defined by the following components: a finite set of hidden
states S; a finite set of actions A; a finite set of observations Z; a transition function T :
S×A×S → [0,1], such that T (s,a,s′) is the probability that the agent will end up in state
s′ after taking action a in state s; an observation function O : A×S×Z → [0,1], such that
O(a,s′,z) gives the probability that the agent receives observation z after taking action
a and getting to state s′; an initial belief state b0, which is a probability distribution over
the set of hidden states S; and a reward function R : S × A × S → ℜ, such that R(s,a,s′)
is the immediate reward received when the agent takes action a in hidden state s and
ends up in state s′. Additionally, there can be a discount factor, γ ∈ (0,1), which is used
to weigh less rewards received farther into the future.

The goal of planning in a POMDP environment is to find a way of choosing actions,
or policy π, which maximizes the expected sum of future rewards

V π(b) = E

[
T

∑
t=0

γt rt+1|b,π

]
(1)

where T is the number of time steps in an episode (typically assumed finite) and rt+1

denotes the reward received at time step t + 1. The agent in a POMDP does not have
knowledge of the hidden states, it only perceives the world through noisy observations
as defined by the observation function O. Hence, the agent must keep a complete history
of its actions and observations, or a sufficient statistic of this history, in order to act
optimally. The sufficient statistic in a POMDP is the belief state b, which is a vector
of length|S| specifying a probability distribution over hidden states. The elements of
this vector, b(i), specify the conditional probability of the agent being in state si, given
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the initial belief b0 and the history (sequence of actions and observations) experienced
so far.

After taking action a and receiving observation z, the agent updates its belief state
using Bayes’ Rule:

b′
baz(s

′) = P(s′|b,a,z) =
O(a,s′,z)∑s∈S b(s)T (s,a,s′)

P(z|a,b)
(2)

where denominator is a normalizing constant and is given by the sum of the numerator
over all values of s′ ∈ S:

P(z|a,b) = ∑
s∈S

b(s) ∑
s′∈S

T (s,a,s′)O(a,s′,z)

We can transform a POMDP into a “belief state MDP” (Cassandra et al, 1997). Under
this transformation, the belief state b becomes the (continuous) state of the MDP. The
actions of the belief MDP are the same as in the original POMDP, but the transition and
reward functions are transformed appropriately, yielding the following form of Bellman
optimality equation for computing the optimal value function, V ∗:

V ∗(b) = max
a∈A

∑
z∈Z

P(z|a,b)

[
∑
s∈S

b(s)

(
∑
s′

b′
baz(s

′)R(s,a,s′)

)
+ γV ∗(b′

baz)

]
(3)

where b′
baz is the unique belief state computed based on b, a and z, as in equation (2).

As in MDPs, the optimal policy that the agent is trying to learn is greedy with respect
to this optimal value function. The problem here is that there is an infinite number of
belief states b, so solving this equation exactly is very difficult.

Exact solution methods for POMDPs take advantage of the fact that value functions
for belief MDPs are piecewise-linear and convex, and thus can be represented using
a finite number of hyperplanes in the space of beliefs YSondik1971. Value iteration
updates can be performed directly on these hyperplanes. Unfortunately, exact value
iteration is intractable for most POMDP problems with more than a few states, because
the size of the set of hyperplanes defining the value function can grow exponentially
with each step. For any fixed horizon n, the value function can be represented using a
set of α-vectors. The value function is the upper bound over all the α-vectors: Vn(b) =
maxα ∑s α(s)b(s). Given Vn−1, Vn can be obtained using the following backup operator:

Vn(b) ← max
a∈A

[
∑
z∈Z

P(z|a,b)

(
∑
s∈S

∑
s′∈S

b(s)b′
baz(s

′)R(s,a,s′)+ γmax
αn−1

∑
s′∈S

b′
baz(s

′)αn−1(s′)

)]

where αn−1 are the α-vectors used to represent Vn−1.
Exact value iteration algorithms (e.g. Sondik, 1971; Cassandra et al, 1997; Zhang

& Zhang, 2001) perform this backup by manipulating directly the α-vectors, using set
projection and pruning operations. Although many α-vectors can usually be pruned
without affecting the values, this approach is still prohibitive for large tasks. Approx-
imate methods attempt instead to approximate the value function in some way. These
solution methods usually rely on maintaining hyperplanes only for a subset of the belief
simplex. Different methods use different heuristics in order to define which belief points
are of interest (e.g. Hauskrecht, 2000; Pineau et al, 2003; Smith and Simmons, 2004).
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3 Point Based Value Iteration

The computational inefficiency of exact value updates leads to the exploration of various
approximation methods that can provide good control solutions with less computational
effort. Point-based value iteration (PBVI) is based on the idea of maintaining values,
and α-vectors for a selected set of belief points. This approach is designed based on the
intuition that much of the belief simplex will not be reachable in general.

The algorithm starts with a set of beliefs, and computes α-vectors only for these
beliefs. The belief set B can then be expanded, in order to cover more of the belief
space. New α-vectors can then be computed for the new belief set, and the algorithm
continues.

The update function with a fixed set of belief points B can be expressed as an operator
H on the space of value functions, such that Vi+1 = HVi, where H is defined in (3).
In order to show the convergence of such algorithms, we need to show that H is a
contraction mapping, and that each estimate Vi is an upper bound on the optimal value
function. If both of these conditions hold, the algorithm will converge to a fixed point
solution, V̄ ∗ ≥ V ∗.

4 Belief Point Selection

In the PBVI algorithm, the selection of the belief points that will be used to represent
the value function is done in an anytime fashion, with the goal of covering as densely
as possible the set of reachable beliefs. The belief set B is initialized with just the initial
belief state, b0. Then, the space of reachable beliefs is sampled by a forward simulation,
taking one action and receiving one observation. Different heuristics for sampling points
have been proposed in (Pineau et al, 2003), but the Stochastic Simulation by Explorative
Action heuristic (SSEA) is considered to perform best in general. In this approach, all
possible actions at a given belief state in B are considered. One observation is sampled
for each action and the new belief states are computed using (2). Then, the algorithm
greedily picks the belief state that is farthest away from B, in the sense of the L1 distance
(also called 1-norm). Hence, the number of points in B at most doubles at each iteration,
because at most one extra belief point is added for each existing belief. This heuristic is
motivated by an analytical upper bound on the approximation error, which depends on
the maximum L1 distance from any reachable belief to B:

εB = max
b′∈Δ̄

min
b∈B

||b − b′||1 (4)

where Δ̄ is the set of all reachable beliefs. This heuristic attempts to greedily reduce
εB as quickly as possible. The authors also discuss other approaches for picking belief
states, such as picking beliefs randomly (similarly to grid-based methods), or sampling
reachable beliefs by using either random or greedy actions. In all of these cases (with
the exception of random sampling), the space of reachable beliefs is covered gradu-
ally, as the algorithm progresses. This is due to the fact that at each point, the candidate
beliefs that are considered are reachable in one time step from the current beliefs. More-
over, because PBVI is greedy in picking the next belief state to add, it can potentially
overlook, at least for a few iterations, belief states that are important from the point
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of view of estimating the value function. Spaan and Vlassis (2004) propose a different
way of choosing belief points in the PERSEUS algorithm, which is aimed at addressing
this problem. They sample a large set of reachable beliefs B during a random walk,
but then only update a subset of of B, which is sufficient to improve the value function
estimate overall. The core belief selection heuristic proposed by Izadi et al. (2005) tries
to start a point-based value iteration with a set of beliefs which span the whole simplex
of reachable beliefs. Although this will help the algorithm converge to a good approx-
imation in only a few iterations, finding this set of desired beliefs is computationally
demanding, and the approach is problematic for large problems. Heuristic search value
iteration (HSVI) (Smith & Simmons, 2004) keeps the value function bounded between
an upper bound and a lower bound, an approach aimed at ensuring good performance
for the candidate control policies. The algorithm was improved in (Smith & Simmons,
2005), by designing a tighter bound and much smaller size controllers, which makes
HSVI better in terms of planning time and achieved values. However, the derivation
contained in their paper has some problems, which we correct below.

4.1 Selecting Belief States Based on Reachability

In order to reason about the space of reachable beliefs, one can consider the initial belief
vector, b0, and all possible one-step sequences of actions and observations following it.
Equation (2) then defines the set of all beliefs reachable in one step. By considering all
one-step action-observation sequences that can occur from these beliefs, we can obtain
all beliefs reachable from b0 in two steps, and so on. This will produce a tree rooted
at the initial belief state b0. The space of reachable beliefs consists of all the nodes of
this tree (which is infinite in general, but cut to a finite depth in finite-horizon tasks).
The discounted reachability ρ is a mapping from the space of reachable beliefs Δ to the
real numbers, defined as: ρ(b) = γL where L is the length of the shortest sequence of
transitions from the initial belief state b0 to b. This definition implies that

ρ(b′
baz) ≥ γρ(b) (5)

because either b′
baz is obtained in one step from b (in which case we have equality), or

if not, it may be obtained along a shorter path. Based on the definition of discounted
reachability, Smith and Simmons (2005) define a generalized sample spacing measure
δP (0 ≤ p < 1). Their argument is that they want to give more weight to beliefs that are
reachable in the near future, because their values influence the value function estimates
more. To do this, they divide the L1 norm of the beliefs by (ρ(b))p. However, this
division actually has an opposite effect, emphasizing more beliefs that are in the distant
future. To correct this problem, we redefine the sample spacing measure from (Smith
and Simmons, 2005) as:

δp(b) = max
b∈Δ̄

min
b′∈β

‖b − b′‖1[ρ(b)]p (6)

where p is a parameter in [0,1). Note that if p = 1, we obtain exactly the heuristic de-
scribed in (Pineau et al, 2003), and given here in equation (4). However, the theoretical
development for that case has to be different than the one we will give here. In this case,
an equal weight is given to beliefs that are at equal distance to the current set of belief
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points, regardless how easy or hard they are to reach. We now show that the results in
(Smith & Simmons, 2005) hold with this new definition of δp(b).

First we need to show that the update operator on the selected set of points by the
above metric is a contraction mapping. To do this, consider the following weighted
norm:

‖V − V̄‖ξ = max
b

|V (b)− V̄(b)|ξ(b) (7)

In other words, this is like a max norm but the elements are weighted by weights ξ.

Theorem 1. The exact Bellman update is a contraction mapping under the norm (7)
with contraction factor γ1−p.

Proof. For the proof, it is easier to consider action-value functions. We will use the
same notation as (Smith and simmons, 2005) in order to facilitate the comparison with
their results. Let QV

a (b) be the value of executing action a in belief state b, given that
the value function estimate for states is v:

QV
a (b) = R(b,a)+ γ∑

b′
Pr(b′|b,a)V (b′)

For any action a ∈ A, and for any value function estimators V and V̄ we have:

‖QV
a − QV̄

a ‖ρp = max
b

|QV
a (b)− QV̄

a | × [ρ(b)]p

= max
b

γ∑
b′

Pr(b′|b,a)|V (b′)− V̄(b′)|[ρ(b)]p

= max
b

γ∑
b′

Pr(b′|b,a)|V (b′)− V̄(b′)|
[

γρ(b)
γ

]p

≤ max
b

γ∑
b′

Pr(b′|b,a)|V (b′)− V̄(b′)|
[
γ−1ρ(b′)

]p
(using (5))

≤ max
b

γ1−p ∑
b′

Pr(b′|b,a)max
b′′

|V (b′′)− V̄(b′′)|
[
ρ(b′′)

]p

= γ1−p ∑
b′

Pr(b′|b,a)‖V − V̄‖ρp

= γ1−p‖V − V̄‖ρp

As a side note we need to mention that equation (10) in (Smith & Simmons, 2005) will
be violated by their definition of δp(b) and the contraction factor as stated there is not
correct.

Let HV be a “greedification” operator on the value function, defined as: HV (b) =
maxa QV

a (b),∀b. Then, for any belief state b in the reachable belief space Δ we have:

|HV (b)− HV̄(b)| ≤ max
a

|QV
a (b)− QV̄

a (b)|

Multiplying both sides by [ρ(b)]p we obtain:

|HV (b)− HV̄(b)|[ρ(b)]p ≤ max
a

|QV
a (b)− QV̄

a (b)|[ρ(b)]p
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Maximizing over b, we obtain:

‖HV − HV̄‖ρp ≤ max
a

‖QV
a − QV̄

a ‖ρp ≤ γ1−p‖V − V̄‖ρp

which completes the proof. �.
The next theorem bounds the error of a policy based on an approximate value func-

tion V̂ .

Theorem 2. The expected error introduced by a policy π̂ induced by an approximate
value function V̂ , starting at the initial belief b0 is bounded by:

2γ1−p

1 − γ1−p ‖V ∗ − V̂‖ρp

Proof. Let b ∈ Δ be an arbitrary belief state and π∗ be the optimal policy. Let V π̂ be the
value function of policy π̂. Note that QV π̂

π̂(b)(b) = V π̂(b). Note that by the definition of

the H operator, QV̂
π̂(b)(b) = HV̂ (b). Note also that or the optimal value function, by its

definition, V ∗ = HV ∗. We have:

|V π∗
(b)−V π̂(b)| = |V ∗(b)− QV π̂

π̂(b)(b)|

= |V ∗(b)− QV π̂

π̂(b)(b)+ QV̂
π̂(b)(b)− QV̂

π̂(b)(b)|

≤ |V ∗(b)− HV̂ |+ |QV̂
π̂(b)(b)− QV π̂

π̂(b)(b)| (by grouping terms)

≤ |HV ∗(b)− HV̂(b)|+ γ∑
b′

Pr(b′|b, π̂(b))|V̂ (b′)−V π̂(b′)|

Multiplying both sides by [ρ(b)]p we get:

|V ∗(b)−V π̂(b)|[ρ(b)]p ≤ |HV ∗(b)− HV̂(b)|[ρ(b)]p

+ γ∑
b′

Pr(b′|b, π̂(b))|V̂ (b′)−V π̂(b′)|
[

ρ(b)γ
γ

]p

≤ |HV ∗(b)− HV̂(b)|[ρ(b)]p

+ γ1−p ∑
b′

Pr(b′|b, π̂(b))|V̂ (b′)−V π̂(b′)|[ρ(b′)]p

≤ |HV ∗(b)− HV̂(b)|[ρ(b)]p + γ1−p‖V̂ −V π̂‖ρp

By taking a max wrt b we obtain:

‖V π∗ −V π̂‖ρp ≤ ‖HV ∗ − HV̂‖ρp + γ1−p‖V̂ −V π̂‖ρp

≤ γ1−p
(

‖V ∗ − V̂‖ρp +‖V̂ −V π̂‖ρp

)
≤ γ1−p

(
‖V ∗ − V̂‖ρp +‖V̂ −V ∗‖ρp +‖V ∗ −V π̂‖ρp

)
≤ γ1−p

(
2‖V ∗ − V̂‖ρp +‖V ∗ −V π̂‖ρp

)
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Solving this we obtain:

‖V ∗ −V π̂‖ρp ≤ 2γ1−p

1 − γ1−p ‖V ∗ − V̂‖ρp

Hence, the regret at b0 will be bounded as follows:

V ∗(b0)−V π̂(b0) ≤ 2γ1−p

1 − γ1−p ‖V ∗ − V̂‖ρp �

Theorem 3. Let HB be the update operator applied using only beliefs from set B.
Then the error induced by a single application of HB instead of the true operator H
is bounded in ρp norm as:

‖HV − HBV‖ρp ≤ (Rmax − Rmin)δp(B)
1 − γ1−p

Proof. We follow a similar argument to the one in (Pineau et al, 2003). Let b′ be the
reachable belief that is currently not included in the set B with the worst error in ρp

norm. Let b ∈ B be the belief on the current simples that is closest to b′, in the sense
of the ρp norm. The true optimal α-vector at b′ would be α′, but instead we use the
estimate α that comes from b. Then, we have:

‖HV − HBV‖ρp = (α′b′ − αb′)ρ(b′) = (α′b′ − α′b + α′b − αb′)ρ(b′)
≤
[
α′(b′ − b)+ α(b − b′)

]
[ρ(b)]p (because α is the optimal belief at b)

= (α′ − α)(b′ − b)[ρ(b′)]p

≤ ‖α′ − α‖∞ max
b′

min
b

‖b′ − b‖∞[ρ(b′)]p = ‖α′ − α‖∞δp(B)

≤ Rmax − Rmin

1 − γ1−p δp(B)

where Rmax and Rmin are the maximum and minimum rewards that can be achieved,
and we used the result from Theorem 1 for the contraction factor in the denominator. �

Theorem 4. The error ‖Vt −V B
t ‖ at any update step t is at most:

(Rmax − Rmin)δp(β)
(1 − γ1−p)2

Proof. The proof is identical to the one in (Pineau et al., 2003) but with the results from
Theorem 1 and Theorem 3 plugged in. �
Algorithm 1 presents an approach for expanding the belief set using the reachabil-
ity heuristic. Note that instead of looking at all reachable beliefs, we just sample, for
each belief in the current set, one possible successor. Of course, this algorithm could
be changed to take more samples, or to look farther into the future. However, farther
lookahead is less likely to matter, because of the weighting used in the heuristic. The
drawback of this approach is that after a few cycles the strategy will sample points from
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Algorithm 1. Average-norm Belief Expansion (Initial belief set B)
for all b ∈ B do

for all a ∈ A do
Sample the current state s from b
Sample the next state s′ from T (s,a, ·)
Sample the next observation z from O(a,s′, ·)
Compute the next belief b′

baz reachable from b
end for
b∗ = argmaxb′

baz
δ(b′

baz)
B = B {b∗}

end for
return B

a rather restricted set of points and that could lead to smaller and smaller improve-
ments. It must be noted that for instance for domains with deterministic observations
and transitions this approach gives very similar results to the stochastic simulation with
explorative actions (SSEA) heuristic, because of the narrow distribution of reachable
beliefs. Considering that PBVI converges to a good approximation in just a few expan-
sions, and that the factor γ is usually between 0.75 to 0.99, the effect of δP(B) is not
much different, in Algorithm 1, compared to the effect of ε(B) in SSEA-PBVI.

4.2 Breath First Selection

A more extreme alternative to the reachability heuristics is to include all the beliefs
that are reachable in the near future in the set of belief points. Theoretically, this should
provide the best approximation in terms of the weighted norm that we are considering.
But in many problems this is not feasible, because the size of the fringe of the belief tree
grows exponentially. But, in order to get an estimate of how well we could do in this
case, we consider adding one belief point for every possible action from every belief in
the current set. The observations are still sampled. The main idea is that we typically
expect the number of actions to be small, but the number of possible observations to be
quite large. Obviously, this could be extended to sample k observations for each action.
the algorithm using this idea is presented in Algorithm 2. In this case the size of B for
the next set of point-based backups will be increased at most by a factor of |A|. Because
this approach adds significantly more beliefs at each step, we would expect it to obtain
a good approximation in a smaller number of expansions. But we want to ensure that
the number of beliefs is also small enough to enable efficient value function backups.

4.3 Value-Based Selection

One interesting feature of point-based methods is that they can use the current esti-
mate of the value function itself to decide which belief points to select next. So far,
though, only one point-based algorithm, Stochastic Simulation with Greedy Action,
PBVI-SSGA introduced in (Pineau et al, 2005), exploits this feature. Value-based meth-
ods attempt to include critical points in the set of selected beliefs, based on the current
value approximation. We build upon the fact that the reachable states with highest and
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Algorithm 2. Breadth First Belief Expansion (Initial belief set B)
for all b ∈ B do

for all a ∈ A do
Sample current state s from b
Sample next state s′ from T (s,a, ·)
Sample next observation z from O(a,s′, ·)
Compute the next belief b′

baz reachable from b
if b′

baz

∈ B then B = B {b′

baz}
end for

end for
return B

lowest expected rewards (as predicted by the current value function approximation) are
the more desirable points for improving the precision of the value function. This method
is presented in Algorithm 3. As seen here, the set of beliefs B at most triples in size with
each expansion.

Algorithm 3. Value-based belief expansion (Initial belief space B)
for all b ∈ B do

for all a ∈ A do
Sample s from b
Sample s′ from T (s,a, ·)
Sample z from O(a,s′, ·)
Compute the next belief b′

baz reachable from b
end for
maxb = argmaxb′

baz
b′

bazα and minb = argminb′
baz

b′
bazα where α is the best belief vector at

the respective beliefs
B = B {maxb,minb}

end for
return B

5 Empirical Evaluation

In order to compare the performance of the belief selection methods discussed in the
previous sections, we selected a few standard domains previously used in the literature.
Table 1 lists these problems with information about the problem size.

In each domain, we ran 250 trajectories starting from a fixed given initial belief
following the approximately optimal policy generated by each method. We measure
the the discounted sum of the rewards obtained on these trajectories. Table 2 shows this
measure averaged over 10 independent runs, for the hallway, hallway2 and RockSample
problems, and five runs for the tag domain (due to time restrictions). We present average
performance and standard deviation over these runs. The first column in this table shows
the standard PBVI algorithm in which Stochastic Simulation with Explorative Action
has been used for belief set expansion. For the second algorithm, the parameter p is
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Table 1. Domains used in the experiments

Domain |S | |A| |O| R
hallway 60 5 21 [0,1]
hallway2 90 5 17 [0,1]

tag 870 5 30 [-10,10]
RockSample[4,4] 257 9 2 [-100,10]

Table 2. Comparison of solution quality between different belief point selection strategies

Domain PBVI (1-norm) Average-norm Breadth-First Value-based
hallway 0.51 ± 0.03 0.52 ± 0.03 0.52 ± 0.03 0.51 ± 0.03

hallway2 0.35 ± 0.03 0.37 ± 0.04 0.38 ± 0.03 0.30 ± 0.04
tag -9.12 ± 0.59 -8.16 ± 0.8 -9.27 ± .68 -8.18 ± 1.27

RockSample[4,4] 17.78 ± 1.08 19.36 ± 2.5 15.05 ± 3.13 8.57 ± 0.21

chosen such that the resulting value function fits best the true value function according
to the average-norm heuristic. The second column reports these results with p = 0.99;
however, we experimented with many different settings of p and all results are very
similar. The third and fourth columns contain results for the breadth-first and value-
based heuristics.

We used 5 expansions of the set of beliefs B to reach an optimal solution. for all of
the algorithms except for breadth-first. For the latter, we performed 3 expansions for
the hallways and RockSample problems and 2 expansions for the tag domain. This is
because the set B grows much faster for this algorithm. The complexity of the optimal
value function can be measured by the number of α-vectors used to represent it. PBVI
keeps at most one α-vector for each belief state in the set B. In the domains hallway,
hallway2, and tag, there are 5 choices of actions and a high level of stochasticity. In the
RockSample domain, actions are deterministic, and there is significantly less noise in
the observations.

In the experiments, the set B almost always contains 32 points for the 1-norm and
average-norm heuristics. The average size of B is 66 for the value-based method, but in
the RockSample domain, only 15 belief points are selected on average by this heuristic.
This is mainly due to the fact that the deterministic transitions make it difficult to ex-
plore a large enough part of the belief simplex using this method. The small size of the
belief set results in poor performance on this domain, compared to the other approaches.
We conjecture that a different way of facilitating exploration, perhaps by starting from
different initial beliefs, would help. The breadth-first heuristic is much more aggressive
in expanding the belief set, averaging 150 belief points for the hallway problems and
294 beliefs for the RockSample domain.

Overall, neither the breadth-first nor the value-based heuristic seem to help much.
The average-norm heuristic is preferable to the 1-norm, as it uses roughly the same
number of belief points but provides a better quality solution. In general the effect of
these methods is difficult to narrow down, and further experimentation with different
domains is required. We believe the exploration-exploitation trade-off should also be



394 M.T. Izadi, D. Precup, and D. Azar

considered in future experimentation, since it impacts significantly the quality of the
solutions we obtain.

6 Conclusions and Future Work

The set of points selected for value iteration in point-based methods is very important
for the quality of the computed approximate plan. In this paper, we introduced and eval-
uated several point selection criteria for point-based POMDP approximation methods.
First, we studied the reachability metric as an alternative to 1-norm distance between
belief states. This approach gives a higher priority beliefs in the immediate future. We
also tried considering all beliefs which are only one step away from our current set. The
number of backed up belief points is considerably larger in this case, so in principle
this can allow a better approximation, although in the examples we studied the control
quality does not improve much. We also tested the idea of using the value as a guide to
select points. The empirical results do not show a clear winner among all these meth-
ods; the exploration-exploitation trade-off seems to play an important role, and should
be taken into consideration in future studies.

The methods discussed in this paper focus on belief selection for the expansion phase
of the PBVI. However, different methods can be adopted for choosing only belief points
to perform backups in the value iteration phase of this algorithm as well. We expect such
methods to have a greater influence on the speed of point-based methods in general,
which is also suggested by the results of Spaan and Vlassis. We intend to study this
further in the future.
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Abstract. This paper deals with categorization tasks where categories
are partially ordered to form a hierarchy. First, it introduces the notion of
consistent classification which takes into account the semantics of a class
hierarchy. Then, it presents a novel global hierarchical approach that
produces consistent classification. This algorithm with AdaBoost as the
underlying learning procedure significantly outperforms the correspond-
ing “flat” approach, i.e. the approach that does not take into account
the hierarchical information. In addition, the proposed algorithm sur-
passes the hierarchical local top-down approach on many synthetic and
real tasks. For evaluation purposes, we use a novel hierarchical evalua-
tion measure that has some attractive properties: it is simple, requires
no parameter tuning, gives credit to partially correct classification and
discriminates errors by both distance and depth in a class hierarchy.

1 Introduction

Hierarchical categorization deals with categorization problems where categories
(aka classes) are organized in hierarchies. More formally, categories are partially
ordered, usually from more generic to more specific. The hierarchical way of or-
ganization of entities or notions is very helpful for humans to retain, find and
analyze things. Therefore, it is not surprising that people maintain large collec-
tions of articles, images or emails in hierarchies of topics or systematize a large
body of biological knowledge in hierarchies of concepts (aka ontologies). Such
organization allows to focus on a specific level of details ignoring specialization
of lower levels and generalization of upper levels.

Hierarchical categorization is an automatic approach of placing new items into
a collection with a predefined hierarchical structure. In this work we focus mainly
on one application area, hierarchical text categorization. However, the proposed
techniques can be applied to automatic hierarchical categorization of entities of
any kind. Hierarchical text categorization has many important real-world appli-
cations. In fact, most of the large textual collections are organized hierarchically,
e.g. web repositories, digital libraries, patent libraries, email folders, etc. Dealing
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with hierarchies effectively and efficiently is becoming a necessity in many text
categorization applications.

Theoretically, hierarchical categorization can be easily substituted with “flat”
categorization if we ignore the class structure and replace a hierarchy with a set
of categories. However, by doing this we would disregard relevant information.
For most text categorization tasks the category hierarchies have been carefully
composed by humans and represent our knowledge on the subject matter. This
additional information can boost the performance of a classification system if we
find the way to incorporate it in the learning process.

In this work we explore two main aspects of hierarchical text categorization:
learning algorithms and performance evaluation. First, we introduce the no-
tion of consistent hierarchical classification that makes classification results even
more comprehensible. In consistent classification any category label is assigned
together with all its ancestor labels to any instance. Among the previously intro-
duced hierarchical learning algorithms, only a local top-down approach produces
consistent classification. We propose a new global hierarchical approach that is
aimed to perform consistent classification. This is a general framework of con-
verting a conventional “flat” learning algorithm into a hierarchical one. In our
experiments we used AdaBoost as the underlying learning approach. However,
any conventional method capable of performing multi-label classification can be
used within this framework. Our experiments on real and synthetic data indicate
that the proposed approach significantly outperforms the corresponding “flat”
approach as well as the local top-down method. In addition, we design a new
hierarchical evaluation measure. We argue that conventional “flat” measures as
well as the existing hierarchical measures cannot discriminate between different
types of errors a hierarchical classification system can make. Therefore, we pro-
pose a new hierarchical evaluation measure that is simple and straight-forward
to compute, gives credit to partially correct classification and has much discrim-
inating power.

2 Related Work

Until the mid-1990s machine learning researchers mostly ignored the hierarchical
category structure present in some text categorization applications by turning a
hierarchy into a flat set of categories. In 1997 Koller and Sahami carried out the
first proper study of a hierarchical text categorization problem [1]. They pre-
sented a divide-and-conquer (aka local) principle, the most intuitive for hierar-
chical text categorization. After this work a number of approaches to hierarchical
text categorization have been proposed [2, 3, 4].

Hierarchical categorization methods can be divided in two types [3]: global
(or big-bang) and local (or top-down level-based). In a global approach only one
classifier is built to discriminate all categories in a hierarchy simultaneously.
It is similar to the “flat” approach except it somehow takes into account the
relationships between the categories in a hierarchy. Hierarchical modifications to
association rule learning [5], decision tree learning [6], SVM [7] and probabilistic
learning [8] are considered global approaches.
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A local approach builds separate classifiers for each internal node of a hier-
archy. A local classifier usually proceeds in a top-down fashion first picking the
most relevant categories of the top level and then recursively making the choice
among the low-level categories, children of the relevant top-level categories. The
local approach has been widely used with different learning algorithms: proba-
bilistic learning [1], neural networks [4], and SVM [2].

Unlike previous work, we focus on hierarchical learning methods that build
classifiers consistent with a given class hierarchy. The local approach naturally
produces consistent labeling since we classify an instance into a category only if
we have already classified it into the parent category in the previous classification
step. However, a local classifier works only with limited (local) information at
each classification node. Moreover, it is highly sensitive to the decisions made
at the top of a hierarchy: once an error is committed near the top, it cannot
be recovered regardless of how good the classifiers are at lower levels. A global
approach, on the other hand, uses all available information at the same time and,
therefore, has a better chance for correct classification. Finally, in many real-life
situations, one classifier produced by a global approach is easier to maintain and
to interpret by end users than a bunch of classifiers built by a local method. For
these reasons, we propose a new global approach specifically designed to produce
consistent classification.

3 Hierarchical Categorization Task

In this section we formally define a hierarchical classification task. We start with
a definition for partial ordering, a relation present in a hierarchical structure.

Definition 1 (Poset). A finite partially ordered set (poset) is a structure H =
〈C, ≤〉, where C is a finite set and ≤ ⊆ C × C is a reflexive, anti-symmetric,
transitive binary relation on C.

Given a relation ≤, we define a relation < as q < p if q ≤ p and q 
= p. For
any two categories p, q ∈ C such that q < p and 
∃r ∈ C : q < r < p, we call
p a parent category of q and q a child category of p. For any category p ∈ C,
its ancestor set is Ancestors(p) = {q ∈ C : q ≥ p}, and its offspring set is
Offspring(p) = {q ∈ C : q ≤ p} (note that both sets include category p). We
call categories that have no children leaves and categories that have both parents
and children intermediate (or internal) classes.

Definition 2 (Hierarchical Categorization). Hierarchical categorization
task is the task of assigning a Boolean value to each pair 〈dj , ci〉 ∈ D × C,
where D is a domain of instances and C =

{
c1, . . . , c|C|

}
is a set of predefined

categories with a given poset structure H = 〈C, ≤〉.

In a hierarchical categorization task the category hierarchy H = 〈C, ≤〉 describes
the relations between the categories and comes from the application task at hand.
The hierarchy is assumed to represent the domain knowledge and is not modified
in any way.
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In general, a hierarchical categorization task is multi-label which means that
an instance can be assigned to any number of categories from 0 to |C|.

For any poset H = 〈C, ≤〉 that represents a hierarchy we assume the existence
of the root (or top) class Root(H) that is the ancestor of all other categories in
the hierarchy: {Root(H)} =

⋂
p∈C Ancestors(p). The root class itself has no

parents.
Generally, category hierarchies are of a broader-narrower type where a subcat-

egory represents a subtype or a part of the parent category. Category hierarchies
are usually represented in the form of a directed acyclic graph (DAG). DAGs
are more general than trees in that nodes in a DAG can have multiple parents.

4 Hierarchical Consistency

The notion of hierarchical consistency is intended to make the results of hierar-
chical classification more comprehensible for users. Since hierarchies are mostly
designed in the way that lower level categories are specialization of higher level
categories, which is represented by transitive relations, such as “is-a” and “part-
of”, we can assume that an instance belonging to a category also belongs to all
ancestor nodes of that category. Therefore, we would like a classifier explicitly
assign all the relevant labels, including the ancestor labels, to a given instance.
In this way, the assigned labels would clearly indicate the position of an instance
in a category hierarchy.

Definition 3 (Hierarchical Consistency). A label set Ci ⊆ C assigned to an
instance di ∈ D is called consistent with a given hierarchy if Ci includes complete
ancestor sets for every label ck ∈ Ci, i.e. if ck ∈ Ci and cj ∈ Ancestors(ck), then
cj ∈ Ci.

We assume that every instance belongs to the root of a class hierarchy; therefore,
from now on we will always exclude the root node from any ancestor set since
including it does not provide any additional information on the instance.

Definition 4 (Hierarchical Consistency Requirement). Any label assign-
ments produced by a hierarchical classification system on a given hierarchical
categorization task should be consistent with a corresponding class hierarchy.

5 Hierarchical Global Learning Algorithm

We propose a new hierarchical global approach to learn a classifier that produces
consistent labeling on unseen instances. The method is simple and effective and
can be applied to any categorization task with a class hierarchy represented as a
DAG. The main idea of the algorithm is to transform an initial (possibly single-
label) task into a multi-label task by expanding the label set of each training
example with the corresponding ancestor labels or, in other words, by expand-
ing intermediate classes with examples from their offspring nodes. As a result,
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in the modified dataset each intermediate category would contain training ex-
amples originally assigned to this category and examples originally assigned to
descendant nodes of the category in a hierarchical graph. This data modifica-
tion forces a learning algorithm to focus on high level categories by providing a
large number of training examples for those categories. The correct classification
of unseen instances into high level categories is very important in hierarchical
categorization since high level categories define the most general topics for doc-
uments. For example, if we classify a news article about an art exhibition into
category “sports” (if “arts” and “sports” are among the top level categories), it
would be completely wrong. On the other hand, a mistake made for lower levels,
e.g. classification of a document on minor hockey into category “professional
hockey”, would not be so drastic.

We expect the presented strategy to be successful in the hierarchical settings
because a hierarchical structure is typically designed to reflect the semantic close-
ness of categories. Therefore, we anticipate that related categories share some
attributes. In the text categorization context, that means shared vocabulary. For
example, categories “hockey” and “American football” have their own specific
vocabulary, such as “goalkeeper” or “NHL” for “hockey” and “Super Bowl” or
“touchdown” for “football”. At the same time, these two categories likely share
some common terms, such as “team” or “game”, that also appear in their par-
ent category “sports”. Our method allows a learning algorithm to explore such
common attributes in order to improve classification, especially for high level
categories.

Overall, the algorithm consists of three steps:

1. Transformation of training data making them consistent with a given class
hierarchy;

2. Application of a regular learning algorithm on a multi-label dataset;
3. Re-labeling of inconsistently classified test instances.

On the first step, we replace each example (di, Ci), di ∈ D, Ci ⊆ C, with
(di, Ĉi), where Ĉi = {

⋃
ck∈Ci

Ancestors(ck)}. Then, we apply a regular learning
algorithm, e.g. AdaBoost, on the modified multi-label dataset. Since we train a
classifier on the consistent data, we expect that most test instances would be
classified consistently as well. However, it is not guaranteed. Some of the test
instances can end up with inconsistent labels. This happens if the confidence
score of some class A passes a given threshold while the confidence score of one
of its ancestor classes does not. For such instances we need to do the third post-
processing step. At this step we re-label the instances in a consistent manner
by considering the confidence in the predictions for class A and all its ancestor
classes. One possible procedure here is to calculate the average of these confi-
dences. If the average is greater than a threshold, we label the instance with
class A and all its ancestor classes; if the average is lower than the threshold, we
do not assign class A to the instance. This procedure acts as a kind of weighted
voting. Each ancestor class votes with its own confidence score. Large positive
scores would indicate some certainty in the assigning the class, while negative
values would vote against this class assignment.
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5.1 Hierarchical AdaBoost

In this work we use the new hierarchical global approach with a state-of-the-art
learning algorithm AdaBoost.MH [9],1 a boosting method designed for multi-
class multi-label problems.

AdaBoost.MH works iteratively at each iteration t learning a new “weak”
hypothesis ht on a current distribution Pt over the training examples. After
each step, the distribution Pt is modified to increase the weight of the incorrectly
classified training examples and decrease the weight of the correctly classified
examples. As a result, on the next round t + 1 a “weak” learner ht+1 is forced
to focus on examples that are hardest to classify. After a specified number of
iterations T , the learning process is stopped, and a weighted voting of the “weak”
predictions is used as a final hypothesis: H(d, �) =

∑T
t=1 αtht(d, �), d ∈ D, � ∈ C,

where D is a domain of documents and C is a set of categories. In other words,
for each test instance and each class the final hypothesis outputs a real value,
called a confidence score. For single-label classification, the classification decision
is simply the top-ranked class, the class with the highest confidence score. In a
multi-label case, however, we have to select a threshold to cut off class labels
for a given instance. One such possible threshold is zero: any positive confidence
score indicates that the class should be assigned to an instance, any negative
score indicates that the class should not be assigned to an instance. However, we
can optimize this threshold value with a simple procedure defined as follows. We
train AdaBoost.MH on an available training set S, get the confidence predictions
on the same set S, and sort the confidence scores in the decreasing order (t1,
t2, . . ., tn). Then, we try the confidence scores one by one as possible thresholds
and find tk that results in the best F-measure on the training set S. The final
threshold to use on test data is calculated as tk+tk+1

2 . This threshold smoothing
helps us avoid overfitting when the boosting progresses and gains high confidence
in prediction.

6 Hierarchical Evaluation Measure

Most researchers evaluate hierarchical classification systems based on standard
“flat” measures: accuracy/error and precision/recall. However, these measures
are not suitable for hierarchical categorization since they do not differentiate
among different kinds of misclassification errors. Intuitively, misclassification to
a sibling or a parent node of the correct category is much better than misclassifi-
cation to a distant node. To overcome this problem, a hierarchical measure based
on the notion of distance has been proposed. The distance between a correct and
assigned category, distance(x, y), is the length of the (unique) undirected path
from node x to node y in a hierarchical tree. This distance measure gives different

1 In our experiments we used software BoosTexter (http://www.cs.princeton.edu/
∼schapire/BoosTexter/), an implementation of AdaBoost.MH specifically designed
for text categorization. BoosTexter uses decision stumps (one-level decision trees) as
its “weak” learners.
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Fig. 1. A sample DAG class hierarchy. The solid ellipse G represents the real category
of an instance.

penalties to misclassification into a neighboring or a distant category. However,
it has some drawbacks. First, it is not easily extendable to DAG hierarchies
(where multiple paths between two categories can exist) and multi-label tasks.
Second, it does not change with depth. Misclassification into a sibling category
of a top level node and misclassification into a sibling of a node 10-level deep
are considered the same type of error (distance of 2). However, an error at the
10th level seems a lot less harmful than an error at the top level.

To express the desired properties of a hierarchical evaluation measure, we
formulate the following requirements:

1. The measure gives credit to partially correct classification, e.g. misclassifi-
cation into node I when the correct category is G (Figure 1) should be penalized
less than misclassification into node D since I is in the same subgraph as G and
D is not.

2. The measure punishes distant errors more heavily:
a) the measure gives higher evaluation for correctly classifying one level down

comparing to staying at the parent node, e.g. classification into node E is better
than classification into its parent C since E is closer to the correct category G;

b) the measure gives lower evaluation for incorrectly classifying one level
down comparing to staying at the parent node, e.g. classification into node F is
worse than classification into its parent C since F is farther away from G.

3. The measure punishes errors at higher levels of a hierarchy more heavily,
e.g. misclassification into node I when the correct category is its sibling G is
less severe than misclassification into node C when the correct category is its
sibling A.

Formally, if we denote HM(c1|c2) the hierarchical evaluation of classifying an
instance d ∈ D into class c1 ∈ C when the correct class is c2 ∈ C in a given tree
hierarchy H = 〈C, ≤〉, then

1. for any instance (d, c0) ∈ D ×C, if Ancestors(c1)∩Ancestors(c0) 
= 2 and
Ancestors(c2) ∩ Ancestors(c0) = 2, then HM(c1|c0) > HM(c2|c0);

2. a) for any instance (d, c0) ∈ D × C, if c1 = Parent(c2) and
distance(c1, c0) > distance(c2, c0), then HM(c1|c0) < HM(c2|c0);

b) for any instance (d, c0) ∈ D × C, if c1 = Parent(c2) and
distance(c1, c0) < distance(c2, c0), then HM(c1|c0) > HM(c2|c0);

3. for any instances (d1, c1) ∈ D×C and (d2, c2) ∈ D×C, if distance(c1, c
′
1) =

distance(c2, c
′
2), level(c1) = level(c2) + Δ, level(c′1) = level(c′2) + Δ, Δ > 0,
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c1 
= c′1, c2 
= c′2, and level(x) is the length of the unique path from the root to
node x, then HM(c′1|c1) > HM(c′2|c2).

Clearly, conventional “flat” measures do not satisfy any of the three require-
ments. Distance-based hierarchical measures satisfy the second principle, but
not always the first and not the third. Thus, we propose a new hierarchical eval-
uation measure that satisfies all three principles. The new measure is the pair
precision and recall with the following addition: each example belongs not only
to its class, but also to all ancestors of the class in a hierarchical graph, except
the root (we exclude the root of a class hierarchy, since all examples belong to
the root by default). We call the new measures hP (hierarchical precision) and
hR (hierarchical recall).

Formally, in the multi-label settings, for any instance (di, Ci), d ∈ D, Ci ⊆ C
classified into subset C′

i ⊆ C we extend sets Ci and C′
i with the corresponding

ancestor labels: Ĉi = {
⋃

ck∈Ci
Ancestors(ck)}, Ĉ′

i = {
⋃

cl∈C′
i
Ancestors(cl)}.

Then, we calculate (micro-averaged) hP and hR as follows:

hP = i |Ĉi∩Ĉ′
i|

i |Ĉ′
i|

hR = i |Ĉi∩Ĉ′
i|

i |Ĉi|

For example, suppose an instance is classified into class F while it really
belongs to class G (Figure 1). To calculate our hierarchical measure, we extend
the set of real classes Ci = {G} with all ancestors of class G: Ĉi = {B, C, E, G}.
We also extend the set of predicted classes C′

i = {F} with all ancestors of class F :
Ĉ′

i = {C, F}. So, class C is the only correctly assigned label from the extended
set: |Ĉi ∩ Ĉ′

i| = 1. There are |Ĉ′
i| = 2 assigned labels and |Ĉi| = 4 real classes.

Therefore, we get hP = |Ĉi∩Ĉ′
i|

|Ĉ′
i|

= 1
2 and hR = |Ĉi∩Ĉ′

i|
|Ĉi| = 1

4 .

Following the common practice in conventional text categorization, we can
combine the two values hP and hR into one hF-measure:

hFβ =
(β2 + 1) · hP · hR

(β2 · hP + hR)
, β ∈ [0, +∞)

In our experiments we used β = 1, giving precision and recall equal weights.

Theorem 1. The new hierarchical measure hF satisfies all three requirements
for hierarchical evaluation measures listed above2.

The new measure is easy to compute: it is based solely on a given hierarchy, so
no parameter tuning is required. It is formulated for a general case of multi-label
classification with a DAG class hierarchy. Furthermore, we have experimentally
proved (results not shown here) that the new measure is superior to standard
“flat” measures in terms of statistical consistency and discriminancy - the two
criteria Huang and Ling propose to compare classification performance measures
[10]. The consistency property means that if we have two classifiers A and B

2 The proof of the theorem is straight-forward and is available at http://www.
site.uottawa.ca/∼svkir/papers/thesis.zip.
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and A is more accurate in terms of non-hierarchical measures, it is most likely
that our hierarchical measure agrees, and A is better than B in terms of hF
as well. The discriminancy property implies that if non-hierarchical measures
cannot tell apart the performances of classifiers A and B, our measure is more
discriminating and prefers one over the other in most situations.

7 Experiments

We report the results of the experiments on real and synthetic data to com-
pare the proposed hierarchical global approach with “flat” and hierarchical local
methods.

7.1 Datasets

Synthetic. We make use of synthetic data to be able to control the size of a
class hierarchy and the presence or absence of attribute inheritance between an
ancestor class and its descendant classes. The data are designed as follows. For a
specified number of levels and for a specified out-degree, i.e. the number of chil-
dren classes for each intermediate category, we build a balanced tree hierarchy.
For each class, including the internal ones, we allocate 3 binary attributes and
generate 10 training and 5 test instances per class. Each instance is assigned to
exactly one class. The instances are generated randomly according to the fol-
lowing distribution: attributes associated with the class of an instance are set to
1 with 70% probability, all other attributes are set to 1 with 20% probability.
We test synthetic data for two extreme situations. The first one is when each
class inherits the distribution of attributes from its parent class on top of its
own distribution. In other words, the attributes for a class and all its ancestor
classes have the high probability (70%) of 1; all other attributes have the small
probability (20%). The second situation is when there is no inheritance of at-
tribute distribution: only the attributes associated with the class of an instance
have 70% probability of 1, all others have 20% probability. We ran experiments
for hierarchies with the number of levels and out-degree each ranging from 2 to
5. Experiments are repeated 100 times for every configuration.

20 newsgroups. This is a widely used dataset of Usenet postings. Following
[8], we use a two-level tree hierarchy grouping 15 categories in 5 parent nodes.

RCV1 V2. This is a cleaned version of a new benchmark collection of Reuters
news articles. The dataset consists of over 800,000 documents labeled with 103
topics comprising a 4-level hierarchy. Due to the large size of the corpus, we are
able to split the data in training and testing subsets in a time-sensitive manner.
Articles from 10 full months (September, 1996 - June, 1997) form 10 splits: the
first half of a month is used for training, while the second half is used for testing.

Medline. We have also composed 3 large-scale biological datasets for a task of
predicting gene functions from biomedical literature. We chose Gene Ontology
(GO) to be our category hierarchy. GO provides a hierarchically organized set
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of all possible functions that a gene can have in a living organism. It consists
of 3 parts: biological process (P), molecular function (F), and cellular compo-
nent (C). Each part can be seen as an independent DAG hierarchy. We use the
Saccharomyces Genome Database (SGD) to obtain manually assigned pairs of a
biomedical article describing a yeast gene and the gene’s function in GO terms.
Overall, we collect 3 datasets, one for each GO hierarchy.

For real datasets, the conventional “bag-of-words” representation is used. All
documents are pre-processed: stop words are removed, remaining words are
stemmed and converted into binary attributes (a stem is present or not). A
simple feature selection technique based on document frequencies is applied. Ex-
periments are run on 10 random training/test splits (in proportion 2:1) for each
dataset, except for RCV1 V2 where splits are time-sensitive.

7.2 Comparison with “Flat” AdaBoost

The first set of experiments compares the performance of hierarchical global
AdaBoost with the corresponding “flat” approach, i.e. standard AdaBoost that
does not take into account any hierarchical information. Both algorithms are run
for equal numbers of iterations. The results are presented in Table 1 (columns 5,
7). Evidently, hierarchical AdaBoost significantly outperforms its “flat” version.
The differences are more pronounced for larger hierarchies with attribute distri-
bution inheritance as expected. The main difference between the two algorithms
is the initial re-labeling that makes training data consistent with a class hierar-
chy. In really hard tasks, e.g. on the biological data, where the number of classes
is very large and the number of training instances per class is very small, the
“flat” algorithm suffers a lot producing very poor results. At the same time, this
additional step allows the hierarchical method to assemble more training data
and learn more accurate classifiers for high level categories, which are favored
by the hierarchical evaluation measure.

7.3 Comparison with Hierarchical Local Approach

In the second set of experiments we compare the performances of the hierarchi-
cal global and hierarchical local approaches using AdaBoost as the underlying
learning algorithm. In the hierarchical local approach we run AdaBoost at each
internal node of a hierarchy for the same number of iterations as the global hier-
archical AdaBoost. Table 1 (columns 6, 7) shows the results. For most synthetic
and real tasks the global approach outperforms the local method. Both algo-
rithms take advantage of extended training data. However, the global approach
explores all the categories simultaneously (in a global fashion) assigning only
labels with high confidence scores. The local method, on the other hand, uses
only local information and, therefore, is forced to make classification decisions at
each internal node of a hierarchy, in general, pushing most instances deep down.
As a result, the global algorithm is always superior to the local one in terms of
precision while slightly yielding in recall. This reflects the conservative nature
of the global approach comparing to the local one. Therefore, it should be the
method of choice for tasks where precision is the key measure of success. We
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Table 1. Comparison of “flat”, hierarchical local, and hierarchical global AdaBoost.
Numbers in bold are significantly better with 99% confidence.

dataset # of depth out- boost. hF1 measure
categories degree iter. “flat” local global

newsgroups 20 2 3 500 75.51 80.01 79.26
RCV1 V2 103 4 4.68 500 73.10 74.03 75.86
medline P 1025 12 5.41 500 15.32 59.27 59.25
medline F 1078 10 10.29 500 8.78 43.36 38.17
medline C 331 8 6.45 500 42.81 72.07 73.35

synthetic 6 2 2 200 68.30 73.42 76.22
(with attr. 14 3 2 500 58.35 69.40 74.21
inheritance) 30 4 2 1000 44.90 68.18 73.22

62 5 2 2000 20.88 68.44 72.70
12 2 3 400 53.47 61.99 63.45
39 3 3 1000 29.51 58.81 60.69
120 4 3 3500 2.67 57.40 58.22
20 2 4 600 41.35 54.26 55.25
84 3 4 2500 6.98 50.66 50.70
30 2 5 900 29.99 47.26 47.87

synthetic 6 2 2 200 61.69 59.83 65.95
(no attr. 14 3 2 500 42.47 44.00 51.53
inheritance) 30 4 2 1000 24.49 33.44 40.18

62 5 2 2000 8.45 26.03 32.61
12 2 3 400 41.53 43.87 48.02
39 3 3 1000 14.50 26.33 29.97
120 4 3 3500 0.79 17.97 21.91
20 2 4 600 26.72 32.51 35.01
84 3 4 2500 2.46 17.96 19.70
30 2 5 900 17.14 26.04 27.12

can also notice that an increase in out-degree (k) adds a significant number of
categories (∼kdepth−1) to the global method while only slightly (linearly) com-
plicating the task for the local method. This results in the smaller advantage of
global AdaBoost on synthetic hierarchies with large out-degrees and its loss on
the highly “bushy” “medline F” data.

8 Conclusion

In this paper we study a hierarchical categorization problem. We show that hier-
archical classification should be consistent with a class hierarchy to fully repro-
duce the semantics of hierarchical relations. We discuss performance measures
for hierarchical classification and introduce natural, desired properties that these
measures ought to satisfy. We define a novel hierarchical evaluation measure and
show that, unlike the conventional “flat” as well as the existing hierarchical mea-
sures, the new measure satisfies the desired properties. It is also simple, requires
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no parameter tuning, and has much discriminating power. We present a novel
hierarchical global algorithm that produces consistent classification. This algo-
rithm with AdaBoost as the underlying learning procedure significantly outper-
forms the corresponding “flat” approach, i.e. the approach that does not take into
account the hierarchical information. The proposed algorithm also outperforms
the hierarchical local top-down approach on many synthetic and real tasks.

In future work, we plan to perform similar experiments with other
multi-label classification algorithms as underlying learning components. Un-
like AdaBoost.MH, some algorithms may be found behaving consistently in the
hierarchical framework even without the post-processing step.
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Abstract. This paper proposes an adaptive clustering approach. We
focus on re-clustering an object set, previously clustered, when the fea-
ture set characterizing the objects increases. We have developed adaptive
extensions for two traditional clustering algorithms (k-means and Hi-
erarchical Agglomerative Clustering). These extensions can be used for
adjusting a clustering, that was established by applying the correspond-
ing non-adaptive clustering algorithm before the feature set changed.
We aim to reach the result more efficiently than applying the corre-
sponding non-adaptive algorithm starting from the current clustering
or from scratch. Experiments testing the method’s efficiency are also
reported.

1 Introduction

A large collection of clustering algorithms is available in the literature. The pa-
pers [9], [10] and [11] contain comprehensive overviews of the existing clustering
techniques. Generally, these methods apply on a set of objects measured against
a known set of features (attributes). But there are applications where the at-
tribute set characterizing the objects evolves. For obtaining in these conditions
a partition of the object set, the clustering algorithm can be, obviously, applied
over and over again, beginning from scratch or from the current partition, each
time when the attribute set changes. But this can be inefficient. We agree to call
a clustering method adaptive, if it produces a clustering by adjusting an existing
partition to attribute set extension.

We propose two adaptive clustering algorithms, named Core Based Adaptive
k-means (CBAk) and Hierarchical Core Based Adaptive Clustering (HCBAC).
They follow a common approach, based on detecting stable structures (cores)
inside the existing clusters and resuming the clustering process from these struc-
tures, when the attribute set increases. We aim to reach the result more effi-
ciently than applying the corresponding non-adaptive algorithm starting from
the current partition or from scratch.

L. Lamontagne and M. Marchand (Eds.): Canadian AI 2006, LNAI 4013, pp. 407–418, 2006.
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2 Adaptive Core Based Clustering

2.1 Related Work

There are few approaches reported in the literature that refer to the problem of
adapting the result of a clustering when the object feature set is extended. Early
works treat the sequential use of features in the clustering process, one by one. An
example of such a monothetic approach is mentioned in [11]. A more recent paper
[16] analyzes the problem of adapting a clustering produced by the DBSCAN
algorithm, using some additional structures and distance approximations in an
Euclidian space. However, adapting a clustering resulted from a partitioning
by relocation algorithm, or from a hierarchical agglomerative one has not been
reported, to our knowledge.

2.2 Theoretical Model

Let X = {O1, O2, . . . , On} be the set of objects to be clustered. Each object is
measured with respect to a set of m initial attributes and is therefore described by
an m-dimensional vector Oi = (Oi1, . . . , Oim), Oik ∈ �+, 1 ≤ i ≤ n, 1 ≤ k ≤ m.
Usually, the attributes associated to objects are standardized, in order to ensure
an equal weight to all of them [9].

In the following, we agree to denote by A one of the two non-adaptive tradi-
tional clustering algorithms, whom adaptive extensions we are studying in this
paper: k-means and Hierarchical Agglomerative Clustering Algorithm (HACA).

Let K= {K1, K2, . . . , Kp} be the set of clusters discovered in data by applying
A. We mention that, in the case of HACA, the clustering process stops when p
clusters are reached, and K represents the last attained partition. Each cluster
is a set of objects, Kj = {Oj

1, O
j
2, . . . , O

j
nj

}, 1 ≤ j ≤ p. The centroid (cluster

mean) of the cluster Kj is denoted by fj, where fj =

⎛
⎝

nj

k=1
Oj

k1

nj
, . . . ,

nj

k=1
Oj

km

nj

⎞
⎠.

Even if it is not a typical concept of hierarchical clustering, we will make use in
our approach of the centroid notion for HACA, also.

The measure used for discriminating objects can be any metric or semi-metric
function d. We used the Euclidian distance:

d(Oi, Oj) = dE(Oi, Oj) =

√
m∑

l=1
(Oil − Ojl)2.

The measured set of attributes is afterwards extended with s (s ≥ 1) new
attributes, numbered as (m + 1), (m + 2), . . . , (m + s). After the extension, the
objects’ vectors become O′

i = (Oi1, . . . , Oim, Oi,m+1, . . . , Oi,m+s), 1 ≤ i ≤ n.
We want to analyze the problem of recalculating the objects’ grouping into

clusters, after the attribute set extension. The new clusters can be, obviously,
obtained by applying A on the set of extended objects starting:

- from scratch if A is HACA;
- from scratch or from the current partition K if A is k-means.
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We try to avoid this process by replacing it with one less expensive but not
less accurate. Therefore, we will try to efficiently adapt the current partition
(K), produced by A.

We denote by K ′
j , 1 ≤ j ≤ p, the set containing the same objects as Kj ,

after the extension. By f ′
j , 1 ≤ j ≤ p, we denote the mean (center) of the

set of K ′
j . These sets K ′

j, 1 ≤ j ≤ p, will not necessarily represent clusters
after the attribute set extension. The newly arrived attributes can change the
objects arrangement into clusters. But there is a chance, when adding one or
few attributes to objects, that the old arrangement in clusters to be close to the
actual one. With these being said, we agree, however, to continue to refer the
sets K ′

j as clusters.
We take as starting point the previous partition into clusters and study in

which conditions an extended object Oj′
i is still “correctly” placed into its cluster

K ′
j. We intuitively started from the fact that, at the end of the initial k-means

clustering process, all objects are closer to the centroid of their cluster than to
any other centroid. So, for any cluster j and any object Oj

i ∈ Kj , inequality (1)
below holds.

dE(Oj
i , fj) ≤ dE(Oj

i , fr), ∀j, r, 1 ≤ j, r ≤ p, r 
= j. (1)

This inequality will not hold for every object in respect to the clusters pro-
duced by HACA. But as we used as linkage-metric in HACA average-link, it
is likely, that a lot of objects will satisfy inequality (1) for this algorithm as
well.

When attribute set extension happens, we will detect in each cluster a subset
of objects (core) that could reach together in a cluster, if we would cluster the
extended object set. We will use inequality (1), of objects closeness to the centers,
as the stability condition for delimiting cores inside clusters. So, a core of cluster
Kj will consist of those objects in Kj that have a considerable chance to remain
stable in a cluster, and not to divide between more clusters as a result of the
attribute set extension.

Definition 1.

a) We denote by StrongCorej = {Oj′
i |Oj′

i ∈ K ′
j, Oj

i satisfies inequality (1)
before and after attribute set extension} i.e. the set of all objects in K ′

j

closer, before and after extension, to the center of their cluster than to
the center of any other cluster.

b) Let sat(Oj′
i ) be the set of all clusters K ′

r, ∀r, 1 ≤ r ≤ p, r 
= j not containing
Oj′

i and for which object Oj′
i satisfies inequality (1) after attribute set ex-

tension. We denote by WeakCorej = {Oj′
i |Oj′

i ∈ K ′
j, O

j
i satisfies inequality

(1) before extension and |sat(Oj′
i )| ≥

nj

k=1
|sat(Oj′

k )|
nj

}
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c) Corej =StrongCorej iif StrongCorej 
=∅; otherwise, Corej = WeakCorej.
OCorej =K ′

j \ Corej is the set of out-of-core objects in cluster K ′
j.

d) We denote by CORE the set {Corej , 1 ≤ j ≤ p} of all cluster cores and by
OCORE the set {OCorej , 1 ≤ j ≤ p}.

As we have already mentioned, for a partition produced by k-means, the in-
equality (1) holds, before the attribute set extension, for every object and its
cluster.

We have chosen the above cluster cores definition because of the following
reason. In our algorithms, Corej will be the seed for cluster j in the adaptive
process. But it is possible, especially in the case of HACA, that the StrongCore
of clusters to be empty. For managing this situation, when the StrongCore
of a cluster is detected to be empty, we weaken the core forming conditions.
Correspondingly, we defined the WeakCore of a cluster, which consists of the
most stable objects in K ′

j.
The cluster cores, chosen as we described, will serve as seed in the adaptive

clustering process. All objects in Corej will surely remain together in the same
group if clusters do not change. This will not be the case for all core objects,
but for most of them, as we will see in the results section.

3 The Core Based Adaptive k-Means Algorithm

We give next the Core Based Adaptive k-means algorithm. The algorithm starts
by calculating the old clusters cores. The cores will be the new initial clusters from
which the iterative processing begins. Next, the algorithm proceeds in the same
manner as the classical k-means method does. We mention that the algorithm
stops when the clusters from two consecutive iterations remain unchanged or the
number of steps performed exceeds the maximum allowed number of iterations.

Algorithm Core Based Adaptive k-means is
Input: - the set X = {O1, . . . , On} of m-dimensional previously clustered

objects,
- the set X ′ = {O′

1, . . . , O
′
n} of (m+s)-dimensional extended objects

to be clustered; O′
i has the same first m components as Oi,

- the metric dE between objects in a multi-dimensional space,
- p, the number of desired clusters,
- K = {K1, . . . , Kp} the previous partition of objects in X,
- noMaxIter the maximum number of iterations allowed.

Output: - the new partition K′ = {K′
1, . . . , K

′
p} for the objects in X ′.

Begin
For all clusters Kj ∈ K

Calculate Corej = (StrongCorej �= ∅)?StrongCorej : W eakCorej

K′
j = Corej

Calculate f ′
j as the mean of objects in K′

j

EndFor
While (K′ changes between two consecutive steps) and

(there were not performed noMaxIter iterations) do
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For all clusters K′
j do

K′
j = {O′

i | dE(O′
i, f

′
j) ≤ dE(O′

i, f
′
r), ∀r , 1 ≤ r ≤ p, 1 ≤ i ≤ n}

EndFor

For all clusters K′
j do

f ′
j = the mean of objects in K′

j

EndFor

EndWhile

End.

4 The Hierarchical Core Based Adaptive Algorithm

We give next the Hierarchical Core Based Adaptive algorithm. The algorithm
starts by calculating the old clusters cores. For each cluster j, the objects in
OCorej will be extracted and distributed each one in its singleton. This is a
divisive step. Clearly, from this cluster adjustment process will result a number p′

of clusters, p ≤ p′ ≤ n. In order to reach again the targeted number p of clusters,
we proceed next to merge clusters in the same manner as the classical HACA
does. But, as we do not generally start again from singletons, the number of
steps will be significantly reduced. Also, as we will demonstrate by experiments,
we do not significantly lose quality of clusters obtained by HCBAC compared to
the quality of clusters provided by HACA. We mention that the algorithm stops
when p clusters are obtained.

Algorithm Hierarchical Core Based Incremental Clustering is
Input: - the set X = {O1, . . . , On} of m-dimensional previously clustered

objects,
- the set X ′ = {O′

1, . . . , O
′
n} of (m+s)-dimensional extended objects

to be clustered, O′
i has the same first m components as Oi,

- the metric dE between objects in a multi-dimensional space,
- p, the number of desired clusters,
- K = {K1, . . . , Kp} the previous partition of objects in X.

Output: - the re-partition K′ = {K′
1, . . . , K

′
p} for the objects in X ′.

Begin
For all clusters Kj ∈ K do

Calculate Corej = (StrongCorej �= ∅)?
StrongCorej : W eakCorej

Calculate OCorej = Kj \ Corej

EndFor
C = ∅ // the current cluster set
For i = 1 to p do

If Corei �= ∅
C = C ∪ {Corei}

EndIf
For all O ∈ OCorei do

C = C ∪ {O} //add a singleton to C
EndFor

EndFor
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While | C |> p do

(Cu∗ , Cv∗) := argmin(Cu,Cv)dE(Cu, Cv)
Cnew = Cu∗ ∪ Cv∗

C = C \ {Cu∗ , Cv∗) ∪ {Cnew}
EndWhile

K′ = C

End.

As distance between two clusters dE(Cu, Cv) we considered the average-link
metric:

dE(Cu, Cv) =

∑
ai∈Cu

∑
bj∈Cv

dE(ai, bj)

| Cu | × | Cv | .

This linkage metric leads to higher probability of well formed and stable cores
than would lead the single-link metric, for example.

5 Experimental Evaluation

In this section we present some experimental results obtained by applying the
CBAk and HCBAC algorithms described in section 3 and 4. We will compare
each of two algorithms with its corresponding non-adaptive version (CBAk vs
k-means, HCBAC vs HACA).

5.1 Quality Measures

Number of iterations. It determines the global calculus complexity and it is
used for evaluating the performances of both CBAk and HCBAC.

The movement degree of the core objects and of the extra-core ob-
jects. quantifies how the objects in either Corej ∈ CORE, or OCorej ∈
OCORE, remain together in clusters after the algorithm ends. It is measured
for CBAk. It is not used for evaluating HCBAC because, once placed into a
cluster, any set of objects will not be splitted anymore between clusters, in the
agglomerative process.

As expected, more stable the core objects are and more they remain together
in respect to the initial sets Corej , better was the decision to choose them as
seed for the adaptive clustering process.

We denote by S = {S1, S2, . . . , Sp}, Si ⊆ Ki, a set of clusters’ subsets (as
CORE and OCORE are). We express the stability factor of S as:

SF (S) =

p∑
j=1

|Sj |
no of clusters where the objects in Sj ended

p∑
j=1

|Sj |
(2)
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The worst case is when each object in Sj ends in a different final cluster, and
this happens for every set in S. The best case is when every Sj remains compact
and it is found in a single final cluster. So, the limits between which SF (CORE)
varies are given below, where the higher the value of SF (CORE) is, the better
was the cores choice:

p
p∑

j=1
|Corej |

≤ SF (CORE) ≤ 1 (3)

Squared sum error (SSE) is used for comparing the quality of the partitions
produced by CBAk and by k-means. SSE of a partition K is defined as:

SSE(K) =
∑

Kj∈K

∑
Oi∈Kj

(d(Oi, fj))2 (4)

When comparing two partitions K1 and K2 for the same data set, we will say
that K1 is better than K2 iff SSE(K1) < SSE(K2).

The degree of compactness of a partition is the measure equivalent to SSE
for HCBAC. The degree of compactness, or the dispersion (DISP) of a partition
K is defined as follows:

DISP (K) =

p∑
k=1

Oi,Oj∈Kk,i>j

d(Oi,Oj)

C2
|Kk|

p
(5)

where K = {K1, . . . , Kp} is the cluster set obtained after applying a clustering
algorithm. DISP expresses the average distance between objects in a cluster, for
all clusters and C2

|Kk| represents the number of combinations of 2 elements from
the set Kk.

As expected, the smaller the dispersion is, more compact clusters we have ob-
tained and better was the cores choice at the beginning of the adaptive clustering
process.

Clustering tendency. For measuring the clustering tendency of a data set,
we use the Hopkins statistics, H [14], an approach that uses statistical tests for
spatial randomness. H takes values between 0 and 1, and a value near 1 indicates
that the data is highly clustered. Usually, for a data set with clustering tendency,
we expect for H values greater than 0.5.

Information gain. For comparing the informational relevance of the attributes
we used the information gain (IG) measure ([12]).

As case studies, for experimenting our theoretical results and for evaluating
the performance of the algorithms, we consider some experiments that are briefly
described in the following subsections.
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We have to mention that the data were taken from the website “http://www.
cormactech.com/neunet”.

5.2 Experiment 1. Cancer

The breast cancer database was obtained from the University of Wisconsin Hos-
pitals, Madison, Dr. William H. Wolberg.

The objects to be clusterized in this experiment are patients: each patient
is identified by 9 attributes ([15]). The attributes have been used to represent
instances and each one takes integer values between 1 and 10. Each instance has
one of 2 possible classes: benign or malignant. In this experiment there are 457
patients (objects).

5.3 Experiment 2. Dermatology

The objects to be clusterized in this experiment are also patients: each patient
is identified by 34 attributes, 33 of which are linear valued and one of them is
nominal. There are 1617 objects (patients).

The aim of the clustering process is to determine the type of Eryhemato-
Squamous Disease ([8]).

In the dataset constructed for this domain, the family history feature has the
value 1 if any of these diseases has been observed in the family, and 0 otherwise.
The age feature simply represents the age of the patient. Every other feature
(clinical and histopathological) was given a degree in the range of 0 to 3. Here,
0 indicates that the feature was not present, 3 indicates the largest amount
possible, and 1, 2 indicate the relative intermediate values.

5.4 Experiment 3. Wine

These data are the results of a chemical analysis of wines grown in the same
region in Italy but derived from three different cultivars. The analysis determined
the quantities of 13 constituents found in each of the three types of wines ([1]).

The objects to be clusterized in this experiment are wine instances: each is
identified by 13 attributes. There are 178 objects (wine instances).

We have to mention that all attributes in this experiment are continuous.

5.5 CBAk Results

In this section we comparatively present the results obtained by applying the
CBAk algorithm and k-means, for the experimental data. We mention that the
results are calculated in average, for several executions. We considered two vari-
ants for k-means : resuming from the current partition (denoted by v1) and start-
ing from scratch (denoted by v2).

From Table 1 we observe that using the CBAk algorithm the number of it-
erations for finding the solution is less than or at most equal to the number of
k-means iterations, for both variants (v1 and v2). The cores’ stability factor,
SF (CORE), is high, taking into account that most of the objects are contained
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Table 1. The comparative results for k-means and CBAk

Experiment Cancer Dermatology Wine
No of objects 457 366 178
No of attributes (m+s) 9 34 13
No of new attributes (s) 4 3 4
No of clusters 2 6 3
No of k-means iterations for m attributes 5.66 10.43 9.26
No of k-means (v1) iterations for (m+s) 4 1 4.94
attributes
No of k-means (v2) iterations for (m+s) 7 10.33 6.85
attributes
No of CBAk iterations for (m+s) attributes 4 1 4.66
No of objects StrongCore/WeakCore 96.4/0 100/0 91.66/0
(% from no of objects) - CBAk
No of objects Core/OutOfCore 96.4/3.6 100/0 91.66/8.34
(% from no of objects) - CBAk
SF(CORE) - CBAk 0.67 1 0.587
SF(OCORE) - CBAk 0.84 - 0.77
k-means (v1) SSE for (m+s) attributes 13808.78 12740.23 49.73
k-means (v2) SSE for (m+s) attributes 13808.78 13049.22 49.021
CBAk SSE for (m+s) attributes 13808.78 12796.65 50.17
H for s attributes 0.666 0.68122 0.7018
H for m+s attributes 0.7148 0.6865 0.7094

in cores. We mention that for every run of each experiment, SSE(CBAk) has
been roughly equal to SSE(k-means), both for v1 and v2.

In Table 2 we present, for each experiment, the attributes in decreasing order
of their information gain (IG) - the new attributes are emphasized.

Table 2. The decreasing order of attributes in respect to the information gain measure

Experiment Order of attributes IG of new attributes /
IG of old attributes (%)

Cancer 2 3 6 7 5 4 8 1 9 64,7%
Dermatology 22 21 23 1 34 30 28 13 26 7 17 9

29 10 16 11 25 15 6 27 4 20
32 8 5 24 3 31 12 2 19 18 14 33 7,6%

Wine 7 10 12 13 6 1 2 11 9 4 5 3 8 57%

From Table 2 it results that the importance of the added attributes influ-
ences the number of iterations performed by the CBAk algorithm for finding the
solution.

A problem with the k-means algorithm is that it is sensitive to the selection
of the initial partition (centroids) and may converge to a local minimum of the
squared error value if the initial partition is not properly chosen. In order to
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evaluate properly our algorithm, we considered the same initial centroids when
running k-means for the initial and feature-extended object set (m and m + s
number of attributes). It would be interesting to analyze how a good initial
centroids choice affects the results.

5.6 HCBAC Results

In this section we comparatively present the results obtained by applying the
HCBAC and HACA algorithms, for the experimental data.

Table 3. The comparative results for HACA and HCBAC

Experiment Cancer Dermatology Wine
No of objects 457 366 178
No of attributes (m+s) 9 34 13
No of new attributes (s) 4 3 4
No of clusters 2 6 3
No of HACA iterations for m attributes 455 360 175
No of HACA iterations for (m+s) attributes (N1) 455 360 175
No of HCBAC iterations for (m+s) attributes (N2) 22 27 2
Reduction of the no of iterations (N1-N2)/N1(%) 95.16 % 92.5 % 98.8 %
DISP(HACA) for m attributes 5.3507 8.0207 0.83
DISP(HACA) for (m+s) attributes 7.6505 7.9284 0.9871
DISP(HCBAC) for (m+s) attributes 7.702 8.1697 0.8337
No of objects StrongCore/WeakCore 95/0 92.6/0 98.8/0
(% from no of objects) HCBAC

From Table 3 we observe that using the HCBAC the number of iterations
for finding the solution is smaller than in the case of HACA. Also, the clusters
obtained by HCBAC are roughly equally dispersed as those given by HACA. So,
the clusters quality remains at about the same level, but the clustering process
is more efficient.

5.7 Adaptive Horizontal Fragmentation in Object Oriented
Databases

A practical problem, where the proposed methods can be efficiently used, is the
adaptive horizontal fragmentation of object oriented databases.

A horizontal fragmentation approach that uses data mining clustering meth-
ods for partitioning object instances into fragments has been presented in [4], [5],
[6], [7]. Essentially, that approach takes full advantage of existing data, where
statistics are already present, and develops fragmentation around user appli-
cations (queries) that are to be optimized by the obtained fragmentation. But
real databases applications evolve in time, and consequently they require re-
fragmentation in order to deal with new applications entering the system and
others leaving. Obviously, for obtaining the fragmentation that fits the new user
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applications set, the original fragmentation scheme can be applied from scratch.
However, this process can be inefficient.

We have applied the CBAk method in the case when new user applications
arrive in the system and the current fragments must be accordingly adapted
([2]). The obtained results were good. The adaptive fragmentation keeps the
fragmentation quality around the non-adaptive one and the processing time is
improved, as the incremental method performs, generally, in less time than the
full fragmentation process.

6 Conclusions and Future Work

In this paper we proposed a new approach for adapting the result of a clus-
tering when the attribute set describing the objects increases. Two traditional
algorithms, k-means and HACA, were adapted to follow this approach. The
experiments on different data sets prove that, in most cases, the results are
reached more efficiently using the proposed adaptive methods than running the
corresponding classical algorithms, on the feature-extended object set. But there
are some situations when it is better to resort to a non-adaptive clustering of
the feature-extended object set, than using the proposed algorithms. Intuitively,
such situations can be: the addition of a large number of features or the addition
of new features with large information gain and contradictory information with
respect to the old feature set.

Further work could be done in the following directions:

– to make experiments that would cover a range of additional cases like: varied
number of added features, discrete or continuous features and to consider a
more substantial number of features and objects;

– to isolate conditions to decide when it is more effective to adapt the result
of a clustering of the feature-extended object set than to resume or restart
the clustering using k-means or HACA;

– to study how the information brought into the system by the newly added
attributes, their correlation with the initial ones, influences the performance
of the adaptive algorithms;

– to apply the adaptive algorithms on precise problems, from where the need
of such algorithms originated.
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Abstract. This paper studies the problem of classification by using a
concept lattice as a search space of classification rules. The left hand
side of a classification rule is composed by a concept, including its ex-
tension and its intension, and the right hand side is the class label that
the concept implies. Particularly, we show that logical concepts of the
given universe are naturally associated with any consistent classification
rules generated by any partition-based or covering-based algorithm, and
can be characterized as a special set of consistent classification rules.
An algorithm is proposed to find a set of the most general consistent
concepts.

1 Introduction

The objectives of classification tasks can be divided into description and pre-
diction. Description focuses on the discovery of rules that describe data, and
prediction involves the use of discovered rules to make prediction. A classifica-
tion rule is normally expressed in the form of “if φ then ψ”, or symbolically,
φ ⇒ ψ. The left hand side is a formula that characterizes a subset of the objects,
and the right hand side is a label that indicates the class of this set of objects.

Generally, a classification task can be understood as a search in a particular
search space of possible solutions. The features of a search space determine the
properties of the rules to be constructed; the structure and the complexity of the
search space are primary measures of the difficulty of a classification problem.
Given a particular search space, different search strategies, such as depth-first,
breath-first and best-first methods, together with some heuristics can be used
to explore the normally very large space [6, 14].

Many search spaces for classification tasks have been intensively studied. For
example, a version space [6] has the most specific bound and the most general
bound, such that the most specific bound contains the set of maximally specific
formulas with respect to some training data, and the most general bound con-
tains the set of maximally general formulas with respect to some other training
data. It allows the general-to-specific and the specific-to-general breadth-first
search at the same time. The left hand side of classification rules are all possible
generalizations that could be created from these two bounding sets.

As another example, a granule network [14] systematically organizes all the
granules and formulas with respect to the given universe. Each node consists of
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a granule which is a subset of objects in the universe, and each arc leading from
a granule to its child is labelled by an atomic formula. A path from a coarse
granule to a fine granule indicates a conjunctive relation. The left hand side of
a classification rule is a disjunction of a conjunctive set of atomic formulas.

A clustering-based classifier presents another search space. For example, for
a k-NN classifier [5], based on some pre-selected distance metric, k clusters are
constructed. Each is assigned a particular class. The left hand side of a classifi-
cation rule is a disjunction of a set of clusters. The problem of this search space
is that using a relatively large k may include some not so similar pixels. On the
other hand, using a very small k may exclude some potential accurate rules. The
optimal value of k depends on the size and the nature of the data.

This paper intends to introduce another search space, a concept lattice, for
classification tasks. As a result, the left hand side of a classification rule is a
concept, including a set of objects (an extension) and a set of properties (an
intension).

There are several advantages of using concept analysis for classification. Con-
cepts are extremely precise in the sense that an intention and an extension are
two-way definable. This ensures that the constructed concept-based rules are
most descriptive and accurate. All the concepts are naturally organized into a
concept hierarchy. Once concepts are constructed and described, one can study
relationships between concepts in terms of their intensions and extensions, such
as sub-concepts and super-concepts, disjoint and overlap concepts, and partial
sub-concepts. These relationships can be conveniently expressed in the form of
rules and associated with quantitative measures indicating the strength of rules.
Knowledge discovery and data mining, especially rule mining, can be viewed as a
process of forming concepts and finding relationships between concepts in terms
of intensions and extensions [12, 13].

The rest of the paper is organized as follows. Section 2 formalizes the basic
settings of information tables and a decision logic language. After that, the
notion of formal concepts and one of its logical transformations are discussed
in Section 3. Section 4 studies the relationship between consistent classification
rules and consistent concepts, and proposes a heuristic method to explore the
most general consistent concepts. Conclusions are made in Section 5.

2 Information Tables and a Decision Logic Language

An information table provides a convenient way to describe a finite set of objects
by a finite set of attributes.

Definition 1. An information table S is the tuple:

S = (U, At, {Va | a ∈ At}, {Ia | a ∈ At}),

where U is a finite nonempty set of objects, At is a finite nonempty set of at-
tributes, Va is a nonempty set of values for attribute a ∈ At, and Ia : U → Va is
an information function.



Classification Based on Logical Concept Analysis 421

To describe the information in an information table, we adopt the decision
logic language L that was discussed in [7].

Definition 2. A decision logic language L consists of a set of formulas, which
are defined by the following two rules:

(i) An atomic formula of L is a descriptor a = v, where a ∈ At and v ∈ Va;
(ii) The well-formed formulas (wffs) of L is the smallest set, containing the

atomic formulas and closed under ¬ and ∧.

In an information table S, the satisfiability of a formula φ ∈ L by an object
is written as x |=S φ, or in short x |= φ if S is understood.

With the notion of satisfiability, one may obtain a set-theoretic interpretation
of formulas of L. That is, if φ is a formula, the set mS(φ), defined by mS(φ) =
{x ∈ U |x |= φ}, is called the meaning of the formula φ in S. If S is understood,
we simply write m(φ). The meaning of a formula φ is the set of all objects having
the properties expressed by the formula φ. If mS(φ) 
= ∅, then φ is meaningful
in S. With φ and m(φ), a connection between formulas of L and subsets of U is
thus established.

A subset X ⊆ U is called a definable granule in an information table S if there
exists at least one formula φ such that mS(φ) = X . The notion of definability
of subsets in an information table is essential to data analysis. In fact, definable
subsets are the basic units that can be described and discussed, upon which
other notions can be developed.

A formula φi is a refinement of another formula φj , or equivalently, φj is a
coarsening of φi. The refinement relation can be denoted by logical implication,
written as φi → φj . In the context of an information table S, φi →S φj , if and
only if m(φi) ⊆ m(φj). Given two formulas φi and φj , the meet φi ∧ φj defines
the largest intersection of the granules m(φi) and m(φj), and the join φi ∨ φj

defines the smallest union of the granules m(φi) and m(φj).

3 Formal Concept Analysis and Logical Concept Analysis

Formal concept analysis (FCA) deals with the characterization of a concept con-
sisting of its intension and extension [3, 11]. By considering the decision logic lan-
guage, we can transform formal concepts to a logical setting, and perform logical
concept analysis (LCA) [4]. LCA extends an intension from a set of properties
to a logical formula defined by these properties. By extending FCA to LCA,
we enhance the flexibility for description, management, updating, querying, or
navigation in the concepts.

3.1 Formal Concept Analysis

Denote F as the set of all atomic formulas in the decision logic language L, i.e.,
F = {a = v|a ∈ At, v ∈ Va}. For O ⊆ U and F ⊆ F , define

O′ = {f ∈ F | ∀x ∈ O : x |=S f}, (1)
F ′ = {x ∈ U | ∀f ∈ F : x |=S f}. (2)
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So O′ is the set of atomic formulas common to all the objects in O, and F ′ is
the set of objects possessing all the atomic formulas in F .

Lemma 1. [11] Let an information table S be a formal context, Oi, Oj ⊆ U and
Fi, Fj ⊆ F . Then

(1) Oi ⊆ Oj ⇒ O′
i ⊇ O′

j , (1′) Fi ⊆ Fj ⇒ F ′
i ⊇ F ′

j ;
(2) O ⊆ O′′, (2′) F ⊆ F ′′;
(3) O′ = O′′′, (3′) F ′ = F ′′′;
(4) (Oi ∪ Oj)′ = O′

i ∩ O′
j , (4′) (Fi ∪ Fj)′ = F ′

i ∩ F ′
j .

Definition 3. [11] A formal concept of an information table S is defined as a
pair (O, F ), where O ⊆ U, F ⊆ F , O′ = F and F ′ = O. The extension of the
concept (O, F ) is O, and the intension is F .

3.2 Logical Concept Analysis Limited to Conjunction

FCA, discussed above, deals with both intensions and extensions in the set-
theoretic setting, and does not consider the relationships between the elements
of intensions. By involving the decision logic language L, we move to a logical
setting for LCA.

Intuitively, the set-based intensions imply a conjunctive relation on the in-
cluded atomic formulas. In this paper, we only focus our attention on logical
conjunction. Thus, we can define two logically conjunctive dual functions as
follows:

O∗ =
∧

O′ =
∧

{f ∈ F | ∀x ∈ O : x |=S f}, (3)

=
∨̇

t∈T

∧
O′

t, where
⋃
t∈T

Ot = O; (4)

φ∗ = mS(φ) = {x ∈ U |x |=S φ}, (5)

=
⋂
t∈T

φ∗
t , where

⋃
(φ∗

t )
′ = (φ∗)′. (6)

Here, we use two different notations for O∗. Equation 3 intersects the common
properties of all the objects in O by using the logic-based conjunctor; Equation 4
computes the least upper bound of all the conjunctively definable formulas of
subsets of objects by using the context-based disjunctor.

Note that the context-based conjunctive operator ∧̇ and disjunctive operator
∨̇ are different from the logic-based conjunctor ∧ and disjunctor ∨. For two
formulas φ, ψ ∈ L in the context of an information table, φ∧̇ψ returns the
greatest lower bound of φ and ψ (more specific), and φ∨̇ψ returns the least
upper bound of φ and ψ (more general), with respect to the given universe.

Transposition from a set F ⊆ F to a conjunctive formula needs to replace
⊇, ∩ and ∪ by →, ∧̇ and ∨̇, respectively. Thus, Lemma 1 can be transformed as:
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Lemma 2. Let an information table S be a context, Oi, Oj ⊆ U and φi, φj ∈ L.
Then

(1) Oi ⊆ Oj ⇒ O∗
i → O∗

j , (1′) φi → φj ⇒ φ∗
i ⊆ φ∗

j ;
(2) O ⊆ O∗∗, (2′) φ∗∗ → φ;
(3) O∗ ≡ O∗∗∗, (3′) φ∗ = φ∗∗∗;
(4) (Oi ∪ Oj)∗ ≡ φ∗

i ∨̇φ∗
j , (4′) (φi∧̇φj)∗ = φ∗

i ∩ φ∗
j .

Definition 4. A conjunctive concept of an information table S is defined as a
pair (O, φ), where O ⊆ U , φ is a conjunctive formula, O∗ ≡ φ and φ∗ = O. The
extension of the conjunctive concept (O, φ) is O, and the intension is φ.

All the conjunctive concepts form a complete concept lattice, which possesses
the following two properties:∧

t∈T

(Ot, φt) = (
⋂
t∈T

Ot, (
∧̇

t∈T
φt)∗∗),

∨
t∈T

(Ot, φt) = ((
⋃
t∈T

Ot)∗∗,
∨̇

t∈T
φt).

For concepts (Oi, φi) and (Oj , φj) in the concept lattice, we write (Oi, φi) ≤
(Oj , φj), and say (Oi, φi) is a sub-concept of (Oj , φj), or (Oj , φj) is a super-
concept of (Oi, φi), if Oi ⊆ Oj , or φi → φj .

4 Classification Based on Conjunctive Concept Analysis

Without loss of generality, we assume that there is a unique attribute class
taking class labels as its values. The set of attributes in an information table is
expressed as At = D ∪ {class}, where D is the set of attributes used to describe
the objects, also called the set of descriptive attributes. An information table for
classification is also called a decision table.

4.1 Classification Rules

Each classification rule, in the form of φ ⇒ class = ci, or simply, φ ⇒ ci, is
derived from, and associated with a definable granule X , such that φ describes
X , and ci labels X . Therefore, each classification rule φ ⇒ ci can be expressed
by a decision relation between a definable pair including a granule X and its
formula φ, and a class label, i.e., (X, φ) ⇒ ci. It is clear that all the objects
that satisfy the formula φ are in the granule X . However, φ might not contain
all the properties X processes. It only defines X , and distinguishes X from the
other granules. In this case, a definable pair (X, φ) possesses only the one-way
definability, and is not a concept, which is two-way definable.

Two well-studied rule measures, confidence and generality, are defined as:

Confidence : conf(φ ⇒ ci) = |m(φ∩ci)|
|m(φ)| ; (7)

Generality : generality(φ ⇒ ci) = |m(φ)|
|U| . (8)
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The higher the confidence value is, the more accurate the rule is. When the
confidence of a rule is 100%, we say the rule is consistent, or certain. Otherwise,
it is approximate, or probabilistic. The higher the generality value is, the more
applicable the rule is.

Suppose a set R of consistent classification rules are discovered from an infor-
mation table. Partition the universe U into a training set Utraining and a testing
set Utesting , then the descriptive accuracy can be defined as:

description accu(Utraining) =
|
⋃

∀φ∈R m(φ)|
|Utraining | . (9)

When the description accuracy reaches 1, we say that the rule set R covers the
entire training set.

We say an object x ∈ Utesting is accurately classified, if there exists one learned
rule φ ⇒ ci in the set R, such that x |= φ and Iclass(x) = ci. We simply denote
x |= R. The prediction accuracy is defined as:

prediction accu(Utesting) =
|{x ∈ Utesting |x |= R}|

|Utesting | . (10)

Classification rule mining does not find all possible rules that exist in the
information table, but only a subset to form an accurate classifier [2]. Different
classification algorithms discover different subsets based on different heuristics.

4.2 Consistent Classification Rules and Consistent Concepts

Definition 5. Let an information table S be a context, a conjunctive concept
(X, φ) is called a consistent concept of S if it implies a unique label ci ∈ Vclass ,
and conf(φ ⇒ ci) = 100%.

Suppose (X, φ) is a conjunctively definable pair (CDP), i.e., φ is defined by a
conjunction of a set of atomic formulas. We can obtain the following inductions:

For a CDP (X, φ), if conf(φ ⇒ ci) = 100%,
then the conjunctively consistent concept (X, X∗) ⇒ ci, and X∗ → φ,

the conjunctively consistent concept (φ∗, φ∗∗) ⇒ ci, and φ∗∗ → φ,
there might exist a subset Y ⊆ X , such that the conjunctively consistent
concept (Y, Y ∗) ⇒ ci.

Suppose (X, φ) is a conjunctive concept.

If (X, φ) consistently implies class ci,
then for any ψ → φ, the CDP (ψ∗, ψ) has conf(ψ ⇒ ci) = 100%,

the conjunctively consistent concept (ψ∗, ψ∗∗) ⇒ ci,
there might exist a subset Y ⊆ X , such that the conjunctively consistent
concept (Y, Y ∗) ⇒ ci.

Definition 6. A most general consistent concept is a consistent concept in the
information table, and its super-concepts are not consistent concepts.
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If a super-concept of the concept (X, φ) is a most general consistent concept, it
is denoted as (X, φ).

Each consistent classification rule is associated with a granule, and is defined
by some conditional attributes in the information table. If the conditions can
be conjuncted, the formula and the granule form a CDP. Further, each CDP is
associated with a conjunctively consistent concept. If the concept is not a general
consistent concept, then there must exist a super concept corresponding to it.
We can use the following flow to illustrate the underlining logic:

1. Given conf(φ ⇒ ci) = 100%, where ci ∈ Vclass;
2. if φ is a conjunctor, then the CDP (φ∗, φ) ⇒ ci;
3. then the conjunctively consistent concept (φ∗, φ∗∗) ⇒ ci;
4. then the most general consistent concept (φ∗, φ∗∗) ⇒ ci.

As a result, instead of finding all the consistent classification rules, we can find
the set of all the most general consistent concepts that characterizes the complete
consistent rule set.

All the most general consistent concepts in an information table compose a
covering of the universe, i.e., there may be an overlap between every two most
general consistent concepts, and all the most general consistent concepts cover
the entire universe. This can be easily proved by making the given decision table
satisfy the first normal form, that requires all attribute-values in the table are
atomic. In this case, for any object x ∈ U , the conjunctive formula∧

(a = Ia(x)), for all a ∈ At

forms an intension φ, and the pair (φ∗, φ) forms a concept. Clearly, the family
of all concepts as such (φ∗, φ) cover the universe. Due to the fact that a most
general consistent concept can cover one or more than one concepts, all the most
general consistent concepts is a covering of the universe.

A covering-based algorithm tends to generate a set of rules that cover the
objects of the given information table. For some covering-based algorithms, a
granule that is covered by a rule is biased to be as big as possible. Suppose R
is a set of conjunctively consistent rules that are generated by a covering-based
classification algorithm, and B is the set of rules defined by the most general
consistent concepts. Then

(1) |R| ≥ |B|,
(2) For φ ∈ R, b ∈ B, and lhs(φ)∗∗ = lhs(b),

lhs(b) → lhs(φ) and |lhs(φ)∗| ≤ |lhs(b)∗|,
where lhs stands for the left hand side of a rule.

A partition-based algorithm is normally biased to generate a shorter tree.
Each CDP that maps to a rule is often not a most general consistent concept.
Suppose R is the set of consistent rules that are generated by any partition-based
algorithm, then the second property still holds, and |R| ≤ |B|. Limited by the
bias of partition-based algorithms, finding the most general consistent concept
from a corresponding CDP is not easy.
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4.3 A Simple Example

The decision Table 1 has four descriptive attributes A, B, C and D, and a de-
cision attribute class. The entire search space, the concept lattice includes 45
conjunctive concepts. For the purpose of classification, we are only interested in
the consistent concepts defined by subsets of descriptive attributes, such that
concept (X, φ) ⇒ ci. Based on these consistent concepts, we further need to find
out the most general consistent concepts, such that for each concept, there does
not exist a more general concept implies the same class. As we listed, there are six
the most general consistent concepts. The conjunctive concepts, the consistent
concepts and the most general consistent concepts are summarized in Table 2.

The ID3 algorithm [8] produces a set of six consistent rules that partition the
universe. The PRISM algorithm [1], (shown in Figure 1), generates another set
of consistent rules that cover the universe. Each rule can map to one of the most
general consistent concepts. For example,

– The left hand side of an ID3 rule “a3 ∧ b1 ∧ c2 ⇒ −” can be described by a
CDP ({10}, a3∧b1∧c2), which maps to a concept ({10}, a3∧b1∧c2∧d1), which
is more specific than a most general consistent concept ({2, 6, 10}, b1 ∧ c2).

– The left hand side of a PRISM rule “a1∧b2 ⇒ +” can be described by a CDP
({3, 4}, a1 ∧ b2), which maps to a concept ({3, 4}, a1 ∧ b2 ∧d1), which is more
specific than a most general consistent concept ({3, 4, 8, 11, 12}, b2 ∧ d1).

The comparisons among the ID3 CDPs, the PRISM CDPs and the most general
consistent concepts are illustrated in Table 3.

4.4 An Algorithm for Finding the Most General Consistent
Concepts

There are two approaches for finding the most general consistent concepts. One
approach is to find them in the concept lattice by brute force. First, construct
the concept lattice of the given information table. Then, find the consistent
concepts. Thirdly, eliminate all the non-most general concepts. This approach
encounters a complexity problem for the first step. If we search the universe U
for definable granules, then the search space is 2|U|. If we search the set F of
all atomic formulas for a subset of atomic formulas, then the search space of
is
∏

a∈D(|Va| + 1). In most cases,
∏

(|Va| + 1) ≤ 2|U|. This means we need to
test at least

∏
(|Va| + 1) conjunctively definable formulas, and their conjunctive

definable granules, in order to verify if each CDP is a conjunctive concept or not.
The other approach is to generate the most general consistent concept by

heuristic. First, apply a heuristic covering algorithm to produce a set of con-
sistent classification rules. Then, find the corresponding concepts to each rule.
Finally, eliminate those non-most general concepts. If the set of classification
rules cover the universe, the corresponding set of conjunctive concepts and the
most general consistent concepts also does. Since the number of classification
rules is limited, this approach must be much more efficient than the first one.
The PRISM algorithm [1], illustrated in Figure 1, is a good candidate for gen-
erating the most general consistent concepts.
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Table 1. A decision table

A B C D class
o1 a1 b1 c1 d2 -
o2 a1 b1 c2 d2 -
o3 a1 b2 c1 d1 +
o4 a1 b2 c2 d1 +
o5 a2 b1 c1 d2 -
o6 a2 b1 c2 d1 -
o7 a2 b2 c1 d2 -
o8 a2 b2 c2 d1 +
o9 a3 b1 c1 d2 +

o10 a3 b1 c2 d1 -
o11 a3 b2 c1 d1 +
o12 a3 b2 c2 d1 +

Table 2. The conjunctive concepts, the consistent concepts and the most general
consistent concepts of Table 1

Conjunctive concepts Consistent concepts ci ∈ VClass
Extension Intension Extension Intension
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} ∅ {1, 2} a1 ∧ b1 ∧ d2 −
{1, 2, 3, 4} a1 {5, 6} a2 ∧ b1 −
{5, 6, 7, 8} a2 {3, 4} a1 ∧ b2 ∧ d1 +
{9, 10, 11, 12} a3 {11, 12} a3 ∧ b2 ∧ d1 +
{1, 2, 5, 6, 9, 10} b1 {5, 7} a2 ∧ c1 ∧ d2 −
{1, 2} a1 ∧ b1 ∧ d2 {9, 11} a3 ∧ c1 +
{5, 6} a2 ∧ b1 {1} a1 ∧ b1 ∧ c1 ∧ d2 −
{9, 10} a3 ∧ b1 {5} a2 ∧ b1 ∧ c1 ∧ d2 −
{3, 4, 7, 8, 11, 12} b2 {9} a3 ∧ b1 ∧ c1 ∧ d2 +
{3, 4} a1 ∧ b2 ∧ d1 {3} a1 ∧ b2 ∧ c1 ∧ d1 +
{7, 8} a2 ∧ b2 {7} a2 ∧ b2 ∧ c1 ∧ d2 −
{11, 12} a3 ∧ b2 ∧ d1 {11} a3 ∧ b2 ∧ c1 ∧ d1 +
{1, 3, 5, 7, 9, 11} c1 {2, 6, 10} b1 ∧ c2 −
{1, 3} a1 ∧ c1 {2} a1 ∧ b1 ∧ c2 ∧ d2 −
{5, 7} a2 ∧ c1 ∧ d2 {6} a2 ∧ b1 ∧ c2 ∧ d1 −
{9, 11} a3 ∧ c1 {10} a3 ∧ b1 ∧ c2 ∧ d1 −
{1, 5, 9} b1 ∧ c1 ∧ d2 {4, 8, 12} b2 ∧ c2 ∧ d1 +
{1} a1 ∧ b1 ∧ c1 ∧ d2 {4} a1 ∧ b2 ∧ c2 ∧ d1 +
{5} a2 ∧ b1 ∧ c1 ∧ d2 {8} a2 ∧ b2 ∧ c2 ∧ d1 +
{9} a3 ∧ b1 ∧ c1 ∧ d2 {12} a3 ∧ b2 ∧ c2 ∧ d1 +
{3, 7, 11} b2 ∧ c1 {6, 10} b1 ∧ c2 ∧ d1 −
{3} a1 ∧ b2 ∧ c1 ∧ d1 {3, 4, 8, 11, 12} b2 ∧ d1 +
{7} a2 ∧ b2 ∧ c1 ∧ d2 {3, 11} b2 ∧ c1 ∧ d1 +
{11} a3 ∧ b2 ∧ c1 ∧ d1
{2, 4, 6, 8, 10, 12} c2
{2, 4} a1 ∧ c2
{6, 8} a2 ∧ c2 ∧ d1
{10, 12} a3 ∧ c2 ∧ d1
{2, 6, 10} b1 ∧ c2
{2} a1 ∧ b1 ∧ c2 ∧ d2 Most general consistent concepts ci ∈ VClass{6} a2 ∧ b1 ∧ c2 ∧ d1 Extension Intention
{10} a3 ∧ b1 ∧ c2 ∧ d1 {1, 2} a1 ∧ b1 ∧ d2 -
{4, 8, 12} b2 ∧ c2 ∧ d1 {5, 6} a2 ∧ b1 -
{4} a1 ∧ b2 ∧ c2 ∧ d1 {5, 7} a2 ∧ c1 ∧ d2 -
{8} a2 ∧ b2 ∧ c2 ∧ d1 {2, 6, 10} b1 ∧ c2 -
{12} a3 ∧ b2 ∧ c2 ∧ d1 {9, 11} a3 ∧ c1 +
{3, 4, 6, 8, 10, 11, 12} d1 {3, 4, 8, 11, 12} b2 ∧ d1 +
{10, 11, 12} a3 ∧ d1
{6, 10} b1 ∧ c2 ∧ d1
{3, 4, 8, 11, 12} b2 ∧ d1
{3, 11} b2 ∧ c1 ∧ d1
{4, 6, 8, 10, 12} c2 ∧ d1
{1, 2, 5, 7, 9} d2
{1, 2, 5, 9} b1 ∧ d2
{1, 5, 7, 9} c1 ∧ d2

Table 3. Compare the ID3, PRISM CDPs with the most general consistent concepts
of Table 1

ID3 CDPs PRISM CDPs Most general consistent concepts ci ∈ Vclass

({1, 2}, a1 ∧ b1) ({1, 2}, a1 ∧ b1) ({1, 2}, a1 ∧ b1 ∧ d2) -
({5, 6}, a2 ∧ b1) ({5, 6}, a2 ∧ b1) ({5, 6}, a2 ∧ b1)
({10}, a3 ∧ b1 ∧ c2) ({6, 10}, b1 ∧ d1) ({2, 6, 10}, b1 ∧ c2)

({2, 6, 10}, b1 ∧ c2)
({7}, b2 ∧ d2) ({5, 7}, a2 ∧ c1) ({5, 7}, a2 ∧ c1 ∧ d2)

({5, 7}, a2 ∧ d2)
({9}, a3 ∧ b1 ∧ c1) ({9}, a3 ∧ d2) ({9, 11}, a3 ∧ c1) +

({9, 11}, a3 ∧ c1)
({3, 4, 8, 11, 12}, b2 ∧ d1) ({3, 4}, a1 ∧ b2) ({3, 4, 8, 11, 12}, b2 ∧ d1)

({11, 12}, a3 ∧ b2)
({4, 8, 12}, b2 ∧ c2)
({3, 4, 8, 11, 12}, b2 ∧ d1)
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Input: a decision table
Output: a set of consistent classification rules
For each ci ∈ Vclass, do the following:
1. Calculate the probability of p(ci|φ) of the class ci given each atomic formula φ ∈ F .
2. Select the first φt for which p(ci|φt) is the maximum. Create a subset of the training

set comprising all the instances which contain the selected φt.
3. Repeat Steps 1 and 2 until the local p(ci|φt) reaches 1 or stop if no more subsets

can be extracted. At this time, check if there is any other condition φs such that
the local p(ci|φs) also reaches 1.

4. Remove all the objects covered by the rule(s) from the table.
5. Repeat Step 1-4 until all the objects of class ci have been removed.

Fig. 1. The PRISM algorithm

Input: a decision table
Output: a set of the most general consistent concepts
1. Apply the PRISM algorithm to generate a set of consistent classification rules:

{φ ⇒ ci|ci ∈ Vclass}.
2. Construct a CDP for each consistent rule: {(φ∗, φ) ⇒ ci}.
3. Construct a conjunctively consistent concept for each CDP: {(φ∗, φ∗∗) ⇒ ci}.
4. For each conjunctively consistent concept (φ∗, φ∗∗), if there exists another con-

junctively consistent concept (φ∗
t , φ∗∗

t ) such that φ∗ ⊂ φ∗
t , then (φ∗, φ∗∗) is not a

most general consistent concepts, and is eliminated.

Fig. 2. PRISM-concept: An algorithm for finding the most general consistent concepts

Figure 2 describes the procedure of finding a set of the most general consis-
tent concepts based on the PRISM algorithm. This algorithm is thus called the
PRISM-concept algorithm. PRISM-concept has a higher computational com-
plexity than PRISM because of the concept construction process. It prunes the
rule set to the most kernel by considering the subset relation of concept exten-
sions. The set of the most general consistent concepts cannot be more simplified,
as a result of its extension cannot be bigger, and its intension cannot be coarser.

4.5 Experiments

In order to evaluate the proposed PRISM-concept algorithm, we choose three
sample datasets from UCI machine learning repository [10], and use SGI’s
MLC++ utilities 2.0 to generate categorical data [9]. We use 5-cross validation
to divide training sets and testing sets, upon which the partition-based ID3, the
covering-based PRISM, and the LCA-based PRISM-concept are tested for com-
parison. We keep track the number of rules, accuracy of both description and
prediction for three datasets. The experimental results are reported in Figure 3.

The number of PRISM-concept rules is between which of ID3 and PRISM, due
to the difference between the partition-based and the covering-based algorithms,
and the nature of generalization capability of the concept-based rules. Since the
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Fig. 3. Compare ID3, PRISM and PRISM-concept on three sample datasets

PRISM-concepts are generated from a set of PRISM rules, PRISM and PRISM-
concept have the same description accuracy, and it is normally higher than what
ID3 can reach. This indicates that for the purpose of keeping a higher description
accuracy, we can greatly simplify the set of covering-based consistent rules by
using a set of the most general consistent concept-rules.

The prediction accuracy of PRISM-concept rules is also between which of ID3
and PRISM. That is because PRISM has the greatest number of rules. That
makes it more flexible to do testing, especially when error or missing records
happen in testing datasets. As a fact that the intension of a most general con-
sistent concept is the conjunction of all properties possessed by the extension,
thus, it precisely describes the given training set, even might overfit the training
set. Overfitting rules are good for description, but not good for testing.

Although we use the consistent classification tasks (i.e., φ ⇒ ci) as an example
going through the paper, it does not mean that conjunctive concepts cannot cope
with approximation classification tasks in general (i.e., conf(φ ⇒ ci) ≤ 1).

Suppose conf(φ ⇒ ci) = α < 1, where ci ∈ Vclass is the class label sat-
isfying the majority of the object set φ∗. If φ is a conjunctor, then the CDP
(φ∗, φ) has conf((φ∗, φ) ⇒ ci) = α; and the conjunctive concept (φ∗, φ∗∗) has
conf((φ∗, φ∗∗) ⇒ ci) = α, which is not a consistent concept. However, a su-
per concept of (φ∗, φ∗∗), denoted as ˜(φ∗, φ∗∗), might or might not indicate the
same class label ci. If conf( ˜(φ∗, φ∗∗) ⇒ ci) is satisfiable to the user, then the
sub-concept (φ∗, φ∗∗) can be pruned.

5 Conclusion

Logical concept analysis provides an alternative way to study classification tasks.
For consistent classification problems, a consistent classification rule corresponds
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to a conjunctively definable pair, each conjunctively definable pair corresponds
to a conjunctively consistent concept, and each conjunctively consistent concept
corresponds to a most general consistent concept. All the most general consistent
concepts form a special set of consistent classification rules, which can describe
the given universe precisely and concisely by its nature.

There are two approaches to find the set of the most general consistent con-
cepts. One is from the concept lattice. The other is from a set of heuristic
covering-based rules. The study shows that these two approaches can find a
unique and complete set of the most general consistent concepts.

Logical concept analysis can also be applied for probabilistic classification
problems. Though, to generalize a (inconsistent) concept to its super concept,
in order to simplify the concept rule set, one needs to use more heuristics and
thresholds. That is a research topic we set up for the next stage.
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Abstract. Quantum Information Processing (QIP) performs wonders
in a world that obeys the laws of quantum mechanics, whereas Machine
Learning (ML) is generally assumed to be done in a classical world.
We initiate an investigation of the encounter of ML with QIP by defining
and studying novel learning tasks that correspond to Machine Learning
in a world in which the information is fundamentally quantum mechan-
ical. We shall see that this paradigm shift has a profound impact on the
learning process and that our classical intuition is often challenged.

1 Introduction

Quantum Information Processing (QIP) is the field that studies the implication
of quantum mechanics for information processing purposes. Quantum informa-
tion is very different from its classical counterpart: it cannot be measured reliably
and it is disturbed by observation, but it can exist in a superposition of clas-
sical states. Classical and quantum information can be used together to realize
wonders that are out of reach of classical information processing, such as being
able to factorize efficiently large integers [21], search in an unstructured database
with a quadratic speedup compared to the best classical algorithms [8] and allow
two people to communicate in perfect secrecy under the nose of an eavesdropper
having at her disposal unlimited computing power and technology [3].

Machine Learning (ML) is the field that studies techniques to give to machines
the ability to learn from past experience. Typical tasks in ML include the ability
to predict the class (classification) or some unobserved characteristic (regres-
sion) of an object based on some observations in supervised learning, or the
ability to find some structure hidden within data (clustering or density estima-
tion) in unsupervised learning. In general in ML, a machine is trained using a
learning algorithm that takes as input a training dataset. This training dataset
is implicitly assumed to be fundamentally classical, meaning that it contains
“classical” observations about “classical” objects.

In this paper, we address the following question: What if the training dataset
contains quantum objects? In particular what are the consequences for the learn-
ing process if we want to find analogues or develop new ML algorithms in this
setting? The outline of the paper is as follows. In Section 2, we review some

L. Lamontagne and M. Marchand (Eds.): Canadian AI 2006, LNAI 4013, pp. 431–442, 2006.
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basic notions of QIP. In Section 3, we describe some previous encounters of ML
and QIP before defining in Section 4 what learning could mean in the quantum
context. We then illustrate our model in Section 5 by giving specific examples
of clustering algorithms adapted to this new paradigm, including a simulated
experiment. We conclude and state open problems in Section 6.

2 Review of Quantum Information Processing Concepts

In this section, we briefly review some essential notions of QIP [14]. A qubit
(or quantum bit) is the quantum analogue of the classical bit. In contrast with its
classical counterpart, a qubit can exist in a superposition of states. For instance,
an electron can be simultaneously on two different orbits in some atom. Formally,
using the Dirac notation, a qubit is described as |ψ〉 = α|0〉 + β|1〉 where α and
β are complex numbers called the amplitudes of classical states |0〉 and |1〉,
respectively, subject to the normalization condition that |α|2 + |β|2 = 1. When
state |ψ〉 is measured, either |0〉 or |1〉 is observed, with probability |α|2 or |β|2,
respectively. Furthermore, measurements are irreversible because the state of the
system collapses to whichever value (|0〉 or |1〉) has been observed, thus losing
all memory of former amplitudes α and β.

All other operations allowed by quantum mechanics are reversible (and
even unitary). They are represented by gates, much as in a classical circuit.
For instance, the Walsh–Hadamard gate H maps |0〉 to 1√

2
|0〉 + 1√

2
|1〉 and |1〉

to 1√
2
|0〉 − 1√

2
|1〉. Figure 1 illustrates the notions seen so far, where time flows

from left to right. Note that a single line carries quantum information, whereas
a double line carries classical information; M denotes a measurement.

|0〉 H ����M 0 with probability 1/2

1 with probability 1/2

Fig. 1. Example of a simple quantum circuit

In this very simple example, we apply a Walsh–Hadamard gate to state |0〉,
which yields 1√

2
|0〉 + 1√

2
|1〉. The measurement produces either 0 or 1, each with

probability | 1√
2
|2 = 1/2, and the state collapses to the observed classical value.

The notion of qubit has a natural extension, which is the quantum regis-
ter. A quantum register |ψ〉, composed of n qubits, lives in a 2n-dimensional
Hilbert space H. Register |ψ〉 =

∑2n−1
i=0 αi|i〉 is specified by complex num-

bers α0, α1,. . . , α2n−1 subject to normalization condition
∑

|αi|2 = 1. Here,
basis state |i〉 denotes the binary encoding of integer i. The tensor product ⊗
is used to represent the composition of two quantum systems. For instance,
if we have two quantum states |ψ〉 = α|0〉 + β|1〉 and |φ〉 = γ|0〉 + δ|1〉 and
we put them next to each other, we can describe the composite system as
|Γ 〉 = |ψ〉 ⊗ |φ〉 = αγ|00〉 + αδ|01〉 + βγ|10〉 + βδ|11〉. As a shorthand nota-
tion, we write |ψ〉⊗k for a quantum register composed of k identical copies of
state |ψ〉.
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|φ〉
SWAP

|ψ〉
|ψ〉 |φ〉

|source〉 •
|target〉 U

Fig. 2. SWAP gate Fig. 3. Control-U gate

Unitary operations can also be applied to two or more qubits. For example,
Fig. 2 illustrates a SWAP gate, which exchanges the qubits on its wires. Another
kind of unitary gate frequently encountered in QIP is the Control -U gate, illus-
trated in Fig. 3: operation U is performed on the bottom wire, known as the
target, if and only if the top wire, known as the source, is set to |1〉.

The density matrix is a formalism used to represent one’s knowledge about a
particular quantum system. It is a complete description of what can be observed
about it. If we know that a quantum system is in a specific state |ψ〉, then its
density matrix ρ is equal to |ψ〉〈ψ|, where 〈ψ| is the conjugate transpose of |ψ〉,
the latter being considered as a column vector in the Hilbert space. In this case,
ρ is said to be pure. A mixed state is a probability distribution over an ensemble
{(p1, |ψ1〉), . . . , (pk, |ψk〉)} of pure states, subject to

∑k
i=1 pi = 1, where pi is the

probability associated with pure state |ψi〉. The density matrix ρ corresponding
to this mixture is defined as

∑k
i=1 pi|ψi〉〈ψi|.

Two fundamental theorems set limits on what can be done with a quan-
tum state. The no-cloning theorem [23] prevents us from cloning perfectly an
unknown (or partially known) quantum state unless it is known to belong to
a set of pairwise orthogonal states. A consequence of Holevo’s Theorem [12]
states that it is impossible to extract more than n bits of classical information
from n qubits. Therefore, although n qubits need an exponential number 2n

of amplitudes to be described, only a linear amount of information can be ex-
tracted from them. Quantum information features many additional intriguing
non-classical properties, such as entanglement and interference. See [14].

3 Previous Encounters of Machine Learning with
Quantum Information Processing

In any field of computer science, it is natural to ask whether or not it is possible,
using the QIP paradigm, to obtain more efficient and more powerful information
processing capabilities. For example, we can seek faster algorithms, or savings
on the communication cost in distributed contexts, or security upgrading in
cryptographic settings, etc. When looking specifically at ML and QIP, there are
several ways one could imagine to try mixing them. From a theoretical point of
view, some work has already been done in computational learning theory that
compares learnability in the classical and the quantum settings. Two models have
been generalized to the quantum world: the Probably Approximately Correct
(PAC) learning model of Valiant [22] and the model of exact learning from
membership queries of Angluin [1].

According to the quantum analogues of these models, the goal is to infer
properties of a function f , whose access is provided through a quantum oracle
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that can be queried in a superposition of questions. Servedio and Gortler have
studied both Valiant’s and Angluin’s models and proved interesting results [20].
One of their discoveries is that the quantum paradigm does not provide any
advantage in exact learning from membership queries or in PAC learning, if we
care only about the number of queries: every function (concept) that can be
“learned” (in the specific sense given in each of these models) with a polynomial
number of quantum queries can also be learned with a polynomial number of
classical queries. However, this equivalence does not hold for computing time:
Servedio [19] has constructed an explicit class of concepts that are polynomial-
time learnable from quantum membership queries but not from classical queries,
based on the cryptographic assumption that one-way functions exist.

Other previous encounters of ML with QIP include the definition of quantum
analogues for ML approaches such as neural networks [6], the design of classical
clustering algorithms inspired from quantum mechanics [13], the application of
the maximum likelihood principle to quantum channel modelling [24], etc.

4 Learning in a Quantum World

4.1 Training with a Quantum Dataset

Machine learning algorithms learn from a training dataset, which is given
as input to the algorithm. The dataset contains observations about objects,
which were obtained empirically or acquired from experts. In the classical set-
ting, the observations and the objects are implicitly considered to be classi-
cal. In the case of supervised learning, the training dataset can be described
as Dn = {(x1, y1), . . . , (xn, yn)}, where xi would be some observations on the
characteristics of the ith object (or data point) and yi is the corresponding
class of that object. As a typical example, each object can be described using d
real-valued attributes and we are dealing with binary classification. In this case
xi ∈ Rd and yi ∈ {−1, +1}. The main difference between supervised and unsu-
pervised learning is that in the latter case the yi values are unknown. This could
mean that we know the possible labels in general but not the specific label of each
data point, or that even the number of classes and their labels are unknown to us.

In a quantum world, a ML algorithm still needs a training dataset from
which to perform learning, but this dataset now contains quantum objects. This
forces us to rethink the entire learning process because quantum information
obeys different physical laws, compared to classical information. Quantum me-
chanically, a training dataset containing n quantum states can be described as
Dn = {(|ψ1〉, y1), . . . , (|ψn〉, yn)}, where |ψi〉 is the ith quantum state of the
training set and yi is the corresponding class of that quantum state. A typi-
cal example occurs when a quantum state lives in a Hilbert space formed by d
qubits: |ψi〉 ∈ C2d

and yi ∈ {−1, +1} for binary classification. Even though we
restrict ourselves to classical classes in this work, further generalization would
be possible in which objects can be in a quantum superposition of classes.

Imagine a scenario in which a space probe has been sent away from Earth.
In its exploration process, the probe encounters various quantum phenomena,
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from which it samples to constitute a training dataset. The samples could be
labelled by the origin of the quantum phenomenon (supervised learning), or left
unlabelled if their source is unknown (unsupervised learning). Afterwards, the
probe would search for an intrinsic hidden structure within the quantum data.

4.2 Learning Classes

There are many ways in which quantum states can be specified in the training
dataset. To this end, we introduce several learning classes that differ in the form
of the training dataset, the learner’s technological sophistication and his learning
goal. For learning class Lcontext

goal , subscript goal refers to the learning goal and
superscript context to the training dataset and/or the learner’s abilities. Possible
values for goal are c, which stands for doing ML with a classical purpose, and q
for ML with a quantum purpose. The superscript context can be c for “classical”
if everything is classical (with a possible exception for the goal) or q if something
“quantum” is going on. Other values for context can be used when we need to
be more specific. For example, Lc

c corresponds to ML in the usual sense, in
which we want to use classical means to learn from classical observations about
classical objects. Another example is Lq

c, in which we have access to a quantum
computer for help but the goal remains to perform a classical ML task: the
quantum computer could serve to speed up the ML process.

We are more concerned with the case of “goal = q ”. The simplest instance
corresponds to Lc

q, which is defined as the quantum learning class in
which all the training set quantum state descriptions are given classically
(i.e. Dn = {(ψ1, y1), . . . , (ψn, yn)}, where ψi is the classical description of quan-
tum state |ψi〉). Learning becomes more challenging when the dataset is available
only in its quantum form, in which case more copies make life easier. Class L⊗k

q

is defined as the learning class in which we are given k copies of each train-
ing quantum state (i.e. Dn = {(|ψ1〉⊗k, y1), . . . , (|ψn〉⊗k, yn)}; recall that |ψi〉⊗k

symbolizes k copies of state |ψi〉). Contrast these classes with ML in a classical
world (such as Lc

c), in which additional copies of an object are obviously useless.

4.3 Possible Learning Strategies

Several types of strategies can be imagined, depending on the learning class and
the task we wish to realize. Here, we study the case of binary classification for
the purpose of illustrating the strategies with a “concrete” example. Consider
the quantum classification task of predicting the class of an unknown quantum
state |ψ?〉 given a single copy of this state (This constraint can be relaxed by con-
sidering the case of multiple copies of the state to be classified—see the quantum
template matching problem of [17]). The easiest situation occurs when Dn ∈ Lc

q

since we have complete classical knowledge of the training states. Despite this
advantage, it is not possible in general to devise a process that would always clas-
sify correctly unknown quantum states even should they be known to be identical
to one of the training states (see last paragraph in Section 4.5). Nevertheless,
when Dn ∈ Lc

q, it is possible to analytically devise the optimal measurement that
minimizes the training error. It remains to be seen how well such an approach
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would fare when faced with a new quantum state. Alternatively, in some cases,
we can devise an unambiguous discrimination measurement, which would never
give the wrong classification for objects in the training set, but would sometimes
refuse to answer at all. This is analogous to the classical case in which a classifier
has to either predict class “−1” or “+1” with the highest possible confidence,
but is allowed to abstain (by answering “0”) when it has low confidence in its
best prediction.

If Dn ∈ L⊗k
q then possible strategies include: (1) estimate the training set

quantum states by making measurements (joint or not) on some copies; (2) devise
a classification mechanism that uses copies of the training set quantum states
only at the time of demand (i.e. when the time to classify |ψ?〉 comes); or
(3) compose a hybrid strategy based on (1) and (2).

Note that strategy (1) corresponds to the concept of quantum tomography, in
which one tries to reconstruct as faithfully as possible the classical description
of a quantum state from a finite number of copies of this state. Strategy (2) is
unique to the quantum world and we call a classifier resulting from this strategy
a one-time classifier because we sacrifice some parts of the training set when
the classification need arises. Using this strategy, once the classification is done,
the information contained in the sacrificed part of the training set is lost forever.
This has no classical counterpart because nothing in principle prevents a classical
classifier from being used an unbounded number of times. A hybrid strategy (3)
could be built on the advantages of both previous strategies, for instance by
acquiring some classical knowledge about the training set by performing state
estimation and then using this knowledge in the design of a one-time classifier.

We have considered in this paper only the case of binary classification. Moving
to the multiclass setting has to be done with care [18], even more so if we consider
quantum classes that can be in a superposition.

4.4 Hierarchy of Quantum Learning Classes

The different quantum learning classes form a hierarchy in an information-
theoretic sense, meaning that the higher a class is located in the hierarchy, the
potentially better classification of an unknown state it allows. The class Lc

q is at
the top of the hierarchy since it corresponds to complete knowledge about the
quantum states in the training set. Let ≡	, ≤	 and <	 denote the equivalence,
the weaker or equal and the strictly weaker relationships within the hierarchy,
respectively. The following statements are obvious.

– L⊗k
q ≡	 Lc

q as k → ∞.

– L⊗1
q ≤	 . . . ≤	 L⊗k

q ≤	 L⊗k+1
q ≤	 . . . ≤	 Lc

q.

– L⊗k
q +L⊗1

q ≤	 L⊗k+1
q , where “+” denotes a restriction that the first k copies

must be measured separately from the the last.

The interesting question is whether or not this hierarchy is strict: can all these
≤	 be replaced by <	 ? There are good reasons to believe that the answer is
positive since it is usually the case that more information can be obtained about
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a quantum state when more copies are available, and it has been proven in some
cases that joint measurements are more informative than individual measure-
ments [15, 5]. But it does not necessarily follow that this additional classical
information provides for a better quantum classifier when the time comes to
identify unknown state |ψ?〉.

4.5 Bounds on the Training Error

Let m− be the number of quantum states in Dn for which yi = −1 (nega-
tive class) and its complement m+ be the number of states in Dn for which
yi = +1 (positive class), with m− + m+ = n, the total number of data points
in Dn. The mixture ρ− is defined as 1

m−

∑n
i=1

1−yi

2 |ψi〉〈ψi| and the mixture ρ+
as 1

m+

∑n
i=1

1+yi

2 |ψi〉〈ψi|. If Dn ∈ Lc
q, the problem of classifying an unknown

state |ψ?〉 taken from the training set is equivalent to distinguishing between
ρ− and ρ+. The success probability of this classification process is linked to
the statistical overlap of these distributions. In fact, this kind of problem has
already been studied in quantum detection and estimation theory [10], a field
that predates QIP itself. Some results from this field can be used to give
bounds on the best training error we could hope for from a ML algorithm.
For instance, the probability of distinguishing between the two classes with
the optimal quantum process is bounded above by (1 + D(ρ−, ρ+))/2, where
D(ρ−, ρ+) = Tr|p−ρ− − p+ρ+| is a distance measure between ρ− and ρ+ due to
Helstrom [10] (here, p− and p+ represent the a priori probabilities of ρ− and
ρ+, respectively). For unambiguous discrimination, bounds have been developed
much more recently [11]. The goal of a ML algorithm in the quantum setting is
to give a constructive way to come close to (or to achieve) these bounds.

Note that, contrary to classical ML, where it is always possible—albeit not
always advisable—to bring the training error down to zero (for instance using a
memory-based classifier such as 1-nearest neighbour), it is impossible to do so in
the quantum case unless the states of the training set are pairwise orthogonal.

5 Illustration: Clustering with a Quantum Dataset

5.1 Measure of Distance Between Quantum States

The quantity Fid(|ψ〉, |φ〉) = |〈φ|ψ〉|2 is an important notion in QIP, which
is called the fidelity. Note that the fidelity is similar to a measure com-
monly used in classical information retrieval, namely the cosine similarity.
The fidelity is a similarity measure between two quantum states, which ranges
from 0 if they are orthogonal (meaning perfectly distinguishable) to 1 if the
states are identical. Properties of the fidelity [14, §9.2.2] include symmetry,
Fid(|ψ〉, |φ〉) = Fid(|φ〉, |ψ〉), and invariance under unitary operations, meaning
that applying the same unitary operation U on two different quantum states does
not change their fidelity: Fid(|Uψ〉, |Uφ〉) = Fid(|ψ〉, |φ〉). In its standard form,
the fidelity is not really a metric because it does not obey the triangle inequal-
ity, but it can be made to do so if we use Dist(|ψ〉, |φ〉) = arccosFid(|ψ〉, |φ〉).
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The value of Dist(|ψ〉, |φ〉) ranges from 0 if the states are identical to π
2

if they are orthogonal. This distance now respects the triangle inequality
Dist(|ψ〉, |φ〉) ≤ Dist(|ψ〉, |ϕ〉) + Dist(|ϕ〉, |φ〉).

5.2 Control-Swap as a Fidelity Estimator

The Control-Swap test (C-Swap test) [2, 4] makes it possible to estimate the
similarity between two unknown quantum states |ψ〉 and |φ〉, as measured by
their fidelity Fid(|ψ〉, |φ〉). Figure 4 illustrates this concept.

|0〉 H • H ����M
|ψ〉

SWAP
|φ〉

Fig. 4. Circuit of the Control-SWAP test

The input to the circuit is |0〉|ψ〉|φ〉. After applying the first Walsh–Hadamard
gate H, the state evolves to the superposition 1√

2
|0〉|ψ〉|φ〉 + 1√

2
|1〉|ψ〉|φ〉.

Application of the C-Swap gate, exchanges |ψ〉 and |φ〉 if the state of the
upper wire is |1〉. Therefore, the state evolves to 1√

2
|0〉|ψ〉|φ〉 + 1√

2
|1〉|φ〉|ψ〉.

Afterwards, the second Walsh–Hadamard gate H transforms the state to
1
2 |0〉(|ψ〉|φ〉 + |φ〉|ψ〉) + 1

2 |1〉(|ψ〉|φ〉 − |φ〉|ψ〉). Finally, measurement of the top
qubit yields classical outcome 0 with probability 1 if |ψ〉 and |φ〉 are identi-
cal. In general, the measurement outcome is 1 with probability 1

2 − 1
2 |〈φ|ψ〉|2.

It follows that the C-Swap test provides an estimator for the fidelity between
|ψ〉 and |φ〉. With k copies of these states, we can estimate Fid(|ψ〉, |φ〉) as
1 − 2 × #|1〉/k. Note that a side effect of the C-Swap test is to irreversibly dis-
turb the input states, unless they happened to be identical.

5.3 Examples of Possible Quantum Clustering Algorithms

If Dn ∈ L⊗k
q , the most obvious strategy for clustering the training set of quantum

states would follow the “type (1)” approach outlined in Section 4.3: By way
of quantum tomography, use all the available copies in order to reconstruct
a classical description of each training state. A classical clustering algorithm
could then be applied on the resulting approximate descriptions. Obviously, the
accuracy of this approach is limited by that of the classically estimated quantum
states. Fortunately, this is a well-studied problem.

The optimal mean fidelity achievable for the reconstructed state |ψguess〉, com-
pared to the true state |ψtrue〉, is a function of the dimension of the state and of
the number of copies. The exact formula is Fid(|ψguess〉, |ψtrue〉) = k+1

k+d , where
k is the number of available copies and d the dimension of the Hilbert space
(see [9] for an interesting discussion on the subject). This means that in order to
achieve good fidelity in the reconstruction, an exponential number of copies in
the number of qubits is required. In the case when d is small and k is large, this
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tomographic approach can generate a reasonably faithful classical description
of the state. From this classical description, it is possible to compute directly
(i.e. using a classical computer), the fidelity between two quantum states. From
there, classical clustering algorithms can be used.

Recall that the main goal of clustering is to group similar objects together
while putting objects that are dissimilar into different clusters. Thus, it should
be intuitively clear that the approach to clustering outlined above is wasteful of
the precious quantum resources. Indeed, there is no need to determine a classical
approximation of two quantum states if the genuine purpose of the operation is
merely to estimate the distance between them according to some metric. A more
promising approach to quantum clustering is to estimate that distance directly
through a joint measurement of the two quantum states. The simplest way to
do this (but not necessarily the best) is to use the C-Swap test of Section 5.2 to
estimate fidelity as a measure of distance.

For example, if we are in L
⊗(n−1)e
q , we can estimate the fidelity between

each pair of states in the training dataset by applying the C-Swap test e times
independently for each pair. We could then use a classical algorithm, such as
k-medians , to perform clustering. In the next section, we report on a simulated
experiment along these lines.

Other strategies can be devised, which are even more quantum. For instance,
we could adapt a classical algorithm to the quantum setting, such as an agglom-
erative algorithm that would grow clusters around quantum seeds in an adaptive
manner. This algorithm first sacrifices some parts of the training set during the
seeding phase to identify states whose pairwise dissimilarity is high, which will
be used as seeds. During the second phase, each state is compared to the seeds
using the C-Swap test estimation and agglomerated around the most similar one.

5.4 Experimentation

In this section, we present some preliminary results on a very simple cluster-
ing experiment. As a proof of concept, we chose to test on synthetic data an
algorithm based on the C-Swap test outlined in the previous section. The data
is composed of five clusters. Each cluster is centred on a 13-qubit pure state
generated randomly and uniformly according to the Haar measure in a 8192-
dimensional Hilbert space. For each cluster, twenty pure states were obtained
by applying a random perturbation to the cluster centre so that the fidelity of
the resulting states with the cluster centre were never below some threshold,
henceforth called the fidelity threshold. Note that we can make the clustering
problem more difficult by lowering this threshold since this results in less dense
clusters, which can even overlap when the fidelity threshold is too low.

We used the C-Swap test to estimate the fidelity between each pair of states
in the training set. The greater the number of samples are available for the
C-Swap test, the more accurate is the resulting estimate. However, there is no
need to estimate those fidelities with exceedingly high precision (which would be
too expensive in the required number of copies) because a rough estimate of the
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Fig. 5. Evolution of the clustering quality (averaged over 5 trials) as the fidelity thresh-
old decreases. A quality value of 1 indicates perfect clustering. Random “clustering”
would correspond to a quality of approximately 0.37, below this curve.

similarity between states is generally sufficient in order to group similar objects
in the same cluster and to put dissimilar objects in different clusters.

After generating the 100 pure states as described above, we permuted them
randomly and we removed all information as to which was their initial cluster.
The first clustering phase consisted in building a similarity matrix in which each
entry (x, y) represented the estimated fidelity between states x and y. The fidelity
between each pair of states was estimated using the C-Swap test with 20 samples,
which corresponds roughly to an absolute error of 0.15 in the fidelity estimates.
During the second clustering phase, the similarity matrix was given as input to a
classical clustering algorithm inspired by k-medians. This algorithm selected five
states at random as cluster centres (we told the algorithm the original number of
clusters) and then performed iteratively two steps until stabilization (or quasi-
stabilization). In the first step, states were assigned to their most similar centre;
in the second step, the centre of each cluster was recomputed by selecting the
point that maximized its similarity with the other points of the cluster.

The quality of this clustering process was measured by determining how well
points that were originally in the same cluster were still together and conversely
how well points that were originally in different clusters remained separated.
For this purpose, we used a metric ranging from 1 if all the points are perfectly
placed after clustering to −1 if they are completely messed up. According to this
metric, a completely random “clustering”, in which each state would be assigned
to a random cluster, exhibits an average “quality” of approximately 37%.

Figure 5 summarizes the results obtained for different values of the fidelity
threshold. As expected, the quality of the clustering process is at its best when
the fidelity threshold is high, because in this case the original clusters form
tightly packed balls that are far from each other. This quality remains above
97% even for a fidelity threshold as low as 0.6. The quality continues to decrease
with the fidelity threshold, reaching a level of roughly 60% for a fidelity threshold
of 0.1. Note that this is not very good compared to the worthless quality of 37%
obtained by random “clustering”. This phenomenon is due partly to the fact
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that clusters start to overlap as the fidelity threshold decreases, and also to the
imperfect quality of the estimates obtained using the C-Swap test. Naturally, if
one is not satisfied with those C-Swap estimates, there is always the option of
sacrificing more copies of the training states to refine the estimates.

6 Conclusions and Open Problems

In this paper, we have described a novel task and a new learning model that
corresponds to performing ML in a world in which information behaves accord-
ing to the laws of quantum mechanics—which is, of course, the real world. Using
quantum information has a great impact on the learning process and many of
our classical ML intuitions are being challenged in this world. On the other hand,
this model offers many interesting questions and perspectives, and studying it
could lead to insights both in ML and QIP. For practical purposes, quantum
ML algorithms have the potential to give a constructive answer to some detec-
tion scenarios. From a theoretical viewpoint, studying this model could lead to
discoveries about the notion of learning from a generic perspective and how it is
linked to the underlying physical theory on which it is based.

We have illustrated our model by showing some examples of clustering algo-
rithms, but algorithms for other ML tasks can also been designed. Currently,
we are developing quantum versions of ID3 [16] and AdaBoost [7] for classi-
fication by exploiting, respectively, the relationship between Shannon and von
Neumann entropy, and the resemblance between the notions of weak classifier
and weak measurement. We conclude this paper by mentioning but a few of our
many open problems: define analogues of classical notions of ML to the quantum
setting such as the test and the generalization errors or the margin, study the
different models of classical and quantum noise (see [14, §8.3] for different forms
of quantum noise) and how they affect the robustness of the quantum ML algo-
rithms, improve classical ML algorithms with quantum computation or devise
brand new algorithms adapted to this setting, study and define other classes of
learning such as when the training set is composed of mixed states, etc.
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Abstract. Human identification at distance by analysis of gait patterns
extracted from video has recently become very popular research in bio-
metrics. This paper presents multi-projections based approach to extract
gait patterns for human recognition. Binarized silhouette of a motion
object is represented by 1-D signals which are the basic image features
called the distance vectors. The distance vectors are differences between
the bounding box and silhouette, and extracted using four projections to
silhouette. Eigenspace transformation is applied to time-varying distance
vectors and the statistical distance based supervised pattern classifica-
tion is then performed in the lower-dimensional eigenspace for human
identification. A fusion strategy developed is finally executed to produce
final decision. Based on normalized correlation on the distance vectors,
gait cycle estimation is also performed to extract the gait cycle. Exper-
imental results on four databases demonstrate that the right person in
top two matches 100% of the times for the cases where training and test-
ing sets corresponds to the same walking styles, and in top three-four
matches 100% of the times for training and testing sets corresponds to
the different walking styles.

1 Introduction

Gait recognition is the term typically used in the computer community to
refer to the automatic extraction of visual cues that characterize the motion of a
walking person in video and is used for identification purpose in surveillance [1]
[2][3][4][7]. Often in surveillance applications, it is difficult to get face information
at the resolution required for recognition. As for gait is one of the few biometrics
and a behavioral biometric source that can be measured at a distance.

Gait recognition methods can be broadly divided into two groups, model based
and silhouette based approaches. Model based approaches [3][16] recover explicit
features describing gait dynamics, such as stride dimensions and the kinematics
of joint angles. The silhouette approach [7] [8][9][2], characterizes body movement
by the statistics of the patterns produced by walking. These patterns capture
both the static and dynamic properties of body shape.

In this paper, it is attempted to develop a simple but effective representation of
silhouette for gait-based human identification using silhouette analysis. Similar
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observations have been made in [8][9][2], but the idea presented here implicitly
captures both structural (appearances) and transitional (dynamics) character-
istics of gait. A more robust approach for gait cycle estimation which is very
important step in gait recognition is also presented. Instead of width/length
time signal of bounding box of moving silhouette usually used in existing gait
period analysis [3][10][11][2], here we analyze four projections extracted directly
from differences between silhouette and the bounding box, and further convert
them into associated four 1D signals. The novel approach presented is basically
to produce the distance vectors, which are four 1-D signals are extracted for each
projections, they are top-, bottom-, left-, and right-projections. Then normalized
correlation-based a similarity function is executed to estimate gait cycle of mov-
ing silhouette. As following main purpose, depending on four distance vectors,
PCA based gait recognition algorithm is first performed. A statistical distance
based similarity is then achieved to obtain similarity measures on training and
testing data. Next, fusion strategies on that similarities are calculated to pro-
duce final decision. Robust results for human identification have been obtained
at the experiments on four different databases.

2 Gait Feature Extraction and Classification

Given a sequence of images obtained from a static camera, the moving person
is first detected and tracked to compute the corresponding sequence of motion
regions in each frame. Motion segmentation is achieved via background model-
ing/subtraction using a dynamic background frame estimated and updated in
time, more details are given in [6]. Then a morphological filter operator is ap-
plied to the resulting images to suppress spurious pixel values. Once a silhouette
generated, a bounding box is placed around silhouette. Silhouette across a mo-
tion sequence are automatically aligned by scaling and cropping based on the
bounding box.

2.1 Gait Signature Extraction

Silhouette representation is based on the projections to silhouette which is gen-
erated from a sequence of binary silhouette images bs(t)= bs(x,y,t), indexed
spatially by pixel location (x,y) and temporally by time t. There are four dif-
ferent image features called the distance vectors. They are top-, bottom-, left-
and right-distance vectors. The distance vectors are the differences between the
bounding box and the outer contour of silhouette. An example silhouette and
the distance vectors corresponding to four projections are shown in the middle
of figure 1. The distance vectors are separately represented by four 1D signals.
The size of 1D signals for left-right projections is equal to the height of the
bounding box. For the top-bottom projections, it is equal to the width of the
bounding box. The data in that signals are the number of columns at each row
and the number of the rows at each column in which between bounding box and
silhouette for left-right-projections, and for top-bottom projections, respectively.
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Fig. 1. Silhouette representation. (Middle) Silhouette and four projections, (Left)
temporal plot of the distance vectors for top and bottom projections, (Right) temporal
plot of the distance vectors for left and right projections.

Form a new 2D image FT (x, t) =
∑

y bs(x, y, t), where each column (indexed
by time t) is the top-projections (row sum) of silhouette image bs(t), as shown
in figure 1.top-left. The meaning of bs(x, y, t) is complement of silhouette shape,
that is empty pixels in the bounding box. Each value FT (x, t) is then a count of
the number of rows empty pixels between the top side of the bounding box and
the outer contours in that columns x of silhouette image bs(t). The result is a 2D
pattern, formed by stacking row projections (from top of the bounding box to
silhouette) together to form a spatio-temporal pattern. A second pattern which
represents the bottom-projection FB(x, t) =

∑
−y bs(x, y, t) can be constructed

by stacking row projections (from bottom to silhouette), as shown in figure
1.bottom-left. The third pattern FL(y, t) =

∑
x bs(x, y, t) is then constructed by

stacking columns projections (from left of the bounding box to silhouette) and
the last pattern FR(y, t) =

∑
−x bs(x, y, t) is also finally constructed by stacking

columns projections (from right to silhouette), as shown in figure 1.top-right
and bottom-right 2D patterns, respectively. The variation of each component of
the each distance vectors can be regarded as gait signature of that object. From
the temporal distance vector plots, it is clear that the distance vector is roughly
periodic and gives the extent of movement of different part of the subject. The
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brighter a pixel in 2D patterns in figure 1, the larger value is the value of the
distance vector in that position.

2.2 Training

The representation of 2D silhouette shape by four 1D signals, called distance
vectors, significantly reduces the subsequent computational cost. To eliminate
the influence of spatial scale and signal length of the distance vectors, the al-
gorithm scales these distance vector signals with respect to magnitude and size
through the sizes of the bounding boxes. Next, eigenspace transformation based
on Principal Component Analysis (PCA) is applied to time varying distance vec-
tors derived from a sequence of silhouette images to reduce the dimensionality
of the input feature space. The training process similar to [2][5] is illustrated as
follows:

Given k class for training, and each class represents a sequence of the dis-
tance vector signals of a person in one gait cycle. Multiple sequences of each
person can be separately added for training. Let V w

i,j be the jth distance vector
signal in the ith class for w projection to silhouette and Ni the number of such
distance vector signals in the ith class. The total number of training samples
is Nw

t = Nw
1 + Nw

2 + ... + Nw
k , as the whole training set can be represented

by [V w
1,1, V

w
1,2, .., V

w
1,N1

, V w
2,1, ..., V

w
k,Nk

]. The mean mw
v and the global covariance

matrix
∑w of w projection training set can easily be obtained by

mw
v =

1
Nw

t

k∑
i=1

Nw
i∑

j=1

V w
i,j (1)

w∑
=

1
Nw

t

k∑
i=1

Nw
i∑

j=1

(V w
i,j − mw

v )(V w
i,j − mw

v )T (2)

Here each V w represents the distance vectors, Fw, for w projection (Top-Bottom-
Left-Right) as explained in section 2.1. If the rank of matrix

∑
is N , then the N

nonzero eigenvalues of
∑

, λ1, λ2, .., λN , and associated eigenvectors e1, e2, .., eN

can be computed based on theory of singular value decomposition [5]. The first
few eigenvectors correspond to large changes in training patterns, and higher-
order eigenvectors represent smaller changes [2]. As a result, for computing ef-
ficiency in practical applications, those small eigenvalues and their correspond-
ing eigenvectors are ignored. Then a transform matrix T w = [ew

1 , ew
2 , .., ew

s ] to
project an original distance vector signal V w

i,j into a point Pw
i,j in the eigenspace

is constructed by taking only s < N largest eigenvalues and their associated
eigenvectors for each projections to silhouette. Therefore, s values are usually
much smaller than the original data dimension N . Then the projection average
Ai

w of each training sequence in the eigenspace is calculated by averaging of Pw
i,j .

2.3 Pattern Classification

Statistical distance measuring has initially been selected for classification.
The accumulated distance between the associated centroids Aw (obtained in the
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process of training) and Bw (obtained in the process of testing) can be easily
computed by

dS(A, B) =

√
(
A1 − B1

s1
)2 + ... + (

Ap − Bp

sp
)2 =

√
(A − B)tS−1(A − B) (3)

Where S = diag(s2
1, ..., s

2
p). In the distance measure, the classification result for

each projection is then accomplished by choosing the minimum of d. The classifi-
cation process is carried out via the nearest neighbor classifier. The classification
is performed by classifying the test sequence into class c that can minimize the
similarity distance between the test sequence and all training sequences by

c = argi min di(T, Ri) (4)

where T represents a test sequence, Ri represents the ith training sequence, d is
the similarity measures described in above.

A fusion task includes two different strategies is finally developed. In the
strategy 1, each projection is separately treated. Then the strategy 1 is com-
bining the distances of each projections at the end by assigning equal weight.
The final similarity using strategy 1 is calculated as follows:

Di =
4∑

j=1

αj ∗ dji (5)

where Di is the fused distance similarity value, j is the algorithm’s index for pro-
jection, α its normalized weight, di its single projection distance similarity value
and 4 is the number of projections (left, right, top, bottom). As conclusion, if
any two distance similarity vectors in four projections give maximum similarities
for same person, then the identification is determined as positive. This fusion
strategy has rapidly increased the recognition performance in the experiments.

At the experiments, it has been seen that some projection has given more
robust results than others. For example, while human moves in lateral view with
respect to image plane, the back side of human can give more individual char-
acteristics in gait. So, the projection corresponding to that side can give more
reliable results. We called dominant feature to this case. As a result, the strat-
egy 2 has also been developed to further increase the recognition performance.
In the strategy 2, if the projection selected as dominant feature gives positive
or at least two projections of others give positive for an individual, then identi-
fication by fusion process is to be positive. The dominant feature in this work
is automatically assigned by estimating the direction of motion objects under
tracking. At the next section, the dominant features determined by experimen-
tally for different view points with respect to image plane are also given.

3 Gait Cycle Estimation

Gait cycle estimation is especially very important at the gait identification.
Several vision methods have exploited this fact to compute the period of hu-
man gait from image features [10][11][2]. Most works using silhouette-based
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Fig. 2. Gait cycle estimation, and motion analysis

gait recognition in literature estimate gait cycle depending on the variation of
bounding box over time. Sarkar et.al [7] estimate gait periodicity by counting
the number of foreground pixels in silhouette in each frame over time. These
approaches can work for near frontoparallel views, would not work for frontal
views. The algorithm present in this work uses silhouette data itself only, not
depending to bounding box, and is also view-invariant technique to estimate gait
cycle.

The algorithm steps are shown in figure 2 and as follows. The output of the
detecting/tracking module gives a sequence of bounding boxes for every object
[6]. First step in the algorithm is to take projections, and to calculate the nor-
malized correlation between consecutive frames. The elimination of the influence
of spatial scale and signal length are inherently achieved by selecting consecutive
frames. At the cycle estimation, to quantify the signals of the correlation results,
we may first remove their background component by subtracting their mean and
dividing by their standard deviation, and then smooth them with a symmetric
average filter. Further, we compute their autocorrelation to find peaks, as shown
in figure 2.
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View 1 View 2 View 3 View 4 View 5 View 6

Fig. 3. The six CMU database viewpoints

Some of the experimental results on the algorithm proposed and variations
of the bounding box which were used in [10][11][2], were compared in the work
[15]. Test sequence includes two main different actions, ones contains 17 people
(2 child, 15 adults) walking and running, the other sequence also contains 22 per-
sons (2 females, 20 males) walking only, frame rate is 25 frame per second, and the
original resolution is 352x 240. All subjects walk/run along a straight-line path
at free cadences in different views (laterally, frontally, obliquely). At the experi-
ments for the subjects move frontally with respect to the image plane, although
the periodical characteristics of moving silhouettes are correctly detected by left-
and right-projections based the distance vectors, but there has not been able to
achieved any periodical characteristics by the results of the signals depending on
the bounding box. The gait cycle estimation presented here has achieved more
robust experimental results than the variation of the bounding box based gait
cycle estimation for frontal views. For lateral and oblique views, both algorithms
can easily detect the gait cycles. Additionally, the gait cycle estimation algorithm
was also used to discriminate the human motions, such as walking and running,
by re-implementing cycle period in time, and by moving to Fourier domain, as
shown in Fig. 2. In that domain, the main frequency of motion is estimated by
determining the peak which has largest impulse from the significant peaks in the
frequency power spectrum. The more details were not given here because it not
main purpose in this paper, but they can be found in the work [15].

4 Experiments and Results

The performance of the proposed algorithm has been evaluated on CMU’s MoBo
database[13], NLPR gait database [2], KTU database, and USF database [7]. The
Viterbi algorithm was used to identify the test sequence, since it is efficient and
can operate in the logarithmic domain using only additions [12]. The performance
of the algorithm presented is evaluated on four different databases of varying of
difficulty.

4.1 CMU Database

This database has 25 subjects (23 males, 2 females) walking on a treadmill. Each
subject is recorded performing four different types of walking: slow walk, fast
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walk, inclined walk, and slow walk holding ball. There are about 8 cycles in
each sequence, and each sequences is recorded at 30 frames per second. It also
contains six simultaneous motion sequence of 25 subjects, as shown in figure 3.

One of the cycle in each sequence was used for testing, others for training.
First, we did the following experiments on this database: 1) train on slow walk
and test on slow walk, 2) train on fast walk and test on fast walk, 3) train on
walk carrying a ball and test on walk carrying a ball, 4) train on slow walk and
test on fast walk, 5) train on slow walk and test on walk carrying a ball, 6)
train on fast walk and test on slow walk, 7) train on fast walk and test on walk
carrying a ball, 8) train on walk carrying a ball and test on slow walk, 9) train
on walk carrying a ball and test on fast walk.

The results obtained using the proposed method are summarized on the all
cases 1)-9) in Table 1. It can be seen that the right person in the top two
matches 100% of times for the cases where testing and training sets correspond
to the same walk styles. When the strategy developed in the fusion as dominant
feature (projections) is used, the recognition performance is increased, as seen in
Table 1. For the case of training with fast walk and testing on slow walk, and vice
versa, the dip in performance is caused due to the fact that for some individual as
biometrics suggests, there is a considerable change in body dynamics and stride
length as a person changes his speed. Nevertheless, the right person in the top
three matches 100% of the times for that cases, and dominant projection strategy
has also increased the recognition performance for Ranks 1 and 2. For the case
of training with walk carrying ball and testing on slow and fast walks, and
vice versa, encouraging results have also been produced by using the proposed
method, and the dominant feature property has still increased the recognition
performance, as given in Table 1.

For the other view points, the experimental results are also summarized on
the cases 1)-4) in Table 2. When the all experimental results for the different
view points are considered, it can be seen that, the right person in the top two
matches 100% and in the top four matches 100% of the times for the cases 1)-2)
and for the cases 3)-4), respectively. It is also seen that, when the dominant

Table 1. Classification performance on the CMU data set for viewpoint 1

All projections: equal Dominant: Right projection
Test/Train Rank 1 Rank 2 Rank 3 Rank 4 Rank 1 Rank 2 Rank 3
Slow/Slow 72 100 100 100 84 100 100
Fast/Fast 76 100 100 100 92 100 100
Ball/Ball 84 100 100 100 84 100 100
Slow/Fast 36 92 100 100 52 100 100
Fast/Slow 20 60 100 100 32 88 100
Slow/Ball 8 17 33 58 42 96 100
Fast/Ball 4 13 33 67 17 50 88
Ball/Slow 8 17 38 67 33 88 100
Ball/Fast 13 29 58 92 29 63 100
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Table 2. Classification performance on the CMU data set for all views. Eight gait
cycles were used, seven cycles for training, one cycle for testing.

All projections equal Dominant: Right projection
View Test/Train Rank 1 Rank 2 Rank 3 Rank 1 Rank 2 Rank 3

Slow/Slow 76 100 100 84 100 100
4 Fast/Fast 84 100 100 96 100 100

Slow/Fast 12 44 80 24 64 100
Fast/Slow 20 64 100 32 76 100

Dominant: Left projection
Slow/Slow 80 100 100 80 100 100

5 Fast/Fast 88 100 100 88 100 100
Slow/Fast 16 44 80 24 64 100
Fast/Slow 24 56 96 32 68 100

Dominant: Right projection
Slow/Slow 80 100 100 88 100 100

3 Fast/Fast 72 100 100 76 100 100
Slow/Fast 20 64 100 28 76 100
Fast/Slow 24 56 92 28 68 100

Dominant: Right projection
Slow/Slow 72 100 100 84 100 100

6 Fast/Fast 76 100 100 80 100 100
Slow/Fast 16 44 88 36 76 100
Fast/Slow 16 40 72 24 56 100

feature is used, gait recognition performance is also increased. Consequently, the
proposed method for gait recognition can easily be seen that, it is view-invariant.

4.2 NLPR Database

The NLPR database [2] includes 20 subjects and four sequences for each viewing
angle per subject, two sequences for one direction of walking, the other two
sequences for reverse direction of walking. For instance, when the subject is
walking laterally to the camera, the direction of walking is from right to left for
two of four sequences, and from right to left for the remaining. Those all gait
sequences were captured as twice (we called two experiments) on two different
days in an outdoor environment. All subjects walk along a straight-line path at

Lateral view Oblique view Frontal view

Fig. 4. Some images in the NLPR database
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Table 3. Performance on the NLPR data set for three views

Walking Direction View Training Test Rank1 Rank2 Rank3
Exp. 1 Exp. 1 65 100 100

Lateral Exp. 1 Exp. 2 55 100 100
One Exp. 1 Exp. 1 60 100 100
Way Frontal Exp. 1 Exp. 2 35 100 100

Walking Exp. 1 Exp. 1 40 90 100
Oblique Exp. 1 Exp. 2 30 60 100

Exp. 1 Exp. 1 60 100 100
Lateral Exp. 1 Exp. 2 50 100 100

Reverse Exp. 1 Exp. 1 60 100 100
Way Frontal Exp. 1 Exp. 2 40 100 100

Walking Exp. 1 Exp. 1 45 100 100
Oblique Exp. 1 Exp. 2 35 75 100

free cadences in three different views with respect to the image plane, as shown
in figure 4, where the white line with arrow represents one direction path, the
other walking path is reverse direction.

We did the following experiments on this database: 1) train on one image
sequence and test on the remainder, all sequences were produced from first ex-
periment, 2) train on two sequences obtained from first experiment and test
on two sequences obtained from second experiment. This is repeated for each
viewing angle, and for each direction of walking. The results for the experiments
along with cumulative match scores in three viewing angle are summarized in
Table 3. When the experimental results are considered, the right person in the
top two matches 100% of times for lateral and frontal viewing angles, and in the
top three matches 100% of times for oblique view.

4.3 KTU Database

The database established for gait recognition has 22 people (2 females, 20 males),
and subjects are walking laterally to the camera, the directions of walking is from
left to right, and from right to left. The database includes two sequences for each
subject. One sequence includes 3 gait cycle for each direction, and the length
of each gait cycle varies with the pace of the walker, but the average is about
26 frames. The subjects walk along a straight-line path at free cadences, and 15
subjects were walking outside, seven subjects were walking inside. The results
for the experiments along with cumulative match scores in lateral view are also
summarized in Table 4. Three gait cycles were used, two cycles for training, one
cycle for testing. Walking from left to right and the other direction are separately
tested to achieve initial experimental results. When the results of each projection
based distance vectors are re-implemented by using dominant feature strategy as
explained in section 2.3, significantly improvements on the gait recognition has
also been achieved. This is the robust implementation and is one of the novelty
presented by this paper.
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Table 4. Performance on KTU data set: (The abbreviation used :L⇒ R : From Left
to Right)

Outdoor(15 person) Indoor(7 person) All(22 person)
Direction Rank 1 Rank 2 Rank 1 Rank 2 Rank 1 Rank 2 Rank 3
L⇒ R 67 100 86 100 68 95 100
R⇒ L 67 100 71 100 68 100 100

4.4 USF Database

Finally, the USF database [7] is considered. The database has variations as re-
gards viewing direction, shoe type, and surface type. At the experiments, one of
the cycle in each sequence was used for testing, others (3-4 cycles) for training.
Different probe sequences for the experiments along with the cumulative match
scores are given in Table 5 for the algorithm presented in this paper and three
different algorithms [17][2][8]. The same silhouette data from USF were directly
used. These data are noisy, e.g., missing of body parts, small holes inside the
objects, severe shadow around feet, and missing and adding some parts around
the border of silhouettes due to background characteristics. In Table 5, G and
C indicate grass and concrete surfaces, A and B indicate shoe types, and L and
R indicate left and right cameras, respectively. The number of subjects in each
subset is also given in square bracket. It is observed that, the proposed method
has given the right person in top three matches 100% of the times for training
and testing sets corresponding to the same camera.

Table 5. Performance on the USF database for four algorithm

The method Baseline[17] NLPR[2] UMD[8]
Exp. Rnk 1 Rnk 2 Rnk 3 Rnk 1 Rnk 5 Rnk 1 Rnk 5 Rnk 1 Rnk 5

GAL[68] 35 80 100 79 96 70 92 91 100
GBR[44] 34 82 100 66 81 58 82 76 81
GBL[44] 25 55 91 56 76 51 70 65 76
CAL[69] 39 90 100 30 46 27 38 24 46
CBL[41] 30 78 100 10 33 14 26 15 33
CBR[41] 29 66 100 24 55 21 45 29 39
GAR[68] 34 60 90 – - - - - -

5 Conclusion

This paper has described a novel gait recognition approach that uses multi pro-
jections of silhouettes as the basic feature for classification. The approach on
gait cycle estimation and on gait recognition is view-invariant and is fully auto-
matic for real time applications. The performance of the gait recognition method
proposed was also illustrated using different gait databases. The more details on
the comparison of the performance of the proposed algorithm with those of a
few recent silhouette-based methods described in literature can also be found in
previous work in [14].
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Abstract. Näıve Bayes Tree uses decision tree as the general struc-
ture and deploys näıve Bayesian classifiers at leaves. The intuition is
that näıve Bayesian classifiers work better than decision trees when the
sample data set is small. Therefore, after several attribute splits when
constructing a decision tree, it is better to use näıve Bayesian classifiers
at the leaves than to continue splitting the attributes. In this paper, we
propose a learning algorithm to improve the conditional probability es-
timation in the diagram of Näıve Bayes Tree. The motivation for this
work is that, for cost-sensitive learning where costs are associated with
conditional probabilities, the score function is optimized when the esti-
mates of conditional probabilities are accurate. The additional benefit is
that both the classification accuracy and Area Under the Curve (AUC)
could be improved. On a large suite of benchmark sample sets, our ex-
periments show that the CLL tree outperforms the state-of-art learning
algorithms, such as Näıve Bayes Tree and näıve Bayes significantly in
yielding accurate conditional probability estimation and improving clas-
sification accuracy and AUC.

1 Introduction

Classification is a fundamental issue of machine learning in which a classifier is
induced from a set of labeled training samples represented by a vector of attribute
values and a class label. We denote attribute set A = {A1, A2, . . . , An}, and an
assignment of value to each attribute in A by a corresponding bold-face lower-
case letter a. We use C to denote the class variable and c to denote its value.
Thus, a training sample is represented as E = (a, c), where a = (a1, a2, . . . , an),
and ai is the value of attribute Ai. A classifier is a function f that maps a
sample E to a class label c, i.e. f(a) = c. The inductive learning algorithm
returns a function h that approximates f . The function h is called a hypothesis.
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The classifier can predict the assignment of C for an unlabeled testing sample
Et = (b), i.e. h(b) = ct.

Various inductive learning algorithms, such as decision trees, Bayesian net-
works, and neural networks, can be categorized into two major approaches:
probability-based approach and decision boundary-based approach. In a genera-
tive probability learning algorithm, a probability distribution p(A, C) is learned
from the training samples as a hypothesis. Then we can theoretically compute
the probability of any E in the probability space. A testing sample Et = (b) is
classified into the class c with the maximum posterior class probability p(c|b)
(or simply class probability), as shown below.

h(b) = argmax
c∈C

p(c|b) = argmax
c∈C

p(c,b)/p(b) (1)

Decision tree learning algorithms are well known as decision boundary-based.
Though their probability estimates are poor, the algorithms can make good de-
cisions on which side of the boundary a sample data falls. Decision trees work
better when the sample data set is large. It is because, after several splits of at-
tributes, the number of samples at the subspaces is too few on which to base the
decision, while näıve Bayesian classifier works better in this case. Therefore, in-
stead of continuing to split the attributes, näıve Bayesian classifiers are deployed
at the leaves. [5] proposed this hybrid model called Näıve Bayes Tree (NBTree).
It is reported that NBTree outperforms C4.5 and näıve Bayes in classification
accuracy and AUC.

In this paper, we propose to use NBTree to improve the conditional proba-
bility estimation given the support attributes, i.e. p(C|A). Accurate conditional
probability is important in many aspects. First, in cost-sensitive classification,
knowing the accurate conditional probability is crucial in making a decision.
Determining only the decision boundary is not enough. Second, improving con-
ditional probability can possibly improve classification accuracy, though it is
not a necessary condition. Third, improving conditional probability can improve
AUC which is a metric used for ranking.

Our proposed learning algorithm is a greedy and recursive procedure similar
to NBTree. In each step of expanding the decision tree, the Conditional Log
Likelihood (CLL) is used as the score function to select the best attribute to
split, where let the CLL of a classifier B, given a (sub) sample set S be

CLL(B|S) =
n∑

s=1

log PB(C|A) (2)

The splitting process ends when some conditions are met. Then for the sam-
ples at leaves, näıve Bayesian classifiers are generated. We call the generated
tree CLL Tree (CLLTree). We present that on a large suite of benchmark sam-
ple sets, our empirical results show that CLLTree significantly outperforms the
state-of-art learning algorithms, such as NBTree and näıve Bayes in yielding
accurate probability estimation, classification accuracy and AUC.



Learning Näıve Bayes Tree for Conditional Probability Estimation 457

2 Related Work in Decision Tree Probability Estimation

The probability generated from decision tree is calculated from the sub sample
sets at leaves corresponding to the conjunction of the conditions along the paths
back to the root [8]. Assume a leaf node defines a subset of 100 samples, 90 of
which are in the positive class and others are in the negative class, then each
sample is assigned the same probability of 0.9 (90/100) that it belongs to the
positive class, i.e. p̂(+|Ap = ap) = 90%, where Ap is the set of attributes on
the path. Viewed as probability estimators, decision trees consist of piecewise
uniform approximations within regions defined by axis-paralleled boundaries.
Aiming at this fact, [8] presented two methods to improve the probability esti-
mation of decision tree. First, by using Laplace estimation, probability estimates
can be smoothed from small sample data at the tree leaves. Second, by turning
off pruning and “collapsing” in C4.5, decision trees can generate finer trees to
give more precise probability estimation. The final version is called C4.4.

Another improvement to tackle the “uniform probability distribution” prob-
lem of decision trees is to stop splitting at a certain level and put another prob-
ability density estimator at each leaf. [5] proposed an NBTree that uses decision
tree as the general structure and deploys näıve Bayes classifiers at the leaves.
This learning algorithm first uses classification accuracy as the score function
to do univariate splits and when splitting does not increase the score function,
a näıve Bayesian classifier is created at the leaf. Thus, sample attributes are
divided into two sets: A = Ap ∪ Al, where Ap is the set of path attributes and
Al is the set of leaf attributes. [10] proposed one encode of p(C,A) for NBTree.
The proposed Conditional Independent Tree (CITree) denotes p(A, C) as below:

p(A, C) = αp(C|Ap(L))p(Al(L)|Ap(L), C) (3)

where α is a normalization factor. The term p(C|Ap(L)) is the joint condi-
tional distribution of path attributes and the term p(Al(L)|Ap(L), C) is the leaf
attributes presented by näıve Bayes p(Al|Ap(L), C) =

∏n
i=1 p(Ali|Ap(L), C).

CITree explicitly defines conditional dependence among the path attributes and
independence among the leaf attributes. The local conditional independence as-
sumption of CITree is a relaxation of the (global) conditional independence as-
sumption of näıve Bayes.

Building decision trees with accurate probability estimation, called Probabil-
ity Estimation Trees (PETs), has received a great deal of attention recently [8].
The difference of PET and CITree is that PET represents the conditional prob-
ability distribution of the path attributes, while a CITree represents a joint
distribution over all attributes.

Another related work involves Bayesian networks [7] which are directed
acyclic graphs that encode conditional independence among a set of random
variables. Each variable is independent of its non-descendants in the graph given
the state of its parents. Tree Augmented Näıve Bayes (TAN) [3] approximates
the interaction between attributes by using a tree structure imposed on the
näıve Bayesian framework. We point out that, although TAN takes advantage
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of tree structure, it is not a decision tree. Indeed, decision trees divide a sample
space into multiple subspaces and local conditional probabilities are independent
among those subspaces. Therefore, attributes in decision trees can repeatedly
appear, while TAN describes the joint probabilities among attributes, so each
attribute appears only once. In decision trees, p(C|A) is decomposable when a
(sub) sample set is split into subspaces, but it is non-decomposable in TAN.

3 Learning Näıve Bayes Tree for Conditional Probability
Estimation

In this section, we present our work on improving conditional probability esti-
mation of näıve Bayes Tree. First, we select the evaluation metrics. Second, we
present the principles of representing CLL in CLL Tree. Last, we present a new
algorithm for learning the näıve Bayes tree.

3.1 The Performance Evaluation Metrics

Accurate conditional probability p(C|A) is important for many applications.
Since it is justified that log p is a monotonic function of p and we use conditional
log likelihood (CLL) for calculation, we mix the usage of CLL and conditional
probability hereafter. In cost-sensitive classification, the optimal prediction for
a sample b is the class ci that minimize [2]

h(b) = arg min
ci∈C

∑
cj∈C−ci

p(cj |b)C(ci, cj) (4)

One can see that the score function in cost-sensitive learning directly relies on
the conditional probability. It is not like the classification problem where only the
decision boundary is important. Accurate estimation of conditional probability
is necessary for cost-sensitive learning.

Better conditional probability estimation means better classification accuracy
(ACC) (c.f. Equation 1). ACC is calculated as the percentage of the correctly
classified samples over all the samples: ACC = 1

N

∑
I(h(a) = c), here N is the

number of samples. However, improving conditional probability estimation is not
a necessary condition for improving ACC. ACC can be scaled up through other
ways, e.g. boundary-based approaches. On the other side, even if conditional
probability is greatly improved, it may still lead to wrong classification.

Ranking is different from both classification and probability estimation. For
example, assume that E+ and E− are a positive and a negative sample respec-
tively, and that the actual class probabilities are p(+|E+) = 0.9 and p(−|E−) =
0.1. An algorithm that gives class probability estimates p̂(+|E+) = 0.55 and
p̂(+|E−) = 0.54, gives a correct order of E+ and E− in the ranking. Notice
that the probability estimates are poor and the classification for E− is incorrect.
However, if a learning algorithm produces accurate class probability estimates,
it certainly produces a precise ranking. Thus, aiming at learning a model to yield
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accurate conditional probability estimation will usually lead to a model yielding
precise probability-based ranking.

In this paper, we use three different metrics CLL, ACC and AUC to evaluate
learning algorithms.

3.2 The Representation of CLL in CLLTree

The representation of conditional probability in the diagram of CLLTree is as
follows:

log(p(C|A)) = log(p(C|Al,Ap) = log(p(C|Ap))+log(p(Al|C,Ap))−log(p(Al|Ap))

(5)
Ap divides a (sub) sample set into several subsets. All decomposed terms are the
conditional probability of Ap. p(C|Ap) is the conditional probability on the path
attributes; p(Al|C,Ap) is the näıve Bayesian classifier at a leaf; and p(Al|Ap)
is the joint probability of Al under condition of Ap.

In each step of generating the decision tree, CLL is calculated based on Equa-
tion 5. Assuming Ali denotes a leaf attribute, here, p(C|Ap) is calculated by
the ratio of the number of samples that have the same class value to all the
samples at a leaf; p(Al|C,Ap) can be represented by

∏m
i=1 p(Ali|C,Ap) (m is

the number of attributes at a leaf node), and each p(Ali|C,Ap) can be calcu-
lated by the ratio of the number of samples that have the same attribute value
of Ali and the same class value to the number of samples that have the same
class value; likewise, p(Al|Ap) can also be represented by

∏m
i=1 p(Ali|Ap), and

each p(Ali|Ap) can be calculated by the ratio of the number of samples that
have the same attribute value of Ali to the number of samples at that leaf. The
attribute to optimize CLL is selected as the next level node to extend the tree.
We exhaustively build all possible trees in each step and keep only the best on
for the next level expansion. Supposing finite k attributes are available. When
expanding the tree at level q, there are k − q + 1 attributes to be chosen. This is
a greedy way. CLLTree makes an assumption on probability, i.e. the probability
dependency on the path attributes and the probability independency on the leaf
attributes. Besides, it also has another assumption on the structure that each
node has only one parent.

3.3 A New Algorithm for Learning CLLTree

From the discussion in the previous sections, CLLTree can represent any joint
distribution. Therefore, the probability estimation based on CLLTree is accurate.
But the structure learning of a CLLTree could theoretically be as time-consuming
as learning an optimal decision tree. A good approximation of a CLLTree, which
gives relatively accurate estimates of class probabilities, is desirable in many
applications. Similar to a decision tree, building a CLLTree could be a greedy
and recursive process. On each iteration, choose the “best” attribute as the root
of the (sub) tree, split the associated data into disjoint subsets corresponding to
the values of that attribute, and recur this process for each subset until certain
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criteria are satisfied. If the structure of a CLLTree is determined, a leaf näıve
Bayes is a perfect model to represent the local conditional distribution at leaves.
The algorithm is described below.

Algorithm 1. Learning Algorithm CLLTree(T , S, A)
T : CLLTree
S: a set of labeled samples
A: a set of attributes

for each attribute a ∈ A do
Partition S into S1, S2, ..., Sk, where k is the number of possible values of
attribute a. Each sub set is corresponding to a value of a. For continuous
attributes, a threshold is set up in this step.
Create a näıve Bayes for each Si.
Evaluate the split on the attribute a in terms of CLL.

Choose the attribute At with the highest split CLL.
if the split CLL is not improved greatly than the CLL of attribute At then

create a leaf näıve Bayes for this attribute.
else

for all values Sa of At do
CLLTree(Ta, Sa, A − At).

add Ta as a child of T
Return T

In our algorithm, we adopt a heuristic search process in which we choose an
attribute with the greatest improvement on the performance of the resulting
tree. Precisely speaking, on each iteration, each candidate attribute is chosen
as the root of the (sub) tree, the resulting tree is evaluated, and we choose
the attribute that achieves the highest CLL value. We consider two criteria for
halting the search process. For one, we could stop splitting when none of the
alternative attributes significantly improve probability estimation, in the form
of CLL. Or, to make a leaf näıve Bayes work accurately, there are at least 30
samples at the current leaf. We define a split to be significant if the relative
increase in CLL is greater than 5%. Note that we train a leaf näıve Bayes by
adopting an inner 5-fold cross-validation on the sub sample set S which fall into
the current leaf. For example, if an attribute has 3 attribute values which will
result in three leaf näıve Bayes, the inner 5-fold cross-validations will be run in
three leaves. Furthermore, we compute CLL by putting the samples from all the
leaves together rather than computing the CLL for each leaf separately.

It is also worth noting, however, the different biases between learning a CLL-
Tree and learning a traditional decision tree. In decision tree, the building process
is directed by the purity of the (sub) sample set measured by information gain,
and the crucial point in selecting an attribute is whether the resulting split of the
samples is“pure”or not. However, such a selection strategy does not necessarily
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lead to the truth of improving the probability estimation of a new sample. In
building a CLLTree, we intend to choose the attributes that maximize the pos-
terior class probabilities p(C|A) among the samples at the current leaf as much
as possible. That means, even though there possibly exists the high impurity of
its leaves, it could still be a good CLLTree.

4 Experimental Methodology and Results

For the purpose of our study, we used 33 well-recognized sample sets from many
domains recommended by Weka [9]. There is a brief description of these sample
sets in Table 1. All sample sets came from the UCI repository[1]. The preprocess-
ing stages of sample sets were carried out within the Weka platform, mainly
including the following three steps:

1. Applying the filter of ReplaceMissingValues in Weka to replace the missing
values of attributes.

2. Applying the filter of Discretize in Weka to discretize numeric attributes.
Therefore, all the attributes are treated as nominal.

3. It is well known that, if the number of values of an attribute is almost equal
to the number of samples in a sample set, this attribute does not contribute

Table 1. Description of sample sets used by the experiments

Sample Set Size Attr. Classes Missing Numeric
anneal 898 39 6 Y Y
anneal.ORIG 898 39 6 Y Y
audiology 226 70 24 Y N
balance 625 5 3 N Y
breast 286 10 2 Y N
breast-w 699 10 2 Y N
colic 368 23 2 Y Y
colic.ORIG 368 28 2 Y Y
credit-a 690 16 2 Y Y
credit-g 1000 21 2 N Y
diabetes 768 9 2 N Y
glass 214 10 7 N Y
heart-c 303 14 5 Y Y
heart-h 294 14 5 Y Y
heart-s 270 14 2 N Y
hepatitis 155 20 2 Y Y
hypoth. 3772 30 4 Y Y
iris 150 5 3 N Y
kr-vs-kp 3196 37 2 N N
labor 57 17 2 Y Y
letter 20000 17 26 N Y
lymph 148 19 4 N Y
mushroom 8124 23 2 Y N
p.-tumor 339 18 21 Y N
segment 2310 20 7 N Y
sick 3772 30 2 Y Y
soybean 683 36 19 Y N
splice 3190 62 3 N N
vehicle 846 19 4 N Y
vote 435 17 2 Y N
vowel 990 14 11 N Y
waveform 5000 41 3 N Y
zoo 101 18 7 N Y
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Table 2. Experimental results for CLLTree versus Näıve Bayes Tree (NBTree), näıve
Bayes (NB) and Tree Augmented Näıve Bayes (TAN); C4.4, C4.4 with bagging (C4.4-
B) and C4.5 with Laplace estimation (C4.5-L): Conditional Log Likelihood (CLL) &
standard deviation

Sample Set CLLTree NBTree NB TAN C4.4 C4.4-B
anneal -10.78 -18.46 -14.22 -6.29 -7.84 -13.74
anneal.ORIG -22.28 -33.33 • -23.58 -19.55 -22.17 -40.13 •
audiology -75.58 -95.28 -65.91 -67.19 -15.37 ◦ -35.95 ◦
balance-scale -29.81 -31.75 • -31.75 • -34.78 • -52.78 • -46.71 •
breast-cancer -18.88 -20.47 -18.37 -18.17 -18.56 -17.07
breast-w -11.43 -17.47 -18.28 -12.14 -11.17 -10.13
colic -30.82 -34.42 -30.63 -26.22 -17.80 ◦ -15.18 ◦
colic.ORIG -24.96 -38.50 • -21.24 -22.36 -17.66 ◦ -16.09 ◦
credit-a -26.98 -34.52 • -28.79 -28.07 -28.06 -26.58
credit-g -52.61 -62.44 -52.79 -56.16 -61.03 • -53.68
diabetes -40.30 -42.70 -40.78 • -42.51 -43.05 -40.19
glass -26.06 -31.06 -24.08 -26.15 -21.02 -29.77
heart-c -17.92 -15.70 -13.91 -14.01 -15.85 -25.93 •
heart-h -15.93 -14.73 -13.49 -12.96 -14.78 -24.12 •
heart-statlog -12.01 -16.31 -12.25 -14.60 • -14.00 -12.61
hepatitis -9.38 -9.18 -8.53 -8.16 -6.81 -6.20
hypothyroid -95.50 -98.23 -97.14 -93.72 -90.14 -104.87 •
iris -2.73 -2.69 -2.56 -3.12 -3.63 -4.01 •
kr-vs-kp -18.39 -28.01 -93.48 • -60.27 • -8.65 ◦ -7.92 ◦
labor -1.50 -1.03 -0.71 -2.23 -2.22 -2.13
letter -1853.63 -2193.71 •-2505.15 •-1272.27 ◦-1048.56 ◦-2927.76 •
lymph -9.16 -8.48 -6.22 -7.15 -7.75 -9.85
mushroom 0.00 -0.14 • -105.77 • -0.19 -2.10 • -2.18 •
primary-tumor -74.57 -74.19 -65.56 ◦ -69.75 -50.98 ◦ -82.41
segment -61.82 -111.94 • -124.32 • -40.15 ◦ -48.76 -97.61 •
sick -24.51 -45.55 • -46.05 • -28.91 • -21.10 ◦ -19.66 ◦
soybean -17.39 -28.63 -26.25 -8.06 ◦ -18.39 -61.37 •
splice -46.58 -47.11 -46.53 -46.89 -66.48 • -78.71 •
vehicle -98.66 -137.97 • -172.12 • -57.52 ◦ -55.24 ◦ -70.21 ◦
vote -7.78 -7.35 -27.25 • -7.91 -6.90 -6.10
vowel -38.23 -45.93 -89.80 • -21.87 ◦ -71.55 • -152.25 •
waveform-5000 -228.39 -309.13 • -378.00 • -254.80 • -318.55 • -351.30 •
zoo -2.14 -1.29 -1.22 -1.07 -2.74 -4.59 •
•, ◦ statistically significant degradation or improvement compared with CLLTree

any information to classification. So we used the filter of Remove in Weka
to delete these attributes. Three occurred within the 33 sample sets, namely
Hospital Number in sample set horse-colic.ORIG, Instance Name in sample
set Splice and Animal in sample set zoo.

To avoid the zero-frequency problem, we used the Laplace estimation. More
precisely, assuming that there are nc samples that have the class label as c, t
total samples, and k class values in a sample set. The frequency-based probabil-
ity estimation calculates the estimated probability by p(c) = nc

t . The Laplace
estimation calculates it as p(c) = nc+1

t+k . In the Laplace estimation, p(ai|c) is
calculated by p(ai|c) = nic+1

nc+vi
, where vi is the number of values of attribute Ai

and nic is the number of samples in class c with Ai = ai.
In our experiments, two groups of comparisons have been performed. We com-

pared CLLTree with näıve Bayesian related algorithms, such as NBTree, NB,
TAN; and with PETs variant algorithms, such as C4.4 ,C4.4-B(C4.4 with bag-
ging), C4.5-L(C4.5 with Laplace estimation) and C4.5-B(C4.5 with bagging). We
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Table 3. Summary on t-test of experimental results: CLL comparisons on CLLTree,
NBTree, NB, TAN, C4.4 and C4.4-B. An entry w/t/l means that the algorithm at the
corresponding row wins in w sample sets, ties in t sample sets, and loses in l sample
sets, compared to the algorithm at the corresponding column.

C4.4-B C4.4 TAN NB NBTree
C4.4 19/7/7
TAN 16/12/5 8/17/8
NB 14/9/10 5/14/14 3/18/12
NBTree 10/15/8 5/16/12 2/20/11 7/22/4
CLLTree 14/13/6 6/19/8 5/23/5 11/21/1 10/23/0

implemented CLLTree within the Weka framework [9], and used the implemen-
tation of other learning algorithms in Weka. In all experiments, the experimental
result for each algorithm was measured via a ten-fold cross validation. Runs with
various algorithms were carried out on the same training sets and evaluated on
the same test sets. In particular, the cross-validation folds were the same for all
the experiments on each sample set. Finally, we conducted two-tailed t-test with
a significantly different probability of 0.95 to compare our algorithm with others.
That is, we speak of two results for a sample set as being “significantly different”
only if the difference is statistically significant at the 0.05 level according to the
corrected two-tailed t-test [6].

Table 2 and 4 show the experimental results in terms of CLL and AUC. The
corresponding summaries of t-test results are demonstrated in Table 3 and 5.
Multi-class AUC has been calculated by M-measure[4] in our experiments. Table
6 and 7 display the ACC comparison and t-test results respectively. In all t-test
tables, entry w/t/l means that the algorithm in the corresponding row wins in
w sample sets, ties in t sample sets, and loses in l sample sets. Our observations
are summarized as follows.

1. CLLTree outperforms NBTree in terms of CLL and AUC significantly, and
slightly better in ACC. The results in CLL (Table 3) show that CLLTree
wins in 10 sample sets, ties in 23 sample sets and loses in 0 sample sets.
In AUC (Table 5), CLLTree wins in 5 sample sets, ties in 27 sample sets
and loses only in one. Additionally, CLLTree surpasses NBTree in the ACC
performance as well. It wins in 3 sample sets and loses in 1 sample set.

2. CLLTree is the best among the rest of learning algorithms in AUC. Com-
pared with C4.4, it wins in 19 sample sets, ties in 14 sample sets and loses in
0 sample sets. Since C4.4 is the state-of-art decision tree algorithm designed
specifically for yielding accurate ranking, this comparison also provides evi-
dence to support CLLTree. Compared with näıve Bayes, our algorithm also
wins in 9 sample sets, ties in 21 sample sets and loses in 3 sample sets.

3. In terms of the average classification accuracy (Table 6), CLLTree achieves
the highest ACC among all algorithms. Compared with näıve Bayes, it wins
in 11 sample sets, ties in 21 sample sets and loses in 1 sample set. The average
ACC for näıve Bayes is 82.82%, lower than that of CLLTree. Furthermore,
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Table 4. Experimental results for CLLTree versus Näıve Bayes Tree (NBTree), näıve
Bayes (NB) and Tree Augmented Näıve Bayes (TAN); C4.4 and C4.4 with bagging
(C4.4-B): Area Under the Curve (AUC) & standard deviation

Sample Set CLLTree NBTree NB TAN C4.4 C4.4-B
anneal 95.97 96.31 96.18 96.59 93.67 94.48
anneal.ORIG 93.73 93.55 94.50 95.26 91.01 • 93.21
audiology 70.36 70.17 70.02 70.25 64.04 • 69.05 •
balance-scale 84.69 84.64 84.64 78.34 • 61.40 • 66.55 •
breast-cancer 68.00 67.98 70.18 66.18 60.53 • 64.55
breast-w 98.64 99.25◦ 99.25 ◦ 98.72 98.22 98.83
colic 82.08 86.78 84.36 85.04 83.96 88.20 ◦
colic.ORIG 81.95 79.83 81.18 81.93 83.00 85.98
credit-a 92.06 91.34 91.86 91.35 89.59 • 90.53 •
credit-g 79.14 77.53 79.10 77.92 70.07 • 74.21 •
diabetes 82.57 82.11 82.61 81.33 76.20 • 79.10 •
glass 82.17 79.13 78.42 • 78.32 • 80.11 80.30
heart-c 83.89 84.00 84.11 84.03 83.27 • 83.65
heart-h 83.87 83.90 84.00 83.88 83.30 • 83.64
heart-statlog 91.34 89.83 91.34 88.19 • 82.81 • 86.51 •
hepatitis 83.48 85.69 89.36 86.06 79.50 82.43
hypothyroid 88.23 87.66 88.10 87.84 80.62 • 81.44 •
iris 98.72 98.85 98.99 98.49 98.67 98.77
kr-vs-kp 99.82 99.44 95.19 • 98.06 • 99.93 99.97 ◦
labor 95.29 96.63 98.67 93.75 87.17 90.79
letter 99.36 98.51• 96.91 • 99.12 • 95.52 • 98.41 •
lymph 89.12 88.94 90.25 89.16 86.30 88.17
mushroom 100.00 100.00 99.80 •100.00 100.00 100.00
primary-tumor 75.33 74.71 75.58 75.43 68.53 • 73.05 •
segment 99.40 99.11• 98.35 • 99.63 ◦ 99.08 • 99.49
sick 98.44 94.46• 95.87 • 98.31 99.03 99.23
soybean 99.81 99.72 99.79 99.87 98.02 • 98.95 •
splice 99.45 99.44 99.46 ◦ 99.40 98.06 • 98.74 •
vehicle 86.68 85.86 80.58 • 91.14 ◦ 85.96 89.02 ◦
vote 98.50 98.61 97.15 • 98.78 97.43 98.31
vowel 99.35 98.59• 95.98 • 99.64 91.574 • 96.44 •
waveform-5000 94.74 93.71• 95.32 ◦ 93.87 • 81.36 • 90.04 •
zoo 88.64 89.02 88.88 88.93 80.26 • 80.88 •
average 89.83 89.55 89.58 89.54 85.70 87.97
•, ◦ statistically significant degradation or improvement compared with CLLTree

Table 5. Summary on t-test of experimental results: AUC comparisons on CLLTree,
NBTree, NB, TAN, C4.4 and C4.4-B

C4.4-B C4.4 TAN NB NBTree
C4.4 0/15/18
TAN 12/19/2 18/13/2
NB 14/12/7 21/7/5 4/20/9
NBTree 8/20/5 19/12/2 3/25/5 7/25/1
CLLTree 14/16/3 19/14/0 6/25/2 9/21/3 5/27/1

CLLTree also outperforms TAN significantly. It wins 6 sample sets, ties in 24
sample sets and loses in 3 sample sets. The average ACC for TAN is 84.64%,
which is lower than our algorithm as well. And last, CLLTree is also better
than C4.5, the implementation of traditional decision trees, in 8 sample sets.

4. Although C4.4 outperforms CLLTree in CLL, our algorithm is definitely
better than C4.4 in the overall performance. C4.4 sacrifices its tree size
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Table 6. Experimental results for CLLTree versus Näıve Bayes Tree (NBTree), näıve
Bayes (NB) and Tree Augmented Näıve Bayes (TAN); C4.5, C4.5 with Laplace esti-
mation (C4.5-L), and C4.5 with bagging (C4.5-B): Classification Accuracy (ACC) &
standard deviation

Sample Set CLLTree NBTree NB TAN C4.5 C4.5-L C4.5-B
anneal 99.06 98.40 94.32• 98.34 98.65 98.76 98.76
anneal.ORIG 89.94 91.27 88.16 90.88 90.36 90.23 91.78
audiology 78.40 76.66 71.40• 72.68• 77.22 76.69 80.67
balance-scale 91.44 91.44 91.44 86.22• 64.14• 64.14• 73.30•
breast-cancer 72.14 71.66 72.94 70.09 75.26 75.26 73.09
breast-w 95.08 97.23◦ 97.30◦ 94.91 94.01 93.81 95.34
colic 78.08 82.50 78.86 80.57 84.31◦ 84.50◦ 84.56◦
colic.ORIG 75.57 74.83 74.21 76.11 80.79◦ 80.08◦ 82.64◦
credit-a 85.13 84.86 84.74 84.43 85.06 84.97 85.83
credit-g 76.01 75.54 75.93 75.86 72.61• 72.25• 73.89
diabetes 75.63 75.28 75.68 75.09 73.89 73.88 73.91
glass 58.69 58.00 57.69 58.43 58.14 58.28 57.98
heart-c 80.54 81.10 83.44 82.85 79.14 79.41 79.48
heart-h 81.41 82.46 83.64 82.14 80.10 80.03 80.90
heart-statlog 83.59 82.26 83.78 79.37• 79.78 79.85 79.44
hepatitis 81.20 82.90 84.06 82.40 81.12 81.12 81.38
hypothyroid 92.90 93.05 92.79 93.23 93.24 93.24 93.25
iris 93.73 95.27 94.33 91.67 96.00 96.00 95.53
kr-vs-kp 98.93 97.81 87.79• 92.05• 99.44• 99.44◦ 99.42◦
labor 93.93 95.60 96.70 90.33 84.97 84.97 85.23
letter 86.24 83.49• 70.09• 83.11• 81.31• 80.51• 83.69•
lymph 82.79 82.21 85.97 84.07 78.21 78.21 78.97
mushroom 100.00 100.00 95.52• 99.99 100.00 100.00 100.00
primary-tumor 46.17 45.84 47.20 46.76 41.01• 41.01• 43.42
segment 93.13 92.64 89.03• 94.54◦ 93.42 93.19 93.97
sick 97.80 97.86 96.78• 97.61 98.16 98.18 98.17
soybean 93.07 92.30 92.20 95.24◦ 92.63 92.55 93.66
splice 95.39 95.42 95.42 95.39 94.17• 94.08• 94.51
vehicle 68.83 68.91 61.03• 73.71◦ 70.74 70.38 71.93
vote 94.65 94.78 90.21• 94.57 96.27 96.27 96.32
vowel 91.59 88.01• 66.09• 93.10 75.57• 73.29• 79.44•
waveform-5000 84.40 81.62• 79.97• 80.72• 72.64• 72.21• 75.54•
zoo 93.86 94.55 94.37 96.73 92.61 92.61 93.51
average 85.13 85.02 82.82 84.64 82.87 82.70 83.92
•, ◦ statistically significant degradation or improvement compared with CLLTree

Table 7. Summary on t-test of experimental results: ACC comparisons on CLLTree,
NBTree,NB, TAN, C4.5, C4.5-L and C4.5-B

C4.5 C4.5-L C4.5-B TAN NB NBTree
C4.5-L 3/30/0
C4.5-B 6/27/0 7/26/0
TAN 8/22/3 10/19/4 3/25/5
NB 8/13/12 8/14/11 5/15/13 3/19/11
NBTree 7/24/2 8/24/1 5/25/3 3/26/4 11/22/0
CLLTree 8/23/2 7/23/3 4/26/3 6/24/3 11/21/1 3/29/1

to improve probability estimation, which could produce the “overfitting”
problem and will be noise sensitive. Therefore, in a practical perspective,
CLLTree is more suitable for many real applications.
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5 Conclusion

In this paper, we have proposed a novel algorithm CLLTree to improve prob-
ability estimation in NBTree. The empirical results prove our expectation that
CLL and AUC are significantly improved and ACC is slightly better compared
to other classic learning algorithms. There is still room to improve probability
estimation. For example, after the structure is learned, we can use parameter
learning algorithms to tune the conditional probability estimates on the path
attributes. And we can find the right tree size for our model, i.e. possibly using
model-selection criteria to decide when to stop the splitting.
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Abstract. We present a performance analysis of three linear dimensionality re-
duction techniques: Fisher’s discriminant analysis (FDA), and two methods in-
troduced recently based on the Chernoff distance between two distributions, the
Loog and Duin (LD) method, which aims to maximize a criterion derived from
the Chernoff distance in the original space, and the one introduced by Rueda and
Herrera (RH), which aims to maximize the Chernoff distance in the transformed
space. A comprehensive performance analysis of these methods combined with
two well-known classifiers, linear and quadratic, on synthetic and real-life data
shows that LD and RH outperform FDA, specially in the quadratic classifier,
which is strongly related to the Chernoff distance in the transformed space. In the
case of the linear classifier, the superiority of RH over the other two methods is
also demonstrated.

1 Introduction

Linear dimensionality reduction (LDR) techniques have been studied for a long time
in the field of machine learning. They are typically the preferred ones due to their effi-
ciency – they perform in linear time complexity, and are simpler to implement and un-
derstand. Various schemes that yield LDR have been reported in the literature for reduc-
ing to dimension one, including Fisher’s classifier [4, 18], the perceptron algorithm (the
basis of the back propagation neural network learning algorithms) [5, 9, 13, 14], piece-
wise recognition models [11], random search optimization [12], removal classification
structures [1], adaptive linear dimensionality reduction [8] (which outperforms Fisher’s
classifier for some data sets), linear constrained distance-based classifier analysis [3]
(an improvement to Fisher’s approach designed for hyperspectral image classification),
and recursive Fisher’s discriminant [2]. All of these approaches suffer from the lack
of optimality, and thus, although they find linear discriminant (or dimensionality re-
duction) functions, the classifier is not optimal. Rueda et al. [17] have shown that the
optimal classifier between two normally distributed classes can be linear even when the

L. Lamontagne and M. Marchand (Eds.): Canadian AI 2006, LNAI 4013, pp. 467–478, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



468 M.L. Ali, L. Rueda, and M. Herrera

covariance matrices are not equal. In [15], a new approach to selecting the best hyper-
plane classifier (BHC), which is obtained from the optimal pairwise linear classifier,
has been introduced.

Loog et al. have recently proposed a new LDR technique for normally distributed
classes [6], namely LD, which takes the Chernoff distance in the original space into con-
sideration to minimize the error rate in the transformed space. They consider the con-
cept of directed distance matrices, and a linear transformation in the original space, to
finally generalize Fisher’s criterion in the transformed space by substituting the within-
class scatter matrix for the corresponding directed distance matrix. Observing the fact
that the LD criterion does not maximize the Chernoff distance in the transformed space,
even though it considers that distance in the original space, Rueda et al. proposed a
new criterion for linear discriminant analysis [16], namely RH. They observed that the
Chernoff distance, which provides a bound and approximation for the true probability
of classification error, has to be maximized in the reduced space, as opposed to consid-
ering that distance in the original space.

On the other hand, assessing the performance of LDR techniques combined with
other classifiers is a quite important problem in pattern recognition, and in this paper
we present a performance analysis based on empirical simulations on synthetic and
real-life data, which shows the performance of existing LDR techniques when coupled
with traditional classifiers. We shall compare the performance of the following meth-
ods: Fisher’s discriminant analysis (FDA) [4], Loog and Duin dimensionality reduction
(LD) [6, 7], and Rueda and Herrera dimensionality reduction (RH) [16]. We show the
superiority of RH when dealing with both the quadratic and linear classifiers, and the re-
lationship between these two classifiers and the Chernoff distance between distributions
in the transformed space.

2 Linear Dimensionality Reduction Schemes

In this section, we briefly discuss the three LDR schemes involved in our performance
analysis. We discuss the two-class problem first, and then the multi-class scenario. We
assume we are dealing with two normally distributed classes ω1 and ω2 whose a priori
probabilities are given by p1 and p2, and which are represented by two normally dis-
tributed n-dimensional random vectors x1 ∼ N(m1;S1) and x2 ∼ N(m2;S2). The
aim is to find a linear transformation matrix A of dimensions d × n in such a way that
the classification error in the transformed space is minimized.

Let SW = p1S1 + p2S2 and SE = (m1 − m2)(m1 − m2)t. The FDA criterion
consists of maximizing the distance between the transformed distributions by finding
A that maximizes the following function [4]:

JF (A) = tr
{
(ASW At)−1(ASEAt)

}
. (1)

The matrix A that maximizes (1) is obtained by finding the eigenvalue decomposi-
tion of the matrix:

SF = S−1
W SE , (2)
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and taking the d eigenvectors whose eigenvalues are the largest ones. Since the eigen-
value decomposition of the matrix (2) leads to only one non-zero eigenvalue, (m1 −
m2)t(m1 − m2), whose eigenvector is given by (m1 − m2), we can only reduce to
dimension d = 1.

On the other hand, the LD criterion consists of minimizing the classification error in
the transformed space by obtaining the matrix A that maximizes the function [7]:

JLD2(A) = tr
{
(ASW At)−1[

ASEAt − AS
1
2
W

p1 log(S− 1
2

W S1S
− 1

2
W ) + p2 log(S− 1

2
W S2S

− 1
2

W )
p1p2

S
1
2
W At

]}
(3)

The solution to this criterion is given by the matrix A that is composed of the d
eigenvectors (whose eigenvalues are maximum) of the following matrix:

SLD2 = S−1
W

[
SE − S

1
2
W

p1 log(S− 1
2

W S1S
− 1

2
W ) + p2 log(S− 1

2
W S2S

− 1
2

W )
p1p2

S
1
2
W

]
. (4)

Another LDR criterion that has been recently proposed is the RH criterion, which
aims to find the linear transformation that maximizes the Chernoff distance in the trans-
formed space. Let p(y|ωi) be the class-conditional probability that a vector y = Ax in
the transformed space belongs to class ωi. The Chernoff distance between two distrib-
utions, p(y|ω1) and p(y|ω2), is given as follows [4]:∫

pβ(y|ω1)p1−β(y|ω2)dy = e−k(β) , (5)

where

k(β) =
β(1 − β)

2
(Am1 − Am2)t[βAS1A + (1 − β)AS2A]−1(Am1 − Am2)

+
1
2

log
|βAS1A + (1 − β)AS2A|

|AS1A|β |AS2A|1−β
. (6)

The RH approach, assuming that p1 = β and p2 = 1 − β (note that β ∈ [0, 1]), aims
to find A that maximizes the following function [16]:

J∗
c12

(A) = tr{(ASW At)−1ASEAt

+
log(ASW At) − p1 log(AS1At) − p2 log(AS2At)

p1p2
} (7)

This criterion has no direct solution, and so a gradient-based solution has been pro-
posed in [16].

For the multi-class problem we assume that we are dealing with k classes, ω1, . . . ,
ωk, whose a priori probabilities are given by p1, . . . , pk, and which are represented
by k n-dimensional normally distributed random vectors, x1 ∼ N(m1;S1), . . . ,xk ∼
N(mk;Sk). For the FDA criterion, we define SE =

∑k
i=1 pi(mi − m)(mi − m)t,
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where m =
∑k

i=1 pimi, and SW =
∑k

i=1 piSi. Then the FDA criterion aims to find a
matrix A that maximizes the criterion function given in (1), and which is obtained by
finding the d eigenvalues (whose eigenvectors are the largest ones) of the matrix given
in (2).

The LD criterion for the multi-class problem aims to find the transformation d × n
matrix A that maximizes the following function [6]:

JLD(A) =
k−1∑
i=1

k∑
j=i+1

pipjtr
{
(ASW At)−1AS

1
2
W[

(S− 1
2

W SijS
− 1

2
W )−

1
2 S− 1

2
W SEijS

− 1
2

W (S− 1
2

W SijS
− 1

2
W )−

1
2 +

1
πiπj

(
log(S− 1

2
W SijS

− 1
2

W )

−πi log(S− 1
2

W SiS
− 1

2
W ) − πj log(S− 1

2
W SjS

− 1
2

W )
)]

S
1
2
W At

}
, (8)

where SEij = (mi−mj)(mi−mj)t, πi = pi

pi+pj
, πj = pj

pi+pj
, and Sij = πiSi+πjSj .

The multi-class LD criterion is maximized as it is done for the two-dimensional case,
by finding the matrix A composed of the d eigenvectors (whose eigenvalues are the
largest) of the following matrix:

SLD =
k−1∑
i=1

k∑
j=i+1

pipjS−1
W S

1
2
W

[
(S− 1

2
W SijS

− 1
2

W )−
1
2 S− 1

2
W SEijS

− 1
2

W (S− 1
2

W SijS
− 1

2
W )−

1
2

+
1

πiπj

(
log(S− 1

2
W SijS

− 1
2

W ) − πi log(S− 1
2

W SiS
− 1

2
W ) − πj log(S− 1

2
W SjS

− 1
2

W )
)]

S
1
2
W , (9)

The RH criterion for the multi-class problem aims to maximize the weighted sum
of Chernoff pairwise distances in the transformed space by finding the matrix A that
maximizes [16]:

J∗
c (A) =

k−1∑
i=1

k∑
j=i+1

J∗
cij

(A) . (10)

where

J∗
cij

(A) = tr{(ASWij A
t)−1ASEij A

t

+
log(ASWij A

t) − pi log(ASiAt) − pj log(ASjAt)
pipj

} (11)

Again, the maximum for this criterion does not have a direct solution, and hence a
gradient-based search method has been proposed in [16]; SEij and SWij correspond
to the between-class and within-class matrices respectively. Since the gradient solution
for the RH criterion needs to initialize A, we have used either the result of FDA or
LD, depending upon the one that gives the largest Chernoff distance in the transformed
space.
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3 Performance on Synthetic Data

In order to compare the classification performance of the three above-discussed meth-
ods, we present an empirical analysis of the classification accuracy and Chernoff dis-
tance in the transformed space on synthetic and real life data. In this section, we discuss
the former results, while the latter results are presented in a subsequent section.

To obtain the error rates and Chernoff distances discussed in this paper, we performed
a few simulations on synthetic data, which involve ten different datasets of dimensions
n = 10, 20, . . . , 100 each with two randomly generated normally distributed classes.
The two classes of each dataset, ω1 and ω2, are then fully specified by their parame-
ters, μ1, μ2, Σ1 and Σ2. We also randomly generated p1 in the range [0.3,0.7], and
assigned p2 = 1−p1. We trained the three classifiers, FDA, LD and RH using these pa-
rameters, and for each dataset we generated 100,000 samples for testing purposes. For
each dataset, we found the corresponding transformation matrix A for each dimension
d = 1, . . . , n − 1. After the linear transformation is performed we apply one of two
classifiers: the linear classifier, which is obtained by averaging the covariances matrices
in the transformed space, and the quadratic classifier which is the one that minimizes
the error rate assuming that the parameters of the transformed data are given by Ami

and ASiAt.
The minimum error rates obtained for each individual classifier for synthetic data are

shown in Table 1. The first column represents the dimension of each datset. The next
columns correspond to the error rate and the best dimension d∗ for the three dimension-
ality reduction methods and for each classifier, quadratic and linear. The ‘*’ symbol
beside the error rate indicates that the lowest among the three methods, FDA, LD and
RH, was obtained. Note that for FDA, d∗ = 1, since, as pointed out earlier, the objec-
tive matrix contains only one non-zero eigenvalue. We observe that for the quadratic
classifier LD and RH outperformed FDA for all the datasets. Also, LD and RH jointly
achieved minimum error rate for seven datasets, while RH obtained the best error rate in

Table 1. Error rates for the three classifiers, FDA, LD and RH, where the samples are projected
onto the d∗-dimensional space with d∗ gives the lowest error rate for d = 1, . . . , n − 1

Quadratic classifier Linear classifier
FDA LD RH FDA LD RH

n error d∗ error d∗ error d∗ error d∗ error d∗ error d∗

10 0.286530 1 0.053140* 9 0.053230 9 0.289790 1 0.288820* 6 0.288830 9
20 0.222550 1 0.019680 18 0.019580* 18 0.227000 1 0.220180 3 0.218780* 4
30 0.151190 1 0.002690* 24 0.002690* 24 0.182180* 1 0.182480 27 0.182480 27
40 0.287250 1 0.006600 36 0.006570* 36 0.297840 1 0.295370 8 0.294660* 6
50 0.370450 1 0.005490* 49 0.005490* 49 0.396160* 1 0.397450 1 0.397450 1
60 0.320760 1 0.000680* 56 0.000680* 56 0.322920 1 0.316030 21 0.315250* 23
70 0.381870 1 0.000010* 28 0.000010* 28 0.381960 1 0.381910* 30 0.381910* 30
80 0.323140 1 0.000000* 37 0.000000* 37 0.342980 1 0.334170 23 0.334080* 25
90 0.324740 1 0.000000* 30 0.000000* 30 0.326360 1 0.324740* 1 0.324740* 1

100 0.198610 1 0.000000* 31 0.000000* 31 0.278590* 1 0.278730 78 0.278720 72
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nine out of ten datasets. For the linear classifier, again, LD and RH outperformed FDA,
and also RH achieved the lowest error rate in six out of ten datasets, outperforming LD.

In Table 2, the results for the dimensionality reduction and classification for dimen-
sion d = 1 are shown. For the quadratic classifier, we observe that as in the previous
case, LD and RH outperformed FDA, and that the latter did not obtained the lowest er-
ror rate in any of the datasets. On the other hand, RH yields the lowest error rate in nine
out of ten datasets, outperforming LD. FDA, however, did perform very well for the
linear classifier, achieving the lowest error rate in eight out of ten datasets. RH, though
not the best, outperformed LD yielding the lowest error rate in two out of ten datasets.
Note also that the good performance of FDA and the linear classifier is due to the fact
that the optimal Bayes classifier for normal distributions is linear when the covariances
are coincident.

Table 2. Error rates for the quadratic and linear classifiers in the one-dimensional space, where
the transformed data has been obtained using the FDA, LD and RH methods

Quadratic classifier error rates Linear classifier error rates
n FDA LD RH FDA LD RH

10 0.286530 0.169750 0.154790* 0.289790* 0.320460 0.385010
20 0.222550 0.218260 0.204680* 0.227000 0.229260 0.222490*
30 0.151190 0.022950* 0.022950* 0.182180* 0.277120 0.277120
40 0.287250 0.219680 0.219590* 0.297840* 0.458030 0.458030
50 0.370450 0.237150 0.237080* 0.396160* 0.397450 0.397450
60 0.320760 0.122350* 0.122440 0.322920* 0.440710 0.440710
70 0.381870 0.061530* 0.061530* 0.381960* 0.402320 0.402320
80 0.323140 0.060320* 0.060320* 0.342980* 0.444530 0.444530
90 0.324740 0.087150* 0.087150* 0.326360 0.324740* 0.324740*

100 0.198610 0.093410* 0.093410* 0.278590* 0.332370 0.332370

In order to perform a finer comparison of the classifiers for a specific dataset, we
picked n = 10, and plotted the error rates for all the reduced spaces, where d =
1, 2, . . . , 9. These plots are depicted in Figs. 1 and 2 for the quadratic and linear classi-
fiers respectively. FDA is not shown in the figures, since it only reduces to dimension
d = 1. We observe how RH outperforms LD in most of the cases, and how in both tech-
niques, the error rate decreases as the dimension d of the transformed space increases.

To analyze the relationship between the Chernoff distance, which is a bound and an
approximation of the error rate for Bayesian quadratic classifiers (when the underlying
distributions are normal), we depict, in Table 3, the Cherfnoff distance for FDA, LD
and RH, for the reduced space of dimension d = 1. As expected, for LD and RH, the
Chernoff distance is much higher than for FDA. Also, we observe that in all cases (ex-
cept for n = 100) the Chernoff distance in the transformed space obtained by RH is
higher than that of LD. This denotes that RH maximizes that distance in the transformed
space, and hence it is more likely to obtain a lower error rate in the actual classification,
as observed in Tables 1 and 2. In order to observe the relation between the Chernoff dis-
tance and the error rate from a different perspective, we graphically show that distance
for two cases, n = 10 and n = 20, for the different reduced spaces corresponding to
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Table 3. Chernoff distance in the transformed space, whose dimension is d = 1

n FDA LD RH
10 1.356689 3.990860 4.431230*
20 2.440234 2.608052 2.975204*
30 3.583576 18.412905 18.412905*
40 1.339673 2.664509 2.665077*
50 0.595728 2.508774 2.508884*
60 0.769184 5.636596 5.636756*
70 0.268591 8.032135 8.032135*
80 0.855710 8.510208 8.510208*
90 0.182060 7.904976 7.904976*

100 2.394710 7.469918* 7.469918*
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Fig. 4. Chernoff distance for n = 20

d = 1, . . . , n − 1. We, again, observe that the Chernoff distance effectively increases as
the dimension of the reduced space increases, and hence corroborates the tendency in
the classification error rate, as shown previously for the quadratic classifier.
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4 Performance on Real-Life Data

As in the experiments on synthetic data, to obtain the error rates and Chernoff distances
discussed in this paper, we also performed a few simulations on real life data which
involve 44 two-class, d-dimensional datasets drawn from the UCI machine learning
repository [10]. Originally, seven datasets were of two classes, and the others were
multi-class, from which we extracted pairs of classes. We have assumed the classes
are normally distributed, and so the mean and covariance was obtained for each class,
and the prior probabilities were estimated as pi = ni/(ni + nj), where ni and nj are
the number of samples for class ωi and ωj respectively. We have trained the classifiers
using the three methods in discussion, namely FDA, LD, and RH, and obtained the
mean of the error rate for a ten-fold cross-validation experiment. The results for the
best value of d, where d = 1, . . . , n − 1 with n the dimension of the original space,
are shown in Table 4. The first column indicates the name of the dataset and the pair
of classes separated by “,” (when classes are not given, it means the problem itself is
two-class), where the name of the dataset is as follows: W = Wisconsin breast cancer, B
= Bupa liver, P = Pima, D = Wisconsin diagnostic breast cancer, C = Cleveland heart-
disease, S = SPECTF heart, I = Iris, T = Thyroid, G = Glass, N = Wine, J = Japanese
vowels, L = Letter and E = Pendigits. The other columns represent the error rates as
in Table 1. For the quadratic classifier, RH outperformed both FDA and LD, since the
former obtained the lowest error rate in 34 out of 44 cases, while FDA and LD obtained
the lowest error rate in 17 and 16 cases respectively. In the case of the linear classifier,
RH also outperformed FDA and LD – the former was the best in 31 cases, while the
latter two in 15 and 26 cases respectively. In this case, although RH is coupled with a
linear classifier, while it optimizes the Chernoff distance and is expected to work well
with a quadratic classifier, RH obtained the lowest error rate in more cases than LD.

To show the results from a different perspective, and to analyze the classifiers on
different dimensions d = 1, . . . , n − 1, we plotted the error rate of the SPECTF dataset
for all values of d, and for two methods, LD and RH. FDA was excluded, since as
pointed out earlier, the data can only be transformed to dimension 1. The corresponding
plots for the quadratic classifier and the linear classifier are depicted in Figs. 5 and
6 respectively. For the quadratic classifier, the error rate (in general) decreases as the
dimension d of the new space increases. Also, in this case, the RH clearly leads to a
lower error rate than LD, while both converge to similar error rates for values of d
close to n. This reflects the fact that as the Chernoff distance in the transformed space
increases, the error rate of the quadratic classifier decreases. For the linear classifier,
the behavior is different, in the sense that the the error rate starts decreasing to a certain
point, to increase again after d = 20, while in most of the cases, RH leads to a lower
error rate than LD.

The plots of the Chernoff distance for different values of d = 1, . . . , n−1, for RH and
LD, and for the SPECTF and the Ionosphere datasets are depicted in
Figs. 7 and 8 respectively. It is quite clear that in both cases, the Chernoff distance
in the transformed space (y-axis), which is computed as in (7), increases as the dimen-
sion d of the transformed space increases. While for the SPECTF dataset RH leads to a
much higher Chernoff distance than LD, the difference is marginal for the Ionosphere
dataset. This, again, shows that since RH seeks for maximizing the Chernoff distance
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Table 4. Error rates for the two-class datasets drawn from the UCI machine learning repository

Quadratic classifier Linear classifier
Dataset FDA d∗ LD d∗ RH d∗ FDA d∗ LD d∗ RH d∗

W 0.030754 1 0.027835* 1 0.030754 1 0.039621 1 0.038150* 6 0.039621 1
B 0.362017 1 0.388571 4 0.353613* 1 0.309916 1 0.330168 5 0.301261* 5
P 0.226435* 1 0.251265 2 0.226435* 1 0.229033* 1 0.230383 7 0.229033* 1
D 0.031522* 1 0.040266 27 0.031522* 1 0.042079 1 0.029889* 20 0.036785 28
C 0.164943 1 0.168276 11 0.161379* 11 0.161609 1 0.158391 8 0.144828* 5
S 0.247773 1 0.045588 41 0.042810* 36 0.233646 1 0.176373* 19 0.180378 15
I,1,2 0.000000* 1 0.000000* 1 0.000000* 1 0.000000* 1 0.000000* 1 0.000000* 1
I,1,3 0.000000* 1 0.000000* 1 0.000000* 1 0.000000* 1 0.000000* 1 0.000000* 1
I,2,3 0.050000 1 0.030000* 1 0.040000 2 0.030000* 1 0.040000 1 0.030000* 1
T,1,2 0.021637 1 0.010819 4 0.005263* 3 0.059357 1 0.032749 4 0.027193* 4
T,1,3 0.022222* 1 0.027778 2 0.027778 2 0.038889 1 0.027778* 4 0.027778* 4
T,2,3 0.000000* 1 0.000000* 2 0.000000* 1 0.000000* 1 0.000000* 4 0.000000* 1
G,1,2 0.310000* 1 0.397619 7 0.397619 8 0.281905* 1 0.295714 8 0.289048 7
G,1,3 0.223611 1 0.204167 1 0.112500* 8 0.223611 1 0.204167 1 0.161111* 8
G,1,5 0.000000* 1 0.000000* 5 0.000000* 1 0.000000* 1 0.000000* 5 0.000000* 1
G,1,7 0.020000* 1 0.040000 8 0.020000* 1 0.040000 1 0.030000* 1 0.040000 1
G,2,3 0.158611 1 0.213333 8 0.153611* 8 0.158611* 1 0.167222 4 0.166111 8
G,2,5 0.109722 1 0.098333* 7 0.098333* 6 0.099722 1 0.088333* 7 0.088333* 6
G,2,7 0.027273* 1 0.063636 7 0.027273* 1 0.046364 1 0.037273 8 0.018182* 8
G,3,5 0.000000* 1 0.000000* 1 0.000000* 1 0.025000 1 0.000000* 6 0.000000* 7
G,3,7 0.060000 1 0.020000* 2 0.040000 4 0.060000* 1 0.060000* 1 0.060000* 1
G,5,7 0.050000* 1 0.070000 4 0.050000* 1 0.050000 1 0.050000 8 0.025000* 2
N,1,2 0.007143 1 0.007692 6 0.000000* 6 0.007692 1 0.007143* 11 0.007692 1
N,1,3 0.000000* 1 0.000000* 3 0.000000* 1 0.000000* 1 0.000000* 3 0.000000* 1
N,2,3 0.016667 1 0.016667 3 0.008333* 7 0.016667 1 0.008333* 12 0.016667 1
J,1,2 0.001435* 1 0.005263 3 0.001435* 1 0.001435* 1 0.001435* 11 0.001435* 1
J,1,3 0.000370* 1 0.001108 7 0.000370* 1 0.001108* 1 0.001108* 11 0.001108* 1
J,4,5 0.007512 1 0.001778* 7 0.004865 3 0.004417 1 0.000881* 9 0.004861 1
J,6,7 0.000000* 1 0.000000* 1 0.000000* 1 0.000000* 1 0.000000* 1 0.000000* 1
J,8,9 0.066800 1 0.051309* 11 0.052896 6 0.069473 1 0.071601 11 0.068404* 8
L,C,G 0.083547 1 0.051096 15 0.047083* 10 0.083547 1 0.084903 12 0.081574* 6
L,D,O 0.033400 1 0.015402 15 0.014777* 10 0.032784 1 0.030216* 14 0.032776 12
L,J,T 0.009741 1 0.004520 10 0.003875* 8 0.009741 1 0.009741 15 0.009087* 10
L,K,R 0.098878 1 0.041405* 12 0.042081 10 0.096207 1 0.095522 13 0.094207* 1
L,M,N 0.031751 1 0.015847 13 0.014590* 13 0.034936 1 0.033033* 13 0.034936 1
L,O,Q 0.045591* 1 0.057280 11 0.046253 1 0.046237 1 0.050133 11 0.045583* 9
L,P,R 0.020505 1 0.012176 9 0.010248* 9 0.022432 1 0.021787* 7 0.022428 6
L,U,V 0.010748 1 0.007595 15 0.006966* 9 0.012018 1 0.011381* 10 0.011381* 9
L,V,W 0.027057 1 0.027048 15 0.022438* 10 0.029706 1 0.031035 13 0.028381* 5
E,1,2 0.003051 1 0.001312 10 0.000873* 10 0.006556* 1 0.006556* 10 0.006556* 1
E,3,4 0.002277 1 0.002277 1 0.002273* 8 0.002277* 1 0.002277* 1 0.002277* 1
E,5,6 0.001370 1 0.000457 6 0.000000* 8 0.001826 1 0.002283 11 0.001822* 13
E,7,8 0.000911 1 0.000455* 3 0.000455* 3 0.000911 1 0.000455* 1 0.000911 1
E,9,10 0.011357 1 0.000472* 12 0.000943 12 0.012300 1 0.009933 11 0.008518* 6
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Fig. 8. Chernoff distance for Ionosphere

Table 5. Error rates for the multi-class classification on the Iris dataset, where d = 1, 2, 3

Quadratic Classifier Linear Classifier
d FC LD RH FC LD RH
1 0.026667 0.020000* 0.020000* 0.020000* 0.020000* 0.020000*
2 0.026667 0.020000* 0.026667 0.020000* 0.020000* 0.020000*
3 0.026667* 0.026667* 0.026667* 0.020000* 0.020000* 0.020000*

in the transformed space, it is more likely to lead to the lowest error rate in the trans-
formed space. This has been observed and corroborates the superiority of RH over LD
and FDA, as shown in Table 4.

To conclude the paper, we show some results obtained by testing the three LDR tech-
niques for the multi-class case on real-life data. The dataset involved in the experiments
is, again, drawn from the UCI machine learning repository [10], namely the Iris dataset
whose original space is of dimension four, and whose number of classes is three. The
error rates for reducing the dimension to d = 1, . . . , n − 1, where n = 4, are shown in
Table 5. Note that for the quadratic classifier, LD and RH are superior to FDA. For the
linear classifier, the three dimensionality reduction methods produce similar results.
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5 Conclusions

We have presented a comprehensive performance analysis of three linear dimension-
ality reduction techniques, namely FDA, LD and RH. Our analysis has been carried
out by combining these dimensionality reduction methods with well-known, linear and
quadratic, on synthetic and real-life data. We have shown that on the synthetic data,
LD and RH clearly outperform FDA, as it is expected since the latter does not take
the Chernoff distance into consideration. We observed, also, that RH outperformed LD,
and that this is due to the fact that the former optimizes the Chernoff distance in the
transformed space, and hence the quadratic classifier is more likely to lead to a lower
error rate. Although this would not be the case for the linear classifier, we observed that
RH, in general, outperforms LD when coupled with the linear classifier.

We have also presented a comprehensive empirical analysis on real-life data drawn
from standard repositories, and encountered that RH outperformed by a large margin
both LD and FDA when using the quadratic classifier. For the linear classifier, RH
performed the best of the three dimensionality reduction techniques. By analyzing the
Chernoff distance in the transformed space, we noticed that the latter is highly related
to the success of the quadratic classifier after the data is transformed.
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Abstract. This paper experimentally compares the performance of dis-
criminative and generative classifiers for cost sensitive learning. There is
some evidence that learning a discriminative classifier is more effective
for a traditional classification task. This paper explores the advantages,
and disadvantages, of using a generative classifier when the misclassi-
fication costs, and class frequencies, are not fixed. The paper details
experiments built around commonly used algorithms modified to be cost
sensitive. This allows a clear comparison to the same algorithm used
to produce a discriminative classifier. The paper compares the perfor-
mance of these different variants over multiple data sets and for the full
range of misclassification costs and class frequencies. It concludes that
although some of these variants are better than a single discriminative
classifier, the right choice of training set distribution plus careful calibra-
tion are needed to make them competitive with multiple discriminative
classifiers.

1 Introduction

This paper compares the performance of discriminative and generative classifiers.
It focuses on cost sensitive learning when the misclassification costs, and class
frequencies, may change, or are simply unknown ahead of time. The distinction
between these two types of classifier has only recently been made clear within
the data mining and machine learning communities [1], although both have a
long history. For a traditional classification task, it seems intuitive that directly
learning the decision boundary, as discriminative classifiers do, is likely to be the
more effective option. Indeed, many experiments have shown that such classifiers
often have better performance than generative ones [1, 2]. There is also some
theory suggesting why this holds true, at least asymptotically [2].

Nevertheless the debate continues, with some research showing that the con-
clusion is not as simple as the discriminative classifier being always better. Some
restrictions on the sort of distributions the generative model learns have been
shown to improve the accuracy of classification [3] over and above that of dis-
criminatory classifiers. In addition, although theory suggests that the asymptotic
performance of the discriminative classifier maybe better, a generative one may
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outperform it for realistic training set sizes [4]. Further, generative classifiers are
a natural way to include domain knowledge, leading some researchers to propose
a hybrid of the two [5].

This paper explores the advantages, and disadvantages, of using a generative
classifier for cost sensitive learning. Cost sensitive learning is a research area
which has grown considerably in recent years. This type of learning seems a
much more natural fit with generative classifiers. Without clear knowledge of the
class frequencies and misclassifications costs, a discrimination boundary cannot
be constructed whereas class likelihood functions can still be learned.

Researchers have proposed simple ways of modifying popular algorithms for
probability estimation [6, 7], experimentally comparing these new variants with
the original discriminative forms. This paper presents a much more comprehen-
sive set of experiments comparing the generative and discriminative versions of
the algorithms. It displays the results graphically, for multiple data sets, using
cost curves [8]. This provides a clear picture of the difference in performance of
these algorithms for all possible class distributions and misclassification costs. It
concludes that although all the generative forms improve considerably on a single
discriminative classifier, the right choice of training set distribution plus careful
calibration are needed to make them competitive with multiple discriminative
classifiers.

2 Discriminative vs. Generative Classifiers

The difference between a discriminative and a generative classifier is the dif-
ference in being able to recognize something and being able to reproduce it. A
discriminative classifier learns a border; one side it labels one class, the other
side it labels another. The border is chosen to minimize error rate, or some
correlated measure, effectively discriminating between classes. When misclassifi-
cation costs are included, a discriminative classifier chooses a border such as to
minimize expected cost. A generative classifier learns the full joint distribution
of class and attribute values and could generate labeled instances according to
this distribution. To classify an unlabeled instance, it applies decision theory.
For classification, we want to reliably recognize something as belonging to a par-
ticular class. Learning the full distribution is unnecessary and, as discussed in
the introduction, often results in lower performance.

One situation where the generative classifier should dominate is when these
misclassification costs change independent of the joint distribution. Then the
boundary will need to change, necessitating re-learning the discriminative clas-
sifier. But the distribution learned by the generative classifier will still be valid.
All that is required is that decision theory be used to relabel the instances. A
closely related situation, where the generative classifier should also dominate,
is when changes in distribution affect only a few marginals. A common way to
factor the joint distribution is by using Bayes rule:

P (Cl, D) = P (D|Cl)P (Cl) (1)
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The distribution is the product of the likelihood function P (D|Cl) (the proba-
bility of data D given class Cl) and the prior probability of the class P (Cl). If
only the prior probabilities change, the joint probability can be reconstructed
using the new values of these marginals. The priors may be known for different
applications in the same domain or they may need estimating. But even in the
latter case, it is a multinomial distribution and easy to reliably estimate.

The close relationship between prior probabilities, or class frequencies, and
costs is clarified in the decision theoretic equation:

Best(L) = min
i

C(Li|Cli)P (Cli|D) = P (D)min
i

C(Li|Cli)P (D|Cli)P (Cli) (2)

Here C(Li|Cli) is the cost of misclassifying an instance, which is assumed to be
independent of how it is misclassified (As this paper is only concerned with two
class problems, this assumption is trivially true). The best class label to choose
is the one with the lowest expected cost. Using Bayes rule, we can covert this
to the likelihood multiplied by the prior and the misclassification cost. Thus if
the likelihood is constant, changes in class frequencies and misclassification costs
have the same influence on the choice of best label.

3 Cost Curves

This section gives a brief introduction to cost curves [8], a way to visualize clas-
sifier performance over different misclassification costs and class distributions.

The error rate of a binary classifier is a convex combination of the likelihood
functions P (−|+), P (+|−), where P (L|Cl) is the probability that an instance
of class Cl is labeled L and the coefficients P (+), P (−) are the class priors:

E[Error] = P (−|+)︸ ︷︷ ︸
FN

P (+) + P (+|−)︸ ︷︷ ︸
FP

P (−)

Estimates of the likelihoods are the false positive (FP) and false negative (FN)
rates. A straight line, such as the one in bold in Figure 1, gives the error rate
on the y-axis (ignore the axis labels in parentheses for the moment), for each
possible prior probability of an instance belonging to the positive class on the x-
axis. If this line is completely below another line, representing a second classifier,
it has a lower error rate for every probability. If they cross, each classifier is
better for some range of priors. Of particular note are the two trivial classifiers,
the dashed lines in the figure. One always predicts that instances are negative,
the other that instances are positive. Together they form the majority classifier,
the shaded triangle in Figure 1, which predicts the most common class. The
figure shows that any single classifier with a non-zero error rate will always be
outperformed by the majority classifier if the priors are sufficiently skewed. It
will therefore be of little use in this situation.

If misclassification costs are taken into account, expected error rate is replaced
by expected cost, defined by Equation 3. The expected cost is also a convex
combination of the priors, but plotting it against them would produce a y-axis
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that no longer ranges from zero to one. The expected cost is normalized by
dividing by the maximum value, given by Equation 4. The costs and priors are
combined into the PC(+) the Probability Cost on the x-axis, as in Equation
5. Applying the same normalization factor results in an x-axis that ranges from
zero to one, as in Equation 6. The positive and negative Probability Costs now
sum to one, as was the case with the probabilities.

E[Cost] = FN ∗ C(−|+)P (+) + FP ∗ C(+|−)P (−) (3)
max(E[Cost]) = C(−|+)P (+) + C(+|−)P (−) (4)

PC(+) = C(−|+)P (+) (5)
Norm(E[Cost]) = FN ∗ PC(+) + FP ∗ PC(−) (6)

With this representation, the axes in Figure 1 are simply relabeled, using the text
in parentheses, to account for costs. Misclassification costs and class frequencies
are more imbalanced the further away from 0.5, the center of the diagram. The
lines are still straight. There is still a triangular shaded region, but now rep-
resenting the classifier predicting the class with the smaller expected cost. For
simplicity, we shall continue to refer to it as the majority classifier.

In Figure 2 the straight continuous lines are the expected cost for discrim-
inative classifiers for two different class frequencies, or costs, indicated by the
vertical dashed lines. To build a curve requires many different classifiers, each
associated with the PC(+) value used to generate it. Let’s assume each clas-
sifier is used in the range from half way between its PC(+) value and that
of its left neighbor to half way between this value and that of its right neigh-
bor. The resulting black curve, which includes the trivial classifiers, is shown
in Figure 2. It has discontinuities where the change over between classifiers
occurs.

To produce a curve for a generative classifier, each instance is associated
with the PC(+) value at which the classifier changes the way it is labeled.
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If the instances are sorted according to this value, increasing PC(+) values
generate unique FP and TP pairs. A curve is constructed in the same way as
that for the discriminative classifiers. But now there are many more points, one
for each instance in the test set, typically producing a much smoother looking
curve.

4 Experiments

This section discusses experiments comparing the performance of various pop-
ular algorithms, as implemented in the machine learning system called Weka
[9]. The main set of experiments compares the expected cost of a single gen-
erative classifier to that of a single discriminative classifier and to a series of
such classifiers trained on data sets with different class frequencies. The ques-
tion it addresses is to what extent the existing variants of standard algorithms
are effective for cost sensitive learning. Further experiments look at how these
probability estimators might be improved, firstly by calibration and secondly by
using more balanced training sets.

To produce different PC(+) values, the training set is under-sampled, the
number of instances of one class being reduced to produce the appropriate class
distribution. This is done for 16 PC(+) values, roughly uniformly covering the
range 0 to 1. The FP and TP values are estimated using ten-fold stratified cross
validation. Experimental results, drawn from a larger experimental study [10],
are given for 8 data sets from the UCI collection [11].

4.1 Decision Trees

We begin with the decision tree algorithm J48, Weka’s version of C4.5 [12].
Figure 3 shows cost curves for the 8 data sets (the name is just above the x-
axis). The gray solid curves give the expected cost for the generative classifier.
This is calculated from probability estimates based on the class frequency at the
leaves of the tree, adjusted for the class distribution in the training set.

To interpret these graphs, let us note that, in these experiments at least, there
is little or no difference between discriminative and generative classifiers for the
particular PC(+) value at which they were trained. The main advantage of a
generative classifier is that it will operate effectively at a quite different PC(+)
values. The solid black curve is for 14 discriminative classifiers generated by
under-sampling. It acts, essentially, as a lower bound on the expected cost of
using the generative classifier. The bold black straight line is the standard clas-
sifier trained (with default settings) at the original data set frequency, indicated
by the vertical line. At this frequency, the black line, the gray solid curve, and
the black curve have a similar expected cost (being essentially the same classi-
fier). The cost sensitivity of the generative classifier is seen by comparing the
distance of the gray curve to the straight black line and the distance to the black
curve, as one moves away from the original frequency. Closer to the black curve
is better.
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Fig. 3. Cost Curves: Decision Tree Generative Classifier
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Fig. 4. Improving the Decision Tree Generative Classifier

Although close to the original frequency there is little to separate the curves,
the difference grows as the distance increases. For PC(+) values closer to zero
and one, the solid gray curves are much better than the single discriminative
classifiers and quite close to the multiple ones. Unfortunately, here the perfor-
mance is worse than the majority classifier, making any gain over the discrimi-
native classifier of dubious merit. One way to improve the probability estimates
is to use Laplace correction at the leaves of an unpruned tree [6]. In Figure 3
this variant is indicated by the dashed gray curve. Generally, this improves on
the standard algorithm, again it is most clear far away from the original fre-
quency. For some data sets, e.g. letterK and Sick, it is indistinguishable from
the black solid curve. But for other data sets, e.g. credit-a and hepatitis, with-
out pruning means it is worse than the standard classifier around the original
frequency.

There are two commonly methods to improve cost sensitivity: calibration and
changing the training set distribution. Calibration refines the existing probability
estimates to better reflect the true distribution using the training, or a hold-out,
data. Figure 4 compares the cost curves to their lower envelopes, the dashed
curves. The envelopes represent perfect calibration. The figure also shows results
for using a balanced set for training the generative classifier. For many data sets,
like Bupa and Hepatitis, balancing the training set makes the cost curve more
symmetric. Calibration has greater potential impact, although often the best one
might expect to do as well as the majority classifier far away from the original
frequency.

4.2 Support Vector Machines

The original Support Vector Machine [2] had no means of producing proba-
bility estimates and only acted as a discriminative classifier. Platt [7] showed
that a sigmoid could be applied to the normal output, the distance to the op-
timal hyperplane (the sign deciding the class), to represent the posterior prob-
ability. This sigmoid is learned from the training set (or by cross validation)



486 C. Drummond

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

PC(+) −− Probability Cost        

N
or

m
al

iz
ed

 E
xp

ec
te

d 
C

os
t

bupa

Generative

SMO −M

Discriminative

SMO

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

PC(+) −− Probability Cost        

N
or

m
al

iz
ed

 E
xp

ec
te

d 
C

os
t

credit−a

Generative

SMO −M

Discriminative

SMO

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

PC(+) −− Probability Cost        

N
or

m
al

iz
ed

 E
xp

ec
te

d 
C

os
t

credit−g

Generative

SMO −M

Discriminative

SMO

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

PC(+) −− Probability Cost        

N
or

m
al

iz
ed

 E
xp

ec
te

d 
C

os
t

diabetes

Generative

SMO −M

Discriminative

SMO

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

PC(+) −− Probability Cost        

N
or

m
al

iz
ed

 E
xp

ec
te

d 
C

os
t

hepatitis

Generative

SMO −M

Discriminative

SMO

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

PC(+) −− Probability Cost        

N
or

m
al

iz
ed

 E
xp

ec
te

d 
C

os
t

ionosphere

Generative

SMO −M

Discriminative

SMO

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

PC(+) −− Probability Cost        

N
or

m
al

iz
ed

 E
xp

ec
te

d 
C

os
t

letterk

Generative

SMO −M

Discriminative

SMO

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

PC(+) −− Probability Cost        

N
or

m
al

iz
ed

 E
xp

ec
te

d 
C

os
t

sick

Generative

SMO −M

Discriminative

SMO

Fig. 5. Cost Curves: Support Vector Machine Generative Classifier
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Fig. 6. Improving the Support Vector Machine Generative Classifier

using cross entropy as the error measure. Figure 5 shows that this variant, the
gray curve, is extremely competitive with the multiple discriminative classifiers.
For only a couple of data sets, letterK and credit-a, are the two discernibly
different.

Figure 6 shows, there is typically little difference between the cost curves
(solid lines) and their lower envelopes (dashed lines), so calibrating the classifier
should have little effect. This is not surprising as fitting a sigmoid is, itself, a
form of calibration. Although the sigmoid only has two degrees of freedom, one
can see more flexible schemes are unlikely to improve calibration much. This
may be why no real benefit was seen using isotonic regression [13]. There is
one data set, LetterK, that shows a large difference in expected cost. This is
an extremely imbalanced domain and by training the classifier on a balanced
data set, the black curves in Figure 6, considerable improvement is gained.
For, credit-a the difference is smaller and largely on the left hand side of the
original frequency. But here neither better balance nor calibration reduce the
problem.

4.3 Neural Networks

Weka implements the traditional PDP algorithm [14] which is trained using back
propagation and minimizes the squared error of the network output. This can be
used as a discrimination classifier or, by using the standard sigmoid output of the
network, as a probability estimator. As Figure 7 shows, much like the standard
decision tree, it improves on a single discriminative classifier but mainly where
the majority classifier is best. It certainly falls way short of the performance of
the multiple discriminative classifiers. Figure 8 shows that balancing the training
set offers some improvement but much of the error is due to poor calibration.
It is noteworthy that the Weka algorithm minimizes squared error. Minimizing
cross entropy, like the generative version of the Support Vector Machine, should
produce better probability estimates [15].
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Fig. 7. Cost Curves: Multilayer Perceptron Generative Classifier
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Fig. 8. Improving the Multilayer Perceptron Generative Classifier

5 Discussion

In summary, the sigmoid variant for the Support Vector Machine, with a bal-
anced training set, was extremely effective as a generative classifier. Decision
trees with Laplace correction and, to lesser extent, the Multilayer Perceptron
faired reasonably and both showed potential for improvement. Although balanc-
ing is useful, calibration offers the most potential benefit and is notably inherent
in the Support Vector Machine sigmoid fitting procedure.

In this paper, a curve made up of 16 discriminative classifiers has been used
as a “gold standard”. A good generative classifier is assumed to be one whose
performance is close to this “gold standard”. But to get good cost sensitive per-
formance, one could simply use the 16 classifiers. The main advantage of the
generative classifier is that it is a single classifier, reducing learning time and
storage considerably. Another advantage is that a single classifier may be more
understandable. Yet neither the Support Vector Machine nor the Multilayer Per-
ceptron is easily understandable without extra processing. Even for the decision
tree algorithm, as the generative version is unpruned, the classifier is more com-
plex than any single discriminative classifier. It may be possible that a few, a
lot less than the 16, judiciously chosen, discriminative classifiers would be very
competitive. A tree with a stable splitting criterion but variable cost sensitive
pruning [16] would have identical lower branches for all PC(+) values, making
a collection of trees more easily understandable.

6 Conclusions

This paper experimentally compared the performance of discriminative and gen-
erative classifiers for cost sensitive leaning. It showed that variants of commonly
used algorithms produced reasonably effective generative classifiers. Where the
classifiers were less effective, simple techniques like choosing the right training
set distribution and calibration would improve their performance considerably.
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Abstract. We describe a general method to transform a non-markovian
sequential decision problem into a supervised learning problem using a
K-best-paths algorithm. We consider an application in financial portfolio
management where we can train a controller to directly optimize a Sharpe
Ratio (or other risk-averse non-additive) utility function. We illustrate
the approach by demonstrating experimental results using a kernel-based
controller architecture that would not normally be considered in tradi-
tional reinforcement learning or approximate dynamic programming.

1 Introduction

Dynamic programming is a general computational technique for solving sequen-
tial optimization problems that can be expressed in terms of an additive cost
function [1, 5]. However, it suffers from the so-called curse of dimensionality,
wherein the computational cost of a solution grows exponentially with the prob-
lem dimension (size of the state, action and disturbance spaces). In recent years,
many approximation algorithms—notably under the names reinforcement learn-
ing (RL) or neurodynamic programming (NDP)—have been proposed for tack-
ling large-scale problems, in particular by making use of simulation and function
approximation methods [6, 22, 20]

Most of these methods remain within the confines of traditional dynamic
programming, which assumes that the function to be optimized can be separated
as a sum of individual cost-per-time-step terms and, for finite-horizon problems,
a terminal cost. Unfortunately, for more complex utility functions, which may
depend on the trajectory of visited states, dynamic programming does not provide
ready solutions.

In finance, it has long been known that the problem of optimal portfolio con-
struction can be expressed as a stochastic optimal control problem, which can be
solved by dynamic programming [14, 16, 12]. Still, such formulations assume that
the investor is governed by additive utility functions. In practice, this is far from
being the case: many risk averse investors care as much about portfolio trajectory
as they care about abstract higher moments of a conditional return distribution.

L. Lamontagne and M. Marchand (Eds.): Canadian AI 2006, LNAI 4013, pp. 491–502, 2006.
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This explains the popularity of performance measures used by practitioners and
professional fund managers, such as the Sharpe Ratio [17, 18], Information Ratio
[9], Sortino Ratio [21] and Calmar Ratio. A common theme among these utility
functions is that they depend on the entire sequence of returns (or statistics
of the sequence); they cannot conveniently separated into a form amenable to
solution by dynamic programming.

One might argue that dynamic programming should be abandoned altogether,
and one ought instead to revert to general nonlinear programming algorithms [4]
to attempt optimizing under such utilities. This is the approach followed, in a
certain sense, by Bengio’s direct optimization of a financial training criterion [2],
Moody’s direct reinforcement algorithm [13] and Chapados and Bengio’s direct
maximization of expected returns under a value-at-risk constraint [7]. However,
these methods are found lacking in two respects: (i) they still rely on, either
time-separable utilities (such as the quadratic utility), or on approximations
of trajectory-dependent utilities that enable time-separability, (ii) they funda-
mentally rely on stochastic gradient descent optimization, and as such can be
particularly sensitive to local minima.

This paper investigates a different avenue for portfolio optimization under
general utility functions. It relies on formulating portfolio optimization on his-
torical data as a deterministic shortest path problem, where we extract not only
the single best path, but the K best paths, yielding, after some transformations,
a training set to train a supervised learning algorithm to act as a controller. This
controller can directly be used in a portfolio management task.

The paper is organized as follows: first, we introduce the overall approach
(section 2); next we investigate in more detail the K best paths algorithm that
we used (section 3); we then summarize some experimental portfolio optimization
results (sections 4 and 5); and conclude.

2 Problem Formulation

We consider a discrete-time system in an observable state xt ∈ RN at time
t, and which must take an action ut ∈ RM at every time step. The system
evolves according to a state-transition equation xt+1 = ft(xt, ut, wt), where wt

is a random disturbance. At each time-step, the system experiences a random
reward gt(xt, ut, wt). Our objective is to maximize an expected utility of the
sequence of received rewards over a finite horizon t = 0, . . . , T ),

J∗
0 (x0) = max

u1,...,uT −1
E

w1,...,wT−1
[U(g0, g1, . . . , gT )| x0] . (1)

Obviously, if U(g0, g1, . . . , gT ) can be written as
∑

t gt, the finite-horizon problem
is solved by writing the value function Jt(xt) in terms of Bellman’s recursion,

J∗
T (xT ) = gT (xT ) (2)
J∗

t (xt) = max
ut

E
wt

[
gt(xt, ut, wt) + J∗

t+1(ft(xt, ut, wt))
]

. (3)

From the value function, the optimal action u∗
t at time t is obtained as that

reaching the maximum in the equation above.
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2.1 Solving for a General Utility

Our objective is to devise an effective algorithm to obtain optimal actions in the
case of a general utility function. Although no recursion such as Bellman’s can
readily be written in the general case, a key insight lies in the simple observation
that, given a realized trajectory of rewards, most utility functions (at least
those of interest, for instance, in finance) can be computed quickly, in time
O(T ). Hence, if we are given K such trajectories, we can find the best one under
a general utility function U in time O(K(T + log K)).

A second observation is that given this sequence of actions, we have obtained
what amounts to a set of 〈statet, actiont〉 pairs at each time-step within the
trajectory. We can make use of these as a training set for a supervised learning
algorithm. In other words, we can bypass completely the step of estimating a
value function under the desired utility function, and instead directly train a
controller (also called an actor in reinforcement learning [22]) to make decisions.

The two preceding observations can be combined into the following algorithm
for solving eq. (1):

1. Generate a large number of candidate trajectories;
2. Rescore (sort) the trajectories under the desired utility function U ;
3. Use the best rescored trajectory to construct a dataset of 〈state, action〉

pairs; carry out steps 1–3 until the dataset is large enough.
4. Using the dataset from steps 1–3, train a supervised learning algorithm

to output the action label given the input state.

As is common practice in reinforcement learning [6], this algorithm estimates
the expectation in eq. (1) with a sample average over a large number of trajec-
tories. Furthermore, as we shall see below, we can dispense with a generative
model of trajectories by using historical data.

2.2 Generating Good Trajectories

It remains the question of generating good trajectories in the first place. This
is where a K best paths algorithm is involved: under an “easier” (i.e. additive)
utility function and a large historical time period (which will become the training
set), we use the K best paths algorithm to generate the candidate trajectories
of step (1) above. Obviously, both the “easier” and desired utility functions,
henceforth respectively called the source and target utilities, must be correlated,
so that searching for good solutions under one function has a high likelihood of
yielding good solutions under the other. We discuss this point more fully below.
Figure 1 (left part) illustrates schematically the complete algorithm.

2.3 Known Uses

This algorithm is certainly not the first one to make use of a K best paths
algorithm: they have been used extensively in speech recognition and natural
language processing (e.g. [15]). However, in these contexts, the rescored action
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Original optimization
problem

Reduced-dimension
and simplified utility
function DP problem

Find k best trajectories in
reduced problem

Rescore w.r.t. to original
problem; find best trajectory

after rescoring

Train supervised learning
algorithm with action labels

from rescored trajectory

Fig. 1. (Left) Summary of the proposed algorithm for finding good trajectories under
a non-additive utility function. (Right) Intuition behind the recursive relationship
underlying the REA K-best-paths algorithm; see text for details.

labels found by the K best paths are either discarded (speech) or not used
beyond proposing alternative hypotheses (NLP). In particular, no use is made
of the rescored trajectories for training a controller.

Recent publications in the reinforcement learning literature have explored
the idea of converting a RL problem into a supervised learning problem [11].
However, all of the proposed approaches so far have focused on staying within
an additive utility function framework and assume the presence of a generative
model to construct trajectory histories.

3 Enumerating the K Best Paths

We rely on a very time- and memory-efficient implementation of the Recursive
Enumeration Algorithm (REA) of Jiménez and Marzal [10]. This algorithm can
be made very effective by implicitly constructing a path from its differences
with a previous path. It builds upon a generalization of Bellman’s recursion of
eq.(3) to a statement of optimality of higher-order paths in terms of lower-order
ones. Although the precise algorithm statement is not repeated for space reasons,
an intuition into the algorithm’s working can be obtained from Figure 1 (right
part):

– Suppose that the best path to a vertex xt ends with · · · − Z − Y − xt.
– According to the REA recursion, the second best path up to xt is given

by the best of:
1. Either the first best path up to the immediate predecessors of xt,

namely the candidate vertices {C1, C2, C3}, followed by a transition
to xt.

2. Or the second best path up to Y , followed by the transition b to xt.
The second best path to Y is found by applying the algorithm recursively.
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4 Application: Portfolio Optimization

The portfolio optimization setting that we consider is a multi-period, multi-asset
problem with transaction costs. We assume that the assets (e.g. stocks, futures)
are sufficiently liquid that market impacts can be neglected. We invest in a
universe of M asset, and the state xt at time t is given by

xt = (nt,1, . . . , nt,M , pt,1, . . . , pt,M ) ,

where nt,i ∈ Z is the number of shares of asset i held, and pt,i ∈ R+ is the price
of asset i at time t. We can only hold an integral number of shares and short
(negative) positions are allowed. The possible actions are ut ∈ ZM which are
interpreted as buying or selling the number ut,i of shares asset i. To limit the
search space, both nt,i and ut,i may be restricted to a small integer.

The cost function gt(xt, ut) at time t is the $ amount required to carry out ut

(i.e. establish the desired position), accounting for transaction costs. The source
utility function U over all time steps is defined simply as the sum of negative
individual costs,1

U(g0, . . . , gT−1) = −
T−1∑
t=0

gt.

Moreover, we impose the constraints that both the initial and final portfolios be
empty (i.e. they cannot hold any shares of any asset). With those constraints
in place, maximizing U over a time horizon t = 0, . . . , T is equivalent to finding
a strategy that maximizes the terminal wealth of the investor over the horizon.
We call this source utility function the “terminal wealth” utility.

Note that with this utility function, we never need to explicitly represent the
cash amount on hand (i.e. it is not part of the state variables) since we use the
value function itself (viz. J∗

t (xt) in eq. (3)) to stand for the cash currently
on hand. This formulation has the advantage that we never need to discretize
the cash currently being held, which allows minute price variations and small
transaction costs to be handled without loss of precision.

4.1 Target Utilities

Denote by υt = n′
tpt the portfolio value at time t, and by

ρt =
υt − υt−1

υt−1

the portfolio relative return between time-steps t − 1 and t.
In the experiments below, we consider two target utility functions:

1. Average Return Per Time-Step:

ρ̄T =
1
T

ρt .

1 This function would incorporate a discounting factor if the horizon was very long;
we assume that this is not the case.
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2. Sharpe Ratio:

SRT =
ρ̄T − rf

σ̂T
,

where rf is an average government risk-free rate over the horizon, and σ̂T is
the sample standard deviation of returns

σ̂T =
1

T − 1

T∑
t=1

(ρt − ρ̄T )2 .

The Sharpe Ratio is one of the most widely-used risk-corrected performance
measures used by portfolio managers.

4.2 Choosing a Good K

It remains to answer the question of choosing an appropriate value of K for a
particular problem. To give an indication as to how one might proceed, Figure 2
shows various utility functions as a function of the index of the K-th best path,
when extracting 2.5 × 106 paths from a historical price sample.2 We clearly
observe that, beyond a certain point, the quality of the rescored trajectories stops
increasing. We investigate when one should stop extracting further trajectories.

Assume that, given a random trajectory i, a source utility function U and a
target utility function V , the utility values of the trajectory follow a joint prob-
ability distribution p(u, v), where u = U(i) and v = V (i). This is illustrated in
Figure 3 (left part). Assume further that we are interested in sampling trajec-
tories that have at least an unconditional target utility of α or better, namely
v ≥ α. Given an observed value of the source utility u, the probability that the
target utility be greater than this level is given by

P (v ≥ α|u) =
1

η(u)

∫ ∞

α

p(u, ṽ) dṽ ,

where η(u) =
∫∞
−∞ p(u, ṽ) dṽ is a normalization factor. For each trajectory i, call

this probability pα
i . For K trajectories, the probability that at least one exceeds

α under V can sometimes be computed analytically and is upper-bounded by∑K
k=1 pα

k . Hence, assuming an estimator of the joint distribution p(u, v), we can
compute the number K that would yield a desired confidence of exceeding the
target utility threshold α.

The right part of Figure 3 illustrates this idea. It shows a kernel density
estimate [23] of the joint distribution between U (terminal wealth utility) and V
(Sharpe Ratio utility), along with the regression line between the two (dashed red
line), for the same sample path history as reported in Figure 2. Even though the

2 Four-asset problem (futures on BritishPound, Sugar, Silver, HeatingOil), allow from
−3 to +3 shares of each asset in the portfolio; maximum variation of +1 or −1 share
per time-step; proportional transaction costs of 0.5%, trajectory length = 30 time-
steps).
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Fig. 2. Utility as a function of the extracted path index (up to 2.5 × 106 extracted
paths). (Top) The source utility function (terminal wealth), which decreases
monotonically by virtue of being extracted in that order by the K-best-paths algo-
rithm. (Middle) First target utility: average return per time-step (running maximum
value). (Bottom) Second target utility: Sharpe Ratio (running maximum value).

slope of the regression line appears small, it is highly statistically significant (t-
statistic greater than 200 yielding a p-value of zero-slope null hypothesis smaller
than 10−16.) Here is the complete correlation structure between the “terminal
wealth” source utility, and both the “average return per time-step” and “Sharpe
Ratio” target utilities:

Terminal Wealth Avg. Return Sharpe Ratio
Terminal Wealth 1.00 0.36 0.13
Avg. Return 0.36 1.00 0.45
Sharpe Ratio 0.13 0.45 1.00

5 Experimental Results

We conclude by presenting results on a real-world portfolio management prob-
lem. We consider a four-asset problem on commodity futures (feeder cattle, cot-
ton, corn, silver). Since individual commodity futures contracts expire at specific
dates, we construct, for each commodity, a continuous return series by consid-
ering the return series of the contract closest to expiry, and rolling over to the
next contract at the beginning of the contract expiration month. This return
series is converted back into a price series.
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α

u

v

Fig. 3. (Left) Exploiting the correlation between the source and target utility func-
tions: we want the number K of extracted paths to be large enough to sample “good
target utility” region (shaded) well enough. (Right) Kernel density estimate of the
relationship between the terminal wealth (source utility) and the Sharpe Ratio (target
utility); even though the dashed red regression line has a small positive slope, it is
extremely statistically significant.

Instead of a single train–test split, the simulation is run in the context of
sequential validation [3]. In essence, this procedure uses data up to t to train, then
tests on the single point t + 1 (and produces a single out-of-sample performance
result), then adds t + 1 to the training set, tests on t + 2, and so forth, until the
end of the data. An initial training set of 1008 points (four years of daily trading
data) was used.

From a methodology standpoint, we proceeded in two steps: (i) computing
a controller training set with the targets being the “optimal” action under the
Sharpe Ratio utility, (ii) running a simulation of a controller trained with that
training set, and comparing against a näıve controller. We describe each in
turn.

5.1 Constructing the Training Set

The construction of the training set follows the outline set forth in Figure 1 (left
part). To run the K-best-paths algorithm, we allow from −1 to +1 shares of
each asset in portfolio, maximum variation in each asset of −1 to +1 shares per
time-step, and proportional transaction costs of 0.5%.

We use, as targets in the training set, the “optimal” action under the Sharpe
Ratio utility function, obtained after rescoring on 1.06 paths. Since extracting
trajectories spanning several thousands time-steps is rather memory intensive,
we reverted to a slightly suboptimal local-trajectory solution:

– We split the initial asset price history (spanning approximately 1500 days)
into overlapping 30-day windows. The overlap between consecutive windows
is 22 days.

– We solve the Sharpe Ratio optimization problem independently within each
30-day window.
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– To account for boundary effects, we drop the seven first and last actions
within each window.

– We concatenate the remaining actions across windows.

We thus obtain the sequence of target actions across a long horizon.3

For the input part of the training set, we used:

– The current portfolio state (4 elements);
– The asset returns at horizons of length h ∈ {1, 22, 252, 378} days (16

elements).

5.2 Controller Architecture

Given the relatively small size of the training set, we could afford to use kernel
ridge regression (KRR) as the controller architecture [19]. Any (preferably non-
linear) regression algorithm, including neural networks, can be brought to bear.
For an input vector x, the forecast given by the KRR estimator has a particularly
simple form,

f(x) = k(x,xi)(M + λ I)−1y

where k(x,xi) is the vector of kernel evaluations of the test vector x against all
elements of the training set xi, M is the Gram matrix on the training set, and
y is the matrix of targets (in this case, the optimal actions under the Sharpe
Ratio utility, found in the previous section). We made use of a standard Gaussian
kernel, with σ = 3.0 and fixed λ = 10.0 (both found by cross-validation on a
non-overlapping time period).

5.3 Results

For validation purposes, we compared against two benchmarks models:

– The same KRR controller architecture, but with the targets replaced by the
10-day ahead 22-day asset returns, followed by a sign(·) operation. Hence,
this controller takes a long position if it believes that an asset will experience
a positive return over the short-term, and symmetrically takes a short po-
sition if it believes otherwise. For this controller, the current portfolio state
is not included within the inputs, since it cannot be established at training
time, yielding a total of 16 inputs instead of 20.

– The same targets as previously, but with a linear forecasting model (esti-
mated by ordinary least squares) instead of KRR.

Performance results over the out-of-sample period 2003–2004 (inclusive) ap-
pear in Figure 4. Further performance statistics appear in Table 1. We observe
that, at constant annual volatility (around 10%), the KRR model trained with
the proposed methodology (Sharpe Ratio utility function) outperforms the two
benchmarks.
3 It is obvious that this approach will not capture long-range dependencies between

actions (more than 30 days in this case). However, for the specific case of the Sharpe
Ratio, the impact of an action is not usually felt at a long distance, and thus this
approach was found to work well in practice. Needless to say, it will have to be
adjusted to other more complex utility functions.
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Fig. 4. Out-of-sample financial simulation results for the 2003–2004 period, com-
paring a controller trained with the proposed algorithm (red; Information Ratio =
0.369) against two benchmark models (resp. IR=−0.315 for linear controller (blue)
and IR=0.113 for KRR controller (green))

Table 1. Financial performance statistics for the out-of-sample simulation results on
the 2003–2004 period

Benchmark Benchmark Sharpe Ratio “Optimal”
Linear Model KRR Model Targets; KRR Model

Average monthly relative return -0.14% 0.20% 0.43%
Monthly return standard deviation 2.68% 2.89% 3.07%
Worst monthly return -5.80% -6.21% -7.14%
Best monthly return 5.15% 6.80% 6.73%
Annual Information Ratio† -0.31 0.11 0.37
Average daily net exposure -5.3% 10.8% 28.3%
Average portfolio effective leverage 74.7% 73.4% 59.6%
Average monthly portfolio turnover 499% 175% 80%
Average daily hit ratio 48.1% 50.6% 51.6%

† with respect to U.S. 3-month T-Bill.

6 Discussion and Future Work

The current results, although demonstrating the value of the proposed algorithm,
probably raise more questions than they answer. In particular, we did not con-
sider the impact on rescoring performance of the choice of source utility function.
Moreover, we so far ignored the major efficiency gains that can be achieved by
an intelligent pruning of the search graph, either in the form of beam searching
or action enumeration heuristics.
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Another question that future work should investigate is that with the method-
ology proposed here, the supervised learning algorithm optimizes the controller
with respect to a regression (or classification) criterion which can disagree with
the target utility when the target training set trajectory is not perfectly repro-
duced. In order to achieve good generalization, because of unpredictability in the
data and because of the finite sample size, the trained controller will most likely
not reach the supervised learning targets corresponding to the selected trajec-
tory. However, among all the controllers that do not reach these targets and that
are reachable by the learning algorithm, we will choose one that minimizes an
ordinary regression or classification criterion, rather than one that maximizes
our financial utility. Ideally, we would like to find a compromise between finding
a “simple” controller (from a low-capacity class) and finding a controller which
yields high empirical utility. One possible way to achieve such a trade-off in our
context would be to consider the use of a weighted training criterion (e.g. simi-
lar to ones used to train boosted weak learners in Adaboost [?]) that penalizes
regression or classification errors more or less according to how much the target
utility would decrease by taking the corresponding “wrong” decisions, different
from the target decision.
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Abstract. Naive Bayes is a well-known effective and efficient classifica-
tion algorithm. But its probability estimation is poor. In many applica-
tions, however, accurate probability estimation is often required in order
to make optimal decisions. Usually, probability estimation is measured
by conditional log likelihood (CLL). There have been some learning al-
gorithms proposed recently to extend naive Bayes for high CLL, such as
ERL [8, 9] and BNC-2P [10]. Unfortunately, their computational com-
plexity is relatively high. Is there a simple but effective and efficient
approach to improve the probability estimation of naive Bayes? In this
paper, we propose to use feature selection for this purpose. More pre-
cisely, a search process is conducted to select a subset of attributes, and
then a naive Bayes is deployed on the selected attribute set. In fact, fea-
ture selection has been successfully applied to naive Bayes and achieves
significant improvement in classification accuracy. Among the feature se-
lection algorithms for naive Bayes, selective Bayesian classifiers (SBC)
by Langley et al. [13] demonstrates good performance. In this paper, we
first study the performance of SBC in terms of probability estimation,
and then propose an improved SBC algorithm SBC-CLL, in which the
CLL score is directly used for attribute selection, instead of using classi-
fication accuracy. Our experiments show that both SBC and SBC-CLL
achieve significant improvement over naive Bayes, and that SBC-CLL
outperforms SBC substantially, in probability estimation measured by
CLL. Our work provides an efficient and surprisingly effective approach
to improve the probability estimation of naive Bayes.

1 Introduction

Classification is one of the fundamental problems in machine learning and data
mining. In classification, the goal is to learn a classifier from a given set of
instances with class labels, which correctly assigns a class label to an instance.

� This work was done when the author was a visiting scholar at University of New
Brunswick.
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Typically, an instance e is represented by a vector of attributes (A1, · · · , An). The
performance of a classifier is usually measured by its classification accuracy (the
percentage of instances correctly classified). Classification has been extensively
studied and various learning algorithms have be developed, such as decision
trees, artificial neural networks, Bayesian networks, et al.

In classification, a tacit assumption is that the costs incurred by different
types of misclassifications are equal, which is often not true in many real-world
applications. For example, in direct marketing, the cost incurred by predicting
a customer who is going to buy your products as one not to buy, is significantly
greater than the converse. To take the misclassification costs into account, the
optimal decision (Bayes optimal prediction) for a given instance e is to assign e
to the class i that minimizes the conditional risk [5]:

R(i|e) =
∑

j

P (j|e)C(i, j), (1)

where C(i, j) is the cost of classifying an instance of class i into class j and
P (j|e) is the probability that e belongs to class j (class probability). Appar-
ently, to accomplish Bayes optimal prediction, we need accurate estimates of the
probability P (j|e). Thus, accurate probability estimation is required, instead of
just a classification.

If our target is accurate probability estimation and we are given only a set
of training instances with class labels, conditional log likelihood (CLL) is often
used as the performance measure [7, 10, 11]. Given a classifier G and a set of
instances D = {e1, e2, . . . , ei . . . , eN}, where ei = (ai1, ai2 . . . , ain, ci), N is the
number of instances, n is the number of attributes, and ci the class label of ei.
The conditional log likelihood CLL(G|D) of a classifier G on D is defined as:

CLL(G|D) =
N∑

i=1

logPG(ci|ai1, ai2 . . . , ain). (2)

Most current classification algorithms, however, are designed for maximizing
classification accuracy. Although many classification learning algorithms, such
as naive Bayes and decision trees, also produce probability estimates as a by-
product, their probability estimates are often poor [18, 1]. This fact raises a
natural question: how to learn a classifier with accurate probability estimation?
In this paper, we focus on naive Bayes, an effective and efficient classification
algorithm [12, 4]. Naive Bayes is defined as follows.

g(e) = argmax
c∈C

P (c)
n∏

i=1

P (ai|c), (3)

where e = (a1, · · · , an) is an instance and g(e) is the class assigned to e by naive
Bayes. Essentially naive Bayes assumes that all attributes are independent given
the class (conditional independence assumption). That is:

P (a1, a2, . . . , an|c) =
n∏

i=1

P (ai|c). (4)
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A1 A2 A3 A4

C

Fig. 1. An example of naive Bayes

Figure 1 shows graphically the structure of naive Bayes. In naive Bayes, each
attribute node has the class node as its parent, but does not have any parent
from attribute nodes.

Because of the simplicity and effectiveness of naive Bayes in classification, we
might expect that its probability estimation could be also accurate. Unfortu-
nately, naive Bayes has been found to work poorly for regression problems [6],
and produces poor probability estimation [1]. An obvious reason is that the con-
ditional independence assumption is rarely true in reality. In fact, there has been
a substantial amount of research work in relaxing the conditional independence
assumption of naive Bayes to improve its classification performance. Only in
very recent years, some researchers have begun to study the learning algorithms
for improving the probability estimation of naive Bayes or Bayesian networks,
such as ERL [9] and BNC-2P [10]. But their computational complexity is often
high.

Is there a simple, efficient but effective way to improve the probability esti-
mation of naive Bayes, such that it can be scaled up to handle large data sets?
This is the main motivation of this paper. Actually, we find out that feature
selection, which has been used successfully in improving the classification accu-
racy of naive Bayes [13], is also an effective and efficient way to accomplish this
task.

The rest of the paper is organized as follows. In Section 2, we introduce the
related work in extending naive Bayes. In Section 3, we study empirically the
probability estimation performance of one existing feature selection algorithm
for naive Bayes and propose a new algorithm. In Section 4, we make a conclusion
and outline our main directions for future research.

2 Related Work

There has been a substantial amount of research on extending naive Bayes for
classification, which can be broadly divided into two categories: (1) structure
extension: extending the structure of naive Bayes to represent the dependencies
among attributes, (2) feature selection: selecting a subset of attributes, in which
the conditional independence assumption is (approximately) true.

Extending the structure of naive Bayes to explicitly represent attribute depen-
dencies is a direct way to relax the conditional independence assumption. The
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resulting model is essentially a Bayesian network. Thus, learning the structure
is unavoidable. However, learning the optimal structure is a NP-hard problem
[2]. In practice, imposing restrictions on the structures of Bayesian networks is
necessary. For example, learning tree augmented naive Bayes (TAN) [7] leads
to a more acceptable computational complexity. TAN is an extended tree-like
naive Bayes, in which the class node directly points to all attribute nodes and an
attribute node can have only one parent from another attribute node. However,
even in a TAN learning algorithm, structure learning is still unavoidable and
takes a significant amount of time.

Feature selection is simpler than structure extension. Among the feature selec-
tion algorithms for naive Bayes, selective Bayesian classifiers(SBC) by Langley
et al. [13] demonstrates significant improvement over naive Bayes in terms of
classification accuracy. The feature selection process of SBC consists of a for-
ward search through the space of attribute subsets. SBC starts from an empty
set, and adds the attribute that achieves the highest improvement in accuracy
to the set in each iteration until the adding of the attribute does not lead to the
improvement of accuracy.

All the research work mentioned before is for classification. In very recent
years, researchers have started to pay attention to extending naive Bayes for ac-
curate probability estimation, measured by the CLL score in Equation 2. Note
that traditional probability-base learning attempts to optimize likelihood, in-
stead of conditional likelihood. One major advantage for optimizing likelihood
is that maximum likelihood parameters (the probabilities in a Bayesian network
or naive Bayes) can be efficiently estimated in closed form, while computing
maximum conditional likelihood parameters seems intractable[7].

Greiner, et al. propose an algorithm ERL to compute the maximum con-
ditional likelihood parameters by gradient decent [8, 9]. For naive Bayes, the
parameters are the probabilities P (c) and P (ai|c) in Equation 3, which can be
easily estimated by computing the related frequencies from the training data, if
the goal is to maximize likelihood. For conditional likelihood, however, a search
process is needed. A search process based on gradient decent is computationally
feasible, although it is still time-consuming.

Grossman and Domingos [10] present an algorithm BNC-2P for learning TAN
for probability estimation. The basic idea for BNC-2P is, using conditional like-
lihood in structure learning while setting parameters by maximum likelihood.
Their experiments show that this approach yields better probability estimation.
Due to the structure learning, however, the scalability of BNC-2P is limited. In
fact, the time complexity of BNC-2P is roughly O(n3), where n is the number
of attributes.

Lowd and Domingos [14] propose an approach based on EM, called NBE, to
learning naive Bayes models for probability estimation. Their goal is to learn an
accurate representation of the joint distribution for fast inference, not merely
for classification. So, their work is essentially about learning naive Bayes to
maximize likelihood. Nevertheless, NBE is not faster than the typical Bayesian
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network learning algorithm WinMine [3], because of the EM method that takes
substantial time to converge [14].

The learning algorithms for probability estimation previously described are
sophisticated and with high computational complexity. Is there a simple and ef-
ficient way to improve naive Bayes for probability estimation? We find out that
feature selection is actually an effective and efficient method for this purpose,
just as it does in classification. In this paper, we first investigate the traditional
SBC algorithm for probability estimation. Then, we propose a revised SBC al-
gorithm SBC-CLL that adopts conditional log likelihood as the scoring function
in the search process. We conduct experiments to test SBC and SBC-CLL on
all the 36 benchmark data sets from Weka[19]. The experimental results show
that SBC achieves significant improvement over naive Bayes and SBC-CLL also
outperforms SBC substantially.

3 Feature Selection for Probability Estimation of Naive
Bayes

Feature selection has been successfully applied to naive Bayes to improve its
classification accuracy. For example, SBC outperforms naive Bayes significantly
in classification accuracy [13]. Can we apply feature selection to naive Bayes for
probability estimation? Let us see the following example.

Assume that the attribute set A = {A1, A2, A3, A4}, in which A2 and A4 are
completely dependent on A1 and A3 respectively (that is, A1 = A2, A3 = A4),
and A1 and A2 are completely independent from A3 and A4. Then the true
probability distribution is :

P (A1, A2, A3, A4, C) = P (C)P (A1|C)P (A3|C).

However, the probability estimate produced by naive Bayes is :

Pnb(A1, A2, A3, A4, C) = P (C)P 2(A1|C)P 2(A3|C).

Obviously, the probability estimate of naive Bayes is inaccurate. However,
if we do feature selection and deploy naive Bayes on the subset {A1, A3}, the
resulting naive Bayes represents exactly the true distribution.

From the preceding example, we can see that feature selection could work
well for probability estimation. Then the key is how to find a subset of attribute
that achieves good probability estimation. Do the classification accuracy based
feature selection methods, such as SBC, also result in significant improvement
on probability estimation? We will conduct an empirical study to answer this
question.

Note that we are aiming at accurate probability estimation. It is more natural
using a scoring function based on probability estimation, such as the CLL score
defined in Equation 2, instead of using accuracy. We propose an improved SBC
algorithm, which is similar to SBC, except that the CLL score is used to select
attributes. The algorithm is called selective Bayesian classifiers based on CLL,
or simply SBC-CLL, illustrated below.
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Algorithm. SBC-CLL(D, A)
Input: A set D of training instances and a set A of attributes.
Output: An naive Bayes classifier.
Let As be the selected subset of attributes.
Let the naive Bayes on As be NB(As).
As = empty
cll = the CLL score of NB(As)
While A is not empty

currentCLL = −∞
bestAttribute = empty
for each attribute A ∈ A

if the CLL score of NB(As
⋃

{A}) > currentCLL
currentCLL =the CLL score of NB(As

⋃
{A})

bestAttribute = A
if currentCLL > cll

cll = currentCLL
As = As

⋃
{A}

remove bestAttribute from A
else return As

We conduct experiments to study the performance of SBC and SBC-CLL in
terms of probability estimation. In our experiments, the CLL score of a classifier
is computed using Equation 2.

We implemented SBC and SBC-CLL in Weka framework [20], and ran our
experiments on 36 UCI data sets recommended by Weka, which are described
in Table 1. We downloaded these data sets in format of arff from main web
of Weka [19]. In our experiments, we adopted the following three preprocessing
steps on each data set.

1. Missing values: We used the unsupervised filter ReplaceMissingValues in
Weka to replace the missing values in each data set.

2. Discretization of numeric attributes: We used the unsupervised filter Dis-
cretize in Weka to discretize the numeric values of attributes in each data
set.

3. Removal of useless attributes: Apparently, if the number of values of an at-
tribute is almost equal to the number of instances in a data set, it does
not contribute useful information to future prediction. For example, the stu-
dent ID numbers are useless for prediction. Thus, we removed this type of
attributes using the unsupervised filter Remove in Weka. In fact, only the
three attributes named “Hospital Number” in data set colic.ORIG, “instance
name” in data set splice, and “animal” in data set zoo, were deleted.

In all experiments, the CLL score of a classifier on a data set was obtained
via 10 runs of ten-fold cross validation. Runs with the various classifiers were
carried out on the same training sets and evaluated on the same test sets. Fi-
nally, we conducted two-tailed t-test with a 95% confidence level to compare two
classifiers. In our experiments, we also observed classification accuracy.
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Table 1. Description of data sets used in the experiments

No. Dataset Instances Attributes Classes Missing Numeric
1 anneal 898 39 6 Y Y
2 anneal.ORIG 898 39 6 Y Y
3 audiology 226 70 24 Y N
4 autos 205 26 7 Y Y
5 balance-scale 625 5 3 N Y
6 breast-cancer 286 10 2 Y N
7 breast-w 699 10 2 Y N
8 colic 368 23 2 Y Y
9 colic.ORIG 368 28 2 Y Y
10 credit-a 690 16 2 Y Y
11 credit-g 1000 21 2 N Y
12 diabetes 768 9 2 N Y
13 Glass 214 10 7 N Y
14 heart-c 303 14 5 Y Y
15 heart-h 294 14 5 Y Y
16 heart-statlog 270 14 2 N Y
17 hepatitis 155 20 2 Y Y
18 hypothyroid 3772 30 4 Y Y
19 ionosphere 351 35 2 N Y
20 iris 150 5 3 N Y
21 kr-vs-kp 3196 37 2 N N
22 labor 57 17 2 Y Y
23 letter 20000 17 26 N Y
24 lymphography 148 19 4 N Y
25 mushroom 8124 23 2 Y N
26 primary-tumor 339 18 21 Y N
27 segment 2310 20 7 N Y
28 sick 3772 30 2 Y Y
29 sonar 208 61 2 N Y
30 soybean 683 36 19 Y N
31 splice 3190 62 3 N N
32 vehicle 846 19 4 N Y
33 vote 435 17 2 Y N
34 vowel 990 14 11 N Y
35 waveform-5000 5000 41 3 N Y
36 zoo 101 18 7 N Y

We compared SBC with naive Bayes in terms of CLL and accuracy. The
detailed results are shown in Table 2.

From Table 2, we have the following observations:

1. SBC achieves significant improvement over naive Bayes in CLL. Compared
to naive Bayes, SBC wins in 15 data sets, loses in 2 data sets, and ties in
all the others. This shows that feature selection is an effective approach to
improving the probability estimation of naive Bayes.
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2. In terms of accuracy, SBC also achieves significant improvement over naive
Bayes. Compared to naive Bayes, SBC wins in 11 data sets, loses in 2 data
sets, and ties in all the others. Our experimental results repeated the exper-
imental results in [13].

Table 2. Experimental results for comparing naive Bayes and selective Bayesian clas-
sifiers in term of CLL and accuracy. NB: naive Bayes; SBC: selective Bayesian clas-
sifiers. The symbols v and * respectively denotes statistically significant improvement
and degradation over naive Bayes using two-tailed t-test with a 95% confidence level.

CLL comparisons accuracy comparisons
Datasets NB SBC NB SBC
anneal -14.22±6.16 -12.4±6.53 94.32±2.23 96.94±2.03 v
anneal.ORIG -23.58±5.6 -22.9±5.66 88.16±3.06 89.68±2.92
audiology -65.91±24.28 -23.33±6.96 v 71.4±6.37 74.06±7.07
autos -45.57±18.12 -19.91±5.94 v 63.97±11.35 68.69±11.27
balance-scale -31.75±1.51 -31.75±1.51 91.44±1.3 91.44±1.3
breast-cancer -18.37±4.49 -16.64±2.79 72.94±7.71 72.53±7.52
breast-w -18.28±14.16 -13.07±9.54 v 97.3±1.75 96.58±2.19
colic -30.63±11.38 -16.78±4.33 v 78.86±6.05 83.37±5.56 v
colic.ORIG -21.24±5.74 -18.58±3.58 74.21±7.09 74.83±6.17
credit-a -28.79±8.1 -27.26±5.39 84.74±3.83 85.36±3.99
credit-g -52.79±6.35 -51.99±5.62 75.93±3.87 74.76±3.85
diabetes -40.78±7.49 -38.57±6.34 75.68±4.85 76±5.24
glass -24.08±5.42 -23.75±4.76 57.69±10.07 56.37±10.04
heart-c -13.91±6.71 -13.91±4.57 83.44±6.27 81.12±7.15
heart-h -13.49±5.37 -14.86±4.61 83.64±5.85 80.19±7.03
heart-statlog -12.25±4.96 -12.18±3.91 83.78±5.41 80.85±7.61
hepatitis -8.53±5.98 -6.73±2.98 84.06±9.91 82.51±8.48
hypothyroid -97.14±13.29 -93.89±9.11 92.79±0.73 93.46±0.5 v
ionosphere -34.79±19.94 -10.31±4.79 v 90.86±4.33 91.25±4.14
iris -2.56±2.35 -2.01±1.73 94.33±6.79 96.67±4.59
kr-vs-kp -93.48±7.65 -97.93±4.58 87.79±1.91 94.34±1.3 v
labor -0.71±0.99 -2.75±1.5 * 96.7±7.27 82.63±12.69 *
letter -2505.15±98.42 -2386.21±92.62 v 70.09±0.93 70.71±0.9 v
lymph -6.22±3.96 -7.52±2.98 85.97±8.88 80.24±9.58 *
mushroom -105.77±23.25 -21.43±3.57 v 95.52±0.78 99.7±0.22 v
primary-tumor -65.56±8.27 -65.07±8.18 47.2±6.02 44.49±6.76
segment -124.32±33.74 -64.22±14.01 v 89.03±1.66 90.65±1.77 v
sick -46.05±11.99 -34.08±9.14 v 96.78±0.91 97.51±0.72 v
sonar -22.67±11.47 -13.71±4.28 v 76.35±9.94 69.78±9.74
soybean -26.25±11.03 -18.58±5.5 v 92.2±3.23 91.99±3.16
splice -46.53±12.85 -49.11±12.23 95.42±1.14 94.95±1.29
vehicle -172.12±27.55 -84.56±11.55 v 61.03±3.48 60.98±3.62
vote -27.25±13.85 -7.55±3.52 v 90.21±3.95 95.59±2.76 v
vowel -89.8±11.38 -83.78±10.66 v 66.09±4.78 68.59±4.5 v
waveform-5000 -378±32.64 -242.07±22.97 v 79.97±1.46 81.17±1.45 v
zoo -1.22±1.06 -3.22±1.66 * 94.37±6.79 94.04±7.34
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Table 3. Experimental results for comparing naive Bayes and selective Bayesian classi-
fiers based on CLL in term of CLL and accuracy. NB: naive Bayes; SBC-CLL: selective
Bayesian classifiers based on CLL. The symbols v and * respectively denotes statisti-
cally significant improvement and degradation over naive Bayes using two-tailed t-test
with a 95% confidence level.

CLL comparisons accuracy comparisons
Datasets NB SBC-CLL NB SBC-CLL
anneal -14.22±6.16 -8.97±5.08 v 94.32±2.23 97.02±1.97 v
anneal.ORIG -23.58±5.6 -21.63±5.45 v 88.16±3.06 90.27±2.91 v
audiology -65.91±24.28 -25.78±9.51 v 71.4±6.37 73.64±6.62
autos -45.57±18.12 -17.73±6.41 v 63.97±11.35 70.36±9.79 v
balance-scale -31.75±1.51 -31.75±1.51 91.44±1.3 91.44±1.3
breast-cancer -18.37±4.49 -17.29±3.12 72.94±7.71 71.8±7.35
breast-w -18.28±14.16 -8.78±6.09 v 97.3±1.75 95.9±2.38
colic -30.63±11.38 -18.56±4.98 v 78.86±6.05 81.12±6
colic.ORIG -21.24±5.74 -18.9±4.23 v 74.21±7.09 75.54±6.83
credit-a -28.79±8.1 -25.62±6.03 v 84.74±3.83 85.41±3.8
credit-g -52.79±6.35 -51.29±6.17 75.93±3.87 75.83±3.93
diabetes -40.78±7.49 -36.4±5.66 v 75.68±4.85 77.58±4.82
glass -24.08±5.42 -24.3±5.43 57.69±10.07 56.79±9.74
heart-c -13.91±6.71 -13.46±4.82 83.44±6.27 81.39±6.93
heart-h -13.49±5.37 -12.98±4.1 83.64±5.85 80.07±6.63
heart-statlog -12.25±4.96 -11.36±3.85 83.78±5.41 81.96±6.24
hepatitis -8.53±5.98 -6.8±3.83 84.06±9.91 83.45±8.93
hypothyroid -97.14±13.29 -86.64±9.86 v 92.79±0.73 93.47±0.54 v
ionosphere -34.79±19.94 -11.77±6.12 v 90.86±4.33 91.34±4.21
iris -2.56±2.35 -1.9±1.68 94.33±6.79 96.67±4.69
kr-vs-kp -93.48±7.65 -83.41±5.04 v 87.79±1.91 92.46±1.81 v
labor -0.71±0.99 -0.94±1.27 96.7±7.27 94.93±8.68
letter -2505.15±98.42 -2313.32±79.85 v 70.09±0.93 69.47±0.84 *
lymph -6.22±3.96 -5.73±3.33 85.97±8.88 85.02±8.8
mushroom -105.77±23.25 -18.56±4.04 v 95.52±0.78 99.39±0.29 v
primary-tumor -65.56±8.27 -64.91±8.19 v 47.2±6.02 47.14±6.09
segment -124.32±33.74 -56.32±10.2 v 89.03±1.66 90.97±1.72 v
sick -46.05±11.99 -32.17±8.76 v 96.78±0.91 97.38±0.78 v
sonar -22.67±11.47 -14.1±6.96 v 76.35±9.94 76.32±9.47
soybean -26.25±11.03 -14.03±5.62 v 92.2±3.23 93.19±2.61
splice -46.53±12.85 -42.45±11.18 v 95.42±1.14 95.51±1.14
vehicle -172.12±27.55 -73.44±8.2 v 61.03±3.48 62.62±4.35
vote -27.25±13.85 -7.07±3.77 v 90.21±3.95 95.40±2.73 v
vowel -89.8±11.38 -83.49±9.96 v 66.09±4.78 68.71±4.43 v
waveform-5000 -378±32.64 -235.79±18.18 v 79.97±1.46 79.61±1.65
zoo -1.22±1.06 -1.1±1.07 94.37±6.79 96.25±5.56

The detailed results for comparing SBC-CLL with naive Bayes are shown in
Table 3. From Table 3, we can see substantial improvement of SBC-CLL over
naive Bayes. We summarize the highlights briefly as follows:
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1. SBC-CLL achieves surprisingly significant improvement in probability esti-
mation. Compared to naive Bayes, SBC-CLL wins in 24 data sets, loses in
0 data set, and ties in all the others.

2. SBC-CLL also outperforms naive Bayes significantly in accuracy. Compared
to naive Bayes, it wins in 10 data sets, loses in 1 data set, and ties in all the
others.

We actually conducted a two-tailed t-test with a 95% confidence level to com-
pare each pair of naive Bayes, SBC, and SBC-CLL. The results are summarized
in Table 4 and Table 5, corresponding to accuracy and CLL respectively. The
key observation from Table 4 is that SBC-CLL outperforms SBC significantly in
probability estimation. SBC-CLL wins in 15 data sets, loses in 0 data set. In ad-
dition, from Table 5, we can see that the classification performance of SBC-CLL
is still competitive with SBC (1 win and 4 losses).

Table 4. The comparison results of two-tailed t-test on CLL with the 95% confidence
level. An entry w/t/l in the table means that the algorithm at the corresponding row
wins in w data sets, ties in t data sets, and loses in l data sets, compared to the
algorithm at the corresponding column.

NB SBC
SBC 15/19/2
SBC-CLL 24/12/0 15/21/0

Table 5. The comparison results of two-tailed t-test on classification accuracy with
the 95% confidence level. An entry w/t/l in the table means that the algorithm at the
corresponding row wins in w data sets, ties in t data sets, and loses in l data sets,
compared to the algorithm at the corresponding column.

NB SBC
SBC 11/23/2
SBC-CLL 10/25/1 1/31/4

In summary, we observed from our experiments that feature selection is an
effective approach to improving the probability estimation of naive Bayes, and
that CLL-based feature selection is even more effective than accuracy-based
feature selection. Note that the time complexity of both SBC and SBC-CLL is
O(n2), where n is the number of attributes. Thus, both are significantly more
efficient than ERL[9, 11], NBE [14], and BNC-2P[10].

4 Conclusions and Future Work

In this paper, we investigated the feature selection approach to improving the
probability estimation of naive Bayes. We empirically studied SBC in terms of
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probability estimation, and then proposed an improved SBC algorithm SBC-
CLL, which uses the CLL score as the criterion for selecting attributes. Our ex-
periments show that SBC outperforms naive Bayes significantly and SBC-CLL
performs significantly better than either SBC or naive Bayes in probability esti-
mation. This paper has two major contributions: find out that feature selection
is an efficient and effective approach to improving the probability estimation of
naive Bayes, and propose a new algorithm SBC-CLL that performs surprisingly
well for probability estimation. Our work provides a simple but effective and
efficient approach to extending naive Bayes for probability estimation.

Our work shows that SBC-CLL is surprisingly effective in probability estima-
tion compared with naive Bayes. SBC-CLL is also simpler and significantly more
efficient than other sophisticated methods, such as ERL and BNC-2P. However,
it is not clear whether SBC-CLL is competitive with ERL or BNC-2P in proba-
bility estimation. In our future work, we will compare SBC-CLL with ERL and
BNC-2P.

It seems that using a CLL-based scoring function can help probability estima-
tion. In principle, the CLL-based scoring function could be used to improve the
probability estimation of other classification algorithms, such as NBTree[15]. It
is another direction for our future research.
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Abstract. Naive Bayes is a probability-based classification model based
on the conditional independence assumption. In many real-world appli-
cations, however, this assumption is often violated. Responding to this
fact, researchers have made a substantial amount of effort to improve
the accuracy of naive Bayes by weakening the conditional independence
assumption. The most recent work is the Averaged One-Dependence Esti-
mators (AODE) [15] that demonstrates good classification performance.
In this paper, we propose a novel lazy learning algorithm Lazy Averaged
One-Dependence Estimators, simply LAODE, by extending AODE. For
a given test instance, LAODE firstly expands the training data by adding
some copies (clones) of each training instance according to its similar-
ity to the test instance, and then uses the expanded training data to
build an AODE classifier to classify the test instance. We experimentally
test our algorithm in Weka system [16], using the whole 36 UCI data
sets [11] recommended by Weka [17], and compare it to naive Bayes [3],
AODE [15], and LBR [19]. The experimental results show that LAODE
significantly outperforms all the other algorithms used to compare.

1 Introduction

Classification is one of the most important tasks in machine learning and data
mining. In classification, a classifier is learned from a set of training instances
with class labels. An instance is represented by a tuple of attributes (A1, . . . , An),
which are used collectively to predict the value c of the class variable C. The
Bayesian classifier assigns the class with the maximum posterior probability to
an instance, defined as follows.

argmax
c∈C

P (c)P (a1, a2, . . . , an|c). (1)

Assume that all attributes are independent given the class (conditional inde-
pendence assumption). That is:

P (a1, a2, . . . , an|c) =
n∏

i=1

P (ai|c). (2)

� This work was done when the author was a visiting scholar at University of New
Brunswick.
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The resulting classifier is called the naive Bayesian classifier, or simply naive
Bayes :

argmax
c∈C

P (c)
n∏

i=1

P (ai|c). (3)

Figure 1 shows graphically the structure of naive Bayes. In naive Bayes, each
attribute node has the class node as its parent, but does not have any parent
from attribute nodes. Naive Bayes is based on the conditional independence
assumption that is violated in many applications.

A1 A2 A3 A4

C

Fig. 1. An example of naive Bayes

In order to relax this assumption effectively, we need to represent and manip-
ulate independence assertions. Bayesian networks [12] provide an appropriate
language for this. Unfortunately, it has been proved that learning an optimal
Bayesian network is NP-hard [2]. To avoid the computational complexity for
learning a Bayesian network, learning improved naive Bayes has attracted much
attention from researchers. Related work can be broadly divided into two cate-
gories: eager learning and lazy learning, depending on when the major computa-
tion occurs. Eager learning does major computation at training time. There are
a variety of eager learning algorithms for extending naive Bayes, such as SBC
[9], TAN [6], NBTree [8], and AODE [15]. AODE (Averaged One-Dependence
Estimators) is the most recent work on improving naive Bayes, which weakens
the attribute independence assumption by averaging all models from a restricted
class of one-dependence classifiers.

Different from eager learning, lazy learning spends little or no effort dur-
ing training and delays computation until classification time. There are some
lazy learning algorithms for extending naive Bayes, such as LBR (lazy Bayesian
rule) [19], SNNB (selective neighborhood naive Bayes) [18], and LWNB (locally
weighted naive Bayes) [4].

Since AODE demonstrates good performance in classification, we could expect
that an extension of AODE from the lazy approach could be more accurate, if
we can overcome the issues in developing lazy AODE. In this paper, we propose
a novel lazy algorithm called Lazy Averaged One-Dependence Estimators, or
simply LAODE, which is essentially an extension of AODE from lazy learning
approach.
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The rest of the paper is organized as follows. In Section 2, we introduce
the related work on improving naive Bayes. In Section 3, we present our lazy
algorithm LAODE. In Section 4, we describe the experimental setup and results
in detail. In Section 5, we make a conclusion and outline our main directions for
future research.

2 Related Work

Naive Bayes has been extensively studied, and there is a large amount of re-
search work on extending naive Bayes. From the approach of eager learning,
extending the structure of naive Bayes to represent attribute dependencies is
a straightforward way to overcome the conditional independence assumption.
The resulting model is called augmented naive Bayes(ANB) [6]. Learning an
optimal augmented naive Bayes, however, is equivalent to learning an optimal
Bayesian network, which is computationally infeasible. Thus, learning restricted
augmented naive Bayes is more practical. Tree augmented naive Bayes (TAN)
[6] is tree-like structure, in which the class node directly points to all attribute
nodes and each attribute node is allowed to have at most one parent from another
attribute node. Figure 2 shows an example of TAN. TAN achieves significant im-
provement over naive Bayes in classification accuracy.

A1 A2 A3 A4

C

Fig. 2. An example of tree augmented naive Bayes

TAN can be further extended by building an ensemble of TANs that are used
collectively to perform classification. This is the basic idea of AODE [15]. In
AODE, an aggregate of one-dependence classifiers are learned and the prediction
is produced by averaging the predictions of all these qualified classifiers. The
notion of x-dependence is introduced by Sahami [14]. An x-dependence estimator
means that the probability of an attribute is conditioned by the class variable
and at most x other attributes, which corresponds to an augmented naive Bayes
with at most x attribute parents. In AODE, a one-dependence classifier is built
for each attribute, in which the attribute is set to be the parent of all other
attributes. That means, the structure of the TAN for each attribute is fixed.
Thus, AODE avoids structure learning. For simplicity, AODE directly averages
the aggregate consisting of many special tree augmented naive Bayes. Figure 3
shows an example of the aggregate of AODE.
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C

A1 A2 A3 A4

C

A1 A2 A3 A4

C

A1 A2 A3 A4

C

A1 A2 A3 A4

Fig. 3. An example of the aggregate of AODE

AODE classifies a test instance using Equation 4.

arg max
c∈C

(

∑n
i=1∧F (ai)≥m P (ai, c)

∏n
j=1,j �=i P (aj |ai, c)

numParent
) (4)

where F (ai) is a count of the number of training instances having attribute-value
ai and is used to enforce the limit m that they place on the support needed in
order to accept a conditional probability estimate, n is the number of attributes,
and numParent is the number of the root attributes, which satisfy the condition
that the training instances contain more than m examples with the value ai for
the parent attribute Ai. In the current AODE, m = 30. The experimental results
in [15] show that AODE achieves substantial improvement over TAN.

There is also some research work to extend naive Bayes from the lazy ap-
proach. Zheng and Webb [19] propose a lazy learning approach called lazy
Bayesian rule (LBR). LBR generates a rule most appropriate to the test in-
stance before classifying it. The training instances that satisfy the antecedent of
the rule are chosen as the training data for the local naive Bayes, and this local
naive Bayes only uses the attributes that do not appear in the antecedent of the
rule. Their experiments show that LBR obtains lower error rates significantly
than naive Bayes, C4.5 [13], and lazy decision tree [5] etc.

Xie et al. [18] propose a lazy model called selective neighborhood naive Bayes
(SNNB). At first, SNNB constructs multiple naive Bayes on multiple neighbor-
hoods by using different radius values for the test instance. Then, it selects the
most accurate one to classify the test instance. Their experimental results show
that SNNB outperforms naive Bayes, and the state-of-the-art classification al-
gorithms NBTree [8] and C4.5 [13] in terms of classification accuracy. Note that
the computational complexity of SNNB is high.
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Frank et al. [4] present a lazy algorithm to combine instance-based k-nearest
neighbor with naive Bayes, called locally weighted naive Bayes (LWNB). In
LWNB, each of k nearest neighbors is weighted in terms of its distance to the
test instance. Then a local naive Bayes is built from the weighted training in-
stances. Their experimental results show that LWNB outperforms naive Bayes
significantly. Although their experiments show that LWNB is not particularly
sensitive to the choice of the k value as long as it is not too small, its performance
is certainly affected by the value of k to some extent.

3 Lazy Averaged One-Dependence Estimators

Generally speaking, lazy learning is often expected to have some advantages
over eager learning in performance, since it generates a hypothesis for each in-
stance, instead of generating one hypothesis for all instances. Thus, the hypothe-
ses yielded from a lazy learning approach, generally speaking, are expected to
be more accurate than the ones produced by the corresponding eager approach.
Since AODE performs well, it is natural to create a lazy extension of AODE,
which would be expected to performs better than AODE. This is the main mo-
tivation of this paper.

From the preceding section, we can see that, in addition to the good classi-
fication performance, AODE [15] is efficient, since it avoids structure learning.
In fact, even though AODE learns an ensemble of TANs, its training time com-
plexity is O(Nn2) and classification time complexity is O(kn2), where N is the
number of training instances, n is the number of attributes, and k is the number
of classes. It is at least as efficient as many TAN learning algorithms, such as the
ChowLiu TAN learning algorithm [6] with the training complexity of O(Nn2)
and the Superparent TAN learning algorithm [7] with the training complexity of
O(Nn3). Therefore, because of the simplicity and efficiency of AODE, developing
its lazy extension is practical.

There are two possible ways to develop the lazy AODE. One is, find the
instances in the training set which are similar to the test instance (the nearest
neighbors) and then learn an AODE from the nearest neighbors. One issue to
do this is the lack of training instances in learning AODE. Note that AODE is a
probability-based model in which accurate and reliable probability estimation is
essential. The second approach is to use the whole training data set but assign
different weights to the training instances. That is, the closer is an instance to
the test instance, the higher weight is assigned to it. Then we have an expanded
data set that is biased to the test instance. Thus, the model learned from it would
be also more suitable to the test instance than the one learned from the original
training data. In addition, since all the probability estimates are computed from
the expanded data, the issue of lack of data would not be as serious as the first
approach.

We adopt the second approach and propose a lazy AODE learning algorithm
called Lazy Averaged One-Dependence Estimators, or simply LAODE. As dis-
cussed previously, our basic idea is to build an AODE for the test instance on
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expanded training data. LAODE uses a simple method called instance cloning
[10] to expand the training data. More precisely, a number of clones (duplicates)
of each training instance are added to the training data based on how similar it
is to the test instance. This method has been successfully used in learning local
naive Bayes [10]. To clone a training instance based on its similarity to the test
instance, we need a function to measure the similarity. LAODE uses a similarity
function that simply counts the number of identical attributes. More precisely,
the similarity between two instances x and y is defined as:

s(x, y) =
n∑

i=1

δ(ai(x), ai(y)), (5)

where

δ(ai(x), ai(y)) =

{
1 ai(x) = ai(y)

0 ai(x) 
= ai(y)
(6)

ai(x) and ai(y) are the values of attribute Ai for x and y respectively. This
function very roughly measures the similarity between two instances.

Given a training data set T and a test instance x, LAODE firstly applies
Equation 5 to calculate the similarity s(x, y) for each training instance y in
T, and adds s(x, y) clones of y into T. Then, LAODE learns an AODE on the
expanded T, which is used to calculate the class label of x. The LAODE learning
algorithm is depicted in detail as follows.

Algorithm. LAODE(T, x)
Input: a set T of training instances and a test instance x
Output: the class label of x

1. For each training instance y in T.
2. Compute s(x, y) using the similarity function in Equation 5.
3. Add s(x, y) clones of y into T.
4. Deploy an AODE classifier on T.
5. Use the AODE classifier to classify x.
6. Return the class label of x.

In LAODE, the base probabilities P (ai, c) and P (aj |ai, c) are estimated using
the same Laplace estimation in AODE as follows:

P (ai, c) =
F (ai, c) + 1
N + vi ∗ k

(7)

P (aj |ai, c) =
F (aj , ai, c) + 1
F (ai, c) + vj

(8)

where F (•) is the frequency with which a combination of terms appears in the
training data, N is the number of training instances, vi is the number of values
of the root attribute Ai, vj is the number of values of the leaf attribute Aj , and
k is the number of classes.
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As a lazy learning algorithm, LAODE spends no effort during training time
and delays all computation until classification time. Given a test instance, in ad-
dition to compute an ensemble of TANs as in AODE, LAODE needs to expand
the training data set using the similarity function in Equation 5. The time com-
plexity for the expansion step is O(N(n+s)), where N is the number of training
instances, n is the number of attributes, s is the average similarity value between
the test instance and each training instance. After the data expansion, the size
of the resulting training data is roughly sN . The time complexity for building
a TAN is O(snN), and there are totally n TANs to build in AODE. Then the
time complexity for building an AODE is O(sn2N). As mentioned before, the
time complexity of AODE for classification is O(kn2), where k is the number
of classes. Since k << N in practice, the time complexity of LAODE is thus
O(sn2N).

4 Experimental Methodology and Results

We run our experiments on 36 UCI data sets [11] recommended by Weka [17],
which are listed in Table 1. We downloaded these data sets in the format of arff
from the main web of Weka [16]. In our experiments, we adopted the following
four steps to preprocess data sets.

1. Missing values in each data set are filled in using the unsupervised filter
ReplaceMissingValues in Weka.

2. Numeric attributes are discretized using the unsupervised filter Discretize in
Weka.

3. The attributes useless for prediction are removed. It is obvious that, if the
number of values of an attribute is almost equal to the number of instances
in the data set, this attribute is useless for prediction purpose. Thus, we
removed this type of attributes using the unsupervised filter Remove in Weka.
In fact, only the three attributes named “Hospital Number” in data set
colic.ORIG, “instance name” in data set splice and “animal” in data set zoo,
were deleted.

4. For the sake of computational complexity, each large data set (containing
more than 20000 instances) is replaced by a subset of 25% instances randomly
sampled from the original data set. We used the unsupervised filter Resample
in Weka to do it.

We conduct experiments to compare LAODE with NB [3], AODE [15], and
LBR [19], in terms of classification accuracy. In our experiments, the classifi-
cation accuracy of each classifier on a data set was obtained via ten-fold cross
validation. Runs with the various classifiers were carried out on the same train-
ing sets and evaluated on the same test sets. Finally, we conducted a two-tailed
t-test with a 95% confidence level to compare each pair of algorithms.

Table 2 shows the detailed experimental results on classification accuracy and
standard deviation of each classifier on each data set, and the average values
are summarized at the bottom of the table. The symbols v and * in the table
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Table 1. Description of data sets used in the experiments

No. Data set Instances Attributes Classes Missing Numeric
1 anneal 898 39 6 Y Y
2 anneal.ORIG 898 39 6 Y Y
3 audiology 226 70 24 Y N
4 autos 205 26 7 Y Y
5 balance-scale 625 5 3 N Y
6 breast-cancer 286 10 2 Y N
7 breast-w 699 10 2 Y N
8 colic 368 23 2 Y Y
9 colic.ORIG 368 28 2 Y Y
10 credit-a 690 16 2 Y Y
11 credit-g 1000 21 2 N Y
12 diabetes 768 9 2 N Y
13 Glass 214 10 7 N Y
14 heart-c 303 14 5 Y Y
15 heart-h 294 14 5 Y Y
16 heart-statlog 270 14 2 N Y
17 hepatitis 155 20 2 Y Y
18 hypothyroid 3772 30 4 Y Y
19 ionosphere 351 35 2 N Y
20 iris 150 5 3 N Y
21 kr-vs-kp 3196 37 2 N N
22 labor 57 17 2 Y Y
23 letter 20000 17 26 N Y
24 lymphography 148 19 4 N Y
25 mushroom 8124 23 2 Y N
26 primary-tumor 339 18 21 Y N
27 segment 2310 20 7 N Y
28 sick 3772 30 2 Y Y
29 sonar 208 61 2 N Y
30 soybean 683 36 19 Y N
31 splice 3190 62 3 N N
32 vehicle 846 19 4 N Y
33 vote 435 17 2 Y N
34 vowel 990 14 11 N Y
35 waveform-5000 5000 41 3 N Y
36 zoo 101 18 7 N Y

respectively denotes statistically significant improvement and degradation over
LAODE. Table 3 shows the comparison results of two-tailed t-test with a 95%
confidence level between each pair of algorithms, in which each entry w/t/l
means that the classifier at the corresponding row wins in w data sets, ties in t
data sets, and loses in l data sets, compared to the classifier at the corresponding
column.

From Table 2 and Table 3, we can see that LAODE significantly outperforms
NB [3], AODE [15], and LBR [19]. Now, we summarize the highlights as follows:
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Table 2. The detailed experimental results on classification accuracy and standard
deviation. LAODE: lazy averaged one-dependence estimators; NB: naive Bayes; AODE:
averaged one-dependence estimators; LBR: lazy Bayesian rule. The symbols v and *
in the table respectively denotes statistically significant improvement and degradation
over LAODE with a 95% confidence level.

Data set LAODE NB AODE LBR
anneal 98.77±1.23 94.32±2.38 * 96.66±2.10 * 97.10±1.30 *
anneal.ORIG 89.43±2.91 87.53±4.69 88.64±4.19 90.87±2.81
audiology 79.62±5.72 71.23±7.03 * 71.66±7.34 * 71.23±7.03 *
autos 83.33±5 64.83±11.2 * 76.02±7.61 * 72.67±10.7 *
balance-scale 88.96±2.42 91.36±1.38 89.76±1.84 91.36±1.38
breast-cancer 69.62±6.96 72.06±7.97 72.04±7.13 71.7±7.54
breast-w 97.14±1.91 97.28±1.84 96.85±2.77 97.28±1.84
colic 81±4.71 78.81±5.05 80.45±3.92 81.53±6.31
colic.ORIG 76.1±5.33 75.26±5.26 75.81±5.78 74.71±5.38
credit-a 84.78±3.07 84.78±4.28 85.36±4.85 84.93±4.54
credit-g 76.2±3.33 76.3±4.76 76.9±3.41 75.7±4.62
diabetes 75.92±4.65 75.4±5.85 76.31±4.79 75.27±5.83
glass 59.85±8.24 60.32±9.69 62.23±10.4 59.39±10.0
heart-c 82.81±4.76 84.14±4.16 82.46±6 84.47±3.58
heart-h 83.03±6.22 84.05±6.69 84.72±6.1 84.05±6.69
heart-statlog 80.74±6.72 83.7±5 82.59±5.8 83.7±5
hepatitis 85.08±6.95 83.79±8.79 83.79±8.21 83.79±8.79
hypothyroid 93.21±0.82 92.79±1.02 93.53±1.12 93.11±0.75
ionosphere 92.31±2.7 90.89±3.49 92.3±3.83 90.89±3.49
iris 93.33±5.44 94.67±8.2 93.33±8.31 94.67±8.2
kr-vs-kp 91.86±0.83 87.89±1.81 * 91.18±0.83 * 96.72±0.90 v
labor 88.33±13.72 93.33±11.7 91.67±11.8 93.33±11.7
letter-5000 86.4±1.75 67.28±2.03 * 79.36±2.23 * 76.78±2.12 *
lymph 84.33±8.16 85.67±9.55 87±10.58 85±9.18
mushroom 99.96±0.06 95.57±0.45 * 99.95±0.06 99.93±0.12
primary-tumor 47.5±5.89 46.89±4.32 47.19±2.99 46.6±4.62
segment 95.37±1.08 88.92±1.95 * 92.60±1.57 * 92.90±1.28 *
sick 97.91±0.48 96.74±0.53 * 97.45±0.55 * 97.93±0.68
sonar 79.38±8.6 77.5±11.99 78.45±11.4 76.95±7.65
soybean 94.58±2.21 92.08±2.34 * 93.4±2.72 92.67±1.98 *
splice 96.68±0.99 95.36±1.00 * 96.21±1.07 * 95.64±1.34 *
vehicle 74±5.54 61.82±3.54 * 72.22±4.16 71.15±4.31
vote 94.5±3.26 90.14±4.17 * 94.5±3.26 94.49±3.29
vowel 93.94±1.58 67.07±4.21 * 90.20±1.85 * 86.46±4.07 *
waveform-5000 83.68±1.3 79.96±1.92 * 84.16±1.1 83.1±1.58
zoo 96.18±6.54 94.18±6.6 95.09±5.18 94.18±6.6
Mean 85.44±4.20 82.33±4.91 84.78±4.63 84.51±4.65

1. LAODE achieves significant improvement over naive Bayes. LAODE per-
forms significantly better than naive Bayes in 14 data sets, loses in 0 data
set, ties in all others. In addition, the average accuracy of LAODE is 85.44%,
higher than that of naive Bayes (82.33%).
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Table 3. The compared results of two-tailed t-test on accuracy with the 95% confidence
level. An entry w/t/l in the table means that the algorithm at the corresponding row
wins in w data sets, ties in t data sets, and loses in l data sets, compared to the
algorithm at the corresponding column.

NB AODE LBR
AODE 13/23/0
LBR 10/26/0 1/33/2
LAODE 14/22/0 9/27/0 8/27/1

2. LAODE achieves significant improvement over AODE. LAODE outperforms
AODE in 9 data sets, ties in 27 data sets, and loses in 0 data set. In addition,
the average accuracy of LAODE is higher than that of AODE (84.78%).

3. LAODE outperforms LBR. The average accuracy of LAODE is higher than
that of LBR (84.51%). More importantly, LAODE outperforms LBR in 8
data sets, loses in 1 data set, and ties in all others.

4. LAODE has better robustness and stability than all the other algorithms.
The average standard deviation of LAODE is 4.20, which is the lowest in all
the algorithms.

5 Conclusions

In this paper, we proposed a novel lazy learning algorithm LAODE, by modify-
ing the corresponding eager learning algorithm AODE [15]. LAODE first creates
a expanded training data set by cloning training instances according to the sim-
ilarity to the test instance, then uses the expanded training data set to build an
AODE classifier to classify the test instance. We experimentally tested LAODE
in Weka [16], using the whole 36 UCI data sets [11] recommended by Weka
[17], and compared it to NB [3], AODE [15], and LBR [19]. The experimental
results show that LAODE significantly outperforms all the other algorithms.
Thus, LAODE could be a good choice when high classification accuracy is de-
sired.

In principle, the method presented in this paper can be applied to some other
Bayesian network algorithms, such as the ChowLiu TAN learning algorithm and
the Superparent TAN learning. This is one direction for our future research.
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Abstract. In many applications, an accurate ranking of instances is
as important as accurate classification. However, it has been observed
that traditional decision trees perform well in classification, but poor
in ranking. In this paper, we point out that there is an inherent obsta-
cle for traditional decision trees to achieving both accurate classification
and ranking. We propose to understand decision trees from probabilis-
tic perspective, and use probability theory to compute probability esti-
mates and perform classification and ranking. The new model is called
probabilistic inference trees (PITs). Our experiments show that the PIT
learning algorithm performs well in both ranking and classification. More
precisely, it significantly outperforms the state-of-the-art decision tree
learning algorithms designed for ranking, such as C4.4 [10] and Ling and
Yan’s algorithm [6], and performs competitively with the traditional deci-
sion tree learning algorithms, such as C4.5, in classification. Our research
provides a novel algorithm for the applications in which both accurate
classification and ranking are desired.

1 Introduction

Classification is one of the primary tasks in machine learning and data mining.
However, an accurate ranking of instances based on the class membership prob-
ability p(c|E) (the probability of instance E in class c) is also desired in many
applications. For example, in direct marketing, we often need to promote the top
X% of potential buyers during gradual roll-out and deploy different promotion
strategies to potential buyers with different likelihood of buying some products.
To accomplish this task, a ranking of customers, as well as a classification of
buyer and non-buyer, is desirable.

Decision trees have been widely used in many applications, due to their at-
tractive properties, such as efficiency and comprehensibility. Certainly, the clas-
sification performance of decision trees, measured by accuracy (the percentage of
instances correctly classified), is among the most competitive classification algo-
rithms. It has been observed, however, that decision trees yield poor probability
estimates [7, 9] and rankings [10]. Thus, learning a decision tree with accurate
probability estimation , called probability estimation trees (PETs), has received
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a great deal of attention recently [10, 6]. Note that ranking discussed in this
paper is based on the class probability. So, if a decision tree produces accurate
probability estimation, its ranking is also accurate.

Some researchers ascribe the poor probability estimation of decision trees to
decision tree learning algorithms [10]. To our observation, however, the repre-
sentation also plays an important role. A traditional decision tree essentially
represents an explicit decision boundary, and an instance E is classified into
class c if E falls into the decision area (a leaf in the decision tree) correspond-
ing to c. The class probability p(c|E) is typically estimated by the fraction of
instances of class c in the leaf into which E falls. Thus, all the instances falling
into the same leaf have the same class probability.

Certainly, the representation of decision trees is fully expressive theoretically.
In practice, however, there is an intrinsic obstacle to building an accurate PET
under the paradigm of traditional decision trees, because two contradictory fac-
tors are in play at the same time. On one hand, traditional decision tree algo-
rithms, such as C4.5, prefer a small tree to avoid the overfitting problem for
high accuracy. A small tree, however, has a small number of leaves, and then
there are more instances in a leaf. That also means more instances have the
same class probability, which prevents accurate probability estimation. On the
other hand, if the tree is large, there is very little data with each leaf node, due
to the well-known fragmentation problem [5]. Thus, the probability estimation
would be inaccurate and unreliable. In addition, a large tree has a high risk to
overfit the training data and would have poor classification accuracy. This is a
contradiction existing in traditional decision trees.

In fact, our observation has been verified by the recent research work. Tra-
ditional decision tree learning algorithms, such as C4.5[11], are biased to small
trees, and use post-pruning to further reduce the tree size. The resulting trees
tend to have good accuracy, but poor probability estimation [7, 9]. Recent re-
search suggests that a large tree tends to produce accurate probability estima-
tion. For example, it has been observed that no pruning in a decision tree learning
algorithm helps probability estimation [1]. Provost and Domingos [10] showed
that the probability estimation of C4.5 can be improved significantly by turning
off the post pruning mechanism. Ferri, et al. [3] evaluated the expected error
pruning and pessimistic error pruning, and observed that even slight pruning
decreases the quality of probability estimation. However, it is well-known that a
large tree tends to have poor classification accuracy.

It seems difficult to overcome the contradiction under the paradigm of tradi-
tional decision trees. Our motivation is to extend the representation of traditional
decision trees from probabilistic perspective. More precisely, we treat a decision
tree as a probabilistic model, apply probability theory to compute probabilities,
and perform both classification and ranking based on probability.

The notations used in this paper are as follows. We denote a set of attributes
by a bold-face upper-case letter, for example, X = (X1, X2, · · · , Xn), and an
assignment of values to each attribute in an attribute set by a corresponding
bold-face lower-case letter, for example, x. We use C to denote the class variable
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and c to denote its value. Thus, a training instance E = (x, c), where x =
(x1, x2, · · · , xn), and xi is the value of attribute Xi.

The rest of the paper is organized as follows. Section 2 introduces the re-
lated work in learning decision trees with accurate probability estimation and
ranking. In Section 3, we propose to perform classification and ranking in a de-
cision tree from probabilistic perspective. In Section 4, we describe in detail the
experimental setup and results. We conclude in Section 5.

2 Related Work

Since traditional decision tree algorithms, such as C4.5, have been observed
to produce poor probability estimation [9], a substantial amount of work has
been done recently on accurate PETs [10]. Provost and Domingos [10] pointed
out that the reason behind the poor estimation of decision trees is not the de-
cision tree representation, but the inductive algorithm. They proposed a few
techniques to modify C4.5 for accurate probability estimation: (1)turning off
the pruning and collapsing; (2)using Laplace correction to smooth probability
estimates. The resulting algorithm is called C4.4. They also found out that bag-
ging, an ensemble method, improves the probability estimation of decision trees
significantly.

Ling and Yan proposed a method to improve the probability estimation of de-
cision trees [6]. In their method, the class probability of an instance is estimated
using an average of the probability estimates from all leaves of the tree, instead
of only using the leaf into which it falls. Thus, each leaf contributes to the class
probability estimate of an instance in different degree.

Although decision trees are not generally treated as a probabilistic model, they
can be used to represent probability, called probabilistic trees [2]. Figure 1 shows
an example of a probabilistic tree, in which each leaf L represents a conditional

A

A A

A A

1 0

1 0
1 0

1 0 1 0

1

2 3

3 3

P(C=+)=0.7 P(C=+)=0.1

P(C=+)=0.7 P(C=+)=0.1

P(C=+)=0.4P(C=+)=0.8

P(C=−)=0.2 P(C=−)=0.6 P(C=−)=0.3 P(C=−)=0.9

P(C=−)=0.3 P(C=−)=0.9

Fig. 1. An example of an probabilistic tree
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probability distribution p(C|xp(L)), where xp(L) are the values of attributes
that occur in the path from the root to L, called the path attributes of L.

Kohavi proposed to deploy a naive Bayes in each leaf to represent P (C|xp(L)),
and the resulting decision tree is called NBTree [5]. The algorithm for learning an
NBTree is similar to C4.5. Actually, deploying a model at each leaf to calibrate
the probability estimates of a decision tree has been proposed by Symth, Gray
and Fayyad [12]. They also noticed that every instance from a particular leaf
has the same probability estimate, and thus suggested to place a kernel-based
probability density estimator at each leaf.

In our previous work [15, 13], we proposed to use a decision tree to represent
conditional independence, called conditional independence tree (CITrees). The
basic idea for CITrees is to iteratively explore and represent conditional attribute
independencies at each step in constructing a decision tree, and thus decompose
a traditional decision tree into smaller trees. CITrees demonstrate good per-
formance in both classification and ranking. However, learning a CITree tends
to have relatively higher computational complexity compared with learning a
traditional decision tree.

In this paper, we propose a simple approach to apply probability theory to
a traditional decision tree to perform both classification and ranking. Our idea
is that, we use C4.5 without pruning to learn a decision tree, but treat the tree
as a probabilistic tree, and use probability theory to compute probabilities that
are used to perform classification and ranking.

3 Probabilistic Inference Trees

3.1 An Example

Example. Consider to use a decision tree to represent a conference paper review
procedure, in which there are two reviewers: the primary reviewer (Pri) and
the second reviewer (Sec). When the primary reviewer recommends to reject
a paper, it will be rejected certainly. Otherwise, the recommendation from the
second reviewer will be taken into account. Let a and r denote “accept” and
“reject” respectively. The decision tree is shown in Figure 2.

In a traditional decision tree learning algorithm, such as C4.5, some pruning
techniques, such as expected error pruning and pessimistic error pruning, are used
to overcome the overfitting problem. A node (attribute) is removed if it does
not lead to statistically significant improvement in classification. In Figure 2,
node Sec will be removed, since it only discriminates one more instance and the
sample size is small. In the pruned tree, instances E1 = (Pri = a, Sec = r) and
E2 = (Pri = a, Sec = a) will be classified into “accept”, which is reasonable in
classification. However, in terms of ranking, intuitively, we want to give instance
E2 a higher rank than instance E1, since two reviewers are consistent on E2. Note
that the pruned tree cannot do it, but the original tree can. This example shows
that node (attribute) Sec does not significantly contribute to classification, but
it does to ranking. Therefore, a decision tree for accurate ranking tends to be
large.
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Pri

accept

reject

Sec

accept

reject

P( C =accept)=1 
P( C =reject)=0 

[accept=10]
[reject=0]

 [accept=0]
[reject=1]

  [accept=0]
    [reject=99]

P( C =accept)=0 
P( C =reject)=1 

P( C =accept)=0 
P( C =reject)=1 

  [accept=10]
    [reject=1]

  [accept=10]
    [reject=100]

Fig. 2. The decision tree for the review procedure, in which the number of training
instances in each class on a node are attached to it

3.2 Performing Classification and Ranking Based on Probability

A traditional decision tree can be viewed as a probabilistic model, if each leaf
L represents not only a classification but also the corresponding probability
distribution p(c|xp(L)), shown in Figure 1. Certainly, p(c|xp(L)) can be used to
do classification as follows.

Cdt(E) = arg
c

max p(c|xp(L)), (1)

where L is the leaf into which E falls, xp(L) is the value of the path attributes
of L, and Cdt(E) is the classification assigned to E by the decision tree.

For probability estimation, the class probability P (c|E) can be also approxi-
mated by p(c|xp(L)):

P (c|E) ≈ p(c|xp(L)). (2)

Equation 1 and 2 can be used to do classification and ranking respectively. Then,
the probability estimate for p(c|xp(L)) is critical. p(c|xp(L)) is often estimated
by using the fraction of instances of class c in L. But it is problematic, since the
contradiction discussed in Section 1 seems unavoidable.

We notice that probability theory provides a more suitable way to estimate
p(c|xp(L)). In a decision tree, an internal node (attribute) X can represent the
conditional probability distribution p(C, X |xp(X)), where xp(X) is the value of
the path attributes of X . Since for internal nodes (especially the ones close to the
root), the fragmentation problem is not as serious as leaf nodes, their probability
estimates would be more accurate than leaf nodes. More importantly, they can
be used to compute probabilities for leaf nodes. According to the product rule
in probability theory, we know

p(c|xp(L)) = αp(c)
∏

Xi∈Xp(L)

p(xi|c,xp(Xi)), (3)
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where p(c) is prior probability, p(xi|c,xp(Xi)) are the conditional probability of
Xi = xi given c and the path attributes xp(Xi), and α is a normalization factor.

For example, in Figure 2, we have

p(C = a|Pri = a, Sec = r) = αp(C = a)P (Pri = a|C = a)p(Sec = r|C = a, Pri = a).

In Equation 3, we need to estimate p(xi|c,xp(Xi)) for each path attribute Xi. In
principle, we can learn the conditional probability distribution p(C, X |xp(Xi))
from the data associated with Xi. But the learning process would be complex.
In our implementation, we adopt frequency-base Laplace estimation. More pre-
cisely, the probabilities p(c) and p(xi|c,xp(Xi)) are estimated as follows.

p(c) =
nc + 1
t + k

,

p(xi|c,xp(Xi)) =
nic + 1
nc + vi

,

where t is the total number of training instances, k is the number of classes, vi is
the number of values of attribute Xi, nc is the number of instances in class c, nic

is the number of instances in class c, and with Xi = xi and Xp(Xi) = xp(Xi).
Note that nic is essentially the number of instances in class c and with Xi = xi

in the data associated with node Xi.
For the example in Figure 2, the probabilities are estimated as follows.

p(C = a|Pri = a, Sec = r) = αp(C = a)P (Pri = a|C = a)p(Sec = r|C = a, Pri = a)

= α
10 + 1
110 + 2

× 10 + 1
10 + 2

× 0 + 1
10 + 2

= 0.0075α

p(C = r|Pri = a, Sec = r) = αp(C = r)p(Pri = a|C = r)p(Sec = r|C = r,Pri = a)

= α
100 + 1
110 + 2

× 1 + 1
100 + 2

× 1 + 1
1 + 2

= 0.0117α

After normalization, p(C = a|Pri = a, Sec = r) = 0.39. Similarly, we can get
p(C = a|Pri = a, Sec = a) = 0.61, which means that E2 = {Pri = a, Sec = a}
will be ranked higher than E1 = {Pri = a, Sec = r}, just as we expect.

The resulting model is called probabilistic inference trees (PITs), because
probabilities are computed from probabilistic inference based on Equation 3.
There are a few main points for PITs that we need to notice.

1. It is obvious that the class probability in a PIT based on Equation 2 and 3
would be different from the one based on the fraction of instances in class
c. In addition, the classification based on Equation 1 and 3 could also be
different from the one given by the traditional decision tree (use the most
common class). This point will be verified by the experiments in Section 4,
which show that the accuracy of the classifier (PIT) based on Equation 1
and 3 is significantly higher than the classifier (C4.4) based on the most
common class.
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Table 1. Description of the data sets used in the experiments

data set Size Number of Attribute missing value Class
Letter 20000 17 N 26
Mushroom 8124 22 Y 2
Waveform 5000 41 N 3
Sick 3772 30 Y 2
Hypothyroid 3772 30 Y 4
Chess End-Game 3196 36 N 2
Splice 3190 62 N 3
Segment 2310 20 N 7
German Credit 1000 24 N 2
Vowel 990 14 N 11
Anneal 898 39 Y 6
Vehicle 846 19 N 4
Pima Indians Diabetes 768 8 N 2
Wisconsin-breast-cancer 699 9 Y 2
Credit Approval 690 15 Y 2
Soybean 683 36 Y 19
Balance-scale 625 5 N 3
Vote 435 16 Y 2
Horse Colic 368 28 Y 2
Ionosphere 351 34 N 2
Primary-tumor 339 18 Y 22
Heart-c 303 14 Y 5
Breast cancer 286 9 Y 2
Heart-statlog 270 13 N 2
Audiology 226 70 Y 24
Glass 214 10 N 7
Sonar 208 61 N 2
Autos 205 26 Y 7
Hepatitis Domain 155 19 Y 2
Iris 150 5 N 3
Lymph 148 19 N 4
Zoo 101 18 N 7
Labor 57 16 N 2

2. In a PIT, all the instances falling into the same leaf still have the same
class probability and classification based on Equation 1, 2, and 3. How-
ever, we can build a large tree no longer to worry about overfitting and
unreliable probability estimation caused by the small sample size for leaves,
since we now use the probabilities along the path from root to leaf to es-
timate the class probabilities, instead of only using the probabilities in a
leaf.

3. Note that pruning is not needed in a PIT and its classification could be the
same as the pruned tree. So overfitting can be naturally handled in a PIT
without pruning.
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The learning algorithm for PITs is simple and depicted as follows.

Algorithm. PIT(D)
Input: A set D of training instances.
Output: A probabilistic inference tree.
1. Using C4.5 without pruning to learn a decision tree T.
2. for each leaf L in T

Compute the class probabilities for L using Equation 3 and 2
Compute the class label for L using Equation 1 and 3

3. Output T in which each leaf has a class label and class probabilities.

Once a PIT is built, the testing process is similar to the traditional decision
tree. Given a test instance E, we sort E down to a leaf and use the class label
and class probabilities in the leaf as E’s classification and class probabilities.

4 Experiments

We conduct experiments in Weka [14] to compare PITs to the state-of-the-art
decision tree learning algorithms. In our experiments, we used AUC (the area
under the Receiver Operating Characteristics curve) [8] to evaluate the quality
of rankings generated by a classifier. The AUC of a classifier on a data set with
two classes is computed using the following formula.

Â =
S0 − n0(n0 + 1)/2

n0n1
, (4)

where n0 and n1 are the numbers of negative and positive instances respectively,
and S0 =

∑
ri, where ri is the rank of the ith positive instance in the ranking.

Multi-class AUC is calculated by M-measure in [4].
The average AUC and accuracy on each data set was obtained by using 10-

fold stratified cross validation 10 times, and then the two-tailed t-test with a
confidence level of 95% was conducted to compare each pair of algorithms.

We used 33 UCI data sets selected by Weka [14] that represent a wide range
of domains and data characteristics. A brief description of the properties of the
data sets is in Table 1. The data sets are sorted in terms of their sizes. Numeric
attributes are handled by the decision tree itself. Missing values are processed
using the mechanism in Weka, which replaces all missing values with the modes
and means from the training data.

Table 2 and 4 show the accuracies and AUC of the algorithms on each data
set, respectively. The abbreviations used in the tables are described as follows.

PIT: the algorithm proposed in this paper.
C4.5: the traditional decision tree learning algorithm [11].
C4.4: the improved decision learning algorithm designed for ranking [10].

LingYan: the learning algorithm proposed by Ling and Yan [6]. Though they
indicated the LingYan algorithm is not sensitive the confusion factor setting.



534 J. Su and H. Zhang

Table 2. Experimental results on accuracy

Data Set PIT C4.5 C4.4 LingYan
Letter 88.12±0.72 88.03±0.71 87.44±0.76 • 50.29±2.94 •
Mushroom 100.00±0.00 100.00±0.00 100.00±0.00 99.41±0.27 •
Waveform 75.36±1.93 75.25±1.90 74.99±1.88 78.62±1.98 ◦
Sick 98.87±0.58 98.81±0.56 98.81±0.54 94.81±0.91 •
Hypothyroid 99.66±0.29 99.58±0.34 99.57±0.35 93.69±0.50 •
Chess-End-Game 99.40±0.39 99.44±0.37 99.45±0.40 89.26±1.87 •
Splice 93.80±1.29 93.94±1.31 89.94±1.99 • 93.58±1.63
Segment 96.78±1.22 96.79±1.29 96.62±1.24 36.93±3.76 •
German-Credit 70.08±3.50 71.13±3.19 68.32±4.05 72.67±2.58 ◦
Vowel 81.57±4.11 80.08±4.34 • 81.29±4.19 55.80±5.53 •
Anneal 98.35±1.02 98.57±1.04 98.66±1.11 76.50±0.85 •
Vehicle 71.96±4.14 72.28±4.32 71.53±4.34 39.12±9.32 •
Pima-Indians-Diabetes 73.97±5.36 74.49±5.27 73.85±5.42 73.00±4.09
Wisconsin-breast-cancer 94.88±2.64 94.89±2.49 94.01±2.98 93.76±3.17
Credit-Approval 84.59±3.90 85.75±4.01 79.64±4.69 • 84.94±3.89
Soybean 92.65±2.73 92.55±2.61 92.37±2.75 71.24±6.05 •
Balance-scale 79.56±3.50 77.82±3.42 • 78.22±3.79 83.84±3.58 ◦
Vote 95.90±2.77 96.27±2.79 94.38±3.22 95.72±2.81
Horse-Colic 84.24±5.53 83.28±6.05 79.89±6.30 • 83.69±6.36
Ionosphere 90.12±4.12 89.74±4.38 89.94±4.35 86.15±5.09 •
Primary-tumor 40.83±6.47 41.01±6.59 38.76±7.00 35.25±5.34 •
Heart-c 76.28±7.20 76.64±7.14 75.28±7.37 76.90±6.77
Breast-Cancer 72.01±6.80 75.26±5.04 68.85±7.73 70.64±2.15
Heart-statlog 78.07±8.01 78.15±7.42 76.85±7.94 80.56±6.93
Audiology 76.31±6.96 76.69±7.68 72.65±7.71 • 55.72±7.40 •
Glass 68.10±9.61 67.63±9.31 66.78±10.17 51.64±8.61 •
Sonar 73.85±9.65 73.61±9.34 73.61±9.20 73.35±9.37
Autos 79.08±9.95 78.64±9.94 80.18±9.56 63.95±10.88•
Hepatitis 78.64±10.44 77.02±10.03 75.15±11.60 79.84±5.08
Iris 94.80±5.24 94.73±5.30 94.20±5.74 94.40±5.82
Lymph 74.02±10.30 75.84±11.05 73.40±10.48 76.77±10.24
Zoo 93.41±7.28 92.61±7.33 93.41±7.28 93.59±7.05
Labor 80.40±13.83 81.23±13.68 82.90±13.35 79.63±13.00
◦, • statistically significant improvement or degradation

Table 3. Summary of the accuracy results

C4.5 C4.4 LingYan
PIT 2-31-0 5-28-0 15-15-3
C4.5 6-27-0 15-16-2
C4.4 13-15-5

We observed that using the percentage of the subset as the confusion factor is
slightly better than the original parameter 0.3. Thus, we used the new confusion
factor in our comparison.



Probabilistic Inference Trees for Classification and Ranking 535

Table 4. Experimental results on AUC

Data Set PIT-B PIT C4.4 LingYan C4.4-B
Letter 99.73±0.07 98.96±0.16 • 98.11±0.23 • 96.96±0.31 • 99.66±0.08 •
Mushroom 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00
Waveform 94.94±0.69 91.07±1.01 • 88.27±1.34 • 93.50±0.91 • 94.69±0.74 •
Sick 99.24±1.28 98.81±1.58 99.04±1.31 97.97±2.17 99.28±1.33
Hypothyroid 99.23±2.16 94.73±4.59 • 93.91±5.31 • 99.57±0.97 98.90±3.06
Chess-End-Game 99.96±0.06 99.93±0.08 99.95±0.06 96.19±1.13 • 99.97±0.05
Splice 98.92±0.46 98.76±0.51 97.68±0.81 • 98.19±0.68 • 98.61±0.57 •
Segment 99.80±0.20 99.48±0.40 • 99.46±0.44 • 97.44±0.85 • 99.77±0.29
German-Credit 75.69±4.38 71.79±4.57 • 67.85±4.83 • 74.36±4.65 74.10±4.49 •
Vowel 99.45±0.36 96.32±1.36 • 92.75±2.61 • 95.23±1.15 • 99.43±0.41
Anneal 93.59±5.72 92.82±5.70 92.58±6.62 93.05±4.75 93.72±5.96
Vehicle 92.32±1.98 90.27±2.46 • 89.38±2.59 • 80.82±3.58 • 92.13±1.98
Pima-Indians-Diabetes 82.03±5.25 79.29±5.63 • 78.43±5.80 • 79.43±5.51 81.58±5.31 •
Wisconsin-breast-cancer 98.98±1.00 98.11±1.63 • 98.12±1.61 • 97.64±2.14 • 99.01±0.99
Credit-Approval 92.79±3.18 91.28±3.58 • 88.10±3.93 • 91.23±3.80 91.86±3.48 •
Soybean 99.28±1.08 98.86±1.33 • 98.09±1.65 • 98.33±0.77 • 98.89±1.29
Balance-scale 84.99±3.72 82.05±5.45 81.89±5.12 76.91±5.89 • 85.92±3.37 ◦
Vote 98.48±2.01 97.81±2.44 97.62±2.44 96.00±3.95 • 98.44±1.99
Horse-Colic 88.62±6.45 86.76±6.75 83.88±7.25 • 84.45±7.32 • 87.55±6.83
Ionosphere 96.77±3.25 92.53±5.42 • 92.50±5.52 • 91.83±5.56 • 96.85±3.24
Primary-tumor 74.39±2.67 73.09±2.86 • 69.14±3.33 • 73.58±3.11 73.13±3.09 •
Heart-c 83.83±0.58 83.42±0.66 • 83.30±0.66 • 83.34±0.76 • 83.81±0.57
Breast-Cancer 66.42±10.49 63.35±10.07 59.75±9.72 • 64.44±11.14 64.43±10.35
Heart-statlog 88.94±5.95 84.94±6.71 • 84.12±7.35 • 87.90±6.45 88.72±6.05
Audiology 69.50±1.60 66.87±2.36 • 65.76±2.38 • 68.95±1.88 69.59±1.52
Glass 89.13±4.36 83.39±5.37 • 80.95±5.44 • 81.05±6.63 • 88.30±4.96
Sonar 87.22±8.62 79.04±10.00• 79.14±10.32• 80.13±9.96 • 87.50±8.37
Autos 95.47±1.93 92.82±3.17 • 89.98±4.01 • 91.89±3.02 • 95.28±2.17
Hepatitis 84.32±12.83 77.80±13.87• 75.94±14.26• 75.35±17.44 83.79±13.34
Iris 98.15±3.42 97.49±3.37 97.45±3.52 97.38±3.41 98.23±3.36
Lymph 88.35±3.41 86.24±5.03 85.75±4.75 86.53±4.44 88.17±3.50
Zoo 80.29±6.46 80.52±5.92 80.45±6.35 84.58±4.71 ◦ 80.76±6.61
Labor 94.96±11.67 86.02±16.01 86.29±16.27 89.46±15.23 95.15±11.07
◦, • statistically significant improvement or degradation

C4.4-B: the C4.4 algorithm with bagging.
PIT-B: the PIT algorithm with bagging.

Table 2 and 4 show the accuracies and AUC of the algorithms on each data
set, respectively. Table 3 and 5 show the results of the two-tailed t-test, in which
each entry w/t/l means that the algorithm in the corresponding row wins in w
data sets, ties in t data sets, and loses in l data sets, compared to the algorithm
in the corresponding column.

Table 5. Summary of the AUC experimental results

PIT C4.4 LingYan C4.4-B
PIT-B 20-13-0 23-10-0 17-15-1 7-25-1
PIT 15-18-0 7-22-4 0-17-16
C4.4 5-20-8 0-10-23

LingYan 1-15-17
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Now, we summarize the highlights of accuracy results briefly as follows:

1. PIT is competitive with C4.5(2 win and 0 loss).
2. PIT performs better than C4.4 (5 wins and 0 loss).
3. PIT significantly outperforms the LingYan algorithm (15 wins and 3 loss).

The following is the highlights of AUC results briefly:

1. PIT performs significantly better than C4.4 (15 wins and 0 loss).
2. PIT outperforms slightly the LingYan algorithm (7 wins and 4 loss).
3. PIT-B performs better than C4.4-B (7 wins and 1 loss).

In summary, our experimental results show that PITs perform well in both
classification and ranking. Overall, it is among the best in the decision tree
learning algorithms compared in this paper.

5 Conclusions

In this paper, we pointed out that traditional decision trees have an inherent
obstacle to achieving both accurate classification and ranking, and proposed to
overcome this issue from probabilistic perspective. Experiments show that our
new model outperforms or is competitive with the state-of-the-art decision tree
learning algorithms in both classification and ranking. Our work provides a new
model for the applications in which both accurate classification and ranking are
desired.

One key observation in our new model is that each internal node in a decision
tree can represent a conditional probability distribution that can be used to
estimate the class probability for leaves by using the product rule in probability
theory. In our current work, we used frequency-based Laplace estimation to
estimate the distribution for each internal node. Apparently, more sophisticated
approach can be done in this step. This is one direction for our future work.
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Abstract. Compared with conventional two-class learning schemes,
one-class classification simply uses a single class for training purposes.
Applying one-class classification to the minorities in an imbalanced data
has been shown to achieve better performance than the two-class one.
In this paper, in order to make the best use of all the available infor-
mation during the learning procedure, we propose a general framework
which first uses the minority class for training in the one-class classifica-
tion stage; and then uses both minority and majority class for estimat-
ing the generalization performance of the constructed classifier. Based
upon this generalization performance measurement, parameter search
algorithm selects the best parameter settings for this classifier. Experi-
ments on UCI and Reuters text data show that one-class SVM embedded
in this framework achieves much better performance than the standard
one-class SVM alone and other learning schemes, such as one-class Naive
Bayes, one-class nearest neighbour and neural network.

1 Introduction

One-class classification problem becomes of special importance in recent machine
learning research. One essential difference between one-class and conventional
classification is that in one-class learning, it is assumed that only the target
class information is available. In other words, in the classifier training process,
instances from the target class are used and there is no information about its
counterpart. The boundary between the two classes has to be estimated from
data of the only available objects. Thus, the task is to define a boundary around
the target class, such that it encircles as many target examples as possible and
minimizes the chance of accepting outliers.

One-class classification is practically significant in many real world applica-
tions. For example, in order to classify sites of “interest” to a web surfer, the
sites that are of interest are regarded as the positive instances. However, those
“non-interest” ones are normally difficult or expensive to obtain and define. In
such cases, one-class classification is the better solution.

Applying one-class classification to imbalanced data is a relatively new re-
search direction, although some work has already been done [1, 2]. Due to the
imbalance characteristics of the data, the conventional classifier tends to have
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a bias towards the majority class. The advantage of the one-class classifier is
that by discarding the distractive majorities, the “space” where minority data
resides could be better determined. In [2], empirical results also show that on
heavily-unbalanced data, one-class classifier achieves much better performance
than the two-class ones.

With the employment of one-class learning on the target class, the information
of the other class is typically discarded, or wasted. However, will these available
information be helpful in other aspects? The goal of this paper is to investigate
these possibilities. We propose a general framework which applies one-class clas-
sification to imbalanced data. The majority instances are not involved in the
classifier training procedure. But it is utilized to help in tuning the parameters
of one-class SVM. Experimental results show that with the assistance of the
majority class, the overall performance is improved and the accuracy rates on
minority and majority class are more balanced.

2 Background

In this section, we will briefly introduce the original one-class SVM as an impor-
tant background knowledge for this paper. One-class SVM was first proposed
in [3] to estimate the probability density function where the data set is drawn
from. As stated in [3], the problem one-class SVM aims to solve is:

Suppose a data set is drawn from an underlying probability distribution P .
Estimate a “simple” subset S in the input space such that the probability that a
test point drawn from P lies outside of S equals a priori specified value between
0 and 1.

The solution to this problem is to estimate a function f that is positive on
S and negative on the complement. In other words, in [3], they developed an
algorithm which returns a function f that takes the value +1 in a ”small” region
capturing most of the training data points and −1 elsewhere. Their strategy
could be summarized to two steps:

– Map the data into a feature space corresponding to an appropriate kernel
function.

– Separate the mapped vectors from origin with maximum margin.

Let xi(i ∈ [1, l]) denote the training examples labeled as the positive class,
and Φ : X −→ H be a kernel map which transforms the data into an inner
product space H . Common kernel functions include linear, sigmoid, polynomial
and gaussian kernels. We employed the gaussian kernels only in this paper which
has the advantage that the data are always separable from the origin in feature
space [3]. The gaussian kernel is given as follows:

k(x, y) = e−||x−y||2/c

The problem of separating the data set from the origin is essentially the
problem of optimizing the following quadratic programming problem:
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min
1
2

||w||2 +
1
vl

l∑
i=1

ξi − ρ

s.t.(w · Φ(xi) ≥ ρ − ξi,

i = 1, 2, ..., l,

ξi ≥ 0

If w and ρ solve this problem, then the decision function f(x) = sign((w ·
Φ(x)) − ρ) will be positive for most training points xi.

Note that v ∈ (0, 1] is a significant parameter in one-class SVM. It is an upper
bound on the fraction of outliers, that is, training points outside the estimated
region. It is also a lower bound on the fraction of support vectors. In other words,
the value of v indicates the size of region function f covers. The smaller value
v has, the bigger size the estimated region will be. The ideal solution is to find
a smaller region covers more fraction of the training points. Thus, the value of
v is one factor we need to take into consideration in the parameter estimation
process.

3 Related Work

One-Class SVM has been applied to document classification in [1]. In their pa-
per, besides the original one-class SVM, they also proposed an extended version
which is called the “outlier” methodology. In the outlier methodology, not only
the origin is assumed as in the negative class, but also the data points which
are “close enough” to the origin. To identify the “outliers”, they made such
an assumption: if a document shares very few words with the chosen feature
subset of the dictionary, that is, the corresponding document vector has few
non-zero entries, this document is not a good representative of the class and can
be treated as an outlier. Hence, by counting the number of non-zero elements
in a document vector and if it is less than a threshold, the document is labeled
in the negative class. In [1], the threshold was decided empirically. However,
the theoretical foundation for this approach is not very strong and the empirical
method to determine the threshold is not convincing. The major contribution
of [1] is that they have done extensive tests on various classification algorithms
with different document representations such as binary representation, frequency
representation, tf-idf representation and Hadamard representation. In particu-
lar, they tested the SVM algorithms with several kernel functions, including
linear, polynomial, sigmoid and radial basis kernels. The results achieved on
the Reuters data set show that the one-class SVM is more robust to smaller
categories. However, it is very sensitive to the parameters and choice of kernel.

The outstanding performance of one-class SVM applied to data with heavily
unbalanced class proportions is reported in [2]. This paper investigates the im-
pact of re-balancing on imbalance data set for SVM classifiers. The extreme case
is to ignore the majority examples in the learning procedure, which is exactly the



Parameter Estimation of One-Class SVM on Imbalance Text Classification 541

one-class SVM classifier. Experiments on one high-dimensional real world data
and low-dimensional synthetic data with noise prove that there is a consistent
pattern of decreasing performance with increasing proportion of negative class
instances. On the Reuters data set, when removing the most frequent features,
the drop in performance for 2-class SVM models is much larger than the one-
class one. The intuitive explanation as given in [2] is: if the learner uses the
minority class only, the ”corner” where minority data resides is properly deter-
mined. However, the minority class is ”swamped” by the majority class. Hence,
once the majority instances are added, the SVM solution becomes suboptimal.
All these indicate that one-class classification does have potential to be superior
to the normal classifier on imbalance data. However, in their work, they only
considered the linear kernel for SVMs and the important parameter selection
issue is hardly mentioned.

One-Class SVM has appeared in many applications such as anomaly network
traffic detection [4], relevant sentence extraction [5], image retrieval [6]. Some
work has also been done on estimating the generalization performance [7] and by
using the generalization performance as the objective function, [8] employed the
generic algorithm to optimize the training model, i.e., select the best parameter
setting of the kernel and v.

4 Algorithm Description

4.1 Motivation

Imbalance classification could be roughly divided into two categories according to
the class distribution. The first type might be considered as anomaly detection.
In this case, the majority class is well-sampled based on a certain probability
distribution. But it is impossible to sample the minority due to their randomness.
Conversely, in the other situation, we are able to sample the minority class quite
well. However, the size of majorities are so huge that it is unlikely to draw
a proper distribution from it. For example, in text classification, when we are
targeting to classify articles relating to a specific topic “football”, we first select
all those ones about “football” to constitute the positive class and regard those
ones not on “football”, i.e, “non-football” as the negative. However, the number
of “non-football” articles is definitely much larger than the “football” ones, since
they could include anything else, such as traveling, cooking, movies etc. The
definition of “non-football” is an ambiguous concept and instances belong to it
are extremely difficult to sample due to their diversities.

Normal classifiers generally perform poorly on imbalanced datasets, whether
the data belongs to category one or two. Most of classifiers are designed to
generalize from training data and output the simplest hypothesis that best fits
the data. This is based on the principle of Occam’s razor. With imbalanced
data, the simplest hypothesis is often the one that classifies almost all instances
as the majority class. This is a very common situation when apply most normal
classification algorithms to imbalance data. One-class classification has been
proven to be superior to the normal classifiers empirically and theoretically in [2].
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In one-class imbalance classification, the minority class is specifically targeted.
As mentioned in Section 2, a function f is estimated to be positive on the
minority instances and negative on the others. However, this approach is not
appropriate for imbalance data fit in category 1. Note that in this category, the
minority class could not be well-sampled. This problem is beyond the scope of
this paper and we will only consider the imbalanced data described in category
2, especially on text data.

The advantage of one-class classification on imbalance data is that by dis-
carding the majority information during training procedure, it is no longer a
distraction for the classifier. However, this creates another problem: will the
classifer overfit the training minority class? Another issue we consider is the
parameter selection problem in SVM. SVM is very sensitive to the parameters.
Besides the different set of kernel parameters, one-class SVM has the additional
one v as introduced in Section 2. To solve these problems, we propose a general
framework to apply one-class classification on imbalance data. In this frame-
work, the majority instances are not used in training the classifier. However,
they are utilized in estimating the generalization performance and tuning the
classifier parameters. In this paper, although we only focus on the one-class SVM
methodology with the gaussian kernel, this proposed framework could be easily
adapted to other one-class classifiers, such as one-class neural network, one-class
nearest neighbor.

4.2 One-Class Classification Framework

The one-class classification framework is divided into three stages:

1. Training Stage.
2. Estimation Stage.
3. Adjustment Stage.

Figure 1 illustrates the detailed procedure with the employment of one-class
SVM classifier. In the first stage, to construct the classifier, normally an ini-
tial parameter setting needs to be given. Generally this initial setting is chosen
randomly. The classifier is trained from the minorities, i.e., the target class in
the training set. Based upon the hypothesis induced in the first step, the per-
formance is evaluated utilizing BOTH minority and majority data. This is the
estimation stage. Finally at the adjustment stage, with the generalization perfor-
mance as the objective function, the parameter settings are adjusted to achieve
better results. This optimization process will repeat recursively and stop while
the “best” parameter setting is selected.

Generalization performance estimation of a classifier is one of the key tasks
in learning process. There are several generic performance estimators, including
training error, hold-out testing, bootstrap, cross-validation and leave-one-out.
The most popular method is cross-validation. Among the various versions of
cross-validation estimator, the leave-one-out estimator is shown to be almost un-
biased [9]. The general leave-one-out estimator is described as follows: From the
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training instances S = ((x1, y1), . . . , (xn, yn)), the first instance is removed. The
remaining instances S1 = ((x2, y2), . . . , (xn, yn)) are used for training, producing
a classification rule h1

L. This rule is tested on the held out instance (x1, y1). This
process is repeated for all training examples. The generalization performance is
measured by these test results.

We employed the leave-one-out estimator due to its high reliability. However,
we revise the leave-one-out estimator accordingly due to the speciality of this
framework. Note that the majority instances are not involved in the training
procedure. Thus, when estimating the classification performance on majorities,
or negative class, the classifier is first constructed on the entire minorities. Then
each majority instance is tested. This estimation is a fast process since the clas-
sifier only needs to be constructed once. On the other hand, when estimating
the performance on minorities, or positive class, the standard leave-one-out esti-
mation is utilized. Since the number of minorities is generally small, this process
is also fast comparing to normal leave-one-out estimations.

The overall performance is measured upon the accuracy of both positive and
negative classes. In the experiments of this paper, g-metric is used as the per-
formance measurement. We will introduce g-metric in Section 5.2.

4.3 Parameter Search Algorithms

Grid search is a straightforward approach. In grid search, a uniform grid is
defined in the parameter space. Then points in each of the grid are evaluated and
the global optimum is found in this space. The coarseness of the grid determines
the quality of the solution and the efficiency of the search.

Grid search has been widely used in SVM parameter selection. Although lots
of effort has been spent in parameter search for SVM, grid search is still regarded
as the most reliable approach. The only problem is its high computational de-
mands. Even moderately high resolution searches can result in a large number of
evaluations and unacceptably long run times. In this paper, we will also employ
grid search as the basic search method.

The idea of parameter selection based on design of experiments(DOE) was
first proposed in [10]. This approach basically is to start with a very coarse grid
covering the whole search space and iteratively refine both the grid resolution
and search boundaries, keeping the number of samples at each iteration roughly
constant.

A combination of three-level experiment design with the two-level experiment
design constitutes the sampling pattern in our experiment design search method.
The three-level design is also written as a 3k factorial design. It means that k fac-
tors are considered, each at 3 levels. Similarly, the two-level design is to consider
k factors at 2 levels. In a two parameter space, if each parameter is consid-
ered as one factor, this approach will produce thirteen solutions(32 + 22 = 13).
Please note that when we select the points, we first discretize each parame-
ter space by dividing it into three or two equal-length sections. In this pa-
per, the middle point of each section is chosen as the representative for each
level.
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Fig. 1. Framework of Applying One-Class SVM to Imbalance Data

Table 1. UCI Dataset Description

Dataset Positive Insts. Negative Insts. Ratio Attribute
Segment1 330 1980 1:6 19

Glass7 29 185 1:6 9
Letter26 734 19266 1:26 16

Abalone19 32 4145 1:130 8

Table 2. Reuters-21578 ModApte Dataset Description

Data set Money-fx Grain Crude Trade Interest Ship Wheat Corn
#+Training 475 371 330 369 347 197 212 181
Ratio(+:-) 1:19.2 1:24.9 1:28.1 1:25.2 1:26.7 1:47.8 1:44.3 1:52.1

In each search iteration, the system evaluates the classifier performance at the
sampled points, i.e., with the selected parameter settings. The one with the best
performance will be chosen and the search space is refined around it. Currently in
our experiment, we half the parameter range after each iteration. However, this
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could be adjusted accordingly. If the new search space could center around the
best point without going outside the original boundary, that is the best choice.
Otherwise, the new search range will start from or end to the closest original
bound and then extend to the other half section. This process is repeated as
many times desired or once the points in the refined search space could not
improve the previous performance any more.

5 Experimental Results

5.1 Data Set

Four UCI datasets are used first to evaluate the performance of different search
algorithms. They are abalone(19), letter(26), glass(7) and segment(1). The num-
ber in the parentheses indicates the target class we chose as the positive. All the
other classes are regarded as negative. Table 1 summarizes the details of each
data set with respect to the number of positive and negative instances, positive-
to-negative ratio and the number of attributes.All the attributes in these four
data sets are continuous variables and scaled to either [−1, 1] or [0, 1]. The first
two data sets are slightly imbalanced with the ratio 1 : 6 and the last data
set(abalone) is the most imbalanced one with a very high ratio 1 : 130.

Another real world data set we used is Reuters-21578 Modified Apte Split.
This benchmark text collection contains 9603 documents in the training set
and 3299 documents in the test set. We preprocessed the documents using the
standard stop word removing, stemming and converted the documents to high-
dimensional vectors using TFIDF weighting scheme. In order to reduce the size of
the term set, we discarded terms which appear in less than 5 documents and the
total number of terms extracted finally is 6362. We have chosen 8 topic categories
for evaluation in the experiments. They are all mildly imbalanced and Table 2
summarizes their details. It lists, for each specific topic, the number of positive
documents(#+Training) and the positive-to-negative ratio in the training set.

5.2 Evaluation Measurement

The g-metric means suggested by Kubat et. al. [11] is employed to evaluate
classifiers on highly imbalanced datasets. The calculation of g-means metric is
as follows:

g =
√

acc + ∗acc−
where acc+ indicates the sensitivity metrics and acc− the specificity. Sensitivity
is defined as the accuracy on the positive instances(true positives/(true positives
+ false negatives)), and specificity is defined as the accuracy on the negative
instances(true negatives/(true negatives + false positives)).

Another popular evaluation measurement we employed is F1 measure. The
calculation is defined based on the precision and recall:

F1 =
2 × recall × precision

recall + precision
.
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5.3 Results

UCI Dataset. First of all, we compared the accuracy of parameter search
algorithms on the small UCI data sets. Table 3 lists the g-metric mean accuracy
rates. Table 4 gives more details of the search performance by listing the accuracy
rate on positive and negative class respectively. The reason for doing this is to
further investigate the classification performance on different classes. From Table
3, it is clear that the search algorithm based on the experiment design achieves
the best overall performance. If we look into the details as Table 4, we will
find that apparently, experiment design search did improve the accuracy rate on
positive minority class compared to grid search. However, the accuracy rate on
negative majority class of experiment design search is slightly worse than the
grid search. From the definition of experiment design search, we could see that
the advantage of it is that it could sample the parameter space in a better way.
By increasing the grid resolution in each iteration, the search space is refined.

Another series of experiments is to test with and without the assistance of
majority instances in the estimation stage. When it is without the majority
instances, it is similar as standard one-class SVM. The negative class is discarded
and only minority class is considered in the process. The leave-one-out estimation
is only performed on minority instances. Only accuracy rate on minority is taken
into consideration when evaluating the classifier performance, since no other
information is available.

Table 5 lists the comparison results. An interesting common phenomenon is
that in the “without” case, one-class SVM does achieve excellent performance
on the positive minority class. However, this is accompanied by very poor recall
rate on negatives. However, when the negative majorities are considered in the
estimation stage, although the accuracy rate decreases slightly on the positives,
the performance on majorities is improved. In situations where performance
on both class is equally important, our approach is a better solution for more
balanced results.

Table 3. Search Algorithm Comparison(G-metric)

Dataset Grid Search Experiment Design Search
Segment 0.799 0.921
Glass 0.722 0.781
Letter 0.866 0.909

Abalone 0.583 0.635

Table 4. Search Algorithm Comparison(Recall on P/N class)

Dataset Grid Search EDS
P N P N

Segment 0.667 0.957 0.94 0.903
Glass 0.552 0.946 0.724 0.843
Letter 0.869 0.863 0.895 0.924

Abalone 0.438 0.777 0.594 0.679
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Table 5. Comparison(Recall on P/N class) with and without the negative instances

Dataset GS With GS Without EDS With EDS Without
P N P N P N P N

Segment 0.667 0.957 0.667 0.957 0.94 0.903 0.913 0.897
Glass 0.552 0.946 0.758 0.551 0.724 0.843 0.828 0.741
Letter 0.869 0.863 0.932 0.513 0.895 0.924 0.990 0.192

Abalone 0.438 0.777 0.688 0.551 0.594 0.679 0.75 0.458

Results on Real-World Text Dat. Based on the first section of our exper-
imental work, we selected the experiment design search as the default search
approach. We compared our method on Reuters21578 text collection with the
results published in [1]. To the best of our knowledge, [1] is the first work to
apply one-class SVM on document classification. However, they discarded the
negative class information and in their experiments, they only considered the
impact of various document representation on classification performance, nor
the parameter selection in one-class SVM. Table 6 shows the comparison details.
The evaluation measurement is F1 measure. The algorithms we compared with
include the standard One-class SVM(RBF kernel, binary document represen-
tation), Outlier-SVM(Linear kernel, binary document representation), Neural
Networks, one-class Naive Bayes, one-class Nearest Neighbour(Hadamard docu-
ment representation) and Prototype Algorithm(tf-idf document representation).
According to [1], the listed F1 results are the best among various document
representations and parameter settings. As we could see, in most of the cases,
our approach achieves much better results than the standard one-class SVM and
the other approaches. This further proves that a good set of parameters for SVM
does have a huge impact on the classifier performance.

Table 6. Comparison of standard One-class SVM(OC), Outlier-SVM(OS), Neural Net-
works(NN), Naive Bayes(NB), Nearest Neighbour(NN2), Prototype Algorithm(P) and
our Improved One-Class SVM(I-OC)

Dataset OC OS NN NB NN2 P I-OC
Money 0.514 0.563 0.642 0.493 0.468 0.484 0.550
Grain 0.585 0.523 0.473 0.382 0.333 0.402 0.742
Crude 0.544 0.474 0.534 0.457 0.392 0.398 0.715
Trade 0.597 0.423 0.569 0.483 0.441 0.557 0.634

Interest 0.485 0.465 0.487 0.394 0.295 0.454 0.609
Ship 0.539 0.402 0.361 0.288 0.389 0.370 0.427

Wheat 0.474 0.389 0.404 0.288 0.566 0.262 0.647
Corn 0.298 0.356 0.324 0.254 0.168 0.230 0.542

Time Complexity. There are two major factors which affect the running time
of our approach. The first one is the size of training set. Since the classifica-
tion algorithm is one-class classification, only the positive instances are used in
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the training procedure. Hence, the size of positive instance influences the con-
struction time of classifier. The larger size of positive minority class, the longer
running time it will be.

Another important factor which will have huge impact on the time complex-
ity is the search algorithm. It is a conflicting situation since when we do the
parameter selection, the more parameter settings we tried, the more likely we
will find the better ones. At the same time, it will also cost longer running time.
Therefore, a search algorithm which could find a relatively better parameter
setting quickly is the suboptimal solution.

The basic idea behind these search algorithms are actually the same. It is to
find an appropriate sample pattern in the search space so that the estimation
procedure could locate the best point in an effective and efficient way. Grid
search is an exhaustive search which makes it very inefficient. However, it is
also the safest solution for this problem. In the grid search, the resolution of the
parameter space determines the running time. In our experiments, the parameter
ranges are v ∈ (0, 1) and log(γ) ∈ [−15, 3]. For a very coarse grid of 10 × 18,
the parameter settings need to be tested is 180. The grid resolution in this case
is 0.1 × 1 = 0.1. Please note here this is the size of one grid in the parameter
space. One point in this grid is selected randomly to represent it for estimation
purpose.

In our current experiment design search, after each iteration, the grid resolu-
tion is doubled and the bounds shrunk. At each iteration, in total 13 points are
sampled and tested. To repeat this process 10 times, 13 × 10 = 130 points are
tested and the size of final grid is 0.1 × 1.8 = 0.18. Note here this is the block
size inside which we will further sample data points. Compare to the grid search,
the resolution is much higher and the number of points need to be evaluated is
reduced.

6 Conclusion

In this paper, we propose a general framework for one-class classification on
imbalance data. In this framework, only minority class is engaged in training
the classifier but both majority and minority instances are utilized in estimating
the generalization performance of constructed classifier. Using the generalization
performance as the measurement, a set of best parameters are selected. Experi-
mental results prove that this framework with the one-class SVM achieves much
better accuracy results than the standard OC-SVM and other one-class learning
schemes. In addition, from a series of accuracy test with or without the participa-
tion of majority class in the estimation stage, we find that with the majorities the
classifier is able to achieve more balanced results on positive and negative classes.

Our future work will be focused on investigating more one-class classification
algorithms within this framework. Although in this paper we only considered
one-class SVM with gaussian kernel, it is possible to be extended to more one-
class learning schemes. Another important issue is the parameter search algo-
rithms. A better way to search for the best setting is to let the classification
performance converge to a optimal value rather than do a exhaustive search.
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Abstract. In this paper, we propose a model called MITS — Mixed Initiative
Intelligent Tutoring System for Sudoku. Extrapolating from theory for tutoring
in scholastic subjects, and tutoring in the game of chess, we develop a model for
tutoring the game of Sudoku using a mixed-initiative paradigm. Moreover, our
aim is to design a system which not only proposes moves to make but also gives
advice on why a particular move ought to be made. We operate in a decision-
theoretic framework that measures the benefits and costs of interacting with stu-
dents who are learning the game. The tutor will take the initiative to interact when
the student lacks knowledge and is making moves that have low utility. But it
will also interact when the student takes the initiative to elicit further input on the
game he or she is trying to play. We illustrate our graphic user interface prototype
and take the reader through a sample session. As a result, we present a system that
is useful not only to gain insight into how to tutor students about strategy games
but also about how to support mixed-initiative interaction in tutorial settings.

1 Introduction

Sudoku is a game, developed in Japan and recently made popular in North America,
that consists of trying to fill in empty cells in a partially completed 9 × 9 grid, with a
clear set of rules about the possible entries in a cell (the numbers 1 to 9) and the conflicts
to avoid when completing cells (only one of any number in any one column, row and
particular 3 × 3 blocks of the grid). It can be viewed as a kind of constraint-satisfaction
problem that is accessible to the game player, and yet, not always trivial to solve. A
Sudoku board solved by pencil and paper is illustrated in Figure 1.

In this paper, we propose a model called MITS — Mixed-Initiative Tutoring System
for Sudoku. The promotion of mixed-initiative interaction was encouraged as early as
1970 [1] and has been reinforced more recently with projects that have implemented
mixed-initiative designs (e.g. [2]). Extrapolating from a theory for tutoring in scholastic
subjects and motivated by some methods used in a strategy-based system for tutoring
the game of chess [3], we develop an architecture to enable tutoring a student for an
entire game of Sudoku. We provide for mixed-initiative interaction during the tutorial
session, where either the system (tutor) or the user can take the initiative to direct the
tutorial session.

We begin with an initialization phase where the tutor strictly controls game play in an
effort to characterize the player’s skill at playing Sudoku. After the initialization phase
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Fig. 1. A solved Sudoku Puzzle

is complete, we allow a student to try to complete a Sudoku game board, with the tutor
“looking over the student’s shoulder.” The aim of the tutor is to both suggest cells in
the grid for the student to fill in and to provide commentary on moves that the student
has chosen to make (trying to assign a value to a grid position), in an effort to have the
student learn more general strategies that will enable the completion of the entire game
board. In our mixed-initiative setting, the user can as well solicit input from the tutor,
when he or she is unclear either about the best move to make or the reason why their
previous attempts have not been successful.

Within the field of mixed-initiative systems, one challenge is how to develop algo-
rithms for a system to reason about when to initiate interaction with a user, in order to
improve the expected utility of the actions to be taken. One particularly useful decision-
theoretic model is presented in [4]. In this model, the benefits of interacting are weighed
against the costs (e.g. bothering the user). In addition, the expected utility of the ac-
tions emerging from an interaction with a user have to be tempered by an estimation
of whether the user has the knowledge that is being solicited, and whether he or she is
likely to even understand what is being requested. In essence, user modeling becomes
a critical factor in the decisions about when to initiate interaction.

When designing an intelligent tutoring system, one of the overall aims is to enable
the student to learn sufficiently well so that he or she can in fact operate fairly inde-
pendently, in the future. And yet, the tutor should not sit idle if the student is making
errors, while attempting to learn. As a result, we can still apply a decision-theoretic
model such as the one in [4]; we need to revisit, however, what it means when the stu-
dent’s attempted actions are reducing the overall expected utility. This is in fact a signal
that interaction should take place. And we also need to revisit what to do when it does
not appear to be important to interact and yet the student is requesting more guidance.
Again, in this case, interaction should be initiated.

The model that we present has the following important features: i) it demonstrates
how to tutor a student for an entire game; ii) in contrast with some other systems to tutor
students about games, it provides for a strategy graph to be completed dynamically on-
line; iii) it provides an architecture for managing mixed-initiative tutoring; iv) it shows
how to adjust a standard algorithm for reasoning about interaction in mixed-initiative
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systems, when the context is one of tutoring and the aim of teaching the student is
also important to achieve; and v) it provides insight into the game of Sudoku and the
essential elements of this game to consider, when addressing the challenge of tutoring
this particular game.

2 Background

According to Freedman [5], an intelligent tutoring system has four parts: a model of
the domain, a model of the student, a model of the learning environment, and a teach-
ing model. The model of the domain is what is being taught. The model of the student
is a representation of the student by the tutor in the computer system. The model of
the learning environment is essentially the user-interface. Finally, the teaching model
is a representation of how the material is taught to the student. These important ele-
ments are retained in our proposed architecture for tutoring students in the game of
Sudoku.

We also take as a starting point some research on the topic of teaching students about
endgames of chess, the UMRAO system [3]. This system includes two major compo-
nents: the Expert and the Tutor. The Expert is responsible for selecting the specific game
board to be played and generating the strategy graph — a graph of all the possible next
moves from a given game board position. Attached to each node is an explanation of
the move. The Tutor uses the strategy graph to evaluate the moves made by the student,
providing feedback and suggesting future moves to attempt. UMRAO incorporates as
well a graphical interface that displays both the game board being considered and a the
running feedback from the Tutor.

UMRAO is a valuable starting point for our research to develop a tutoring system for
Sudoku, but it has a number of shortcomings that we attempt to address in our model,
as follows: i) it has no explicit student model. Instead, Gadwal et al. [3] claim that the
student is modeled in terms of the strategy graph — the level of play demonstrated in
that graph can serve to characterize the student as novice or expert; ii) UMRAO cannot
switch its interpretation of the student’s abilities during a tutoring session; as such it
cannot adapt during the game play; and iii) the strategy graph that represents how to
correctly play the game is computed off-line because of the great deal of time needed
to compute it.

We elected to study a game that was less open-ended than chess, Sudoku, where
the student’s moves could be interpreted in terms of a small fixed number of possible
strategies. We wanted to emphasize the opportunity for interaction during the tutoring
session and to explore the circumstances under which interaction should take place,
based on a modeling of the current state of the student. As such, we made sure that
the student model is updated with each move to reflect the abilities of the student. In
contrast to UMRAO, our strategy graph displays what is allowable as the next move in
the game (see Figure 3). We update the strategy graph only when the student has made
an acceptable move; the graph reflects the student’s progress in solving the Sudoku
puzzle. While the student model reflects what the student knows and understands, the
strategy graph reflects what the student has solved. In the end, the interaction provided
in the system depends on the student and the state of the game and is adjusted as the
student becomes more skillful in playing the game.
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3 Our Proposed Model: MITS

Our proposed game tutor is given in Figure 2. We call it MITS for Mixed Initiative
Intelligent Tutoring System for Sudoku. While MITS is similar to the UMRAO model
of Gadwal et al. [3], MITS is also different in many important respects.

Fig. 2. Our Proposed Model

The strategy graph is now reasonable to compute on-line (while in UMRAO this
is done off-line). Like UMRAO, the Expert is responsible for computing the strategy
graph, but choosing the puzzle is the responsibility of the student reasoner operating on
the student model compared to UMRAO where the Expert chooses the puzzle endgame.

The Tutor is relieved of any responsibility of reading the strategy graph. Rather, the
Tutor is focused entirely upon a dialogue with the student. Instead, the strategy graph
is read by the student reasoner. The student reasoner selects that part of the Sudoku
puzzle that it wishes the tutor to focus upon when the tutor is taking the initiative. The
student reasoner makes its selection based upon that part of the puzzle which exempli-
fies the strategy for which it has the least information about the student’s performance,
or where it appears important for the student to have more exposure to a poorly under-
stood strategy.

On the other hand, when the student is taking the initiative, the tutor will communi-
cate the move made by the student to the student reasoner. The Expert will reply with
information about the correctness or incorrectness of the move.

When a move is confirmed as being made, the move is reported to the Expert. Incor-
rect moves do not update the strategy graph; MITS interacts with the user to correct the
move. With each correct move, the Expert updates the strategy graph. The new strategy
graph is now visible to the student reasoner. The tutoring process can continue with
up-to-date information.

3.1 Mixed Initiative System

Generally, the tutor will first take the initiative and strictly control the solving of the
puzzle in an effort to impart some initial knowledge to the student (see Section 3.4). As
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more moves are made by the student and witnessed by the student model, the student
reasoner can develop a prediction of the success rate of the student solving a Sudoku
puzzle without assistance from the tutor. As the probability that the student can solve the
puzzle without assistance rises, the student reasoner will instruct the tutor to allow the
student to take the initiative. Even while the student is taking the initiative, the system
will continue to monitor the student’s performance. If the student’s performance should
degrade during unassisted play, the tutor can resume assisting the user.

Because we are using a mixed-initiative paradigm, we have the problem that the
Tutor needs know when to intervene and offer help, and when to permit the user to play
without assistance. We argue that the model of Fleming and Cohen [4] can be easily
incorporated into MITS. Their model is suitable because there are only four strategies
that can be used in solving a Sudoku puzzle. For the sake of brevity, we label these
strategies s1 . . . s4. In particular, the strategies are:

– Rows and Columns. s1 We look at the numbers in the current rows and columns
and determine what must be left by a process of elimination;

– Blocks. s2 This strategy is like s1 except that we look at the 3×3 block to eliminate
possibilities;

– Pointing Pairs. s3 In this strategy, we look for pairs of numbers in the same row,
column, or block which then cannot be possibilities in any other cells of that row,
column, or block; and

– Block-Line Reduction. s4 In this strategy, we compare the values needed in a
particular block to the values needed in any row or any column which intersects
that block. We will illustrate this technique in the sample session (see Section 4).

In accordance with their model [4], a cost-benefit analysis is conducted to determine
if assistance should be given by the Tutor. In general, if the benefit of giving assistance
exceeds the cost, the Tutor gives assistance.

The benefit of giving assistance for move j using strategy i is given by the equation

Bj,i = [1 − PUK(si)][PUU(si) + (1 − PUU(si))PUMU(si)]ΔEUj (1)

where an explanation of the variables used in Equation (1) follows.
While play is underway, the student reasoner witnesses the answers provided by the

student in the empty cells. For each cell, one of the strategies would have been employed
by the student. Consequently, the student model can keep a simply tally:

PUK(si) =
# of times strategy si was used correctly

# of times strategy si was used
(2)

for i ∈ 1 . . . 4, and thus keep a running probability of each strategy where PUK(si) is
the probability that the student has the knowledge of strategy i. The use of the factor
1 − PUK(si) in Equation (1) is opposite to the use in [4]: the benefit of giving advice is
inversely related to the probability that the student already knows strategy i.

Furthermore, PUU(si) is the probability that the student would understand the advice
given for strategy si and PUMU(si) is the probability that the student could be made
to understand the strategy si. At the outset, MITS does not know if a student would
understand the advice given or if it would be able to make the student understand the
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advice given. So, these probabilities are initialized to 0.5. These probabilities would be
adjusted, up and down, with actual experience as the student interacts with MITS and
makes correct or incorrect moves. As illustrated in further detail in Section 4, explaining
a strategy occurs when MITS takes the initiative to direct a user to fill a particular square
and a detailed explanation occurs when the student is provided with additional hints for
filling a square. The probabilities are calculated as:

PUU(si) =
# times strategy si was explained and understood

# of times strategy si was explained
, (3)

and, in the event that the initial explanation was not understood,

PUMU(si) =
# times si was explained in detail and understood

# of times si was explained in detail
, (4)

for i ∈ 1 . . . 4.1

The expected utility for a particular board state j is computed as,

EUj =
# of cells known unambiguously

81
(5)

where the number of cells known unambiguously means known unambiguously to the
Expert. A unambiguous cell means that for some strategy si the cell’s value can be
determined. An ambiguous cell means that no strategy currently exists to solve the cell.
When moving from board state j to j + 1, we define

ΔEUj+1 ≡ EUj+1 − EUj (6)

Simply put, ΔEU is a measurement of the extent to which a particular move ad-
vances the game towards the solution if ΔEU > 0; or the extent of a digression from
the solution if ΔEU < 0. It is also possible for ΔEU = 0, which means that the move
failed to disambiguate any other cells. In brief, Equation (1) suggests that: i) it is bene-
ficial to interact if the student lacks knowledge and either would understand or could be
made to understand the strategy that needs to be explained; and ii) it is more beneficial
to interact about moves that resolve more of the game board.

Cost would be measured as follows,

Ci = Csimple explanation of si + (1 − PUU(si))C detailed explanation of si (7)

for some strategy i ∈ 1 . . . 4. The costs Csimple explanation of si and C detailed explanation of si

would be each set on a scale (0, 1] and would be in proportion to the difficulty of ex-
plaining the strategy to the user. Some of the four strategies are easier to explain than
others.

Under this approach, an explanation would be given if Bj,i > Ci for some plau-
sible move j and strategy i. However, because of the manner in which we have de-
fined expected utility, EU , we must make an exception to the ordinary cost-benefit rule

1 The strategy used is determined by reference to the Sudoku Skill Matrix, which will be dis-
cussed in Section 3.3.



556 A. Caine and R. Cohen

whenever ΔEUj < 0 for some move j made by the student during unassisted play.
If ΔEUj < 0, then the benefit calculated according to Equation (1) will be negative.
Since the cost is always non-negative, the cost-benefit rule is never met under these cir-
cumstances. Yet, whenever ΔEUj < 0, the student has committed an error and Tutor
must intervene to correct the improper play.

The ultimate goal of the student model is Bj,i ≤ Ci for every plausible move j
and strategies i from the current board state. This means that the student is playing Su-
doku independently. Yet, we cannot uncompromisingly apply the rule ΔEUj > 0 and
Bj,i > Ci ∀i, j plausable moves and strategies as a condition of giving advice. Consider
that case where the student wants advice when the student is playing independently. For
example, the student may be playing a puzzle at a high level of difficulty and has man-
aged to “get stuck.” In this case, the tutor computes m = argmaxj(Bj,i − Ci) ∀i, j
plausible. The focus of discourse will now revolve around move m, which has the least
net cost to the student model and the greatest probability of being understood by the
student.

Finally, expected utility has one other advantage. Suppose that MITS wants to com-
pute the best possible move m∗. The best possible move is computed easily as m∗ =
argmaxj(ΔEUj) ∀j moves plausible from the current board state. This calculation
would be useful in cases where the student wants to know where is the next and best
move but does not desire or need an explanation of the strategy for finding the solution
for that cell.

3.2 Sudoku Strategy Graphs

Sudoku Strategy Graphs (SSG’s) are straightforward to read. A typical strategy graph
is given in Figure 3(a). A cell with a single large number means that the cell was either
an initial clue or it has been subsequently and correctly solved out by the student. A cell
with one small number means that the cell is unambiguous, and, for the current board
state, the cell can be solved out. If a cell in the SSG has two or more small numbers, the
cell is ambiguous. The numbers appearing in the cell are the current possibilities, but
the actual answer is unknown. A student who attempts to solve out an ambiguous cell
is in fact committing an error.

(a) First board Position (b) SSG after an “8” is played
in cell e5

(c) SSG after a “1” improp-
erly played in i8

Fig. 3. Sudoku Strategy Graphs
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By convention, the columns of the strategy graph a labeled with letters with “a” on
the left to “i” on the right. The columns are numbered from 1 to 9 with 1 at the top and
9 at the bottom.

Using Equation (5), the expected utility for the SSG in Figure 3(a) is EU1 = 38
81 =

0.469. Suppose the player plays an 8 into square e5 — the centre cell of the centre block
as illustrated in Figure 3(b). Therefore, EU2 = 39

81 = 0.482. For that particular move,
ΔEU = 39−38

81 = 0.012.
As well, an SSG can become contradicted. Suppose a player plays “1” in cell i8

from the board state in Figure 3(b). The strategy graph that would result is illustrated in
Figure 3(c). This play is improper because “1” is not a possibility for cell i8, because a
“1” already appears in cell f8. So, we have EU3 = 36

81 = 0.444 and ΔEU = 36−39
81 =

−0.037. So, we can indeed see how ΔEU < 0 is indicative of an improper move;
the SSG is therefore not updated. The Tutor should take the initiative and correct the
student’s play.

3.3 Sudoku Skill Matrix

It is not enough for the Expert to simply draw up the SSG. It must also compute the
Sudoku Skill Matrix (SSM). The SSM is a 9 × 9 matrix each entry of which is an
integer from 0 to 4. The numbers 1 to 4 indicate the strategy (or skill) that the student
must use to solve the given position on the Sudoku board. If the Expert assigns a zero
to any entry of the SSM, the zero signifies that either the cell has already been solved
out, or that the cell is ambiguous and any attempt to solve the cell would be premature.
The SSM related to Figure 3(a) is given in Figure 4.

Potentially, there might be more than one strategy available for solving out a cell in
the Sudoku board. So, the programmer will need to provide for storage for additional
integers in each cell. In the case of multiple strategies, we must consider two cases: the
tutor has the initiative and the student has the initiative.

If the tutor has the initiative, then the strategy i will be selected such that PUK(si) is
a minimum. Consequently, Equation (1) is maximized all other things being equal. The
tutor will be focused upon the strategy that the student knows the least.

Fig. 4. A Sudoku Skill Matrix for the SSG in Figure 3(a)
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If the student has the initiative, the problem is more complex because the issue of
plan recognition arises. If the student gives the right answer, the tutor does not know
which strategy the student used. The tutor could query the user to find out, but queries
following a proper move might be viewed as an annoyance to the user. We take the
view that it would be better to simply not trouble the user even though the probability
PUK(si) will not be updated for that play. On the other hand, if the user supplies the
wrong answer, the tutor can re-take the initiative and choose the strategy i such that
PUK(si) is minimized over all plausible strategies. The tutor has moved the focus of
discourse to the strategy least understood by the user.

3.4 Initializing the Student Model

There are two ways in which a student model can be initialized. The student can provide
the parameters, or the system can develop the model during play. We take the position
that the latter approach is best.

The user is modeled using 12 probabilities PUK(si), PUU(si), and PUMU(si) for i ∈
1 . . . 4. We concede that the user might be able to provide the four probabilities PUK(si)
provided that the user actually understands the strategies s1 . . . s4. The danger is that
the user might believe incorrectly that they understand a strategy and overestimate one
or more or the probabilities PUK(si).

Until a sufficiently large sample of moves is witnessed by the student model, these
probabilities cannot be used. However, the student reasoner can keep game play under
strict tutor control selecting a variety of possible moves as the subject of discourse
which exemplifies all four strategies s1 . . . s4. Once a sufficiently large sample of moves
is obtained by the student model, the mixed initiative model can be brought on-line and
used actively.

We have already suggested that the eight other probabilities PUU(si) and PUMU(si)
should be all initialized to 0.5. MITS cannot anticipate how well its discourse with the
student will fare. Likewise, since the student has yet to interact with MITS, the student
cannot anticipate how well he or she will understand the MITS’ advice. So, it makes no
logical sense for the student to provide those probabilities to the student model.

Unlike UMRAO, the student reasoner recommends the next puzzle to be played. In
UMRAO, the Expert makes the decision. To account for this difference, the puzzles
would be ranked by their level of difficulty. The difficulty level of a Sudoku puzzle is
a function of the number of ambiguous cells from the first board state. The number of
ambiguous cells can be determined from the puzzle’s first strategy graph.

MITS would start a new student off with a puzzle having the least degree of difficulty
advancing the student upwards to the most difficult puzzle. When a puzzle is solved, it
would be recorded by the student model to prevent the puzzle from being selected again.
The student model would also store the level of difficulty of the last solved puzzle for
reference in making future puzzle selections.

Finally, once a student wishes to stop playing, the variables used in the student’s
model would be saved to a disk file for later retrieval. The variables are the 12 proba-
bilities together with a list of the solved puzzles and the level of difficulty of the last
solved puzzle. Consequently, students who have already used MITS would not need to
go through the initialization procedure again.
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4 A Sample Session

MITS as illustrated in this section is a prototype only. So far, we have worked out
the generation of the strategy graph. So, the Expert of Figure 2 has been largely pro-
grammed. We also have a repertoire of sample puzzles, the Puzzle Library. The Tutor
and the Student Model are still in development. So, the discourse shown in the follow-
ing illustrations is simulated. On the other hand, the graphical user interface is quite
real.

One of the dangers of a mixed initiative system is that the student may ask unex-
pected questions or abruptly change the focus of discourse. For our purposes, we be-
lieve that Freedman’s [2] paper is quite relevant here. First, Freedman suggests asking
short specific questions rather than open-ended ones. In our model, we would propose
to ask questions like: “What is the value in cell i9?” The question is short and specific. A
poor question to ask in the context of our model might be, “Why is finding the solution
to i9 the best strategy?” The question is too open-ended.

Second, Freedman suggests that the computer’s turn in the conversation should al-
ways conclude with a request. So, in our model, it would be a mistake to simply end the

(a) Sudoku GUI — Move #1 Detailed Explanation

(b) Sudoku — Move #2 Simple Explanation

Fig. 5. The MITS Graphical User Interface
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computer’s turn with an explanation of the strategy and never ask a question. Instead,
our tutor explains why the solution to a particular cell can be found, and then asks the
user for the answer. Even though this dialogue model appears to be restrictive, Freed-
man concludes that this is not so. A specific and on-task discussion is preferred by users
to an open-ended and incoherent dialogue with an ITS.

The learning environment is illustrated in Figure 5(a). We have opted for a simple
GUI patterned after UMRAO. The playing board is to the left; the discourse window to
the right. In Figure 5(a), the Tutor has taken the initiative and is testing the user. The
test concerns strategy s4, Box-Line Reduction. Since there is an 8 in each of columns
g and h and the columns intersect the block in the lower right, the user ought to be able
to conclude that the value in cell i9 is an 8. We call this a detailed explanation (refer to
Equation (4)) because the Tutor specifically names the other cells needed in making the
logical deduction that i9 is “8.”. Detailed explanation occurs during initial tutoring.

Assume that the user correctly plays 8 in cell i9. Now the tutor shifts the focus of
discourse to cell g7. This is a test of another variation of strategy s4. Here, the student
must recognize that there exists a 2 in each of rows 8 and 9, and a 2 in column h.
So, it follows that g7 is 2. The Tutor is trying to ascertain if the student can use what
was learned in board Figure 5(a) to solve cell g7 in board Figure 5(b). We call this a
simple explanation (refer to Equation (3)), because the Tutor merely indicates where
the move ought to be made, but does not explain the logic. If the student cannot deter-
mine the value of the cell, then the Tutor will resort to a detailed explanation similar to
Figure 5(a).

5 Conclusions and Further Research

In developing MITS, a system for tutoring a student about Sudoku, we have designed
an architecture to support mixed-initiative interaction during tutoring, with a student
being modeled and advised about an entire game.

We have been able to introduce some innovative changes to the model of Fleming
and Cohen for the design of mixed-initiative systems [4], in order to apply it to the
problem of intelligent tutoring. Providing for a model of whether a user understands or
can be made to understand, when engaged in dialogue, leads to a tutorial system that
tracks the understanding of the student, based in part on past attempts. In addition, the
need to ensure that we are also enabling learning serves to adjust the decisions about
interaction in the mixed-iniative model.

The domain of Sudoku is generally helpful for investigating mixed-initiative tutoring
because there is an intuitive interpretation of the expected utility of a move, in terms of
the ability to disambiguate any open cells in the grid. We are then able to make use of
this term of expected utility to critique the actions of the student, leading to intervention
from the tutor when the student lacks knowledge and is following paths that have low
utility.

In contrast with others designing systems to tutor students about games (e.g. [6, 7]),
we therefore focus less on techniques for capturing what the student is learning, em-
phasizing instead the task of reasoning about interaction. Our approach to intelligent
tutoring also differs from others (e.g. [3]) in in that it builds the strategy graph on-line
and combines this with the student model, to advise the Tutor about when to interact
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in order to facilitate successful completion of the game board for this student. And
whereas some researchers have also investigated a mixed-initiative design for intelli-
gent tutoring, the efforts have been focused on distinct topics, such as how to predict
when the student will take the initiative [8].

There are several avenues for future research. In particular, developing a more so-
phisticated student reasoner and a more detailed student model would both be helpful,
in order to deliver more customized tutoring to the student. For instance, the reasoner
could identify patterns of difficulty in a student’s strategy graph, in order to predict
values for the PUU(si) and PUMU(si) variables manipulated in the formulae. Another
suggestion is to estimate more precisely the value of certain factors, such as the ex-
pected number of interactions to explain a given strategy, by analyzing the student’s
current knowledge and past behaviour. The suggestion of allowing for either very basic
or more detailed commentary, when advising a student, is yet another area where more
intelligent algorithms may be designed, mapping a certain range of values of student
modeling factors with a proposed level of detail, for the interaction.
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Garćıa, Alejandro J. 242
Ghose, Aditya 13, 122, 159

Giroux, Sylvain 25
Grant, Kevin 206
Greiner, Russell 98

Harvey, Peter 122, 159
Herrera, Myriam 467
Hoos, Holger H. 146
Horsch, Michael C. 206
Hua, S. 183

Izadi, Masoumeh T. 383

Jabeur, Nafaâ 37
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