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Abstract. We analyze electronic voting schemes and show that in many cases it
is quite easy to implement a kleptographic channel, which is a profound danger
for electronic voting systems. We show serious problems with Neff’s scheme. We
present also attacks on Chaum’s visual voting scheme and some related schemes,
which work at least when implementation is not careful enough.
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1 Introduction

The concept of electronic elections gains popularity nowadays. Electronic voting sys-
tems contribute to decreasing costs of elections, provide more efficient procedures of
counting and collecting votes and offers more flexibility than traditional voting. Due
to growing interest of the topic, many new voting schemes were proposed recently. A
collection of them can be found via Ronald Rivest’s web page [15].

The most important goal that has to be achieved by the voting scheme is to prevent
manipulation of the votes and changing the election result. At the same time, anonymity
of the voters should be preserved and possibility of selling a vote by a voter must be
excluded. So called voter verifiable voting schemes enable a voter to convince herself
that her vote has been included in the final tally.

E-voting schemes become more and more sophisticated, with many wonderful tricks.
Nevertheless, security analysis often disregards many dangers and does not treat the vot-
ing system as a whole. Having in mind the importance of election process and scandals
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connected with the existing voting systems [20, 19], one cannot simply assume that
companies creating e-voting systems will never try to put any trapdoor in their products.
Therefore a voting system should be designed in such a way that each its part can be
verified.

It was observed that using randomness in e-voting schemes yields a threat of con-
structing a subliminal channel by a malicious voting machine. Such a machine can
imperceptibly pass on its secret values by generating a random components in a cryp-
tographic way. We point out that the actual attack on an e-voting system might be far
more dangerous than a simple subliminal channel. The attack can be mounted in such
a way that the information leaked can be retrieved only by a party possessing a certain
secret key. Moreover, such a malicious implementation neither changes the protocol
executed nor can be detected without reverse engineering of the software running on
the device, and even if one reveals malicious code and data inside the device, it re-
mains impossible to perform the same attack on other devices infected in the same way.
In other words, technique called kleptography [22, 23, 24, 25] may favor a single party
over other ones with ability to buy votes, identify its opponents, or even imperceptibly
falsify the election results.

2 Previous Works and Our Contribution

Some gaps in the security of verifiable voting protocols have been noticed and described
by Karlof et al. in [6]. They proposed various social engineering and subliminal channel
attacks on two prominent schemes: Neff’s scheme [13] and Chaum’s Visual Voting
[2]. These attacks enable vote coercion and changing the contents of encoded votes.
They considered also denial of service attacks that can be particularly dangerous in the
context of electronic voting.

Another important, recent paper about attacks on voting schemes is [17]. In this paper
P. Y. A. Ryan and T. Peacock present an extended version of Prět á Voter scheme and
its analysis as well as some other attacks on Chaum’s and Neff’s schemes not included
in [6]. Authors also point to several attacks tailored for Prět á Voter scheme and design
appropriate countermeasures.

In our paper we present attacks on four different verifiable voting schemes: the first
one presented by M. Klonowski et al. in [7], the second one presented by D. Chaum
in [2], the third one presented by C. A. Neff in [13], and the fourth one presented by
P. Y. A. Ryan et al. in [3]. In some sense our work can be regarded as an extension of
paper [6] of C. Karlof et. al, but we point to some aspects that seems to be far more
dangerous. Namely, we prove that (pseudo) randomness can be a tool not only for cre-
ating a subliminal channel (as it was in [6]) but also for constructing a kleptographic
trapdoor in the voting schemes. Such a trapdoor can be used only by a particular ad-
versary and, as we have already noticed in the introduction, that is the cause of a huge
asymmetry.

Most importantly, the possibility of implementing a kleptographic attacks in e-voting
schemes is a strong argument against the point of view presented by some e-voting
companies, which assure that systems are secure, since the code was written and audited
according to the rigorous procedures and security standards.
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Notation: In the subsequent sections Mallet is the name of an adversary and n is a num-
ber of candidates. Most systems include similar components: voting machines, regis-
tration machines, and a bulletin board, which we will denote correspondingly as VMs,
RMs, and a BB.

3 A Practical Voting Scheme with Receipts

Description of the Scheme. Below we recall the scheme from [7] (see also [21]). Be-
sides, we took advantage of having access to the specification of a test implementation.
The system consists of: VMs, RMs, and tallying authorities. There are also some con-
trol servers provided by independent watch dog organizations.

In the initialization phase, a product
∏λ

j=1 yj mod p of public keys (g, yj , p) of λ
tallying authorities is loaded to each VM, as well as the lists of the candidates. For
the simplicity of a description of a protocol, we consider single elections with two
candidates, namely blue party B and yellow party Y . Shortly before an election starts
every VM generates two pairs of keys for signature schemes, with private keys K , K ′.
In the voting phase the following steps are executed:

1. A VM creates a virtual ballot (it exists only in the processor’s memory) consisting
of random numbers r, q, rL, rR and two sides (left and right), with n + 1 triples on
each side:

(B, BL
1 , BL

2 ), (Y, Y R
1 , Y R

2 ),
(I, IL

1 , IL
2 ), (B, BR

1 , BR
2 ),

(Y, Y L
1 , Y L

2 ), (I, IR
1 , IR

2 ).

r is a random ballot identifier (according to the specification r is a 64 bit random
number rs concatenated with VM’s DSA signature of rs). The element I contained
in two triples is simply the identifier r. One can see on each side of the virtual ballot
there are three columns: in the leftmost one there are the names of the candidates
C and identifier I , in the next two columns on each side there are so called RE-
onions: CX

1 , CX
2 , where X ∈ {L, R}, for each candidate C, and RE-onions IX

1 ,
IX
2 encoding identifier I .

The rows are permuted independently on each side, according to permutations
πL, πR respectively. Each πX is obtained deterministically from the contents of all
columns on side X . RE-onions are ElGamal ciphertexts

(m · (
∏λ

j=1 yj)k, gk), (1)

for plaintexts m defined for X ∈ {L, R}, i ∈ {1, 2}, C ∈ {B, Y } as follows:

m = (C, rX , serV , sig′K′(C, rX , i)) for CX
i , (2)

m = (r, serV , sig′K′(r, i, X)) for IX
i ,

(serV is an identifier of the VM). For each RE-onion ZX
i , Z ∈ {C, I}, the expo-

nents k are computed as follows: the VM creates a signature sigK(q, i, X, Z) and
uses it as a seed of a pseudo-random generator R; then k is taken from the output of
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the generator. sig is a deterministic signature scheme (recall that the VM generates
its keys itself, such a procedure poses a risk to RSA private keys, compare [25] and
references given there).

2. The VM prints a hash ballot – it is a commitment to the virtual ballot that contains
r, and – in a machine readable form - hashes of r, q, rL, rR and of all RE-onions
ZX

i , in the same order as in the virtual ballot.
3. The visualization of the virtual ballot appears on the screen of the VM.
4. The voter chooses a side (say R) and a party for which he votes (say B).
5. VM creates and prints a voting ballot that contains a pair (BR

1 , BR
2 ) of RE-onions

corresponding to the icon chosen and a pair (IR
1 , IR

2 ) of RE-onions encoding the
identifier I from the same side. These onions are printed in a random order, say
given by a permutation πvb. Additionally, the voting ballot contains a VM’s signa-
ture of the values printed.

6. (Optional step) From the side X not used for voting (i.e. X = L in our example)
the voter may choose one column i ∈ {1, 2} and some number of RE-onions ZX

i

in column i. The VM prints a control ballot that contains:

– the RE-onions ZX
i chosen for verification with their identifiers Z ,

– the signatures used to generate exponents k in these onions,
– the string rX ,

After getting the control ballot the voter should compare the identifiers on the con-
trol ballot with the corresponding positions on the screen.

7. The voter comes to a RM and presents the voting ballot. Four RE-onions contained
in the ballot are read in and stored for counting purposes, provided that the signature
of the voting machine is valid. Simultaneously, the voting ballot is marked as used,
and it is retained by the voter.

The voter can control honesty of VM by checking the control, hash and voting ballots
through a machine that may read the printed values.

When all ballots are registered the tallying of the votes may start. From our point
of view the tallying phase has some important features: there are no intermediate bul-
letin boards, in particular there is no bulletin board with the onions collected by RMs.
Hence it is not necessary to collect voting ballots (as a fake watch dog organization for
example) to change election results.

Only the last, final tallying authority publishes the list of completely decoded onions,
and the list must contain:

– pairs encoding an identifier: (r, serV , sig′K′(r, 1, X)), (r, serV , sig′K′(r, 2, X)),
– and the same number of pairs encoding single votes: (C, s, serV , sig′K′(C, s, 1)),

(C, s, serV , sig′K′(C, s, 2)), where C ∈ {B, Y }, and s are random strings.

Having her control ballot each voter can check whether the identifier r from the ballot
is on the list.

Betraying Voters Preferences via Digital Signatures. We show how a VM may betray
voter’s preferences, even if the ballots are built according to the protocol. Such infor-
mation may be available for Mallet on the final bulletin board. The attack is possible if
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the signature scheme sig′K′ used to create r from rs is probabilistic, like DSA in the
test implementation. A DSA signature (R, S) is generated as follows:

R = (gα mod p) mod q, (3)

S = α−1 · (μ − K ′ · R) mod q, (4)

where μ is a message to be signed, K ′ is the private key of the signer, and α is a random
number. First, a VM can leak the signing key K ′ to Mallet in a kleptographic way [24]
using only one signature. For this purpose, the VM must learn only the public key of
Mallet. Then in every virtual ballot (except the one used for leaking K ′), in all onions
encoding candidates, the VM uses numbers α that betray r contained in the onions
encoding identifiers. For example, let α = α′α′′, where

H(α′, rs) = α′′ , (5)

and H is a good hash function. For each vote (2) Mallet finds α using equality (4). Then
he can match the exponents α and numbers rs by equality (5). Of course, the exponents
α used in (3) as well as S have to be coprime with ordg. One can easily see that most α
fulfill these conditions.

Betraying Voters Preferences via Ordering on the Ballot. Note that the voting ballot
is constructed after a voter made her choice. We show that a kleptographic channel can
be created, if an implementation allows to permute at random onions O1, O2, O3, O4 to
be placed on the voting ballot. It can carry 4! messages and point, for instance, to the
choice of the voter or leak secret keys of the VM (which would allow to prepare votes
outside the VM).

Assume that Mallet has a public key yM and a private key xM such that gxM =
yM . Let O1, O2, O3, O4 be the list of onions for the voting ballot after sorting them
lexicographically. Assume that gk is the second component of an RE-onion O1. Then
VM computes z = yk

M and uses a few initial bits of H(z, O1, O2, O3, O4) to determine
a permutation π′ on {1, 2, 3, 4}. Let π′′ be the message–permutation on {1, 2, 3, 4} to
be hidden. Then the VM puts the onions on the voting ballot so that the ith onion gets
position π′(π′′(i)) for i = 1, . . . , 4. Note that Mallet is able to recover π′′. Indeed, he
computes z := (gk)xM , and then π′ by its definition. Then finding π′′ is straightforward.
Note that a third party cannot find z and therefore π′′ remains hidden.

Another trick is to use permutations πL, πR of rows on both sides of the virtual
ballot. In the specification the permutation πX depends on all columns on the side X ,
and thus its validity cannot be verified on the control ballot, where one column from
side X is missing. Hence πL, πR itself might have any form convenient for Mallet. For
example α from (3) might be a compressed point P β (cf. [18]) of an elliptic curve E
which is a part of Mallet’s public key now defined as (E, P, YM ), where YM = P xM .
As a result Mallet might determine πX = H(X, Y β

M ) on the basis of α, and then might
check with help of the hash ballot whom the vote has been cast for. Interestingly, in the
above case of Diffie-Hellman protocol it suffices, instead of the point P β , to pass only
its x-coordinate (see [11]).

Selling Votes via Random Parameters. “Random” numbers rs, q, rL, rR can be used
in a malicious way; recall that the way of generating them is not controlled in the
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protocol. Let yM , y be components of DSA public keys of Mallet and the VM respec-
tively, with appropriate private keys xM , K ′. As a result, the key K∗ = yK′

M for a
symmetric encryption scheme might be established according to the Diffie-Hellman
protocol and the numbers rs, q, rL, rR might be ciphertexts addressed to Mallet. An-
other option to generate K∗ is to use α from the previous paragraph.

Changing Votes Cast by RM. Now we assume that a RM cooperates with a malicious
VM. The method taking advantage of a permutation on the voting ballot can be used to
transfer the secret keys K , K ′ from the VM to the RM in a kleptographic way. Also,
the VM may generate the parameters q through a pseudorandom generator with a secret
seed. Again, the seed can be transferred to the RM in a kleptographic way.

Even if the onions on voting ballots are not permuted in step 5 of the scheme, it is
still possible to transfer one bit per ballot using permutations πL, πR. Because πvb = id
now, then the onions from each exemplary pair (BR

1 , BR
2 ), (IR

1 , IR
2 ) are not separated,

and the order of the pairs on the voting ballot is determined by their order on the virtual
ballot. Hence if bit 1 will be transmitted, each πX , X ∈ {L, R}, might be determined
according to ascending order of the values yk

M for k from (1), where (1) are the second
onions in consecutive rows on side X . When bit 0 need to be sent, descending order is
created. Because exponents k on both sides of the virtual ballot are different, the names
of candidates look to be permuted randomly and independently on each side.

Once RM got the keys it can modify the votes. It is facilitated by the fact that voting
ballots are presented to the RM in about the same order as they are generated. Having
appropriate q, the RM tries to “open” the onions containing the votes from the voting
ballot. That is, for a given q, for each i ∈ {1, 2}, X ∈ {L, R}, C ∈ {B, Y } the RM
computes k used to construct an onion, Then it computes gk and checks which onion has
this number as the second component. If it is so, then the RM can retrieve the plaintext
encoded by the first component by dividing it by (

∏λ
j=1 yj)k. Then the RM can replace

the discovered onions containing a vote by a pair of new onions with a different choice
– this is possible, since the RM has the necessary keys. Note that the replacement is
done yet before the pools close, and without any cooperation with tallying authorities.

4 Chaum’s Visual Voting Scheme

Description of the Scheme. Due to space limitation we describe this scheme only
briefly (for more details see [2]). The system consists of: VMs, tallying authorities
(mixes) and a BB. Let us sketch the voting procedure:

1. On a VM, a voter chooses a monochrome picture with the name of the candidate
chosen. This ballot image is encoded as a matrix B of pixels.

2. The VM deterministically computes pseudo-random binary matrices W t and W b

based on deterministic signatures st(q) and sb(q) respectively, where q is a ballot
serial number. Then it determines Lt and Lb based on B, W t and W b so that Lt ⊗
Lb = B, and it is possible to obtain an image of the vote from LX and WY for X ∈
{t, b}, Y ∈ {t, b} \ {X}. Namely every second bit of LX is from WX , the other
half of bits is denoted by RX , and BX = RX ⊗WY , where BX is composed from
every second bit of B. Separately, each of Lt, Lb gives no information about B,
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just like one-time-pad. Each image LX , X ∈ {t, b}, will be printed on a transparent
layer, and both layers X will be laminated together during the print.

3. The VM provides 4-tuples: 〈Lb, q, Dt, Db〉 for the bottom layer and 〈Lt, q, Dt, Db〉
for the top layer, where DY (based on sY (q)) for Y ∈ {t, b}, are deterministic
onions containing information necessary to decrypt WY , and hence to obtain BX

from one layer X only (recall that BX is a subset of pixels of LX ⊗ WY ). Each
4-tuple is printed on a separate layer.

4. The voter verifies that both layers encode the ballot image B = Lt ⊗ Lb and the
last three components of the 4-tuples are identical on both layers.

5. The voter either aborts (i.e. if verification fails), or selects the top or the bottom
layer. Henceforth, the selected layer shall be denoted by X .

6. The system makes two digital signatures and provides them as a tuple:

〈 sX(q), oX(LX , q, DY , DX , sX(q)) 〉, (6)

where oX is called overall signature.
7. The voter separates two layers. The layer Y �= X , unselected in step 5, will be

shredded by a poll worker (we call him Shredder). Its digital counterpart in VM’s
memory will be destroyed as well. The layer X is a receipt for the voter. Its elec-
tronic version is used for vote counting purposes.

8. The voter can perform a consistency check to ensure that the digital signatures of
the tuple are correct, i.e. sX(q) correctly determines DX and the half of the pixels
of LX . He can also check that his vote is included in the receipt batch.

9. At the end of the election day the VM’s receipt batch is transferred to the BB
(we assume that there is no additional subliminal channel, so e.g. the ordering of
receipts is deterministic).

10. Later the receipt batch is mixed and partially decoded by successive trustee-operated
mixes. When the original images are revealed the election results are calculated.

Attacks on Serial Numbers. The description of the scheme [2] does not specify how
the serial numbers q are created. We show that if it is admitted that the serial numbers
are random, then we can install a kleptographic channel through which a VM can betray
its signing key to an arbitrary party observing the first BB. This is a threat not included
in [6] in the list of potential weaknesses of the scheme.

Namely, let NM , eM be a public RSA key of Mallet (“public” in the sense that VM
knows that it is the key of Mallet). The VM will transmit not the secret signing key k,
but z = keM mod NM . Therefore nobody but Mallet will be able to recover k. Note
that once Mallet obtains the signing keys, he will be able to buy votes (from q and (6)
he can reconstruct the vote cast) or to make fake votes and claim that election results
are manipulated. We assume also that VM and Mallet share a secret key s (this key will
not be sufficient to recover k).

In order to create a vote the VM chooses q until it finds a proper one encoding some
digit of z expressed in radix α system (for example α = 22). Let � = �logα NM� + 1.
Hence for the current q the VM takes the first �log2 �� + 1 bits of H(q, s) as an index i
of the digit zi, where z = (z�−1z�−2 . . . z0)α. Then the VM compares zi with the last
�log2 α� + 1 bits of H(q, s). If they disagree, then q is discarded. Recovering the digits
of z is a random process. Each q appearing on BB brings information on some α-ary
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digit of z. Notice that the use of Mallet’s key does not change the official behaviour of
the VM, which is still consistent with the primary protocol.

Leaking a secret through the BB might be possible even if numbers q published on
the BB after closing the polls must turn out to be consecutive. The point is that VM may
use the numbers q in a non-consecutive way (at least at the beginning of the election
day). Each voting ballot will carry one bit of the secret. Due to a limited number of
voters perhaps only a part of the secret could be transferred in such a way, but this still
poses a threat — mind the lattice attacks, which are practical, if a fraction of the RSA
secret exponent is known to an attacker [1].

Let us describe the general idea. The image printed on each side depends on q and the
picture B of a candidate chosen by a voter. Namely, the signature sY (q) of VM under
q determines WY , which together with BX , i.e. the half of the picture B, determines
RX , i.e. the half of LX . We shall fix some position (i, j) on Rt. It follows from the
encoding scheme that on Lb a pattern of two black squares is printed - their positions
at W b

i,j depend on q only, and not on the voter’s choice. On the second layer at position
Rt

i,j VM prints the squares in exactly the same way - if the image B is white at (i, j), or
the mirror image, if B is black at this place. In the second case by superimposing both
transparents we get a black spot on B, while in the first case we get a spot with black
and transparent pixels. We fix position (i, j) so that for about half of the votes at this
point should be a black spot. Thus there are two possible configurations of the squares
at the position Rt

i,j - they encode one bit. The point is that this bit is determined by q
and the choice of a candidate C. So when a voter casts a vote by choosing the picture
Bc, VM takes the first number q such that the bit q − 1 mod � of the � bit secret is
not transferred yet onto BB, and Bc together with q encodes on Rt

i,j the value of this
bit. If we are lucky that the voter chooses the upper layer, then a bit of a secret will be
transmitted. (A slight change of the protocol ensures that there will be no strategy for
the voter to choose a layer that does not leak the secret.)

The attack is probabilistic in the sense that we have no control which candidates
will be chosen by the voters. However, two popular candidates C would suffice (their
pictures Bc must differ at some position (i, j)) to transfer onto BB some portion of the
first bits of the secret. Moreover, the above method might be used to indicate to Mallet
whether the vote is cast for some particular candidate C (Rt

i,j = 1) or not (Rt
i,j = 0).

In the next attack Mallet shall cooperate with Shredder, who observes the ordering of
serial numbers q on unselected layers that he is given to shred. To make the attack more
realistic we assume that Shredder is able to remember for a short time only two last dig-
its of q (after a while he can write them down somewhere). On a voting ballot the serial
number is printed over the bar-code representing it, and is expressed in base b system.

Consequently, Shredder is able to completely describe any permutation of any b2

consecutive numbers. Thus the VM might transmit digits of z mentioned above, where
z is expressed in radix (b2)! system (detailed method of coding numbers into permuta-
tions and vice versa can be found in [8]). To transfer 2048 bits in case of b = 16 one
permutation from S256 and one permutation from S76 are enough, when for b = 10
three “digits” from S100 and one from S93 are needed.

Countermeasures. The attacks described above become impossible, if deterministic
sequence of issuing serial numbers is guaranteed. A simple and effective solution we
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propose is to link subsequent receipt by “linear-linking” similar to the one used in a
time-stamping system (see [5]). Let Li be the ith receipt issued (6), and let the next
serial number should be qi+1 = h(Li), where h is some collision free hash function.
We may start with L0 equal to the serial number of the VM. In this procedure VM learns
the serial number qi+1 only after step i.

Of course, linking does not solve all problems with VMs. A user may transmit a se-
cret code on the touch-screen or may select and cancel successive candidates from a se-
cret sequence. This might trigger a mechanism in which the VM makes itself voter’s
choices and the colluding voter simply collects a valid receipt, which indicates one
of 2n possibilities (the choice of a layer and a candidate). The set of � such voters
obtains one of (2n)� possible messages. Moreover, if a choice of a candidate is can-
celled no signature is printed on the layers (so the receipt will be impossible to verify
without all tallying authorities), but the printout can already contain a ciphertext of the
secrets.

Note also that to prevent homomorphic attack [4] one should avoid naive implemen-
tation of a signature scheme sX(q). If for example the RSA signatures st(q1), st(q2)
are available on BB, then st(q) for q = qα1

1 qα2
2 and any α1, α2 ∈ Z can be easily cal-

culated by an attacker. Accordingly, any receipt (6) with such a number q and X = b
might be opened.

5 The Neff’s Scheme

Scheme Description. Below we follow a draft description [13]. The voting infrastruc-
ture includes voting machines (to be consistent with other subsections we call them VM
instead of DRE [6] or voting device [13]), a BB, and a verifiable mix-net.

The encoding techniques used are as follows: let � be a security parameter (10 ≤
� ≤ 15), a verifiable choice (VC) is a n × � matrix of ballot mark pairs (BMP).
Each row of VC represents a single candidate. A BMP is a pair (bL, bR) of ElGa-
mal ciphertexts (bX = (gωX , mXyωX ), X ∈ {L, R}), where pair (g, y) is a pub-
lic key for the mix-net, mL, mR ∈ {Y, N}, and symbols Y, N represent, respec-
tively, a fixed element G ∈ 〈g〉 and the group’s 〈g〉 neutral element. Each BMP in
the row representing the candidate chosen contains two ciphertexts of the same sym-
bol - i.e. (mL, mR) ∈ {(Y, Y ), (N, N)}. All other rows of VC contain BMPs with
(mL, mR) ∈ {(N, Y ), (Y, N)}.

Each BMP (bL, bR) in can be partially opened, according to a bit ε. If ε = 0, then
VM reveals the plaintext of bL by showing the random exponent ωL. If ε = 1, then the
right ciphertext is opened.

Finally we might describe the voting procedure:

1. VM shows a list of all candidates C1, C2, . . . , Cn to the voter.
2. The voter chooses a candidate Ci.
3. Let S = {0, 1}� be the set of all �-bit strings. VM prepares a VC representing a

vote for the candidate Ci. It chooses xj ∈ S for 1 ≤ j ≤ n at random. For j �= i,
if (xj)k = 0, then VM encrypts (N, Y ) in the jth row and the kth column of VC.
If (xj)k = 1, then (Y, N) are encrypted. If (xi)k = 0, then the kth BMP in the
ith row contains (N, N), otherwise (Y, Y ). Next the VM commits prepared VC by
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printing it or it’s hash on a receipt with a ballot sequence number BSN (BSN is
present in the documentation of the VoteHere project based on the scheme).

4. The voter chooses strings cj ∈ S for j �= i.
5. The VM computes pledges pj := cj ⊕ xj for j �= i and pi := xi. VM commits

sequences of strings {pk}n
k=1 in such a way that they cannot be changed but the

voter gains no knowledge of the pledges.
6. The voter chooses ci - a challenge to the row representing the candidate Ci.
7. For j = 1, 2, . . . , n and k = 1, 2, . . . , �, VM opens BMP of VC in the jth row

and the kth column according to bit ε = (cj)k as it was described before. VC with
opened BMPs is called opened verifiable choice (OVC).

8. Values {(Cj , cj)} for 1 ≤ j ≤ n are printed on the receipt.
9. The voter gets the receipt containing BSN, the hash of VC, and (Cj , cj) for j =

1, 2, . . . , n.
10. After closing the polling station OVC is sent to the BB together with the associated

BSN.

All ballots collected on the BB are then processed according to a verifiable shuffle
protocol [14].

Attacks on the Scheme. Karlof et al. [6] describe a “random subliminal channel attack”
on the Neff’s scheme. They suggest to use the same ω for both encryptions in a given
BMP. Since only one ciphertext per BMP is opened on OVC, the VM can send n� ·
log2(ordg) bits in such a channel. Of course, usage of the same ω clearly indicates that
the two exponents in the BMPs are not randomly chosen. We repair this shortcoming in
a kleptographic way and extend the attacks to N votes simultaneously.

According to the documentation [12] of VoteHere project, the numbers BSN are
“unpredictably assigned to voters” (if there were no BSNs we would assume N = 1).
The way of the BSNs assignment might be known to Mallet, hence he would be able to
find on the BB all consecutive N -tuples of ballots issued by the VM.

Let yM = gxM is Mallet’s public key. By BMPt,i,j we denote the BMP in the ith
row of the jth column on the tth ballot. Let gωL and gωR be chosen at random as the
first components of the ElGamal ciphertexts in the BMPN,n,� (this BMP is selected
arbitrarily, e.g. BMP1,2,1 could be taken as well). Let

K∗
X = hX(yωσ(L)

M , y
ωσ(R)

M ) (7)

for X ∈ {L, R}, where σ : {L, R}→{L, R} is a permutation such that gωσ(L) ≤gωσ(R)

and hL, hR are some good one-way functions.
Having calculated the keys K∗

L, K∗
R the VM might prepare the exponents for cre-

ating BMPs. Let ωt,i,j be a block of a message that has to be hidden kleptograph-
ically in BMPt,i,j . Then the exponents used for creating BMPt,i,j are EK∗

L
(ωt,i,j),

EK∗
R
(ωt,i,j), for t = 1, . . . , N , i = 1, . . . , n, j = 1, . . . , �, and (t, i, j) �= (N, n, �),

where E denotes a secure symmetric encryption scheme. To prevent repetition of the
block-values ωt,i,j for different triples (t, i, j), compression of the whole message can
be made (note that ordg is a large number).

When the OVC’s are published on the BB, Mallet can retrieve the secret messages.
Namely, he reconstructs the key K∗

X from BMPN,n,� contained in OVCN by putting
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gωL , gωR in ascending order, raising them to power xM and applying, respectively, hL,
hR to the pair obtained. Since one of the exponents EK∗

L
(ωt,i,j) and EK∗

R
(ωt,i,j) is

included in OVC, Mallet can decrypt it and obtain ωt,i,j .
If VM is forced somehow to use really random exponents for ElGamal encryption,

then it is also possible to hide the choice of the voter. Namely, the strings ωL, ωR used
for encryption in a fixed BMP are discarded until the system provides a number such
that [H(yωL

M , yωR

M ) mod n] + 1 = i, where Ci is the candidate chosen by the voter.
Then the choice of the voter can be easily detected by Mallet, while for anybody else
the information encoded in gωL , gωR is impossible to retrieve.

Additional kleptographic channels might be mounted thanks to BSN numbers as-
signed to ballots. It is reasonable to assume that each VM has some scope of at most
Nmax numbers BSN. If the method of issuing the numbers is not specified, then a VM
may release BSNs in a manner that additionally hides ωt,i,j . Suppose that Mallet knows
the BSN1. Then BSNt may be calculated from BSNt−1 as the (r+1)st yet unused “ran-
dom” number from the scope, where

r = H(y
EK∗

L
(ωt−1,n,�)

M , y
EK∗

R
(ωt−1,n,�)

M ) mod (Nmax − (t − 1))

for some good one-way function H . Again, only Mallet would be able to recover the or-
der of the ballots issued. Furthermore, instead of using the same pair (K∗

L, K∗
R) of keys

to all ωt,i,j , distinct pairs of subkeys could be used: for example K∗
X,t,i,j=f(K∗

X , t, i, j)
for some function f and X ∈ {L, R}. Moreover, the argument t may be replaced by a
kind of linear linking [5] of the values BSNt, BSNt−1, . . . , BSN1.

Another source of attacks are the numbers xj used by the protocol. They are useful
for our purposes for instance at the moment when the flaws related to random exponents
become patched. Note that the numbers xj are shown by OVC’s. Indeed, if j �= i where
Ci is the candidate chosen by the voter, then we can reconstruct (xj)k for k ≤ � as
follows. If the bL is opened and it contains N , or bR is opened and it contains Y , we
have (xj)k = 0. Otherwise, (xj)k = 1. In the case of xi the above rule provides flipped
values, for the k’s where bR is opened. VM may choose all bit-strings xj according to
H(yωL

M , yωR

M ) for some gωL , gωR being the first components of ElGamal ciphertexts of
some BMP at established position. Then with probability 1 − 1/2� we can detect the
index i where the xi computed according to the rule disagrees with the value obtained
from H(yωL

M , yωR

M ), and so the choice of the voter.
Let us remark that it is possible to build yet another kleptographic channel. Again,

suppose that BSNs are used (if not, then take N = 1). VM determines the exponents ωj

in advance, for j = 1, 2, 3, . . . , 2n�N , computes gωj and sorts them. Then VM encodes
a secret message as an ordering in which permuted numbers gωj are used in consecutive
ciphertexts. So there is room for (2n�N)! messages. To make Mallet the only addressee
of the message the VM determines a permutation π′ = H(yω1

M , yω2
M , . . . , yω2n�N

M ), where
the arguments of H are ordered lexicographically, and instead of a permutation π′′

encoding the secret message VM can order the numbers gωj according to the permuta-
tion π = π′ ◦ π′′.

Finally, note that if the scope for BSNs is large enough, then the BSNs may carry
messages — we may apply the same method as in Section 4.
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6 Chaum, Ryan, Schneider’s Scheme

Short Description of the Protocol. For the sake of simplicity, the authors of [3] illus-
trate a single race with v candidates. The scheme includes: RMs, BB and k tellers (k ≥
3). Each of the tellers operates two Chaum’s mixes, and the ith mix, i = 0, 1, . . . , 2k−1,
has a pair of keys: a secret key SKTi and the corresponding public key PKTi . There is
also an authority which is responsible for generating the ballots.

For each ballot the authority prepares a seed which is a random number D0 and a
sequence of 2k random values gi taken from the set {0, 1, . . . , 232 − 1}. Let us define

Di+1 := {gi, Di}PKTi
, θi := (

i∑

t=0

h(gt)) mod v,

where h is a good hash function.In this way the authority computes an onion D2k and a
cyclic offset θ = θ2k−1. A voting card consists of two columns: in the left column there
is a list of the candidates after applying a cyclic shift by θ positions, the last cell of the
column remains empty. All but the last of the cells of the right column are empty (one
of them will be chosen by a voter). In the last cell of the right column the code of D2k

is printed.
In the voting phase a voter selects a voting card at random. She marks her candidate

by making a sign × in the appropriate cell on the right side, just as for the traditional
voting procedures. Let r2k be the index of a cell with mark ×, r2k ∈ {0, 1, . . . , v − 1},
and define ri := ri+1 − h(gi) mod v. Note that r0 = ri+1 − θi mod v for any i ∈
{0, 1, . . . , 2k − 1}, where r0 is the cell reflecting the voter’s choice on non-shifted list
of candidates. Then the voter detaches the left and the right hand side, the left hand side
is destroyed, the right hand strip, containing (r2k, D2k), is fed into the RM. The RM
marks the strip as being used and returns it to the voter as her ballot receipt.

Later, during tallying phase the ith mix transforms (ri+1, Di+1) into (ri, Di) using
its private key SKTi for a deterministic encryption scheme. The input and the interme-
diate values of the tallying process are presented on BB.

Attack on the Random Seed. We assume that the authority uses a secret hash func-
tion H (a hash function with a secret key) and for every ballot repeats the following
procedure:

1. randomly selects D0 and germs g0, . . . , g2k−1,
2. deterministically computes onions D1, . . . , D2k,

until the Collision Condition (CC) holds for j = 2k − 1:

CCj : h(gj) + θj−1 mod v = H(Dj+1) mod v,

i.e. until H(D2k) mod v = θ2k−1 (= θ).

Then the authority outputs a card with the offset θ and the onion D2k. Obviously, the
CCj might be applied for any j = 2k − 1, . . . , 1 (for j = 0 it is useless). Hence the
teller who is operating the jth mix server and knows hash function H will be able to
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compute vote values, i.e. r0. Accordingly, if the teller recognize partial election results
as unfavorable, a DoS attack may be launched.

Note that for the attack exploiting CC2k−1, everyone who knows the secret hash
function H and sees a voter’s ballot receipt, gets immediately knowledge about the
voter’s choice. Especially, it concerns members of the commission at the polling station
and the RM.

As one can easily see, the expected number of tries needed to find the collision
in CC2k−1 is equal to v. The same complexity bound applies for an attack on the
extension of the scheme, where θ is a permutation, not an offset. If the authority knows
the base ordering, i.e. the order of candidates on the list not permuted yet, then it is
able to point out the position of the supported candidate on the list permuted according
to θ2k−1. The D2k is accepted, when H(D2k) mod v indicates the same position as
θ2k−1. Hence anyone who knows H is then able to point out the cell where the sign ×
should be put for the candidate supported. It is easy to see that in more general case of
elections which allow to vote for u out of v candidates the complexity of a single ballot
preparation grows to v!

u!(v−u)! trials on average, or to v!
(v−u)! if a voter must rank chosen

candidates, and the ranking is also important for an attacker.
Suppose now that the attack is launched on some fixed layer j, and H is a keyed hash

function with secret key K∗. Then K∗ might be transmitted kleptographically encoded
in Dj+1, the same value that satisfies the condition CCj . Namely assume that Mallet
possesses a public key of ElGamal elliptic curve cryptosystem. Then the length of the
ciphertext z containing K∗ equals about 340 bits if the points are compressed. Let us
consider a secret hash function H ′, which is known to Mallet, and the value H ′(Dj+1).
Suppose that z is expressed in radix α system and let � = �logα(2340 − 1)� + 1. Then
the first �log2 �� + 1 bits of H ′(Dj+1) indicate an index i of some digit zi, where
z = (z�−1 . . . z1z0)α, and the last �log2 α� + 1 bits of H ′(Dj+1) should be equal
zi (if are not, then given Dj+1 is discarded). On average, one out of α strings Dj+1
properly describes one digit of z. Consequently, the average complexity of a single
ballot preparation increases to α · v trials. As one can see (cf. [9], “the occupancy
problem”), for any c > 1 the number c� ln � of values Dj+1 suffice to receive the
complete z with probability at least 1− (1

� )c−1. Mind that the mix servers are supposed
to operate much more than 2� ln � ballots. Once Mallet gets z he decrypts K∗ and then
is able, on the basis of CCj , read θj from all the Dj+1 he obtained.

Changing Votes. The attack below seems to be problematic due to the number of co-
operating parties, but fully explores the possibilities given by CC2k−1.

Let us assume that a RM is cooperating with a fake or dishonest watch-dog orga-
nization (WDO) who collects receipts from voters. Let us assume that votes collected
by WDO will not be checked by voters (they do not have receipts now). A WDO can
pass information about onions collected to the RM and RM is now free to modify elec-
tronic vote representation, provided that the Mercuri method [10], considered as some
possible extension of the scheme, is not implemented. If it is not, then spoiling election
results of the most popular candidate is possible for RM even without knowing H : it
may randomly change r2k for votes collected by WDO.



Kleptographic Attacks on E-Voting Schemes 507

Audit Procedure. Note that the ballots are formed properly, so the only possibility to
catch cheating authority is to prove that the entropy used in the generation process is
low. But let us observe that for any fixed j the sample space size for (θj , Dj+1) is

larger than
(
232

)j+1
. Instead of sampling from the space of that size, the authority

mounting the attack on onions Dj+1 chooses (still independently at random) from the

space which size is larger than about
(
232

)j+1
/(α · v) (we have omitted the size of

D0). For reasonable α · v this room is still too large to detect the fraud regarding the
number of votes investigated during the audit phase.

It must be noted that to minimize the possibility of the above attacks in new, distrib-
uted procedures of ballot cards generation outlined in [17] and [16], the mixes (called
clerks) should not be delivered from the same source.

7 Conclusions

A variety of attacks on the main election schemes have been proposed in [6, 17] and
in our paper. Most of the attacks are possible because too much trust is put in a sin-
gle party of the protocol, for example in a Voting Machine. We conclude that designs
of schemes should try to avoid using randomness. Use of deterministic signatures and
encryption schemes and Chaum’s MIX like style of communication (with messages
passed in lexicographic order) facilitates verification and reduces the possibility of ex-
istence of subliminal channels and kleptographic attacks.
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