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Abstract. Recommender systems are widely used to help deal with the
problem of information overload. However, recommenders raise serious
privacy and security issues. The personal information collected by recom-
menders raises the risk of unwanted exposure of that information. Also,
malicious users can bias or sabotage the recommendations that are pro-
vided to other users. This paper raises important research questions in
three topics relating to exposure and bias in recommender systems: the
value and risks of the preference information shared with a recommender,
the effectiveness of shilling attacks designed to bias a recommender, and
the issues involved in distributed or peer-to-peer recommenders. The goal
of the paper is to bring these questions to the attention of the informa-
tion and communication security community, to invite their expertise in
addressing them.

1 Introduction

People are often overwhelmed with the number of options available to them. To
combat this information overload, many have turned to recommender systems :
tools that use a user’s opinions about items in some information domain in order
to recommend other items to that user. For example, Amazon.com uses a rec-
ommender system to make personalized recommendations suggesting products
that a user might like based on the products she has purchased, expressed an
opinion about, or viewed.

There are a wide variety of recommender systems in use today. Some, like
Amazon.com, are automated and personalized to each user, while others, such
as Epinions.com’s review system, are non-personalized and “manually operated”
in the sense that users need to read and evaluate the reviews published on the
site to reach a conclusion about an item. In this paper, we focus on personal-
ized recommender systems that use automated collaborative filtering algorithms
[1, 2, 3], which generate recommendations on the basis that people who have ex-
pressed similar opinions in the past are likely to share opinions in the future.
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Such recommenders require personal information from a user, and in return give
personalized predicted preferences, which we also call recommendations.

Recommender systems require two types of trust from their users. First, since
the recommender must receive substantial information about the users in order
to understand them well enough to make effective recommendations, they must
trust that the system will protect their information appropriately. Second, au-
tomated recommender systems are often fairly opaque to their users. Although
the algorithms used are easy to understand in principle, a user is usually not
presented with sufficient information to know exactly how or why an item is be-
ing recommended to her. Thus, in order for a recommendation to be accepted,
the user must trust that the recommendations are accurate.

Violations of user trust in a recommender come in three flavors:

Exposure. Undesired access to personal user information.
Bias. Manipulation of users’ recommendations to inappropriately change the

items that are recommended.
Sabotage. Intentionally reducing the recommendation accuracy of a recom-

mender.

Exposure. There are many examples of exposure of private user data. In 2004,
hackers accessed a University of California, Berkeley system containing the
names and social security numbers of about 1.4 million Californians1. Identi-
fying information is expected to be kept private, but so is preference informa-
tion: during Robert Bork’s confirmation hearings for the U.S. Supreme Court in
1987, his movie rental history was leaked to the press. In response, lawmakers
passed the Video Privacy Protection Act of 1988 making it illegal to disclose
personally identifiable rental information without consent. We do not yet know
of recommender information being leaked or stolen – but many companies who
own recommenders are not required to publicly report identity theft. A Harris
poll in 2003 finds 90% of people are concerned about protecting themselves from
misuse of their personal information2. Ackerman et al. found 83% of people more
than marginally concerned about privacy [4].

What can be done about recommender system exposure? Can security tech-
niques from other domains be applied in unique ways to recommender systems
to make privacy violations difficult or impossible?

Bias. Bias may be to increase (“push”) or decrease (“nuke”) the visibility of
other items. In 2002, Amazon.com’s page for a spiritual guide by well-known
Christian televangelist Pat Robertson included an automatically generated rec-
ommendation for “The Ultimate Guide to Anal Sex for Men”. “Amazon con-
ducted an investigation and determined these results were not that of hundreds
of customers going to the same items while they were shopping on the site.”3

Instead, it is likely that a few motivated people accomplished this by repeatedly
viewing the two items in sequence.
1 http://www.securityfocus.com/news/9758
2 http://harrisinteractive.com/harris poll/index.asp?PID=365
3 http://news.com.com/2100-1023-976435.html
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In 2004, Amazon.com’s Canadian site suddenly accidentally revealed the iden-
tities of thousands of people who had anonymously posted book reviews. It
turned out that authors were praising their own books and trashing other au-
thors’ books. The New York Times reported that “many people say Amazon’s
pages have turned into what one writer called ’a rhetorical war,’ where friends
and family members are regularly corralled to write glowing reviews and each
negative one is scrutinized for the digital fingerprints of known enemies.”4 To
increase the credibility of some reviews, Amazon now has a “Real Name” badge
applied to reviews written by customers who have verified their identity and
agreed to publicly reveal that they wrote the review.

How can bias be limited in recommender systems? Can information-theoretic
techniques be used to identify attempts to bias recommendations?

Sabotage. There are many examples of sabotage in web sites. The most common
are denial of service attacks or defacement of the front page. Besides these and
some of the bias attacks mentioned above, we know of no other direct sabotage
attacks on recommender systems to date. We hypothesize that sabotage may
become more prevalent in the future, as business competitors use recommenders
as a key business advantage. For now, though, we recommend focusing research
on the other types of attacks on recommender systems.

Model
Builder (2)

Predictor (4)

Personal
Information (1)

Data
Store (3)

Predicted
Preferences (5)

Recommender
(centralized or distributed)

Fig. 1. Conceptual model of the interaction between a user and a recommender system

Figure 1 shows high-level data flow between a user and a recommender: the
user gives personal information in return for predicted preferences. Personal
information may be preferences or other identifying information such as name,
zip code, age, gender, email, or account name. Predicted preferences may be a
list of recommended items for the user to consider, or a predicted opinion for a
given item or set of items.

4 http://www.nytimes.com/2004/02/14/technology/14AMAZ.html
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The recommender in figure 1 has internal structure. The model builder may
select, combine, and compute a user model from personal information. The
model builder may also be privacy-preserving if it discards or abstracts away
from personal information. The data store holds the results of model build-
ing as well as any other information necessary for the application. The
predictor uses the model to predict preferences. However, the figure is not in-
tended to show concrete system architecture. For example, the TiVo TV show
recommender puts the predictor on the user’s machine, not a server [5]; peer-
to-peer or distributed recommenders may distribute recommender components
broadly.

Figure 1 is subject to many of the classic client-server security concerns: man-
in-the-middle attacks, denial of service attacks, hacking into the recommender
server(s), and so on. Such attacks are no different in the context of a recom-
mender system than a standard client-server system, so they will not be consid-
ered in this paper. We instead focus on issues specific to recommenders.

Each of our research questions may be considered at several points along
the flow of data. For example, predictions may be sabotaged or biased by users
giving false information or misrepresenting their opinions (which we call shilling),
or by the owner of a recommender altering the recommendations (e.g. to sell
overstock or increase profit). Exposure may occur by looking for users’ personal
information directly or by trying to infer it from recommendations [6].

This paper is an extension of a workshop paper [7] that contains our thoughts
about interesting research questions around privacy-preserving recommenders.
In the present paper, we consider some topics that touch on these research
questions: the prediction value and privacy cost of personal information (section
2), ways to bias prediction results (section 3), and distributed or peer-to-peer
recommendations (section 4).

2 Value and Privacy Risks of Information

A personalized recommendation algorithm requires input from the user pop-
ulation in order to make recommendations. Providing more input potentially
increases recommendation accuracy, but also increases the risk of unwanted ex-
posure of personal information. Ideally, one would like to find a balance where
the system is able to make good recommendations while not requiring users to
give up too much information about themselves.

There is large body of prior work in this area. Many have looked at ways
to preserve user privacy in recommender algorithms [8, 9] or datasets [10]. The
data mining community has also become interested in privacy-preserving algo-
rithms [11]. So far, they find that you can suppress, perturb, or generalize data
with varying effects on algorithm outputs (such as recommendations) or dataset
anonymity. Also, Ramakrishnan et al [6] describe a graph-theoretic model show-
ing how information can be inferred about straddlers (users with eclectic tastes)
by observing the recommendations made by a system.
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When a user provides information to a recommender, two broad questions
arise. 1) What value is gained? 2) What exposure is risked? We discuss value in
2.1 and exposure risk in section 2.2.

2.1 Value of Information

In this section, we discuss different ways of judging the value of preference
information provided by the user. Value may take many forms: list-keeping,
discussion, fun. For simplicity, we assume that value is increased prediction ac-
curacy. The accuracy gained by providing information may be for the user who
provided it (“value to self”), or for others using the recommender (“value to
others”).

There are many issues to consider. How to judge the value of information? How
much data should the recommender solicit? Which data should it solicit? Should
it keep all the data? What user interface should it use? How does changing the
data available affect recommendation accuracy? We devote a sub-section to each
question.

Metrics. The purpose of information collected by a recommender is to differ-
entiate a user from her peers. Some pieces of data are inherently more valuable
than others in an information-theoretic sense and thus, are better at differentiat-
ing among users. For instance, knowing that a user likes the universally-popular
movie “Toy Story” reveals less than knowing that she likes “Fahrenheit 9/11,”
which has a higher level of diversity among users’ opinions. This is the basis of
an idea proposed by Pennock and Horvitz that says if one can calculate how
useful a given piece of information is (a value-of-information or VOI metric),
then one can tune a system to optimize its data collection process by soliciting
user preferences on items that have the most value [12].

Such a metric has a variety of uses including judging whether the recommender
has enough bits of data for a particular user or movie, or directing users to
provide high-value information for others.

Amount of Data. How much data is needed from a user to make good rec-
ommendations to that user? Providing a recommender with data may produce
diminishing returns. That is, perhaps once a certain amount is known about a
user, obtaining further information is only marginally useful. Perhaps there is a
“sweet spot” that maximizes the recommendation accuracy per unit of informa-
tion known about the user.

How do we calculate the sweet spot? It is desirable for the recommender to
know this so that it can stop soliciting data from a user once it has built a
sufficiently good user model. With a VOI metric, it is possible to measure how
much information is needed to make good recommendations, and then to stop
collecting new information from the user once that point is reached. More gener-
ally, a recommender system might use VOI to bound the amount of information
collected about a user to some optimal level with respect to both privacy and
recommendation quality.
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One issue is that how much information is useful may change over time. As the
system or the user evolves, or as new items are introduced, will more information
be needed to maintain high-quality recommendations?

Finally, suppose it would be useful for many other users if a particular user
were to give more information than necessary for her own prediction accuracy?
How do we appropriately balance these competing goals? Many users are prob-
ably willing to give value to others. Perhaps just ask?

Which Data to Solicit. Some people, particularly advertisers, seek to provide
personalization based on a small amount of information. For instance, recom-
mendations might be based on demographic data (e.g. ZAG — zip code, age,
gender), or generalized preferences of attributes describing the items involved
(in movies, this might mean the user’s favorite genres). Even this seemingly-
innocuous amount of information can have a striking effect on one’s privacy.
Sweeney showed that information similar to ZAG may be highly identifying:
87% of the people in the 1990 U.S. census are likely to be uniquely identified
based on only zip code, birthdate, and gender [10].

Highly personalized recommenders, such as those based on automated collab-
orative filtering, require a far higher degree of personal preference information
from the user. These requirements lead to even larger privacy concerns since
this level of preference information may reveal substantial personal information
about the user.

In past work we explored eliciting information from new users in the Movie-
Lens movie recommender system in VOI-aware ways that optimize both the
required user effort and initial recommendation accuracy [13, 14]. We built in-
terfaces that successfully reduced the user effort needed to start receiving recom-
mendations. Moreover, we found that people who used the VOI-aware interfaces
received more accurate recommendations than people who were did not use the
enhanced interfaces.

In the interest of user privacy, this kind of approach may be comforting to
some users in that fewer discrete pieces of information (e.g. movie ratings) need
to be provided before the system becomes accurate. However, since the recom-
mendations are better, quite possibly the user has given up a greater amount of
information about herself than she would have with an unoptimized approach.

Selectively Discarding Data. If a recommender knows “too much” about a
user, which data should be kept? The answer to this question is not necessarily
the information with the highest value. If “low-valued” information is discarded
from many users’ models, then perhaps that information is no longer low-valued
since it has become more rare. Choosing an appropriate set of data that balances
both the benefit to the overall community and the quality of each individual user
model seems challenging.

User Interface. What should the user interface look like, especially after the
system thinks it has learned enough about the user? What if the user wants to
tell us more about herself? How does one present a privacy-preserving recom-
mender system in an understandable way? In our experiences with MovieLens,
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we have found no shortage of people willing to provide hundreds and sometimes
thousands of movie ratings. Indeed, user feedback from our periodic surveys
reveals that rating movies is among the leading reasons people have for using
the system! These observations that some users want to give up their informa-
tion may make it tricky to create a usable interface that effectively conveys the
privacy-preserving aspects of the recommender system.

Impact on CF Algorithms. How well do current collaborative filtering al-
gorithms operate in reduced-data environments? Many different aspects of rec-
ommendation quality might be affected: accuracy, coverage, novelty, and so on.
There is some evidence that it is possible to hide or change ratings and still have
good recommendations. Berkovsky et. al. looked at the performance of distrib-
uted recommender algorithms when obfuscating (hiding) the ratings of users in
a 100% dense subset of the Jester dataset of jokes [9]. Polat et. al. looked at
the performance of collaborative filtering algorithms when randomly perturbing
rating values in the Jester and MovieLens 100K datasets [8]. In both cases, the
recommendations did become less accurate, but it is unclear whether the drop
is noticeable to users.

Further practical privacy-preserving algorithms and tests on other datasets
would be valuable. In particular, the highly dense Jester dataset may not reflect
the results of most recommender systems, because usually a recommender is used
when users cannot possibly rate all items, hence the data is very sparse. Some
algorithms such as SVD seem more naturally suited for sparse data sets [15]
— are they even better if given selectively chosen high-information data? Is this
data inherently less noisy, and if so, could it even lead to better recommendations
using specialized algorithms?

2.2 Exposure Risk

In this section, we discuss the potential risks to users who divulge personal
information. There is the direct risk that someone will learn information that
the user wished to keep private. For example, revealing identifying information
could lead to identity theft. There are also indirect risks of re-identification —
finding information about a user in one system that could identify her in another
system [10]. The user may not have expected others to be able to “connect” her
identities from the two systems (e.g. a personal webpage and a controversial blog
written under a pseudonym).

Combinations of attributes may be highly identifying. Such combinations are
sometimes called a quasi-identifier to differentiate them from directly identifying
information like social security number. Our earlier example showed the combi-
nation of 5-digit zip code, birthdate, and gender to be a quasi-identifier. This
was used to identify former Massachusetts governor William Weld in voter reg-
istration records, and then re-identify him in a supposedly anonymous medical
records dataset given to researchers [10]!

Personal preferences like those expressed to many recommender systems
may also turn out to be a quasi-identifier, especially if people express unusual
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preferences. That may allow undesired re-identification using only preference
data. Furthermore, a centralized recommender system might be able to re-
identify its users in locations those users did not expect. For example, perhaps
Amazon.com could find former customers on a competitor’s site and offer incen-
tives to lure them away from the competitor.

Whether identification or re-identification is unwelcome is likely to vary by
domain and by user. In some domains, such as music, some users may be open to
sharing their tastes with others. In other domains, such as medical information,
users may have serious concerns about sharing their preferences with anyone,
because of the potential harm should the information leak to colleagues, em-
ployers, or insurers. In still other domains, such as scientific research papers, the
sensitivity of the information may vary with time. While working on a paper,
a researcher may not want others to know what related work she is studying;
however, once the paper is published, the list of references is publicly available
and no longer presents a privacy concern.

3 Recommender Algorithm Security

Now, we turn to another violation of trust — recommendation bias. There are
many ways to bias a recommender system. Here, we ignore “typical” computer
attacks such as breaking in to and directly modifying the system, and instead
focus on ones specific to the recommender algorithm. In particular, we examine
a shilling attack, which attempts to manipulate the system’s recommendations
for a particular item by submitting misrepresented opinions to the system. We
discuss the motivation for shilling (3.1), research on specific attack types (3.2),
defending against attacks (3.3), and open questions about how system modifi-
cations for privacy might affect vulnerability to shilling (3.4).

3.1 Motivation for Shilling Attacks

One of the primary uses for a recommender system is to help people make
decisions. Naturally, this makes recommender systems very interesting to people
with vested interests in what people choose. For instance, a restaurant owner
would be more successful if more people ate at his establishment, so it is within
his best interests to have it recommended often. One way to do this is to provide
good service to garner a good reputation among restaurant diners. This would
lead to more frequent recommendation as users express high opinions of the
restaurant.

A more underhanded and perhaps cheaper way to increase recommendation
frequency is to manipulate the system into doing so by executing a shilling
attack. Alternatively, an attack could be used to reduce the recommendation
frequency for a competitor’s offering. In either case, the attacker will profit as
the manipulated recommendations cause more people to choose what he wants.
As noted in section 1, this actually happens: a number of book reviews published
on Amazon.com are written by the author of the book being reviewed.
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3.2 Known Attack Variants

A shilling attack may be executed by having a group of users (human or agent)
provide specially crafted “opinions” to a recommender system that cause it be-
have as desired. Different attacks specify different ways to construct the users’
opinions and have varying degrees of success depending on the collaborative fil-
tering algorithm used by the targeted recommender system. Each attack has
a cost, measured by the amount of knowledge required to execute it and the
amount of work that needs to be done (e.g. number of new identities or new
ratings needed).

Our previous work [16] describes two very simple attacks RandomBot and
AverageBot that can be carried out with a small amount of information about
the user and item population. When executed against the k-Nearest-Neighbor
algorithms commonly in use today, these attacks are indeed effective in changing
a target item’s recommendation frequency. Moreover, the attacks are non-trivial
to detect with typical measures of recommender system performance.

More recently, Mobasher, et al., show that the basic attacks described in [16]
can be improved with a modicum of additional information about users and
items. In particular, they find that it is possible to target an attack to strongly
affect recommendations for a specific segment of the user population [17]. This
focused attack has a lower cost per unit effect than the RandomBot or Average-
Bot attacks, so they can be useful for adversaries who know what demographic
of people they would like to target (i.e. targeted marketing campaigns) and who
have limited resources to mount an attack with.

3.3 Defending Against Attacks

To formulate a response to shilling attacks, we examine a very similar attack
faced by operators of reputation management and peer-to-peer systems, the
Sybil attack [18]. In this type of attack, an attacker creates false identities that
collude to achieve some objective such as increasing the reputation of an identity
or increasing the influence of a node in a peer-to-peer network. For example,
consider a dishonest seller on eBay who wishes to increase his feedback score. He
could create a large number of identities and use them to leave himself positive
feedback. This might increase the chances that a buyer will trust him and thus
be tricked into purchasing an item from him.

Sybil attacks may be addressed by developing attack-resistant algorithms
[19, 20], or increasing the cost of acquiring identities [21]. These ideas can be
used to defend against shilling attacks as well. Work on shilling-resistant collab-
orative filtering algorithms is an active area of research. O’Donovan and Smyth
show that an algorithm based on implicit trust scores that are computed from the
accuracy of past recommendations can make shilling attacks less effective [22].

The other approach, making identities more expensive, is a simple-sounding
solution that would prevent an attack from even reaching the recommender algo-
rithm in the first place. However, the use of CAPTCHAs [23] or requiring some
other non-trivial commitment of resources (e.g. monetary or computational) are
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believed to be either overly exclusive and unfair [21] or ineffective at prevent-
ing Sybil attacks due to unrealistic assumptions about users and attackers [18].
Thus, marginally increasing the cost of creating identities may be only a stopgap
defense against shilling attacks.

There are more traditional cryptographic solutions of identity validation such
as those described in [21] where the system uses a trusted third party to ensure
that each person can only establish one identity. This can substantially raise the
cost of an attack, but also raises privacy concerns as it requires that users reveal
their identity to some entity just to use the system. Furthermore, if the trusted
third party manages identities in multiple systems, it becomes possible to track
one person across them, which increases the risk of re-identification.

3.4 Open Questions - Privacy and Shilling

The desire to preserve the privacy of users in a recommender system may con-
found the security problems. If we modify recommender systems to preserve user
privacy, does that change how they are affected by shilling attacks? Likewise, as
discussed above, defending against attacks may cause the loss of some privacy.
What kinds of trade-offs between privacy and security might a recommender
system operator need to make?

AttackEffectiveness.Do shilling attacks become more effective against privacy-
preserving recommender systems? As additional privacy is introduced to a recom-
mender system, the opportunities for attacks can increase considerably. Our work
[16] shows that attacks that target recommendation frequency of low-information
items (i.e. ones with few ratings) are more effective than attacks against high-
information items.

In a system that tries to maintain a minimal amount of information about its
members, it is possible that every item might have sufficiently few ratings to be
vulnerable to highly-effective attacks.

Attack Difficulty. Are shilling attacks more or less difficult to mount against
privacy-preserving recommender systems? As mentioned above, more individual
items might become targets for effective attacks. On the other hand, if the rec-
ommender system only keeps a subset of data provided to it, an attack strategy
will need to take that into consideration, both for the users being targeted and
for the users introduced by the attack. This would require the attacker to know
more about the system being attacked, thus increasing the cost of an attack.

Another possible impeding factor in an attack is the interface presented to
users. A VOI-aware interface such as the ones used in our past work [13, 14] can
control which items may be rated by a user in order to maximize the information
gain per collected rating. This significantly constrains what an attacker can do
and could make it more difficult to impact the system in precise ways.

Attack Detection. How does one detect shilling attacks? There are ways of
detecting automated agents that are not specific to recommenders, such as not-
ing patterns in account names, or the source or speed of account creation or
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opinion submission. Are there also robust ways of detecting profiles that differ
significantly from normal, or that clearly affect particular items in unusual ways?

Moreover, in a privacy-preserving recommender system, is it easier or harder
to detect an attack? One might theorize that in a low-data environment, it
becomes easier to identify atypical patterns that are indicative of an attack. If
true, this would certainly be a boon to recommender system operators. On the
other hand, discarding some of the data entered by a shilling agent might leave
the remaining data looking more like a human, and hence harder to detect.

4 Distributed Recommenders

4.1 Motivation

Users of MovieLens write to thank us for running a non-commercial recom-
mender. They feel they can trust our recommendations because we do not have
an external motivation to push them towards one movie or away from another.

Because traditional recommenders require large centralized resources, they
must be run by some organization. That organization has control of the rec-
ommender cloud in figure 1: the data and algorithms used to form the recom-
mendations, and even the user interface through which recommendations are
presented. There are several reasons that users might wish to have more control
over the recommendations. First, users might fear the centralized organization
will expose their personal information. They might prefer to control their own
data. Second, users might be concerned that the recommendations provided will
be biased for the good of the organization rather than their own good. They
might wish to have some assurances about the recommendation algorithm being
used. They might even prefer to be able to select the recommendation algorithms
by themselves, rather than have those algorithms chosen by someone else.

The high-level research question in this section is: can recommender systems
be developed in which there is no centralized authority that can co-opt the
recommendation process? A positive answer to this question might be based
on developing a recommendation algorithm that has no centralized authority,
limiting what the centralized authority can do, or verifying that the centralized
authority is meeting certain standards of behavior in its actions. The first two
approaches have been investigated in past research.

4.2 Prior Approaches

One such approach enables a community to build a shared view of a recommen-
dation model, even though individuals only share cryptographically protected
versions of their ratings vectors (preferences). Canny described a recommender
system in which a centralized singular value decomposition model is built by
a tallier combining encrypted ratings vectors from each user [24]. For security,
there might be multiple, distributed talliers; indeed, each client might also be
a tallier. Attackers cannot learn the original ratings vectors from the encrypted
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ratings vectors, but users can check that their uncorrupted ratings data is used
in the model using a zero knowledge proof technique.

This approach protects against exposure of personal information, since no one
can see the original ratings vectors. Canny also shows that the model-building
algorithm protects against the model being unnoticeably corrupted if at least
half the talliers are honest. Note that this does not protect against all forms
of bias. For example, clients can still shill by providing false preferences in the
correct protocol that is then dutifully incorporated into the model by talliers.

Miller et al. extends Canny’s work by using Canny’s approach to computa-
tion, but with an item-item recommendation algorithm [2, 25]. The idea is the
same: encrypted ratings vectors are distributed by users; the vectors cannot be
reverse-engineered to produce the original ratings; and a centralized model is
built that can be used to produce individual recommendations [26]. The individ-
ual recommendations can be produced by a user by combining their own ratings
with the model without sharing those ratings with anyone else.

One key advantage of Miller’s algorithm is that it can produce models in-
crementally by collecting ratings vectors over time. In principle, each user could
keep his own model, only sharing encrypted ratings data with others. Such a user
might be satisfied with a partial model that was only suitable for making recom-
mendations for himself, not for other users. Miller showed that these models are
small, fast, and could easily be maintained on a personal workstation. Ratings
could be distributed using a variety of well-known peer-to-peer approaches, such
as those used in Gnutella5, Freenet [27], or Chord [28].

In the extreme, the smaller model could be maintained on a mobile device. Dis-
tributing ratings to these devices would be more challenging, since they are only
occasionally connected to the Internet. One radical idea is that the ratings might
be distributed wirelessly using a personal-area network like Bluetooth. In this
vision, the user walks around the world carrying her mobile device, which shares
encrypted ratings vectors with nearby mobile devices. The encryption of the
ratings vectors would protect privacy, while the resulting distributed recommen-
dation model would provide accurate recommendations using a recommendation
algorithm the user chose and maintained herself.

4.3 Open Questions

There are many open questions about the use of distributed recommenders that
protect privacy or give individual control over the use of the ratings or recom-
mender model. This section outlines some of the most important.

Practical Distributed Recommenders. Do distributed recommenders really
work in practice? Do they lead to recommendations that are as accurate as those
predicted by the analysis and offline experiments that have been performed?
Actually implementing a distributed recommender system for a large user com-
munity, such as music or movie lovers, and solving the practical problems faced
by such a system would be a substantial research contribution.
5 http://rfc-gnutella.sourceforge.net/
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An interesting area for experimentation is to investigate what would really
happen with the distribution of ratings data over personal area networks such
as Bluetooth. Would users be exposed to enough different types of people to get
a wide variety of recommendations, or would there be too much similarity in the
people they encounter on a day-to-day basis?

Integrity. Security attacks are especially of concern for distributed recom-
menders, because their ratings vectors would likely be shared openly through
well-known protocols. (In principle the ratings vectors could be shared through
a secure channel, but then only certified programs could participate in the rec-
ommendation process, a result that would be less satisfying to the peer-to-peer
community, for example.) These ratings vectors could be destroyed or discarded
as they are passed through the system. More simply, shilling attacks from ro-
bot “users” could be injected into the system as described in section 3. Since a
distributed system makes it difficult to verify identity, these attacks would be
challenging to thwart. What mechanisms could be developed to make shilling
attacks more difficult in a distributed recommender system?

The bottom-line goal of the research questions in this section is to develop
recommenders that are guaranteed to serve the needs of their end-users. What
techniques other than those discussed here could provide such guarantees? Could
certification techniques show with high probability that the recommendations
are made honestly? Are there zero-knowledge proofs that show not only that
the data used is the correct data, but also that the algorithms used have the
desired properties? Research that could demonstrate properties of centralized
recommender algorithms might be invaluable.

5 Conclusion

The issues of privacy and security in recommender systems is rich with impor-
tant, unanswered research questions. Highly personalized recommender systems,
like those discussed in this paper, collect large volumes of very personal data
about their users. How can security techniques be used to guarantee that this
personal data will never be leaked without the permission of its subject? Fur-
ther, these recommender systems are increasingly important in guiding people’s
decisions about what they want to do, what they want to buy, even where they
want to go. How can the users be sure that the recommendations they receive
have not been inappropriately influenced or modified?

In this paper we explored three aspects of recommender systems that relate
to these privacy and security questions: value and risks of personal information,
shilling, and distributed recommenders. Previous work on value of information
(VOI) shows that it can be used to more effectively collect information from new
users. We believe it can similarly be used to determine when to stop collecting
information to properly balance the privacy given up by users with the quality
of the recommendations, and to intelligently choose which information to dis-
card if “too much” is known about a user. The challenge of shilling is that the
aforementioned privacy protections may make shilling easier, especially if they
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reduce the amount of information the recommender system keeps about each
user. Past research in distributed recommenders has shown that security tech-
niques such as cryptosystems and zero knowledge proofs can be used to provide
recommenders with dramatically different security and privacy properties.

Rather than try to completely define the set of privacy and security issues
involving recommenders, we have tried to outline some of the most important
issues, and to identify some key research questions that may yield to the research
techniques of the security community. We hope by raising these questions to
inspire even more high quality research into the security and privacy implications
of the increasingly important ubiquity of recommender systems.
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