
Possibilistic Information Flow Control in MAKS
and Action Refinement�

Dieter Hutter

German Research Center for Artificial Intelligence (DFKI GmbH)
Stuhlsatzenhausweg 3, 66123 Saarbrücken, Germany

hutter@dfki.de

Abstract. Formal methods emphasizes the need for a top-down ap-
proach when developing large reliable software systems. Refinements are
used to map step by step abstract algebraic specifications to executable
specifications. Action refinements are used to add detailed design infor-
mation to abstract actions. Information flow control is used to specify
and verify the admissible flow of confidential information in a complex
system. However, it is well-known that in general action refinement will
not preserve information flow properties which have been proved on an
abstract level. In this paper we develop criteria ensuring that these prop-
erties are inherited during action refinement. We adopt Mantel’s MAKS
framework on possibilistic information flow control to formulate security
predicates but advance to configuration structures instead of trace event
systems to cope with necessary modeling of concurrency.

1 Introduction

In order to deal with the complexity of the development of reliable software sys-
tems, formal methods propose the use of a top-down approach. Starting with
an abstract specification, step by step more implementation details are added
to subsequent specification layers. Various verification methods have been devel-
oped to support this stepwise refinement of specifications in order to guarantee
that subsequent refined specifications satisfy the requirements of previous lay-
ers. While this approach guarantees that, for instance, an implementation level
satisfies the logical requirements of the abstract level, it is well known that in-
formation flow properties are typically incompatible with refinement (e.g. [12]).
Since security orderings are in general neither monotonic nor anti-monotonic
with respect to safety orderings, information flow properties are in general not
preserved under refinement.

Information flow control (e.g. [16, 22, 13]) relies on the idea of modeling confi-
dentiality (and dually: privacy) of data as restrictions on the flow of information
between different domains of a system. Starting with the work of Goguen and
Meseguer [9, 10], the restrictions on information flow for deterministic systems

� This work was supported by the German Federal Ministry of Education and Research
(BMBF) and the German Research Foundation (DFG).

G. Müller (Ed.): ETRICS 2006, LNCS 3995, pp. 268–281, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Possibilistic Information Flow Control in MAKS and Action Refinement 269

have been formalized as independence properties between actions and observa-
tions of domains: Alice’s actions are confidential wrt. Charly if his observations
are independent of her actions, i.e. if Alice changes her actions this does not cause
different observations for Charly. In this case Alice is said to be non-interfering
with Charly. For non-deterministic systems, the intuition works backwards: Alice
is possibilistically non-interfering with Charly if the observations of Charly can
be explained by several, different behaviors of Alice. Thus, Charly’s observation
does not reveal which actions Alice has chosen.

In the area of information flow control, security predicates are typically closure
properties: while an adversary may observe visible parts of a system behaviour
he must not be able to predict or deduce the non-visible parts. Thus the set
of system traces causing a specific visible behaviour has to contain sufficiently
many traces that significantly vary in their confidential behaviour.

Technically, security predicates basically enforce that the occurrences of con-
fidential events in a system trace are independent of the occurrences of visible
events, which can be observed by an adversary. As a simple example, suppose
〈v〉 is a system trace and c a confidential event. A security predicate like the
so-called BSIA (which we will inspect in more detail later on) demands that
observing the visible part v of a system run does not imply that c has not hap-
pened at some point. That means, that besides 〈v〉 also 〈c, v〉 and 〈v, c〉 have to
be possible system traces. Once we refine v to a sequence v1, v2, the refinement of
the security property would demand 〈c, v1, v2〉 and 〈v1, v2, c〉 to be system traces
of the refined system. However, if we apply the closure property to the refined
system, we additionally have to show that 〈v1, c, v2〉 is a possible system trace.
This phenomenon closely relates to the problem of differentiating the situations
v||c (executing v and c independently) and v; c, c; v (executing v and c in any
sequel) which cause different perceptions of possible refinements. While v||c and
v; c, c; v imply the same set of traces, namely {〈v, c〉, 〈c, v〉} their refinements
{〈c, v1, v2〉, 〈v1, c, v2〉, 〈v1, v2, c〉} and {〈c, v1, v2〉〈v1, v2, c〉}, respectively, do not.
In general, interleaving trace equivalence or interleaving bisimulation equiva-
lence are not preserved under action refinement (see [4]). As a consequence,
trace-based systems as they are used in Maks are not appropriate when con-
sidering non-atomic events that can be refined later on. Given a trace based
specification of an abstract system, we are not able to distinguish whether con-
fidential and visible events run in parallel or in any arbitrary sequel. However,
this difference becomes apparent if we refine the system (cf. the example above)
and thus can be also observed by an adversary watching the refined system.

In this paper we transfer basic parts of Maks to so-called configuration struc-
tures [6]. Configuration structures are known to preserve bisimulation equiva-
lences during action refinement if some preconditions are met. We base our
techniques on the notions developed for the framework Maks [15] to specify
and verify possibilistic information flow policies. We present the translation of
the main basic security predicates BSD and BSIA of Maks in terms of configu-
ration structures and illustrate under which conditions both are preserved under
action refinement.

270 D. Hutter

We start with a brief introduction to the framework Maks for possibilistic
information flow in Section 2 and continue with another introduction to con-
figuration structures in Section 3. In section 4 we introduce the basic concepts
of transferring possibilistic information flow control to configuration structures
and translate the most prominent security predicates of MAKS into the notion
of configuration structures in 5. Finally we compare our approach with related
work in 6.

2 MAKS

In this section we will shortly discuss concepts and notation and briefly present
the parts of Maks [15] that we use as a starting point of our paper. Systems
are described by an event system ES = (E, I, O,Tr), which consists of a set E
of events, two sets I, O ⊆ E of input and output events, respectively, and the
set Tr ⊆ 2E∗

of possible system traces. The set Tr of finite sequences of events
is required to be closed under prefixes, i.e. α.β ∈ Tr implies α ∈ Tr , where we
write α.β for the sequence resulting from concatenating the sequences α and β.
We write 〈e1, . . . , en〉 for the sequence consisting of the events e1, . . . , en.

In Maks a security predicate Θ is defined as a conjunction of closure proper-
ties on sets of traces. The idea behind using closure properties is the following.
Suppose an attacker observes the visible events of a system run (while the con-
fidential ones are invisible). We assume that attackers know all possible system
runs, thus they know the set of all possible system runs which might have caused
the observed behavior. In particular, an attacker knows the confidential events
occurring in these possible runs, and can try to deduce constraints on the con-
fidential events that must have occurred in the observed run. Information flow
happens if the attacker is able to deduce knowledge about the occurrence or non-
occurrence of confidential events beyond the knowledge already deducible from
knowing the system specification, by inspecting the set of runs that are consis-
tent with the observed behavior. A system is secure if this set of runs contains
a sufficient variety of different possible sequences of confidential events. Closure
properties are used to describe this variety because, intuitively, they demand
that if there is a possible system run τ satisfying some precondition, then there
is also another possible system run τ ′ such that the attacker cannot distinguish
both. Suppose τ ′ in turn satisfies the precondition. Then we can inductively
deduce the existence of another trace τ ′′ and so on. To assess the security of a
system satisfying some basic security predicates we need to understand the guar-
anteed variance of traces wrt. confidential events being in the transitive closure
{τ, τ ′, τ ′′, . . .} of an observed system run τ .

The closure properties of sets of possible system traces (parametrized over
an arbitrary set of events E) are described by a conjunction of basic security
predicates (BSPs) and a view. A view V = (V, N, C) for E is a disjoint, exhaustive
partition of E and formalises an observer or attacker: C comprises those events
whose occurrence or non-occurrence should be confidential for the observer, V
represents those events that are directly visible for the observer, and N are all

Possibilistic Information Flow Control in MAKS and Action Refinement 271

other events. An event system satisfies a security property if each BSP holds for
the view and the set of possible system traces. BSPs that we will be using as
examples in this paper are BSD and BSIA1 defined as

BSDV(Tr) ⇐⇒ [∀α, β ∈ E∗, c ∈ C. (β. 〈c〉 .α ∈ Tr ∧ α|C = 〈〉
=⇒ ∃α′ ∈ E∗, τ ′ ∈ Tr . (β.α′ = τ ′ ∧ α′|V = α|V ∧ α′|C = 〈〉))]

(1)

BSIAρ
V(Tr) ⇐⇒ [∀α, β ∈ E∗, c ∈ C. (β.α ∈ Tr ∧ α|C = 〈〉 ∧ Admρ

V(Tr , β, c)
=⇒ ∃α′ ∈ E∗, τ ′ ∈ Tr . (β. 〈c〉 .α′ = τ ′ ∧ α′|V = α|V ∧ α′|C = 〈〉))]

(2)

where τ |D is the projection of τ to the events in D ⊆ E. Admρ
V(Tr , β, c) holds if

the confidential event c is admissible after the trace β, when only events in the set
ρ(V) are considered, i.e. for all functions ρ from views over E to sets of events, we
have ∀β ∈ E∗, c ∈ C. Admρ

V(Tr , β, c) ⇐⇒ ∃γ ∈ E∗. γ. 〈c〉 ∈ Tr ∧ γ|ρ(V) =β|ρ(V).

3 Configuration Structures

In this section we summarize the concept of configuration structures and their
essential properties. Nevertheless, the reader is referred to the literature, for
instance [6, 7], for further particulars. Configuration structures provide a general
model to formalize concurrent systems in a modular way while allowing for a
stepwise refinement. They have been also used as semantic models for CCS-like
[18] languages.

Configuration structures are based on a set of events E that denote occurrences
of actions. Thus, each event e is labeled by an action l(e). A concurrent system is
described as a configuration structure by defining the possible states S, so called
configurations, it can reach. Each configuration is a finite set of events. The in-
tuition behind is that this set of events represent the set of actions the system
had to perform to reach this particular state. Thus, the configuration of a succes-
sor state will always contain the configuration of the original state as a subset.
State transitions are implicitly defined by the subset relation of configurations.
A subset T of the configurations is considered as terminating configurations, i.e.
these configurations are maximal in the set of all configurations.

Definition 1 (Configuration Structure). A configuration structure (over an
alphabet Σ) is a triple CS = (S, T , l) where S is a family of finite sets (config-
urations), T ⊂ S a termination predicate satisfying X ∈ T ∧ X ⊆ Y ∈ S =⇒
X = Y and l :

⋃
X∈S X → Σ is a labellings function. ACS denotes the domain

of all configuration structures and ECS =
⋃

X∈S X is the set of events of CS.

Given a configuration structure CS = (S, T , l) we use SCS , TCS , and lCS to select
the individual elements of the tuple CS.

1 BSD stands for backwards-strict deletion and BSIA for backwards-strict insertion
of admissible events.

272 D. Hutter

Definition 2. Let CS = (S, T , l) be a configuration structure. The step tran-
sition relation → of CS is defined by ∀X, Y ∈ S : X → Y iff X ⊂ Y , and
∀Z : X ⊂ Z ⊂ Y =⇒ Z ∈ S.

For our purposes we restrict ourselves to so-called stable configuration structures
that are closely associated to stable event structures (see [21]). Stable configu-
ration structures have the property that causal dependencies in configurations
can faithfully be represented by partial orders.

Definition 3 (Stable Configuration Structures). A configuration structure
CS = (S, T , l) is

– rooted iff ∅ ∈ S,
– connected iff ∅ �= X ∈ S =⇒ ∃e ∈ X : X \ {e} ∈ S,
– closed under bounded unions iff X, Y, Z ∈ S, X ∪ Y ⊆ Z =⇒ X ∪ Y ∈ S,
– closed under bounded intersection iff X, Y, Z ∈ S, X ∩Y ⊆ Z =⇒ X ∩Y ∈

S.

CS is stable iff it is rooted, connected, closed under bounded union and closed
under bounded intersection.

To refine a configuration structure CS, each action a ∈ ΣCS is associated to
an individual configuration structure CSa that represents the refinement of this
particular action. Given a configuration X ∈ CS, its refinement X̃ combines
each event e ∈ X with a non-empty configuration Xe in its refinement CS l(e).
Given a configuration X̃ in the refinement we can compute a set busy(X̃) of
events e for which Xe is not a terminating configuration. These events busy(X̃)
are performed in parallel since the execution of their refinements is done more
or less ”interleaved”. Formally we define:

Definition 4 (Refinement). A function ref : Σ → ACS \ {ε} is called a
refinement function. Let CS = (S, T , l) ∈ ACS and let ref be a refinement
function. Then X̃ is a refinement of a configuration X ∈ S by ref iff

– X̃ =
⋃

e∈X{e} × Xe where ∀e ∈ X : Xe ∈ Sref (l(e)) \ {∅},
– ∀Y ⊆ busy(X̃) : X − Y ∈ S with busy(X̃) := {e ∈ X | Xe �∈ Tref (l(e))}

A refinement is terminated iff busy(X̃) = ∅.
The refinement ref (CS) = (Sref (CS), Tref (CS), lref (CS)) of a configuration struc-

ture CS by a refinement function ref is defined by

– Sref (CS) = {X̃ | X̃ is a refinement of some X ∈ S by ref },
– Tref (CS) = {X̃ | X̃ is a terminated refinement for some X ∈ T by ref }, and
– lref (CS)(e, e′) = lref (l(e))(e′) for all (e, e′) ∈ Eref (CS).

Refinements are well-defined operations on configurations structures,
i.e. ref (CS) ∈ ACS if CS ∈ ACS and ref is a refinement function. Also ref (CS)
is stable if CS and all configuration structures CSref (l(e)) for the refinements of
all actions l(e) are stable.

Possibilistic Information Flow Control in MAKS and Action Refinement 273

Given a stable configuration structure CS = (S, T , l), we are able to formalize
the causal dependencies in a configuration by a partial order. We define d ≤X e
iff ∀Y ∈ S : Y ⊆ X ∧ e ∈ Y =⇒ d ∈ Y . The causality relation on X ∈ S is
given by d <X e iff d ≤X e ∧ d �= e.

As a consequence of stableness, causality relations on refined configuration
structures are completely determined by the causality relations on the original
configuration structure and the ones associated to the actions by the refinement
function:

Lemma 1. Let X̃ be a refinement of X ∈ S by a refinement function ref ,
i.e. X̃ =

⋃
e∈X{e} × Xe. Then, (d1, d

′
1) <X̃ (d2, d

′
2) iff (d1 <X d2) ∨ (d1 =

d2 ∧ d′1 <Xd1
d′2).

Proof. A proof of this lemma can be found in [7].

This allows us to establish a partial order on the event of a configuration. In
particular, X = (X, <X , lX) represents a partial order which is labeled over Σ.
Let Y = (Y, <Y , lY) then X and Y are isomorphic iff there is a bijection between
X and Y respecting ordering and labellings.

In the following we will make use of the following property.

Lemma 2. Given two configurations X, X ′ ∈ S of a stable configuration struc-
ture with X ⊂ X ′ there are always configurations X0, . . . , Xn and actions
a1, . . . , an with X = X0 →a1 X1 → . . . →an Xn = X ′.

Proof. A proof of this lemma can be found in [7].

4 Security in Configuration Structures

In this section we will translate the ideas of MAKS to configuration structures.
We introduce the notion of a view for configuration structures which classify
their actions into visible, non-visible or confidential actions. Notice, that an event
in a trace-based system corresponds to an action in a configuration structure.
Events in a configuration structure relate to occurrences of events in trace-based
systems. Therefore we define:

Definition 5 (View). Let CS be configuration structure over an alphabet Σ. A
view V = (V, N, C) for CS is a triple such that V, N, C forms a disjoint partition
of Σ.

In the following, we use the notation UV |N |C = {e ∈ U | l(e) ∈ V | N | C} to
refer to the visible, non visible, or confidential parts of U .

The following definition formalizes possible refinements of visible, non-visible,
and confidential actions. Intuitively, the refinement of non-visible actions con-
sists again of non-visible actions only. Visible actions can be refined by using
visible and non-visible actions but obviously they must not contain confidential
actions. The refinement of confidential actions is more delicate. Similar to visible
actions, the refinement of confidential actions can only contain confidential and

274 D. Hutter

non-visible actions but must not contain any visible actions. Otherwise, an ad-
versary could easily deduce the occurrence of confidential actions by looking at
its visible actions in the refinement.

However, in order to guarantee that action refinements will preserve security
predicates like BSD or BSIA we have to go one step further: if an action refine-
ment would translate a confidential action c into a sequel of confidential actions,
say c1, c2, and suppose that both actions would occur only inside this refine-
ment, then the refinement would introduce a dependency between confidential
actions (which can be utilized by an adversary). Notice that confidential events
in MAKS are closely related to high-input (rather than high-) events in other
approaches. Therefore confidential events are typically used to model the intro-
duction of a secret into a system rather than the processing of a secret, which
will be modeled by non-visible events. In the following we demand that the re-
finement of a confidential event always results in a sequel of events in which only
the first event can be confidential and all others are non-visible. Thus, roughly
speaking, we assume that a secret introduced to a system is always atomic.

Definition 6 (View Refinement). Let CS = (S, T , l) be configuration struc-
ture and V = (V, N, C) be a view for CS. Given a refinement function ref , a
view Ṽ = (Ṽ , Ñ , C̃) for ref (CS) is called a view refinement of V wrt. ref iff

– ∀a ∈ N : Σref (a) ⊆ Ñ

– ∀a ∈ V : Σref (a) ⊆ Ṽ ∪ Ñ

– ∀a ∈ C : Σref (a) ⊆ C̃ ∪ Ñ

– ∀a ∈ C : ∀{e}, X ∈ Sref (a) : e ∈ X =⇒ l(X \ {e}) ⊆ Ñ

Typically basic security predicates in MAKS represent closure properties de-
manding that observing the visible events of a trace does not reveal any infor-
mation about the confidential events of this trace. Given an admissible system
trace, there must be another trace with different confidential events that cause
the same visible behavior, i.e. both traces are equivalent with respect to their
visible behavior. To translate this idea into configuration structures, we have to
formalize the notion of visible behavior. In contrast to trace based system this in-
cludes also the branching behavior of a particular configuration. In the following
we introduce the notion of V -simulation between configurations. A configuration
X V -simulates another configuration Y if X behaves(with respect to successor
configurations and branching behavior) as Y on the low-level. The problem of for-
malizing such a property that is also preserved under action refinement is closely
related to the general problem of defining equivalence relations invariant under
refinement. For our purposes we adopt the notion of history preserving bisimula-
tions [5] relating two configurations with same causal history which are known to
be preserved under action refinement. However, in our setting we are only inter-
ested in visible parts of the history and in simulation (instead of bisimulation):

Definition 7 (V-simulation). Let CS = (S, T , l) be configuration structure
with events E, V = (V, N, C) be a view for CS, and X, Y ∈ S. Y V-simulates X
iff there is relation R ⊆ (S, S, P(EV , EV)) such that (X, Y, id) ∈ R and whenever
(U, W, f) ∈ R then

Possibilistic Information Flow Control in MAKS and Action Refinement 275

– f is an isomorphism between (UV , <UV , l |UV) and (WV , <WV , l |WV), and
– for all U ′ ∈ S with U ⊂ U ′ and (U ′ − U) ∩ EC = ∅

there is Y ′ ∈ S and f ′ ∈ P(EV , EV) such that:
W ⊆ Y ′, (W ′ − W) ∩ EC = ∅, f ′ |W = f , and (U ′, W ′, f ′) ∈ R.

The following lemma guarantees that V-simulation is preserved under action
refinement if we refine V appropriately (cf. Def. 6).

Lemma 3. Let CS = (S, T , l) be configuration structure (with events E) to-
gether with a view V = (V, N, C), ref be a refinement function for CS, and Ṽ be
a view refinement of V wrt. CS.

Let X, Y ∈ S and X̃, Ỹ ∈ Sref (CS) such that ∀e ∈ EV : Xe = Ye holds. Then,
Ỹ Ṽ-simulates X̃ if Y V-simulates X.

Proof. Let R̃ be a relation with (Ũ , W̃ , f̃) ∈ R̃ iff there is a (U, W, f) ∈ R such
that

Ũ =
⋃

e∈U

e × Ue with Ue �= ∅ (3)

W̃ =
⋃

e∈W

e × We with We �= ∅ (4)

∀e ∈ EV : Ue = Wf(e) (5)

∀(e, e′) ∈ ẼV : f̃(e, e′) = (f(e), e′) (6)

First, we have to prove that (X̃, Ỹ , id) ∈ R̃ holds. Since R(X, Y, id) holds,
f = id obviously implies ∀e ∈ V : Xe = Yf(e) and f̃(e, e′) = (e, e′) = (f(e), e′).

Second, we have to prove that f̃ is an isomorphism between (ŨṼ , <ŨṼ
, l |ŨṼ

)

and (W̃Ṽ , <W̃Ṽ
, l |W̃Ṽ

) Therefore, we have to prove that (d, d′) <Ũ (e, e′) ↔
f̃(d, d′) <W̃ f̃(e, e′) and l(f̃(e, e′)) = l((e, e′):

(d, d′) <Ũ (e, e′) ↔ (d <U e) ∨ ((d = e) ∧ (d′ <ref (l(d)) e′))
↔ (d <U e) ∨ ((d = e) ∧ (d′ <ref (l(f(d))) e′)
↔ (f(d) <W f(e)) ∨ ((f(d) = f(e)) ∧ (d′ <ref (l(f(d))) e′)

↔ f̃(d, d′) <W̃ f̃(e, e′)

l(f̃(e, e′)) = l((f(e), e′)) = lref (l(f(e)))(e′) = lref (l(e))(e′) = l((e, e′))

Third, let (Ũ , W̃ , f̃) ∈ R̃ then we have to prove that for all Ũ ′ ∈ Sref (CS) with
Ũ ⊂ Ũ ′ and (Ũ ′ − Ũ) ∩ ẼC̃ = ∅ there is W̃ ′ ∈ Sref (CS) and f̃ ′ ∈ P(ẼṼ , ẼṼ) such
that: W̃ ⊆ W̃ ′, (W̃ ′ − W̃) ∩ ẼC̃ = ∅, f̃ ′ |W̃ = f̃ , and (Ũ ′, W̃ ′, f̃ ′) ∈ R̃.

Let (Ũ , W̃ , f̃) ∈ R̃ and Ũ ′ ∈ Sref (CS) with Ũ ⊂ Ũ ′ and (Ũ ′ − Ũ) ∩ ẼC̃ = ∅.
Since (Ũ , W̃ , f̃) ∈ R̃, let (U, W, f) be the corresponding element in R as required
by the construction of R̃. Ũ ′ ∈ Sref (CS) implies U ′ ∈ SCS . Further, obviously
U ⊆ U ′, and (U ′ −U)∩EC = ∅ because otherwise, there would be a confidential
event e in U −U ′ and thus the refinement e×U ′

e would include (by the definition

276 D. Hutter

of 7) at least one confidential event (e, e′). Thus, there is a (U ′, W ′, f ′) ∈ R with
W ′ ∈ SCS , W ⊆ W ′, (W ′ − W) ∩ EC = ∅, and f ′ |W = f .

Consider W̃ ′ =
⋃

e∈W ′ e×W ′
e with W ′

e = U ′
f−1(e) if e ∈ EV and W ′

e ∈ Tref (l(e))

with We ⊆ We otherwise. Obviously, (e, e′) ∈ ẼÑ for e �∈ EV and e′ ∈ W ′
e − We

because the refinement of non-visible events introduces only non-visible events
while the refinement of confidential events only causes one confidential event at
the start (i.e. is already included in We) followed by non-visible events.

We know that busy(W̃ ′) ⊆ EV . Since Ũ ′ ∈ Sref (CS) we know also that ∀Y ⊆
busy(Ũ) : U − Y ∈ SCS and thus ∀Y ⊆ busy(Ũ) ∩ EV : U − Y ∈ SCS . Since f is
an isomorphism on the pomsets, ∀Y ⊆ f(busy(Ũ) ∩ EV) : W − Y ∈ SCS holds.
Thus, ∀Y ⊆ busy(W̃ ′) : W − Y ∈ SCS and W̃ ′ ∈ SCS ��

5 Basic Security Predicates

In the following subsections we will translate the two most prominent basic secu-
rity predicates of MAKS, BSD and BSIAρ, into our framework based on config-
uration structures and prove that both notions are (under some preconditions)
preserved under action refinement.

5.1 Backward Strict Deletion

Enforcing the Backward Strict Deletion property in a trace-based system guar-
antees that an adversary cannot deduce that a specific confidential event has
happened when monitoring the visible behavior of the system. Technically, this
property ensures that for each (finite) trace tr we can take the prefix of this
trace up to the last confidential event and then simulate the rest of tr without
confidential events (see Section 2). The translation of this property to configura-
tion structures in straight forward. If we are in a particular configuration X ∈ S
and have the possibility to perform an confidential action, i.e. X ∪ {e} ∈ S with
e ∈ EC , then X should cause the same visible behavior as X ∪ {e} would do.
Formally we define:

Definition 8. Let CS = (S, T , l) be a configuration structure together with a
view V = (V, N, C). CS satisfies Backward Strict Deletion (or BSD for short) iff
for all X ∈ S and e ∈ EC: X ∪ {e} ∈ S implies that X V-simulates X ∪ {e}.

The following theorem guarantees that the basic security predicate BSD is always
preserved under action refinement as long as we use a view refinement as specified
in Definition 6. Since secrets are considered as atomic we are able to remove the
complete refinement of a confidential event since BSD on the abstract level
guarantees that we can remove this confidential event already on the abstract
level.

Theorem 1. Let CS = (S, T , l) be a configuration structure together with a
view V = (V, N, C) that satisfies BSD wrt. V. Let ref (CS) be a refinement of CS
and Ṽ be view refinement of V wrt. ref and CS. Then, C̃S satisfies BSD wrt. Ṽ.

Possibilistic Information Flow Control in MAKS and Action Refinement 277

Proof. Let ref (CS) = (S̃, T̃ , l̃) and Ṽ = (Ṽ , Ñ , C̃). Suppose, there is an (e, e′) ∈
ẼC̃ and X̃ ∈ S̃ such that X̃ ∪ {(e, e′)} ∈ S̃. Let X̃ be the refinement of some
X ∈ CS. Since (e, e′) ∈ ẼC we know that e �∈ X because confidential events (e, e′)
can only occur as a first step in the refinement of a confidential event e. Thus,
X̃ ∪{(e, e′)} is a refinement of a configuration X ′ = X ∪{e}. Furthermore, since
CS satisfies BSD, we know that X V-simulates X ′. Then, Lemma 3 ensures that
X̃ Ṽ-simulates X̃ ∪ {(e, e′)}, since Xd = X ′

d holds for all d ∈ EV trivially. ��

5.2 Backward Strict Insertion

While BSD is concerned with the non-deducability of occurrences of actions,
enforcing Backward Strict Insertion will guarantee that an adversary cannot
deduce that a confidential action has not occurred. Technically we have to guar-
antee that for any possible system trace tr: if we take any prefix of tr containing
in particular all its confidential events and append another confidential event to
the end of prefix then we can expand this trace to a system trace that causes
the same visible behavior as tr. We can easily translate this property to config-
uration structures as follows. If we are in a particular configuration X ∈ S then
we must be able to perform any confidential action, i.e. X ∪{e} ∈ S with e ∈ EC

and X ∪ {e} must cause the same visible behavior as X would do.
It is obvious that a system satisfying BSIA behaves totally randomly on con-

fidential events since they can occur in a random sequel and are also randomly
interleaved with the sequel of visible events. However, any intrinsic dependencies
between (confidential) events are known to an adversary since he can inspect the
admissible system traces. Since there is no general solution to the problem of
how much system information should be leaked to an adversary, Mantel allows
one to restrict the enforcement of the BSIA predicate only to specific situations.
He introduces an admissibility predicate ρ on traces in order to specify those
situations in which we have to guarantee that BSIA holds (see Section 2.)

We translate this admissibility restriction into the notion of configuration
structures as follows:

Definition 9. Let CS = (S, T , l) be a configuration structure with events E. A
set ρ ⊆ E is called an admissibility restriction. A configuration X is ρ-admissible
iff there is a configuration X ′ ∈ S such that l(X ∩ ρ) = l(X ′ ∩ ρ).

Definition 10. Let CS = (S, T , l) be a configuration structure with events E
and ρ ⊆ ES . CS satisfies BSIAρ iff for all X ∈ S and all e ∈ CS : if X ∪ {e} is
ρ-admissible then X ∪ {e} ∈ CS and X ∪ {e} V-simulates X.

In order to translate a security predicate BSIAρ that is satisfied by a configura-
tion structure CS to its refinement ref (CS) we have to provide an appropriate
set ρ̃ such that on the one hand ref (CS) satisfies BSIAρ̃ but on the other hand ρ̃
lacks only that degree of information about dependencies of confidential events
that we are willing to provide to the adversary. Thus, we do not provide a unique
translation of ρ to some ρ̃ but provide sufficient conditions of ρ̃ to guarantee that

278 D. Hutter

BSIAρ will be preserved under refinement. In particular, a refinement has to pre-
serve admissibility: if a configuration X̃ of the refined configuration structure is
admissible wrt. ρ̃ then it abstract configuration X should be also admissible
wrt. ρ. Furthermore, we have to guarantee that in all admissible situations the
inserted confidential event can be executed in parallel with non-atomic previous
events, the refinements of which have not been finished yet.

Definition 11. Let CS = (S, T , l) be a configuration structure and ref be a
refinement function. An admissibility restriction ρ̃ ⊆ Ẽ is a refinement of an
admissibility restriction ρ ⊆ E wrt. ref and CS iff
for all X̃ ∈ S̃ and all (e, e′) ∈ ẼC̃ holds

– X̃ ∪ {(e, e′)} is ρ̃-admissible implies X ∪ {e} is ρ-admissible, and
– ∀Y ⊂ busy(X̃) : X ∪ {e} − Y ∈ S

Given this definition of refining ρ-admissibility, we are now able to formulate the
preconditions under which BSIAρ is preserved under action refinement:

Theorem 2. Let CS = (S, T , l) be a configuration structure together with a
view V = (V, N, C) that satisfies BSIAρ wrt. V. Let ref (CS) be a refinement of
CS, Ṽ be view refinement of V wrt. ref and CS, and ρ̃ is a refinement of ρ wrt.
ref and CS. Then, C̃S satisfies BSIAρ̃ wrt. Ṽ.

Proof. Suppose, X̃ ∈ S̃ and X̃ ∪{e, e′} is ρ̃-admissible. Therefore, X ′ = X ∪{e}
is ρ-admissible and X ′ ∈ S. Since ∀Y ⊂ busy(X̃) : X ∪ {e} − Y = X ′ − Y ∈ S
and also ∀Y ⊂ busy(X̃) : X − Y ∈ S we know that ∀Y ⊂ busy(X̃ ∪ {e, e′}) :
X ′ − Y ∈ S and thus X̃ ∪ {e, e′} ∈ S̃.

Since X ′ is ρ-admissible, X ′ ∈ CS, and CS satisfies BSIAρ we know that X ′

V-simulates X . Thus, lemma 3 ensures that X̃ ∪ {(e, e′)} Ṽ-simulates X̃, since
Xd = X ′

d holds for all d ∈ EV trivially. ��

6 Related Work

Action refinement has been the subject of intensive studies in between 1985
and 1995. We refer to [8] for an overview and classification of the different syn-
tactic and semantic based interpretations of action refinement. Configuration
structures are closely related to event structures which have been introduced by
Winskel [21]. We refer the reader to [7] for a discussion of the various approaches,
the corresponding notions of action refinements and the problems of finding ap-
propriate bisimulation equivalences that are preserved under refinement.

Starting with the work of Goguen and Meseguer, information flow control
has been subject of a large variety of different approaches introducing different
formal notions of independence. Most prominent, McLean [17], Zakinthinos and
Lee [22] and Mantel [13] proposed frameworks to embed these different notions
in a uniform framework.

Possibilistic Information Flow Control in MAKS and Action Refinement 279

There is a large number of work that is concerned with the problem of com-
bining information flow control and refinement. This work can be divided into
different categories according to the different versions of refinements considered.

Jacob [12] as well as Mantel [14] proposed approaches for secure refinement
considering refinement as a process to eliminate indeterminism. In terms of trace-
based systems such a refinement reduces the set of admissible system traces while
actions (or events) are considered as atomic. Mantel introduces a collection of
refinement operations for specific information flow properties that ensure that
these properties are preserved under refinement (i.e. reduction of the set of ad-
missible systems traces). In contrast, Jacob allows for an uncontrolled refinement
but provides measures to translate the obtained refined system into a secure one.
[1] also proposes a notion of refinement of states for processes described in terms
of a Security Process Algebra (SPA).

Our approach is based on action refinement in which actions are considered as
non-atomic. This allows one to model procedures as actions on the abstract level
and use action refinements to implementation them on an implementation level.
Investigating information flow properties in the presence of action refinement has
been done previously by [3]. This approach is more related to ours, since they use
a CCS-like process algebra SPA as an underlying specification language. Flow
event structures as a special form of event structures are particular suited for
giving semantic to languages like CCS. The approach in [3] uses a bisimulation-
based information flow property named PBNDC and provide preconditions under
which this property is preserved under refinement in SPA. Their notion of weak
bisimulation on low action is related to our notion of V-simulation; both are
used to formalize the corresponding security predicates (see also [2]. However,
both approaches strongly differ in the preconditions they impose on systems
in order to guarantee that the information flow properties are preserved under
refinement.

7 Conclusion

Based on Mantel’s framework MAKS, we presented a framework for possibilistic
information flow in configuration structures. We transfered the most prominent
basic security predicates BSD and BSIAρ in terms of configuration structures
and elaborated the situations in which these properties are preserved under ac-
tion refinement. The work was motivated by developing a framework to investi-
gate the security of multi-agent systems with the help of possibilistic information
flow [11]. In this work we used a scenario of comparison shopping agents as a
case study. It turned out that the verification of the security properties of in-
dividual agents (and in particular the formulation of the unwinding conditions)
was hindered by the large number of N -events used to formalize the internal
processing of incoming messages. In the approach presented in this paper this
internal processing could be easily modeled as a refinement of various N -events
which allows us to abstract away from a large part of the internal computation.
However, a precondition of doing such an approach is the existence of appropri-
ate unwinding theorems to verify BSD and BSIAρ on configuration structures.

280 D. Hutter

This development is still work in progress. Future work will be concerned with
weakening the restrictive definition of a view refinement which now restricts
the refinement of a confidential event to a single confidential event followed by
non-visible events.

References

1. A. Bossi, R. Focardi, C. Piazza, and S. Rossi. Refinement Operators and Informa-
tion Flow Security In: Proceedings of the 1st International Conference on Software
Engineering and Formal Methods (SEFM’03), IEEE Computer Science, 2001

2. A. Bossi, R. Focardi, C. Piazza, and S. Rossi. Bisimulation and Unwinding for
Verifying Possibilistic Security Properties Proceedings of the 4th International
Conference on Verification, Model Checking, and Abstract Interpretation (VMCAI
2003), Springer LNCS 2575, 2003

3. A. Bossi, D. Macedono, C. Piazza, and S. Rossi. Compositional Action Refinement
and Information Flow Security. Technical Report CS-2003-13. Dipartimento di
Informatica, Univerista Ca Foscari di Venezia, 2003

4. L. Castellano, G. de Michelis, and L. Pomello. Concurrency vs. interleaving: an
instructive example. Bulletin of the EATCS 31, pp. 12–15, 1987.

5. P. Degano, R. de Nicola, and U. Montanari. Observational equivalences for concur-
rency models. In: Proceedings of the 3rd IFIP WG 2.2 working conference: Formal
description of programming concepts III, Ebberup, North-Holland, 1987

6. R.J. Van Glabbeek and G.D. Plotkin. Configuration structures. In: Proceedings of
the 10th Annual IEEE Symposium on Logic in Computer Science, IEEE Computer
Society, 1995.

7. R.J. Van Glabbeek and U. Goltz. Refinement of actions and equivalence notions
for concurrent systems. Acta Informatica, Vol. 37(4-5), pp. 229–327, 2001.

8. R. Gorrieri and A. Rensink. Action Refinement. Technical report UBLCS-99-09,
University of Bologna, 1999.

9. J. A. Goguen and J. Meseguer. Security policies and security models. In Proceedings
of the IEEE Symposium on Security and Privacy. IEEE Computer Society, 1982.

10. J. A. Goguen and J. Meseguer. Inference control and unwinding. In Proceedings
of the IEEE Symposium on Security and Privacy. IEEE Computer Society, 1984.

11. D. Hutter, H. Mantel, A.Schairer, and I. Schaefer Security in Multiagent Sys-
tems – A Case Study on Comparison Shopping. Journal of Applied Logic. Special
Issue: Logic-based Verification of Multiagent Systems, Elsevier, Article in press,
doi:10.1016/j.jal.2005.12.015, 2006

12. J. Jacob. On the derivation of secure components. In: Proceedings of the 1989
IEEE Symposium on Security and Privacy, IEEE Computer Society, 1989.

13. H. Mantel. Possibilistic definitions of security – an assembly kit. In Proceedings
of the IEEE Computer Security Foundations Workshop. IEEE Computer Society,
2000.

14. H. Mantel. Preserving Information Flow Properties under Refinement. In: Pro-
ceedings of the 2001 IEEE Symposium on Security and Privacy, IEEE Computer
Society, 2001.

15. H. Mantel. A Uniform Framework for the Formal Specification and Verification
of Information Flow Security. PhD thesis, Universität des Saarlandes, 2003. Pub-
lished as a manuscript.

16. J. D. McLean. Proving Noninterference and Functional Correctness using Traces.
Journal of Computer Security, 1(1):37–57, 1992.

Possibilistic Information Flow Control in MAKS and Action Refinement 281

17. J.D. McLean. A general theory of composition for trace sets closed under selective
interleaving functions. In Proceedings of IEEE Symposium on Security and Privacy.
IEEE Computer Society, 1994.

18. R. Milner A Calculus of Communicating Systems. Springer, LNCS 92, 1980
19. J. Rushby. Noninterference, transitivity, and channel-control security policies.

Technical Report CSL-92-02, SRI International, Menlo Park, CA, 1992.
20. P.Y.A. Ryan and S.A Schneider. Process algebra and non-interference. Journal of

Computer Security, 9(1/2):75–103, 2001.
21. G. Winskel. Event structures. In: Petri Nets: Applications and Relationships of

other models of concurrency, Advances in Petri Nets. Springer, LNCS 255, 1986
22. A. Zakinthinos and E. S. Lee. A general theory of security properties. In Proceedings

of the IEEE Symposium on Security and Privacy. IEEE Computer Society, 1997.

	Introduction
	MAKS
	Configuration Structures
	Security in Configuration Structures
	Basic Security Predicates
	Backward Strict Deletion
	Backward Strict Insertion

	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

