
SecTOOL – Supporting Requirements
Engineering for Access Control

Steffen Kolarczyk, Manuel Koch, Klaus-Peter Löhr, and Karl Pauls

Freie Universität Berlin
Institut für Informatik

Takustr. 9, D–14195 Berlin, Germany
{kolarczy, mkoch, lohr, pauls}@inf.fu-berlin.de

Abstract. SecTOOL is a case tool for security engineering. It comes as
an extension to traditional UML tools, taking into account access control
requirements. In particular, it supports the developer in eliciting access
control information from UML diagrams for the early phases, starting
with requirements analysis and use case diagrams. Access control policies
coded in VPL or XACML are generated from the diagrams; vice versa,
textually coded policies can be visualized in UML diagrams. Design and
usage of the tool are described, emphasizing its platform independence
through XACML.

1 Introduction

For a long time, security has been seen as a possible add-on to software sys-
tems, a non-functional property to be considered in the late phases of system
development, if at all. A long series of security disasters, often continuing after
“refitting” systems with security patches, has led to a rethinking and has given
rise to the notion of security engineering: security aspects are now seen as an
integral part of a software system, to be considered right from the early phases
of development and to be implemented throughout the software life cycle.

This paper deals with taking into account access control requirements in UML-
based software development. We take the view that these requirements can nat-
urally be expressed as additions to several UML diagrams, starting with the
use case diagram. Early work on this approach has been reported in [7]. Other
authors have adopted similar approaches. Model-driven development has been
extended to cover access control, resulting in SecureUML for J2EE applications
[12], and methods for dealing with object-oriented access control have been ap-
plied to web services [8, 1]. Information flow and multi-level security is the sub-
ject of [10], and a comprehensive treatment of UML-based security engineering
is given in [9].

While methodologies for access control engineering in the context of model-
driven development are emerging, tools support and enforcement infrastructures
are lagging behind. To improve this situation, we have developed SecTOOL,
a plugin for the Rational UML case tool for supporting the early development
phases. SecTOOL has been developed in the context of the Raccoon project

G. Müller (Ed.): ETRICS 2006, LNCS 3995, pp. 254–267, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

SecTOOL – Supporting Requirements Engineering for Access Control 255

[5, 6] and reflects Raccoon’s approach to access control management: object-
oriented access control policies are specified in a formal policy language; access
protection according to a given policy is enforced through an appropriate in-
frastructure (originally for Corba objects, using Corba middleware); the ap-
plication software has no built-in protection, and the policy to be applied can
be modified without modifying any application code.

The implications for SecTOOL are as follows: both access control require-
ments and functional requirements are specified in an integrated fashion; how-
ever, the policies resulting from the access control requirements are not enforced
by the application code derived from the diagrams but by an independent se-
curity infrastructure. In this respect, SecTOOL is similar to the SecureUML
plugin for the ArcStyler tool [13]. There are three differences, though: first,
SecTOOL covers all the early development steps, beginning with requirements
analysis and use case diagrams; secondly, it supports the specification of dy-
namic modifications of privileges; and third, its design is platform-independent
(XACML code can be generated).

The contribution of SecTOOL to security is seen in the enhanced reliabil-
ity in handling all phases of access control engineering: requirements, design,
implementation, management and maintenance. This is the heritage from the
Raccoon approach to access control management, in particular from its View
Policy Language (VPL) [4, 5]. A short introduction to VPL is given in section 2.
How SecTOOL is used in specifying a first approximation to the access rights
to be granted is described in section 3. Refining this according to the principle
of least privilege is the subject of section 4. Section 5 presents a comprehensive
view of the tool’s features, and section 6 explains how an access control pol-
icy is actually enforced. The paper ends with a discussion of related work and
a conclusion. A running example - a conference management system - is used
throughout the paper.

2 VPL Revisited

2.1 View-Based Access Control

View-Based Access Control (VBAC) [6] is an object-oriented version of Role-Based
AccessControl (RBAC), ormore precisely, of a restricted version ofRBAC3. VBAC
policies were originally introduced to overcomeweaknesses in the standardCorba

security model. Aiming at improved manageability of application-specific access
control, VBAC uses grouping mechanisms such as roles (for subjects), types (for
objects) and views (for operations). A view is basically a subset of the set of opera-
tions of an interface (originally an IDL-coded interface) andmay contain additional
information related to access control. (Note that there is no relation to the notion
of “view” as known from database systems.)

Views on types are assigned to roles statically, but views on objects or types
can also be assigned to or removed from subjects or roles in a dynamic fashion.
Assigning a view on an object to a subject is tantamount to passing a capability
for that object to the subject.

256 S. Kolarczyk et al.

2.2 Static Policies

VBAC policies are coded in VPL (View Policy Language), a simple language for
specifying roles, views and view assignments/removals. VPL has no type system
of its own: a VPL text refers to interfaces specified in a suitable typed language,
e.g., IDL or UML. A simple text fragment should suffice for getting a first im-
pression of VPL. The reader is referred to [4, 6] for a more detailed description
of the language and its semantics.

������ conference {
����	 Author

���	 Submitting
Reviewer

���	 BrowsingPapers
Chair: Reviewer

���	 Steering
����� 1
�������	 Author

���� BrowsingPapers �������	 Conference {
���� listPapers, getPaper

}
...

}

This example alludes to the conference management system that will be in-
troduced in section 3. Three roles are declared: Author, Reviewer, Chair. The
role Chair is declared to extend, ordominate, the role Reviewer, according to
the RBAC3 model. This role is restricted to at most one subject, and the roles
Chair and Author exclude each other.

The holds clauses specify the initial views held by the roles. An extended
role inherits the views of the dominated role, so the role Chair holds two views,
BrowsingPapers and Steering. Views are tied to interfaces, as mentioned be-
fore. The view BrowsingPapers is tied to the interface Conference (shown in
the appendix); it includes the operations listPapers and getPaper.

2.3 Dynamic Policies

VPL supports the dynamic modification of the application’s protection status:
execution of an operation can be specified to cause assignment or removal of
views to roles or subjects. For instance, the right to select a paper for reviewing
will be granted to a PC member only when the PC chair executes the operation
submissionDeadline. This is specified in the VPL policy by a construct known
as schema: assign or remove clauses are attached to the relevant operations, as
shown here:

SecTOOL – Supporting Requirements Engineering for Access Control 257

������ conference {
...
	�
�� SteeringSchema ��	����	 Conference {

submissionDeadline
������ Submitting ���� Author
		��� ChoosingPapers �� Reviewer

decide
������ ChoosingPapers ���� Reviewer

}
	�
�� ReviewSchema ��	����	 Review {

submit ...
}

...
}

The schema SteeringSchema refers to the Conference interface which in-
cludes operations submissionDeadline and decide (see appendix).

3 Identifying Required Privileges

SecTOOL supports the design of VPL-coded access control policies, exploiting
information inherent in several types of UML diagrams for the early phases
of software development. The first step in acquiring access control information
involves the use case diagram, the class diagram and several sequence diagrams.
This step produces an approximation to the access privileges to be granted
to roles. The privileges are then refined in a second step (to be described in
section 4).

The operating mode of SecTOOL is best explained through a running ex-
ample: we use a simplified version of a conference management system.

3.1 A Conference Management System

This system is to support the program committee, and in particular the PC
chair, in preparing the conference program. (The organization committee’s work
is not supported.) The requirements are as follows:

– The preparation of the conference program goes through several phases:
paper submission, reviewing, acceptance/rejection decision, submission of
final versions. The end of each phase is marked by a certain deadline.

– An author may submit more than one paper. PC members - except the PC
chair - may submit papers as well. All PC members, including the chair, act
as reviewers.

– The PC members can inspect the submissions. After the submission deadline,
they can choose (in FCFS fashion) the papers they want to review. Blind
reviewing is put into practice: the reviewers do not learn the names of the
authors. For n PC members and x papers, each PC member should choose
at least 3*x/n papers (resulting in a total of 3 reviews per paper).

258 S. Kolarczyk et al.

– A PC member may inspect all reviews for a paper as soon as she has submit-
ted her own review for that paper. She may then decide to modify her review.

– When reviewing is finished, the PC decides about acceptance and rejection,
and the PC chair sends notifications to the authors. The authors of accepted
papers modify their papers and submit the final versions.

3.2 Use Case Diagrams Contain Role Information

The written requirements give rise to a UML use case diagram where authors,
reviewers and the PC chair appear as actors. Use cases include the phases men-
tioned above, plus the steering done by the chair. The use case diagram is shown
in Figure 1.

Fig. 1. Use case diagram

An actor in a use case diagram can be identified with a role in role-based access
control. Note the inheritance relation between Chair and Reviewer - so Chair
dominates Reviewer. Deriving an initial fragment of VPL text from the diagram
can obviously be left to a tool - and this is where working with SecTOOL

begins: a policy skeleton is generated that introduces role declarations as shown
in section 2.2, but without mentioning any views. The views refer to the objects
involved, so they cannot be derived from the use case diagram. A class diagram
has to be designed.

SecTOOL – Supporting Requirements Engineering for Access Control 259

3.3 Class Diagrams Contain Interface Information

According to the requirements, the system deals with objects such as papers, re-
views and the singleton conference. The class diagram shown in Figure 2 contains
the appropriate interfaces, plus empty interfaces for the roles mentioned above.

Fig. 2. Class diagram

The detailed specification of the operations is omitted, as the reader will be
able to infer the semantics from the signatures (see Appendix A). For instance,
the readText operation will deliver just the text of a paper, not its author and
neither its status.

The access control policy has to restrict the permissions granted to roles to
certain confined views on the interfaces of the objects. For instance, only the
PC chair should be allowed to issue the accept/reject operations on Paper
objects. So the question arises whether there is a systematic way of assigning
proper views to roles or subjects.

3.4 Sequence Diagrams Contain View Information

A UML sequence diagram augments the information given in the use case dia-
gram and the class diagram by indicating the operations actually executed for a
certain use case. Figure 3 shows a diagram for the use case Reviewing. Similar
diagrams for other use cases are not shown here.

260 S. Kolarczyk et al.

Fig. 3. Sequence diagram

SecTOOL – Supporting Requirements Engineering for Access Control 261

Without SecTOOL, the human reader would derive the following views, writ-
ten in VPL, from the sequence diagram:

���� BrowsingPapers �������	 Conference {
���� listPapers, getPaper

}
���� HandlingPapers �������	 Paper {

���� readText, review, getReviews
}
���� Reviewing �������	 Review {

���� submit, read, modifyRating, modifyText
}

SecTOOL automates this, adds the views to the VPL text and produces a
graphical version: given the sequence diagram from Figure 3, the view diagram
shown in Figure 4 is generated. The names of the views are chosen by the tool
in a standard fashion. They are less distinctive than the names chosen above,
but they do reflect the interfaces they refer to.

It is now the designer’s task to decide about initial view assignment (holds
clause) and dynamic assignment and removal (schema clause). For instance, the
designer would append holds BrowsingPapers to the declaration of Reviewer in
the VPL text. SecTOOL knows about the association between BrowsingPapers
and Reviewer, and would refuse an accidental introduction of, say, Author holds
BrowsingPapers.

Fig. 4. View diagram

262 S. Kolarczyk et al.

4 Refining the Privileges

The view diagram generated by SecTOOL lacks precision, in particular with
respect to dynamic policies. First, the specific sequencing of invocations, as given
in the sequence diagrams, is not taken into account; for instance, a PC member
must get permission to choose papers for reviewing only when the chair has sig-
nalled the submission deadline. Secondly, certain permissions pertain to specific
subjects and objects, not just to roles and object types; for instance, a reviewer
may modify his or her own review, but not the reviews of others. And there is
a third aspect that has to be considered: it must be possible to specify denials
(negative permissions), in order to account for exceptions to general permis-
sions. For instance, if a PC member has submitted a paper, she must not act as
a reviewer for that paper.

4.1 Specifying Capability Assignment and Removal

In addition to supporting round-trip security engineering using diagrams, the
ultimate goal of SecTOOL is the generation of complete access control policies,
coded in VPL. So it is natural to use the schema construct of VPL for textual
amendments to diagrams: they specify the dynamic assignment and removal of
views on objects (i.e., capabilities) to and from subjects or roles.

A VPL schema for the operations of an interface can be attached as a UML
pop-up note to the interface in the class diagram. SecTOOL understands this
kind of decoration, ensures that consistency requirements are met, and integrates
the assign/remove clauses into the final access control policy.

An example schema SteeringSchema observes Conference was given in
the VPL introduction, section 2.3. Another schema would state that a reviewer
gets permission to inspect all reviews for a paper as soon as she has submitted
her own review. The schema refers to a view getReviews that has to be intro-
duced manually:

���� GetReviews �������	 Paper {
���� getReviews

}
	�
�� ReviewSchema ��	����	 Review {

submit
		��� GetReviews �� result �� caller

}

result is a reserved identifier, denoting the result of the operation submit
(which is the associated Paper object). caller is another reserved identifier,
denoting the invoking subject.

Note that singling out the getReviews operation from PaperView (see Fig-
ure 3) requires a modification of that view (viz., removal of getReviews). The
modified view is the one that was called ChoosingPapers in the introductory
section 2.3.

SecTOOL – Supporting Requirements Engineering for Access Control 263

4.2 Negative Permissions

A VPL view may contain both positive and negative permissions. A negative
permission is specified using the keyword deny; it overrides any related positive
permissions (allow).

When working on a view diagram with SecTOOL, the developer can explic-
itly add views with negative permissions. While positive permissions are marked
with a green bullet, negative permissions are marked with a red square. Figure 5
shows a variant of the earlier view diagram (Figure 4).

Fig. 5. Variant of view diagram

A negative view, denyReviewing, has been added to the diagram manually.
This view reflects the requirement that a PC member must not review his or her
own paper (if any). Note, however, that the new view diagram itself does not
ensure this. The following clause can be added to the schema SteeringSchema
given in section 2.3:

submit
		��� denyReviewing �� result �� caller

This overrides the general permission given by submissionDeadline in the
original schema (assignment of ChoosingPapers).

5 SecTOOL in Action

5.1 Development

A graphical overview of SecTOOL-based development is given in Figure 6.
SecTOOL cooperates with the typical UML tools, generating VPL policies from
UML diagrams and, vice versa, visualizing VPL texts as UML diagrams. Manual
modification of generated VPL text is possible as desired. So the tool supports
round-trip engineering of access control policies in a comfortable manner, adding
safety to the complex process of security engineering.

264 S. Kolarczyk et al.

Fig. 6. SecTOOL in action

As explained earlier, the generation of VPL code describing a first version of
a policy starts from a use case diagram, a class diagram and several sequence
diagrams. A view diagram is created as an intermediate product. The developer
may want to extend this diagram, e.g., to prepare for any denials that might be
required. The view diagram, plus the schema information in the class diagram,
are used as input to the VPL generation.

The name of the policy (in this case Conference) can be given by the designer
or can be derived from the UML project name. The roles are derived from the
actors in the use case diagram, as mentioned in section 3.2: each actor defines a
role (here Author, Reviewer and Chair). Specialization between actors defines
role inheritance; as Chair specializes Reviewer we have Chair: Reviewer.

Views are derived as follows: for each view in the view diagram with name V a
VPL view clause view V on I ... is generated, where I is the interface name
as found in the sequence diagram. The (positive) permissions, listed after the
keyword allow, are given by the operations of the view in the view diagram.
The VPL schema is generated by combining the schema information given in
the notes in the class diagram.

The actual output of SecTOOL, as generated from the internal XML repre-
sentation of VPL, is a specially formatted version of the VPL code shown earlier.
Importing VPL code into SecTOOL for visualization as UML diagrams is also
possible. This is useful if VPL is used for a system where UML-based docu-
mentation is not available, or in the case of round-trip engineering. Changes in
the VPL specification are then reflected in the model, and consistency between
model and implementation is preserved.

5.2 Maintenance

SecTOOL’s separation of concerns – application logic vs. access control policy – is
of great value during operation and maintenance of a developed system. In addi-

SecTOOL – Supporting Requirements Engineering for Access Control 265

tion to the flexibility given by the role concept, the security administrator enjoys
the freedom to modify the security policy without touching the application logic.

We have to keep in mind, of course, that the user interface will often be designed
in such a way that certain operations are a priori impossible. For instance, an
author will never encounter a Web interface that would give him the choice to
inspect reviews meant for other authors. In general, however, modifying a policy
will frequently make sense, in some cases even without adapting the user interface.

Consider the following example. The PC members should be allowed to check
submitted papers only after the submission deadline. The policy is adapted to this
changedrequirementjustbyremovingholdsBrowsingPapers fromthedeclaration
of role Reviewer and by adapting the schema SteeringSchema as follows:

	�
�� SteeringSchema ��	����	 Conference {
submissionDeadline

������ Submitting ���� Author
		��� BrowsingPapers, ChoosingPapers �� Reviewer

...
}

6 Enforcement Infrastructure

The deployment and management infrastructure designed for VPL policies is
called Raccoon [4, 5]. A deployment tool processes VPL policies and stores
view and role definitions in repositories that can be managed using graphical
management tools. At runtime, role membership is represented by digital certifi-
cates issued by a role server. Access decisions are made by intercepting operation
accesses which are forwarded in the case of a permitted access and blocked in
the case of a denied access. Whether an intercepted access is permitted or denied
depends on the policy information that is supplied by policy servers, which rely
on the deployed policy information.

The Raccoon infrastructure is based on Corba and IDL specifications.
The presented access control modeling process, however, is independent of the
Raccoon infrastructure. Therefore, generated VPL policies should be avail-
able in any distributed system without requiring the Raccoon infrastructure.
VPL policies should be presented in a platform-independent standard format.
The Oasis has defined an XML standard for the specification of access control
policies, called eXtensible Access Control Markup Language (XACML), together
with an enforcement infrastructure specification. We have implemented a VPL
parser which transforms VPL policies into XACML policies (XSL is used for
transforming an XACML text back into VPL). This allows us to use SecTOOL

for any platform that includes a standard XACML enforcement infrastructure.

7 Related Work

Work related to our approach to security engineering is presented in [2]. Basin
et al. describe SecureUML, a model–driven approach to developing role-based

266 S. Kolarczyk et al.

access control policies for J2EE applications. A formal basis allows the designer
to reason about access control properties; tool support is given by an integration
of SecureUML into the ArcStyler tool [13]. In contrast to our approach, how-
ever, the analysis stage of the software process is not considered. ArcStyler is a
CASE tool for UML 2.0 and MDA–based modeling. The SecureUML extension
is realized via plugins that allow to refine SecureUML–enhanced models towards
different platform–specific security constraints (support currently includes J2EE
and .NET). This is similar to our integration of SecTool as a plugin for Ratio-
nal. It should be noted that the SecureUML meta–model is more expressive than
the security model of the target platforms. Hence, not all parts of a model can
be expressed declaratively. SecTool generates model–equivalent policies only.

Another approach to integrating security into UML has been described by
Jürjens [9]. He shows how to model several security aspects by UML model
elements such as, for example, stereotypes or tagged values. His approach is more
general than ours since it is not restricted to access control; security protocols are
considered as well. In contrast to our approach and [2], Jürjens does not provide
tool support or an infrastructure to generate security policies from UML models
or to enforce security policies.

In [1, 3], approaches to UML–based access control integration are given, focus-
ing on a OCL–related workflow control language. High level security aspects as
part of UML models, specified using OCL, are refined down to code or platform–
independent XACML policies. As already mentioned above, we believe that vi-
sual modeling support should be provided to the developer.

8 Conclusion and Future Work

We have presented a tool for eliciting access control requirements from UML di-
agrams. Our approach is integrated into the UML software process and presents
a UML representation of an access control policy. SecTOOL generates a basic
access control model from UML diagrams and allows the designer to refine this
model. Access control deployment files can be generated. The generated policies
can be transformed into XACML policies, thus achieving platform independence.

Future work will be concerned with a more detailed investigation of the re-
finement of the generated view diagram: how does the designer arrive at a final
access control policy? We would like to find out how this refinement process can
be methodologically supported. Formal results [11] based on graph transforma-
tions look promising. It remains to be seen how they can be brought to fruition
in future versions of SecTOOL.

References

1. M. Alam, R. Breu, and M. Breu. Model–Driven Security for Web Services. In
Proceedings of the 8th Int. Multi-Topic Conference, pages 498–505. IEEE, 2004.

2. D. Basin, J. Doser, and T. Lodderstedt. Model–Driven Security: from UML Mod-
els to Access Control Infrastructures. Journal of ACM Transactions on Software
Engineering and Methodology, 2005.

SecTOOL – Supporting Requirements Engineering for Access Control 267

3. R. Breu, M. Hafner, B. Weber, M. Alam, and M. Breu. Towards Model Driven Se-
curity of Inter-Organizational Workflows. In Proceedings of the Workshops on Spec-
ification and Automated Processing of Security Requirements, pages 255–267, 2004.

4. G. Brose. Access Control Management in Distributed Object Systems. PhD thesis,
Freie Universität Berlin, 2001.

5. G. Brose. Raccoon — An Infrastructure for Managing Access Control in CORBA.
In Proc. Int. Conference on Distributed Applications and Interoperable Systems
(DAIS). Kluwer, 2001.

6. G. Brose. Manageable Access Control for CORBA. Journal of Computer Security,
4:301–337, 2002.

7. G. Brose, M. Koch, and K.-P.Löhr. Integrating Access Control Design into the
Software Development Process. In Proc. of 6th Int. Conference on Integrated
Design and Process Technology (IDPT), 2002.

8. T. Fink, M. Koch, and C. Oancea. Specification and Enforcement of Access
Control in Heterogeneous Distributed Applications. In Proc. of Int. Conference
on Web Services - Europe 2003 (ICWS-Europe’03), 2003.

9. J. Jürjens. Secure Systems Development with UML. Springer, 2005.
10. Jan Jürjens. Towards Development of Secure Systems Using UMLsec. In

H. Hussmann, editor, Proc. of Fundamental Approaches to Software Engineering
(FASE’01), number 2029 in LNCS, pages 187–200. Springer, 2001.

11. M. Koch, L.V. Mancini, and F. Parisi-Presicce. Foundations for a Graph-based
Approach to the Specification of Access Control Policies. In F.Honsell and
M.Miculan, editors, Proc. of Foundations of Software Science and Computation
Structures (FoSSaCS 2001), Lect. Notes in Comp. Sci. Springer, March 2001.

12. T. Lodderstedt, D. Basin, and J. Doser. SecureUML: A UML-Based Modeling
Language for Model–Driven Security. In Proc. of 5th Int. Conf. on the Unified
Modeling Language, number 2460 in LNCS. Springer, 2002.

13. Interactive Objects. Arcstyler, 2005. www.io-software.com.

A Operation Signatures

Operations of interface Conference:

callForPapers()
submit(a:Author,text:String):Paper
submissionDeadline()
listPapers():String
getPaper(number: int):Paper
decide()
notifyAuthors()

Operations of interface Paper:

readText():String
review(r: Reviewer):Review
accept()
reject()
getReviews():Review[]
getAuthor():Author
notifyAuthor()
submitFinal(text: String)

Operations of interface Review:

submit(text: String, rating: ABCD):Paper
modifyRating(rating: ABCD)
modifyText(text: String)
read():String

www.io-software.com

	Introduction
	VPL Revisited
	View-Based Access Control
	Static Policies
	Dynamic Policies

	Identifying Required Privileges
	A Conference Management System
	Use Case Diagrams Contain Role Information
	Class Diagrams Contain Interface Information
	Sequence Diagrams Contain View Information

	Refining the Privileges
	Specifying Capability Assignment and Removal
	Negative Permissions

	\sc{Sec}TOOL in Action
	Development
	Maintenance

	Enforcement Infrastructure
	Related Work
	Conclusion and Future Work
	Operation Signatures

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

