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Abstract. Partitioning is one of the basic ideas for designing efficient
algorithms, but on NP-hard problems like the Steiner problem, straight-
forward application of the classical partitioning-based paradigms rarely
leads to empirically successful algorithms. In this paper, we present two
approaches to the Steiner problem based on partitioning. The first uses
the fixed-parameter tractability of the problem with respect to a certain
width parameter closely related to path-width. The second approach is
based on vertex separators and is new in the sense that it uses parti-
tioning to design reduction methods. Integrating these methods into our
program package for the Steiner problem accelerates the solution process
on many groups of instances and leads to a fast solution of some previ-
ously unsolved benchmark instances.

1 Introduction

The Steiner problem is the problem of connecting a set of terminals (vertices in
a weighted graph or points in some metric space) at minimum cost. This is a
classical NP-hard problem with many important applications in network design
in general and VLSI design in particular [3, 6].

For such (NP-hard) problems, straightforward application of the classical
partitioning paradigms rarely leads to empirically successful algorithms. Divide-
and-conquer techniques are not generally applicable, because one usually cannot
find independent subproblems. Dynamic programming techniques can indeed be
applied, but they are usually practical only for a very limited range of instances.

In this paper, we present two practically helpful methods which are based on
partitioning. In Sect. 2, we present an algorithm that uses the fixed-parameter
tractability of the problem with respect to a certain width parameter closely re-
lated to path-width. The running time of the algorithm is linear in the number
of vertices when the path-width is constant, and it is practical when the con-
sidered graph has a small width. In Sect. 3, we introduce the approach of using
partitioning for reducing the size of the instance (i.e., developing partitioning-
based reduction methods). We present two new reduction methods based on
this approach. Methods like those described in this paper are not conceived as
stand-alone solution routines for a wide range of instances; but as subroutines of
more complex optimization programs, they are much more broadly applicable.
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An additional feature is that by the cooperation of the methods presented here
we can already profit from small width in subgraphs of a given instance; these
interactions will be elaborated in Sects. 3 and 4. Finally, some experimental
results are presented in Sect. 4.

1.1 Preliminaries

The Steiner (tree) problem in networks can be stated as follows: Given
a (connected) network G = (V, E, c) (with vertices V = {v1, . . . , vn}, edges E
and edge weights ce > 0 for all e ∈ E) and a set R, ∅ �= R ⊆ V , of required
vertices (or terminals), find a minimum weight tree in G that spans R (a
Steiner minimal tree). For more information on this problem, see [6].

We define r := |R|. If we want to stress that vi is a terminal, we will write zi

instead of vi. A bottleneck of a path P is a longest edge in P . The bottleneck
distance b(vi, vj) or bij between two vertices vi and vj in G is the minimum
bottleneck length taken over all paths between vi and vj in G. An elementary
path is a path in which only the endpoints may be terminals. Any path between
two vertices can be broken at inner terminals into one or more elementary paths.
The Steiner distance along a path P between vi and vj is the length of a
longest elementary path in P . The bottleneck Steiner distance (sometimes
also called “special distance”) s(vi, vj) or sij between vi and vj in G is the
minimum Steiner distance taken over all paths between vi and vj in G. A major
relevance of bottleneck Steiner distances is that the cost of an optimum Steiner
tree in G does not change by deleting edges (vi, vj) with cij > sij (or, conversely,
by inserting edges (vi, vj) of length sij) [4]. For any subset S ⊆ R, all bij , sij

with vi, vj ∈ S can be computed in time O(|E| + |V | log |V | + |S|2) [4, 9].

2 Using (Sub-) Graphs of Small Width

In this section, we present a practical algorithm for solving the Steiner prob-
lem in graphs with a small width parameter. The width concept used here is
closely related to path-width, as we will show in Sect. 2.3. For an overview of
subjects concerning path-width and the more general notion of tree-width see
[1]. The running time of the algorithm is linear in the number of vertices when
the width is constant, thus it belongs to the category of algorithms exploiting
the fixed-parameter (FP) tractability of NP-hard problems. There are already
FP-polynomial algorithms for the Steiner problem in graphs. Specifically, in [8]
a linear-time algorithm for graphs with bounded tree-width is described. But
this algorithm is more complicated than the one we present here, and its run-
ning time grows faster with the (tree-) width (it is given in [8] as O(nf(d)) with
f(d) = Ω(d4d), where d is the tree-width of the graph). Therefore, it seems to be
not as practical as our algorithm, and no experimental results are reported in [8].
In a different context (network reliability), a similar approach using path-width
is described in [11], which is practical for a range of path-widths similar to the
one considered here. We also adapted that approach to the Steiner problem, but
the experimental results were not as good as with the one presented here.
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2.1 The Basic Algorithm

We maintain a set of already visited vertices and a subset of them (the border)
that are adjacent to some non-visited vertex. In each step, the set of visited
vertices is extended by one non-visited vertex adjacent to the border. For all
possible partitions in each border, we calculate (the cost of ) a forest of minimum
cost that contains all visited terminals with the property that each tree in the
forest spans just one of the partition sets. We are finished when all vertices
have been visited. The observation behind this approach is as follows: For any
optimal Steiner tree T , the subgraph of T when restricted to the visited vertices
is a forest, which also defines a partition in the border. The plan is to calculate
these forests in a bottom-up manner, in each step using the values calculated in
the previous step. If the size of all borders can be bounded by a constant, the
total time can be bounded by the number of steps times another constant.

For an arbitrary ordering v1, . . . , vn of the vertices and any s ∈ {1, . . . , n},
we define Vs := {v1, . . . , vs} and denote with Gs the subgraph of G with vertex
set Vs. In the following, we assume an ordering of the vertices with the property
that all Gs are connected. (For example, a depth-first-search traversal of G
delivers such an ordering.) We denote with Bs the border of Vs, i.e., Bs := {vi ∈
Vs | ∃(vi, vj) ∈ E : vj ∈ V \Vs}. With Ls we denote the set of vertices that leave
the border after step s, i.e., Ls := (Bs−1 ∪ {vs}) \ Bs. The inclusion of vs in this
definition should cover the case that vs has no adjacent vertices in V \ Vs; this
simplifies some other definitions. Consider a set Q, Bs ∩ R ⊆ Q ⊆ Bs, and a
partitioning P = {P1, . . . , Pt} of Q into non-empty subsets, i.e.,

⋃̇
1≤i≤tPi = Q

and ∅ �∈ P . The number of ways of partitioning a set of b := |Q| elements into
t non-empty subsets is

{
b
t

}
, a Stirling number of the second kind, and the total

number of partitions is B(b), the b-th Bell number. For a partition P and a set
L ⊆ V we define P −L := {P ′

i | Pi ∈ P , P ′
i = Pi \ L}. Let F (s, P) be a forest of

minimum cost in Gs containing all terminals in Vs and consisting of t (vertex-
disjoint) trees T1, . . . , Tt such that Ti spans Pi for all i ∈ {1, . . . , t}. With c(s, P)
we denote the cost of F (s, P).

Let V0 = B0 = ∅ and set c(0, ∅) = 0. The value c(s, P) can be calculated
recursively using a case distinction:

– vs ∈ Q: c(s, P) = min{c(s − 1, P ′) + C |
P ′ = {P1, . . . , Py}, j ∈ {0, . . . , y}, ∀ 1 ≤ l ≤ j : vl ∈ Pl,
P = ({{vs} ∪

⋃
1≤l≤j Pl} ∪ {Pj+1, . . . , Py}) − Ls,

C =
∑

1≤l≤j c(vl, vs) },
– vs �∈ Q: c(s, P) = min {c(s − 1, P ′) | P = P ′ − Ls}.

The cost of an optimal Steiner tree in G is: min {c(s, P) | R ⊆ Vs, |P| = 1}.
Obviously the forests F (s, P) (and an optimal Steiner tree) can be calculated
following the same pattern.

By using the recursive formula above, the necessary values can be calculated
in a bottom-up manner by memorizing, for each step s, the values c(s, P). We
assume c(s, P) = ∞ if no partition P is calculated at step s. This leads to the
following algorithm BORDER-DP (DP stands for Dynamic Programming):
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BORDER-DP(G, R) (assuming an ordering of the vertices)
1 s := 0; q := 0; opt := ∞; (q : number of visited terminals)
2 c(s, ∅) := 0;
3 while s < n :
4 s := s + 1; determine vs, Bs and Ls;
5 if vs ∈ R : q := q + 1;
6 forall P with c(s − 1, P) �= ∞ :
7 oldCost := c(s − 1, P);
8 if vs �∈ R and ∅ �∈ P − Ls :
9 c(s, P − Ls) := oldCost ;
10 Pcandidates := {Pi ∈ P | ∃vi ∈ Pi : (vi, vs) ∈ E};
11 forall Pconnect ⊆ Pcandidates :
12 connectionCost :=

�
Pi∈Pconnect minvi∈Pi,(vi,vs)∈E c(vi, vs);

13 Pstay := P\Pconnect ; Pnew := ({{vs} ∪
�

Pi∈Pconnect Pi}∪Pstay) − Ls;
14 if ∅ �∈ Pnew and c(s,Pnew) > oldCost + connectionCost :
15 c(s,Pnew) := oldCost + connectionCost;
16 if q = |R| and |Pnew| = 1 : (feasible Steiner tree)
17 opt := min(opt, c(s,Pnew));
18 return opt;

Let ps denote the number of partitions at step s. We have ps =
∑

R∩Bs⊆Q⊆Bs

B(|Q|), where B(b) is the b-th Bell number; so ps = O(2bsB(bs)) with bs := |Bs|.
We only maintain one global list of partitions, which is updated after each step,
keeping for each valid partition a solution of minimum cost. Because of the loop
in Line 11, this list can grow to at most ls := 2bsps = O(22bsB(bs)) partitions.
Eliminating the duplicates can be done by sorting the list: Each partition can be
represented as a (lexicographically) sorted string (of length at most 2bs) of sorted
substrings (of length at most bs) separated by some extra symbol. Using radix
sort, all the individual sortings of ls strings can be done in total time O(n+lsbs).
Sorting the resulting list of ls strings takes again time O(n + lsbs). We set aside
for now a total extra time of O(|E|) for the operations on edges; and assume
that an ordering of vertices is given (these points are explained below). The (rest
of the) operations in Lines 12 − 17 can be carried out in time O(bs). This gives
the total running time O(

∑n
s=1 bs22bsB(bs)). Note that this bound implicitly

contains the extra amortized time O(|E|) by the following observation: After
a vertex is visited for the first time, it remains in the border as long as it has
some non-visited adjacent vertex; so each edge is accounted for by its first-visited
endpoint. Now if we can guarantee an upper bound b for the size of all borders, we
have an upper bound of O(nb22bB(b)) for the running time. By upper-bounding
B(b) roughly with (2b)b we get the running time O(n2b log b+3b+log b). This means
that the algorithm runs in linear time for constant b and, for example, in time
O(n2) for b = log n/ log log n.

For the actual implementation, some modifications are used. For example,
avoiding duplicate partitions is done using hashing techniques, which reduces
the amount of necessary memory. Also, some heuristics are used to recognize
partitions that cannot lead to an optimal Steiner tree.
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2.2 Ordering the Vertices

In Sect. 2.3, we will show that finding an ordering of vertices such that the maxi-
mum border size equals b is (up to some easy transformations) equivalent to find-
ing a path-decomposition of path-width b. The problem of deciding whether the
path-width of a given graph is at most b, and if so, finding a path-decomposition
of width at most b is NP-hard for general b, but for constant b, this problem
can be solved in linear time [2]. However, already for b > 4 the corresponding
algorithm is no longer practical [12], and it seems that no practical exact algo-
rithm is known for more general cases. Furthermore, we have a more specific
scenario (for example we differentiate between terminals and non-terminals). So
for the actual implementation we use a heuristic, which has produced quite sat-
isfactory results for our applications. The heuristic chooses in each step a vertex
vs adjacent to the border using a (ad hoc) priority function of the following pa-
rameters: size of resulting set Ls, number of visited vertices in the adjacency list
of vs, membership of vs in R, and number of edges connecting Vs and V \Vs. We
select the starting vertex by trying a small number of terminals and performing
a sweep through the graph without actually computing the partitions. In each
sweep, we estimate the overall number of resulting partitions by summing up
the (ad hoc) values |Bs|2|Bs \ R| in each step. Finally, we select the terminal
that yields the smallest estimated number.

A straightforward implementation of this heuristic needs time O(n2) for all
choices. This bound could be improved using advanced data structures for pri-
ority queues and additional tricks, but the ordering has not been the bottleneck
in our applications; and theoretically a better (linear for constant b as in our
applications) time bound for path-decomposition is available anyway.

2.3 Relation to Path-Width

In this section, we show that every path-decomposition with path-width k de-
livers a sequence of borders B = (B1, . . . , Bs, . . . , Bn) such that max{|Bs| | 1 ≤
s < n} ≤ k and vice versa.

A path-decomposition of a graph G = (V, E) is a sequence of subsets of
vertices (U1, U2, . . . , Up), such that

1.
⋃

1≤i≤p Ui = V ,
2. ∀(v, w) ∈ E ∃i ∈ {1, . . . , p} : v ∈ Ui ∧ w ∈ Ui,
3. ∀i, j, k ∈ {1, . . . , p} : i ≤ j ≤ k ⇒ Ui ∩ Uk ⊆ Uj .

The path-width of a path-decomposition (U1, U2, . . . , Up) is max{|Ui| | 1 ≤
i ≤ p} − 1. The path-width of a graph G is the minimum path-width over all
possible path-decompositions of G. Note that the 3rd condition in the definition
of path-decomposition can be rewritten as follows: There are functions start ,
end : |V | → {1, . . . , p} with v ∈ Uj ⇔ start(v) ≤ j ≤ end(v). We call a path-
decomposition with functions start , end bijective if the mapping start is a
bijection; and minimal if it holds: end(v) ≥ i ⇒ start(v) = i ∨ ∃(v, w) ∈ E :
start(w) ≥ i. We state the following two lemmas (for the proofs, see [15]).
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Lemma 1. Every path-decomposition can be transformed to a minimal and bi-
jective path-decomposition of no larger path-width.

Lemma 2. Let (U1, . . . , Un) be a minimal, bijective path-decomposition of G
with the functions start and end. Assume that the vertices are ordered according
to their start values, i.e., start(v) = s ⇔ v ∈ Vs \ Vs−1. For each s ∈ {1, . . . , n}
it holds: Us = {vs} ∪ Bs−1.

It follows that every path-decomposition of G can be transformed to a path-
decomposition U = (U1, . . . , Un) of no larger path-width such that for an order-
ing of vertices according to the start function of U it holds: Us = {vs} ∪ Bs−1.
On the other hand, it is easy to verify that each ordering of vertices and the
corresponding sequence of borders (B1, . . . , Bn) deliver a (minimal, bijective)
path-decomposition U by setting Us = {vs} ∪ Bs−1. In each case, we have:
max{|Us| | 1 ≤ s ≤ n} − 1 = max{|Bs−1| | 1 ≤ s ≤ n}.

3 Partitioning as a Reduction Technique

In this section, we present our approach of using partitioning to design reduction
methods, i.e., methods to reduce the size of a given instance without destroying
an optimal solution. This approach turns out to be quite effective in the context
of the Steiner problem, and it can also be useful for other problems. Furthermore,
it offers a straightforward path for a distributed implementation.

The method chosen here for partitioning is based on certain separating sets
(vertex separators), these are sets of vertices whose removal makes the (by as-
sumption connected) graph disconnected. We consider here (small) separating
sets that contain only terminals (terminal separators), although the basic
ideas can be extended to general vertex separators. This choice allows us to keep
the dependence between the resulting subinstances manageable.

Although one cannot assume that a typical instance of the Steiner problem has
small terminal separators, the situation often changes in the process of solving
an instance. This is particularly the case for geometric instances after a geomet-
ric preprocessing (FST generation phase, see [16]), but also for general instances
after applying powerful reduction techniques (see [10]). In both cases, the re-
sulting intermediate instances frequently have many small terminal separators.
For geometric instances, the existence of small vertex separators was already ob-
served in [13]; however, in that work a standard dynamic programming approach
was suggested for exploiting this observation, which is not nearly as practical
as the approach chosen here. The difference between the two approaches will be
elaborated in Sect. 3.2.

3.1 Finding Terminal Separators

It is well known that the problem of finding vertex separators (or the vertex
connectivity problem) can be solved by network flow techniques in the so-called
split graph [5]. This graph is generated by splitting each vertex into two vertices
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and connecting them by edges of low capacity; original edges have high (infinite)
capacity. In this way, k-connectedness (finding a vertex separator of size less
than k or verifying that no such separator exists) can be decided for a graph
with n vertices and m edges in time O(min{kmn, (k3 + n)m}) [5] (this bound
comes from a combination of augmenting path and preflow-push methods).

However, the application here is less general: we search for vertex separators
consisting of terminals only, so only terminals need to be split. Besides, we are
interested in only small separators, where k is a very small constant (usually
less than 5), so we can concentrate on the augmenting flow methods. More
importantly, we are not searching for a single separator of minimum size, but
for many separators of small (not necessarily minimum) size. These observations
have lead to the following implementation: we build the (modified) split graph (as
described above), fix a random terminal as source, and try different terminals as
sinks, each time solving a minimum cut problem using augmenting path methods.
In this way, up to Θ(r) (r = |R|) terminal separators can be found in time O(rm).
We accelerate the process by using some heuristics. A simple observation is that
vertices that are reachable from the source by paths of non-terminals need not
be considered as sinks. Similar arguments can be used to discard vertices that
are reachable from already considered sinks by paths of non-terminals.

Empirically, this method is quite effective (it finds enough terminal separators
if they do exist) and reasonably fast, so a more stringent method (e.g., trying
to find all separators of at most a given size) would not pay off. Note that the
running time is within the bound given above for the k-connectedness problem,
which is mainly the time for finding a single vertex separator.

3.2 Reduction by Case Differentiation

In this section, we describe a reduction method that exploits small terminal
separators S ⊂ R to reduce a given instance.

The case |S| = 1 corresponds to articulation points (and biconnected compo-
nents). It is known [6] that the subinstances corresponding to the biconnected
components can be solved independently.

The case |S| = 2 corresponds to separation pairs (and triconnected compo-
nents). Note that the two subinstances (corresponding to two subgraphs G1 and
G2) are no longer independent. Now, for any Steiner minimal tree T , two cases
are possible:

1. The terminals in S are connected by T inside G2. A corresponding Steiner
tree can be found by solving the subinstance corresponding to G2.

2. The terminals in S are connected by T inside G1. Now there are two subtrees
of T inside G2, and we do not know in advance how the terminals of G2 are
divided between them. But one can observe that the problem can be solved
by merging the terminals in S and solving the resulting subinstance.

Since we do not know T in advance, for a direct solution we must also consider
both cases for the complement G1. But if G2 is relatively small, the solution of
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the complementary subinstance can be almost as time-consuming as the solution
of the original instance, meaning that not much is gained (or time may even be
lost, because now we have to solve it twice). A classical approach would search
for components of almost equal size, but we choose a different approach. The
main idea is to solve only the small component twice, and then take edges that
are common to both solutions and discard edges that are included in neither.
After these modifications, we have a smaller instance with the same optimum
solution value, and we can proceed with this reduced instance.

For the general case (|S| = k), the basic approach is the same as for the case
|S| = 2; but a larger number of cases must be considered now. Remember from
Sect. 2.1 that the number of cases is B(k), the k-th Bell number. So this method
can be used profitably only for small k (usually for k ≤ 4).

Actually, not all these cases must always be considered explicitly, because
many of them can be ruled out at little extra cost using some heuristics. A basic
idea for such heuristics is the following:

Lemma 3. Let zi and zj be two terminals in the separator S and let b1
ij and s2

ij

be the bottleneck distance in G1 and bottleneck Steiner distance in G2 between zi

and zj, respectively. Then the cases in which zi and zj are connected in G1 can
be discarded if b1

ij ≥ s2
ij.

Proof. Consider a Steiner tree T connecting zi and zj in G1. A bottleneck on
the fundamental path between zi and zj has at least cost b1

ij . Removing such a
bottleneck and reconnecting the two resulting subtrees of T with the subpath
corresponding to s2

ij , we get again a feasible solution of no larger cost in which
zi and zj are connected in G2. ��

For the cases in which we assume that zi and zj are connected in G1, we do not
merge zi and zj while solving the subinstance corresponding to G2, but connect
them with an edge of weight b1

ij . In case this edge is not used in the solution of
the subinstance, this can lead to more reductions.

Such observations can be used to rule out many cases in advance. Nevertheless,
a question arises: Can we find an alternative method that does not need explicit
case differentiation? We introduce such an alternative in the following.

3.3 Reduction by Local Bounds

The general principle of bound-based reduction methods is to compute an upper
bound upper and a lower bound under some constraint lower constrained . The
constraint cannot be satisfied by any optimal solution if lower constrained > upper .
The constraint is usually that the solution must contain some pattern (e.g., an
edge or more complex patterns like trees, see [10]). Once it is established that
the test condition (the inequality above) is valid, the corresponding pattern (e.g.,
the edge) can be excluded, yielding a smaller (reduced) instance with the same
optimal solution. But it is usually too costly to recompute a (strong) lower bound
from scratch for each constraint. Here one can use an approach based on linear
programming. Any linear relaxation can provide a dual feasible solution of value
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lower and reduced costs c̃. We can use a fast method to compute a constrained
lower bound with respect to c̃. The sum of the two bounds is a lower bound for
the value of any solution satisfying the constraint. For details, see [4, 10].

In the following, we show how to develop a reduction test condition based
on local bounds, the application is analog to the usage of globally computed
bounds for reductions, see [10]. This approach has two main advantages: The
bounds can be computed faster; and there is less chance that the deviations
between the original instance and its linear relaxation can accumulate (and thus
deteriorate the computed bounds and methods using them). The main difficulty
is that the bounds must somehow take the dependence on the rest of the graph
into account.

Let S be a terminal separator in G and G1 and G2 the corresponding sub-
graphs. The bounds will be computed locally in supplemented versions of G2.
Let C be a clique over S. We denote with (C, b) the weighted version of C with
weights equal to bottleneck distances in G1; similarly for (C, s) with weights
equal to bottleneck Steiner distances in G. Let G′

2 and G′′
2 be the instances of

the Steiner problem created by supplementing G2 with (C, s) and (C, b), re-
spectively. We compute a lower bound lower constrained(G′′

2 ) for any Steiner tree
satisfying a given constraint in G′′

2 and an upper bound upper(G′
2) correspond-

ing to an (unrestricted) Steiner tree in G′
2. The test condition is: upper (G′

2) <
lower constrained(G′′

2 ).

Lemma 4. The test condition is valid, i.e., no Steiner minimal tree in G sat-
isfies the constraint if upper(G′

2) < lower constrained(G′′
2 ).

Proof. Consider T opt
con(G), an optimum Steiner tree of cost optcon(G) satisfying

the constraint. The subtrees of this tree restricted to subgraphs G1 and G2 build
two forests F1 (with connected components Ti) and F2 (Fig. 1, left). Removing
F2 and reconnecting F1 with T upper(G′

2) we get a feasible solution again, which
is not necessarily a tree (Fig. 1, middle). Let Si be the subset of S in Ti. Consider
two terminals of Si: Removing a bottleneck on the corresponding fundamental
path disconnects Ti into two connected components. Repeating this step until
all terminals in Si are disconnected in Ti, we have removed |Si| − 1 bottlenecks,
which together build a spanning tree spanT i for Si (Fig. 1, right). Repeating
this for all Ti, we get again a feasible Steiner tree T upper(G′) for the graph G′,
which is created by adding the edges of (C, s) to G.

Remember from Sect. 1.1 that the optimum solution value does not change
by inserting any edges (vi, vj) of length sij into G, so the optimum solution
values in G′ and G are the same. Let upper(G′) be the weight of T upper(G′). By
construction of T upper(G′), we have: upper(G′) = optcon(G)+upper (G′

2)−c(F2)−∑
i c(spanT i). The edge weights of the trees spanT i correspond to bottlenecks

in F1, so by definition they cannot be smaller than the corresponding bottleneck
distances in G1. By construction of G′′

2 , all these edges (with the latter weights)
are available in G′′

2 . Since the trees spanT i reconnect the forest F2, together
with F2 they build a feasible solution for G′′

2 , which even satisfies the constraint
(because F2 did), so it has at least the cost optcon(G′′

2 ). This means:
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Fig. 1. Construction of T upper (G′) from T opt
con(G)

upper(G′) ≤ optcon(G) + upper(G′
2) − optcon(G′′

2 )
< optcon(G) + lower constrained(G′′

2 ) − optcon(G′′
2 ) (test condition)

≤ optcon(G).

Thus optcon(G) > upper(G′) ≥ opt(G′) = opt(G), meaning that the constraint
cannot be satisfied without deteriorating the optimum solution value. ��

4 Experimental Results

In this section, we study the empirical impact of the presented methods. Meth-
ods like those in this paper cannot be expected to be usable as stand-alone
solution methods for a wide range of instances; however, they are very help-
ful as subroutines in many cases. By integrating these methods in our program
package for the Steiner problem [15], we could already solve several previously
unsolved benchmark instances from SteinLib [7], which otherwise could not be
tackled in reasonable times. For the experiments in this paper, we concentrate
on instances from a current real-world application (the LOFAR radio telescope
project, which is described below). An additional advantage of these instances
(beside their interesting practical background) is that we are already able to solve
all of them without the techniques described in this paper, so we can present
concrete running times for different solution methods, which also demonstrate
the improvements gained by the techniques presented here.

The LOFAR (LOw Frequency ARray) project is concerned with the construc-
tion of the largest radio telescope of the world, which is currently being built
by ASTRON in the Netherlands. It consists of many sensor stations that have
to be located along five spiral arms, with each arm stretching over hundreds
of kilometers. The distance between adjacent sensor stations along each arm
should increase in a logarithmic progression. The LOFAR sensor stations must
be placed while avoiding obstacles where stations cannot be placed geographi-
cally (e.g., the North Sea and population centers). The sensor stations should be
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connected by (expensive) optical fibers in order to send the data collected by the
sensors to a central computer for processing and analysis. Since cheaper existing
optical fibers with unused capacity can be purchased from cable providers, they
should be utilized to set up the optical network in the most economical way.
Note that the cost function is quite general, so these instances are not (pure)
geometric instances. A research branch in the LOFAR project is working on a
simulation-optimization framework [14], where different topological designs and
cost functions are developed. The Steiner problem is used to model the routing
part of the problem, in order to find a low-cost cabling for each of the scenarios
considered. The large amounts of money involved justify the wish for optimal
(or at least provably near-optimal) solutions. On the other hand, changes in the
scenario give rise to a large number (hundreds) of new candidate instances, so
excessively long runs for single instances are not tolerable.

The latest collection of instances we received from the LOFAR project [14]
consists of more than one hundred instances, divided in 13 groups (with different
settings of parameters). All these instances have 887 vertices, thereof 101 ter-
minals, and 163205 edges; but with various cost functions. For the experiments
here, we (randomly) chose one instance from each group (the results inside each
group were similar). We compare three (exact) solution methods:

(I) As a basis for comparisons, we use a somehow standard branch-and-cut
approach based on the classical (directed) cut formulation of the Steiner
problem, using a cut generating routine as described in [9]. However, in
contrast to [9], here we use no reductions at all. Since the program in
[9] heavily exploits the reduction-based methods (e.g. for computing sharp
upper bounds), here as a substitute we utilize the MIP optimizer of CPLEX
8.0 after solving the LP-relaxation to get a provably optimal integer solution
(the additional times for the MIP optimizer were relatively marginal for the
considered instances).

(II) In the second set of experiments, we use exactly the same cut-based al-
gorithm as under (I), but this time after performing our strong reduction
techniques from [10] as preprocessing.

(III) Finally, in the third set of experiments we use exactly the same reduction
techniques as under (II), but additionally we use the partitioning-based
techniques described in this paper. The cut-based routine is dropped, so no
LP-solver is used at all.

The results are summarized in Table 1 (all computations were performed on a
machine with an INTEL Pentium-4 3.4 GHz processor). We observe:

– The reduction techniques can heavily accelerate the solution process, a fact
that is meanwhile well established. For the considered set of instances, our
previous reduction techniques already improve the solution times of the
branch-and-cut algorithm by more than one order of magnitude.

– The partitioning-based techniques presented in this paper improve the (ex-
act) solution times by one additional order of magnitude, thereby eliminating
the need for an LP-solver like CPLEX altogether for all considered instances.
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Table 1. Summarized solution times for the LOFAR instances using different methods

Solution Method (I) (II) (III)
(B&C) (Preprocessing + B&C) (Preprocessing + Partitioning)

Average Solution Time
(seconds) 396 11 1.2
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