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Preface

The Workshop on Experimental Algorithms, WEA 2006, is intended to be an
international forum for research on the design, analysis and especially the imple-
mentation, evaluation and engineering of algorithms, as well as on combinatorial
optimization and its applications. WEA 2006, held at Hotel Cala Galdana on
Menorca, Spain, May 24–27, is the fifth of the series after Riga (2001), Monte
Verita (2003), Rio de Janeiro (2004), and Santorini (2005).

This volume contains all contributed papers accepted for presentation, to-
gether with invited lectures by Ricardo Baeza-Yates (Yahoo! Research), Jon
Bentley (Avaya Labs Research), and Sotiris Nikoletseas (University of Patras
and Computer Technology Institute). The 26 contributed papers were selected
out of 92 submissions received in response to the call for papers. All the papers
published in the proceedings were selected by the Program Committee on the
basis of at least three referee reports, with the help of trusted external referees.

We would like to thank all of the authors who responded to the call for papers,
our invited speakers, and the members of the Program Committee, as well as
the external referees, and the Organizing Committee members.

We gratefully acknowledge support from the Ministry of Education of Spain
and the Technical University of Catalonia.

March 2006 Carme Àlvarez
Maria Serna



Organization

Program Committee

Maria Serna (Chair) T.U. of Catalonia (Spain)
Mark de Berg T.U. Eindhoven (The Netherlands)
Christian Blum T.U. of Catalonia (Spain)
Aaron Clauset University of New Mexico (USA)
Camil Demetrescu University of Rome “La Sapienza” (Italy)
Thomas Erlebach University of Leicester (UK )
Catherine McGeoch Amherst College (USA)
Ulrich Meyer Max-Plack-Institut fr Informatik (Germany)
Ian Munro University of Waterloo (Canada)
Stefan Nher Universitt Trier (Germany)
Gonzalo Navarro Universidad de Chile (Chile)
Panos M. Pardalos University of Florida (USA)
Jose Rolim University of Geneva (Switzerland)
Adi Rosn Technion (Israel)
Peter Sanders Universitt Karlsruhe (Germany)
Guilhem Semerjian University of Rome “La Sapienza” (Italy)
Paul Spirakis University of Patras and CTI (Greece)
Osamu Watanabe Tokyo Institute of Technology (Japan)
Peter Widmayer ETH Zrich (Switzerland)

Steering Committee

Edoardo Amaldi Politecnico di Milano (Italy)
David A. Bader Georgia Institute of Technology (USA)
Josep Diaz T.U. of Catalonia (Spain)
Giuseppe Italiano Universit di Roma “Tor Vergata” (Italy)
David Johnson AT&T Labs (USA)
Klaus Jansen Universitt Kiel (Germany)
Kurt Mehlhorn Max-Plack-Institut fr Informatik (Germany)
Ian Munro University of Waterloo (Canada)
Sotiris Nikoletseas University of Patras and CTI (Greece)
Jos Rolim (Chair) University of Geneva (Switzerland)
Paul Spirakis University of Patras and CTI (Greece)

Organizing Committee

Maria Serna (Chair) T.U. of Catalonia (Spain)
Carme lvarez T.U. of Catalonia (Spain)
Maria Blesa T. U. of Catalonia (Spain)



VIII Organization

Amalia Duch T. U. of Catalonia (Spain)
Leonor Frias T. U. of Catalonia (Spain)
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Rūdolfs Opmanis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Session 5

Lists on Lists: A Framework for Self-organizing Lists in Environments
with Locality of Reference

Abdelrahman Amer, B. John Oommen . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Lists Revisited: Cache Conscious STL Lists
Leonor Frias, Jordi Petit, Salvador Roura . . . . . . . . . . . . . . . . . . . . . . . . . 121

Engineering the LOUDS Succinct Tree Representation
O’Neil Delpratt, Naila Rahman, Rajeev Raman . . . . . . . . . . . . . . . . . . . . 134

Session 6

Faster Adaptive Set Intersections for Text Searching
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Rodrigo Paredes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

Session 12

Updating Directed Minimum Cost Spanning Trees
Gerasimos G. Pollatos, Orestis A. Telelis, Vassilis Zissimopoulos . . . . 291

Experiments on Exact Crossing Minimization Using Column Generation
Markus Chimani, Carsten Gutwenger, Petra Mutzel . . . . . . . . . . . . . . . . 303

Goal Directed Shortest Path Queries Using Precomputed Cluster
Distances

Jens Maue, Peter Sanders, Domagoj Matijevic . . . . . . . . . . . . . . . . . . . . 316

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329



Algorithms for Wireless Sensor Networks:
Design, Analysis and Experimental Evaluation�

Sotiris Nikoletseas

Department of Computer Engineering and Informatics,
University of Patras, and CTI, Greece

nikole@cti.gr

Abstract. The efficient and robust realization of wireless sensor net-
works is a challenging technological and algorithmic task, because of
the unique characteristics and severe limitations of these devices. This
talk presents representative algorithms for important problems in wire-
less sensor networks, such as data propagation and energy balance. The
protocol design uses key algorithmic techniques like randomization and
local optimization. Crucial performance properties of the protocols (cor-
rectness, fault-tolerance, scalability) and their trade-offs are investigated
through both analytic means and large scale simulation. The experi-
mental evaluation of algorithms for such networks is very beneficial, not
only towards validating and fine-tuning algorithmic design and analysis,
but also because of the ability to study the accurate impact of several
important network parameters and technological details.

1 Introduction

Recent dramatic developments in micro-electro-mechanical (MEMS) systems,
wireless communications and digital electronics have already led to the develop-
ment of small in size, low-power, low-cost sensor devices. Such extremely small
devices integrate sensing, data processing and wireless communication capabil-
ities. Current devices have a size at the cubic centimeter scale, a CPU running
at 4 MHz, some memory and a wireless communication capability at a 4Kbps
rate. Also, they are equipped with a small but effective operating system and
are able to switch between “sleeping” and “awake” modes to save energy.

Their wide range of applications is based on the possible use of various sensor
types (i.e. thermal, visual, seismic, acoustic, radar, magnetic, etc.) to monitor
a wide variety of conditions (e.g. temperature, object presence and movement,
humidity, pressure, noise levels etc.). Thus, sensor networks can be used for con-
tinuous sensing, event detection, location sensing as well as micro-sensing. Hence,
sensor networks have important applications, including (a) environmental (such
as fire detection, flood detection, precision agriculture), (b) health applications

� This work was partially supported by the IST Programme of the European Union
under contact number IST-2005-15964 (AEOLUS) and the Programme PENED of
GSRT under contact number 03ED568.

C. Àlvarez and M. Serna (Eds.): WEA 2006, LNCS 4007, pp. 1–12, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



2 S. Nikoletseas

(like telemonitoring of human physiological data), (c) home applications (e.g.
smart environments and home automation) and (d) military/security applica-
tions. For a survey of wireless sensor networks see [1].

Because of their rather unique characteristics, efficient and robust distrib-
uted protocols and algorithms should exhibit the following critical properties:
a) Scalability. Distributed protocols for sensor networks should be highly scal-
able, in the sense that they should operate efficiently in extremely large networks
composed of huge numbers of nodes. b) Efficiency. Because of the severe energy
limitations of sensor networks and also because of their time-critical application
scenaria, protocols for sensor networks should be efficient, with respect to both
energy and time. c) Fault-tolerance. Sensor particles are prone to several types
of faults and unavailabilities, and may become inoperative (permanently or tem-
porarily). The sensor network should be able to continue its proper operation
for as long as possible despite the fact that certain nodes in it may fail.

Since one of the most severe limitations of sensor devices is their limited
energy supply, one of the most crucial goals in designing efficient protocols for
wireless sensor networks is minimizing the energy consumption in the network.
This goal has various aspects, including: (a) minimizing the total energy spent
in the network (b) minimizing the number (or the range) of data transmissions
(c) combining energy efficiency and fault-tolerance, by allowing redundant data
transmissions which however should be optimized to not spend too much energy
(d) maximizing the number of “alive” particles over time, thus prolonging the
system’s lifetime and (e) balancing the energy dissipation among the sensors in
the network, in order to avoid the early depletion of certain sensors and thus the
breakdown of the network.

We note that it is very difficult to achieve all the above goals at the same
time. There even exist trade-offs between some of the goals above. Furthermore,
the importance and priority of each of these goals may depend on the particular
application. Thus, it is important to have a variety of protocols (and hybrid
combinations of protocols), each of which may possibly focus at some of the
energy efficiency goals above (while still performing well with respect to the
rest goals). Furthermore, there exist fundamental, inherent trade-offs between
important performance measures, most notably between energy dissipation and
latency (i.e. time for information to get to the control center).

In the light of the above, we present and evaluate several data propagation
protocols: a) The Directed Diffusion (DD) Protocol, that creates and maintains
some global structure (e.g. a set of paths) to collect data. b) The Low Energy
Adaptive Clustering Hierarchy (LEACH) Protocol, that uses clustering to handle
data collectively and reduce energy. c) The Local Target Protocol (LTP), that
performs a local optimization trying to minimize the number of data transmis-
sions. d) The Probabilistic Forwarding Protocol (PFR), that creates redundant
data transmissions that are probabilistically optimized, to trade-off energy effi-
ciency with fault-tolerance. e) The Energy Balanced Protocol (EBP), that focuses
on guaranteeing the same per sensor energy dissipation, in order to prolong the
lifetime of the network.
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Through both rigorous mathematical means and performance evaluation of
implemented protocols, we demonstrate the strengths, weaknesses and trade-offs
of the protocols and indicate the network conditions and dynamics for which each
protocol is best suitable. We believe that a complementary use of rigorous analy-
sis and large scale simulations is needed to fully investigate the performance of
protocols in wireless sensor networks. In particular, asymptotic analysis may
lead to provable efficiency and robustness guarantees towards the desired scal-
ability of protocols for sensor networks that have extremely large size. On the
other hand, protocol implementation allows to investigate the detailed effect of
a great number of technical specifications of real devices, a task that is difficult
(if possible at all) for analytic techniques which, by their nature, use abstraction
and model simplicity.

The definition of abstract (yet realistic) models for wireless sensor networks
is very important, since it enables rigorous mathematical analysis of protocol
performance. Such models include: a) random geometric graphs [8, 17], where a
random plane network is constructed by picking points (that abstract sensors)
in the plane by a Poisson process, with density d points per unit area, and
then joining each pair of points by a line if they are at distance less than r
(this captures transmission range). Interesting properties under this model are
investigated in [5]. b) Another interesting model is that of random sector graphs,
where each randomly chosen point (sensor) in the plane chooses an angle and
a euclidean distance (that together define a cyclic sector corresponding to the
sensor’s transmission area [6]). Interesting properties (connectivity, chromatic
number) are investigated in [18]. c) Stochastic models (such as Markov Chains,
dynamic systems) like the ones in [12, 13] are particularly useful for capturing
energy dissipation and data propagation. A new relevant model is that of random
intersection graphs, where each vertex randomly picks elements from a universe,
and two vertices are adjacent when they pick at least one element in common
([11]). Independence properties and algorithms are proposed in [15].

2 Representative Protocols

Directed Diffusion: Maintaining Sets of Paths. Directed Diffusion (DD)
[10] is a data-centric communication paradigm, a suite of several protocols. In
general, it requires some coordination between sensors to create and maintain
a somewhat global structure (e.g. a set of paths) for propagating data. DD
uses four elements: a) interest messages, issued by the control center, contain-
ing attribute-value pairs, specifying data matching the attributes. b) Gradients
towards the control center, created when receiving interest messages, storing a
direction towards the sink and a value (data rate) for “pulling down” data. c)
Data messages, created by the relevant sensors to the task description (as con-
tained in the interest messages). d) Reinforcements of gradients (i.e. favoring
one or more neighbors at each level of the tree) to select “best” paths (wrt some
criteria) for “drawing down” real data. Reinforcement can be positive (i.e. re-
inforce the neighbor that first reported a new event or the one with the higher
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data rate) or negative (i.e. when a gradient does not deliver any new messages
for some time or when its data rate is low).

Since DD reinforces certain “good” paths for getting data, it improves over
flooding a lot. Especially in the case where the network conditions do not change
a lot, it incurs significant energy savings. In networks of high dynamics however
(where many changes happen in the network) its performance drops, since es-
tablished paths may now become inefficient (or even break down), since path
maintenance and update may be too slow wrt the changes in the network.

LEACH: A Clustering Protocol. LEACH [9] partitions the network into
clusters of sensors, with a single sensor in each cluster being a cluster-head. Non
cluster-heads transmit data to their cluster-head; cluster-heads gather received
data, compress it and send it directly to the sink. To avoid energy depletion
of cluster-head sensors, clusters are created in a dynamic way over time, and
cluster-heads rotate in a randomized way.

Because of compression and aggregation of data at cluster-heads and collec-
tive transmission to the sink, LEACH manages to reduce energy dissipation,
especially in small area networks. In large networks however, directed transmis-
sions are distant and expensive. Also when the network traffic is high (i.e. many
agents are sensed and reported) the performance of LEACH drops, since rotation
of cluster-heads may be slow and not avoid energy depletion of cluster-heads.

LTP: A Hop-by-Hop Data Propagation Protocol. The LTP Protocol was
introduced in [2]. The authors adopt a two-dimensional (plane) framework: A
smart dust cloud (a set of particles) is spread in an area. Let d (usually mea-
sured in numbers of particles/m2) be the density of particles in the area. Let
R be the maximum (radio/laser) transmission range of each grain particle. A
receiving wall W is defined to be an infinite line in the smart-dust plane. Any
particle transmission within rangeR from the wallW is received byW . The wall
represents in fact the authorities (the fixed control center) who the realization
of a crucial event should be reported to. The wall notion generalizes that of the
sink and may correspond to multiple (and/or moving) sinks. Each smart-dust
particle is aware of the general location of W .

Let d(pi, pj) the distance (along the corresponding vertical lines towards W)
of particles pi, pj and d(pi,W) the (vertical) distance of pi from W . Let info(E)
the information about the realization of the crucial event E to be propagated.
Let p the particle sensing the event and starting the execution of the protocol.
In this protocol, each particle p′ that has received info(E), does the following:

– Search Phase: It uses a periodic low energy directional broadcast in or-
der to discover a particle nearer to W than itself. (i.e. a particle p′′ where
d(p′′, W) < d(p′, W)).

– Direct Transmission Phase: Then, p′ sends info(E) to p′′.
– Backtrack Phase: If consecutive repetitions of the search phase fail to dis-

cover a particle nearer to W , then p′ sends info(E) to the particle that it
originally received the information from.
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W
p'

beacon circle

a

-a

Fig. 1. Example of the Search Phase

Definition 1. Let hopt be the (optimal) number of “hops” (direct, vertical to
W transmissions) needed to reach the wall, in the ideal case in which particles
always exist in pair-wise distances R on the vertical line from p to W . Let h
be the actual number of hops (transmissions) taken to reach W . The “hops”
efficiency of the protocol is the ratio Ch = h

hopt
.

Clearly, the number of hops (transmissions) needed characterizes the energy
consumption and the time needed to propagate the information E to the wall.
Remark that hopt =

⌈
d(p,W)

R
⌉
, where d(p,W) is the (vertical) distance of p

from the wall W . In the case where the protocol is randomized, or in the case
where the distribution of the particles in the cloud is a random distribution,
the number of hops h and the efficiency ratio Ch are random variables and one
wishes to study their expected values.

Towards a rigorous analysis of the protocol, [2] makes the following simplifying
assumption: The search phase always finds a p′′ (of sufficiently high battery) in
the semicircle of center the particle p′ currently possessing the information about
the event and radius R, in the direction towards W . Note that this assumption
on always finding a particle can be relaxed in many ways. [2] also assumes that
the position of p′′ is uniform in the arc of angle 2a around the direct line from p′

vertical to W . It is also assumed that each target selection is stochastically inde-
pendent of the others, in the sense that it is always drawn uniformly randomly
in the arc (−α, α). By analysing the stochastic process of data propagation, the
following can be obtained:

Lemma 1 ([2]). The expected “hops efficiency” of the local target protocol in
the a-uniform case is

E(Ch) � α

sin α

for large hopt. Also, for 0 ≤ α ≤ π
2 , it is 1 ≤ E(Ch) ≤ π

2 � 1.57.

PFR: A Probabilistic Forwarding Protocol. To combine energy efficiency
and fault-tolerance, the Probabilistic Forwarding Protocol (PFR) has been in-
troduced in [3]. The modeling assumptions made can be found in [3]. Notice that
GPS information is not needed for this protocol. Also, there is no need to know
the global structure of the network.
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S

E

Particles that
particiapate in

forwarding path

Fig. 2. Thin Zone of particles

The basic idea of the protocol lies in probabilistically favoring transmissions
towards the sink within a thin zone of particles around the line connecting the
particle sensing the event E and the sink (see Figure 2). Note that transmission
along this line is energy optimal. The protocol evolves in two phases:

Phase 1: The “Front” Creation Phase. Initially the protocol builds
(by using a limited, in terms of rounds, flooding) a sufficiently large
“front” of particles, to guarantee the survivability of the data propaga-
tion process. During this, each particle having received the data to be
propagated, deterministically forwards them towards the sink.
Phase 2: The Probabilistic Forwarding Phase. Each particle P
possessing the information under propagation, calculates an angle φ and
broadcasts info(E) to all its neighbors with probability IPfwd (or it does
not propagate any data with probability 1− IPfwd) defined as follows:

IPfwd =

{
1
φ
π

if φ ≥ φthreshold

otherwise

where φ is the angle defined by the line EP and the line PS and
φthreshold = 134o.

The closer to the optimal line a particle lies, the larger is its angle and thus the
higher is its probability to forward data. By occupancy arguments and geometry,
correctness is shown:

Lemma 2 ([3]). PFR succeeds with probability 1 in sending the information
from E to S given a sufficiently high density of sensors in the network.

By estimating (using stochastic processes) the size of the area of particles acti-
vated by the protocol, the following energy efficiency result is obtained:

Theorem 1 ([3]). The energy efficiency of the PFR protocol is Θ

((
n0
n

)2
)

where n0 = |ES| and n =
√

N , where N is the number of particles in the
network. For n0 = |ES| = o(n), this is o(1).

Finally, using geometry, it is shown that PFR is quite fault tolerant:
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Lemma 3 ([3]). PFR manages to propagate data across lines parallel to ES,
and of constant distance, with fixed nonzero probability.

EBP: An Energy Balance Protocol. Most data propagation techniques do
not explicitly take care of the possible overuse of certain sensors in the network. As
an example, remark that in hop-by-hop transmissions towards the sink, the sen-
sors lying closer to the sink tend to be utilized exhaustively (since all data passes
through them). Thus, these sensors may die out very early, thus resulting to net-
work collapse although there may be still significant amounts of energy in the other
sensors of the network. Similarly, in clustering techniques the cluster-heads that
are located far away with respect to the sink, tend to spend a lot of energy.

A protocol trying to balance energy dissipation among the sensors in the
network; the EBP (Energy Balance) protocol, introduced in [7], probabilistically
chooses between either propagating data one hop towards the sink or sending
directly to the sink. The first choice is more energy efficient, while the latter
bypasses the critical (close to the sink) sectors. The appropriate probability for
each choice in order to achieve energy balance is calculated in [7]. Due to lack
of space, we will present EBP during the talk.

3 Experimental Framework

For the purpose of the comparative study of protocols, we have designed a new
simulator, which we named simDust, that was implemented in Linux using C++
and the LEDA [14] algorithmic and data structures library.

An interesting feature of our simulator, is the ability to experiment with
very large networks. simDust enables protocol implementation using just C++.
Additionally, it generates all necessary statistics based on a large variety of
metrics that are implemented (such as delivery percentage, energy consumption,
delivery delay, longlivety, etc.). simDust operates in descrete time rounds and
measures energy dissipation (in various operation modes) in detail.

On each execution of the experiment, let K be the total number of crucial
events (E1, E2, . . . , EK) and k the number of events that were successfully re-
ported to the sink S. We below provide some definitions.

Definition 2. The success rate, IPs, is the fraction of the number of events
successfully propagated to the sink over the total number of events, i.e. IPs = k

K .
Let Ei be the available energy for the particle i. Then Eavg =

n
i Ei

n is the
average energy per particle in the smart dust network, where n is the number
of the total particles dropped. Let hA (for “active”) be the number of “active”
sensor particles participating in the sensor network. Let Is be the injection rate,
measured as the probability of occurrence of a crucial event during a round.

4 An LTP vs PFR Comparison

Due to lack of space, we have present only a few comparison results. We compare
three versions of LTP and PFR. We generate a variety of sensor fields in a 100m
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Fig. 3. Success Probability (IPs) over particle density d = [0.01, 0.3]
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Fig. 4. Ratio of Active Particles over Total Particles (r) over particle density d =
[0.01, 0.3]

by 100m square. In these fields, we drop n ∈ [100, 3000] particles randomly
uniformly distributed on the smart-dust plane, i.e. for densities 0.01 ≤ d ≤ 0.3.
Each smart dust particle has a fixed radio range of R = 5m and α = 90o. The
particle p that initially senses the crucial event is always explicitly positioned at
(x, y) = (0, 0) and the sink is located at (x, y) = (100, 100). We repeated each
experiment for more than 5,000 times in order to achieve good average results.

We start by examining the success rate of the four protocols (see Fig. 3), for
different densities. Initially, when the density is low (i.e. d ≤ 0.06), the protocols
fail to propagate the data to the sink. However as the density increases, the
success rate increases quite fast and for high densities, all four protocols almost
always succeed in propagating the data.

Figure 4 depicts the ratio of active particles over the total number of particles
(r = hA

n ). In this figure we clearly see that PFR, for low densities (i.e. d ≤ 0.07),
indeed activates a small number of particles (i.e. r ≤ 0.3) while the ratio (r)
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increases as the density of the particles increases. The LTP based protocols seem
more efficient and the ratio r seems to be independent of the total number of
particles (because only one particle in each hop becomes active).

5 A LEACH vs PFR Comparison

Again, due to lack of space, we only present a few comparison results. We eval-
uate the performance of H-TEEN (a hierarchical extension of LEACH) and
SW-PFR (an extension where sensors alternate between sleep and awake modes
of operation to save energy). In our experiments, we generate a variety of sensor
fields. The field size ranges from 200m by 200m to 1500m by 1500m. In these
fields, we drop n ∈ [500, 3000] particles randomly uniformly distributed on the
smart-dust plane.

We start by examining the success rate of the protocols wrt the network
size (Figure 5), for two different injection rates Is (0.05 and 0.8). We focus on
extreme values to investigate the divergent behavior in extreme settings. Initially,
for low injection rates, in small networks (500mx500m), both protocols behave
almost optimally achieving a success rate close to one and decrease as injection
rate increases. However, for larger network size the impact of the injection rate
seems to be more significant. In particular, H-TEEN’s success rate drops from
85% to almost 30%, while PFR, even though its initial success rate is about
70%, seems to be less affected by the increase in injection rate.

The apparent dependence of TEEN protocol’s performance from the injection
rate is due to its clustering scheme. As injection rate increases a cluster head
is responsible for delivering more events, thus it consumes more energy during
its leadership. If injection rate becomes too high, cluster heads are more likely
to exhaust their energy supplies before a new cluster head is elected. When
a cluster head “dies”, the cluster ceases to function and all events that occur
on that cluster are lost until a new cluster head is elected. Furthermore large
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network sizes worsen this phenomenon because more energy is required from the
cluster head to propagate an event to the sink (since the energy spent in one hop
is of the order of the square of the transmission distance). On the other hand the
SW-PFR protocol is mostly unaffected by high injection rates but influenced
by larger network sizes. This is due to its multihop nature, since more hops are
required for the propagation of an event.

We move on by examining the average energy consumed per particle in time
(see full paper). Finally, we examine the way the number of alive particles varies
with time (see figure 6).

We notice that for the H-TEEN protocol for both network sizes the number
of alive nodes decreases at a constant rate, whilst for the SW-PFR protocol
there is a sudden decrease in the number of alive particles. This observation
depicts the property of the H-TEEN protocol to evenly distribute the energy
dissipation to all the particles in the network. On the contrary, the SW-PFR
protocol stresses more the particles which are placed closer to the sink, so at a
point in time these particles start to “die” rapidly.

On the other hand, in the larger network area (1000m x 1000m) the particles
in H-TEEN protocol “die” more rapidly than those of SW-PFR. This was
expected because in H-TEEN protocol particles are forced to transmit in larger
distances than those in SW-PFR, so they consume more energy and “die”
faster. We should also notice the same behavior of SW-PFR as in fig. 6, from
a point in time and on, particles start to die faster than before and this is
because of the fact that SW-PFR stresses more the particles that lie near the
sink forcing them to propagate the majority of the messages that occur in the
smart-dust network.

6 Future Directions

Wireless sensor networks constitute a new fascinating field, where complemen-
tary approaches (algorithms, systems, applications and technology) are needed.
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From an algorithmic perspective, new abstract models and model extensions are
needed (hiding details but still being realistic) to enable the necessary perfor-
mance analysis of distributed algorithms – occasionally even asymptotic analysis.
The interplay of geometry, graph theory and randomness create many challeng-
ing problems for rigorous treatment ([16]). Inherent trade-offs, lower bounds
and impossibility results should be further investigated towards properly guid-
ing technological efforts by pointing out inherent limitations. New efficient but
simple algorithms should be designed and analysed and paradigms should be
established. At the system level, versatile network stacks and lightweighted op-
erating systems and middleware are needed. A complementary use of rigorous
means and performance evaluation using experimental implementation of algo-
rithms is highly beneficial. Experimental algorithmics are especially useful to
precisely evaluate the crucial impact of several network parameters and techno-
logical details.
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Abstract. In this paper we numerically analyze the impact of inter-
ferences on the probability of success of a localization algorithm. This
problem is particularly relevant in the context of sensor networks. Ac-
tually, our numerical results are relevant even when we do not consider
interferences. Moreover, our numerical computations show that the main
harmful interferences are the ones occurring between sensors which get
localized at the same time and send simultaneously their own location.
This is demonstrated by varying the time span of the random waiting
time before the emissions. We then observe that the longer the waiting
time the closer the curves are to the ones obtained without interferences.
Hence, this proves to be an efficient way of reducing the impact of inter-
ferences. Moreover, our numerical experiments demonstrate that among
the sectors of disk with same area, the one with the smaller radius of
emission and larger angle of emission is the more appropriate to the
localization algorithm.

1 Introduction

Although the numerical tools involved in our analysis can be tailored to deal
with different protocols we proceed to the analysis of a simple protocol of trans-
mission which is relevant in the field of sensor networks [1]. The impact of the
interferences depends on the statistical occupation of the channels of transmis-
sion. Hence, we particularize our analysis to a probabilistic localization algorithm
(discussed below) and actually deal with the impact of interferences on the per-
formances of this algorithm.

Two important characteristics of sensor networks are the large number of
nodes involved in the composition of the networks and that sensors are usually
battery powered, hence limiting the energy consumption is a key issue [27, 28].
Also, the protocols involved in the establishment and use of the networks have to
be as simple as possible to limit the energy consumption due to the exchange of
synchronization messages. These requirements make relevant to consider random
access channel introduced in [4]. Besides its simplicity random access is relevant
� This research was supported in part by Swiss SER Contract No. C05.0030.
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in some situations to optimize the transmission delay [7] and hence, can be a
better alternative of the different protocols.

Another important characteristic of sensor networks is that they are data-
centric, meaning that sensors are less important than the data they convey.
Typically, sensors are used to proceed to some measurements and convey the
measured values towards one (or more) particular stations which is able to col-
lect and process the data’s. However, for the data to be meaningful one should
attach to it the location where the measurement was made. Then sensors are to
be localized. This can be done by adding hardware resources, for instance GPS
electronic devices, to sensors. But this would conflict with the requirements of
minimizing the energy consumption as well as lowering the price of the entire
system. The probabilistic localization algorithm studied in this paper assumes
that a few anchors are equipped with electronic devices to ensure their localiza-
tion. The others sensors compute their own position by 3-lateration given the
position of their localized neighbors. This procedure requires the estimate of the
distance between sensors. This can be achieved for instance, by Time of Arrival
(ToA) or Received Signal Strength Indicator (RSSI) techniques.

2 Related Work

Localization algorithms are widely analyzed in the literature. General consider-
ations and various strategies can be found in [26, 28, 10]. In [29] the accuracy
of range free localizations algorithms are analyzed. The main interest of these
protocols as opposed to range based protocols is that they minimize the required
hardware. Particularly, there is no need to estimate the distances between sen-
sors. In [8] numerical evaluation of various protocols is done in the context of
optical sensor networks. In [13, 14] the authors consider a particular technique for
estimating the distances between sensors and proceed to real experiments based
on Motes1 sensor systems. From a complexity point of view, in [3, 6] NP-hardness
results are provided for the localization and connex problems. These results sup-
port the application of approximation algorithms and numerical investigations.
Concerning the analysis of the impact of interferences, we mention [9, 16] and
references therein. These papers are based on a model of interferences called the
capture model which assumes that a communication can be established given
that the ratio of the signal to noise is large enough. In this paper, we consider
a different model called the collision model, at once two sensors emits towards
a third same sensor there is collision and the data is lost. Moreover, we keep
fixed the number of sensors and look for the impact of the networks parame-
ters. The numerical methods we use for the numerical experiments are particular
stochastic estimation methods [24, 22]. The general frameworks as well as some
applications of the methods are discussed in [19]. The numerical experiments
presented in this paper are different than the ones suggested in [19] and actually
both papers are complementary. As far as we know, no previous similar works
are present in the literature. However, stochastic estimation methods seems to
1 http://www.xbow.com
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appear sporadically for dynamic control of communications in wireless networks,
see for instance[17, 20, 25].

3 Sensor Networks Characteristics and the Localization
Protocol

Sensors composing the networks establish wireless communication through di-
rectional antenna. The parameters of the communications are the range (radius)
of communication r which is the maximal distance a sensor can send a data, the
angle of emission α and the direction of the emission β. The former is chosen
randomly and independently by each sensor with uniform distribution on the
circle and the others two parameters r, α are the same for all the sensors. We
denote by p the area of the region covered by the emission, see Figure1. The
model of interferences is the collision model where a collision occurs at once two
stations emit at the same time in the same region. This is illustrated in Figure 1:
no data from x nor y can be received in the hatched region.

The sensors are assumed to be randomly and independently scattered in the
unit square region [0, 1] × [0, 1] with uniform distribution. Given the relative
positions of sensors directional communication can be established, see Figure 1,
and this defines the directional graph of communication see Figure 2. Up to our
knowledge results concerning the connectivity of such graphs are only of asymp-
totic character, see [23]. The choice of the uniform distribution is arbitrary. The
localization protocol we wish to numerically analyze the performances works as
follows. We consider a given sensor network composed of n sensors. We choose
randomly a fixed number l among them and assume that they are localized sen-
sors (assumed to be equipped with electronic devices to ensure the localization).
Each localized sensor choose randomly and independently a waiting time w in
0, . . . , log(n) and wait for w clock. Then, it sends to all its neighbors its location
and we assume that the receivers are able to estimate the distance from them to
the sender. Once a sensor receives the coordinates of three localized neighbors it
computes its own location by 3-lateration. Hence, it chooses a waiting time and
send its coordinate in turn. The algorithm is successful if more than 90% of the
sensors manage to compute their location. Notice that 90% is arbitrarily cho-
sen. However, it is important not to consider the situation where all the sensors
have to be localized for the success of the localizations algorithm. Indeed, if the

β

r

α p
x

y

Fig. 1. To the left: Sensor with radius of emission r, angle of emission α and orientation
of the emission β. To thre right: Collision region (hatched), x and y are the emitters.
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number of sensors is reasonable (50, 100) some of them can even be isolated. The
process is probabilistic and hence, it does make sense to look for the probability
of success of the algorithm. Our interest here is to numerically investigate the
probability of success of the algorithm with respect to the network parameters.
It is important to notice that the main impact of the waiting time is to reduce
the collisions occurring between sensors which are close from each others. The
choice of the waiting time belonging to [0, log(n)] is motivated in [2].

4 Numerical Methods

The numerical methods we use to compute the chance of success with respect
of the networks parameters of the localization algorithm are particularization of
stochastic estimation procedures first introduced in [24, 22]. We denote by Adj
the set of adjacency matrix which corresponds to communication graphs. This
set is a probabilistic space and there exists a probability measure on it which
does not need to be explicited. We denote by Ω the set of subset of sensors
which are initially localized. This set is embodied with a probability measure
corresponding to choosing l of them among the set of sensors. In a given set of
computation, all the network parameters are kept constant except the angle on
transmission α. Then, the localization algorithm can be seen as a map

L : Adj ×Ω × [0, 2π]→ {0, 1} (1)

where L(a, ω, α) is 0 or 1 depending on the success or failure of the localization
algorithm. The fixed network parameters are omitted to simplify the notation.
Given a particular value p ∈ [0, 1], our problem is to find the particular value
of α such that Prob(L(·, ·, α) = 1) = p. The probability is taken with respect
to the Adj × Ω space and α is a definite numerical value. This is why we use
the ’dot’ notation L(·, ·, α) simplified in L(α). The computations introduced
below are based on simulations of the localization algorithm. At each step of the
computations a communication graph is generated, a fixed number of initially
localized sensors are determined and the process is simulated. This leads to
an observed success or failure of the localization algorithm. This observation is
denoted by L(α).
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To solve this problem we use stochastic estimation methods in the region
where d

dαProb(L(α)) is large since the convergence speed is proportional to this
term (see later). In the regions where the above mentioned derivative is small,
hence slowing the convergence rate of the stochastic estimation method, we use
the typical estimator which consists in averaging the results of a large number
of observations. In both cases, we check that the results belong to a confidence
interval of 3 degrees with probability 95% [15]. To construct the confidence in-
terval we basically use 20 estimates and the mean value as the result. Basically,
the number of iterations of the stochastic estimation methods to compute one
estimate is about 30’000. In the region where the method becomes not efficient
enough we use the mean of about 100′000 observations to reach the fixed confi-
dence interval.

To proceed to the computation, we fix n the number of sensors and r the
radius of emission. Then, we choose a value p of the probability of success and
look for the corresponding value of the angle of emission α. To avoid the choice
of a value of p too big and hence not corresponding to any α, we compute α̃ such
that m(α̃) is maximal with a Kiefer-Wolfovitz algorithm [18] and estimate its
value by averaging about 100′000 observations (the procedure is done about 20
times to construct the confidence interval). The stochastic estimation algorithm
is based on the hypothesis that there exist a value α∗ of the parameter such that

m(α∗) = Prob
(
L(α∗) = 1

)
= p, and m′(α∗) > 0. (2)

Then, it can be proven [24, 31] that the sequence (αn)n≥0 recursively defined by

αn+1 = αn +
1
n

(
p− L(αn)

)
(3)

converges to α∗, i.e. (αn → α∗). Moreover,
√

n(αn−α∗)→ N

(
0, σ2

(2m′(α∗)−1)

)
.

At each step of the computation a random communication graph has to be
generated with the corresponding value of the parameter αn. The localization
algorithm is then simulated and the result is denoted by L(αn) which is 0 or 1
accordingly to the success or failure of the algorithm. The fact that the function
m(α) is differentiable is discussed in [19]. It is due to the fact that the state of
outcomes is finite. Actually, the same argument is applicable to the situation
where collisions are taken into account. By a suitable change of sign in the
formula (3), one can cope with the situation where m′(α∗) < 0.

5 Numerical Results

We provide two set of experiments with the same parameters: one assumes that
the communications are not altered by interferences and the other takes into
account interferences with the collisions model.

If interferences are not taken into account the set of random communication
graphs on which the localization algorithm succeeds is monotone. Broadly speak-
ing, this means that by adding new edges to a (successful) communication graph
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Fig. 3. n = 50 sensors, 5 anchors, with collisions (left) and without (right). The curves
depicted from right to left are going in increasing the radius of emission. Waiting time
in [0, 4].
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Fig. 4. n = 50 sensors, 10 anchors, with collisions (left) and without (right). The curves
depicted from right to left are going in increasing the radius of emission. Waiting time
in [0, 4].
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Fig. 5. n = 50 sensors, 15 anchors, with collisions (left) and without (right). The curves
depicted from right to left are going in increasing the radius of emission. Waiting time
in [0, 4].

leads again to a communication graph on which the localization algorithm suc-
ceeds. In our setting of experiments, edges are added by increasing the angle of
emission α. This is a particular situation for which there are general applicable
theoretical results. In particular, sharp threshold is expected as the number of
sensors increases [11, 12, 5, 30].
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To conduct the numerical experiments, we fix n the number of sensors as well
as the radius of emission r and the number of initially localized sensors (anchors).
Then, we look for the curve describing the probability of success of the localiza-
tion protocol with respect to the angle of emission α, i.e. Prob(L(α) = 1). The
numerical experiments are conducted once considering the interferences between
simultaneous emissions and once without. This allows measuring the impact of
the interferences on the localization algorithm. On a same figure, the experiments
are repeated with different values of r, keeping n constant, to measure the impact
on increasing the radius on emission. Proceeding this way, we have to keep in mind
that increasing the radius of emission increases the energy consumption. Indeed,
the energy consumed increases as rγ , where 2 ≤ γ ≤ 5 depending on the environ-
ment conditions. This point is very important to be considered since minimizing
the energy consumption is a key issue in wireless sensor networks.

The numerical experiments introduced above are repeated with different num-
ber of sensors n and different number of anchors. In Figures 3, 4, 5, the probability
of success of the algorithm is plotted with n = 50 sensors with respectively 5, 10
and 15 anchors. The right picture shows the numerical results without collisions. It
is observed, as theoretically expected, that as the radius of emission increases the
angle of emission necessary to ensure the same probability of success decreases. As
colisions are taken into account one observe on Figures 3,4,5 that increasing the
angle of emissions increases initially the chance of success up to a maximal value
and afterwards the chance of succes decreases. On these figures one can also ob-
serve that for large value of the emission angle, the performances are better with
small radius of emission. The qualitative behavior does not change as the number
of anchors changes.

It is worth to stress the importance of the waiting time, compare Figures 3 and
6 as well as the results plotted in Figures 7,8. Sensors which receive a location
data at a same time wait for a random time in 0, . . . , loge(n), in order to reduce
the interferences between such stations [2]. Our numerical computations confirm
that this waiting time is efficient in reducing the impact of the interferences on the
localization algorithm. Indeed, for large values of n, we observe, see in particular
Figure 8, that the performances of the algorithm with and without interferences
are very close from each other.

Although this observation is intuitively clear when assuming no interferences,
it is not at all evident that this can still be observed when considering the inter-
ferences between simultaneous emissions. However, it is a general observation (see
Figures 3,7,8,4,5,6) that increasing the angle of emission increases the chance of
success of the localization algorithm.

To reinforce this observation we run simulations of the localization algorithm
without waiting time and observe that in the same condition the localization algo-
rithm fails nearly all the time to locate a significant set of sensors. Moreover, the
bound loge(n) ≈ 4 for the waiting time is obtained with an asymptotic analysis
and hence, is valid as the number of sensors is large enough. Actually, we observe
as the number of sensors is smaller, Figure 3, that the impact of the interferences
on the performance of the localization algorithm is much more important. We ran
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Fig. 6. n = 50 sensors, 5 anchors with collisions. The curves depicted from right to left
are going in increasing the radius of emission. Waiting time in [0, 10].
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Fig. 7. n = 100 sensors, 10 anchors, with collisions (left) and without (right). The curves
depicted from right to left are going in increasing the radius of emission. Waiting time
in [0, 5].

a new set of simulations with n = 50 sensors and a waiting time bounded by 10.
The results are plotted in Figure 6 and comparing the results obtained without
interferences (right of Figure 3) it is clear that the impact of a longer waiting time
on improving the performances of the algorithm is important. With the numerical
experiments of Figures 3, 7, 8 it is possible to estimate the impact of the shape of
the emission pattern on the success of the localization algorithm. For this purpose,
we consider a value of p = 0.45 choosen arbitrarily. For each couple (ri, αi) leading
to a probability of success of p = 0.45 we compute αi×r2

i which is proportional to
the area of the emission pattern. The results are plotted in Figure 9 corresponding
from left to right to n = 50, 100, 1000 sensors, i.e. couples (ri, αi) are measured on
the Figures 3, 7, 8, respectively. The numerical results show that the probability of
success depends on the product α× r2. Actually, the probability depends on the
shape of the emission pattern and not uniquely on the area covered. This leads
to the question whether there exists an optimal shape of the emission pattern?
The numerical results in Figure 9 show that to minimize the energy consumption,
keeping the probability of success constant, the radius of emission has to be chosen
as small as possible. Hence, the observed optimal shape of the emission pattern is
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Fig. 8. n = 1000 sensors, 100 anchors, with collisions (left) and without (right). The
curves depicted from right to left are going in increasing the radius of emission. Waiting
time in [0, 7].
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Fig. 9. n = 50, n = 100 and n = 1000 sensors repectively, 5 anchors, with collisions
(blue) and without (red). Variation of the area of the emission pattern (with p = 0.45
constant) as a function of r. Plot of α(x) × x2, x = 0.30, 0.35, . . . with respect to x.

the circle. More generally, we can postulate that the symmetric radiation pattern
is much more appropriate to the localization algorithm.

We should mention that the numerical methods used in this paper prove to work
well and lead to some useful numerical results. The computations show clearly
the relevance of the waiting time before emitting. This is also relevant to model
dynamical behavior of sensor networks.
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Abstract. In this paper, we consider a combinatorial optimization pro-
blem that arises in the design of telecommunications network. It is known
as the Ring Star Problem. In this problem the aim is to locate a simple
cycle through a subset of vertices of a graph with the objective of mini-
mizing the sum of two costs: a routing cost proportional to the length of
the cycle, and an assignment cost from the vertices not in the cycle to
their closest vertex on the cycle. We propose a new hybrid metaheuristic
approach to solve the Ring Star Problem. In the hybrid metaheuristic,
we use a General Variable Neighborhood Search (GVNS) to improve the
quality of the solution obtained with a Greedy Randomized Adaptive
Search Procedure (GRASP). A set of extensive computational experi-
ments on instances from the classical TSP library and randomly genera-
ted are reported, comparing the GRASP/GVNS heuristic with other
heuristic found in the literature. These results indicate that the pro-
posed hybrid metaheuristic is highly efficient and superior to the other
available method proposed for the Ring Star Problem.

Keywords: ring star problem, network design, GRASP, VNS, heuristics.

1 Introduction

New technology in telecommunications leads to challenging network design prob-
lems. The problem considered in this article arises in the design of telecommu-
nications network in which terminals (user nodes) lying on a access network
are connected to concentrators (switches or multiplexers) lying on a backbone
network linked to a central unit (root) (see, e.g., [3]). Roughly speaking, the
problem then consists of selecting a subset of user nodes where concentrators
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will be installed, and interconnect them by a ring network, which results in a
ring topology, and assign the other user nodes to those concentrators by point-
to-point links, which results in a star topology. The goal is to find a feasible
solution that minimize the cost of ring and the cost of assigning vertices on the
star to the nearest vertex on the ring, i.e., the total cost of all connections must
be minimized.

The combinatorial optimization problem above is also known as the Ring Star
Problem, or RSP for short. The RSP can be formally defined as follows. Let G =
(V, E ∪A) be a complete mixed graph where V = {v1, v2, . . . , vn} is the vertex
set, E = {(vi, vj) : vi, vj ∈ V, i < j} is the edge set and A = {[vi, vj ] : vi, vj ∈ V }
is the arc set (loops [vi, vi] are included in A). The vertex v1 is referred to as
the root, each edge (vi, vj) is associated with a non-negative routing cost cvi,vj

and each arc [vi, vj ] is associated with a non-negative assignment cost dvi,vj . The
routing cost of a solution is the sum of all edge costs on the cycle. The assignment
cost of a solution is computed as the sum of the minimum assignment costs from
non-visited to visited vertices, i.e.,∑

vi∈V \V ′
min

vj∈V ′
dvi,vj . (1)

The Ring Star Problem consists of determining a Hamiltonian cycle through a
subset V ′ of V including v1 and at least two other vertices that minimizes the
sum of the routing cost of the cycle and the assignment cost of the vertices not
on the cycle to their nearest vertex on the cycle.

The Ring Star Problem is known to be NP-hard since the special case in which
the assignment cost are very large compared to the routing cost is the classical
Traveling Salesman Problem (TSP) [6]. In [6, 7], the authors provide integer
linear programming formulations and develop branch-and-cut algorithms for the
Ring Star Problem. In [9], the RSP is solved by an hybrid algorithm called
Variable Neighborhood Tabu Search (VNTS).

Metaheuristics such as Simulated Annealing (SA), Greedy Randomized Adap-
tive Search Procedure (GRASP), Tabu Search (TS) and Variable Neighborhood
Search (VNS) have been used successfully for solving combinatorial optimization
problem in practice and they have been applied to a very large variety of hard
optimization problems in telecommunications (see, e.g., [8]).

The aim of this paper is to propose a new hybrid approach for the Ring
Star Problem, consisting of a combination of the Greedy Randomized Adaptive
Search Procedure and General Variable Neighborhood Search (GVNS). We in-
tend show that metaheuristic based on GRASP and GVNS can give good results
for the RSP.

In this hybrid approach, several well known methods are used to execute local
search. Furthermore, our metaheuristic makes use a GVNS to improve the solu-
tions obtained with GRASP. An important characteristic of our proposal is that
GVNS operates as perturbation procedure of the solution given by GRASP. We
evaluate experimentally this metaheuristic and compare the solutions obtained
by the new heuristic with the solutions obtained by Variable Neighborhood Tabu
Search proposed in [9].
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The remainder of the paper is organized as follows. In Section 2, we describe
GRASP metaheuristic and his adaptation to the Ring Star Problem. GVNS
metaheuristic is presented in Section 3. Section 4 gives a description of how
GRASP and GVNS hybrid metaheuristics are combined to solve the Ring Star
Problem. Experimental results, with benchmark instances, are presented in Sec-
tion 5. Finally, concluding remarks are made in Section 6.

2 Greedy Randomized Adaptive Search Procedure

GRASP (Greedy Randomized Adaptive Search Procedure) is a multistart or it-
erative process, where different points in the search space are probed with local
search for high-quality solutions [1]. It has been used with success to provide
solutions for several difficult combinatorial optimization problems [2]. Each it-
eration of GRASP consists of the construction of a randomized greedy solution,
followed by a local search, starting from the constructed solution. The best so-
lution from all iterations is returned as result.

The elements which completely determine a GRASP are: the heuristic func-
tion, the way in which the Restricted Candidate List (RCL) is built, the improved
method and the stopping rule. The pseudo-code in Figure 1 illustrates the main
blocks of a GRASP procedure for minimization, in which MaxIter iterations
are performed and RandomSeed is used as the initial seed for the pseudorandom
number generator.

procedure GRASP(MaxIter, RandomSeed)
1. s∗ ← ∅; // best solution
2. f(s∗) ← ∞;
3. for i ← 1 to MaxIter do
4. s ← ConstructGreedyRandomizedSolution(RandomSeed);
5. s′ ← LocalSearch(s);
6. Update Solution(s′,s∗);
7. end-for
8. return(s∗).
end GRASP.

Fig. 1. GRASP pseudo-code for minimization

In the remainder of this section, we describe in detail the phases of the GRASP
for the Ring Star Problem, in order to facilitate the discussion of the hybrid
approach that will follow in the next sections.

2.1 Construction Phase

The construction phase is iterative, greedy and adaptive, in the sense that the
element chosen at each iteration during the construction phase is dependent on
those previously chosen.

The GRASP construction phase, shown in Figure 2, builds a feasible solution
by selecting one vertex, one at a time. A solution is a tour or cycle S including
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procedure ConstructGreedyRandomizedSolution(RandomSeed)
1. s∗ ← ∅; f(s∗) ← ∞;
2. for IterF ilter ← 1 to MaxIterFilter do // number of solutions of the pool
3. s ← {v1}; // current solution
4. while the stopping condition is met do
5. gmin = min{g(vi) | vi ∈ V \ s}; gmax = max{g(vi) | vi ∈ V \ s};
6. L = {vi ∈ V \ s | g(vi) ≤ gmin + α(gmax − gmin)};
7. Select vi, at random, from L;
8. s = s ∪ {vi}; V = V \ {vi};
9. end-while
10. if (f(s) < f(s∗)) then
11. s∗ ← s; f(s∗) ← f(s);
12. end-if
13. end-for
14. return(s∗).
end ConstructGreedyRandomizedSolution.

Fig. 2. The GRASP construction phase

the root, denoted by v1. Every non visited vertex is allocated to its nearest vertex
in the cycle, being the allocation cost equal to the distance between them. The
length of the cycle is given by

LC(S) =
∑

(vi,vj)∈S

cvi,vj , (2)

and its allocation cost is given by

AC(S) =
∑
vi∈S

min
vj∈V (S)

dvi,vj , (3)

where V (S) is the set of vertices of the cycle S. The RSP consists of finding the
cycle S visiting the depot that minimizes LC(S) + AC(S).

In the following, we describe an adaptive greedy function g : L → 
, a
construction mechanism for the RCL, and a probabilistic selection criterion for
the GRASP construction phase proposed.

The initial solution is obtained as follows. To obtain an initial cycle S we start
only with the root v1. The greedy function g takes into account the contribution
to the objective function achieved by selecting a particular element. In the case
of the Ring Star Problem, it is intuitive to relate the greedy function to the
smallest increment in the value of the length of cycle S, i.e., to insert the vertex
in the best position, plus the sum of the cost of connectivity average of vertices its
outgoing (allocation). More formally, for each vi ∈ V \S we define the following

g(vi) = SmallestIncrement(vi) +

∑
j∈V \S

dvi,vj

|V \ S| . (4)

The greedy choice is to select the vertex vi with smallest g(vi).
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The probabilistic component of a GRASP is characterized by randomly choos-
ing one of the best candidates in the list, but not necessarily the top candidate.
The list of best candidates corresponds to the Restricted Candidate List. To
define the construction mechanism proposed for the RCL, let

gmin = min{g(vi) | vi ∈ V \ S} and gmax = max{g(vi) | vi ∈ V \ S}. (5)

To select the vertex to be added to the solution, a Restricted Candidate List
is defined to include all vertices vi in the candidate set L having cost g(vi) ≤
gmin + α(gmax − gmin) where α ∈ [0, 1]. In the following, one vertex vi ∈ L
is chosen at random and it is added to the solution, i.e., S = S ∪ {vi} and
V = V \ {vi}.

Furthermore, the GRASP construction phase uses short-term memory scheme.
Their scheme maintains a pool of solutions to be used in the construction phase.
So, the initial solution returned by construction phase corresponds to the best
solution of the pool.

The GRASP construction phase stops when there are at least three vertices
in the cycle and the objective function cannot be decreased anymore.

2.2 Local Search Phase

It is almost always beneficial to apply a local search to attempt to improve each
constructed solution. A local search algorithm works in an iterative fashion by
successively replacing the current solution S by a better solution in the neigh-
borhood of the current solution and a new neighborhood search is initialized.
Otherwise, the solution is locally optimal with respect to the neighborhood and
the local search ends.

The definition of the neighborhood N(S) is crucial for the performance of
the local search. The local search procedure here, is based on a neighborhood
that seek to improve the length of the cycle and the total allocation cost in the
current solution as defined in (2) and (3).

Let vi and vj two vertices in S. Four simple and well known types of moves
are defined to obtain the neighborhood N(S):

– add: at each iteration a new vertex vj that does not belong to the solution
is inserted;

– drop: at each iteration the vertex vj that belongs to the solution is removed;
– add/drop: at each iteration the interchange of two vertices vi and vj consists

of a combination of an add and a drop move. The vertex vi is removed from
solution, and the vertex vj is inserted in the best possible position in the
solution;

– �-opt: at each iteration the length of the cycle is improved by performing
classical edge interchange moves such as 2-opt and 3-opt by means of a TSP.

Figure 3 gives the pseudo-code of the local search using these types of moves.
Lines 1-5 correspond to moves used in which each neighbor solution is obtained
through a move involving add, drop, add/drop or �-opt, respectively. The best
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procedure LocalSearch(s)
1. Hadd ← {s′ ∈ Nadd(s) | f(s′) < f(s)};
2. Hdrop ← {s′ ∈ Ndrop(s) | f(s′) < f(s)};
3. Hadd/drop ← {s′ ∈ Nadd/drop(s) | f(s′) < f(s)};
4. H�−opt ← {s′ ∈ N�−opt(s) | f(s′) < f(s)};
5. H ← Hadd ∪ Hdrop ∪ Hadd/drop ∪ H�−opt;
6. while |H | > 0 do
7. Select s′ ∈ H ;
8. s ← s′;
9. Hadd ← {s′ ∈ Nadd(s) | f(s′) < f(s)};
10. Hdrop ← {s′ ∈ Ndrop(s) | f(s′) < f(s)};
11. Hadd/drop ← {s′ ∈ Nadd/drop(s) | f(s′) < f(s)};
12. H�−opt ← {s′ ∈ N�−opt(s) | f(s′) < f(s)};
13. H ← Hadd ∪ Hdrop ∪ Hadd/drop ∪ H�−opt;
14. end-while
15. return(s).
end LocalSearch.

Fig. 3. The GRASP local search phase

neighbor s′ of the current solution s is selected in line 7, i.e., an improving move
is found. So, the neighbor solutions of the current solution s are computed in
lines 9-13. The local search ends when no further such improvement is possible.

3 General Variable Neighborhood Search

Variable Neighborhood Search (VNS) is a relatively new technique based on
systematic increase the size of the neighborhood in a heuristic search [4].

In general, heuristic searches proceed by performing a sequence of local changes
in a initial solution which improve each time the value of the objective function
until a local optimum is found. VNS algorithms overcome this situation changing
the neighborhood structure always a local search is trapped in a local minimum.

In its basic form, VNS explores a set of neighborhoods, denoted by Nk, (k =
1, ..., kmax), of the current solution, makes a local search from a neighbor solution
to a local optimum, and moves to it if there has been an improvement. A basic
local search, i.e. kmax = 1, consists of applying an improving move while such
move exists, and a VNS algorithm can be implemented by the combination of
series of random and improving (local) searches. This approach offers different
degrees of flexibility: the order in the search can be changed, the choice of Nk

to be used and how many of them, and the search strategy chosen to be used in
changing neighborhoods.

The General Variable Neighborhood Search (GVNS) method applies two (pos-
sible different) series of neighborhoods; one for the shaking and one for the de-
scent. The GNVS led to the most successful applications of VNS metaheuristic
recently reported. Several of those applications use the same set of neighborhoods
structures for shaking and descent. The shake procedure consists in obtaining
a random point from the current neighborhood Nk(s). This procedure applies
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procedure GVNS(s, kmax, MaxIterGVNS)
1. Select the set of neighborhood structures Nk, for each k = 1, . . . , kmax;
2. s∗ ← s; f(s∗) ← f(s);
3. for Iter ← 1 to MaxIterGVNS do
4. k ← random();
5. Apply k random moves to the solution s to get s′;
6. Apply some local search to the s′ until a local minimum s′′ is found;
7. if f(s′′) < f(s∗) then
8. s∗ ← s′′; s ← s′′;
9. end-if
10. end-for
11. return(s∗).
end GVNS.

Fig. 4. Basic GVNS pseudo-code for minimization

a number k of random base moves. The Figure 4 describes the idea of a basic
GVNS algorithm.

In the remainder of this section, we describe in detail the basic GVNS proposed
for the Ring Star Problem, in order to facilitate the discussion of the hybrid
approach that will follow in the next sections.

The basic GVNS proposed for the RSP uses one shake procedure very simple.
Given a size k for the shake procedure, we choose k times two vertices at random,
vi and vj . If the vertex vi is in the cycle and vj is outside the cycle, we do the
corresponding add/drop move, .i.e., we drop vi from solution and add vj to
solution. If both vertices are in the cycle, we drop vi from solution. If both
vertices are outside the cycle, we add vj to solution.

Furthermore, local search add, drop, add/drop and �-opt moves defined for
GRASP are used in basic GVNS with neighborhoods Nk(k = 1, . . . , kmax). So,
the loop in lines 3-10 investigates one neighborhood at a time, until a local
optimum with respect to neighborhoods add, drop, add/drop and �-opt is found.

4 A GRASP/GVNS Heuristic

A natural way of hybridizing GRASP and GVNS is to use GVNS in the second
phase or in the phase after the local search method of the GRASP (c.f., [5]).
In this section, we describe the new GRASP heuristic combined with GVNS for
the the Ring Star Problem using the second way.

The pseudo-code in Figure 5 illustrates the main blocks of a heuristic based
on the GRASP and GVNS algorithms described in Sections 2 and 3.

The heuristic takes as parameters the number MaxIter of iterations, the value
RandomSeed used as the initial seed for the pseudo-random number generator,
the value kmax and the number MaxIterGVNS of iterations of the GVNS. The
loop in lines 2-9 performs MaxIter iterations. In lines 3-7 is used the algorithm
GRASP described in Section 2. The VNS strategy, using neighborhoods add,
drop, swap and �-opt, is implemented in line 8, as described in Section 3.
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procedure GRASP+GVNS(MaxIter, RandomSeed, kmax, MaxIterGVNS)
1. f(s∗) ← ∞;
2. for i ← 1 to MaxIter do
3. s ← ConstructGreedyRandomizedSolution(RandomSeed);
4. s′ ← LocalSearch(s);
5. if (f(s′) < f(s∗)) then
6. s∗ ← s′; f(s∗) ← f(s′);
7. end-if
8. GVNS(s′, kmax, MaxIterGVNS);
9. end-for
10. return(s∗).
end GRASP+GVNS.

Fig. 5. Pseudo-code of the GRASP+GVNS heuristic

5 Computational Results

In this section, we reports some results obtained with preliminary experiments
for Ring Star Problem using the GRASP+GVNS heuristic on randomly gener-
ated test problems and on a set of instances from the TSPLIB. All computational
experiments have been performed on a SEMPRON 2.6 GHz AMD processor with 512
Mbytes of RAM memory under Linux operating system. The GRASP+GVNS
heuristic was implemented in C ++ language.

5.1 Test Problems

Before we describe the experimental results, we must comment about benchmark
instances used. The set of instances is divided into two categories. The first set of
test problems we considered in our computational experiments is called category
C1 and the test problems are taken from [6, 7] involving 10, 20, 30, 40, 50, 75
and 100 vertices and having EUC2D format (Euclidean distances). To define the
routing and assignment costs, we have proceeded as in [6, 7], i.e., we have set
cij = β × lij and dij = (10 − β) × lij , where β ∈ {5, 7, 9} and lij correspond to
the Euclidean distance between vertices vi and vj .

The second set is called category C2. The test problems of C2 are taken on
a subset of instances from the TSPLIB involving between 50 and 100 vertices
and having EUC2D format. We also have the same definition for cij and dij . We
have restricted our computational experiments to the 210 instances of category
C1, and the 33 instances of category C2.

5.2 Experiments

Our objective with the experimental part of this paper is to evaluate the ef-
fectiveness of hybridizing GRASP and GVNS when used in solving of the Ring
Star Problem. The number of GRASP iterations were fixed at MaxIter = n,
the value of MaxIterFilter was fixed at 50 and the values for α were taken on
{0.5, 0.6, 0.7, 0.8, 0.9}. The number of GVNS iterations were fixed at
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Table 1. Results obtained by the GRASP+GVNS heuristic for C1 instances

Instances C1 α = 0.5 α = 0.6 α = 0.7 α = 0.8 α = 0.9
standard deviation (GAP) 0.00332 0.00305 0.00287 0.01490 0.00232

best solutions found 40 41 39 43 40

Table 2. Comparison between algorithms for instances with 75 vertices in C1

Instance GRASP + GVNS VNTS GAP β
f min f avg f max t avg f min f avg f max t avg

f75 1.rcp 33520 33545 33565 104,61 33730 34148,4 35076 3,85 0,006265 5
37920 37945,8 37963 84,87 37920 37969,6 38129 4,79 0 7
27479 27498,2 27575 28,88 27479 27479 27479 5,44 0 9

f75 2.rcp 30745 30775 30795 98,26 31100 31565,4 32530 3,91 0,011547 5
35032 35032,6 35035 89,07 35032 35185 35287 3,85 0 7
26972 26972 26972 39,78 26972 26997,8 27101 4,08 0 9

f75 3.rcp 33100 33100 33100 89,53 33705 34128 34766 4,09 0,018278 5
37098 37124,6 37150 84,00 37096 37100,4 37110 4,32 -0,000054 7
27388 27497,6 27545 36,16 27388 27417,2 27534 3,93 0 9

f75 4.rcp 31285 31285 31285 92,48 31517 31621,6 31997 4,03 0,007416 5
34583 34659,4 34767 77,79 34583 35192,4 36271 6,38 0 7
25946 25952,4 25978 33,84 25855 25973 26063 3,79 -0,003507 9

f75 5.rcp 29840 29840 29840 104,71 29906 30483,6 31207 3,94 0,002212 5
33734 33783 33838 116,07 33726 33726 33726 3,98 -0,000237 7
28783 28795 28803 38,57 28770 28770 28770 6,35 -0,000452 9

f75 6.rcp 32420 32448 32465 87,96 32696 33270 33550 3,91 0,008513 5
37122 37178,8 37406 105,29 37188 37434,6 37894 4,67 0,001778 7
26034 26062,8 26098 40,84 25962 25984,8 26019 4,01 -0,002766 9

f75 7.rcp 31900 31940 32040 134,34 32067 32390,8 32826 3,93 0,005235 5
35381 35453 35381 82,33 35389 35493,2 35560 4,13 0,000226 7
28178 28178 28178 53,45 28178 28178 28178 9,45 0 9

f75 8.rcp 30900 30939 30950 100,67 31271 31935,2 32462 4,64 0,012006 5
35356 35399,4 35431 81,16 35356 35356 35356 5,65 0 7
26575 26688,2 26792 55,09 26543 26543 26543 5,97 -0,001204 9

f75 9.rcp 30825 30833 30865 147,92 30825 31373,6 31641 4,10 0 5
34028 34028 34028 106,91 34028 34049,6 34055 6,00 0 7
24957 25083 25135 41,09 24957 24957 24957 7,45 0 9

f75 10.rcp 30930 30948 30975 94,22 31250 31645,6 32010 4,59 0,010346 5
34728 34772,6 34852 81,77 34753 35244,2 35849 4,37 0,000720 7
28382 28416,4 28425 49,43 28286 28286 28286 8,0 -0,003382 9

MaxIterGVNS = 10. Each one of the 243 instances was executed five times with
different seeds.

Category C1
In order to evaluate the performance of our approach, first we run the algo-
rithm presented in [9], kindly sent to us by authors, and after we run the
GRASP+GVNS heuristic. We conducted our computational study with five pa-
rameters for α. From the results of the experiments we conclude that the ap-
propriated value for α is 0.8. Table 1 summarizes the results obtained for the
210 instances of C1. For each parameter α, we reports the standard deviation
(GAP) of the heuristic solution value with respect to the best solution found by
[9] and the number of instances for which one best solution was found (number
of improvements). The Table 1 shows that the GRASP+GVNS heuristic signif-
icantly improved the solutions obtained by VNTS [9]. The new heuristic found
best solutions for 43 out of the 210 instances of C1 for α = 0.8. Furthermore,
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Table 3. Comparison between algorithms for instances with 100 vertices in C1

Instance GRASP + GVNS VNTS GAP β
f min f avg f max t avg f min f avg f max t avg

f100 1.rcp 36665 36790 36915 340,9 37250 37696,4 38991 10,2 0,015955 5
41279 41349,4 41427 363,9 41279 41573,2 41952 11,3 0 7
29543 29560,6 29565 123,7 29543 29547,4 29565 12,5 0 9

f100 2.rcp 37500 37594 37710 359,7 37664 38383,8 39204 9,5 0,004373 5
41983 42064,8 42264 321,6 41971 42182,4 42506 12,8 -0,00029 7
31166 31197,2 31227 129,2 31115 31115 31115 7,8 -0,00164 9

f100 3.rcp 34750 34831 34855 389,2 34890 35664 36654 9,7 0,004029 5
37912 37935,8 38011 325,3 38133 38133 38133 10,7 0,005829 7
28180 28180 28180 150,9 28180 28180 28180 9,5 0 9

f7100 4.rcp 37345 37428 37660 430,8 37762 38021,4 38425 11 0,011166 5
41907 41984,6 42039 364,8 41752 41821 42085 10,1 -0,0037 7
33452 33479 33505 122,2 33452 33452 33452 14 0 9

f100 5.rcp 35730 35730 35730 447,5 35958 36743,8 37552 10,6 0,006381 5
40338 40349,2 40378 354,7 40802 41024 41779 11,3 0,011503 7
33451 33451 33451 146,4 33451 33451 33451 25,1 0 9

f100 6.rcp 36355 36359 36365 418,2 36823 37235,2 37631 9,4 0,012873 5
41743 41823,6 41915 319,2 41772 42063,6 42751 10,3 0,000695 7
31677 31850,2 31998 158,9 31612 31612 31612 14,5 -0,00205 9

f100 7.rcp 35840 35948 36095 392,9 35984 36591 37109 9,8 0,004018 5
38950 39016,8 39176 310,3 38910 38912,8 38924 9,9 -0,00103 7
29911 29923 29926 134 29911 29914 29926 7,5 0 9

f100 8.rcp 37575 37666 37740 396,2 37885 38421 39343 10,5 0,00825 5
42463 42741 42930 319,4 42553 42652,6 42885 11 0,002119 7
30789 30789,4 30791 188,3 30779 30779 30779 25,6 -0,00032 9

f100 9.rcp 36780 36890 37005 427,6 37242 37600,6 38074 10,5 0,012561 5
40372 40430,6 40493 324,1 40372 40773,6 42311 11,3 0 7
31828 31828 31828 168,1 31801 31801 31801 9,3 -0,00085 9

f100 10.rcp 38355 38436 38585 409,5 38509 39634 40465 9,8 0,004015 5
43130 43152,8 43175 316,6 43074 43335,4 43551 10,4 -0,0013 7
31425 31425 31425 147 31425 31425 31425 13,6 0 9

the GRASP+GVNS is robust for all values of α because the standard deviations
yielded not exceeding 0.0149 with a small increase in computational time.

In Tables 2 and 3, we compare the results obtained by GRASP+GVNS heuris-
tic using α = 0.8 with VNTS for the instances with 75 and 100 vertices. We
report the problem characteristic, the minimum, average and maximum objec-
tives values, the average computational times in seconds by each algorithm and
the value of β. The GRASP+GVNS heuristic, as illustrated by the column GAP,
found best solutions for 12 out of the 30 and 14 out of the 30 instances with 75
and 100 vertices, respectively.

Category C2
In this category were submitted 33 instances to both algorithms. For all instances
tested, the GRASP+GVNS found best solutions 13 out of the 33 instances and
found the same solutions in 13 others, as illustrated by the column GAP. The
standard deviation is low when analyzing the value of GAP of different executions
for the same instance and β, reinforced the robustness of the GRASP+GVNS
approach. The Table 4 shows the comparison between GRASP+GVNS heuristic
using α = 0.9 and VNTS heuristic for the modified instances from TSP.
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Table 4. Comparison between algorithms for instances in C2

Instance GRASP + GVNS VNTS GAP β
f min f avg f max t avg f min f avg f max t avg

eil51.rcp 1995 1998 2005 12,35 2025 2040,2 2059 1,27 0,015038 5
2113 2117,4 2123 10,11 2113 2113 2113 1,76 0 7
1244 1244 1244 4,98 1244 1244 1244 0,98 0 9

berlin52.rcp 36115 36152 36260 16,80 36720 37326,8 38259 1,40 0,016752 5
37376 37447,2 37548 16,26 37376 37675 38446 2,05 0 7
20361 20361 20361 7,41 20361 20361 20361 1,02 0 9

eil76.rcp 2460 2461 2465 91,10 2507 2511,2 2515 4,11 0,019106 5
2504 2504 2504 83,70 2504 2504 2504 5,68 0 7
1710 1710 1710 30,14 1710 1710 1710 6,17 0 9

pr76.rcp 500395 500403 500405 133,81 502225 509954 513713 4,21 0,003657 5
556939 557755,8 558555 74,643 555858 557953,4 559760 4,67 -0,001941 7
424359 424359 424359 31,22 424359 424661 425114 3,94 0 9

rat99.rcp 5885 5898 5915 331,90 5997 6094,2 6160 9,92 0,019031 5
6447 6460,8 6476 229,20 6436 6442 6451 8,92 -0,001706 7
5150 5158,8 5164 140,50 5150 5151,6 5158 8,25 0 9

rd100.rcp 37975 38006 38060 330,45 38447 38872,6 39175 10,58 0,012429 5
40952 41033 41131 237,33 40971 41046,2 41347 10,18 0,000464 7
31776 31780,8 31784 120,95 31776 31776 31776 9,49 0 9

kroA100.rcp 100785 100797 100845 321,652 101230 103126,6 105305 10,25 0,004415 5
115438 115519,4 115607 282,35 115388 117095,4 120601 11,82 -0,000433 7
94467 94574,4 94852 101,00 94265 94652,6 95697 8,03 -0,002138 9

kroB100.rcp 104575 104758 104880 350,46 105073 107006 108159 10,75 0,004762 5
118112 118481,4 118661 240,84 118183 119392,8 122302 9,43 0,000601 7
94018 94047,6 94055 87,48 93938 93965,6 94026 8,04 -0,000851 9

kroC100.rcp 99570 99588 99600 318,58 99940 100747,6 102000 10,25 0,003716 5
113533 113566 113698 266,27 113533 113533 113533 11,57 0 7
92894 92894 92894 169,62 92894 92894 92894 25,92 0 9

kroD100.rcp 101795 101896 102115 337,98 103998 104948,8 106275 9,97 0,021543 5
117297 117525,8 117814 304,49 116924 118105,2 121016 9,84 -0,003180 7
92225 92249,8 92349 129,51 92102 92102 92102 18,95 -0,001334 9

kroE100.rcp 104915 105079 105220 341,77 105003 105693,4 106547 10,67 0,000839 5
116471 116471 116471 253,31 116471 117562 119027 10,91 0 7
96116 96281,2 96346 116,10 96116 96119,6 96122 107,07 0 9

6 Concluding Remarks

In this work, we proposed a new heuristic based on Greedy Randomized Adap-
tive Search Procedure (GRASP) and General Variable Neighborhood Search
(GVNS) applied to the Ring Star Problem. The new heuristic produces within
reasonable computing times highly accurate solutions and compares well with a
more elaborate heuristic developed in [9]. In the majority of the test problems,
GRASP+GVNS heuristic gives a better minimum objective value than VNTS.
Also, it must be emphasized that GRASP+VNS is more robust than VNTS
because the difference between the maximum and minimum objective values is
smaller in GRASP+GVNS than in VNTS.

Future research will be focus on applying this hybrid approach to larger in-
stances of the categories tested.
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Abstract. Many combinatorial optimization problems aim to select a
subset of elements of maximum value subject to certain constraints. We
consider an incremental version of such problems, in which some of the
constraints rise over time. A solution is a sequence of feasible solutions,
one for each time step, such that later solutions build on earlier solu-
tions incrementally. We introduce a general model for such problems,
and define incremental versions of maximum flow, bipartite matching,
and knapsack. We find that imposing an incremental structure on a
problem can drastically change its complexity. With this in mind, we
give general yet simple techniques to adapt algorithms for optimization
problems to their respective incremental versions, and discuss tightness
of these adaptations with respect to the three aforementioned problems.

Keywords: analysis of algorithms, approximation techniques, combina-
torial problems, network analysis, online problems.

1 Introduction

There has been recent interest in incremental versions of classic problems such as
facility location [1], k-median [2], maximum flow [3], and k-centre [4]. These prob-
lems model situations in which there is a natural hierarchy of levels with different
characteristics, such as local vs. wide-area networks or multilevel memory caches.
Incremental variations of NP-hard problems contain their non-incremental ver-
sions as special cases and therefore remain NP-hard. It is interesting to ask
whether incremental versions of polytime problems remain polytime, or whether
the incremental structure alters the problem enough to increase its complexity.

Traditional algorithms require all input at the outset and then determine a
single solution. In practice, however, many problems require solutions to be built
up over time due to limited resources and rising constraints. In this scenario, one
or more of the inputs to the problem increases at discrete time intervals. One
wants the best solution at each step, subject to the constraint that elements
in the current solution cannot be removed. We would like a good solution at
all stages; however, a commitment at some stage may limit the options at later
stages. It is this tension between local and global optimality that makes these
incremental problems challenging.
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For example, consider the routing of a message from a source to a destina-
tion in an untrusted network. To increase security and preserve power at the
internal router nodes, it is desirable to divide the message among node-disjoint
paths, as proposed by Lou and Fang [5]. Adversaries within the network must
intercept all components of a well-divided message before they are able to deci-
pher it. Also, transmitting a message along many node-disjoint paths prevents
individual routers from depleting their battery faster than their neighbors. Thus
more node-disjoint paths available in the network results in an increase in data
confidentiality and energy efficiency.

Now suppose the underlying network changes over time: transmission dis-
tances increase and links appear between existing routers. We still want as many
node-disjoint paths as possible, but we do not want to reprogram routers. More
specifically, we would prefer not to change any of the existing node-disjoint
paths.

The above example is an application of incremental maximum flow, defined
on a directed network with source s, sink t, and a non-decreasing sequence of
capacity functions, one for each time step. The goal is to find a sequence of
s-t flows such that each flow satisfies its corresponding capacity constraints but
does not remove flow from any prior solution. For each time step �, we compare
the value of the �th flow to the value of the optimal flow satisfying the current
capacity constraints. We want this ratio to be close to 1, but because we are
constrained to keep all flow from previous time steps, this may not be possible.
Therefore one goal is to find a sequence of flows that maximizes the minimum
of this ratio over all values of �. An algorithm for this problem is said to be
r-competitive if the minimum of the ratio over all � is no less than r. This value
of r is called the competitive ratio of the algorithm. Alternatively, if we are more
interested in overall performance rather than the performance at each time step,
our goal would be to maximize the sum of the solutions over all time steps. In our
routing example, this objective would correspond to maximizing the throughput
over all time.

Following this framework, we can define incremental versions of other combi-
natorial maximization problems. Incremental bipartite matching is defined on a
bipartite graph where edges appear over time. A solution for this problem is a
sequence of matchings, one for each time step, such that each matching contains
all previous matchings. This model can be applied to job scheduling, as it can be
costly or disruptive to reassign jobs. In incremental knapsack we are given a set
of items with sizes and a sequence of increasing knapsack capacities. We want
a sequence of knapsack solutions such that each solution contains all the items
in the previous solution. Memory allocation is one application of incremental
knapsack.

Our Results. We introduce a general incremental model and analyze the com-
plexity of the three incremental problems defined above with respect to two
different objective functions: maximum ratio and maximum sum. We find that
incremental bipartite matching remains polytime in many cases and becomes
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Table 1. Best known approximation factors for some maximization problems and
their incremental variants. ∗: n is the number of nodes in the flow network. ∗∗: fully
polytime approximation scheme from [19, 20]. Hk is the kth harmonic number, which
is Θ(log(k)).

Problem Single-Level k-Level Max Sum k-Level Max Ratio

Bipartite Matching 1 1
1

1/2
(k = 2)
(k > 2)

Weighted Bipartite Matching 1 1 NP-hard (k ≥ 2)
Max Flow 1 1/Hk (tight) O(1/n)∗ (tight)
Knapsack 1 − ε∗∗ 1/Hk (1 − ε)2/2

NP-hard in others, whereas incremental max flow is NP-hard even for very ba-
sic models. Our central contribution is a general technique to translate exact
or approximate algorithms for non-incremental optimization problems into ap-
proximation algorithms for the corresponding incremental versions. We find that
these techniques yield tight algorithms in the case of max flow, but can be im-
proved for bipartite matching and knapsack. The best known approximation
bounds are given in Table 1.

The incremental model is laid out in Section 2. We present complexity re-
sults for the max sum objective in Section 3 and analogous results for the
max ratio objective in Section 4. We conclude with some extensions in
Section 5.

Related Work. Several incremental problems have been studied recently;
Mettu and Plaxton [2] study incremental versions of uncapacitated k-median and
give a 29.86-competitive algorithm. Plaxton [1] introduces incremental facility
location and gives a (1 + ε)α-competitive algorithm, given an α-approximation
to uncapacitated facility location. This results in a 12.16-competitive algorithm.
Gonzales [6] gives a 2-approximation algorithm for k-center, which is also a 2-
competitive algorithm for the incremental k-center problem studied by [2, 1, 4, 7].
Lin et al. [4] present a general framework for cardinality constrained minimiza-
tion problems, resulting in approximation algorithms for k-vertex cover and k-
set cover, an improved approximation algorithm for incremental k-median, and
alternative approximation algorithms for incremental k-MST and incremental
facility location.

In the area of polynomial time problems, Hartline and Sharp [3] introduce
incremental versions of max flow, and find the first instance of a polynomial-time
problem whose incremental version is NP-hard. In [8] we present a general model
and algorithmic framework for combinatorial covering problems, achieving a 4α-
approximation for any incremental covering problem with an α-approximation
for its offline version.

Online problems share many similarities with the incremental model. For in-
stance, their input changes with time and their solutions build on each other
incrementally. However, online algorithms act with no knowledge of future input
and are evaluated only on their final output [9, 10]. Online algorithms have been
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studied in many contexts, including bin packing [11], graph coloring [12], and
bipartite matching [13].

Stochastic optimization also resembles our incremental framework, in that
instances have multi-stage input and incremental solutions. However, the prob-
lem instance is not fully known at the outset, and the goal is to find a single
solution of minimum cost. We motivate our general model by those developed
for stochastic problems [14, 15, 16]. General models for single-level optimization
problems are available in [17, 18].

2 Preliminaries

Single-Level Problems. We define a single-level abstract combinatorial op-
timization problem that we adapt to the incremental setting. Such a problem
Π consists of a ground set from which we select a subset of elements of op-
timal value that satisfy input constraints. In particular, let X be the ground
set, F ⊆ 2X the set of feasible solutions as defined by problem constraints, and
v : 2X → R a valuation function on element sets. The goal is to return an S ∈ F
optimizing v(S). Let OPT(X,F , v), or OPT(F) when X and v are understood,
denote such a solution.

This notation is adapted from the general minimization models of [14, 15],
however it is general enough to represent both maximization and minimization
problems. This paper considers packing problems, a subclass of maximization
problems that are “monotone,” in the sense that any subset of a feasible so-
lution is also feasible. In particular, if F is nonempty then the empty set is a
feasible solution: ∅ ∈ F . We further assume that v(∅) = 0.

Incremental Problems. Given any maximization problem Π , we define its
incremental version Πk as follows. There will be k levels. Each level � has its
own feasible set F�. A feasible solution is a tuple S = (S1, S2, . . . , Sk) such that
S� ∈ F� and S1 ⊆ S2 ⊆ · · · ⊆ Sk. Although we do not explicitly assume that
F� ⊆ F�+1, we may do so without loss of generality.

In contrast to the single-level problem, where the goal is to find a solution
of maximum value, there are several possible objective functions in the incre-
mental variation. For the maximum ratio problem, the objective is to satisfy
the maximum possible proportion of each level’s optimal solution: find S maxi-
mizing R(S) = min�

v(S�)
v(OPT(F�))

. This is the same as the competitive ratio of an
online problem, and is a standard metric for incremental problems [1, 2]. If one is
less concerned about fairness over all levels, and is more concerned about over-
all performance, then the maximum sum objective is more appropriate: for the
maximum sum problem, the objective is to maximize the sum of the solutions
over all levels: find S maximizing V(S) =

∑
� v(S�).

We now consider three well-known problems, and demonstrate how they fit
into this framework. There are multiple ways to define incremental versions
of these problems, but we introduce only those subject to discussion in this
paper.
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2.1 Bipartite Matching

A bipartite matching instance consists of a graph G = (U ∪ V, E); the elements
are the edges of the graph, and the feasible solutions are matchings contained in
E. The value of a matching M is v(M) = |M |.

Incremental bipartite matching is defined on a sequence of k bipartite graphs
G� = (U ∪ V, E�), where E� ⊆ E�+1. The elements are the edges of Ek, and the
feasible set at level � is just the matchings of Ek contained in E�. Therefore a
solution is a sequence of matchings (M1, M2, . . . , Mk) such that M� is a matching
in the graph G�, and M� ⊆ M�+1. The maximum single-level matching for level
� is denoted by M∗

� . The weighted case is defined analogously, except each edge
e ∈ E� has a fixed weight we ≥ 0, and v(M�) =

∑
e∈M�

we.

2.2 Maximum Flow

A maximum flow instance consists of a directed graph G = (V, E) with source
s, sink t, and a capacity function c; the elements are unit s-t flow paths, and the
feasible solutions are the flows satisfying the given capacity function. The value
of a flow is the number of unit s-t flow paths it contains.

Incremental maximum flow is defined on a directed graph G = (V, E) with
source s, sink t, and a non-decreasing sequence of k capacity functions c� : E →
Q, 1 ≤ � ≤ k, that define k feasible sets. A solution is a sequence of s-t flows
(f1, f2, . . . , fk) such that the flow f� on any edge e does not exceed the capacity
c�(e) but is at least f�−1(e), the amount sent along e by the previous flow. We
denote the value of a flow f� by |f�|, and the maximum single-level flow at level
� by f∗

� .
For other possible interpretations of incremental max flow, see [3].

2.3 Knapsack

A knapsack instance consists of capacity B and a set of items U , item u ∈ U with
size |u| and value vu; the elements are the items we could place in the knapsack,
while the feasible solutions are subsets of items that fit in the knapsack. In this
paper we only consider the case where vu = |u|; the value of a set of items U ′

is therefore the combined size |U ′| = ∑
u∈U ′ |u|. This special case is sometimes

called the maximum subset sum problem.
Incremental knapsack is defined on a set of items U , item u ∈ U with size

|u|, but instead of a single capacity B we have a sequence of k capacities B1 ≤
B2 ≤ · · · ≤ Bk that define k feasible sets. A solution is a sequence of subsets
(U1, U2, . . . , Uk) of U such that |U�| ≤ B�, and U� ⊆ U�+1. We denote the value
of the maximum single-level solution at level � by B∗

� .

3 The Maximum Sum Objective Function

In this section we discuss how the max sum incremental structure affects the
complexity of the problems introduced in Section 2. We give a general technique
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to convert an algorithm for a problem Π into an approximation algorithm for its
incremental variant Πk, and analyze its tightness with respect to these problems.

Theorem 1. Max sum weighted incremental bipartite matching is in P .

Proof. We transform our incremental instance (G1, G2, . . . , Gk, w) into a single
instance (G, w′) of the max weight matching problem, which can then be solved
in polytime [21]. We create a graph G = (V, E) where E = Ek. For each edge
e, we assign it weight w′

e = we · (k − � + 1) if e first appears in the edge set
E�, i.e. if e ∈ E�\E�−1. This is the amount e would contribute to the sum if we
were to add it to our solution at level �. For a matching M returned by the max
weight matching algorithm, we define an incremental solution M� = M ∩E�. We
argue that M is a maximum weight matching if and only if (M1, M2, . . . , Mk)
is the optimal weighted incremental max sum solution. This follows from the
one-to-one correspondence between the value of the maximum weight matching
and the value of our incremental solution:

w(M) =
∑
e∈M

w′
e =

k∑
�=1

∑
e∈M�\M�−1

w′
e =

k∑
�=1

∑
e∈M�\M�−1

we · (k − � + 1)

=
k∑

�=1

w(M�\M�−1)(k − � + 1) =
k∑

�=1

w(M�) = V(M1, M2, . . . , Mk). ��

Theorem 1 shows that the max sum incremental structure does not affect the
complexity of bipartite matching, suggesting that incremental versions of poly-
time problems may remain polytime. However, Theorem 3.1 of [3] can be ex-
tended to show that adding an incremental structure to max flow alters it enough
to significantly change its complexity. This illustrates a dichotomy between the
closely related problems of bipartite matching and max flow.

Theorem 2. [3] Max sum incremental flow is NP-hard.

As there are many incremental problems for which no polytime algorithm exists,
we turn our attention to approximation algorithms.

Theorem 3. Given an α-approximation algorithm ALG for a problem Π, we
obtain an O( α

log k )-approximation for its max sum incremental version Πk.

Proof. We first run the approximation algorithm for each single-level input to
obtain ALG(F�) with v(ALG(F�)) ≥ α · v(OPT(F�)). We then consider the k
incremental solutions

H� = (∅, ∅, . . . , ∅︸ ︷︷ ︸
�−1

, ALG(F�), . . . ,ALG(F�))

for which V(H�) = (k− � + 1) · v(ALG(F�)). Out of these k solutions, return one
of maximum value. Denote this solution by H∗ such that for all �

V(H∗) ≥ (k − � + 1) · α · v(OPT(F�)), and therefore

v(OPT(F�)) ≤ 1
α
· 1
k − � + 1

· V(H∗).
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If O∗ is an optimal incremental solution, then

V(O∗) ≤
k∑

�=1

v(OPT(F�)) ≤ V(H∗) · 1
α
·

k∑
�=1

1
k − � + 1

= V(H∗) · Hk

α
= V(H∗) ·O

(
log k

α

)
,

where Hk is the kth harmonic number. ��
While this algorithm is not tight for incremental bipartite matching, Theorem 4
shows it is tight for incremental max flow. The proof relies heavily on gadgetry
described in [3], in which we show that any 3-SAT instance can be converted
into a two-level unit-capacity directed flow network. This network has two linked
components: a clause component c consisting of level 1 edges and a variable
component v consisting of level 2 edges. If the clause component appears1 at
level �c and its corresponding variable component appears at level �v > �c, then
the results of [3] can easily be extended into the following lemma:

Lemma 1. Let �′c ≥ �c denote the earliest level in which clause component c
carries flow. If �′c < �v, then any flow through variable component v determines
a satisfying assignment. Also, any satisfying assignment can be used to achieve
a flow with separate flow paths through components c and v.

Theorem 4. Max sum incremental flow is NP-hard to β-approximate, β > 1
Hk

.

Proof. Suppose we have a 1/(Hk − ε)-approximation for max sum on k-level
networks. We solve any instance of 3-SAT by constructing an incremental flow
network and using the approximation algorithm to identify satisfiable formulas.

First, let b = 1
ε . Define a∗

0 = 0, and a∗
� = � bk

1+k−�� for integers 1 ≤ � ≤ k.
Observe that

∑k
�=1 a∗

� > bk(Hk − ε) because � bk
1+k−�� > bk

1+k−� − 1. Given an
instance φ of 3-SAT, we build a k-level flow network using O(b2k2) copies of the
clause-variable component pairs constructed from φ. We create a b(k−1)×bk ma-
trix of components as shown in Figure 1. Each level � is assigned columns a∗

�−1 +1
through a∗

� . Each such column j contains variable components v1j , v2j , . . . , va∗
�−1j

and clause components cj(a∗
�
+1), . . . , cj(bk−1), cj(bk), all linked in series between the

source and the sink. Components in these columns contain only level � edges. Vari-
able component vab is linked to clause component cab.

In this construction, the maximum flow possible at level � has value a∗
� , thus

UB =
∑k

�=1 a∗
� is an upper bound on the flow sum. This is strictly larger than

bk(Hk−ε) as noted earlier. Observe that any level � flow must pass through clause
components cj(a∗

� +1), . . . , cj(bk) for some column j ≤ a∗
� . If we ever send more

than a∗
� units of flow then this extra flow must pass through variable component

vjj′ for some a∗
� < j′ ≤ bk. Thus by Lemma 1 any flow strictly larger than a∗

�

that contains positive flow at level � yields a satisfying assignment for φ.
1 A component is said to appear at level � if, in the incremental flow network, all of

its edges have capacity 0 prior to level � and capacity 1 for all subsequent levels.
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Fig. 1. Circles denote clause components and squares denote variable components.
Clause-variable tuple (cij , vij) consists of clause cij component in column i and variable
vij in row j. k = 8 and ε = b = 1.

If such an assignment exists, we can achieve the flow sum upper bound UB
by applying Lemma 1 to send flow through all clause-variable pairs. If no such
assignment exists, consider incremental solution (f1, f2, . . . , fk) and take the
smallest � such that |fk| ≤ a∗

� . Because there is no assignment, |f1| = . . . =
|f�−1| = 0. Also, |f�| ≤ . . . ≤ |fk| ≤ a∗

� , and therefore our flow sum
∑

� |f�| ≤
(1+k− �)a∗

� = (1+k− �)(� bk
1+k−��) ≤ bk. We use our 1/(Hk− ε)-approximation

to distinguish between these cases, and therefore determine whether or not φ
has a satisfying assignment. ��
The standard pseudo-polynomial dynamic programming algorithm for knapsack
can be extended to a O((Bk)k) algorithm for max sum incremental knapsack. We
suspect that similar techniques to those of Section 4 will give a max sum approx-
imation polynomial in k with a better ratio than that established in Theorem 3,
however this has yet to be proven.

4 The Maximum Ratio Objective Function

In this section, we give analogous results for the max ratio objective function.

Theorem 5. Max ratio 2-level incremental bipartite matching is in P .

Proof. We transform an incremental instance G1, G2 into a single instance (G, w)
of the maximum weight matching problem. We create a graph G = (V, E) with
E = E2. For each edge e, we assign it weight 1 if e ∈ E1 and 0 otherwise. For
each 1 ≤ m ≤ |M∗

2 | we find the max weight matching Mm of size m. From each
such matching we define an incremental solution Mm

� = Mm ∩ E�. We return
a solution (Mm

1 , Mm
2 ) of maximum ratio. By the nature of the weights given
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Fig. 2. A weighted incremental bipartite matching instance constructed from an in-
stance of partition with A = {a1, a2, a3, a4}. Solid and dashed lines represent level 1
and level 2 edges, respectively. Edges are labeled with their weights.

to level 1 edges, if an (m′, m) matching exists then |Mm
1 | ≥ m′. Therefore our

solution must have a ratio no worse than that of the (m′, m) matching. ��
This technique can be generalized for arbitrary k when the optimal ratio r∗ is 1.
However, the following theorem shows that adding weights makes the problem
intractable, and distinguishes it from the polytime max sum version.

Theorem 6. Max ratio 2-level weighted incremental matching is NP-hard.

The proof of Theorem 6 follows from a reduction from partition, known to be
NP-complete [22]. Given a finite set A and sizes s(a) ∈ Z+ for all a in A, the
partition problem finds a subset A′ ⊆ A such that

∑
a∈A′ s(a) =

∑
a∈A\A′ s(a).

We construct a 2-level instance of weighted incremental bipartite matching such
that a ratio of 1

2 is achievable if and only if the desired partition of A exists.
For each element a ∈ A, we create a 2-level gadget consisting of two incident

edges e1
a and e2

a. Edge e1
a is a level 1 edge of weight s(a), and edge e2

a is a level 2
edge of weight C · s(a), for some C > 1. This construction is shown in Figure 2.

Let S =
∑

a∈A s(a). Then the optimal level 1 matching M∗
1 selects all level 1

edges, with total weight S. The optimal level 2 matching M∗
2 selects all level 2

edges, with total weight C · S. Let us define C = S + 1.

Lemma 2. There is a partition of A if and only if there exists an incremental
matching achieving ratio 1

2 .

[⇒] Suppose we have a partition A′ ⊆ A such that∑
a∈A′

s(a) =
∑

a∈A\A′
s(a) =

S

2
.

We create an incremental matching (M1, M2) by selecting M1 = {e1
a | a ∈ A′}

and M2 = M1∪{e2
a | a ∈ A\A′}. This is a feasible solution, as we use exactly one

gadget edge for each element a ∈ A in our incremental matching. Furthermore,

r1 = w(M1)
w(M∗

1 ) r2 = w(M2)
w(M∗

2 )

= a∈A′ s(a)
S =

w(M1)+C a∈A\A′ s(a)
C·S

= 1
2 =

S
2 +C·S

2
C·S ≥ 1

2
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[⇐] Now suppose we have an incremental matching (M1, M2) achieving ratio 1
2 .

First we claim that w(M1) = S
2 : If not, then in order to achieve the stated ratio,

we have w(M1) ≥ S
2 + 1, and hence w(M2) ≤ S

2 + 1 + C · (S
2 − 1). But then

r2 ≤
S
2 +1+C·( S

2 −1)
C·S = 1

2 + S+2−2C
2·C·S

= 1
2 + S+2−2·(S+1)

2·(S+1)·S = 1
2 − 1

2·(S+1) < 1
2

which contradicts our ratio of 1
2 . Therefore we define A′ to be the elements a

such that e1
a ∈M1 so that

∑
a∈A′ s(a) = w(M1) = S

2 . ��
Theorem 6 follows directly from Lemma 2. However, the hardness of incremen-
tal bipartite matching with polysize weights is unknown, as there is a pseudo-
polynomial time dynamic programming algorithm for partition.

Despite the hardness of weighted incremental bipartite matching, Theorem 5
still manages to distinguish incremental matching from incremental max flow,
which is NP-hard for r∗ = 1 and unit capacities. This follows from an extension
of the following theorem from [3].

Theorem 7. [3] Max ratio incremental flow is NP -hard.

Furthermore, [3] proves that the greedy algorithm, which repeatedly sends the
maximum level � flow given the incremental constraints imposed by previous
levels, is a 1

n -approximation algorithm, and this algorithm is tight.

Theorem 8. [3] Max ratio incremental flow is NP-hard to g(n)-approximate for
g ∈ ω( 1

n ).

In summary, we have a complete picture of hardness for max ratio incremental
flow, and results for many cases of incremental bipartite matching. However,
we have yet to discover the hardness of 3-level incremental bipartite matching
with unit weights and r < 1, or for weighted bipartite matching with polynomial
weights. Now we turn our eye to our final result: we present a constant-factor
approximation algorithm for max ratio incremental knapsack.

We introduce some assumptions and notation before we present Lemmas 3-5
and the resulting algorithm. Let r∗ denote the optimal max ratio. We assume
items U = {u1, u2, . . . , un} are ordered by non-decreasing size, and we define σj

to be the sum of the sizes of the first j items in this ordering. We say that level
� is σ-good if r∗

2 B∗
� ≤ σj ≤ B� for some j, i.e. if the j smallest items are an

r∗
2 -approximation to B∗

� . Level � is σ-bad if it is not σ-good. If level � is σ-bad
then there is some j such that σj < r∗

2 B∗
� but σj+1 > B�. The following lemma,

stated without proof, implies that the optimal incremental solution for this level
contains an item at least as big as uj+1. We call this item level �’s required item.

Lemma 3. Given knapsack size B and solution Û , if U ′ ⊆ U is a maximal
solution but |U ′| < |Û |/2, then Û contains exactly one item of size greater than
|Û |/2.
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Lemma 4. If uj is the required item of the last σ-bad level �, then any r∗
2 -

approximation for levels 1..� with uj ∈ U� can be extended to an r∗
2 -approximation

for levels 1..k.

Proof. By definition of � and uj we have |uj | > (1 − r∗
2 )B� > 1

2B�. Therefore
any solution requiring uj ∈ U� cannot contain items of size greater than |uj |
in any of the first � levels. Each level h > � is σ-good, thereby having some
σih

≥ r∗
2 B∗

h ≥ r∗
2 B∗

� . As any solution with uj ∈ U� only contains items also
in σih

for all h > �, and all such levels h are σ-good, we can extend any such
solution to all k levels by using the σih

solution on levels h > �. ��
Lemma 5. If uj is the required item of the last σ-bad level �, then there exists
some level �′ ≤ � where we can place uj such that an r∗ solution still exists for
levels 1..�′ − 1.

Proof. Consider some optimal incremental solution, and let �′ be the earliest
level that uses some item uj′ at least as big as uj . Replacing uj′ with uj in this
solution does not affect the ratio achieved for levels 1 through �′ − 1. ��
The dynamic programming solution presented below assumes we know the opti-
mal ratio r∗ as well as the optimal single-level solutions B∗

1 , B∗
2 , . . . , B∗

k. Under
these assumptions, the algorithm achieves a 1

2 -approximation for max ratio knap-
sack. We then remove these assumptions at the expense of adding a (1−ε)2-factor
to the approximation bound.

Knapsack Algorithm. Add dummy level Bk+1 and item un+1 with Bk+1 >>
Bk and |un+1| = |un|. We build a table M [1..k, 1..n]. Entry M [�, j] is an r∗

2 -
solution for levels 1..�, items {u1, u2 . . . , uj}, and modified capacities B� =
min{B�, B�+1 − |uj+1|} if we find a solution and ∅ otherwise. If an r∗ solution
exists for this modified problem, we guarantee M [�, j] �= ∅. We return M [k, n].

M [0, j] is the empty tuple as there are no levels. To compute M [�, j] we assume
that subproblem [�, j] has an r∗ solution. If this is not the case then the value
of the entry does not matter, and we can set M [�, j] = ∅ if we ever have trouble
executing the following procedure.

We first consider the smallest item first solution. If all levels are σ-good we
return this greedy r∗

2 -solution. Otherwise, there is at least one σ-bad level. Let
uj′ be the required item of the last σ-bad level y, which must exist assuming an
r∗ solution is feasible.

We pick the first 1 ≤ �′ ≤ y such that B�′ > uj′ and M [�′ − 1, j′ − 1] �= ∅.
We solve levels 1..�′ − 1 using M [�′ − 1, j′− 1], levels �′..y by adding uj′ at level
�′, and levels y + 1..� with the smallest item first algorithm. Levels 1..�′ − 1 are
satisfied by definition of M [�′ − 1, j′ − 1], levels �′..y are satisfied by Lemma 3,
and levels y +1..� are satisfied by Lemma 4. Moreover, because an r∗ solution is
feasible, Lemma 5 guarantees that such an �′ exists. If no such �′ exists, it must
have been because no r∗ solution was possible, and we set M [�, j] = ∅.

The running time of this algorithm is dominated by the computation of M [�, j]
for all nk entries. Each entry requires O(n) time and therefore the running time
is O(kn2).
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Theorem 9. For incremental knapsack, there is a (1−ε)2

2 -approximation to the
max ratio objective function that runs in time O(k2n5

ε
log(un)

− log(1−ε)).

Proof. Given r∗ and B∗
� for all levels �, the above algorithm 1

2 -approximates
max ratio knapsack. Although determining B∗

� is NP-complete, we can use an
FPTAS to find a solution Û� with |Û�| ≥ (1 − ε)B∗

� in time O(n2�n
ε �) [19, 20].

The greedy algorithm (smallest item first) gives us a lower bound on r∗ of
1/un. We run our algorithm with r∗ = 1/un. If we find a ratio r∗

2 solution then
multiply r∗ by 1/(1− ε) and try again. We continue until the algorithm fails to
find a 1/2-approximation for some r∗ = 1

un
( 1
1−ε)

q. At this point, 1
un

( 1
1−ε )

q−1 ≤
r∗ < 1

un
( 1
1−ε)

q, so if we take r̂ = 1
un

( 1
1−ε )

q−1 then r̂ ≥ (1− ε)r∗. This may take
log(un)

− log(1−ε) iterations, but can be accelerated by binary search.

With r̂ and Û�, the algorithm finds a solution (U1, U2, . . . , Uk) such that for
each level �

|U�| ≥ r̂

2
|Û�| ≥ (1 − ε)2·

2
· r∗B∗

� .

The time needed to compute r̂, Û�, and run the algorithm is O(k2n4�n
ε � ·

log(un)
− log(1−ε)). ��

5 Extensions

The large field of related work discussed in Section 1 motivates many interesting
extensions to the results presented in this paper. The competitive ratio of an
online algorithm is a comparison between the algorithm’s output and the best
offline non-incremental solution. Online solutions, however, are inherently incre-
mental, hence analysis of these online algorithms could benefit from theoretical
results on the corresponding offline incremental problem. This issue is further
addressed in [8].

Our incremental model can be extended to handle incomplete knowledge of
future constraints, such as with online and stochastic problems. It is worth inves-
tigating a model that relaxes the incremental constraint but charges some price
for every violation, as seen in on-line bipartite matching [13]. Alternatively, one
could relax the packing constraint but charge some price for each broken con-
straint. Lastly, any given optimization problem has many potential incremental
variants, only a few of which were discussed in this paper.
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Abstract. We consider a variant on the general workload balancing
problem, which arises naturally in automated manufacturing and through-
put optimization of assembly-lines. The problem is to distribute the tasks
over compatible machines and phases of the process simultaneously. The
total duration of all phases is to be minimized. We have proved that this
variant is NP-hard (even for uniform task lengths), and we propose a novel
algorithmic approach. Our approach includes an exact solver for the case
of uniform task lengths, which is based on network-flow techniques and
runs in polynomial time for a fixed number of phases (the number of phases
is indeed very small in practice). To solve the general case with arbitrary
real task lengths, we combine our solver for uniform task lengths with a
shortest-path based multi-exchange local search.

We present results of an extensive computational study on real-world
examples from printed circuit board manufacturing. This study demon-
strates that our approach is very promising. The solution quality ob-
tained by our approach is compared with lower bounds from an integer
linear programming model. It turns out that our approach is faster than
CPLEX by orders of magnitude, and the optimality gap is quite small.

Keywords: workload balancing, printed circuit board assembly, network
flows, multi-exchange local search, integer linear programming.

1 Introduction

In this paper, we study the following general workload balancing problem.

Problem 1.1 (Main Problem). We are given tasks T = {t1, . . . , tn}, machines
P = {p1, . . . , pm}, phases Q = {q1, . . . , qs}, a reset time R, and a set A ⊆
T ×Q×P of feasible assignments of tasks to machines and phases. Throughout
the paper, a pair (q, p) ∈ Q× P will be called a bucket.

A schedule is an assignment f : T �→ Q × P of every task to a bucket. A
schedule is feasible if (t, f(t)) ∈ A for all t ∈ T .
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Fig. 1. Four snapshots of a board cycle with s = 3: the successive phases and the
return stroke of the belt are shown. The arrows on each line indicate the moves of the
belt from the previous phase to the current one, respectively.

For t ∈ T , let �(t) denote the length of task t and rf (q, p) the number of
times a reset is needed in bucket (q, p) given the schedule f . The workload of a
machine p in a phase q is defined as wlf (q, p) =

∑
t∈T,f(t)=(q,p) �(t) + R · rf (q, p)

for a given schedule f . The duration of a phase is the maximum workload of a
machine in that phase: df (q) = maxj=1,...,m{wlf (q, pj)}. The makespan of the
schedule is the sum of the durations of the phases: c(f) =

∑s
i=1 df (qi). The goal

is to find a schedule that minimizes the makespan.

Exemplary illustration. For example, this problem arises in throughput op-
timization of assembly lines. In fact, our original motivation for this work is a
particular application of assembly-line balancing: printed circuit board (PCB)
manufacturing on certain modular machines such as Philips/Assembléon’s AX1.
See Figure 1. The circuit boards are the workpieces, the stations of the assembly
line are the machines. The workpieces are moved forward in steps. In every phase
between two moving steps, the machines perform tasks on the workpieces. The
moving steps are periodic: after s steps, each workpiece has exactly assumed the
position of its predecessor in the line. The actions of a machine are identical on
all workpieces, so this is a periodic scheme with period s, too.

Every machine has a robot arm, which performs the tasks. In a task, a com-
ponent is picked from a particular position (feeder) inside this machine and
mounted at a prescribed position on the board. A machine comes with feeders
for different component types. The feasibility relation A is induced by the fol-
lowing restrictions. A task may be performed by a machine if the machine has
a feeder for the required component type. On the other hand, the task may be
processed only in those phases in which the mounting position is in the visibility
range of the machine.

The robot arm needs a toolbit for picking and holding a component. Different
types of components require different toolbits. Each machine has a toolbit repos-
itory, and the reset time is induced by the necessary exchange of the toolbit at
1 AX is a fast component mounter for printed circuit boards, Philips/Assembléon

B.V., Eindhoven, The Netherlands.
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that repository. A phase is finished once all machines have accomplished all of
their tasks that are assigned to this phase. The time to produce one board is the
sum of the durations of the s steps (up to a constant value). This time is to be
minimized.

Related Work. Workload balancing (makespan minimization) of parallel ma-
chines for a single production phase is a prototypal scheduling problem which
has been widely considered [1]. A number of overview papers on printed circuit
board optimization and assembly lines has appeared quite recently. Scholl [2]
surveys general problems and approaches to the balancing and sequencing of as-
sembly lines. An overview on printed circuit board assembly problems has been
given by Crama et al. [3].

Ayob et. al. [4] compare different models and assembly machine technolo-
gies for surface mount placement machines. Multi-station parallel placement
machines like the Fuji QP-122 or Assembléon’s AX found only little attention.
For this type of machine, evolutionary (genetic) algorithms have been proposed
in [5]. These authors consider a greatly simplified model in comparison to the
one studied in this paper. Their computational results lack a comparison with
optimal solutions or lower bounds. Müller-Hannemann and Weihe [6] recently
studied a different variant of the workload balancing problem, where for each
task exactly one machine is compatible (instead of a subset of the machines as in
Prob. 1.1). However, in that variant also the movement scheme of the assembly
line was part of the optimization. It is an empirical observation that task lengths
differ not by too much in typical applications. Therefore, it is interesting to study
the case of uniform task lengths. For example, this has been done by Grunow
et al. [7]. Very large-scale neighborhood search has been applied quite success-
fully to several hard combinatorial optimization problems [8], in particular to
the classical machine scheduling problems [9].

Our contribution and overview

Theorem 1.2. Problem 1.1 is NP-hard in the strong sense, even if all tasks are
of unit length and the reset time is zero.

In Section 2, we will present a novel algorithmic approach for this type of prob-
lem. In the first stage of our algorithm, we will compute an optimal solution to
the special case of unit task-lengths and zero reset time. This solution will be
used in the second stage as a start solution to compute a good solution to the
original problem. As noted above, this special case is of interest in its own right.
Our research on this special case led to the following nice byproduct.

Theorem 1.3. For a fixed number of phases, Prob. 1.1 can be solved in polyno-
mial time if all tasks are of unit length and there is no reset time.

The first stage of the algorithm is based on a reduction to a certain max-flow
problem. Basically, the second stage may be characterized as sort of a shortest-
path based multi-exchange local search where we generalize and extend the work
of Frangioni et al. [9].
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It might be worth mentioning that our handling of the reset times is quite
generic and may be easily adapted to other types of complications. This obser-
vation demonstrates that our algorithm is quite robust in the sense that various
types of complications may be naturally incorporated.

A major part of this paper is an extensive computational study on all real-
world examples that are available to us (Sect. 3). We compare our solution to
an integer linear programming (ILP) based approach using the ILP solver of
CPLEX. Typically, our algorithm comes close to the lower bound computed by
CPLEX or even hits the optimal value although it is faster than CPLEX by
orders of magnitude. The comparatively small run time of our algorithm is par-
ticularly interesting for the complementary problem, to determine a favorable
setup of the assembly line. In fact, here our problem naturally occurs as a sub-
problem, in which the quality of a trial setup is evaluated by the quality of the
induced optimal task distribution. In this context, the algorithm is to be applied
repeatedly a large number of times, so a small run time is mandatory.

2 Our Approach

In Section 2.1, we will first give an overview of our approach. In particular, we will
formally state the subproblems that constitute the ingredients of our approach.
In Sections 2.2-2.4, we will consider all of these ingredients individually and show
how they build up on each other to produce a solution to our main problem.

2.1 The Big Picture

Our algorithm consists of two stages: in the first stage, we will focus on the
special case of unit task-lengths and zero reset time:

Problem 2.1 (Uniform Case). Solve Prob. 1.1 with the assumption that �(t) = 1
for all t ∈ T and R = 0.

As a first step, we will even consider a different objective function:

Problem 2.2 (MinMax Variant). Solve Prob. 2.1 replacing the objective function
with cmax(f) = maxi=1,...,s{df(qi)}.
In Sect. 2.3, we will show that this variant can be solved efficiently. Our approach
is based on a certain network-flow model, which is introduced in Section 2.2. Note
that a feasible solution to the minMax variant is also a feasible solution to the
uniform case itself. In fact, we will use the solution from Sect. 2.3 as a start
solution for the algorithm in Sect. 2.4, which solves the uniform case optimally.

In the last stage of our algorithm (Sect. 2.5), we will eventually address
Prob. 1.1 in full generality. Basically, this is a local search, for which we take
the solution from Sect. 2.4 as the start solution. Note that the check whether
an instance is feasible is trivial: there is a feasible schedule if, and only if, every
task may be assigned to some bucket. We assume that this is always given.
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Throughout our work, we make use of a function to control the workload in
every phase by an upper bound. We call such a function κ : Q �→ Z a capacity
function, and the upper bound it imposes on a phase, the capacity of that phase.
A capacity function is called feasible if, and only if, there exists a schedule f
such that df (q) ≤ κ(q) for all q ∈ Q. In this case, we also say that f is feasible
for κ. The following problem plays a central role in our approach:

Problem 2.3 (Capacity Decision Variant). Given the setting in Prob. 2.1 and a
capacity function κ, decide whether κ is feasible.

Let c(κ) =
∑s

i=1 κ(qi) and cmax(κ) = maxi=1,...,s κ(qi). Note that if f is a feasible
schedule for κ we have c(f) ≤ c(κ) and cmax(f) ≤ cmax(κ).

2.2 The Network Flow Model and the Capacity Decision Variant

Given an instance of the capacity decision variant, we construct a directed net-
work flow graph Gκ = (V, E) as follows. We introduce one vertex for every task,
one vertex for every bucket, and in addition one source vertex and one sink ver-
tex. Next we add one edge with capacity 1 from the source to every task vertex,
one edge with capacity 1 from every task vertex to every bucket vertex in which
this task may be performed, and one edge with capacity κ(q) from every bucket
vertex with phase q to the sink. We denote the value of a flow f in G with v(f).
It is easy to see that the following lemma holds.

Lemma 2.4. There exists a feasible flow f in Gκ with v(f) = n if and only if
κ is feasible. If such a flow exists, a feasible schedule f for the capacity decision
variant can be derived as follows: for t ∈ T , set f(t) = (q, p) for the unique pair
(q, p) such that f((v, w)) = 1, where node v represents the task t and node w
represents the bucket (q, p).

This results in an algorithm whose runtime, using the Ford-Fulkerson method [10],
is O(n · |E|) = O(n2ms). This is because the value of the flow is at most n, so it
can be constructed by at most n augmentations.

2.3 The MinMax Variant

We can now easily derive an algorithm for the minMax variant. As said in the
big picture (Sect. 2.1), this is the first step of our overall algorithm and its result
will be used as a starting point for solving the uniform case optimally (Sect. 2.4).

The minMax problem itself is equivalent to finding the minimal value k such
that the uniform capacity function κ(·) ≡ k is feasible. For that, we may simply
test all values k = 0, . . . , n and take the smallest one for which κ becomes feasible.
Alternatively, we may use binary search on 0, . . . , n and obtain a complexity of
O(n2ms log n).

In view of Sect. 2.4, it is heuristically reasonable to construct a tighter capacity
function κ, which is not necessarily uniform, in the hope to also minimize the
sum. We can continue decreasing the capacities of individual phases as long
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as it is possible. This idea is carried out in Algorithm 2.5. For this purpose,
we make use of a helper-function: Given Gκ, one can easily write a function
decreasePhaseCapacity(q) that tries to decrease the capacities of all the sink-
edges belonging to phase q by one unit while preserving the value of the flow; it
should change the function κ accordingly and return true if successful, otherwise
do nothing and return false. A straightforward implementation runs in O(m ·
|E|) = O(nm2s)-time. The algorithm tries to decrease the capacities of the
phases at most n times, i.e. decreasePhaseCapacity is called at most ns times.
So the overall runtime is O(n2m2s2). This is very fast if m and s are small; and
this is the case in some practical situations like in our application.

2.4 Solving the Uniform Case Optimally

By Theorem 1.2, we know that Prob. 2.1 is NP-hard. We found out that the
hardness of the problem lies in the parameter s, the number of phases. The algo-
rithm we present now runs in O(us−1nm2s)–time (where u ≤ n is a parameter
we will introduce shortly). If we take s to be a fixed constant, this is polynomial.
Indeed, in our application we have s ≤ 7 and m ≤ 20 and hence our algorithm is
fast enough for our purpose. Also, it is possible to stop it at any time and take
the best solution it has found so far.

Let us denote
∑j

i=1 κ(qi) by cj(κ). Suppose a fixed j and a (not necessarily
feasible) κ are given. We would like to find a κ′ with κ′(qi) = κ(qi) for i > j, such
that cj(κ′) has the minimum possible value and κ′ is feasible. Let us denote this
value by minj(κ). Our method also takes a third parameter, u, that indicates
the maximum value we expect for minj(κ). If we determine that minj(κ) > u,
our algorithm will return ∞. To obtain an initial value for u, we can take any
feasible capacity function κ′ and set u := cj(κ′) − 1. Specifically, we use the
solution delivered by our minMax algorithm. The smaller the value of u, the
faster will be our method; hence, it is fortunate that Alg. 2.5, when used as a
heuristic for Prob. 2.1, supplies near-optimum solutions.

Our algorithm is a branch-and-bound method that given j, κ and u, tries to
modify κ, so that it becomes (or remains) feasible and cj(κ) becomes ≤ u. If
successful, it decreases u step-by-step and continues the search until this is not
further possible. In every function call, several values for the capacity of step qj

are probed and for each of them, the method is called recursively for j − 1. In
order to cut down the search, we utilize the following observation.

Algorithm 2.5. minMax algorithm; solves Prob. 2.2
create a set F = ∅ of phases with fixed capacity
create a capacity function κ and set it constant equal to n
solve Prob. 2.3 for κ to find an initial feasible solution, Gκ and the flow f
repeat

for all q ∈ Q \ F do
if not decreasePhaseCapacity(q) then

F = F ∪ {q}
until F = Q

use Lemma 2.4 to derive a feasible assignment f from f and return f
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Observation 2.6. Let κ(qj) = t and minj−1(κ) = r. If we decrease κ(qj) to
any value ≤ t, we will have minj−1(κ) ≥ r.

This is because any κ with κ(qj) ≤ t remains feasible if we set κ(qj) = t. Our
algorithm works as follows: we set κ(qj) = u and find r := minj−1(κ). By the
observation above, we know that in any solution with cj(κ) ≤ u, κ(qj) can be at
most u− r. So, we assign this value to κ(qj), calculate r = minj−1(κ) with this
new fixation and repeat this procedure until either a solution with cj(κ) ≤ u
is found, u becomes less than r or no feasible κ with the given fixations exists
anymore. If a solution is found, we decrease the value of u and continue the
search. Note that there is no need to restart the search in this case.

We call our method minimizeSum(j, κ, u). We assume that Gκ and a max-
imum flow f in G are also given. Our method minimizes cj(κ) and returns it,
adjusting κ, G and f accordingly. But only if such a feasible solution exists and
is at most u. Otherwise the method returns ∞. We need two additional sim-
ple methods: increasePhaseCapacity(q) that increases the capacity of phase
q by one and setPhaseCapacity(q, t) that sets the capacity of phase q to the
value t; in contrast to decreasePhaseCapacity, neither of these methods need
to preserve the value of the flow but only have to re-maximize it.

Algorithm 2.7. minimizeSum(j, κ, u) ; solves Prob. 2.1
(1) if j = 2 then return minmizeSum2(κ, u) {described below}
(2) create new capacity function κ� and set it equal to null
(3) setPhaseCapacity(qj, u)
(4) r = minimizeSum(j − 1, κ, u)
(5) while r ≤ u do

(6) if κ(qj) + r ≤ u then {a solution is found}
(7) κ� = κ
(8) u = κ(qj) + r − 1 {reduce u}

(9) else
(10) setPhaseCapacity(qj, u − r)
(11) r = minimizeSum(j − 1, κ, u)

(12) if κ� = null then return ∞ {no solution found}
(13) κ = κ�; adjust Gκ and f accordingly
(14) return u + 1

Lemma 2.8. Algorithm 2.7 is correct and its complexity is O(uj−1nm2s).

In thebeginning, j = sandhence, the total runtimeof ourmethod isO(us−1nm2s).
This proves Theorem 1.3.

The case of 2 phases. The recursion above reaches its base when j becomes 2.
In this case, the calls to minimizeSum(1, κ, u) can be replaced in the following
way: when it is called the first time in line (4), we can, instead, set the capacity
of q1 equal to 0 and run

while v(f) < n and κ(q1) ≤ u do increasePhaseCapacity(q1)

r = κ(q1).
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When called in the loop in line (11), we can do the same but we do not need to
reset its capacity back to 0; we can just continue increasing it. This is justified
by Observation 2.6 above. We call the resulting method minimizeSum2(κ, u).
The proof of the lemma below can be found in the journal version.

Lemma 2.9. minimizeSum2 is correct and its runtime is O(unm2s).

Lower bounds. Having good lower bounds can be useful to cut down the
search in the branch-and-bound algorithm described above. An easy global lower
bound for Prob. 2.1, also mentioned in [7], can be given by c(f) ≥ lb1 := � n

m�.
Using our minMax algorithm, we can find additional lower bounds: suppose
we have a capacity function κ and would like to minimize cj(κ) while keeping
the capacities of qj+1, . . . , qs fixed. We can find a lower bound lbj

2 for cj(κ) by
merging the phases q1, . . . , qj into one phase q′. We set Q′ = {q′, qj+1, . . . , qs}
and A′ = {(t, qi, p) ∈ A : i > j} ∪ {(t, q′, p) : (∃1 ≤ i ≤ j) (t, qi, p) ∈ A}.
Let κ′ be the corresponding capacity function. We can minimize κ′(q′) – while
keeping κ′(qj+1) = κ(qj+1), . . . , κ′(qs) = κ(qs) fixed – using a simplified version
of Alg. 2.5. Let f
 be the assignment resulting from this minimization. For
arbitrary values of κ(q1), . . . , κ(qj), let f be some feasible assignment for κ. We
can construct an assignment f ′ for the merged problem by setting

(∀t ∈ T )f ′(t) =
{

f(t) if f(t) = (qi, p) and i > j
(q′, p) if f(t) = (qi, p) and i ≤ j

. (1)

Then we have

lbj
2 = df�(q′) ≤ df ′(q′) = max

i=1,...,m
{wlf ′(q′, pi)}

= max
i=1,...,m

{
j∑

k=1

wlf (qk, pi)} ≤ max
i=1,...,m

{
j∑

k=1

df (qk)} = cj(f) ≤ cj(κ) .
(2)

In addition to the local lower bounds for any j, that can be used in Alg. 2.7, we
also get a global lower bound c(f) = cs(f) ≥ lb2 := lbs

2 = c(f
).

2.5 Shortest-Path Based Local Search and Reset Times

In order to solve our main problem, Prob. 1.1, we take the optimal solution of
the uniform case, substitute the actual task-lengths and perform local search on
it. We used the idea of multi-exchange neighborhoods presented by Frangioni et
al. in [9] and incorporated the existence of multiple phases and reset times into
it. Specifically, we do the following: Let a feasible assignment f be given. We call
a bucket (q, p) loaded if the workload of bucket (q, p) is equal to the duration
of phase q. Let rf (t, q, p) ≥ 0 denote the reset time needed, if task t is added
to bucket (q, p). We create an improvement graph by introducing one vertex for
every task and one vertex for each bucket. We connect a task t1 to a bucket
(q, p) with a directed edge if t1 can be added to bucket (q, p) without making it
loaded, i.e. if wlf (q, p)+�(t1)+rf (t1, q, p) < df (q). We also connect a task t1 to a
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task t2 with a directed edge if it is possible to remove t2 from its bucket and add
t1 instead, so that wlf (q, p) + �(t1) − �(t2) + rf (t1, q, p) < df (q). By the bucket
of a vertex v, we mean the bucket it represents or the bucket where the task it
represents is assigned to. We call a path or a cycle in this graph disjoint if the
buckets of its vertices are all different. Also, in case of a path, it must end with
a bucket vertex. Now every disjoint path or cycle in this graph that includes at
least one vertex whose bucket is loaded can be used to reduce the total number
of loaded buckets and thus, most probably, also reduce the makespan: simply by
performing the changes that every edge on that path or cycle represents.

In our specific application, reset times are caused by toolbit exchanges. We
have that rf (t, q, p) > 0 if a new toolbit exchange is needed to perform task t in
bucket (q, p). When updating along a disjoint path or cycle that contains toolbit
exchanges, we need to add the occurring toolbit exchanges to the corresponding
buckets. Adding this feature improved our results considerably in some cases,
see Sect. 3.

In order to find disjoint paths and cycles we chose to implement the 1–SPT
heuristic described in [9], adapted to our case, using a priority queue. In this
heuristic, a cost function is introduced and a shortest path algorithm is used.
For details we refer to [9]. We chose not to build the graph explicitly since by
sorting the tasks in each bucket in descending order according to their lengths, it
is possible to decide about the existence of edges in constant time. This eliminates
the need for an expensive update. We start the search once from every vertex
and then repeat this procedure until no further improvement can be found.

3 Computational Results

Test instances. In this study, we used 20 widely different test jobs. Each job
represents a PC board type with a standard machine setup for Assembléon’s
AX-5 from which we obtained an instance of our problem. All test jobs stem
from customers of Assembléon and have been kindly provided by Assembléon to
us. Table 1 shows some of the characteristics of these jobs. The number of tasks
varies between 190 and 940 tasks, the number of placement phases s between 3
and 7. Since the AX-5 has 20 parallel robots (stations), the number of buckets
varies between 60 and 140. The task lengths are quite similar, they differ by at
most a factor of 4 from each other.

Testing environment. All computations are executed on a standard Intel P4
processor with 3.2 GHz and 4 GB main memory running under Suse Linux 9.2.
Our algorithms are implemented in Java, we used JDK 5.0.

The uniform case. Table 1 displays the results for our instances under unit-
length assumption. Columns labeled lb1 and lb2 give the values obtained for the
two lower bounds introduced in Subsection 2.4, respectively. It turns out that
lb1 is a rather weak bound, but lower bound lb2 is much closer to the optimum.

Algorithm 2.5 (minMax) performs surprisingly well as a heuristic for Prob. 2.1.
Its running time is negligible (and therefore not reported). It actually hits the
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Table 1. Results for the uniform case. The first four columns contain job character-
istics. Columns labeled with lb1, lb2 give lower bound values, “minMax” reports the
outcome of Algorithm 2.5, “opt” give the value of optimal solution (computed by Al-
gorithm 2.7), “opt(100)” denotes the solution value, if Algorithm 2.7 is stopped after
100 recursive function calls. The two last columns report the CPU time in seconds for
the “opt(100)” and “opt” versions, respectively.

instance # tasks # phases # buckets lb1 lb2 minMax opt(100) opt time(100) time

j1p1 304 4 80 16 18 18 18 18 0.00 0.00
j1p2 190 3 60 10 12 16 16 16 0.08 0.08
j1p3 138 4 80 7 9 11 11 11 0.11 0.10
j2p1 940 5 100 47 284 284 284 284 0.00 0.00
j2p2 804 5 100 41 68 79 78 78 1.20 7.77
j2p3 792 5 100 40 74 83 83 81 1.12 5.81
j2p4 786 5 100 40 73 82 82 81 1.11 5.14
j2p5 750 5 100 38 98 117 117 109 1.20 89.19
j2p6 634 5 100 32 120 120 120 120 0.00 0.00
j2p7 532 5 100 27 46 59 59 59 0.55 7.82
j3p1 912 5 100 46 148 148 148 148 0.00 0.00
j3p2 660 5 100 33 120 120 120 120 0.00 0.00
j3p3 376 6 120 19 44 64 64 64 0.33 2.52
j4p1 312 7 140 16 18 18 18 18 0.00 0.00
j4p2 300 7 140 15 17 17 17 17 0.00 0.00
j4p3 288 7 140 15 16 16 16 16 0.00 0.00
j4p4 288 7 140 15 18 20 20 20 0.46 0.80
j4p5 212 5 100 11 24 24 24 24 0.00 0.00
j5p1 362 6 120 19 26 42 42 42 0.58 0.98
j5p2 345 6 120 18 23 46 46 46 0.63 1.10

optimal value quite often as can be seen by comparing the columns labeled “min-
Max” and “opt”. Intuitively, the reason might rely on the following observation:
if the capacity of a phase can not be decreased in the algorithm, it will also be
impossible to decrease it later on. That is, the only way to arrive at a better sum
would be to increase the capacities of some phases and see if one can in return,
decrease the capacities of other phases more than that. And this seems not to be
much too likely. Except for one extremely hard case (j2p5), the running time of
Algorithm 2.7 is below 8 seconds. In the exceptional case, the absolute difference
of the result provided by the minMax-heuristic is quite large. This results in a
runtime of about 89 seconds. Usually, Algorithm 2.7 requires most of its time
to prove optimality. Since this algorithm is used as a starting solution for the
local search, we also experimented with a “fast version” called opt(100) which
terminates after 100 recursive function calls (and so terminates after about one
second). In all but three cases this heuristic already found the optimum solution.

Impact of local search and toolbit exchanges. Table 2 shows our com-
putational results for the scenario with real times and toolbit exchanges. The
second column shows the makespan (cycle time) in seconds after running the
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Table 2. Results for the real-time scenario including toolbit exchanges. Comparison
with CPLEX 9.1.

make- LS #TE cplex cplex cplex our gap gap
instance span impact 60s 300s lb gap cplex60 cplex300

j1p1 9.00 11.24% 0 - 8.62 7.87 14.43% - 9.56%
j1p2 8.12 3.24% 0 8.64 8.47 8.12 0.00% 6.29% 4.22%
j1p3 5.64 4.89% 0 5.6 5.51 5.27 7.00% 6.18% 4.47%
j2p1 85.83 44.38% 8 82.55 82.46 80.84 6.18% 2.12% 2.00%
j2p2 38.33 5.17% 0 38.27 38.26 38.26 0.18% 0.03% 0.01%
j2p3 40.45 3.96% 0 40.19 40.19 40.18 0.67% 0.01% 0.01%
j2p4 40.37 3.96% 0 39.91 39.91 39.86 1.28% 0.12% 0.12%
j2p5 49.04 13.12% 6 44.36 44.36 44.36 10.56% 0.00% 0.00%
j2p6 39.74 36.36% 6 36.98 36.98 36.98 7.49% 0.00% 0.00%
j2p7 30.42 4.38% 0 30.42 30.42 30.42 0.00% 0.00% 0.00%
j3p1 82.98 0.00% 0 82.98 82.98 82.98 0.00% 0.00% 0.00%
j3p2 63.23 0.69% 0 63.23 63.23 63.23 0.00% 0.00% 0.00%
j3p3 47.19 2.42% 18 42.14 42.14 42.14 12.00% 0.00% 0.00%
j4p1 8.98 3.46% 0 - 9.57 8.13 10.53% - 17.70%
j4p2 8.29 4.49% 0 - 8.38 7.72 7.37% - 8.54%
j4p3 8.09 2.35% 0 - 8.58 7.48 8.21% - 14.67%
j4p4 9.47 4.83% 0 11.26 10.83 8.99 5.24% 25.24% 20.40%
j4p5 11.42 3.73% 0 11.91 11.9 11.42 0.00% 4.28% 4.20%
j5p1 25.47 11.14% 10 23.33 23.33 23.29 9.35% 0.18% 0.18%
j5p2 24.81 8.94% 17 24.12 24.12 24.12 2.86% 0.00% 0.00%

local search procedure. The local search was started with the result of an optimal
unit-length solution. The third column gives the percentage reduction obtained
in comparison with this starting solution. We observe that local search helps a
lot to reduce the cycle time if the addition of toolbit exchanges allows a better
workload balancing.

Lower bounds and comparison with CPLEX. We compared the quality of
the solutions obtained by our approach with a lower bound on the solution value
(in several cases with the exact optimum). To this end, our problem including
toolbit exchanges has been modeled as an integer linear program (ILP). For-
mulating the constraints for toolbit exchanges is a bit tricky. Due to the space
restrictions, we deferred the complete ILP problem formulation to the journal
version.

To solve the ILP problems, we used ILOG CPLEX 9.1 with standard settings.
In Table 2, we display the solutions values obtained by CPLEX after 60 and 300
seconds CPU time, the lower bound value obtained after 300s, as well as the
optimality gap after 60 and 300 seconds, respectively. The given time limits
to CPLEX are relatively small, but in comparison to the running time of our
method considerably longer. Recall that short time limits are justified by the
fact that instances of this type have to be solved several hundreds of times for
different setups. Thus we can afford in practice only a few seconds per instance.
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The computational results are quite interesting. In 7 out of 20 cases, CPLEX
managed to find even the optimal solution within 60 seconds. In contrast, CPLEX
failed to find even some feasible solution in 4 cases in the same time limit. Within
300s, there was at least one feasible solution in all but one case. For one hard case
(instance j1p1) we had to use a different CPLEX option (MIP Integer Feasibil-
ity) to find a feasible solution within 300s. The final gap of our solution to the
lower bound provided by CPLEX is relatively small, in 5 cases we provably found
the optimum solution, and in 4 further cases (j4p1 - j4p4) our gap is considerably
smaller than the CPLEX gap after 300s. On the other hand, there are several in-
stances which are seemingly easier to handle for CPLEX than for our approach.
Thus there is no clear winner, but our approach is much faster and always guar-
antees at least a feasible solution after a few seconds.

4 Conclusion

We have presented a novel algorithm for a practically relevant workload-balancing
problem. Our computational results demonstrate that this approach is a good
choice in practice. The run time is well under control, so the algorithm may be
used as a subroutine in solvers for optimal machine setups. This will be the next
step in our future work.
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Abstract. We present two efficient and simple fault attacks on the
shrinking generator. In a first case if the attacker can stop control gener-
ator for some small number of steps and observe the output, then with
high probability he can deduce the full control sequence, and so the
other input bitstream. The second method assumes that the attacker
can disturb the control sequence (in an unpredictable and random way)
and observe many samples of such experiments. Then he can reconstruct
a certain sequence that agrees with the input sequence of the generator
on a large fraction of bits.

1 Introduction

This paper presents two new fault attacks (see [2]) against the shrinking gener-
ator by Coppersmith et al. [3], one of the major designs of efficient and secure
pseudorandom generators. Our attacks are unique in many ways. To our best
knowledge these are the first fault attacks on the shrinking generator; they also
seem to be among the most efficient attacks. On top of that, it is generally agreed
that the shrinking generator is composed out of LFSRs. However, we require no
specific design of the generator (it can consist of any bit generators), apart from
the possibilities regarding injecting faults of the assumed kind.

The paper is organized as follows: first we give a very brief overview of the
shrinking generator. Then the Section 2 describes our first attack, based on syn-
chronization fault assumption (the assumption is similar to those from [9]). The
Section 3 presents another attack, based on weaker assumptions. Finally the
Section 4 briefly summarizes our results and states open problems.

The Shrinking Generator in a Pill. The shrinking generator [3] is an attempt
to create cryptographically strong pseudorandom bitstream generator out of
relatively weak components. Many other solutions of this kind [7, 1, 4] were
proven to be weak [13, 14]. The shrinking generator successfully faces the trial
of time: the best known attacks against it are exponential in the LFSR’s length
[5, 8, 10, 11, 12], or based on the assumption that the feedback is known [6].

Amazingly, the construction of the shrinking generator is very simple. It con-
sists of two LFSRs we shall call the base (or input) generator A and the control
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generator C; their output is denoted as a1, a2, a3, . . . and c1, c2, c3, . . ., respec-
tively. The output z1, z2, z3, . . . is composed of those and only those of ai for
which ci = 1. Formally: zt = ai for i so that:

t =
∑i

j=1 cj and ci = 1 .

2 An Attack with Synchronization Faults

Assumptions. The attacker has a device implementing the shrinking generator
and can use it freely. Assume that the base and control generators of the shrink-
ing generator output bits according to the uniform distribution over {0, 1}. Also
assume, that an attacker can disturb clocking of the device, namely we assume
that he can stop the control sequence for a couple of steps, and observe the
generator’s output.

2.1 Basic Attack

Assume we have number of output sequences related to holding the control
generator for 0 (i.e. with no fault), 1, 2, . . . , n − 1 steps. That is, we stop the
control generator for a number of steps, the base generator moves on, so we have
sequence of outputs Zk = zk

1zk
2 . . . zk

N related somehow to the base bitstreams
ak+1, ak+2, ak+3, . . . and the control bitstream c1, c2, c3, . . ..

Let us take a closer look at the data – see Table 1. Our algorithm shall
guess the length of blocks of zeroes that separate consecutive ones in the control
bitstream. Note that if two ones are consecutive, the 2nd bit of the bitstream i is
the same as the 1st bit of the bitstream i+1, for each i. Analogously, if the ones
are separated by a single zero, then the 2nd bit of bitstream i is the same as the
1st bit of bitstream i + 2, for each i. If so, it is easy to construct an algorithm
that shall guess the number of zeroes separating the ones. It returns a set Sl of
all non-contradictory solutions – number of zeroes in the control stream between
the two ones corresponding to output positions l and l + 1. However, we have to
assume that the number of zeroes between two ones does not exceed a certain
parameter maxzeroes. To obtain the whole control sequence we have to execute
the algorithm for l = 1, 2, . . . , N −1 and consider the set of all possible solutions
S = S1 × S2 × . . .× SN−1 Then s = (s1, s2, . . . , sN−1) corresponds to a possible
control sequence:

00 . . .0︸ ︷︷ ︸
?

1 00 . . .0︸ ︷︷ ︸
s1

1 00 . . .0︸ ︷︷ ︸
s2

1 . . . 1 00 . . .0︸ ︷︷ ︸
sN−1

1 .

Of course, it is impossible to recover the number of zeroes preceding the first
one in the control sequence.

Probability of a False Solution

Lemma 1. Let n be the number output sequences analyzed and the correct num-
ber of zeroes between consecutive ones considered is l. Then the output set S con-
tains l with probability 1, and contains an m, m �= l, with probability 2−(n−m−1).
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Table 1. Idea of the basic attack

A ai ai+1 ai+2 ai+3 ai+4 ai+5 ai+6

S 1 1 0 1 0 0 1

Z0 ai †ai+1 ai+2 ∗ai+3 ai+4 ai+5 ‡ai+6

Z1 †ai+1 ai+2 ai+3 ai+4 ai+5 ai+6 ai+7

Z2 ai+2 ∗ai+3 ai+4 ai+5 ai+6 ai+7 ai+8

Z3 ai+3 ai+4 ai+5 ‡ai+6 ai+7 ai+8 ai+9

. . . . . .

Proof. We are checking the hypothesis that there are m consecutive zeroes sep-
arating the two ones. If m = l, then all checked equations are identities. Assume
that m �= l. Let k be the number of pair checked: k = n−m−1. So the following
equations are checked:

ai = ai+(l−m)

ai+1 = ai+(l−m)+1

. . .

ai+k−1 = ai+(l−m)+k−1

Let us split those equations into separate “chains”:

aj = aj+(l−m) = aj+2(l−m) = . . .

aj+1 = aj+(l−m)+1 = aj+2(l−m)+1 = . . .

. . .

aj+(l−m)−1 = aj+2(l−m)−1 = aj+3(l−m)−1 = . . .

Let us consider a single chain ai = ai+(l−m) = ai+2(l−m) = . . . = ai+p(l−m) .

According to our assumption ai are random independent bits, so Pr{ai = 1} = 1
2 .

Hence, the distribution of the vector (ai, ai+(l−m), ai+2(l−m), . . . , ai+p(l−m)) is
also uniform. Then the number of its’ all possible states is 2p+1, while only two
of them yield a vector of all-equal elements. Then the probability of fulfilling the
equations building the chain equals 2−p.

Since all chains together contain k equations and the chains are disjoint, the
events of fulfilling all chains’ equations are independent, which concludes the
proof. ��
Lemma 1 shows that the probability of a false result grows rapidly with the
assumed length of the gap between the ones. That is why we assume that the
control sequence does not contain a block of more than maxzeroes zeroes. Of
course, if this assumption is false, the algorithm will fail.

2.2 Full Attack

Now we assume that we still have all Zk, but permuted according to an unknown,
random permutation π. Such a situation can happen when we can stop the
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clocking for a couple of steps (no more than n − 1), but we cannot control
the exact number of these steps. In such a scenario we would simply perform
the experiments until we collect n different outputs, which would give us the
complete set of outputs and no information about their ordering.

To perform an attack we first deduce the unknown permutation π, shuffle the
outputs according to π−1, and then perform the basic attack.

Assume for a moment that the control sequence C is of the form 00 . . .011 . . ..
So if the Zk sequences are in the correct order, the following equations hold:

z1
2 = z2

1 , z2
2 = z3

1 , . . . zn−1
2 = zn−2

1

(see Table 1); conversely, for Zk and Zl (l �= k + 1) we have zk
2 = zl

1 with
probability 1

2 . Therefore we shall think of Zπ(i)’s as of vertices in a directed
graph G = (V , E) where V = {0, 1, 2, . . . , n− 1} and there is an edge from vertex
l to vertex k if and only if zk

2 = zl
1. Similarly, if

C = 00 . . .0 1 . . . 1︸ ︷︷ ︸
m

. . . , (1)

then
E =

{
(p, q) ∈ V × V : p �= q ∧∧m−1

j=1

(
zp

j+1 = zq
j

)}
. (2)

Let
{(

vi
0, v

i
1, . . . , v

i
n−1

)}
i∈I

denote all Hamiltonian paths in G. Then, for any
given set of output sequences Zπ(j) there exists i ∈ I so that vi

j = π (j) holds for
all j ∈ {0, 1, . . . , n− 1}. Of course, assumption (1) might be false, so it may be
desirable to relax it: assume that among the first l control bits there are exactly
k ones, and then there is continuous block of m ones. Then we could slightly
modify the condition (2):

E =
{

(p, q) ∈ V × V : p �= q ∧∧m−1
j=1

(
zp

j+1+k = zq
j+k

)}
. (3)

Of course, finding all Hamiltonian paths in a graph is a hard problem. However,
in our restricted case it can be solved with a straightforward approach (since
due to condition (3) the graph can be made almost arbitrarily sparse) and so we
may use the following procedure:

– choose m ∈ {2, 3, 4, . . .};
– for k = 0, 1, 2, . . . construct the graph G,
– find all possible Hamilton paths in G; if none found, then k was incorrect;

each path in G corresponds to some π̂ (·);
– for each π̂ sort outputs Zπ(i) according to π̂−1; if π̂ was guessed right, then

for all i holds i = π̂−1 (π (i)), and so the output sequences are in the correct
order;

– for every sorted set of output sequences perform the basic attack.

2.3 Simulation Results

The algorithm described was implemented and run on a low-end home PC, with
an AMD Athlon XP1800+ CPU and 512MB of RAM. Their results for 100 runs
for each choice of parameters are summarized by Table 2.
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Table 2. Statistics of the attack; the columns have the following meaning: n – the
number of output sequences, N – the length of output sequences, mz – the maxzeroes
parameter, “c. p.” – the number of column pairs checked during construction of G,
“fails” – the number of fails (i.e. no solutions found), “avg. sol. count” – mean number
of solutions (if found any), “avg. time” – mean calculations’ time (in seconds), “avg.
time 90%” – mean calculations’ time after rejecting 10% of the worst cases

n N mz c. p. fails avg. sol. count avg. time avg. time 90%

15 50 10 2 0 6086.89 4.5286 1.8920

15 50 10 4 11 4.56 0.0378 0.0047778

20 100 15 4 1 14.58 0.6402 0.071333

20 200 15 4 0 260.84 0.8431 0.10578

25 100 15 5 20 1.09 1.3391 0.048889

25 500 15 5 1 2.34 1.3790 0.10844

25 100 15 7 64 1.44 0.0178 0.0086667

25 500 15 7 12 1.69 0.0278 0.021667

30 100 15 6 44 1.00 5.4973 0.015778

30 500 15 6 1 1.00 1.0959 0.036111

35 100 20 6 39 1.00 0.7908 0.054111

35 500 20 6 1 1.00 1.0873 0.13156

35 100 20 8 86 1.00 0.0177 0.016667

35 500 20 8 44 1.04 0.0655 0.061444

35 100 25 6 40 2.02 0.5346 0.059444

35 500 25 6 1 1.31 9.7138 0.32267

35 100 25 8 83 1.12 0.0178 0.017444

35 500 25 8 37 2.13 0.3143 0.057444

40 100 25 7 69 1.00 0.0883 0.023000

40 1000 25 7 2 1.00 0.8059 0.099000

40 100 25 9 93 1.00 0.0253 0.023333

40 1000 25 9 35 1.02 0.1619 0.14811

45 100 25 8 78 1.00 0.0935 0.027778

45 1000 25 8 9 1.00 39.284 0.12200

45 100 25 9 86 1.00 0.0272 0.026111

45 1000 25 9 32 1.00 0.1899 0.17100

50 2000 30 10 32 1.00 9.2640 0.45800

50 2000 30 12 82 1.00 0.7974 0.78867

n N mz c. p. fails avg. sol. count avg. time avg. time 90%

3 An Attack with Random Faults

Now we assume that the attacker can disturb somehow the control sequence. It
may be, for example, some additional cycles before the start of the system. Then
he can observe only the output of the generator. The second assumption is that
the procedure can be repeated with the same input sequence and with different
faults on control sequence. Our goal is to obtain bits of the input sequence.

3.1 General Idea of the Attack

We assume a probabilistic model: we have an input sequence A = a1a2a3 . . .

and a set of control sequences C(i) = c
(i)
1 c

(i)
2 c

(i)
3 . . . , i = 1, 2, . . . , n where all

A, C(1), C(2), . . . , C(n) are independent and truly random. For each i = 1, 2, . . . , n
a sequence Z(i) is produced from A and C(i) by the shrinking generator. The
attacker knows only Z(i) for i = 1, 2, . . . , n and tries to recover the sequence A.
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Consider z
(i)
1 , i = 1, 2, . . . , n. If most of them are equal to, say, 0, then it is

natural to assume that a1 also equals zero. This is concluded from the fact that
about half of z

(i)
1 , i = 1, 2, . . . , n, are a1. Similar considerations are to be carried

on for a2, since about 1
4 of z

(i)
2 are equal to a2, about 1

4 of z
(i)
2 are equal to a3

(control sequence is then of the form 011∗ or 101∗) etc. Details of these fractions
are given later. Of course situation is that clear if almost all of z

(i)
j for a given j

are equal to zero (or almost all are equal to one), but of course there are many
intermediate situations which shall be discussed further.

Linear Equations. Let us count how many times one of aj is taken as one
of z

(1)
k , z

(2)
k , . . . , z

(n)
k and denote this number by d(k, j). Now we can write the

following system of equations:⎧⎪⎪⎪⎨⎪⎪⎪⎩
d(1, 1)a1 + d(1, 2)a2 + d(1, 3)a3 + · · · = ∑n

j=1 z
(j)
1 ,

d(2, 2)a2 + d(2, 3)a3 + · · · = ∑n
j=1 z

(j)
2 ,

d(3, 3)a3 + · · · = ∑n
j=1 z

(j)
3 ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(4)

Of course the attacker does not know the numbers d(k, j), but for large n he can
approximate fractions d(k, j)/n with appropriate probabilities. By pk,j denote
the probability that jth element of a sequence A is taken as kth element of
output sequence. More formally:

pk,j = Pr
{∑j−1

i=1 ci = k − 1 ∧ cj = 1
}

(5)

where c1, c2, . . . is a random control sequence. So, d(k, j) can be approximated
by n · pk,j .

It is interesting now to investigate the distribution of random variable Xk such
that Xk = j if and only if jth element of the sequence A is taken as kth element
of the output sequence Z. By definition Pr {Xk = j} = pk,j and it follows from
(5) that

pk,j =
(

j−1
k−1

)
2−j, for j ≥ k, and pk,j = 0, for j < k. (6)

Theorem 1
EXk = 2k and VarXk = 2k.

Proof. By the definition of Xk and from (6) it is obvious that∑∞
j=k

(
j−1
k−1

)
2−j = 1, for k ≥ 1. (7)

In order to prove the equation EXk = 2k, we write

EXk =
∑∞

j=k j · pk,j =
∑∞

j=k j
(

j−1
k−1

)
2−j =

∑∞
j=k j (j−1)!

(k−1)!(j−k)!2
−j

=
∑∞

j=k k j!
k!(j−k)!2

−j = k
∑∞

j=k

(
j
k

)
2−j = 2k

∑∞
j=k+1

(
j−1

(k+1)−1

)
2−j
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The last expression equals 2k due to equation (7). To prove that VarXk, we first
calculate EX2

k .

EX2
k =

∑∞
j=k j2 · pk,j =

∑∞
j=k j2

(
j−1
k−1

)
2−j

=
∑∞

j=k j2 (j−1)!
(k−1)!(j−k)!2

−j =
∑∞

j=k k · j j!
k!(j−k)!2

−j

= k
∑∞

j=k j
(

j
k

)
2−j = 2k

∑∞
j=k+1(j − 1)

(
j−1

(k+1)−1

)
2−j

= 2k
∑∞

j=k+1 j
(

j−1
(k+1)−1

)
2−j − 2k

∑∞
j=k+1

(
j−1

(k+1)−1

)
2−j

= 2kEXk+1 − 2k = 4k2 + 2k.

Now we obtain Var Xk as EX2
k − (EXk)2 = 2k. ��

Knowing EXk and VarXk, we can approximate the number of variables that
with high probability will be sufficient to build a finite version of system (4).
Clearly, the exact probability Pr(Xk ≤ x) is expressed by the formula

Pr(Xk ≤ x) =
∑�x	

j=k

(
j−1
k−1

)
2−j. (8)

The results obtained according to (8) are presented as Table 3.

Table 3. Maximum number v of variable that will suffice to build an equation number
k (with probability 0.99), according to formula (8)

k 1 10 20 30 40 50 100 1000

v 7 33 57 80 103 125 235 2106

The formula (8) is rather complicated and that makes it hard to observe the
overall tendency. So we proceed in order to find a compact formula which would
approximate (8) and would enable us to conclude about properties of defined
random variables.

Theorem 2. For random variables Xk defined earlier, for all integers k ≥ 1
and for any real p ∈ (0, 1) we have

Pr
(
Xk ≤ 2k · exp

√
−2(ln p)/k

)
≥ 1− p (9)

Lemma 2. For random variables Xk defined above, and for all integers k ≥ 1,
r ≥ 1 we have

EXr
k ≤ 2r (k + r − 1)!

(k − 1)!
. (10)

Proof (of Lemma 2). If r = 1, then (10) is implied by Theorem 1. So assume
that (10) is fulfilled for some r (and for all k) and we will prove it for r + 1 and
for all k. We pick an arbitrary k and write
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EXr+1
k =

∑∞
j=k jr+1 · pk,j =

∑∞
j=k jr+1

(
j−1
k−1

)
2−j

=
∑∞

j=k jr+1 (j−1)!
(k−1)!(j−k)!2

−j =
∑∞

j=k k · jr j!
k!(j−k)!2

−j

= k
∑∞

j=k jr
(

j
k

)
2−j = 2k

∑∞
j=k+1(j − 1)r

(
j−1

(k+1)−1

)
2−j

≤ 2k
∑∞

j=k+1 jr
(

j−1
(k+1)−1

)
2−j = 2kEXr

k+1

≤ 2k · 2r ((k+1)+r−1)!
((k+1)−1)! = 2r+1 (k+(r+1)−1)!

(k−1)! . ��

Proof (of Theorem 2). Let m > 1 be some real number, we will approximate
probability Pr(Xk > 2km). Pick any integer r. Since for all positive valued
random variables Y we have EY > w · Pr(Y > w), we can write

Pr(Xk > 2km) = Pr(Xr
k > 2rkrmr) <

EXr
k

2rkrmr
.

Now due to Lemma 2 we have

Pr(Xk > 2km) ≤ (k+r−1)!
(k−1)!krmr = k(k+1)...(k+r−1)

kr m−r

=
(
1 + 1

k

)(
1 + 2

k

)
. . .

(
1 + r−1

k

)
m−r

< exp
( 1

k

)
exp

( 2
k

)
. . . exp

(
r−1

k

)
m−r

= exp
(

r(r − 1)
2k

)
m−r < e

r2
2k m−r.

Function f(x) = e
x2
2k m−x, x ∈ R+ reaches its absolute minimum for x = k lnm,

therefore we have

Pr(Xk > 2km) < e
(k ln m)2

2k m−k ln m = e
k(ln m)2

2 e−k(ln m)2 = e−
k(ln m)2

2 .

Now let p = e−k(ln m)2/2 then m = exp
(√

−2 ln p
k

)
and for such m we have of

course

Pr
(

Xk > 2k · exp
(√

−2 ln p
k

))
< p.

Since there is a 1-to-1 correspondence between all p ∈ (0, 1) and all reals m > 1,
the theorem follows. ��
Theorem 2 shows that for a fixed small p, the ratio between the number of needed
variables and expected value of Xk with high probability approaches 1 as k goes
to ∞. We can also see that for large enough k, going from equation number k
to equation number k + 1 we will need only about 2 more variables.

3.2 The Algorithm and the Simulations

Input: n sequences Z(1), Z(2), . . . , Z(n), as described in 3.1, a number of equa-
tions w, a real number p ∈ (0, 1). The closer p to zero, the better solution.
Output: x1, x2, . . . , xwv – a candidate for the input sequence of the generator.
Method:
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1. For each k = 1, 2, . . . , w, calculate the number vk which guarantees inequality

Pr(Xk ≤ vk) ≥ 1− p

2. Write the following approximation of the system (4):⎧⎪⎪⎪⎨⎪⎪⎪⎩
p1,1x1 + p1,2x2 + p1,3x3 + · · ·+ p1,v1xv1 = 1

n

∑n
j=1 z

(j)
1 ,

p2,2x2 + p2,3x3 + · · ·+ p2,v2xv2 = 1
n

∑n
j=1 z

(j)
2 ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
pw,wxw + · · ·+ pw,vwxvw = 1

n

∑n
j=1 z

(j)
w ,

(11)

3. Let i := 1, v0 := 0 and Sprev := ∅.
i numbers the equation considered in this step, Sprev is the set of solutions
found after dealing with equations 1, 2, . . . , i− 1.

4. Let S := ∅.
S is the set solutions considered after regarding equation i.

5. Take some s ∈ Sprev. Let Sprev := Sprev \ {s}.
6. Consider all 2vi−vi−1 possible values of xvi−1+1, . . . , xvi . For each of them

concatenate it with s, name the concatenation s′ and let S := S ∪ {s′}. If
|S| = M + 1 remove the element of S with the highest rank. The choice of
the rank function and M is a matter of discussion further on.

7. If Sprev �= ∅, then go to Step 5.
8. i := i + 1.
9. If i ≤ w, then put Sprev := S and go to Step 4.

10. Take s ∈ S with the lowest rank, and output vw of its variables.

M , the maximum number of partial solutions kept while going from one equa-
tion to another, should be chosen carefully. If M is high (say, 2vw), then the algo-
rithm would be equivalent to evaluating all possible guesses for vw and therefore
not practical even for w = 20 (see table 3). Too low values of M decrease chances
to get a good solution. We have experimented with different values of M . Results
for M = 1000 and M = 10000 are summarized in Table 4.

Now let us determine the rank function. Let the variables in a partial solution
be x1, x2, . . . xvi . Then

rank(s, i) =
∑i

m=1

( 1
n

∑n
j=1 z

(j)
m −∑vm

j=m pm,jxj

)2

Note that this formula lets us to use ranks calculated for equation i− 1, as our
solutions are obtained from concatenation of partial solutions previously found
with new guesses for a few new variables (vi − vi−1 is usually 2 or 3).

Although the algorithm outputs vw bits of our guess of the input sequence,
we have to stress that not all of the bits are of equal quality. The less is the
number, the higher is the probability that the algorithm provides the right bit.
Some experimental data is provided by Table 5.

One may ask how our assumption about independence of bits of control se-
quences stands in real situation. The Table 6 was calculated for control sequences
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Table 4. Average percentage of the first 20 bits of our solution that fit the real input
sequence (standard deviation in parentheses) for different values of n and M . 120
experiments with w = 40 executed for each choice of parameters.

n M hits

100 1000 67.25% (13.16%)

100 10000 70.88% (12.28%)

1000 1000 78.00% (11.87%)

1000 10000 84.08% (11.14%)

10000 1000 93.29% (8.96%)

10000 10000 95.00% (8.78%)

Table 5. Average percentage of correct values of bits (standard deviation in parenthe-
ses) for M = 10000 and w = 40. The results are computed for the first f bits of the
algorithm output. Each row is a result of 120 trials.

n f hits

100 10 79.08% (17.70%)

100 20 70.88% (12.28%)

100 40 61.56% (8.59%)

100 60 58.51% (6.41%)

10000 10 100.00% (0.00%)

10000 20 95.00% (8.78%)

10000 40 77.96% (9.20%)

10000 60 69.50% (7.15%)

generated by good quality LFSRs of length 32 with 4 taps. The fault are gen-
erated as one additional shift. One might expect much worse behavior, but the
experiments show that the difference is insignificant.

So far we can find most of few tens of bits, on average, of the input sequence.
Finding sufficiently long sequence of bits is, in case of LFSR, equivalent to getting
to know the whole sequences (it requires k bits in the case of known taps, and
2k bits in the case of unknown taps, where k is the number of bits of LFSR).
If the attacker had some extreme power – like the possibility of obtaining, say,
million different outputs for the same input sequence (and disturbed control
sequences), then he could obtain more than 80% of 64 bits of the key. If one can
have no more than 100 such sequences, then we expect to get about 60% of 64
bits. Observe (see the Table 5), that bits at the beginning of the sequence are
more “reliable” than others, so if one wants to perform exhaustive check, the
changing of bits should begin from “the right end” of bits being guessed. This
way we will minimize searching, and in an average case most of guessing will be
not necessary and the attack on 64 bits becomes realistic.
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Table 6. The situation for faults generated by additional shifts in the control LFSR
of length 32 and 4 taps. The table contains the average percentage of bits in the first
20 output bits that are reconstructed correctly (standard deviation in parentheses) for
different values of n and M , and for w = 40. Each row is a result of 120 trials.

n M hits

100 1000 65.50% (10.17%)

100 10000 67.79% (10.76%)

1000 1000 76.33% (12.63%)

1000 10000 79.83% (11.42%)

10000 1000 93.96% (8.49%)

10000 10000 95.63% (8.00%)

4 Conclusions and Open Problems

Our attacks can be easily adapted against the weaker generators [7, 1, 4] related
to the shrinking generator. In those cases the attacks are even easier.

Our attacks require injecting specific faults and restarting the device with
partially the same internal state. While injecting such faults is potentially pos-
sible (especially for the second attack) it may require some design faults (so
that potentially vulnerable parts of the device were placed on external layers).
It shows at least that careful examining of a chip design might be necessary.

Potentially, such attacks can be adapted against the other algorithms like
stream ciphers, hash functions, and even some symmetric block ciphers (for
instance injecting synchronization faults into DES key schedule seems to be
beneficial due to its’ “shift-and-permute” design).
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Abstract. In voting systems, game theory, switching functions, thresh-
old logic, hypergraphs or coherent structures there is an important prob-
lem that consists in determining the weightedness of a voting system by
means of trades among voters in sets of coalitions. The fundamental
theorem by Taylor and Zwicker [8] establishes the equivalence between
weighted voting games and k-trade robust games for each positive in-
teger k. Moreover, they also construct, in [9], a succession of games Gk

based on magic squares which are (k − 1)-trade robust but not k-trade
robust, each one of these games Gk has k2 players.

The goal of this paper is to provide improvements by means of dif-
ferent experiments to the problem described above. In particular, we
will classify all complete games (a basic class of games) of less than eight
players according to whether they are: a weighted voting game or a game
which is (k−1)-trade robust but not k-trade robust for all values of k. As
a consequence it will we showed the existence of games with less than k2

players which are (k − 1)-trade robust but not k-trade robust. We want
to point out that the classifications obtained in this paper by means of
experiments are new in the mentioned fields.

1 Introduction

Simple games can be viewed as models of voting systems in which a single
alternative, such as a bill or an amendment, is pitted against the status quo.
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Definition 1. A simple game G is a pair (N,W) in which N = {1, 2, . . . , n} and
W is a collection of subsets of N that satisfies: N ∈ W, ∅ /∈ W and (monotonic-
ity) S ∈ W and S ⊆ T ⊆ N then T ∈ W.

Any set of voters is called a coalition, and the set N is called the grand coalition.
Members of N are called players or voters, and the subsets of N that are in
W are called winning coalitions. The intuition here is that a set S is a winning
coalition iff the bill or amendment passes when the players in S are precisely the
ones who voted for it. A subset of N that is not in W is called a losing coalition.
A minimal winning coalition is a winning coalition all of whose proper subsets
are losing. Because of monotonicity, any simple game is completely determined
by its set of minimal winning coalitions. Before proceeding, we introduce a real–
world example (see Taylor [7] for an extensive illustration of real–world examples
modeled as simple games).

Example 1. The System to Amend the Canadian Constitution. Since 1982, an
amendment to the Canadian Constitution can become law only if it is approved
by at least seven of the ten Canadian provinces, subject to the proviso that the
approving provinces have, among them, at least half of Canada’s population.
It was first studied in Kilgour [6]. A census (in percentages) for the Canadian
provinces was: Prince Edward Island (1%), Newfoundland (3%), New Brunswick
(3%), Nova Scotia (4%), Manitoba (5%), Saskatchewan (5%), Alberta (7%),
British Columbia (9%), Quebec (29%) and Ontario (34%).

For example observe that coalitions (from now on we make use of abridge-
ments to denote the province) S1 = {PEI, New, Man, Sas, Alb, BC, Que} and
S2 = {NB, NS, Man, Sas, Alb, BC, Ont} are minimal winning coalitions be-
cause they both have exactly 7 provinces and their total population surpasses
the 50%. Instead, coalitions T1 = {Man, Sas, Alb, BC, Que, Ont} and T2 =
{PEI, New, NB, NS, Man, Sas, Alb, BC} are both losing because T1 does not
have 7 members and T2 does not reach the 50% of the total Canada’s population.

2 Preliminaries

2.1 Weighted Simple Games

Of fundamental importance to simple games are the subclasses of weighted sim-
ple games and complete simple games.

Definition 2. A simple game G = (N,W) is said to be weighted if there exists
a “weight function” w : N → R and a real number “quota” q ∈ R such that a
coalition S is winning precisely when the sum of the weights of the players in S
meets or exceeds the quota.

The associated weight vector is (w1, . . . , wn). Any specific example of such a
weight function w : N → R and quota q as in Definition 2 are said to realize
G as a weighted game. A particular realization of a weighted simple game is
denoted as [q; w1, . . . , wn].
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Simple games and in particular weighted games and complete games, which
we will introduce later on, have been studied in a variety of different mathe-
matical contexts: Boolean or switching functions, threshold logic, hypergraphs,
coherent structures, Sperner systems, and clutters. One of the most important
problems for all those fields is determining whether a simple game can be real-
ized as a weighted simple game. The only results giving necessary and sufficient
conditions can be found under one of the next three topics: geometric approach
based on separating hyperplanes ; algebraic approach based on systems of linear
inequalities; approach based on trading transforms. The geometric approach re-
quires translating the question of weightedness into one of separability via a
hyperplane of two convex subsets of Rn. The key idea in the algebraic approach
involves translating weightedness via vector sums into conditions equivalent to
the solvability of systems of linear inequalities. The approach based on trades is
the most natural and suggests several interpretations that will be tackled here
from a computational viewpoint.

Definition 3. Suppose G = (N,W) is a simple game. Then a trading transform
(for G) is a coalition sequence J = 〈S1, . . . , Sj , T1, . . . , Tj〉 (from G) of even
length satisfying the following condition: |{i : p ∈ Si}| = |{i : p ∈ Ti}| for all
p ∈ N . Si are called the pre–trade coalitions and the Ti the post–trade coalitions,
and we will say that 〈S1, . . . , Sj〉 has been converted by a trade to 〈T1, . . . , Tj〉.

Definition 4. A k-trade for a simple game G is a trading transform J =
〈S1, . . . , Sj , T1, . . . , Tj〉 in which j ≤ k. The simple game G is k-trade robust
if there is no such J for which all the Ss are winning in G and all the T s are
losing in G. If G is k-trade robust for all k, then G is said to be trade robust.

Loosely speaking, G is k-trade robust if a sequence of k or fewer (not necessarily
distinct) winning coalitions can never be rendered losing by a trade.

Theorem 1. (Taylor and Zwicker, [8]). For a simple game G = (N,W), the
following are equivalent:

(i) G is weighted. (ii) G is trade robust. (iii) G is 22|N|
-trade robust.

Notice that a naive checking of (iii) is a finite (albeit lengthy) process, whereas a
naive checking of weightedness directly is an infinite process. Moreover, Theorem
1 actually provides a fairly simple and uniform procedure for showing that certain
games are not weighted: one produces a sequence of winning coalitions and
indicates trades among these winning coalitions that convert all of them to losing
coalitions.

In Example 1 we have seen that the trading transform J = 〈S1, S2, T1, T2〉
converts the winning coalitions S1 and S2 to the losing ones T1 and T2. Therefore,
by Theorem 1, the system is not weighted. Another complex voting
system is the current European Economic Community. The countries are: Ger-
many, United Kingdom, France, Italy, Spain, Poland, Romania, The Nether-
lands, Greece, Czech Republic, Belgium, Hungary, Portugal, Sweden, Bulgaria,
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Austria, Slovak Republic, Denmark, Finland, Ireland, Lithuania, Latvia, Slove-
nia, Estonia, Cyprus, Luxemburg and Malta. They are represented by the set
{1, 2, . . . , 27} where Germany = 1, United Kingdom = 2, and so on.

The first decision rule is the simple game given by v1 ∩ v2 ∩ v3, where the
three weighted voting games corresponding to votes, countries and population,
are the following:

v1 = [255; 29, 29, 29, 29, 27, 27, 14, 13, 12, 12, 12, 12, 12, 10, 10, 10, 7, 7, 7, 7, 7, 4, 4, 4, 4, 4, 3],
v2 = [14; 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
v3 = [620; 170, 123, 122, 120, 82, 80, 47, 33, 22, 21, 21, 21, 21, 18, 17, 17, 11, 11, 11, 8, 8, 5, 4, 3, 2, 1, 1].

Freixas [2] proves that this system cannot be expressed as intersection of only
one or two voting systems. To see that it fails to be 2-trade robust, we may
consider coalitions S1 = T1 \ {14, 15, 17} ∪ {3} and S2 = T2 \ {3} ∪ {14, 15, 17}
where T1 = [1, 2] ∪ [5, 19] ∪ {26} and T2 = [1, 13] (if i ≤ j we write [i, j] = {k ∈
N : i ≤ k ≤ j}). The corresponding weights are:

v1 v2 v3

S1 256 16 803
S2 255 15 897

v1 v2 v3

T1 254 18 727
T2 257 13 883

So after trades, the losing coalitions T1 and T2 in v convert to the winning
coalitions S1 and S2; consequently, game v cannot be weighted because, after
the trade, S1 and S2 cannot simultaneously gain weight.

The question of whether any bounded amount of trade robustness implies
weightedness was settled by Taylor and Zwicker.

Theorem 2. (Taylor and Zwicker, [9]) For each integer k ≥ 3, there exists a
simple game Gk with k2 players, that is (k − 1)-trade robust, but not k-trade
robust.

It will be of interest checking whether it exists a game with less than 9 players
being 2-trade but not 3-trade, or a game with less than 16 players being 2 and 3
trade robust but not 4-robust. If the answer to these questions were affirmative
then it would be of interest determining the minimum number of voters needed
to reach games within these categories. In this paper we will make experiments
in order to solve this problem for some values. Unfortunately the number of
simple games is too large to be tackled straightforwardly. We introduce another
significant class of simple games that will help us to face our problem.

2.2 Complete Simple Games

Definition 5. Suppose (N,W) is a simple game. Then G is said to be swap
robust if a one–for–one exchange between two winning coalitions can never render
both losing.

Thus, swap robustness differs from trade robustness in two ways: the trades
involve only two coalitions, and the exchanges are one for one. It is fairly easy to
generate simple games that are not swap robust. Let us consider the following
relations.
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Definition 6. Let (N,W) be a simple game, i and j be two voters. Players i
and j are said to be equally desirable, denoted by i ∼ j if: for any coalition S
such that i /∈ S and j /∈ S, S ∪ {i} ∈ W ⇔ S ∪ {j} ∈ W.

Definition 7. (Isbell, [5]) Let (N,W) be a simple game, i and j be two voters.
Player i is said to be more desirable than j, denoted by i " j if the following two
conditions are fulfilled:

1. For every coalition S such that i /∈ S and j /∈ S, S∪{j} ∈ W ⇒ S∪{i} ∈ W .
2. There exists a coalition T such that i /∈ T and j /∈ T , T ∪ {i} ∈ W and

T ∪ {j} /∈ W.

The desirability relation denoted by # is defined in N as follows: i # j if i " j
or i ∼ j, we say that i is at least as desirable as j as coalitional partner. It
is straightforward to check that ∼ is an equivalence relation, and that # is a
partial ordering of the resulting equivalence classes.

Definition 8. A simple game (N,W) is complete or linear if the desirability
relation is a complete preordering.

In a complete simple game we may decompose N in a collection of subsets, called
classes, N1 > N2 > · · · > Nt forming a partition of N and understanding that
if i ∈ Np and j ∈ Nq then: p = q iff i ∼ j and p < q if i " j. The following is a
characterization of complete simple games.

Theorem 3. (Taylor and Zwicker, [10]) G is a complete simple game iff G is
swap robust.

Because trade robustness implies swap robustness it may be concluded that if
a simple game is weighted then it is complete. Carreras and Freixas [1] provide
a classification theorem for complete simple games that allow to enumerate all
these games up to isomorphism by listing the possible values of certain invariants.
Previously to state it we need some preliminaries.

If n = (n1, . . . , nt) ∈ Nt, we define Λ(n) = {m ∈ (N ∪ {0})t : m ≤ n} the set
of all vectors m = (m1, . . . , mt) whose components satisfy 0 ≤ mk ≤ nk for all
k = 1, . . . , t with the ordering δ given by the comparison of partial sums; that
is,

m δ p iff
k∑

i=1

mi ≥
k∑

i=1

pi for k = 1, 2, . . . , t.

If mδ p we will say that m δ-dominates p. If m δ/ p and p δ/ m we will say that m

and p are not δ-comparable. From now on, we shall write Σk(m) =
∑k

i=1 mi for
k = 1, 2, . . . , t and Σ(m) = (Σ1(m), . . . , Σt(m)) so that mδ p iff Σ(m) ≥ Σ(p).
It is not difficult to check that the couple (Λ(n), δ) is a distributive lattice.
Finally, two simple games (N,W) and (N ′,W ′) are said to be isomorphic if
there is a bijective map f : N → N ′ such that S ∈ W iff f(S) ∈ W ′; f is called
an isomorphism of simple games.

To make understandable the following theorem we need to introduce the lex-
icographical ordering by partial sums. If h < h′, then there exists some l such
that Σk(mh) = Σk(mh′) for k < l and Σl(mh) > Σl(mh′).
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Theorem 4. (Carreras and Freixas, [1]).

Part A Let G = (N,W) be a complete simple game with nonempty classes
N1 > N2 > · · · > Nt, let n be the vector defined by their cardinalities, and
let M = (mi,j), with 1 ≤ i ≤ r and 1 ≤ j ≤ t, be the matrix satisfying the
four conditions below:
(1) mi,j ∈ N∪{0} and 0 ≤ mi,j ≤ ni for all i, j with 1 ≤ i ≤ r and 1 ≤ j ≤ t;
(2) every pair of rows of M, mh and mh′ are not δ-comparable if h �= h′;
(3) if t = 1 then m1,1 > 0; if t > 1 then for every k < t there exists some h

such that mh,k > 0 and mh,(k+1) < nk+1; and
(4) the rows of M are lexicographically ordered by partial sums.

Part B (Uniqueness) Two complete simple games (N,W) and (N ′,W ′) are iso-
morphic iff n = n′ and M = M′.

Part C (Existence) Given a vector n and a matrix M satisfying the conditions
of part A, there exists a complete simple game (N,W) the characteristic
invariants of which are n and M.

We need now to describe how to get (n,M) from (N,W) and reciprocally. As
(N,W) is a complete simple game either i " j, or i ∼ j, or j " i for all
pair of voters. Voters being equally desirable are grouped in classes Nk, and
the notation Np > Nq means that i " j for each i ∈ Np and j ∈ Nq, Let
N1 > N2 > · · · > Nt. Components of vector n are defined by nk = |Nk|.
Rows of M are obtained in the following way, for each S ∈ W we consider the
associated vector s ∈ Λ(n) with components sk = |S ∩ Nk|, s is a row of M if
it is not dominated for any other vector associated to a winning coalition. Once
the collection of non-dominated vectors corresponding to winning coalitions is
determined we need to order them lexicographically. Reciprocally, given n and
M let n = Σt(n) = n1+n2+ · · ·+nt be the number of players, N = {1, 2, . . . , n}
be the set of players, and N1, N2, . . . , Nt be subsets of N formed, respectively,
by n1, n2, . . . , nt elements (which may be chosen following the natural ordering).
By Theorem 4(A), none of these subsets is empty. For each S ⊆ N we consider
s = (s1, s2, . . . , st), where sk = |S ∩ Nk| for k = 1, 2, . . . , t. Then, the set of
winning coalitions is W = {S ⊆ N : s δ mh for some row mh ofM}.
Theorem 4 is a parametrization theorem, because it allows one to enumerate
all complete games up to isomorphism by listing the possible values of certain
invariants. For Example 1, the characteristic invariants are n = (2, 8), M =
(1 6). Although the voting system of the current European Economic Community
is complete its representation using characteristic invariants is a bit complex.

3 Experiments on the Complete Simple Games

3.1 A New Theoretical Approach to Performance Experiments

In this subsection we reformulate the developed theory in the preceding section
in order to deal with it from a more efficient computational viewpoint. For lack
of space, we just give here the main ideas of some new theoretical results.
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In general, to describe a simple game it is enough giving the list of minimal
winning coalitions. If moreover, the game is complete and the ordering induced
by the desirability relation among components is known, then we can use a subset
of minimal winning coalitions to entirely describe the game. Indeed, a coalition
S such that its associated vector s is a row of M is called a δ-minimal winning
coalition. Notice that each δ-minimal winning coalition is a minimal winning
coalition but the reciprocal is not true. For instance, in Example 1 a coalition
formed by Ontario, Quebec and 5 more provinces is minimal winning but not
δ-minimal winning since its associated vector (2, 5) is not a row of matrix M.

For the purpose of studying when a game is weighted in terms of trade ro-
bustness we may confine to study only complete simple games, because the
remaining simple games are not swap robust which is the simplest case of not
being 2-trade robust. Within the framework of complete simple games we can
take advantage of using the equivalent representation (n,M), which allows us-
ing models of coalitions instead of coalitions and considering only models which
are rows of matrix M. These latter properties become essential in this section
devoted to algorithms and experiments. The basic idea is that it simplifies the
description of the algorithms as well as it meaningfully improves the performance
of the experiments.

Definition 9. (cf. Definition 3) Suppose G = (N,W) is a simple game. Then a
δ-trading transform (for G) is a coalition sequence J = 〈S1, . . . , Sj , T1, . . . , Tj〉
(from G) of even length satisfying condition |{i : p ∈ Si}| = |{i : p ∈ Ti}| for
all p ∈ N , where S1, . . . , Sj are δ-minimal winning coalitions.

Definition 10. (cf. Definition 4) A k-δ-trade for a simple game G is a δ-trading
transform J = 〈S1, . . . , Sj , T1, . . . , Tj〉 in which j ≤ k. The simple game G is
k-δ-trade robust if there is no such J for which all the Ss are δ-minimal winning
coalitions in G and all the T s are losing in G. If G is k-δ-trade robust for all k,
then G is said to be δ-trade robust.

Proposition 1. Let G = (N,W) be a complete game. Then, G is k-trade robust
iff G is k-δ-trade robust.

In the following, we provide a trading version applied to indices of columns of
M and vectors instead of players and coalitions.

Definition 11. Let G = (N,W) be a complete simple game with characteristic
invariants (n,M). A vectorial trading transform for G is a vectorial sequence
J ′ = 〈x1, . . . , xj , y1, . . . , yj〉 of even length satisfying the following conditions:

j∑
i=1

xi,k =
j∑

i=1

yi,k ∀ k ∈ [1, t] (1)

where x1, . . . , xj are rows of M with repetitions allowed, and y1, . . . , yj belong
to Λ(n).
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Definition 12. Let G = (N,W) be a complete simple game with characteristic
invariants (n,M). Then, G is k-invariant-trade robust (k-I-T-R, for short) if
there is no a vectorial trading transform J ′ = 〈x1, . . . , xj, y1, . . . , yj〉 such that
each xi is a row of M and each yk ∈ Λ(n) for 1 ≤ k ≤ j satisfies ykδ/ mi for
every row mi of M. If G is k-I-T-R for all positive integer k, then (N,W) is
invariant-trade robust (I-T-R, for short).

The following proposition states that Definitions 11 and 12 merely correspond
to Definitions 9 and 10 if we consider the context (n,M) instead of (N,W). We
omit the proof because applying Proposition 1 it follows that k-trade robust is
equivalent to k-δ-trade robust and word–by–word this is equivalent to k-I-T-R.

Proposition 2. Let G = (N,W) be a simple game with characteristic invari-
ants (n,M). Then, (N,W) is k-trade robust iff (n,M) is k-I-T-R.

Theorem 1 by Taylor and Zwicker for simple games can be adapted to complete
simple games.

Theorem 5. Let G be a complete simple game (N,W) with characteristic in-
variants (n,M) and t being the number of columns of M. Then the following
are equivalent:

(i) G is weighted. (ii) G is invariant-trade robust. (iii) G is 22t

-I-T-R.

3.2 A Full Classification for Complete Simple Games with Less
Than Eight Voters

All experiments we have made are based on Theorem 5. It gives a new view-
point to determine if a complete simple game is trade robust. Our programs1

have been written for C++ and run under Linux in Pentium 4 at 1.7 GHz with
512 Mb of RAM. To set an example, we just sketch here one of the imple-
mented algorithms. So, Algorithm 1 sketches the used recursive function (based
on backtracking method) to determine if a given simple game with characteristic
invariants (n,M) is k-I-T-R or not. The parameters of function DoingForkTrade
mean the following: M and n are the given matrix and vector, r and t are the
number of computed rows and columns for the current matrix Y = (yi,j),2 and
finally, the auxiliary parameter aux is used to improve the algorithm. This func-
tion calls three additional functions:

– Function CanonicalMatrix(Y) returns true if the rows of Y are in lexico-
graphic order (by rows and by columns), false otherwise.

– Function AnyRowOfYDominatesM(Y,M) returns true if any row of Y dom-
inates at least one row of M, false otherwise.

– Function PartialSums(M, ir, er, it, et) adds up the integers of M from row
ir to row er and from column it to column et.

1 They are available on request from the authors.
2 We denote by Y any of the matrices with rows y1, . . . , yj that are solution of equation

in Definition 11, showing a failure of j-trade robust.
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Algorithm 1. Recursive function that returns true iff (n,M) is k-I-T-R fol-
lowing the criteria of Proposition 2
1. procedure DoingForkTrade(M, Y, n, r, t, aux)
2. if (r = k) then / ∗ k-th row of Y ∗ /
3. yr,t := aux;
4. if yr,t > nt or aux < 0 then return true fi
5. if t = Colums Of Matrix(M) then / ∗ t-th column of Y ∗ /
6. if CanonicalMatrix(Y) and not AnyRowOfYDominatesM(Y, M) then
7. Print(“It is not trade robust.”); return false
8. fi
9. else r := 1; t := t + 1; aux := PartialSums(M, 1, k, t, t)
10. if notDoingForkTrade2(M, Y, n, r, t, aux) then return false fi
11. fi
12. else Maux := PartialSums(M, 1, k, t, t); Y aux := PartialSums(Y, 1, r, t, t)
13. for yr,t from 0 to min(nt, Maux − Y aux) do
14. if notDoingForkTrade(M, Y, n, r + 1, t, aux − yr,t) then
15. return false
16. fi
17. end
18. fi
19. return true
20. end

In general, given (n,M) and a positive integer k, calling the recursive function
DoingForkTrade(M,Y, n, 1, 1, PartialSums(M, 1, k, 1, 1)), it returns true (Line
19) if it is k-I-T-R, and false (Line 7) otherwise.

Unfortunately, the number of matrices associated to a fixed number n of
voters is huge for n > 8. However, the experiments are successful for a small
fixed number of columns (two or three) and for small numbers of voters (n < 9).

Table 1 provides a detailed classification of all complete simple games: the
number of complete games (briefly CG), the number of weighted games (briefly
WG), and the number of non k-invariant-trade robust but (k−1)-invariant-trade
robust games (non k-I-T-R, for short). Finally, the number of complete games
being non weighted is gathered in non invariant-trade robust games (I-T-R, for
short).

Table 1. Full classification of simple games for n < 8

n 1 2 3 4 5 6 7
CG 1 3 8 25 117 1171 44313
WG 1 3 8 25 117 1111 29373

non I-T-R 0 0 0 0 0 60 14940
non 2-I-T-R 0 0 0 0 0 57 13915
non 3-I-T-R 0 0 0 0 0 3 1011
non 4-I-T-R 0 0 0 0 0 0 14
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In particular, n = 6 is the minimum number of voters required to achieve
simple games which are 2-I-T-R but not 3-I-T-R; n = 7 is the minimum number
of voters required to achieve simple games which are 3-I-T-R but not 4-I-T-R.
Tables 4 and 5 in Appendix enumerate all these extreme cases giving vector n,
matrix M and a matrix Y which fulfills equation in Definition 11 and shows a
failure to be k-I-T-R: k = 3 for n = 6, and k = 4 for n = 7.

3.3 A Detailed Analysis for Simple Games with Two and Three
Columns

The huge number of simple games for more than 8 voters does not allow to
consider all simple games in a reasonable time. However, fixing a small number
of columns (two or three) we can do an exhaustive experimental study even
for 10 voters. In terms of simple games (voting systems) few columns mean the
existence of many equally desirable voters which is highly frequent.

For two columns, we have checked that all simple games with n ≤ 10 are
either I-T-R or non 2-I-T-R (see Table 2). For three columns we also have found
the full classification (see Table 3). We do not show particular examples because
of the lack of space.

Table 2. Number of non k-I-T-R simple games with just two columns

n 1 2 3 4 5 6 7 8 9 10
CG 0 1 5 15 36 76 148 273 485 839

non 2-I-T-R 0 0 0 0 0 2 10 34 94 229
non 3-I-T-R 0 0 0 0 0 0 0 0 0 0

Table 3. Number of non k-I-T-R simple games with just three columns

n 1 2 3 4 5 6 7 8 9 10
CG 0 0 0 6 50 262 1114 4278 15769 58147

non 2-I-T-R 0 0 0 0 0 6 130 1116 6858 35431
non 3-I-T-R 0 0 0 0 0 0 6 39 160 506
non 4-I-T-R 0 0 0 0 0 0 2 11 39 115
non 5-I-T-R 0 0 0 0 0 0 0 0 2 —–

4 Conclusion and Future Work

In this paper we have made experiments that allow:

(i) To classify all complete simple games, CG, for n < 8 according whether to
they are: WG, non 2-I-T-R, non 3-I-T-R and non 4-I-T-R.

(ii) To check if a particular complete simple game with n voters is k-I-T-R for
each positive integer k.

(iii) To study important subclasses, those with either one, two or three columns,
whenever n < 11.
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The given results in (i) for n = 6, 7 are new as well as the results obtained in
(iii) for n > 5.

Our experiments suggest three important theoretical conjectures which we are
developing.

Conjecture 1. Any simple game with just two types of voters (two classes) is
either I-T-R or non 2-I-T-R.

Conjecture 2. Three columns are enough to find games which are (k − 1)-I-T-R
but non k-I-T-R for any positive integer k.

Conjecture 3. It is possible to find a game which is (k − 1)-I-T-R but non
k-I-T-R for any positive integer k, where the number of voters is O(k) instead
of k2 (cf. Theorem 2).

It is also interesting to study the required CPU time depending on the number of
voters, the number of columns. Even, to do an exhaustive analysis depending on
the number of rows (games with a single row are called complete simple games
with minimum and have been studied in [3]).

Another future work is, for a fixed number of voters n, to generate a random
game (n,M) and study trade robustness.

Finding appropriate weights for voters and a quota (a realization), for the
class of WG.

References

1. F. Carreras and J. Freixas. Complete simple games. Mathematical Social Sciences,
32:139–155, 1996.

2. J. Freixas. The dimension for the European Union Council under the Nice rules.
European Journal of Operational Research, 156(2):415–419, 2004.

3. J. Freixas and M.A. Puente. Complete games with minimum. Annals of Operations
Research, 84:97–109, 1998.

4. J. Freixas and W.S. Zwicker. Weighted voting, abstention, and multiple levels of
approval. Social Choice and Welfare, 21:399–431, 2003.

5. J.R. Isbell. A class of simple games. Duke Mathematics Journal, 25:423–439, 1958.
6. D.M. Kilgour. A formal analysis of the amending formula of Canada’s Constitution.

Act. Canadian Journal of Political Science, 16:771–777, 1983.
7. A.D. Taylor. Mathematics and Politics. Springer Verlag, New York, USA, 1995.
8. A.D. Taylor and W.S. Zwicker. A characterization of weighted voting. Proceedings

of the American mathematical society, 115:1089–1094, 1992.
9. A.D. Taylor and W.S. Zwicker. Simple games and magic squares. Journal of

combinatorial theory, ser. A, 71:67–88, 1995.
10. A.D. Taylor and W.S. Zwicker. Simple games: desirability relations, trading, and

pseudoweightings. Princeton University Press, New Jersey, USA, 1999.

Appendix

This appendix shows the specific examples which are (k − 1)-I-T-R but non
k-I-T-R for the highest value of k and for n = 6, 7.



84 J. Freixas and X. Molinero

Table 4. Non 3-I-T-R simple games for n = 6

Vector n Matrix M Matrix Y

( 1, 1, 1, 1, 1, 1 )
1 0 0 1 0 1
0 1 1 0 0 1
0 1 0 1 1 0

0 0 1 1 1 1
0 1 0 1 0 1
1 1 0 0 0 0

Vector n Matrix M Matrix Y Vector n Matrix M Matrix Y

( 1, 1, 1, 2, 1 )
1 0 0 1 1
0 1 1 0 1
0 1 0 2 0

0 0 1 2 1
0 1 0 1 1
1 1 0 0 0

( 1, 1, 2, 2 ) 1 0 0 2
0 1 1 1

0 0 2 2
0 1 0 2
1 1 0 0

Table 5. Non 4-I-T-R simple games for n = 7

Vectorn MatrixM MatrixY MatrixM MatrixY MatrixM MatrixY MatrixM MatrixY

(1, 1, 1, 1, 1, 1, 1)

1010001
1001010
0101011
0011101

0011011
0111000
1000111
1001001

(1, 1, 1, 1, 1, 2)
110002
101011
011102

011012
100112
101002
111000

(1, 1, 1, 2, 1, 1)
100010
010011
001101

000211
001011
011000

(1, 1, 1, 2, 2)
10002
01102
01021

00122
01012
01012
11000

(1, 1, 2, 1, 2) 10011
01102

00212
01012
10002
11000

10002
01011
00202

00112
00112
01002
11000

11010
10012
01102

00212
01012
11001
11001

11010
10200
01102

00212
01200
11001
11001

(1, 1, 2, 2, 1)
10021
01101
00220

00211
00211
01021
11000

10101
10020
01021

00221
10011
10011
11000

(1, 2, 2, 2) 1010
0102

0022
0200
1001
1001

1102
0221

0212
0212
1022
1200

(2, 2, 3) 210
103

023
201
201
201

(2, 3, 2) 102
031

022
022
022
200
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Abstract. Let U be a set of elements and d a distance function defined
among them. Let NNk(u) be the k elements in U−{u} having the small-
est distance to u. The k-nearest neighbor graph (knng) is a weighted
directed graph G(U, E) such that E = {(u, v), v ∈ NNk(u)}. Several
knng construction algorithms are known, but they are not suitable to
general metric spaces. We present a general methodology to construct
knngs that exploits several features of metric spaces. Experiments sug-
gest that it yields costs of the form c1n

1.27 distance computations for low
and medium dimensional spaces, and c2n

1.90 for high dimensional ones.

1 Introduction

Let U be a set of elements and d a distance function defined among them.
Let NNk(u) be the k elements in U − {u} having the smallest distance to u
according to the function d. The k-nearest neighbor graph (knng) is a weighted
directed graph G(U, E) connecting each element to its k-nearest neighbors, thus
E = {(u, v), v ∈ NNk(u)}. Building the knng is a direct generalization of the all-
nearest-neighbor (ann) problem, so ann corresponds to the 1nng construction
problem. knngs are central in many applications: cluster and outlier detection
[14, 4], VLSI design, spin glass and other physical process simulations [6], pattern
recognition [12], query or document recommendation systems [3], and others.

There are many knng construction algorithms which assume that nodes are
points in RD and d is the Euclidean or some Lp Minkowski distance. However,
this is not the case in several knng applications. An example is collaborative
filters for Web searching, such as query or document recommendation systems,
where knngs are used to find clusters of similar queries, to later improve the
quality of the results shown to the final user by exploiting cluster properties [3].

To handle this problem one must resort to a more general model called metric
spaces. A metric space is a pair (X, d), where X is the universe of objects and d
is a distance function among them that satisfies the triangle inequality.

Another appealing problem in metric spaces is similarity searching [8]. Given
a finite metric database U ⊆ X, the goal is to build an index for U such that
� Supported in part by Millennium Nucleus Center for Web Research, Grant
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À



86 R. Paredes et al.

later, given a query object q ∈ X, one can find elements of U close to q using as
few distance computations as possible. See [8] for a comprehensive survey.

We have already demonstrated knng searching capabilities in general metric
spaces [20], where we give knng-based search algorithms with practical applica-
bility in low-memory scenarios, or metric spaces of medium or high dimension-
ality. Hence, in this paper we focus on a metric knng construction methodology,
and propose two algorithms based on such methodology. According to our ex-
perimental results, they have costs of the form c1n

1.27 distance computations
for low and medium dimensionality spaces, and c2n

1.90 for high dimensionality
ones. Note that a naive construction requires O(n2) distance evaluations.

1.1 A Summary of Metric Space Searching

Given the universe of objects X, a metric space is a pair (X, d), where d : X×X→
R+ is any distance function in X that is symmetric and satisfies the triangle
inequality. Some examples are (RD, Lp), the space of strings under the edit
distance, or the space of documents under the cosine distances.

The metric database is a finite set U ⊆ X, n = |U|. A similarity query is an
object q ∈ X, and allows two basic types: the Range query (q, r) retrieves all
objects u ∈ U such that d(u, q) ≤ r; and the k-Nearest neighbor query NNk(q)
retrieves the k objects in U closest to q according to the distance d. A NNk(q)
algorithm is called range-optimal [16] if it uses the same number of distance eval-
uations as the equivalent range query whose radius retrieves exactly k objects.
We call this radius covering radius.

An index I is a data structure built over U using some cells from the whole
U×U distance matrix. I permits solving the above queries without comparing q
with each element in U. There are two kinds of indices: pivot based and compact
partition based. Search algorithms use I and some distance evaluations to dis-
card – using the triangle inequality – as many objects as they can, to produce a
small candidate set C that could be relevant to q. Later, they exhaustively check
C by computing distances from q to each candidate to obtain the query result.

As the distance is considered expensive to compute, it is customary to use
the number of distance evaluations as the complexity measure both for index
construction and object retrieving. For instance, each computation of the cosine
distance takes 1.4 msecs in our machine (Pentium IV of 2 GHz). This is really
costly even compared with the operations introduced by the graph, such as the
shortest path computation using Dijkstra’s algorithm.

Many authors agree that the proximity query cost worsens quickly as the
intrinsic dimensionality of the space grows. This is known as the curse of di-
mensionality. Although there is not and accepted criterion to define the intrinsic
dimensionality in a metric space, a general agreement is that spaces with low vari-
ance and large mean in their distance histograms have a large intrinsic dimension.

1.2 Related Work on knng Construction

The naive approach to construct knngs uses n(n−1)
2 = O(n2) distance compu-

tations and O(kn) memory. For each u ∈ U we compute the distance to all the
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others, selecting the k lowest-distance objects. However, there are alternatives to
speed up the procedure. The proximity properties of the Voronoi diagram [2] or
its dual, the Delaunay triangulation, allow solving the problem more efficiently.
The ann problem can be optimally solved in O(n log n) time in the plane [13] and
in RD for any fixed D [9, 22], but the constant depends exponentially on D. In
RD, knngs can be built in O(nk log n) time [22] and even in O(kn+n log n) time
[5, 6, 11]. Approximation algorithms have also been proposed [1]. However, these
alternatives, except the naive one, are unsuitable for metric spaces, as they use
coordinate information that is not necessarily available in general metric spaces.

Clarkson states the first generalization of ann to metric spaces [10], where
the problem is solved using randomization in O(n log2n log2 Γ (U)) expected
time, where Γ (U) is the distance ratio between the farthest and closest pairs
of points in U. The author argues that in practice Γ (U) = nO(1), in which case
the approach is O(n log4 n) time. However, the analysis needs a sphere packing
bound in the metric space. Otherwise the cost must be multiplied by “sphere
volumes”, that are also exponential on the dimensionality. Moreover, the algo-
rithm needs Ω(n2) space for high dimensions, which is too much for practical
applications.

In [15], another technique for general metric spaces is given. It solves n
range queries of decreasing radius by using a pivot-based index. As it is well
known, the performance of pivot-based algorithms worsens quickly as the di-
mension of the space grows, limiting the applicability of this technique. Our
pivot based algorithm (Section 2.4) can be seen as an improvement over this
technique.

Recently, Karger and Ruhl present the metric skip list [18], an index that uses
O(n log n) space and can be constructed with O(n log n) distance computations.
The index answers NN1(q) queries using O(log n) distance evaluations with high
probability. Later, Krauthgamer and Lee introduce navigating nets [19], another
index that can be constructed also with O(n log n) distance computations, yet
using O(n) space, and which gives an (1 + ε)-approximation algorithm to solve
NN1(q) queries in time O(log n)+(1/ε)O(1). Both of them could serve to solve the
ann problem with O(n log n) distance computations but not to build knngs. In
addition, the hidden constants are exponential on the intrinsic dimension, which
makes these approaches useful only in low dimensional metric spaces.

2 Our Methodology

We are interested in practical knng construction algorithms for general metric
spaces. This problem is equivalent to solve n NNk(u) queries for all u ∈ U. Thus,
a straightforward solution has two stages: the first is to build some known metric
index I [8], and the second is to use I to solve the n queries. However, this basic
scheme can be improved if we take into account these observations:

– We are solving queries for all the elements in U, not for general objects in X.
If we solve the n queries jointly we can share costs through the whole process.
For instance, we can avoid some calculations by using the symmetry of d.



88 R. Paredes et al.

– We can upper bound some distances by computing shortest paths over the
knng under construction, maybe avoiding their actual computation. So, we
can use the very knng in stepwise refinements to improve the second stage.

2.1 The Ingredients of the Recipe

The main data structure. Along all the algorithm, we use the Neighbor Heap
Array (NHA) to store the knng under construction. NHA can be regarded as
the union of priority queues NHAu, of size k, for all u ∈ U. At any point in
the process NHAu will contain the k elements closest to u known up to then,
and their distances to u. Formally, NHAu = {(xi1 , d(u, xi1 )), . . . , (xik

, d(u, xik
))}

sorted by decreasing d(u, xij ) (ij is the j-th neighbor identifier).
For each u ∈ U, we initialize NHAu = {(⊥,∞), . . . , (⊥,∞)}, |NHAu| = k.

Let curCRu = d(u, xi1 ) be the current covering radius of u, that is, the distance
from u towards its current farthest neighbor candidate in NHAu.

In the first stage, every distance computed to build the index I populates
NHA. In the second, we refine NHA with the following distance computations.
We must ensure that |NHAu| = k upon successive additions. Hence, if we find
some object v such that d(u, v) < curCRu, before adding (v, d(u, v)) to NHAu we
extract the farthest candidate from NHAu. This progressively reduces curCRu

from ∞ to the real covering radius. At the end, NHA stores the knng of U.

Using NHA as a graph. Once we calculate duv = d(u, v), if duv ≥ curCRu we
discard v as a candidate for NHAu. Also, due to the triangle inequality we can
discard all objects w such that d(v, w) ≤ duv − curCRu. Unfortunately, we do
not necessarily have stored d(v, w). However, we can upper bound d(v, w) with
the sum of edge weights traversed in the shortest paths over NHA from v to all
w ∈ U, dNHA(v, w). So, if duv ≥ curCRu, we also discard all objects w such that
dNHA(v, w) ≤ duv − curCRu.

d is symmetric. Every time a distance duv = d(u, v) is computed, we check
both duv < curCRu for adding (v, duv) to NHAu, and duv < curCRv for adding
(u, duv) to NHAv. This can both reduce curCRv , and cheapen the future query
for v, even when we are solving neighbors for another object.

U is fixed. Assume we are solving query NNk(u), we have to check some already
solved object v, and curCRu ≤ curCRv. Then, if u /∈ NNk(v) ⇒ d(u, v) ≥
curCRv, so v /∈ NNk(u). Otherwise, if u ∈ NNk(v), then we already computed
d(u, v). Then, in those cases we avoid to compute d(u, v). Fig. 1(a) illustrates.

CheckOrderHeap(COH). WecreatethepriorityqueueCOH = {(u, curCRu),
u ∈ U} to complete NNk(u) queries in increasing curCRu order, because a small
radius query has larger discriminative power and produces candidates that are
closer to the query u. This reduces the CPU time and – as d is symmetric – could
increase the chance of improving candidate sets in NHA for other objects v. This,
in turn, could reduce curCRv and change the position of v in COH .



Practical Construction of k-Nearest Neighbor Graphs 89

d(u,v)

u

u

NNk(v)d

cu
rC

R v

v

curCR
u

u

NNk(v)d

cu
rC

R v

v

d(u,v)

curCR

(a) U is fixed.

KNN (Integer k, ObjectSet U)
Stage 1: Initialize NHA and construct the index I
1. For each u ∈ U Do NHAu ← {(⊥, ∞), . . . , (⊥, ∞)} // k pairs
2. Create I, all computed distances populate symmetrically NHA

Stage 2: Complete the NNk(u) for all u ∈ U

3. COH ← {(u, curCRu), u ∈ U}
4. For each (u, curCRu) ∈ COH , in increasing curCRu order Do
5. Create the candidate set C according to I // exclude NHAu

6. While C �= ∅ Do
7. c ← extract a candidate from C
8. If “U is fixed” does not apply for u and c Then
9. duc ← d(u, c), try to insert c into NHAu

10. try to insert u into NHAc, update c in COH (symmetry)
11. use NHA as a graph and I to discard objects from C
12. Return NHA as a graph

(b) Sketch of the methodology.

Fig. 1. In 1(a), assume we are solving u, v is already solved, and curCRu ≤ curCRv. On
the top, if u �∈ NNk(v) ⇒ d(u, v) ≥ curCRv ≥ curCRu. On the bottom, if u ∈ NNk(v),
we already computed d(u, v). Then, in those cases we avoid computing d(u, v). In
Fig. 1(b), we sketch the methodology.

The recipe. We split the process into two stages. The first is to build I to
preindex the objects. The second is to use I and all the ingredients to solve the
NNk(u) queries for all u ∈ U. Fig. 1(b) depicts the methodology.

For practical reasons, we allow that our algorithms use at most O(n(log n+k))
memory both to index U and to store the knng under construction.

2.2 The Resulting Algorithms

Based on our methodology, we propose two knng construction algorithms fo-
cused on decreasing the total number of distance computations. They are:

1. Recursive partition based algorithm: In the first stage, we build a preindex
by performing a recursive partitioning of the space. In the second stage, we
complete the NNk(u) queries using the order induced by the partitioning.

2. Pivot based algorithm: In the preindexing stage, we build the pivot index.
Later, we complete the NNk(u) queries by performing range-optimal queries.

The experiments confirm that these algorithms are efficient. For instance, in
the string space, the pivot-based algorithm requires CPU time of the empirical
form ctn

1.85, and cdn
1.26 in distance computations. In the high-dimensional doc-

ument space, the recursive partition-based algorithm requires empirically cn1.955

both in distance computations and CPU time.
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2.3 Recursive Partition Based Algorithm

This algorithm is based on using a preindex slightly different to the Bisector
Tree (BST ) [17]. We call our modified BST the Division Control Tree (DCT ),
which is a binary tree representing the shape of the partitioning. The DCT node
structure is {p, l, r, pr}, which represents the parent, left and right children, and
partition radius of the node, respectively. The partition radius is the distance
from the node towards the farthest node of its partition. (With respect to the
BST structure, we have added the pointer p to easily navigate trough the tree.)

For simplicity we use the same name for the node and for its representative
in the DCT . Then, given a node u ∈ U, up, ul, and ur, refer to nodes that are
the parent, left child, and right child of u in the DCT , respectively, and also to
their representative nodes in U. Finally, upr refers to the partition radius of u.

In this algorithm, we use O(kn) space to store the NHA and O(n) to store
the DCT . The remaining memory is used as a cache of computed distances,
CD, whose size is limited to O(n log n). Thus, every time we need to compute a
distance, we check if it is present in CD, in which case we return the stored value.
Note that the CD ⊂ U2 × R+ can also be seen as graph of all stored distances.
The criterion to insert distances into CD depends on the stage (see later). Once
we complete the NNk(u), we remove its adjacency list from CD.

First stage: construction of DCT . We partition the space recursively to
construct the DCT , and populate symmetrically NHA and CD with all the
computed distances. The DCT is built as follows. Given the node root and
the set S, we choose children objects l and r from S. Then, we generate two
subsets: Sl, objects nearest to l, and Sr, objects nearest to r. Finally, we compute
both partition radii. The recursion follows with (l, Sl) and (r, Sr), finishing when
|S| < 2. Once we finish the division, leaves in the DCT have partition radii 0.
The DCT root is fictitious, having no equivalent in U, and partition radius ∞.

Since the DCT has n nodes, its expected height is 2 lnn (the DCT construc-
tion is statistically identical to populating a binary search tree). For each DCT
level, each node computes two distances towards the splitting nodes, which ac-
counts for 2n distances per level. So, we expect to compute 4n lnn distances in
the partitioning. As we store 2 edges per distance, we need to store 8n lnn in
CD. Hence, we fix the maximum space of CD as 8n lnn = O(n log n).

Solving NNk(u) queries with DCT . The construction of DCT ensures that
every node has already computed distances to all of its ancestors, its ancestor’s
siblings, and its parent descent. Then, to finish the NNk(u) query, it is enough to
check whether there are relevant objects in all the descendants of u’s ancestors’
siblings. This corresponds to white nodes and subtrees in Fig. 2(a).

Nevertheless, the DCT allows us to avoid some work. Assume we are checking
whether v is relevant to u, and the balls (u, curCRu) and (v, vpr) do not intersect
each other, then we discard v and its partition. Otherwise, we recursively check
children vl and vr. Fig. 2(b) illustrates this. Hence, in the candidate set C, it
suffices to manage the set of ancestors’ siblings, and if it is not possible to discard
the whole sibling’s partition we add its children into C. Since it is more likely to
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(b) DCT can discard partitions.

Fig. 2. Using the DCT to solve NNk(q) queries. In 2(a), u has been compared with all
black nodes and all the descent of its parent. To finish the query, we just process white
nodes and subtrees. In 2(b), as d(u, v) ≤ curCRu + vpr the partition of v intersects the
ball (u, curCRu), so we recursively check children vl and vr. As vr’s partition does not
intersect the ball (u, curCRu), we discard vr and its partition. However, we continue
the checking on vl’s partition as it intersects the ball (u, curCRu).

discard small partitions, we process C in order of increasing radius. This agrees
with the intuition that the partition radius of u’s parent’s sibling is likely the
smallest of C, and that some of its descendants could be relevant to u.

Second stage: Completing the queries. As CD can be seen as a graph, we
use NHA ∪ CD to upper bound distances: when d(u, v) ≥ curCRu, we discard
objects w such that their shortest path dNHA∪CD(v, w) ≤ d(u, v)− curCRu. We
do this by adding them to C marked as EXTRACTED.

In this stage, if we have available space in CD, we cache all the computed dis-
tances small enough so as to get into their respective queues in NHA, since these
distances can be used in future symmetric queries. Note that adding distances
to CD without considering the space limitation could increase its size beyond
control, as it is shown by the following average case analysis. With probability
n−k

n , a random distance is greater than the k-th shortest one (thus, not stored),
and with probability k

n it is lower, then it is stored in CD using one cell. The base
case uses k cells for the first distances. Then, the recurrence for the average case
of edge insertions for each NHAu is: T (n, k) = T (n− 1, k) + k

n , T (k, k) = k. We
obtain T (n, k) = k(Hn −Hk + 1) = O(k log n

k ). As we have n priority queues, if
we do not consider the limitation, we could use O(nk log n

k ) memory cells, which
can be an unpractical memory requirement.

Finally, we combine all of these ideas to complete the NNk(u) queries for all
nodes in U. We begin by creating the priority queue COH . Then, for each node
u picked from COH we do the following. We add the edges of NHAu to CDu,
where CDu refers to the adjacency list of u in CD. (Due to the size limitation it
is likely that some of the u’s current neighbors do not belong CDu.) Then, we
compute shortest paths from all u’s ancestors discarding as many objects as we
can. Then, we finish the query NNk(u), and finally delete CDu.

To finish the query NNk(u), we start adding all u’s ancestors to C. Later, we
take objects c from C in increasing cpr order, and process c according one of the
following rules:



92 R. Paredes et al.

1. If c was already marked as EXTRACTED, we add its children {cl, cr} to C;
2. If “U is fixed” applies for c and u, and d(u, c) /∈ CD, we add {cl, cr} to C; or
3. If we have d(u, c) stored in CD, we retrieve it, else we compute it and use “d

is symmetric”. Then, if d(u, c) < curCRu + cpr, we have region intersection,
so we add {cl, cr} to C. Next, we use NHA ∪ CD as a graph computing
shortest paths from c to discard as many object as we can.

2.4 Pivot-Based Algorithm

Pivot-based algorithms have good performance in low dimensional spaces, but
worsen quickly as the dimension grows. However, our methodology compensates
this failure in medium and high dimensions. In this algorithm we use O(kn)
space in NHA and O(n log n) space to store the pivot index.

First stage: construction of the pivot index. We select at random a set of
pivots P = {p1, . . . , p|P|} ⊆ U, and store a table of |P|n distances d(pj , u), j ∈
{1, . . . , |P|}, u ∈ U. We give the same space in bytes to the table as that of the
cache of distances and the division control tree of the recursive based algorithm.
Then, in our implementation we use |P| = 12 lnn + 2.5 = O(log n).

Solving NNk(u) queries with the pivot table. To perform a range-optimal
query for u we use C as an array to store maximum lower bounds of distances from
u to other objects. Because of the triangle inequality, for each v ∈ U and p ∈ P ,
|d(v, p)−d(u, p)| is a lower bound of d(u, v). Let Cv = maxp∈P{|d(v, p)−d(u, p)|}.
So, we can discard non-relevant objects v such that Cv ≥ curCRu.

Then, we store C values in a priority queue SortC = {(v, Cv), v ∈ U − (P ∪
NHAu ∪ {u})}. For each object v picked from SortC by ascending Cv, we check
if Cv < curCRu. In such case, when “U is fixed” applies for u and v we avoid the
distance computation and process the next node, else we compute the distance
duv = d(u, v). So, if duv < curCRu we add v to NHAu (this could reduce
curCRu). Also, using “ d is symmetric” we can refine NHAv and consequently
update v in COH . Finally, we use NHA as a graph computing shortest path from
v to extract from SortC as many object as we can. Each NNk(u) query finishes
when we reach a node v such that Cv ≥ curCRu, or SortC gets empty.

Second stage: Completing the queries. Since pivots p ∈ P compute dis-
tances towards all objects, once we compute the table, they have already solved
their k-nearest neighbors. So, we only have to complete n − |P| range-optimal
queries for objects u ∈ U− P . Notice that because of the symmetry of d, these
objects already have candidates in their respective queues in NHA.

3 Experimental Results

We have tested our algorithms on synthetic and real-world metric spaces. The first
synthetic set is formed by 65,536 points uniformly distributed in the metric space
([0, 1]D, L2) (the unitary real D-dimensional cube with Euclidean distance). This
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Table 1. KNNrp and KNNpiv least square fittings for distance evaluations and CPU
time for all the metric spaces. CPU time measured in microseconds.

Space KNNrp KNNrp KNNpiv KNNpiv
Dist. evals. CPU time Dist. evals. CPU time

[0, 1]4 10.0n1.32 0.311n2.24 56.1n1.09 0.787n2.01

[0, 1]8 32.8n1.38 0.642n2.11 168n1.06 15.5n1.69

[0, 1]12 15.1n1.59 1.71n2.03 116n1.27 20.1n1.79

[0, 1]16 5.06n1.77 0.732n2.14 12.1n1.64 6.87n1.97

[0, 1]20 2.32n1.88 0.546n2.18 2.48n1.87 2.77n2.10

[0, 1]24 1.34n1.96 0.656n2.16 1.23n1.96 1.29n2.16

[0, 1]D 0.455e0.19Dn1.65 0.571e0.01Dn2.14 0.685e0.23Dn1.48 0.858e0.11Dn2.15

Gaussian σ = 0.1 74.7n1.33 1.13n2.07 1260n0.91 63.5n1.63

Gaussian σ = 0.2 7.82n1.71 1.13n2.09 16.3n1.60 8.70n1.94

Gaussian σ = 0.3 2.97n1.85 0.620n2.17 3.86n1.81 3.78n2.06

String 21.4n1.54 1.09n2.09 99.9n1.26 10.8n1.85

Document 0.425n1.95 193n1.96 0.840n1.86 364n1.87

space allows us to measure the effect of the space dimension D on our algorithms.
The second set is formed by 65,536 points in a 20-dimensional space with Gaussian
distribution forming 256 clusters randomly placed in ([0, 1]20, L2). We consider
three standard deviations to make more crisp or more fuzzy clusters (σ = 0.1, 0.2,
0.3). Of course, we have not used the fact that vectors have coordinates, but have
treated them as abstract objects.

The first real-world set is the string metric space under the edit distance, a
discrete function that measures the minimum number of character insertions,
deletions and replacements needed to make the strings equal. We index a ran-
dom subset of 65,536 words taken from an English dictionary. The second set
is the document space under the cosine distance, a function that measures the
angle between two documents when they are represented as vectors in a high-
dimensional vector model. We index a random subset of 1,215 English documents
taken from the TREC-3 collection.

Experiments were run on an Intel Pentium IV of 2 GHz and 512 MB of RAM.
We measure distance evaluations and CPU time. For shortness we have called
the basic knng construction algorithm KNNb, the recursive partition based
algorithm KNNrp, and the pivot based algorithm KNNpiv. We are not aware
of any published knng practical implementation for general metric spaces.

We summarize our experimental results in Fig. 3, where we show distance
computations per element, and Table 1 for the least square fittings computed
with R [21]. The dependence on k turns out to be so mild that we neglect k in
the fittings, thus, costs have the form cnα. Even though in Table 1 we explicit
the constant c, from now on, we only refer to the exponent α.

Figs. 3(a), 3(b) and 3(c) show experimental results for RD. Fig. 3(c) shows
that, as D grows, the performance of our algorithms degrade, phenomenon
known as the curse of dimensionality. For instance, for D = 4, KNNpiv uses
cn1.10 distance evaluations, but for D = 24, it is cn1.96 distance evaluations. No-
tice that a metric space with dimensionality D > 20 is considered as intractable
[8]. Fig. 3(a) shows that for all dimensions our algorithms are subquadratic in
distance evaluations, instead of KNNb which is always cn2. For low and medium



94 R. Paredes et al.

 0

 5000

 10000

 15000

 20000

 25000

 2048  4096  8192  16384  32768  65536

D
is

ta
nc

e 
ev

al
ua

tio
ns

 p
er

 e
le

m
en

t

database size n

Vector space: Distance evaluations per element vs n, k = 16

KNNb
KNNrp,  D =   8
KNNrp,  D = 12
KNNrp,  D = 16
KNNrp,  D = 20
KNNpiv, D =   8
KNNpiv, D = 12
KNNpiv, D = 16
KNNpiv, D = 20

(a) In RD, dependence on n.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 2  4  8  16  32  64  128

D
is

ta
nc

e 
ev

al
ua

tio
ns

 p
er

 e
le

m
en

t

#neighbors per element in the graph

Vector space: Distance evaluations per element vs k, n = 65536

(b) In RD, dependence on k.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 24 20 16 12 8 4

D
is

ta
nc

e 
ev

al
ua

tio
ns

 p
er

 e
le

m
en

t

dimension D

Vector space: Distance evaluations per element vs D, n = 65536

KNNb
KNNrp,  k =   2
KNNrp,  k =   8
KNNrp,  k = 32
KNNpiv, k =   2
KNNpiv, k =   8
KNNpiv, k = 32

(c) In RD, dependence on D.

 300

 350

 400

 450

 500

 550

 600

 650

 2  4  8  16  32  64  128

D
is

ta
nc

e 
ev

al
ua

tio
ns

 p
er

 e
le

m
en

t

#neighbors per element in the graph

Document space: Distance evaluations per element vs k

KNNb,   n = 1215
KNNrp,  n = 1215
KNNpiv, n = 1215

(d) In Document space, dependence on k.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 2048  4096  8192  16384  32768  65536

D
is

ta
nc

e 
ev

al
ua

tio
ns

 p
er

 e
le

m
en

t

database size n

Gauss space: Distance evaluations per element vs n, k = 16

KNNb
KNNrp,  var = 0.01
KNNrp,  var = 0.04
KNNrp,  var = 0.09
KNNpiv, var = 0.01
KNNpiv, var = 0.04
KNNpiv, var = 0.09

(e) In Gaussian space, dependence on n.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 2  4  8  16  32  64  128

D
is

ta
nc

e 
ev

al
ua

tio
ns

 p
er

 e
le

m
en

t

#neighbors per element in the graph

Gauss space: Distance evaluations per element vs k, n = 65536

(f) In Gaussian space, dependence on k.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 2048  4096  8192  16384  32768  65536

D
is

ta
nc

e 
ev

al
ua

tio
ns

 p
er

 e
le

m
en

t

database size n

String space: Distance evaluations per element vs n

KNNb
KNNrp,  k =   2
KNNrp,  k =   8
KNNrp,  k = 32
KNNpiv, k =   2
KNNpiv, k =   8
KNNpiv, k = 32

(g) In String space, dependence on n.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 2  4  8  16  32  64  128

D
is

ta
nc

e 
ev

al
ua

tio
ns

 p
er

 e
le

m
en

t

#neighbors per element in the graph

String space: Distance evaluations per element vs k

KNNrp,  n = 32768
KNNrp,  n = 65536
KNNpiv, n = 32768
KNNpiv, n = 65536

(h) In String space, dependence on k.

Fig. 3. Distance evaluations per node during knng construction. Fig. 3(b)/3(f) follows
the legend of Fig. 3(a)/3(e).
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dimensions (D ≤ 16) ours have better performance than KNNb, being KNNpiv
the best of ours. Moreover, for lower dimensions (D ≤ 8) ours are only slightly
superlinear. Fig. 3(b) shows a sublinear dependence on k for all dimensions,
however, KNNpiv is more sensitive to k than KNNrp. Also, the dependence on
k diminishes as long as D grows, although it is always monotonically increasing
on k. Finally, it is shown that for k ≤ 4, our algorithms behave better than
KNNb, even in high dimensional spaces (KNNpiv in D = 20).

Figs. 3(e) and 3(f) show results in Gaussian space. For crisp clusters (σ = 0.1)
the performance of our algorithms improves significantly, even for high values of
k. It is interesting to note that for k ≤ 8 our algorithms are more efficient than
KNNb for the three variances. Again, KNNpiv has the best performance.

Figs. 3(g) and 3(h) show results for strings. The plots show that both KNNrp
and KNNpiv are subquadratic for all k ∈ [2, 128]. For instance, for n = 65, 536,
KNNrp costs 28%, and KNNpiv just 8%, of KNNb to build the 32nng.

Finally, Fig. 3(d) shows that our methodology save lots of work in the high-
dimensional document space. For instance, for n = 1, 215, KNNrp costs 63%,
and KNNpiv costs 67%, of KNNb to build the 8nng. These two last results
show that our methodology is also practical in real-world situations.

All of these conclusions are confirmed in Table 1. We remark that in some
practical conditions (vectors in [0, 1]D with D ≤ 8 and k ≤ 32 and Gaussian
vectors with σ = 0.01 and k ≤ 8), KNNpiv also has better performance than
KNNb in CPU time. This is important since the Euclidean distance is very cheap
to compute. Note that KNNrp and KNNpiv turn out to be clearly subquadratic
on distances evaluations when considering the exponential dependence on D.

Note that in the metric space context, superquadratic CPU time in side com-
putations is not as important as a subquadratic number of computed distances.
In fact, in the document space, KNNrp and KNNpiv perform better in CPU
time that KNNb, showing that in practice the leading complexity (computing
distances) is several orders of magnitude larger than other side computations
such as traversing pointers or scanning the pivot table.

4 Conclusions

We have presented a general methodology to construct the k-nearest neighbor
graph (knng) in general metric spaces. Based on our methodology we give two
algorithms. The first is based on a recursive partitioning of the space (KNNrp),
and the second on the classic pivot technique (KNNpiv). Our methodology con-
siders two stages: the first indexes the space, and the second completes the knng
using the index and some metric and graph optimizations.

Experimental results confirm the practical efficiency of our approach in vec-
torial metric spaces of wide dimensional spectrum (D ≤ 20), and real-world
metric spaces. For instance, in the string space, our algorithms achieve empir-
ical CPU time of the form ctn

1.85, and cdn
1.26 in distance computations; and

in the high-dimensional document space, they reach empirical cn1.87 both in
distance computations and CPU time. In low dimensional metric spaces, our
algorithms behave even better. KNNpiv is in general better than KNNrp for
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small and moderate k values, yet KNNrp is less sensitive to larger k values or
higher dimensional spaces.

Future work involves developing another knng constructing algorithm based
on the list of clusters [7] so that we can also obtain good performance in higher di-
mensional metric spaces. We are also researching how to enhance the data struc-
ture to allow dynamic insertions/deletions in reasonable time, so as to maintain
an up-to-date set of k-nearest neighbors for each element in the database.

Acknowledgement. We wish to thank Georges Dupret and Marco Patella for
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Abstract. The increasing amount of data to be processed by comput-
ers has led to the need for highly efficient algorithms for various com-
putational problems. Moreover, the algorithms should be as simple as
possible to be practically applicable. In this paper we propose a very
simple approximation algorithm for finding the diameter and the radius
of an undirected graph. The algorithm runs in O(m

√
n) time and gives

an additive error of O(
√

n) for a graph with n vertices and m edges.
Practical experiments show that the results of our algorithm are close to
the optimum and compare favorably to the 2/3-approximation algorithm
for the diameter problem by Aingworth et al [1].

Keywords: algorithm engineering, analysis of algorithms, approxima-
tion techniques, graph algorithms, graph diameter.

1 Introduction

Nowadays there are huge amounts of data to be processed by computers, hence
highly efficient algorithms for various combinatorial problems are necessary. In
many cases the speed of an algorithm is more important than the optimal solu-
tion to a problem instance. Also, for an algorithm to be widely accessible, it has
to be as simple as possible.

One of such fundamental problems is the computation of the diameter of an
undirected graph, which is the subject of this paper. Recall, that the diameter of
a graph is the largest distance between any pair of its vertices. A straightforward
algorithm leads to the running time O(nm) for a graph with n vertices and m
edges, which is prohibitively slow for very large graphs. It actually finds the
distance between every pair of vertices and returns the largest distance found.
Although this bound on the running time can be improved considerably for dense
graphs [18, 6], computing the whole distance matrix still takes Ω(n2) time.

Since we are interested in the largest distance only, we could hope that the
diameter of a graph can be determined faster than the whole distance matrix.
Unfortunately such algorithms have been devised for special classes of graphs
only, e.g. for trees [14], maximal outerplanar graphs [13], interval graphs [12, 15],
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ptolemaic graphs [12], strongly chordal graphs, dually chordal graphs [3], and
distance-hereditary graphs [10, 11]. So the question of whether computing the
diameter of an arbitrary graph is an easier problem than computing the whole
distance matrix remains open [5].

Thus, while waiting for a major breakthrough we have to confine ourselves to
approximation algorithms. The diameter can be trivially approximated within
a factor of 1/2 by simply performing a breadth first search from an arbitrary
vertex. It is well known that the depth of such a breadth first search tree is
at least half of the diameter. A non-trivial approximation algorithm is due by
Aingworth et al [1], which obtains a 2/3-approximation of the diameter. Their
algorithm runs in O(m

√
n log n + n2 log n) time.

In this paper we propose an extremely simple method for approximating the
diameter of an undirected graph by utilizing several breadth first searches. The
algorithm gives an additive error of O(n/k), if terminated after k breadth first
searches, hence an O(

√
n) upper bound on the error can be obtained in O(m

√
n)

time. As an extra asset, the radius of the graph can be approximated in very
much the same way.

This paper is organized as follows. In the next section we give some back-
ground information and formal definitions of the notions involved. In Sect. 3 we
explain our algorithm and analyze its performance. Computational experiments
described in Sect. 4 make it evident that our algorithm performs very well in
practice. It is compared with the algorithm of [1] and some of the linear time
algorithms, which have been shown to work almost optimally on various special
classes of graphs [8]. Finally, Sect. 5 concludes the paper and discusses possible
directions for the future research.

2 Background

In this section we remind to the reader some definitions of graph theory and
briefly discuss the breadth first search procedure. We will consider undirected
graphs only.

Definition 1. A graph G is a pair of sets G = (V, E), where the elements of
E, called edges, are unordered pairs of elements from V , called vertices.

Definition 2. A sequence (v0, v1, . . . , vk) of distinct vertices of a graph G =
(V, E) is called a path between v0 and vk if {vi, vi+1} ∈ E whenever 0 ≤ i < k.
The length of the path is k, which is the number of edges in the path.

Definition 3. A graph G = (V, E) is said to be connected if there is a path
between every pair of vertices v, u ∈ V .

In the rest of this paper we deal with connected graphs only.

Definition 4. The distance d(v, u) between a pair of vertices v and u is the
length of the shortest path between these vertices. More generally, the distance
d(v, S) from a vertex v to a subset S ⊆ V of vertices is defined as d(v, S) =
minu∈S d(v, u).
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Definition 5. The eccentricity e(v) of a vertex v is the maximum distance from
v to any other vertex, i.e. e(v) = maxu∈V d(v, u).

Definition 6. The maximum and minimum eccentricities among all vertices
of a graph G = (V, E) are called the diameter and the radius of the graph,
respectively, i.e.

diamG = max
v∈V

e(v) ,

and
radG = min

v∈V
e(v) .

2.1 Breadth First Search

We use the breadth first search (BFS) algorithm [7] to determine the eccentricity
of a specific vertex u and the distance from u to every other vertex in a graph
G = (V, E). Also, the set V of vertices can be easily partitioned into layers with
the i-th layer defined as Li = {v ∈ V |d(u, v) = i}, 0 ≤ i ≤ e(u).

3 Algorithm

In this section we assume that a connected graph G = (V, E) with n vertices
and m edges is given.

3.1 Estimating the Diameter

The idea of our algorithm is fairly simple. We compute the eccentricities of sev-
eral vertices and take the maximum eccentricity as an estimate for the diameter
of the given graph G = (V, E). For this purpose we utilize multiple breadth first
searches, hence the name of the Algorithm 1. The next vertex to start the search
from is chosen to be the furthest vertex from the already processed vertices.
The algorithm terminates after processing k vertices {v1, v2, . . . , vk}, where the
constant k will be determined later.

Let us consider the sets of processed vertices Ui = {v1, v2, . . . , vi} after each
iteration i = 1, 2, . . . , k, and let L = maxv∈V d(v, Uk).

Theorem 1. The error of the algorithm MultiBFS does not exceed L, i.e.
diamG− D̄ ≤ L.

Proof. Let x, y ∈ V be a pair of vertices such that d(x, y) = diamG and let
v ∈ Uk such that d(x, v) = d(x, Uk). We have diamG = d(x, y) ≤ d(x, v) +
d(v, y) ≤ L + D̄, and hence diamG− D̄ ≤ L. ��
Lemma 1. For each vertex v /∈ Uk and for every pair of processed vertices vi, vj

with 1 ≤ i < j ≤ k we have the inequality d(v, Uk) ≤ d(vi, vj).
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Algorithm 1. MultiBFS
1: U ← ∅ {the set of processed vertices}
2: for i ← 1 to k do
3: if i = 1 then
4: Let vi ∈ V be an arbitrary vertex
5: else
6: Let vi ∈ V be a vertex with maximal d(vi, U)
7: U ← U + vi

8: Perform a breadth first search from vi and find its eccentricity e(vi)
9: return D̄ = maxv∈U e(v) as an approximation for the diameter of G

Proof. Since d(v, Uk) ≤ d(v, Uj−1) and the vertex vj was favored over the vertex
v in the j-th iteration of the algorithm, we have d(v, Uk) ≤ d(vj , Uj−1). The
obvious inequality d(vj , Uj−1) ≤ d(vi, vj) completes the proof. ��
Theorem 2

L ≤ 2(n− 1)
k + 1

Proof. Let v ∈ V − Uk be an arbitrary vertex, which is not processed by the
algorithm, and let l = d(v, Uk).

Consider a BFS tree T rooted at the vertex v. Construct a rooted tree Tk from
the tree T by repeatedly removing the leaf vertices, which do not belong to Uk.
In effect, all leaves of Tk belong to Uk.

Assuming that k ≥ 2, we construct another rooted tree Tk−1 from Tk as
follows. Let u be a leaf vertex of Tk with the maximum depth, and let p be the
deepest proper ancestor of u, such that p ∈ Uk or p has at least two children in
Tk. The tree Tk−1 is obtained by removing the vertex u and all the inner vertices
of the p–u path in the tree Tk. Note, that at least l/2 edges have been removed
in this way. Indeed, let us assume that d(u, p) < l/2 on the contrary. Consider
a vertex w ∈ Uk − u, which is a descendant of p in Tk (note, that w may very
well be p itself). By the choice of u we have d(w, p) ≤ d(u, p). Consequently,
d(u, w) ≤ d(u, p) + d(w, p) < l, contradicting to Lemma 1.

A rooted tree Tk−2 can be obtained from Tk−1 in the same fashion. We arrive
at the rooted tree T1 after k−1 such operations. Now, T1 has exactly one vertex
u in Uk and l edges. Adding up the number of edges in T1 and the removed
edges, we conclude that the initial tree T has at least l +(k− 1)l/2 = (k + 1)l/2
edges. On the other hand, a tree cannot have more than n−1 edges, which leads
to the inequality (k + 1)l/2 ≤ n− 1. The desired result now follows. ��
The bound of Theorem 2 is tight in the sense that there are graphs with L =
2(n−1)

k+1 . For example, take a set S of k + 1 vertices and connect them with
some central vertex by disjoint paths of equal length l. For this star-like graph
n = (k + 1)l + 1, and, if the algorithm chooses the first vertex in S, it processes
k vertices of S and we still have L = 2l.
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Corollary 1. The error of the algorithm MultiBFS does not exceed 2(n−1)
k+1 .

Theorem 3. The diameter of an undirected graph can be approximated in time
O(km) with an additive error at most 2(n−1)

k+1 .

Proof. We have just proved the error bound in Corollary 1, so it remains to
analyze the performance of Algorithm 1. A single execution of the line 6 can
be carried out in O(n) time, provided that the distances d(v, U) are maintained
in an array d[v]. The breadth first search in line 8 takes O(m) time. Note,
that besides the eccentricity e(vi) the breadth first search from vi computes all
distances d(vi, v), so it is easy to update the distance values d[v] at the same
time, namely, d[v] ← min(d[v], d(vi, v)). The running time of the algorithm is
obviously dominated by those two lines, and since n ≤ m + 1 for connected
graphs, we have the total running time O(km). ��
By choosing k =

√
n, we obtain a good approximation in a reasonable amount

of time.

Corollary 2. The diameter of an undirected graph can be approximated in time
O(m

√
n) with an additive error O(

√
n).

The next section shows that most of the time the algorithm performs consider-
ably better than the error bound we just derived. So, if the desired error bound
ε is given in advance, we can apply an alternative strategy, where the number
of iterations is determined dynamically. It follows from Theorem 1 that we can
terminate the algorithm as soon as L ≤ ε.

3.2 Estimating the Radius

It is easy to modify the algorithm to return the radius of the graph. Just change
the line 9 to return R̄ = minv∈U e(v) as an approximation for the radius of G.

Theorem 4. The radius of an undirected graph can be approximated in time
O(km) with an additive error at most 2(n−1)

k+1 .

Proof. Again, let L = maxv∈V d(v, U). We just have to prove that R̄−radG ≤ L
and the rest of the theorem will follow from Theorems 2 and 3.

Suppose that v ∈ V is a central vertex and u ∈ U such that d(v, u) = d(v, U). It
is easy to see that e(u)− e(v) ≤ d(v, u), and since e(u) ≥ R̄, e(v) = radG, and
d(v, u) ≤ L, we have R̄− radG ≤ L. ��

4 Experimental Results

To evaluate the practical behavior of our algorithm, we tested it on three families
of random graphs and a collection of graphs used in testing various graph drawing
algorithms [2].
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Fig. 1. Random graph Fig. 2. Geometric graph Fig. 3. Bridge graph

We compared the results with the algorithm by Aingworth et al [1] (denoted
by ACIM in honor of the authors), and several linear time algorithms from [8]:
Breadth First Search (BFS), Last Layer Minimum Degree (LL+) and Lexico-
graphic Breadth First Search (LBFS). There are algorithms for the approxima-
tion of distances between all pairs of vertices (and consequently the diameter as
well) [9], but due to their high running times Ω(n2) they are of little interest
here.

The algorithm ACIM has a little similarity with our approach in the sense
that it performs several breadth first searches from a carefully chosen subset of
vertices.

Each of the linear time algorithms searches for some vertex, whose eccentricity
is returned as an approximate value of the diameter, namely,

– BFS algorithm performs a breadth first search and uses the last vertex vis-
ited,

– LL+ (Last layer, Minimum degree) performs a breadth first search and uses
a vertex from the last layer, which has the minimum number of neighbors in
the previous layer, and

– LBFS algorithm performs a lexicographic breadth first search [16] and uses
the last vertex visited.

It must be noted that we chose the starting vertex in these algorithms randomly.
On the random graph families we chose the vertex count n from 10 to about

4000 and created 100 graphs for each size. We run all algorithms on these 100
graphs and calculated the maximum error from the true diameter, the average
error and the number of times the algorithms failed to be exact. The results
are given in Tables 1-3. Additionally, Figures 4-6 show the average error of the
algorithms depending on the graph size. Our experiments revealed that all three
linear-time algorithms perform very similar on the tested graph families, hence
the figures show the data of LBFS algorithm only.

The first graph family we tested is random graphs generated with the algo-
rithm “random edges” from [17]. Given a set V of vertices, it creates m random
pairs {u, v} of vertices in V as edges of G. We used m = 2n in our experi-
ments and took the largest connected component, if the generated graph was not
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connected. See Fig. 1 for an example of a random graph. The maximum error of
our algorithm never exceeded 1 on these graphs, while ACIM and the linear time
algorithms had an error up to 2 and 3, respectively. The average error depending
on the graph size is shown in Fig. 4. The proposed algorithm is clearly a win-
ner. We also tested the algorithms on random graphs with larger edge density,
but the results were similar, with the difference that diameters became smaller
with increasing density and hence the errors of all algorithms also decreased
significantly without changing their relative magnitudes considerably.
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The second family is random geometric graphs [17]. In order to generate a
geometric graph we place the vertices of the graph randomly in the unit circle.
Then we include an edge between each two vertices that are within distance
δ, where δ is the minimum value such that the resulting graph is connected.
See Fig. 2 for an example of a geometric graph. Algorithm performance on
geometric graphs is given in Fig. 5. Only the MultiBFS algorithm managed to
keep the maximum error not exceeding 1, while the second best is ACIM with the
maximum error of 4. Also, MultiBFS algorithm has significantly lower average
error than the others on these graphs.
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The third family is what we call bridge graphs, a specially designed family of
random graphs that have large diameter and hence is potentially hard for the
diameter algorithms. To generate a bridge graph Bn,p,l, we take a random tree
with n vertices as a starting point and add p paths of random length in range 1
to l between randomly chosen pairs of tree vertices. Here we choose p = l =

√
n.

The trees are uniformly generated by using Prüfer sequences [4]. See Fig. 3 for
an example of a bridge graph. Figure 6 shows the algorithm average error on
these graphs. Only MultiBFS manages to keep it as low as 0.37. For the other
algorithms the average error exceeds 2. Similarly, MultiBFS is a winner also in
maximum error and error count measures.

Table 1. Algorithm average error, maximum error, and number of errors on random
graphs

Vertex Edge MultiBFS ACIM BFS LL+ LBFS
count count Avg Max No Avg Max No Avg Max No Avg Max No Avg Max No

9 19 0.02 1 2 0.02 1 2 0.06 1 6 0.05 1 5 0.03 1 3
19 39 0.04 1 4 0.1 1 10 0.19 2 16 0.19 2 18 0.13 2 12
39 79 0.02 1 2 0.11 1 11 0.21 2 20 0.18 2 17 0.17 2 16
78 159 0.05 1 5 0.12 1 12 0.24 2 23 0.31 2 29 0.16 2 15

156 319 0.05 1 5 0.12 1 12 0.35 2 32 0.46 2 41 0.3 2 29
313 639 0.01 1 1 0.16 1 16 0.27 2 22 0.47 2 39 0.31 2 26
627 1279 0.03 1 3 0.14 1 14 0.36 2 34 0.52 2 46 0.28 2 26

1254 2558 0 0 0 0.21 1 21 0.3 2 28 0.47 2 39 0.27 3 23
2509 5117 0.01 1 1 0.17 2 16 0.3 2 26 0.65 3 50 0.39 2 34

Table 2. Algorithm average error, maximum error, and number of errors on geometric
graphs

Vertex Edge MultiBFS ACIM BFS LL+ LBFS
count count Avg Max No Avg Max No Avg Max No Avg Max No Avg Max No

10 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20 46 0 0 0 0.05 1 5 0.04 1 4 0.04 1 4 0.02 1 2
40 120 0 0 0 0.05 1 5 0.08 2 7 0.1 2 9 0.06 2 5
80 275 0 0 0 0.18 4 13 0.25 3 18 0.17 2 12 0.13 3 9

160 605 0.03 1 3 0.16 2 14 0.38 4 23 0.35 4 22 0.42 4 27
320 1361 0.04 1 4 0.26 3 18 0.61 4 40 0.61 4 40 0.58 6 38
640 2897 0.03 1 3 0.26 3 18 0.98 6 47 0.88 6 45 0.75 4 48

1280 6255 0.03 1 3 0.3 4 21 1.08 10 58 1.07 7 58 0.92 6 56
2560 13801 0.11 1 11 0.48 3 35 0.92 5 58 1.05 5 63 0.93 6 60

We also tested the algorithms on tree graphs but do not include the results
here since all algorithms except ACIM managed to find the exact diameter.
Indeed, it can be easily proved that BFS, LL+ and LBFS algorithms find the
exact diameter of tree graphs, and that our algorithm finds the diameter after
two iterations.
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The results of the graph collection are similar to results of random graphs.
The collection contains 11579 connected graphs. The results are given in Table 4.
Our algorithm is clearly a leader in all given error measures.

Regarding the quality of results of MultiBFS algorithm depending on the
iteration count k, our algorithm was run on the random, geometric and bridge
graphs for different values of k and error measures were calculated. Average
error dependency on the iteration count on bridge graphs of average node count
1515 is shown in Figure 7. For this graph size our choice of iteration count is
k =

√
n = 39, and it can be seen from the figure that such choice provides a

reasonable compromise of the quality and running time. The results on random
and geometric graphs are similar.

Table 3. Algorithm average error, maximum error, and number of errors on bridge
graphs

Vertex Edge MultiBFS ACIM BFS LL+ LBFS
count count Avg Max No Avg Max No Avg Max No Avg Max No Avg Max No

14 16 0.02 1 2 0.03 1 3 0.14 2 12 0.09 1 9 0.08 1 8
30 33 0 0 0 0.01 1 1 0.17 4 9 0.07 2 6 0.12 3 7
57 62 0.01 1 1 0.13 2 12 0.16 3 13 0.14 3 11 0.18 3 15

116 124 0.01 1 1 0.19 4 14 0.36 4 20 0.49 4 29 0.47 4 27
237 249 0.03 1 3 0.34 6 17 0.85 6 39 0.78 5 39 0.37 4 21
472 489 0.06 2 5 0.52 7 23 1.54 10 52 1.42 9 48 0.89 6 34
952 976 0.1 2 8 0.87 10 32 1.73 10 51 1.8 10 49 2.28 13 51

1908 1943 0.13 4 8 2.07 13 44 3.35 14 60 3.24 14 62 3.4 15 65
3831 3881 0.37 5 19 2.42 15 48 4.01 22 63 3.98 22 65 4.23 19 71

Table 4. Algorithm average error, maximum error, and number of errors on the col-
lection

Avg Max Number of errors
ACIM 0.073 4 779
LBFS 0.156 6 1494
MultiBFS 0.010 2 111

5 Conclusions and Further Research

In this paper we have proposed an efficient algorithm for approximately deter-
mining the diameter and the radius of a graph. The approximation accuracy
can be chosen arbitrary with appropriate trade-off in running time. In order to
obtain a good approximation in reasonable time, we have chosen the maximum
additive error of O(

√
n), leading to an algorithm with O(m

√
n) running time.

From theoretical point of view our algorithm cannot be directly compared with
2/3-approximation algorithm for the diameter problem by Aingworth et al [1]
since their error bound is multiplicative rather than additive. For larger diam-
eters our algorithm gives lower error bounds, with the opposite being true for
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small diameters. The algorithm by Aingworth et al has also worse running time
for sparse graphs.

We have shown that the proposed algorithm performs very well on several
families of graphs, giving much lower error rate than other known approximation
algorithms.

As a further work we would like to extend our algorithm to directed graphs
and weighted graphs. Also it would be worth investigating whether our approach
leads to new approximation algorithms for the all-pairs-shortest-paths problem.
And, of course, the problem of computing the exact diameter of a graph in sub
quadratic time remains as challenging as before.
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Abstract. We examine the problem of self-organizing linear search lists
in environments with the locality of reference phenomenon, when the
queries exhibit a probabilistic dependence between themselves. We in-
troduce a novel list organization framework that we call Lists on Lists
(LOL), which regards the list as a set of sublists that are manageable in
the same way that individual records are. A LOL organization involves
a reorganization operation on the accessed record level, as well as an-
other on the sublist which it belongs to (the record’s context). We show
that it is beneficial to consider the reorganization of the context together
with the accessed record, since other records within the context are likely
to be accessed in the near future. With the aid of an automaton-based
partitioning algorithm, we demonstrate that we can accurately classify
the different contexts of the sublist. Using this framework, we were able
to empirically achieve asymptotic search costs that are significantly su-
perior to the move-to-front heuristic, widely acknowledged as the best
algorithm for such environments.

1 Introduction

For data retrieval from a list of n elements, a linear or sequential search is per-
formed, with a time complexity of O(n). It can be shown that the best ordering
of the records would be in terms of the descending order of their respective access
probabilities. As such, since the access probabilities are rarely known in advance,
one has to resort to a heuristic to approximate an optimal behaviour. One way
to significantly reduce the search cost (without estimating the access probabil-
ities) is by making the list self-organizing, such that it dynamically adapts to
the query distribution to minimize the search cost, by running a reorganization
algorithm. A self-organizing linear search list is a list that runs a reorganization
heuristic with (possibly) each access query with the hope of optimizing the linear
search cost.

Research on self-organizing linear search lists began with McCabe’s work in
1965 [1]. He introduced two such heuristics: the move-to-front rule (MTF), which
moves the queried record to the front of the list, and the transposition rule (TR),
which swaps the queried record with its predecessor. The MTF is characterized
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by quick convergence rates and the ability to quickly adapt to changes in the envi-
ronment. The TR, on the other hand, is more likely to find a better asymptotic
arrangement for the list than the MTF, through its incremental conservative
changes. However, its convergence rate and ability to respond to changes in the
environment are poor.

In essence, a lot of the research that followed McCabe’s work has attempted
to combine the two algorithms, to benefit from the speed of the MTF and the
accuracy of the TR. Some algorithms are hybrids of the two (e.g. [2], [3], [4]).
Other “batched” methods invoke the reorganization heuristic every kth access
[1] or after k accesses in a row [5]. More recent work in this field include the
work of Schulz [6] and Bachrach et al. [7]. Randomized algorithms (e.g. [8], [9],
[10]) are another means to reorganize lists that, generally speaking, try to move
the accessed record in a more conservative way than the MTF.

An interesting behaviour of the algorithms manifests when the environment
has the property of locality of reference, because of the probabilistic dependence
among the access queries. In other words, during a given time interval, only a
subset of the query set is predominantly accessed on the list, and then this subset
changes with time. This property is also sometimes referred to as dependent
accesses. Examples of the locality of reference phenomenon are indeed abundant
in computer science, such as in program execution, paging and caching, memory
management, file systems, and database systems.

Lam et al. [11] studied the the expected search cost of the MTF in a dependent
environment, by considering a Markovian model for dependent accesses. Chas-
saing [12] has shown that the expected search time for MTF in environments
with locality of reference is not greater than that of any other sequential strat-
egy. Later, in 2002, Bachrach et al. [7] backed this result with a comprehensive
experiment that tested almost all the algorithms reported in the literature up
to the time of the study. They have shown that the MTF outperforms all other
algorithms that they tested in such environments, as the dependence factor in-
creases. This result seems to be the general consensus within the literature. To
our knowledge, no other algorithm has been reported to outperform the MTF in
environments with higher dependence degrees. Comparison against the MTF is
therefore a very good metric for the performance of an algorithm in environments
with locality of reference.

One common approach for algorithms dealing with environments possessing
such a property is to minimize the access cost for the required resource as well as
its surrounding “context,” since the odds that a nearby element will soon be re-
quested are high. Applied to self-organizing lists, this approach would reorganize
some of the elements around the accessed record as well as the record itself, i.e.
by essentially reorganizing a sublist that the accessed record belongs to, within
the list. This is especially effective in lists since the reorganization cost for a
sublist is the same as that of a single record (by updating few pointers), without
incurring additional cost, provided that the sublist boundaries are known. We
call such an approach a List on List (LOL) organization.
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A LOL algorithm is denoted by the form X-Y, where X would be the reorga-
nization of the accessed record within the sublist, and Y would be the reorga-
nization of sublists among themselves. For example, consider the LOL scheme
MTF-MTF. In one variation of this scheme, we divide the list into a number of
sublists k, of length m each. When a requested record is found, it is moved to the
front of the sublist it belongs to, and then the entire sublist is moved to the front
of the list. If the sublist contains records within the current environment’s con-
text, we may just be lucky enough to have minimized the access costs for a host
of forthcoming requests until the environment’s context changes. At the same
time, by doing this, we are bringing records that are more frequently accessed
within this context to the head of the list, thereby reducing the cost even more.

What remains is to ensure that the sublists actually reflect the environment’s
various contexts. It would be of no benefit for us to move a number of records
to the beginning of the list if they are not likely to be accessed in the near
future. To achieve this goal, we used a dependence capturing or partitioning
automaton, alongside with the LOL reorganization algorithm. This is done by
running the current queried key (at time t) with the last queried key (at time
t − 1) against the partitioning algorithm. If the two elements belong to the
same partition within the partitioning automaton’s internal representation, this
automaton is “rewarded” and the LOL reorganization takes place. Otherwise, the
automaton is “penalized,” and instead of performing a LOL reorganization, the
automaton learns a better partitioning and the sublists are modified accordingly
to match that partitioning. In this paper we use two such algorithms to attain the
partitioning, the Object Migration Automaton (OMA) [13], and the Modified
Linear Reward-Penalty reinforcement rule (MLRP) [14]. A LOL scheme that
uses a partitioning automaton is denoted by the form X-Y-Z, where Z is the
partitioning algorithm. The above example would be called MTF-MTF-OMA.

2 Models of Dependence

To initiate the study, we assume that the set of n distinct query elements can be
divided into k equal disjoint subsets with m elements, where n = k ·m. These
subsets are sometimes referred to as local sets or local contexts [7]. Elements of
the same subset are “dependent” on each other, i.e. if an element from set i is
requested at time t, the likelihood that the element requested at time t + 1 is
from the same local context is significant.

The environment can be regarded as having a set of finite states {Qi|1 ≤
i ≤ k}. The way the environment changes states defines the type of dependence
model.

In a Markovian switching environment, the states of the environments are
also the states of an (unkown) Markov chain. After generating the request, the
environment stays in the same state with probability α, and makes a transition
to another state with probability (1−α)/(k−1). After being at any environment
state (local set), the query generation follows a fixed probability distribution to
facilitate analysis. This model is the one most often used to study dependent
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environments, such as in [7], [11], [15]. Bachrach et al. [7] observed that the
expected number of subsequent requests in a local set is given by 1/(1− α).

In a periodic switching environment, the environment changes states in a
round-robin fashion. After every T queries, the environment changes state from
Qi to Qi+1modk. Within these T queries, all the requests belong to exactly one
local set. There are two variations of this environment. In the first, the algo-
rithm which manipulates the data structures is aware of the time after which
the environment changes its state. In the second, the algorithm does not know
about this time period. Algorithms with this extra information are expected to
yield better performance than those without it.

3 Sublist Manipulation

We propose the idea of dividing the self-organizing list of size n into a set of k
sublists. We examine both sublists of the same size (Sect. 4.1) and different sizes
(Sect. 4.3). We would then apply self-organization algorithms on the elements
within the sublist and then between the sublists themselves. For example, we
may choose to transpose the record within the sublist and then move the sublist
to the front of the original list. Following the naming scheme introduced above,
this would be called TR-MTF. Another example would be to move the record to
the front of the sublist, and then move the sublist to the front of the list, which
would be an MTF-MTF scheme (see Fig. 1).

The rationale behind such a strategy can be explained as follows. When an
element is accessed in a dependent environment, the likelihood that another
element within its local set is going to be chosen in the immediate future is high.
It is therefore beneficial to make use of this information by promoting the entire
set to an advanced position within the list, thereby reducing the search time
if such an element is requested. This is somewhat related to the benefits one
would gain from using the MTF rule in a non-stationary environment, since the
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Fig. 1. Illustration of the MTF-MTF and the TR-MTF. (a) A record with key 5 is ac-
cessed in sublist i. (b) In MTF-MTF, the record is moved to the front of the sublist, and
then the sublist is moved to the front of the list. (c) In TR-MTF, the record is trans-
posed with the preceding record, and then the sublist is moved to the front of the list.
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frequently accessed records are promoted to locations near the front of the list.
The LOL approach has several benefits, however. Unlike the MTF, records are
promoted en masse, and therefore the prospects of the access time being reduced
in forthcoming accesses increase. Second, if a record outside of the local context
is accessed, it is displaced much further from the front in subsequent calls than
in the MTF case, because the group of all records that obey the context may be
promoted to precede it. In the case of the MTF, however, such an access may
cause the record to linger at the front of the list for a longer duration, until the
entire context is moved to the front of the list one element at a time.

To capture the dependence between the access queries, we use a partitioning
scheme, such that records of the same local context reside in the same sublist
division. We used the Object Migration Automaton (OMA) [13], which parti-
tions objects into equal size groups. We also used the Modified Linear Reward-
Penalty scheme (MLRP) [14], which can produce different-sized partitions albeit
at greater time and space costs. Both schemes are based on the field of learning
automata [15].

Algorithm 1. Generic LOL algorithm X-Y-Z
Notation:
q: Input query
Rq: Record corresponding to q
L(Rq): Yields the sublist to which Rq belongs
X: Reorganization scheme on the record level, within a sublist
Y : Reorganization scheme on the sublist level
Z: Partitioning algorithm

loop
Input query q
q1 ⇐ q2

q2 ⇐ q
Search for Rq2

if not the first time then
Run Z(q1, q2)
if Reward then

Run X(Rq2 , L(Rq2))
Run Y (L(Rq2))

else
Rearrange Rq1 or Rq2 as dictated by the partitioning Z

end if
end if

end loop

Algorithm 1 presents a high level algorithmic version for the generic LOL
algorithm X-Y-Z. Clearly, the time complexity of this algorithm is dependent on
those of X, Y and Z. However, we note that the cost of X is often constant, since
it is likely a simple MTF or TR operation within the sublist. The cost of Z is
often constant (as in the case of the OMA for example). This is especially true
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after convergence, because the automaton’s state does not change. The cost of Y
is either constant or O(m) (in the case where pointers to sublist boundaries are
maintained). Therefore, it is often the case that the only cost incurred is that of
the linear search. However, this is dependent on the choice of algorithms used
and their details.

4 Empirical Results

Throughout our experiments, we used a data source with n = 128 distinct ele-
ments, labeled 1 through 128. To produce dependent access sequences, we divided
the query space into k local contexts (Q1 . . . Qk) (unknown to the list organi-
zation scheme), each of size m. We then applied the Markovian and periodic
models of dependence discussed in Section 2. For example, if k = 8 and m = 16,
Q1 would include the elements 1 . . . 16, Q2 would include 17 . . .32, etc. To model
the probability distribution within the local context, we used Zipf’s law, which
has been used to model the probability distribution within the local context of
dependent environments in [7], as well as four additional distributions. The ac-
cess probability si for record i, 1 ≤ i ≤ m, for the different distributions is given
by:

1. Zipf’s distribution:

si =
1

iHm
where Hm =

m∑
k=1

(1/k).

2. 80-20 distribution:

si =
1

i(1−θ)H
(1−θ)
m

where H(1−θ)
m =

m∑
k=1

(1/k(1−θ)), andθ =
log 0.80
log 0.20

≈ 0.1386.

3. Lotka’s distribution:

si =
1

i2H2
m

where H2
m =

m∑
k=1

(1/k2).

4. Exponential distribution:

si =
1

2iK
where K =

m∑
k=1

(1/2k).

5. Linear distribution:

si = K(m− i + 1) where K =
m∑

k=1

k.
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4.1 OMA-Based Algorithms

Number of sublists. We tested the MTF-MTF-OMA algorithm in a Markov-
ian environment (α = 0.9) for varying number of sublists (k= 2, 4, 8, 16, 32, 64).
Setting α to 0.9 compares our algorithms against the strongest performance of
the MTF, which excels with increasing dependence. Figure 2 plots the ratio of
the asymptotic cost of the MTF-MTF-OMA algorithm to that of the MTF, for
different values of k. A value greater than unity indicates a performance worse
than MTF, while a value less than unity indicates a superior performance.

Observe that for all distributions with the exception of the Lotka and exponen-
tial distributions, the MTF-MTF-OMA produced results that were consistently
better than the MTF for most numbers of sublists, achieving results that are
twice as good in some cases. Also observe that the curves are U-shaped, because
the algorithms are not optimal for very long and very short sublists. When the
sublists are long (lower values of k), the partitioning of the OMA is non-optimal.
As a result, the algorithm may spend a lot of time searching for a record that
was wrongly partitioned out of the current working set. For very short sublists
(higher values of k), any error in the partitioning algorithm would prove to be
too costly in comparison to a plain MTF operation. Therefore, the optimum
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Fig. 2. The ratio of the asymptotic cost of the MTF-MTF-OMA to that of the MTF, for
different numbers of sublists k and different probability distributions, in a Markovian
environment with α = 0.9

Table 1. Asymptotic cost for LOL algorithms with k = 16 and α = 0.9

Distrib. Zipf 80-20 Lotka Exp Linear

MTF 28.5 29.7 16.4 16.1 30.2
TR 38.5 42.0 18.4 22.6 46.1
MTF-MTF-OMA 16.4 17.1 14.7 14.5 16.7
MTF-MTF-MLRP 15.8 16.2 13.8 14.4 16.7
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number of sublists (and records within a sublist) is in the center, and hence the
U-shape of the curves in Fig. 2. In fact, for k = 16 and k = 34, the results of
LOL algorithms were better in all distributions tested (see Table 2).

Degree of dependence. We have also studied the performance of the MTF-
MTF-OMA with respect to varying degrees of locality of reference (α). Figure 3
shows curves that reproduce the behaviour seen in the experiments of Bachrach
et al. [7], in which the MTF outperformed the TR (and all other algorithms) as
α increased. All other algorithms that they tested had curves that lay between
these two.
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Fig. 3. The asymptotic cost of various algorithms, in a Markovian environment with
different degrees of dependence α, for k = 16 sublists under the Zipf probability
distribution

Table 2. Asymptotic cost for LOL algorithms with k = 16 and varying α under the
Zipf probability distribution

α 0.5 0.6 0.7 0.8 0.9

MTF 46.9 43.4 41.0 37.7 27.9
TR 39.9 39.4 39.3 39.6 40.1
MTF-MTF-OMA 59.3 56.8 36.6 26.0 15.4
MTF-MTF-MLRP 48.5 43.9 35.8 26.0 15.5

However, at higher dependence degrees, the curve for the MTF-MTF-OMA
dives well below that of the MTF (see Table 2). This result is significant since
it empirically shows that the LOL algorithms yield better asymptotic search
cost than the MTF, which was shown by Bachrach et al. [7] to be better than
all other algorithms they tested in a strongly dependent environment, using the
same dependence model.
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4.2 Periodic Variations

We tested the MTF-MTF-OMA in a periodic environment with a period of 10
accesses. This produces a comparable environment to the Markovian one (with
α = 0.9), since the average number of accesses from the same working set in the
Markovian environment is 1/(1−α) = 10. In a periodic environment, the MTF-
MTF-OMA delivers performance that is just as good as in a Markovian one
with strong locality of reference. This is because periodic environments can be
thought of as being Markovian ones with very strong locality of reference (α = 1)
for a specified number of queries. When compared to MTF, the curves produced
are of a similar nature to the ones produced in a Markovian environment, and
all the arguments can be carried over.

If we have advance knowledge of the period T , we can simply move the first
sublist to the end of the list after T queries. If the OMA has correctly converged,
no records from this sublist are expected to be accessed except after (k − 1)T
queries. We call this algorithm the MTF-MTF-OMA-P (for “periodic”). If we
do not know the period in advance, however, we choose to move the first sublist
to the rear if two successive queries are not dependent. That is, if the OMA
penalizes two successive queries, we interpret that as the end of the period and
move the sublist to the rear accordingly. We call this algorithm the MTF-MTF-
OMA-UP (for “unknown period”).

The MTF-MTF-OMA-P is ideal for the periodic environment. For smaller
numbers of sublists (k = 2, 4), the MTF-MTF-OMA-P significantly outperforms
the MTF-MTF-OMA, already shown to be better than the MTF. For larger
numbers of sublists (e.g. k = 32, Zipf distribution), the difference is dramatic:
39.5 for the asymptotic cost of the MTF, 27.0 for the MTF-MTF-OMA, and 2.6
for the MTF-MTF-OMA-P (Fig. 4).

As expected, in a Markovian environment, the MTF-MTF-OMA-P does not
perform as well as MTF-MTF-OMA. Needless penalties are incurred since the
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Fig. 4. The asymptotic cost of different algorithms plotted against the number of
sublists for the Zipf distribution, in a periodic environment with period = 10
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algorithms only consider the period T , rather than the query dependence, for
moving the first sublist to the rear. However, the performance of the MTF-MTF-
OMA-UP was often on a par to that of the MTF-MTF-OMA. This is because
when the local set changes in a Markovian environment, all the other local sets
are equally likely to become the current local set, and therefore the position
where the first sublist is moved to is irrelevant.

4.3 MLRP-Based Algorithms

We have seen that the MTF-MTF-OMA produced results that are better than
the MTF in dependent environments. However, the OMA requires the sizes of
the environment’s local contexts to be equal. But the LOL organization strategy
and the dependence capturing mechanism need not be tightly coupled. As long
as the interface is well-defined, any dependence capturing mechanism can be
used with the algorithms described above, instead of the OMA.

As a proof of concept, we implemented the MTF-MTF-MLRP, where the
MLRP was used for the partitioning of the the environment inputs and deter-
mining the sublists. The MLRP can partition objects into different sized groups,
thereby offering more flexibility than the OMA, with comparable accuracy. How-
ever, we have seen that the time and space requirements are higher than that of
the OMA.

The MTF-MTF-MLRP algorithm is very similar to the MTF-MTF-OMA,
except that in initialization, every record in the list sits in a sublist of its own.
The sublists are then gradually merged according to the access sequences to form
bigger sublists, that eventually match the dependence model of the environment.
Notice that, when an element is moved from one sublist to another, no other
element is moved back to the original sublist.

In Tables 2 and 2 we show that the costs for the MTF-MTF-MLRP and the
MTF-MTF-OMA are very close to each other. We have also noticed that the
variance for MLRP-based algorithms is much smaller than that for OMA-based
algorithms, particularly for the Lotka and exponential distributions. The MLRP
seems to be more likely to choose a more correct partitioning than the OMA for
these distributions.

The most interesting result about the MTF-MTF-MLRP is the rate of change
in its amortized cost, illustrated in Fig. 5. Narendra and Thathatchar [15] de-
fine the optimality of a system in a non-stationary environment by its ability
to minimize the amortized cost. To get a feeling for the rate of convergence
of the algorithms, we plotted the amortized cost as the number of queries in-
creased, for the first 100,000 queries, in a Markovian environment with α = 0.9,
k = 16, for the Zipf distribution (Fig. 5). Starting at roughly the same cost as
OMA-based algorithms, the MTF-MTF-MLRP curve proceeds with an impres-
sive convergence speed to quickly reach the asymptotic value well before the
MTF-MTF-OMA. Although the literature ([13], [14]) did not provide compar-
isons between the MLRP and the OMA, we believe that the former yields much
faster convergence speed, which in turn could be well worth the additional time
and space penalties incurred.
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5 Conclusion

We have introduced a strategy for reorganizing linear search lists under environ-
ments with locality of reference that we call List on Lists (LOL). Under such
schemes, the list can be viewed as a set of sublists that could be manipulated
and reorganized, just as the individual records are. With the help of a partition-
ing algorithms, we can arrange the different sublists to try to have the sublists
match the different environment contexts.

Experimental results with simulated data for LOL based algorithms have
shown superior results to those of the MTF, widely acknowledged as the best
heuristic for use in dependent environments. This was consistent for most of the
probability distributions and different sublist sizes tested. Additionally, by using
the MLRP, we were able to achieve very fast convergence rates. As well, our
periodic variations of LOL algorithms were shown to be very well suited to both
periodic and Markovian environments. These results need to be backed up with
experiments on real data.

The most significant contribution of the paper is the novel way of viewing the
list as a set of sublists, that are manageable using the same strategy used to
manage individual records. To our knowledge, such an approach has not been
explored before. The formal analysis of the schemes, though open, will be far
from trivial.
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Abstract. We present three cache conscious implementations of STL
standard compliant lists. Up to now, one could either find simple dou-
ble linked list implementations that easily cope with standard strict
requirements, or theoretical approaches that do not take into account
any of these requirements in their design. In contrast, we have merged
both approaches, paying special attention to iterators constraints. In this
paper, we show the competitiveness of our implementations with an ex-
tensive experimental analysis. This shows, for instance, 5-10 times faster
traversals and 3-5 times faster internal sort.

1 Introduction

The Standard Template Library (STL) is the algorithmic core of the C++ standard
library. The STL is made up of containers, iterators and algorithms. Containers
consist on basic data structures such as lists, vectors, maps or sets. Iterators are a
kind of high-level pointers used to access and traverse the elements in a container.
Algorithms are basic operations such as sort, reverse or find. The C++ standard
library [1] specifies the functionality of these objects and algorithms, and also their
temporal and spatial efficiency, using asymptotical notation.

From a theoretical point of view, the knowledge required to implement the
STL is well laid down on basic textbooks on algorithms and data structures
(e.g. [2]). In fact, the design of current widely used STL implementations (in-
cluding SGI, GCC, VC++, . . . ) is based on these.

Nevertheless, the performance of some data structures can be improved tak-
ing advantage of the underlying memory hierarchy of modern computers. Not
in vain, in the last years the algorithmic community has realized that the old
unitary cost memory model is turning more inaccurate with the changes in com-
puter architecture. This has raised an interest on cache conscious algorithms
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and data structures that take into account the existence of a memory hierar-
chy, mainly studied under the so-called cache aware (see e.g. [3, 4]) and cache
oblivious models (see e.g. [5, 6]).

However, if these data structures are to be part of a standard software library,
they must conform to its requirements. As far as we know, no piece of work has
taken this into account. Our aim in this paper is to propose standard compliant
alternatives that perform better than traditional implementations in most com-
mon settings. Specifically, we have analyzed one of the most simple but essential
objects in the STL: lists. We have implemented and experimentally evaluated
three different variants of cache conscious lists supporting fully standard iterator
functionality. The diverse set of experiments shows that great speedups can be
obtained compared to traditional double linked lists found for instance in the
GCC STL implementation and in the LEDA library [7].

The remainder of the paper is organized as follows: In Sect. 2, we describe STL
lists and the cache behavior of a traditional double linked implementation. The
observations drawn there motivate the design of cache conscious STL lists that
we present in Sect. 3. Our implementations are presented and experimentally
analyzed in Sect. 4. Conclusions are given in Sect. 5.

2 Motivation for Cache Conscious STL Lists

A list in the STL library is a generic sequential container that supports forward
and backward traversal using iterators, as well as single insertion and deletion at
any iterator position in O(1) time. Additionally, it offers internal sorting, several
splice operations, and others (see further documentation in [8]). Finally, it must
also be able to deal with an arbitrary number of iterators on it and ensure that
operations cannot invalidate them. That is, iterators must point to the same
element after any operation has been applied (except if the element is deleted).

In order to fulfill all these requirements, a classical double linked list together
with pointers for iterators suffices. Indeed, this is what all known STL imple-
mentations do.

The key property of any pointer-based data structure as this is that even
though the physical position of each element is permanent, its logical position
can be changed just modifying the pointers in the data structure. Consequently,
iterators are not affected by these movements.

Further, pointer-based data structures use memory allocators to get and free
nodes. These allocators typically answer consecutive memory requests with con-
secutive addresses of memory (whenever possible). In the list case, if we add
elements at one end (and no other allocations are performed at the same time),
there is a good chance that logically consecutive elements are also physically
consecutive, which leads to a good cache performance. However, if elements are
inserted at random points or if the list is shuffled, logically consecutive ele-
ments will be rarely at physically nearby locations. Therefore, a traversal may
incur in a cache miss per access, thus increasing dramatically the execution
time.
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In order to give evidence of the above statement, we have performed the
following experiment with the GCC list implementation: Given an empty list,
n random integers are pushed back one by one. Then, we measure the time
to fully traverse it. Afterwards, we modify the list, and again we measure the
time to fully traverse it. The modification consists either on sorting (thus ran-
domly shuffling the links between nodes), or on k iterations of the so-called
k-insertion-erase test. In the i-th iteration of this test (1 ≤ i ≤ k): first, the
list is traversed and an element is inserted at each position with probability
1/(3 + i) , then the list is traversed again and each element is erased with
probability 1/(4 + i). Traversal times before modifying the list and after each
kind of modification are shown in Fig. 1. Except for very small lists, it can
be seen that the traversal of the shuffled list is about ten times slower than
the traversal of the original list; and the only difference can be in the mem-
ory layout (and so, in the number of cache misses). Besides, note that four
iterations of the insertion-erase test are enough to register half the worst case
time.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 1  2  4  8  16  32  64  128  256  512

sc
al

ed
 ti

m
e 

(in
 m

ic
ro

se
c)

list size (in 10^4)

Traversal using libstdc++

no-modification
1-insert-erase
2-insert-erase
4-insert-erase
8-insert-erase

16-insert-erase
32-insert-erase
64-insert-erase

sort

Fig. 1. Time measurements for list traversal before modifying it and after being mod-
ified in several ways. The vertical axis is scaled to the list size (that is, time has been
divided by the list size before being plotted).

Taking into account that lists are used when elements are often reorganized
(e.g. sorted) or inserted and deleted at arbitrary positions (if we only wished to
perform insertions at the ends, we would better have used a vector, stack, queue
or dequeue rather than a list), it is worth to try to improve the performance of
lists using a cache conscious approach.

3 Design of Cache Conscious STL Lists

In this section we first consider previous work on cache conscious lists. Then, we
present the main issues on combining them with STL list requirements. Finally,
we present our proposed solutions.



124 L. Frias, J. Petit, and S. Roura

3.1 Previous Work

Cache conscious lists have already been analyzed before; see a good summary
in [5]. The operations taken into account are traversal (as a whole), insertion
and deletion and their cost measured as the number of memory transfers.

Let be n the list size and B be the cache line size. The cache aware solution
consists on a partition of Θ(n/B) pieces, each between B/2 an B consecutive
elements, achieving O(n/B) amortized traversal cost and constant update cost.
The cache oblivious solutions are based on the packed memory structure [9],
basically an array of Θ(n) size with uniformly distributed gaps. To guaran-
tee this uniformity updates require O((log2 n)/B), which can be slightly low-
ered by partitioning the array in smaller arrays. Finally, self-organizing struc-
tures [9] achieve the same bounds as the cache aware but amortized. There,
updates breaking the uniformity are allowed until the list is reorganized when
traversed.

Therefore, theory shows that cache conscious lists fasten scan based operations
and hopefully, do not rise significantly update costs compared to traditional dou-
ble linked lists. However, none of the previous designs take into account common
requirements of software libraries. In particular, combining iterator requirements
and cache consciousness rule out some of the more attractive choices.

3.2 Preliminaries

Before proceeding to the actual design, the main problems to be addressed must
be identified. In our case, these concern to iterators. Secondly, it may be useful
to determine common scenarios in which lists appear to guide the design.

Iterators concerns. In cache conscious structures, the physical and logical loca-
tions of an element are heavily related. In the case of STL list, this makes difficult
to implement iterators trivially with pointers while enforces being able to reach
iterators to keep them coherent whenever a modification in the list occurs.

The main issue is that an unbounded number of iterators can point to the
same element. Therefore, Θ(1) modifying operations can be guaranteed only if
the number of iterators is arbitrarily restricted, or if iterators pointing to the
same element share some data that is updated when a modification occurs.

Hypotheses on common list usages. From our experience as STL programmers, it
can be stated that a lot of common list usages are in keeping with the following:

– A particular list instance has typically only a few iterators on it.
– Given that lists are based on sequential access, many traversals are expected.
– The list is often modified and at any position: insertions, deletions, splices.
– The stored elements are not very big (e.g. integers, doubles, . . . ).

Note that the last hypothesis, which also appears implicitly or explicitly in
general cache conscious data structures literature, can be checked in compile
time. In case it did not hold, a traditional implementation could be used instead
and this can be neatly achieved with template specialization.
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3.3 Our Design

Our design combines cache efficient data access with full iterator functionality
and (constant) worst case costs compliant with the Standard. Besides, our ap-
proach is specially convenient when the hypotheses on common list usages hold.

The data structure core is inspired by the cache aware solution previously
mentioned (note that self-organizing strategies are not convenient here because
STL lists are not traversed as a whole but step by step via iterators). Specifically,
it is a double linked list of buckets. A bucket contains a small array of bucket
capacity elements, pointers to the next and previous buckets, and extra fields
to manage the data in the array. This data structure ensures locality inside the
bucket, but logically consecutive buckets are let to be physically far.

Finally, it must be decided a) how to arrange the elements inside a bucket, b)
how to reorganize the buckets when inserting or deleting elements, and c) how to
manage iterators. Besides, the appropriate bucket capacity must be fixed (this
has been studied experimentally, see end of Sect. 4.1).

a) Arrangement of elements. We devise three possible ways to arrange the ele-
ments inside a bucket:
– Contiguous: The elements are stored contiguously from left to right and

so, insertions and deletions must shift all the elements on its left or right.
– With gaps : Elements are still stored from left to right but gaps between

elements are allowed. In this way, we expect to reduce the average num-
ber of shifts. However, an extra field per element is needed to distinguish
real elements from gaps. Additionally, more computation may be needed.

– Linked : The order of the elements inside the bucket is set by internal
links instead of the implicit left to right order. This requires extra space
for the links, but avoids shifts inside the bucket. Thus, this solution is
scalable for large bucket (and cache line) sizes.

b) Reorganization of buckets. The algorithms involved in the reorganization of
buckets preserve the data structure invariant after an insertion or deletion.
This includes: keeping a minimum bucket occupancy to guarantee the lo-
cality of accesses, preserving the arrangement coherency (e.g. if contiguous
arrangement is used, gaps between the elements cannot be created),...

The main issue is keeping a good balance between high occupancy, few
bucket accesses per operation, and few elements movements. Besides, it
should be guaranteed that no sequence of alternated insertions and deletions
can toggle infinitely between creating and destroying a bucket. This is a must
for performance unless we fully manage bucket allocation/deallocation.

c) Iterator management. Finally, it must be decided how iterators are imple-
mented. Recall from Sect. 3.2 that this cannot be done trivially with pointers.

Specifically, we have decided to identify all the iterators referred to an
element with a dynamic node (relayer) that points to it. The relayer must be
found in constant time and keep count of how many iterators are referring
the element (so that it can be destroyed when there are none). Besides, we
only need to update the relayer when the physical location of the element
changes. We propose two possible solutions (see Fig. 2):
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– Bucket of pairs : In this solution, for each element, a pointer to its relayer
is kept. This is easy to do and still uses less space than a traditional
double linked list because it needs two pointers per element.

– 2-level : In this solution, we maintain a double linked list of active relay-
ers. Note that O(1) time access to the relayers can be guaranteed because
STL lists are always accessed through iterators. This solution uses less
space compared to the previous one (if there are not much iterators).
Unfortunately, the locality of iterator accesses decreases with the num-

ber of elements with iterators because relayers addresses can be unrelated.
Anyway, dealing with just a few iterators is not a big matter because in par-
ticular, there is a good chance to find them in cache memory. In any case,
our two approaches conform the Standard whatever the number of iterators.

(a) Bucket of pairs (b) 2-level list

Fig. 2. Standard compliant iterators policies

4 Performance Evaluation

We developed three implementations. Two of them use contiguous bucket arrange-
ment, one ofwhich uses bucket of pairs iterator solution and another bucket of pairs.
The last implementation uses a linked bucket arrangement and the 2-level iterator
solution.All these canbe foundunder http://www.lsi.upc.edu/∼lfrias/lists/lists.zip.
Notice that in contrast to a flat double linked list, our operations deal with several
cases and each of them with more instructions. This makes our code 3 or 4 times
longer (in code lines).

In this section, we experimentally analyze the performance of our implemen-
tations and show their competitiveness in a lot of common settings.

The results are shown for a Sun workstation with Linux and an AMD Opteron
CPU at 2.4 GHz, 1 GB main memory, 64 KB + 64 KB 2-associative L1 cache,
1024 KB 16-associative L2 cache and 64 bytes per cache line. The programs were
compiled using the GCC 4.0.1 compiler with optimization flag -O3. Comparisons
were made against the current STL GCC implementation and LEDA 4.0 (in the
latter case the compiler was GCC 2.95 for compatibility reasons).

All the experiments were carried with lists of integers considering several list
sizes that fit in main memory. Besides, all the plotted measurements are scaled
to list size for a better visualization.

With regard to performance measures, we collected wall-clock times, that
were repeated enough times to obtain significative averages (variance was always
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observed to be very low). Furthermore, to get some insight on the behavior of
the cache, we used Pin [10], a tool for the dynamic instrumentation of programs.
Specifically, we have used a Pin tool that simulates and gives statistics of the
cache hierarchy (using typical values of the AMD Opteron).

In the following we present the most significant results. Firstly, we analyze
the behavior of lists with no iterators involving basic operations and common
access patterns. Then, we consider lists with iterators. Finally, we compare our
implementations against LEDA, and consider other hardware environments.

4.1 Basic Operations with No Iterator Load

Insertion at the back and at the front. Given an initially empty list, this exper-
iment compares the time to get a list of n elements by successively applying n
calls to either the push back or push front methods.

The results for push front are shown in Fig. 3(a); a similar behavior was
observed for push back. In these operations, we observe that our three imple-
mentations perform significantly better than GCC. This must be due to manage
memory more efficiently: firstly, the allocator is called only once for all elements
in a bucket and not for every element. Secondly, our implementations ensure
that buckets get full or almost full in these operations, and so, less total memory
space is allocated.

Traversal. Consider the following experiment: First, build a list; then, create an
iterator at its begin and advance it up to its end four times. At each step, add
the current element to a counter. We measure the time taken by all traversals.

Here, the way to construct the list plays an important role. If we just build the
list as in the previous experiment, the traversal times are those summarized in
Fig. 3(b). These show that performance does not depend on list size and that our
2-level contiguous list implementation is specially efficient even compared to the
other 2-level implementation. Our linked bucket implementation is slower than
the contiguous implementation because, firstly, its buckets are bigger for the
same capacity and so, there are more memory accesses (and misses). Secondly,
the increment operation of the linked implementation requires more instructions.

Rather, if we sort this list before doing the traversals, and then measure the
time, we obtain the results shown in Fig. 3(c). Now, the difference between
GCC’s implementation and ours becomes very significant and increases with list
size (our implementation turns to be more than 5 times faster). Notice also that
there is a big slope just beginning at lists with 20000 elements.

The difference in performance is due to the different physical arrangement of
elements in memory (in relation to their logical positions). To prove this claim,
we repeated the same experiment using the Pin tool, counting the number of
instructions and L1 and L2 cache accesses and misses. Some of these results are
given in Fig. 4(a). Firstly, these show that indeed our implementations incur in
less caches misses (both in L1 and L2). Secondly, the scaled ratio of L1 misses is
almost constant because even small lists do not fit in L1. Besides, the big slope
in time performance for the GCC implementation coincides with a sudden rise
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(b) Traversal before shuffling
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(c) Traversal after shuffling
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(d) Insertion before shuffling
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(e) Insertion after shuffling
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(f) Intensive insertion
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(g) Internal sort
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Fig. 3. Experimental results for basic operations with no iterator load
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Fig. 4. Simulation results on the cache performance (the vertical axis is logarithmic)

in L2 cache miss ratio, which leads to a state in which almost every access to
L2 is a miss. This transition also occurs in our implementations, but much more
smoothly. Nevertheless, the L2 access ratio (that is, L1 miss ratio) is much lower
because logically close elements are in most cases in the same bucket and so,
already in the L1 cache (because bucket capacity is not too big).

Insertion. In this experiment, we deal with insertions at arbitrary points. Firstly,
a list is built (using the two abovementioned ways). Then, it is forwardly tra-
versed four times. At each step, with probability 1

2 , an element is inserted before
the current. We measure the time of doing the traversal plus the insertions.

Results are shown in Figs. 3(d) and 3(e), whose horizontal axis corresponds
to the initial list size. Similar results were obtained with the erase operation.

Analogously to plain traversal, performance depends on the way the list is
built. However, as in this case the computation cost is greater, the differences
are smoother. In fact, when the list has not been shuffled, the bucket of pairs list
performs worse than GCC’s. Our two other implementations perform similarly
to GCC’s though. On the other hand, when the list has been shuffled, GCC’s
time highly increases, while ours is almost not affected.

It is interesting to observe that the linked arrangement implementation does
not outperform the contiguous ones even though it does not require shifting
elements inside the bucket. This must be due to the fact that more memory ac-
cesses (and misses) are performed and this is still dominant. This was confirmed
performing the analogous Pin experiment. Instead, if an intensive insertion test
is performed, in which a lot of insertions per element are done and almost no
traversal is performed, then this gain is not negligible. This is shown in Fig. 3(f).

Internal sort. The STL requires an O(n log n) sort method that preserves the
iterators on its elements. Our implementations use a customized implementation
of merge sort.

Results of executing the sort method are given in Fig. 3(g). These show that
our implementations are between 3 and 4 times faster than GCC. Taking into
account that GCC also implements a merge sort, we claim that the significant
speedup is due to the locality of data accesses inside the buckets. To confirm



130 L. Frias, J. Petit, and S. Roura

this, Fig. 4(b) shows the Pin results. Indeed, GCC does about 30 times more
cache accesses and misses than our implementations.

Effect of bucket capacity. The previous results were obtained for buckets with
capacity of 100 elements. Anyway, this choice did not appear to be critical.
Specifically, we repeated the previous tests with lists with other capacities, and
observed that once the bucket capacity was not very small (less than 8-12 ele-
ments), a wide range of values behaved neatly. Note that a bucket of integers with
capacity of 8 elements is yet 40-80 bytes long (depending on the implementation
and address length) and a typical cache line is 64 or 128 bytes long.

To illustrate the previous claims, we show in Fig. 3(h) insertion results on a
shuffled list with initially about 5 million elements. These show that for con-
tiguous arrangement implementations, time decreases until a certain point and
then starts to increase. In these cases, increasing the bucket size increases the
intrabucket movements which finally results more costly than the achieved local-
ity of accesses. In contrast, the linked arrangement implementation seems to be
not affected because no such operations are performed, accesses of a bucket do
not interfere between them, and our insert reorganization algorithm takes into
account at most three buckets at a time.

If we perform the last test with several instances at the same time, a smooth
rise in time for all implementations can be seen, in particular for big bucket
capacities. In fact, it is common dealing with several data structures at the same
time. In this case, some interferences within the different objects accesses can
occur, which are more probable as the number of instances grows. Therefore, it
is advisable to keep a relatively low bucket size.

4.2 Basic Operations with Iterator Load

Now, we repeat the previous experiments on lists that do have iterators on their
elements. We use the term iterator load to refer to the percentage of elements
of a list that have one or more iterator on them.

Results are shown for tests in which elements have already been shuffled,
iterator loads range from 0% to 100% and a big list size is fixed (about 5 million
elements) because then is crucial to manage data in the cache efficiently.

Traversal. When there are no iterators on the list, our implementations tra-
versal is very fast because the increment operation is simple and elements are
accessed with high locality. However, when there are some iterators, it may turn
slower because the increment operation depends whether there are other itera-
tors pointing to the element or its successor. In contrast, the increment opera-
tion on traditional double linked lists is independent of it, and so, performance
must be not affected. When the list has not been shuffled, this is exactly the
case.

In contrast, when the elements are shuffled, which changes iterators logical
order, iterators accesses may score low locality. Results for this case are shown
in Fig. 5(a), which show indeed that the memory overhead become the most im-
portant factor in performance. Nevertheless, the good locality of accesses to the
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elements themselves makes our implementations more competitive than GCC’s
up to 80% iterator load even for relatively small lists (about 100000 elements).

Insertion. When an element is inserted in a bucket with several iterators, some
extra operations must be done but are much less than in the traversal case in
relative terms. Therefore, performance should be less affected.

Results are shown after the elements have been shuffled in Fig. 5(b).
The results are analogous to the traversal test but with smoother slopes, as

happened with no iterator load. Specifically, when the list has been shuffled, our
implementations are more convenient up to 80% iterator load.

Internal sort. Guaranteeing iterators consistency in our customized merge sort
is not straightforward, specially in the case of 2-level approaches that need some
(though small) auxiliary arrays. Performance results are shown in Fig. 5(c).

The results indeed show that the 2-level implementations are more sensitive
to the iterator load. Anyway, any of our implementation are faster than GCC
for iterators loads lower than 90%.

4.3 Comparison with LEDA

Here, we compare our lists with the LEDA well-known implementation, which
uses a customized memory allocator. Although LEDA does not follow the STL,
its interface is very similar and as GCC, it uses classical double linked lists.
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Fig. 5. Experimental results depending on the iterator load for a list of size 4.86∗106 (I)
and LEDA results (L)
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In Fig. 5(d), we show the results for traversal operation after shuffling. These
make evident the limitations in performance of using a double linked list com-
pared to our cache conscious approach. LEDA’s times are just slightly better
than GCC’s, but remain worse than our implementations.

We omit the rest of plots with LEDA, because its results are just slightly
better than GCC. The only exception is its internal sort (a quicksort) which
is very competitive. Nevertheless, it requires linear extra space, does not keep
iterators (items in LEDA jargon) and is not faster than ours.

4.4 Other Environments

The previous experiments have been run in a AMD Opteron machine. We have
verified that the results we claim also hold on other environments. These include
an older AMD K6 3D Processor at 450 MHz with a 32 KB + 32 KB L1 cache,
512 KB L2 off-chip (66 MHz) and a Pentium 4 CPU at 3.06 GHz, with a 8KB
+ 8KB L1 cache and 512 KB L2 cache. On both machines, similar results are
obtained in relative terms, and better as newer the machine and compiler.

5 Conclusions

In this paper we have presented three cache conscious lists implementations
that are compliant with the C++ standard library. Cache conscious lists were
studied before but did not cope with library requirements. Indeed, these goals
enter in conflict, particularly preserving both constant costs and iterators
requirements.

This paper shows that it is possible to combine efficiently and effectively
cache consciousness with STL requirements. Furthermore, our implementations
are useful in many situations, as is shown by our wide range of experiments.
The experiments compare our implementations against double linked list im-
plementations such as GCC and LEDA. These show for instance that our lists
can offer 5-10 times faster traversals, 3-5 times faster internal sort and even
with an (unusual) big load of iterators be still competitive. Besides, in contrast
to double linked lists, our data structure does not degenerate when the list is
shuffled.

Further, the experiments show that the 2-level implementations are specially
efficient. In particular, we would recommend using the linked bucket implemen-
tation, although its benefits only evince when the modifying operations are really
frequent, because it can make more profit of eventually bigger cache lines.

Given that the use of caches is growing in computer architecture (in size and
in number) we believe that cache conscious design will be even more important
in the future. Therefore, we think that it is time that standard libraries take into
account this knowledge. In this sense, this article sets a precedence but there is
still a lot of work to do. To begin with, similar techniques could be applied to
more complicated data structures. Moreover, current trends indicate that in the
near future it will be common to have multi-threaded and multi-core computers.
So, we should start thinking how to enhance these features in modern libraries.
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Abstract. Ordinal trees are arbitrary rooted trees where the children
of each node are ordered. We consider succinct, or highly space-efficient,
representations of (static) ordinal trees with n nodes that use 2n + o(n)
bits of space to represent ordinal trees. There are a number of such
representations: each supports a different set of tree operations in O(1)
time on the RAM model.

In this paper we focus on the practical performance the fundamental
Level-Order Unary Degree Sequence (LOUDS) representation [Jacob-
son, Proc. 30th FOCS, 549–554, 1989]. Due to its conceptual simplic-
ity, LOUDS would appear to be a representation with good practical
performance. A tree can also be represented succinctly as a balanced
parenthesis sequence [Munro and Raman, SIAM J. Comput. 31 (2001),
762–776; Jacobson, op. cit.; Geary et al. Proc. 15th CPM Symp., LNCS
3109, pp. 159–172, 2004]. In essence, the two representations are com-
plementary, and have only the basic navigational operations in common
(parent, first-child, last-child, prev-sibling, next-sibling).

Unfortunately, a naive implementation of LOUDS is not competitive
with the parenthesis implementation of Geary et al. on the common
set of operations. We propose variants of LOUDS, of which one, called
LOUDS++, is competitive with the parenthesis representation. A moti-
vation is the succinct representation of large static XML documents, and
our tests involve traversing XML documents in various canonical orders.

1 Introduction

Ordinal trees are arbitrary rooted trees where the children of each node are or-
dered. We consider succinct, or highly space-efficient, representations of (static)
ordinal trees with n nodes. An information-theoretically optimal representation
of such trees would require 2n−O(log n) bits. There are a number of represen-
tations that use 2n + o(n) bits of space, and support various navigational and
other operations in O(1) time on the RAM model of computation [6, 1, 5, 9].

This paper compares the practical performance of the fundamental level-order
unary degree sequence succinct representation (hereafter louds) [6] with non-
succinct ordinal tree representations, as well as the parenthesis succinct represen-
tation (hereafter paren) [9], which supports a complementary set of operations
to louds. In practice, one must consider the lower-order terms in the space
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bound, which come from augmenting a bit-string of 2n + O(1) bits representing
the tree with a number of directories, or auxiliary data structures, that are used
to support operations in O(1) time. The space used by each directory is, of course,
asymptotically o(n) bits, but is usually a function like Θ(n log log n/ log n) (and
sometimes worse). For this and other reasons, the directories can use much more
space than the representation of the tree, for practical values of n.

With this in mind, we consider the operations supported by the two succinct
representations above, assuming a ‘minimal’ set of directories. Both support
the basic navigational operations of parent, first-child, last-child, prev-sibling and
next-sibling. However, louds supports additional O(1)-time operations such as
degree(x) (reporting the number of children of x), childrank(x) (the position of x
among the children of its parent), child(x, i) (reporting the i-th child of x — recall
that ordinal trees can have unbounded degree) and can enumerate all nodes at
the same depth as a given node x, in time proportional to the number of such
nodes. paren, on the other hand, readily supports operations such as desc(x)
(report the number of children descended from x). louds essentially numbers
the nodes of the tree with integers in a level-order (breadth-first) numbering,
while paren uses a depth-first (pre- or post- order) numbering.

The functionality of these ‘minimal’ representations can be expanded at neg-
ligible asymptotic cost. For example, paren can support degree(x) in O(1) time
by augmenting it with additional o(n)-bit directories [2], or level-ancestor queries
in O(1) time using yet another directory [10]. The depth-first unary degree se-
quence representation [1] comes close to being a ‘union’ of louds and paren.
However, its directories are also an (almost disjoint) union of the directories
of both louds and paren. Quite apart from the fact that none of these aug-
mented data structures subsumes each other, adding additional directories may
lead to poor practical performance. As noted above, directories consume signif-
icant space in practice. Different directories may have different memory access
patterns, and adding additional ones can make it difficult to organise data to
minimise cache misses. This motivates the study of alternative ‘minimal’ tree
representations, such as louds and paren, so that the one that best suits an
application may be chosen, rather than a single ‘universal’ representation.

Although we defer a complete description of louds to Section 3, we give a
brief overview, in order to summarise the main issues and contributions. We first
explain the task which we use to evaluate the data structures (the motivation
is in the sub-section on XML below). We store, along with the tree, an array of
size n, which stores a satellite symbol associated with each node. We traverse
the nodes of the tree in pre-order, reverse pre-order and breadth-first order. As
the traversal visits a node, we find the associated symbol in the array and gather
some simple statistics (e.g. the number of nodes with a particular symbol). This
set of tasks tests the first-child, last-child, prev-sibling and next-sibling operations1,
all of which are supported in O(1) time by louds and paren.

louds stores an n-node ordinal tree as a bit-string of 2n + 1 bits. Navigation
on the tree is performed by rank and select operations on the bit-string:

1 We currently use a recursive pre-order traversal, so parent is not tested.
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rank1(x) Returns the number of 1 bits to the left of, and including, position x
in the bit-string.

select1(i) Given an index i, returns the position of the i-th 1 bit in the bit-string,
and −1 if i ≤ 0 or i is greater than the number of 1s in the bit-string.

The operations rank0 and select0 are defined analogously for the 0 bits in
the bit-string; the operations are collectively referred to as rank and select. We
refer to a data structure that supports (a nonempty subset of) rank and select
operations on a bit-string as a bit-vector.

A bit-vector is a fundamental data structure and is used in many succinct and
compressed data structures. A bit-vector that supports rank and select in O(1)
time can be obtained by augmenting a bit-string of length k with directories
occupying o(k) space [6, 3]. Unfortunately, rank and select, though O(1)-time
asymptotically, are certainly not free in practice. Using the approach of [3] in
practice is very slow [7]. In fact, Kim et al. [7] argue that their 3k + o(k)-bit
data structure is more practical than approaches based on [3]. Even in this well-
engineered data structure, a select is over three times as slow as a rank, and
a rank is somewhat slower than a memory access. Given this, it was perhaps
not surprising that a direct implementation of louds (using either of the bit-
vectors of [4, 7]) was sometimes over twice as slow as the implementation of
paren by [4], when parameters were chosen to make the space usages of the data
structures somewhat similar. This rather negative result prompted our attempt
at engineering louds.

For louds, Jacobson [6] suggested a numbering of nodes from 1 to 2n. Using
his numbering, parent, first-child and last-child all require just one call each to
rank and select, and next-sibling and prev-sibling only require the inspection of a
bit in the representation of the tree. As nodes are numbered from 1 to 2n, rather
than 1 to n, to access an array of size n that contains information associated
with a given node, one has to perform a rank operation on its node number. We
first observe that, due to the way rank and select calls are made in louds, one
may eliminate calls to rank altogether. The idea, called double-numbering, not
only speeds up the navigational operations, it also numbers the nodes from 1 to
n in level-order, making it easy to access information associated with a node.
The resulting data structure, louds1, is indeed much faster than louds, but
remains slower and more space-expensive than paren.

We then note that, in practice, ordinal trees have a high proportion of leaves:
e.g., our XML trees have often about 67% leaves, and a random tree has about
50% leaves. Thus, a rapid test that determines whether a node is a leaf could
speed up the first-child operation of louds considerably in practice. We propose
a numbering of nodes from 1 to 2n, which is different from that of [6]. Using this
numbering, testing whether a node is a leaf is quick. Applying double-numbering,
we again require no rank operations to support navigation in this representa-
tion. In this scheme, parent and first-child (for non-leaf nodes), next-sibling and
prev-sibling all require up to two select operations, compared with at most one in
louds1, and last-child requires one select. This data structure is called louds0.
Unfortunately, the performance advantages, such as speeding up first-child for
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non-leaf nodes, does not gain enough to make up for the slow next-sibling and
prev-sibling operations. The overall speed is poor for pre-order and BFS traver-
sals, but is better (but still poor) for traversals in reverse pre-order.

Finally, we present a new variant of louds, called louds++, which partitions
the bit-string representing the tree into two separate bit-strings, and stores them
as bit-vectors. The advantages of louds++ are:

– Testing if a node is a leaf, as well as next-sibling and prev-sibling, require only
the inspection of bits in one of the bit-strings.

– The other navigational operations (first-child, last-child and parent) are
slightly slower than louds1, requiring a rank and a select1 operation.

– The other operations, degree, childrank and child(x, i) are as easy as louds1.
– Each of the bit-vectors only needs to support select1 and rank, while the

louds1 bit-vector needs to support both select1 and select0 (but not rank, be-
cause of double-numbering). This gives significant space savings in practice,
since the select directories are usually much larger; in addition, bit-vectors
such as that of [7] need the rank directory to implement select.

The rest of this paper is as follows. Immediately following is a short background
on XML files. Section 2 discusses bit-vectors, Section 3 introduces louds, in-
cluding all our variants. Section 4 contains our experimental results.

Representing XML Documents. Our motivation is in the use of this data
structure for the representation of (large, static) XML documents. The corre-
spondence between XML documents and ordinal trees is well-known (see e.g.
Fig. 1). In this paper we focus on storing the tree structure. The XML Docu-
ment Object Model (DOM) is a standard interface (see www.w3.org) through
which applications can access XML documents. DOM implementations store an
entire XML document in memory, with its tree structure preserved, but this
can take many times more memory than the raw XML file. This ’XML bloat’
seriously impedes the scalability and performance of XML query processors [12].

DOM allows tree navigation through the Node interface, which represents a
single node in the tree. The node interface contains attributes to store informa-
tion about the node, as well as navigational methods parentNode, firstChild,

<COMPLAINT>
<NOTE></NOTE>
<DETAILS>

<NAME></NAME>
<DESCRIPTION></DESCRIPTION>
<WHEN>

<NOTE></NOTE>
<TIME>

<HOUR></HOUR>
<MINUTE></MINUTE>

</TIME>
</WHEN>
<NOTE></NOTE>

</DETAILS>
<NOTE></NOTE>

</COMPLAINT>

DETAILS

COMPLAINT
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NAME DESCRIPTION

WHEN

NOTE

TIME

NOTE

NOTE

HOUR MINUTE

1

32 12

6 11

109

87

54

Fig. 1. Left: Small XML fragment (only tags shown). Right: Corresponding tree rep-
resentation, nodes numbered in depth-first order.
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lastChild, previousSibling and nextSibling. The usual way of storing the
tree in DOM implementations is to store with each node a pointer to a (subset
of) the parent, the first/last child, and the previous/next sibling. We store the
tree succinctly, and simulate access to node information by accessing an array.
Traversals are important primitives in DOM. There are two main orders of tra-
versals: document order, which corresponds to pre-order, and reverse document
order, which corresponds to reverse pre-order. There is no recognised equivalent
of BFS traversal in DOM.

2 Bit-Vector Implementations

We now discuss the space usage of the two bit-vector implementations that we
use. The formulae in Table 1 are implicit in [4, 7]. We break the space usage down
into constituent parts, as this is important to understand the space-efficiency of
louds++. In what follows, k is the size of the bit-string to be represented. The
implementations assume a machine with word-size 32 bits (and hence k ≤ 232).
The space usage figures given below do not include the space for pre-computed
tables which are used to perform computations on short bit-strings of 8 or 16
bits (the ‘four Russians’ trick).2

Table 1 gives the space usage of the implementation of Clark-Jacobson bit-
vector in [4]. The implementation has three parameters, L, B and s; we show
the space usage when B = 64, L = 256 and s = 32. In Table 1, k0 and k1
are the numbers of 0s and 1s in the bit-string, and l0 and l1 are values that
depend upon the precise bit-string (the number of so-called ‘long gaps’). It is
easy to show that max{l0, l1} ≤ k/L, but in practice, the number of long gaps
is rather small in most cases (see Section 4). Note that since rank0 trivially
reduces to rank1 and vice-versa, a single directory suffices to support both rank
queries.

We now state the space usage of the ‘byte-based’ bit-vector Kim et al. [7],
again broken down into its various components. Referring to their paper, the
space usage of the the directory for select1 comprises the space usage of its
constituent components, including the delimiter bit-string and its rank directory
(we use a block size of 64 rather than 32). The final terms (c0 and c1) are the
space usages of the clump delimiter and the clump array. Their values depend
upon the precise distribution of 0s and 1s in the bit-string. In the worst case,
c1 ≤ k0 +0.043k, but (as the authors suggest and we confirm) it is much smaller
than this upper bound. In order to support select0 in addition to select1, we
augment the bit-string with a symmetric directory for indexing 0s, whose space
is shown in the last line. The similarity between the space bounds in Table 1 is
highlighted in the following remark.

Remark 1. If selecti is to be supported, for only one i ∈ {0, 1}, the space bound
for the bit-vector implementations is of the form k+fr(k)+fs(k)+gs(ki)+hsi(A),

2 This may seem like cheating, but it is standard practice, since the size of tables is
determined by factors such as the size of the cache, independently of k.
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Table 1. The space usage of the two bit-vector implementations used

Clark-Jacobson Kim et al.
Input bit-string k k
rank0/rank1 directory 0.5k 0.25k
select0 directory 0.023k + k0 + 1024l0 1.25k1 + c1

select1 directory 0.023k + k1 + 1024l1 1.25k0 + c0

where fr, fs and gs are linear functions, indicating the space required for rank
and two kinds of select directories respectively, and A is the input bit-string.

For example, if only rank and select0 are to be supported, the Clark-Jacobson
implementation of [4], as described in Table 1 has fr(k) = 0.5k, fs(k) = 0.023k,
gs(k0) = k0, and hs0(A) = 1024l0.

3 The LOUDS Representation

The LOUDS bit-string (LBS) is defined as follows. We begin with an empty
string. We visit every node in level-order, starting from the root. As we visit a
node v with d ≥ 0 children, we append 1d0 to the bit-string. Finally, we prefix
the bit-string with a 10, which is the degree of an imaginary ‘super-root,’ which
is the parent of the root of the tree (see Figure 2).

a

b c

f h

i

g

d e

(a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1 0 1 1 1 1 0 0 1 1 0 0 1 0 0 1 0 0 0
(b)

Vertex a b c d e f g h i
BFS 1 2 3 4 5 6 7 8 9
1-based 1 3 4 5 6 9 10 13 16
0-based 7 8 11 12 14 15 17 18 19

(c)

Vertex a b c d e f g h i
R0 1 0 1 0 1 0 1 0 0 1
R1 1 0 0 0 1 0 1 1 1

(d)

Fig. 2. An example ordinal tree (a) and its representations ((b)–(d)).(b) the LOUDS
bit-string (LBS); the vertical bars in the LBS have been inserted for readability. The
numbers above are the positions of the bits. The initial 10 is for the ‘super-root’. (c)
Zeros- and ones-based numberings. (d) Partitioned bitvector.

Proposition 1. The LBS of a tree T with n nodes has n 1s and n + 1 0s.The
i-th node of T in level-order is represented twice: as the i-th 1, which lies within
the encoding of the degree of its parent, and is associated with the edge that
attaches it to its parent, and also as the i + 1-st 0, which marks the end of its
own degree sequence.
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Ones-based numbering. Jacobson [6] suggests numbering the i-th node in
level-order by the position of the i-th 1 bit. This gives a node a number from
{1, . . . , 2n + 1}. To access data associated with a node numbered x, calculating
rank1(x) numbers the nodes from {1, . . . , n} in level-order.

Zeros-based numbering. Proposition 1 suggests that a node may also be
represented by a 0 bit, namely the bit that ends the unary sequence of that node’s
degree. Again, this is a number from {1, . . . , 2n+1}, and a rank0 operation may be
needed to map the nodes to numbers from {1, . . . , n}. Figure 3 indicates how the
navigational operations might work on the zero-based numbering. Although the
operations seem more complex, with the notable exception of isleaf, there is hope
that the practical performance may not be too poor, as many of the operations
apply select0 to consecutive zeros in the LBS. Also, next-sibling (prev-sibling)
requires only one select for the last (first) child; there are as many last (first)
children as non-leaf nodes.

Ones-based numbering

isleaf(x)
See first-child

parent(x)
select1(rank0(x))

first-child(x)
y := select0(rank1(x))+1
if A[y] = 0 then -1 else y

last-child(x)
y := select0(rank1(x)+1)-1
if A[y] = 0 then -1 else y

next-sibling(x)
if A[x+1] = 0 then -1

Zero-based numbering

isleaf(x)
(A[x-1] = 0) and (A[x] = 0)

parent(x)
select0(rank0(select1(rank0(x)-1)+1))

first-child(x)
if (isleaf(x)) then -1
else select0(rank1(select0(rank0(x)-1))+2)

last-child(x)
if (isleaf(x)) then -1
else select0(rank1(x)+1)

next-sibling(x)
y := select1(rank0(x)-1)+1
if A[y] = 0 then -1 else select0(rank0(x))

Fig. 3. Navigation operations for zeros-based and ones-based numberings (A is the
LBS). prev-sibling is analogous to next-sibling.

3.1 Double-Numbering

Both the ones-based and the zeros-based numberings benefit from the following
proposition:

Proposition 2. Computing y = selecti(x), for i = 0 or 1, also computes rank0(y)
and rank1(y).

Proof. If y = select0(x) then rank0(y) = x and rank1(y) = y−x. select1 is similar.
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This allows us to maintain the following invariant. We represent a node as a pair
〈x, y〉, where y is the position of the node in level-order, and x is the position of
the representation of the node in the bit-string. Clearly, depending on whether
the numbering is one-based or zero-based, x = rank1(y) or x = rank0(y) − 1.
It follows that all computations of the form rank(select(·)) are really just select
operations. Also, since the final step in any (nontrivial) navigation operation is
always a select, it follows that the invariant can be maintained at the end of each
navigational operation. For example, the call to rank0 in the parent function in
the ones-based numbering in Figure 3 can be implemented as follows:

parent(<x,y>)
rzerox := y - x
newy := select1(rzerox)
newx := newy - rzerox
return(<newx, newy>)

We refer to the ones-based and zeros-based representations with double-
numbering as louds1 and louds0 respectively.

3.2 Partitioned Representation

We now describe a new representation that has the simplicity of louds1 and also
allows the isleaf test in O(1) time. The idea is to encode the runs of zeros and ones
in the LBS in two separate bit-strings, which we will call R0 and R1. Specifically,
if there are runs of 0s of length l1, l2, . . . , lz in the LBS, then the bit-string R0 is
simply 0l1−110l2−11 . . .0lz−11. R1 is defined analogously. Noting that the LBS
begins with a 1 and ends with a 0, it is clearly possible to reconstruct it from
R0 and R1. It is now trivial to access the i-th 1 or the i + 1-st 0 that represents
the node numbered i in level-order. This means, in particular, that operations
such as isleaf are trivial: the node numbered x in level order is a leaf iff the x-th
and x + 1-st 0 belong to the same run of 0s, which is easily tested by probing
the appropriate bits of R0. Likewise next-sibling and prev-sibling are trivial to
implement by looking at R1. louds++ is simply R0 and R1, each augmented
with directories to support select1 and rank− operations, where:

rank−(x) returns the number of 1 bits strictly to the left of position x in the
bit-vector. (rank−(x) = rank1(x− 1) except when x = 1.)

We now observe:

Proposition 3. select operations on the LOUDS bit-vector can be simulated by
a select1 and a rank− on R0 and R1.

Proof. We claim that select1(LBS, i) = select1(R0, rank−(R1, i)) + i. Note that
rank−(R1, i) equals the number of completed runs of 1s before the run that i is
in. There must be an equal number of completed runs of 0s before i. The select
on R0 then gives the total length of these runs, which is then added to i to give
the position of the i-th 1. select0(LBS, i) is similar.
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Corollary 1. louds++ supports the operations parent, first-child and last-child.

Proof. We look at the implementation of these operations in louds1. Due to
double-numbering, these operations only have a single select call, which can be
simulated as in Proposition 3.

Proposition 4. The number of 1s in R0 and R1 is equal to the number of
non-leaf nodes in the input tree plus one.

Proof. A run of 1s in the LBS is a node of degree > 0, i.e. a non-leaf node
(with the exception of the super-root). The number of 1s in R1 is the number
of runs in the LOUDS bit-string. The number of runs of 0s in the LBS equals
the number of runs of 1s.

This proposition is key to the good space usage of louds++: not only do we
need to support just select1, but also, the number of non-leaf nodes is usually just
a small fraction of the number of nodes. In particular, the (usually considerable)
space usage represented by functions gs() in Remark 1 is much reduced. The
above representation also gives a nice bound on the number of non-leaf nodes in
a random n-node ordinal tree:

Proposition 5. For any constant c > 0, with probability greater than 1− 1/nc,
the number of non-leaf nodes in a random n-node ordinal tree is n/2± o(n).

Proof. (outline) The bit-strings R0 and R1 can be represented using lg
(
n
t

)
bits,

where t is the number of non-leaf nodes. If, for a random random ordinal tree,
t deviates significantly from n/2, the bit-strings R0 and R1 can be represented
using significantly less than n bits, thus giving a representation of the random
tree’s LBS that uses significantly less than 2n bits. However, a simple counting
argument shows that no representation of an ordinal tree can represent a random
ordinal tree using less than 2n − O(log n) bits, with probability greater than
1− 1/nc, for any constant c > 0.

4 Experimental Evaluation

To test our data structures we obtained ordinal trees from the following 6 real-
world XML files: xcdna.xml and xpath.xml, which contain genomic data, and
mondial-3.0.xml, orders.xml, nasa.xml and treebank e.xml [14]. We also tested
the data structures on randomly generated XML files. These were obtained by
using the algorithm described in [11] to generate random parentheses strings. A
random parentheses string was converted to an XML file by replacing the open-
ing and closing parentheses of non-leaf nodes by opening and closing tags. The
parentheses for leaf nodes were replaced with short text nodes. Our real-world
and random files were selected to get some understanding of the behaviour of
the data structures as the file size varied with respect to the size of the hardware
cache and as the structure of the trees varied. In all cases, the type of each node
(element, text node etc.) was stored as a 4-bit value in an accompanying array.
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louds++ louds0/louds1
KNKP-BV CJ-BV KNKP-BV CJ-BV

clump long clump long
File nodes %leaf total DS total gap total DS total gap Paren
mondial-3.0 57372 78 3.12 0.07 3.82 0.34 5.11 0.11 5.65 0.55 3.73
orders 300003 50 3.78 0.03 5.64 1.60 5.07 0.07 5.10 NEG 3.73
nasa 1425535 67 3.37 0.05 4.27 0.57 5.09 0.09 5.42 0.33 3.73
xpath 2522571 67 3.37 0.04 3.99 0.27 5.08 0.08 5.63 0.53 3.73
treebank e 7312612 67 3.37 0.04 3.77 0.06 5.08 0.08 5.10 0.01 3.73
xcdna 25221153 67 3.35 0.02 3.80 0.08 5.11 0.11 5.48 0.38 3.73
R62K 62501 50 3.79 0.04 4.05 NEG 5.08 0.08 5.09 NEG 3.73
R250K 250001 50 3.79 0.04 4.05 NEG 5.08 0.08 5.09 NEG 3.73
R1M 1000001 50 3.79 0.04 4.05 NEG 5.08 0.08 5.09 NEG 3.73
R4M 4000001 50 3.79 0.04 4.05 NEG 5.08 0.08 5.09 NEG 3.73
R16M 16000001 49 3.81 0.04 4.07 NEG 5.08 0.08 5.10 NEG 3.73

Fig. 4. Space Usage. Test file, number of nodes, %leaf node. For louds++ and for
louds0/louds1 together: total space per node and space per node for the clump data
structure using KNKP-BV; total space per node and space per node to support long
gaps using the CJ-BV. For paren: space per node, where the numbers are obtained
using a generic formula, that does not take into account tree-specific parameters. In
[4] this formula was shown to be quite accurate for a wide variety of XML files.

We used Centerpoint XML’s DOM [13] implementation to parse the XML
files. Our experiments were to traverse the trees and to count the total number
of nodes of a particular XML type by accessing the nodetype array. We tested
with three different types of traversal, breath-first order, BFO, recursive depth-
first order, DFO, and recursive reverse depth-first order, RDO, where we first
visit the last child at each nodes and then each of its previous siblings in turn. We
compared the three louds data structures with CenterPoint XML’s DOM [13]
and the paren implementation of [4].

We implemented the data structures in C++ and tested them on a dual
processor Pentium 4 machine and a Sun UltraSparc-III machine. The Pentium 4
has 512MB RAM, 2.8GHz CPUs and a 512KB L2 cache, running Debian Linux.
The compiler was g++ 3.3.5 with optimisation level 2. The UltraSparc-III has
8GB RAM, a 1.2GHz CPU and a 8MB cache, running SunOS 5.9. The compiler
was g++ 3.3.2 with optimisation level 2.

For rank and select we used an optimised version of the Clark-Jacobson bit-
vector [4], with B = 64 and s = 32. We refer to this as CJ-BV. We also imple-
mented the bit-vector described in [7], which we refer to as the KNKP-BV. In
this data structure we use 256-bit superblocks and 64-bit blocks.

Figure 4 summarises the space usage per node. We see that louds++ gener-
ally uses less space than the other louds data structures and with the KNKP-BV
its space usage is competitive with the paren. Note that louds++ using CJ-BV
uses more space than louds1 for the file orders.xml. The structure of the file
is such that the number of long gaps in the partitioned bit-strings is relatively
large, but there are no long gaps in the LBS.



144 O. Delpratt, N. Rahman, and R. Raman

The performance measure we report is the slowdown relative to DOM of the
succinct data structures. We first determine which bit-vector to use. The table
below gives the slowdown relative to DOM of louds++ using the KNKP-BV
and using the CJ-BV for a DFO traversal on a Pentium 4. The CJ-BV based
louds++ outperforms the KNKP-BV based data structure. We saw the same
relative performance for louds1 and louds0 and for RDO and BFS traversals.
This is not too surprising since the KNKP-BV was designed for sparse bit-
vectors, the bit-vectors here are dense. In the remaining experimental results
the louds data structures use CJ-BV.

mond order nasa xpath treeb R62K R250K R1M R4M R16M
KNKP-BV 1.82 3.24 2.82 3.13 3.26 3.63 3.73 3.77 4.09 2.14
CJ-BV 1.46 2.15 2.18 2.23 2.53 2.78 2.84 2.93 3.12 1.73

We now consider RDO traversals. At each node DOM stores a pointer to the
parent, first child and next sibling in the tree. So the operation getLastChild()
requires a traversal across all the children and getPrevSibling() at the i-th
child requires a traversal across i− 1 children. At a node with d children DOM
performs O(d2) operations. In the real-world files orders.xml, xpath.xml and
treebank e.xml there is at-least one node with over 214 children and for these
files the slowdown relative to DOM of the louds data structure is 0 (to two
decimal points), for the other real-world XML files it is between 0.14 and 0.45.

Figure 5 summarises the performance of the data structures for DFO and BFO
traversals. We see that louds++ is faster than louds0 or louds1. louds++
is also almost always faster than the paren when comparing performance of the
basic tree navigation operations.

Pentium 4 Sun UltraSparc-III
DFO BFO DFO BFO

File L1 L0 L++ Par L1 L0 L++ Par L1 L0 L++ Par L1 L0 L++ Par
mond 1.99 2.96 1.46 1.67 1.08 1.08 0.80 0.94 2.47 3.80 2.15 2.27 1.91 2.77 1.73 1.67
order 2.48 4.04 2.15 2.20 1.83 1.83 1.67 1.69 1.34 2.35 1.51 1.33 0.80 1.25 0.85 0.74
nasa 2.80 4.30 2.18 2.24 1.38 1.38 1.11 1.29 1.20 1.94 1.16 1.17 0.66 1.00 0.67 0.59
xpath 2.83 4.37 2.23 2.29 2.15 2.15 1.39 1.60 1.20 1.98 1.18 1.18 0.71 1.04 0.69 0.61
treeb 3.02 4.92 2.53 2.62 1.28 1.28 1.01 1.44 1.22 1.92 1.18 1.29 0.65 0.97 0.72 0.72
xcdna 1.21 1.95 1.15 1.13 0.75 1.03 0.65 0.61
R62K 3.17 5.04 2.78 3.16 2.06 3.24 1.75 3.07 2.30 3.58 2.40 2.82 2.14 3.45 2.32 3.22
R250K 3.22 5.10 2.84 3.22 2.02 3.21 1.71 3.01 1.53 2.40 1.60 1.85 1.42 2.25 1.54 2.12
R1M 3.29 5.25 2.93 3.19 1.92 3.08 1.69 2.96 1.23 1.90 1.31 1.75 1.12 1.78 1.21 1.71
R4M 3.46 5.61 3.12 3.21 1.13 1.86 0.97 3.01 1.24 1.93 1.34 1.77 0.99 1.59 1.08 1.57
R16M 1.76 2.97 1.73 1.84 0.50 0.80 0.44 0.30 1.22 1.93 1.32 1.81 0.61 0.96 0.65 1.17

Fig. 5. Performance evaluation on Pentium 4 and Sun UltraSparc-III.: Test
file, slowdown relative to DOM for depth-first order (DFO) and breath-first order
(BFO) traversals for louds1 (L1), louds0 (L0), louds++ (L++) all using CJ-BV
and for paren. The fastest data structure for each result is set in bold font. DOM
could not fit XCNDA.xml into the internal memory of the Pentium 4.
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5 Conclusions and Future Work

We have presented a partitioned version of Jacobson’s [6] louds representation,
called louds++, that appears to outperform other succinct tree representations
in practice. Although we have demonstrated experimentally that louds++ uses
less space than louds, this could be understood on a firmer theoretical basis.
It would be interesting to see whether the partitioning idea generalises to other
applications.

Acknowledgement. We thank Richard Geary for useful discussions.
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David R. Cheriton School of Computer Science,
University of Waterloo, Waterloo, ON N2L 3G1, Canada

{jbarbay, alopez-o, ttlu}@uwaterloo.ca

Abstract. The intersection of large ordered sets is a common problem
in the context of the evaluation of boolean queries to a search engine.
In this paper we engineer a better algorithm for this task, which im-
proves over those proposed by Demaine, Munro and López-Ortiz [SODA
2000/ALENEX 2001], by using a variant of interpolation search. More
specifically, our contributions are threefold. First, we corroborate and
complete the practical study from Demaine et al. on comparison based
intersection algorithms. Second, we show that in practice replacing bi-
nary search and galloping (one-sided binary) search [4] by interpolation
search improves the performance of each main intersection algorithms.
Third, we introduce and test variants of interpolation search: this results
in an even better intersection algorithm.

Topics: Evaluation of Algorithms for Realistic Environments, Implemen-
tation, Testing, Evaluation and Fine-tuning of Algorithms, Information
Retrieval.

1 Introduction

The intersection of large ordered sets is a common problem in the context of
the evaluation of relational queries to databases as well as boolean queries to
a search engine. The worst case complexity of this problem has long been well
understood, dating back to the algorithm by Hwang and Lin from over three
decades ago [13]. In 2000, Demaine et al. improved over this by proposing a faster
method for computing the intersection of k sorted sets [7] using an adaptive
algorithm. Their algorithm has optimal worst-case behaviour on a much finer
analysis than simply worst-case input size. We refer the reader to [7] for the
precise details on the adaptive measure used.

In a followup study they showed that the adaptive theoretical optimal al-
gorithm is not always best in practice in the context of search engines [8]. In
that study, they compared a straightforward implementation of an intersection
algorithm, termed SvS, with their adaptive algorithm, termed Adaptive, and
showed that on the given data Adaptive is superior only for queries involving
two or three terms, while thereafter SvS outperforms it by a constant factor.
Their study uses what at the time was a sizable collection of plain text from
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web pages. Using this data set, Demaine et al. engineered an algorithm, termed
Small Adaptive, that combines the best aspects of both Adaptive and SvS.
They showed experimentally that on the given data set this algorithm outper-
forms both the Adaptive and SvS algorithm.

In this paper we revisit that study. Our contributions are threefold. First, we
corroborate the practical study from [8] by considering a much larger web crawl
and extend their study to include a more recent algorithm, introduced in [3]. The
results are similar to those of the original study: the algorithm termed Small
Adaptive is the one which performs the best. Second, we study the impact of
replacing binary searches and galloping (one-sided binary) searches [4] by inter-
polation searches, for each of the main intersection algorithms. Our results show
that this improves the performance of each intersection algorithm. The optimal
algorithm, Interpolation Small Adaptive, is based on Small Adaptive, and
our results show that the relative performance of the intersection algorithms
are the same when using interpolation search than when using binary search
and galloping. Third, we introduce several parameterized variants of extrapola-
tion search, which combine the concepts of interpolation search and galloping,
taking advantage of both. We evaluate the performance of each of those vari-
ants using Small Adaptive as a base, and we identify the best variant, termed
Extrapolate Ahead Small Adaptive, which at each step computes the posi-
tion of the next comparison using the values of elements at distance l of each
other, and which performs the best when l is logarithmic on the size of the set.
This results in an intersection algorithm which performs even better in practice
than simply introducing interpolation.

The paper is structured as follows: in the next section we describe the data set
on which we evaluated the various algorithms discussed. In Section 3 we describe
in detail the intersection algorithms studied, and the basis of the interpolation
algorithms. In Section 4 we present our experimental results. We conclude in
Section 5 with a summary of the results.

2 Dataset

The intersection of sets in the context of search engines is a driving application
for this work. Thus we test our algorithms using a web crawl together with a
representative query log from a search engine. Each set corresponds to a keyword
occurring in a query, and the elements of each set refer to integer document
identifiers of those web pages containing the keyword. We use a sample web
corpus from Google of 6.85 gigabytes of text as well as a 5000 entry query log,
also from Google. The query log is the same as in [8], while the web crawl is a
substantially larger and more recent data set. In the past we empirically verified
that the relative performance of the algorithms did not change when run on
corpora varying in size by orders of magnitude. Our results using this new larger
set are consistent with this observation.

The web corpus was indexed into an inverted word index, which lists a set of
document identifiers in increasing order for each word appearing in the corpus.
The total number of web pages indexed is approximately 600,000. The size of the



148 J. Barbay, A. López-Ortiz, and T. Lu

resulting inverted word index is 1.06 gigabytes with HTML markup removed,
and the number of words in the index is 2,604,335. Note that words consists of
only alphanumerical characters.

In the sample query log from Google, we do not consider queries that contain
words not found in our index nor queries that consists of a single keyword since
no set intersection need be performed in this case. We refer the reader to [8] for
a more thorough discussion on the query log.

3 Algorithms

3.1 Intersection Algorithms

Various algorithms for the intersection of k sets have been introduced in the lit-
erature [3, 7, 8]. In this study we focus on four particular ones, described below.
We do not consider, however, the most näıve sequential (linear merging) algo-
rithm as both theoretical and experimental analysis show that its performance
in the comparison model is significantly worse than the ones studied here.

Algorithm 1. Pseudo-code for Adaptive
1: Choose eliminator e = set[0][0], in the set elimset ← 0.
2: Consider the first set, i ← 1
3: while the eliminator e �= ∞ do
4: perform one step of the galloping search in set[i].
5: if the gallop overshot then
6: binary search in set[i] for e.
7: if e was found then
8: increase the occurrence counter, and let i ← i + 1 mod k, i �= elimset.
9: if the value of occurrence counter is k then

10: output e and let e ← set[i][succ(e)], elimset ← i
i ← i + 1 mod k, i �= elimset.

11: else
12: set e to the first element in set[i] which is larger than e.
13: update the set elimset ← i and consider the next set i ← i+1 mod k, i �=

elimset.
14: end if
15: end if
16: end if
17: end while

The theoretical study in [7] introduced an information theoretical optimum
algorithm, which was implemented in [8] under the name Adaptive. This al-
gorithm performs a search in all other sets for an element from one set, using
a one-sided binary search or “galloping” search. The element being searched
for is updated using a greedy technique. For the details we refer the reader
to [7].
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The experimental study in [8] introduced more algorithms, simulating fourteen
different algorithms to study their practical performance on a query set provided
by Google and a data set obtained through their own web crawl. Of those, we
focus on two particular ones: SvS and Small Adaptive. SvS is a straightforward
algorithm widely used in practice, which intersects the sets two at a time in
increasing order by size, starting with the two smallest. It uses a binary search
procedure to determine if an element in the first set appears in the second set.

Small Adaptive is a hybrid algorithm, which combines the best properties of
SvS and Adaptive. For each element in the smallest set, it performs a galloping

Algorithm 2. Pseudo-code for SvS
1: Sort the sets by size (|set[0]| ≤ |set[1]| ≤ . . . ≤ |set[k]|).
2: Let the smallest set s[0] be the candidate answer set.
3: for each set s[i], i = 1 . . . k do initialize �[k] = 0.
4: for each set s[i], i = 1 . . . k do
5: for each element e in the candidate answer set do
6: binary search for e in s[i] in the range �[i] to |s[i]|,
7: and update �[i] to the last position probed in the previous step.
8: if e was not found then
9: remove e from candidate answer set, and advance e to the next element in

the answer set.
10: end if
11: end for
12: end for

Algorithm 3. Pseudo-code for Small Adaptive

1: Sort the sets by size (|set[0]| ≤ |set[1]| ≤ . . . ≤ |set[k]|).
2: Choose an eliminator e = set[0][0] in the set elimset ← 0.
3: Consider the first set, i ← 1.
4: while the eliminator e �= ∞ do
5: gallop once in set[i].
6: if the gallop overshot then
7: binary search in set[i] for e.
8: if e was found then
9: increase the occurrence counter and let i ← i + 1 mod k, i �= elimset.

10: if the value of occurrence counter is k then
11: add e to answer.
12: resort the sets, and let e ← set[0][succ(e)], elimset ← 0, i ← 1
13: end if
14: else
15: resort the sets.
16: if i = 0 or i = 1 then consider the set i ← 1 − i,
17: else consider the first set: elimset ← 0, i ← 1. end if
18: end if
19: end if
20: end while



150 J. Barbay, A. López-Ortiz, and T. Lu

one-sided search on the second smallest set. If a common element is found, a new
search is performed in the remaining k − 2 sets to determine if the element is
indeed in the intersection of all sets, otherwise a new search is performed. Observe
that the algorithm computes the intersection from left to right, producing the
answer in increasing order. After each step, each set has an already examined
range and an unexamined range. Small Adaptive selects the two sets with the
smallest unexamined range and repeats the process described above until there
is a set that has been fully examined.

Algorithm 4. Pseudo-code for Sequential
1: Choose an eliminator e = set[0][0], in the set elimset ← 0.
2: Consider the first set, i ← 1.
3: while the eliminator e �= ∞ do
4: Gallop for e in set[i] till overshot
5: binary search in set[i] for e
6: if the binary search found e then
7: increase the occurrence counter.
8: if the value of occurrence counter is k then output e end if
9: end if

10: if the value of the occurrence counter is k, or e was not found then
11: update the eliminator to e ← set[i][succ(e)].
12: end if
13: Consider the next set in cyclic order i ← i + 1 mod k.
14: end while

The theoretical study in [3] introduces a fourth algorithm, called Sequential,
which is optimal for a different measure of difficulty, based on the non-
deterministic complexity of the instance. It cycles through the sets performing
one entire gallop search at a time in each (as opposed to a single galloping step in
Adaptive), so that it performs at most k searches for each comparison performed
by an optimal non-deterministic algorithm.

The pseudo-code for the algorithms described above is given in Algorithms 1
to 4. Each of those algorithms has linear time worst case behaviour, and each
performs better than the others on at least one instance. Adaptive performs
well on instances with an intersection certificate that can be encoded in a small
amount of space, while Sequential performs well on instances whose intersection
certificate contains a small number of comparisons. SvS reduces the number
of sets by intersecting the two smallest sets, searching for the elements of the
smallest set in the larger set; Small Adaptive performs similarly so long as no
element is found to be in the intersection of the two sets, at which point it
checks for it in the other sets, and after which it updates which sets are the
smallest. Note that Small Adaptive and SvS are the only algorithms taking
active advantage of the difference of sizes of the sets, and that Small Adaptive
is the only one which takes advantage of how this size varies as the algorithm
eliminates elements: Adaptive and Sequential ignore this information.
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All of these algorithms are based on galloping and binary search, and use only
comparisons between the elements: we study the impact on the performance
of replacing those searches with interpolation search, or a suitably engineered
variant of interpolation search, as described in the next section.

3.2 Search Algorithms

Interpolation search has long been known to perform significantly better than
binary search on data randomly drawn from a uniform distribution, hence it
is only natural to test if this holds using web crawled data. Moreover, recent
developments suggest that interpolation search is also a reasonable technique for
non-uniform data [6]. Our experiments, which we describe in the next Section,
confirm this conjecture.

Recall that interpolation search for an element of value e in an array set[i] on
the range a to b probes a position as given by the formula:

I(a, b) =
⌊

e− set[i][a]
set[i][b]− set[i][a]

⌋
+ a

In each of Adaptive, Small Adaptive and Sequential we replace each gal-
loping step by an interpolation probe, and we replace binary search with in-
terpolation search. In essence, the two changes are equivalent to performing an
interpolation search in set[i] for the eliminator. The index probed is I(�[i], ni),
where �[i] is the current position in set[i] and ni is the size |set[i]| of set[i].

4 Experimental Results

We compare the performance of each of the four algorithms described in the
previous section by focusing on the number of comparisons performed by the al-
gorithms. For large data sets such as in search engines, the run time is dominated
by external memory accesses. It has long been known that the number of compar-
isons by an algorithm generally shows high correlation with the number of I/O
operations, so we follow this convention. Our model has certain other simplifica-
tions; for example posting sets are likely to be stored in a compressed form, albeit
one suitable for random access. We posit that most such refinements and other
system specific improvements are likely orthogonal to the relative performance
of the search algorithms presented here (see for example [5] for a discussion of
these issues).

4.1 Comparing Intersection Algorithms

Here we present the part of our study which corroborates the study of [8], as we
measure the performance of the algorithms on a larger data set, and completes
it as we compare one more intersection algorithm (Sequential).

Figures 1 and 2 show that, when using binary search, Small Adaptive out-
performs Sequential.
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Fig. 1. Performance of various Intersection algorithms when using binary search
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Fig. 2. Small Adaptive (high wins) vs.
Sequential (low wins). The algorithm
Small Adaptive is always better.

0

50000

100000

150000

200000

250000

di
ffe

re
nc

e 
in

 #
 c

om
pa

ris
on

s

2 4 6 8 10 12
# of sets

Fig. 3. Interpolation Small Adaptive
(high wins) vs. Small Adaptive (low
wins). Interpolation improves on all in-
stances, and is consistent over k.

4.2 Comparing Interpolation and Binary Search

Here we present a first approach of the impact of replacing the binary searches
and galloping by interpolation searches in the intersection algorithms. It is well
known that interpolation search outperforms binary search, on average on arrays
whose elements are well behaved (uniformly distributed). Thus it is expected that
replacing binary search by interpolation search would improve the performance
of the intersection algorithms. As gallop search [4] is a local search algorithm,
it is not necessarily outperformed by interpolation search: we show here that in
practice it is.

Figure 3, 4 and 5 show the clear advantage of using interpolation search over
binary search, as each of the three intersection algorithm using interpolation
search has a clear advantage over its variant using binary search, outperforming
it on almost all instances.



Faster Adaptive Set Intersections for Text Searching 153

0

100000

200000

300000

400000

500000

di
ffe

re
nc

e 
in

 #
 c

om
pa

ris
on

s

2 4 6 8 10 12
# of sets

Fig. 4. InterpolationSequential (high
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Fig. 5. Interpolation Adaptive (high
wins) vs. Adaptive (low wins). The im-
provement is more noticeable if k is
smaller.

As a side note, the study of the ratio of the performances (not shown
here because of space limitations) shows that the ratio between the perfor-
mance of Interpolation Adaptive and Adaptive, while always larger than one,
decreases when k increases. This is likely due to the fact that the algorithm
continually cycles through the sets trying to find a set which does not con-
tain the eliminator [8]. Thus, the overhead caused by the cycling, which per-
forms one interpolation going through each set (as opposed to galloping), is
dominating the number of comparisons when k is relative large. Note that, in
contrast, since Small Adaptive does not cycle through the sets, the average
ratio between the performance of Small Adaptive and Interpolation Small
Adaptive stays fairly constant with respect to k.

The experiments suggest that web crawled data is amenable to interpolation
search, and hence using this technique gives a noticeable reduction in the number
of comparisons required.

4.3 Introducing and Comparing Extrapolation Variants

In this section, we introduce an adaptation of interpolation search, which we
named extrapolation, and some variants of it. We test those variants on our data
set. Interestingly, our experimental results show that the difference in perfor-
mance between search algorithms is independent of the intersection algorithm
chosen. Since Small Adaptive is the fastest algorithm among those tested in [8]
(when using binary search) and in our measures (when using binary search as
well as when using interpolation search), we use it as a reference to show the
performance of different interpolation techniques (See Figure 6).

The first variant, which we call Extrapolation Small Adaptive, involves
extrapolating on the current and previous positions in set[i]. Specifically, the
extrapolation step probes the index I(p′i, pi), where p′i is the previous extrapo-
lation probe. This has the advantage of using “explored data” as the basis for
calculating the expected index: this strategy is similar to galloping, which uses
the previous jump value as the basis for the next jump (i.e. the value of the
next jump is the double of the value of the current jump). Figure 7 shows that
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Fig. 8. Extrapolate Ahead (l = 50)
(low wins) vs. Interpolation (high
wins). On Small Adaptive, the look-
ahead range improves the performance.

extrapolation alone does worse than interpolation. Those results suggest that
using the previous “explored data” for extrapolation is not as accurate as using
a standard interpolation probe, given by I(pi, ni), on the remaining elements
in set[i].

The second variant, Extrapolate Ahead Small Adaptive, is similar to
Extrapolation Small Adaptive, but rather than basing the extrapolation on
the current and previous positions, we base it on the current position and a po-
sition that is further ahead. Thus, our probe index is calculated by I(pi, pi + l)
where l is a positive integer that essentially measures the degree to which the
extrapolation uses local information. The algorithm uses the local distribution as
a representative sample of the distribution between set[i][pi] and the eliminator:
a large value of l corresponds to an algorithm using more global information,
while a small value of l correspond to an algorithm using only local informa-
tion. If the index of the successor succ(e) of e in set[i] is not far from pi, then
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Fig. 10. Extrapolate Ahead (l= lg ni)
(low wins) vs. Interpolation Small
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Fig. 12. Extrapolate Many (m=8,
l=80) (low wins) vs Interpolation
Small Adaptive (high wins)

the distribution between set[i][pi] and set[i][pi + l] is expected to be similar
to the distribution between set[i][pi] and set[i][succ(e)], and the estimate will
be fairly accurate. Figure 8 shows that for l = 50, Extrapolate Ahead Small
Adaptive performs as well as Interpolation Small Adaptive, and that their
performance stays close when it is worse. Figure 9 shows a similar result for
l =

√
ni.

Figure 10 shows that choosing a smaller value for the look-ahead range l, such
as l = lg ni, deteriorates slightly the performance: the algorithm has a much less
precise approximation of the distribution of the values in the array.

The third variant involves extrapolating many times, which we call
Extrapolate Many Small Adaptive. We calculate the index by taking the av-
erage of several extrapolations, which is based on the current position and several
positions ahead. That is, our probe index can be calculated by 1

m

∑m
j=1 I(pi, pi+

j l
m ), where m is the number of times we extrapolate and l is the farthest reach

of the extrapolations. This has the advantage of a more accurate extrapolation
and could result in less comparisons. Figures 11 and 12 show that it is not the
case, as Interpolation Small Adaptive is still better, if only by a small mar-
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gin. This is perhaps due to the fact that the extrapolations with larger values
of j in I(pi, pi + j l

m ) is more accurate than those with smaller values of j, thus
when taking the average of all extrapolations, the ones with small values of j
contribute more to the inaccuracy of the estimate.

5 Conclusions and Open Questions

We showed that using binary search, the intersection algorithm Small Adaptive
outperforms all the other intersection algorithms including Sequential the most
recent intersection algorithm proposed in the theory community, which hereto-
fore had not been compared in practice. Our results also confirm the superiority
of Small Adaptive over all other algorithms as reported in [8], even on a data
set substantially larger than the one used in that study. Considering variants of
those intersection algorithms using interpolation search instead of binary search
and galloping, we showed that for any fixed intersection technique, such as Small
Adaptive, using interpolation search always improves the performance. Finally,
we combine the two concepts of interpolation search and galloping to define the
extrapolation search and several variants of it. Comparing the practical per-
formance of these on the intersection algorithm Small Adaptive, we found one
that is particularly effective. This results in an even better intersection algorithm,
termed Extrapolate Ahead Small Adaptive, which at each step computes the
position of the next comparison using the values of elements at distance l of each
other, and which performs the best when l = lg ni.

For completeness we summarize the results across all algorithms on the
whole data set in Table 1. We would like to highlight some further experi-
ments and open questions. First, it would be interesting to run the experiments
over other data, such as the TREC corpus, particularly on the web slice of
the collection. Second, to measure actual running times as opposed to the on
number of comparisons alone. We expect that I/O and caching effects would

Table 1. Total number of comparisons performed by each algorithm over the data set.
Extrapolate Ahead Small Adaptive with look-ahead range l = lg n is best.

Algorithm # of comparisons
Sequential 119479075
Adaptive 83326341
Small Adaptive 68706234
Interpolation Sequential 55275738
Interpolation Adaptive 58558408
Interpolation Small Adaptive 44525318
Extrapolation Small Adaptive 50018852
Extrapolate Many Small Adaptive (m = 4, l = 80) 44119573
Extrapolate Many Small Adaptive (m = 8, l = 80) 44087712
Extrapolate Ahead Small Adaptive (l = 50) 44133783
Extrapolate Ahead Small Adaptive (l = lg n) 43930174
Extrapolate Ahead Small Adaptive (l =

√
n) 44379689
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have a significant impact on the reported times of each algorithm. Third, to
study a broader range of intersection algorithms, as some combining the tech-
niques proposed in [1, 2] with orthogonal techniques from other intersection al-
gorithms.
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7. Erik D. Demaine, Alejandro López-Ortiz, and J. Ian Munro. Adaptive set inter-
sections, unions, and differences. In Proceedings of the 11th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), 743–752, 2000.
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Abstract. In this paper, we present an experimental study of the space-
time tradeoffs for the dictionary problem, where we design a data struc-
ture to represent set data, which consist of a subset S of n items out of
a universe U = {0, 1, . . . , u − 1} supporting various queries on S. Our
primary goal is to reduce the space required for such a dictionary data
structure. Many compression schemes have been developed for dictionar-
ies, which fall generally in the categories of combinatorial encodings and
data-aware methods and still support queries efficiently. We show that
for many (real-world) datasets, data-aware methods lead to a worth-
while compression over combinatorial methods. Additionally, we design
a new data-aware building block structure called BSGAP that presents
improvements over other data-aware methods.

1 Introduction

The recent proliferation of data has challenged our ability to organize, store, and
access data from various real-world sources. Massive data sets from biological
experiments, Internet routing information, sensor data, and audio/video devices
require new methods for managing data. In many of these cases, the information
content is relatively small compared to the size of the original data. We want
to exploit the huge potential to save space in these cases. However, in many
applications, the data also needs to be indexed for fast query processing. The
new trend in data structures design considers space and time efficiency together.
The ultimate goal is to design structures that require a minimum of space, while
still performing queries efficiently.

Ideally, the space required to store any particular data should be defined with
respect to its Kolmogorov complexity (the size of the smallest program which can
generate that data). Unfortunately, the Kolmogorov complexity is undecidable
for arbitrary input, making it an inconvenient measure for practical use. Thus,
other measures of compressibility are used as a framework for data compression,
like entropy for textual data.
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One fundamental type of data is set data, which consist of a subset S of n
items from the universe U = {0, 1, . . . , u−1}. Some specific examples include IP
addresses, UPC barcodes, and ISBN numbers; set data also appear in inverted
indexes for libraries and web pages as well as results from scientific experiments.
In many cases, S is not a random subset of U and can be compressed. (For in-
stance, consider a set S with a few tightly clustered items spread throughout U .)
The gap measure [3] (described formally in Section 2) has been used extensively
as a reasonable data-aware measure in the context of inverted indexes [15], and
we will use it as a measure in this paper.

We use these notions of compressibility to design compressed data structures
that index the data in a succinct way and also allow fast access. In particular, we
address the fundamental dictionary problem, where we design a data structure
to represent a subset S that supports various queries on S. Two fundamental
queries, rank and select , are of particular interest [9]. Earlier work on the dictio-
nary problem for these two queries, such as Jacobson [9], Munro [11], Brodnik et
al. [5], and Raman et al. [12], focuses on combinatorial compression methods of
set data. In particular, they develop dictionaries that take about �log

(
u
n

)� bits
of space. Note that �log

(
u
n

)� ≈ n log(u/n) is known as the information-theoretic
(combinatorial) lower bound because it is the minimum number of bits required
to differentiate between the

(
u
n

)
possible subsets of n items out of a universe of

size u. These dictionaries use the same number of bits for each subset of size n,
and thus, do not compress the data in a data-aware manner. Another focus of
these papers is to achieve constant-time bounds for rank and select queries. In or-
der to do this, they require an additional term of Ω(u log log u/ logu) bits. When
n ' u, these structures are not space-efficient since the additional term will be
much (perhaps exponentially) larger than the information-theoretic minimum
term �log

(
u
n

)�, dwarfing any savings achieved by combinatorial compression.
Another line of work focuses on achieving space that is polynomial in n and

log u. However, the lower bounds on the predecessor problem imply that we can
no longer achieve constant query times [2]. Recent results [4, 8] exploit some
properties of the underlying data and scale their space accordingly, thus po-
tentially saving a lot of space in practice. In the case of sparse set data where
n ' u, [8] provides the first dictionary to take just O(log

(
u
n

)
) bits of space in

the worst-case. In this paper, we adopt the same view and focus on achieving
near-optimal space in practice, while minimizing query time. Briefly, we mention
the following new contributions.

In this paper, we motivate the importance of data-aware compression meth-
ods in practice through careful experimentation with real-world data sets. In
particular, we show that a gap-style encoding method saves about 10–40% space
over combinatorial encoding methods. We then develop a binary-searchable
gap encoding method called BSGAP and show that its space is competi-
tive with simple sequential encoding schemes [10], both in theory and practice.
We also show a space-time tradeoff for BSGAP with respect to block encoding
methods [4].
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Table 1. Time and space bounds of dictionaries for rank and select queries

Theoretical Practicala

Paper Time Space (bits) Space (bits)
this paper AT (u,n) gap + o(log u

n
) when n � u ≤ 1, 830, 959

[8] AT (u,n) gap + o(log u
n

) when n � u ≤ 2, 001, 367
[4] AT (u,n) 2gap + Θ(uε) ≤ 1, 855, 116

[13]b O(log log u) Θ(n log u) > 3, 200, 000
[1] AT (u,n) Θ(n log u) > 3, 200, 000
[2] BF (u,n) Θ(n2 log u) > 320, 000, 000, 000
[9] O(1) u + Θ(u log log u/ log u) > 4, 429, 185, 024
[12] O(1) log u

n
+ Θ(u log log u/ log u) > 136, 217, 728

[7] O(1) gap + Θ(u log log u/ log u) > 136, 017, 728
a The practical space bounds are for indexing our upc 32 file, with

n = 100,000 and u = 232. The values for [13, 2, 9, 12, 7] are estimated by
their reported space bounds. For these methods, we relaxed their query
times to O(log log u) to provide a fairer comparison in space usage.

b The theoretical space bound is from Willard’s y-fast trie implementa-
tion [14].

Table 1 lists the theoretical results with practical estimates for the space re-
quired to represent the various compressed dictionaries we mentioned. Here, we
define AT (u, n)=O(min{√(log n)/(log log n), (log log u)(log log n)/(log log log u),
log log n + (log n)/(log log u)}), and BF (u, n) = O(min{(log log u)/(log log log u),√

(log n)/(log log n)}). Note that BF (u, n) ≤ AT (u, n) for any u and n. Please see
[8] for a more comprehensive look at the methods in Table 1.

2 Dictionaries on Set Data

Let S = 〈s1, . . . , sn〉 be an ordered subset of n items, with items chosen from
a universe U = {0, 1, . . . , u− 1} of size u; that is, i < j implies si < sj. A
dictionary on S is a data structure that supports queries on S. In particular, we
are interested in the following queries:

– member(S, a), which returns 1 if a ∈ S, and 0 otherwise;
– rank(S, a), which returns the number of items x ∈ S that are at most a; and
– select(S, i), which returns the ith smallest item of S.

The normal concern of a dictionary is how fast one can answer a query, but
space usage is also an important consideration. We would like the dictionary
to use the minimum space for representing S, as if it were not being indexed.
There are some common measures to describe this minimum space. The first
measure is n log u, which is the number of bits needed to store the items si

explicitly in an array. The second measure is the information-theoretic mini-
mum �log

(
u
n

)� ≈ n log(u/n), which is the worst-case number of bits required to
differentiate between any two distinct n-item subsets of universe U .
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Another well-known measure is the gap measure defined as

gap(S) =
n∑

i=1

�log(gi + 1)�,

where g1 = s1, and gi = si − si−1 for i > 1. The gap measure is related to
the space needed to represent S in gap encoding [3], which stores the stream of
gaps G = g1, . . . , gn along with the value n instead of S. Note that we cannot
merely store each gi in �log(gi +1)� bits and decode the stream uniquely; we also
need to know the separation boundaries between successive items. One popular
technique to “mark” these separators is by using a prefix code such as the δ
code [6]. In δ coding, we represent each gi in �log(gi + 1)�+ 2 �log�log(gi + 1)��
bits, where the first �log�log(gi + 1)�� bits are the unary encoding of the num-
ber �log�log(gi + 1)��, the next �log�log(gi + 1)�� bits are the binary represen-
tation of the number �log(gi + 1)�, and the final �log(gi + 1)� bits are the bi-
nary representation of gi. Given any prefix code, we can uniquely decode the
stream G = g1, g2, ..., gn by simply concatenating the prefix encoding of each gi.
For our theoretical results in this paper, we make use of the δ code. Another
example of a prefix code is the nibble code proposed in [4]. In this paper, we will
primarily use a variation of the nibble code called nibble4 in our experiments.
For this scheme, we write a “nibble” part of ��log(gi + 1)�/4� in unary, which is
then followed by 4 ·��log(gi+1)+3�/4� bits to write the binary representation of
gi, padded out to multiples of four bits. (Later, we describe nibble4fixed, which
we use for 64-bit data. It encodes the first part in binary in four bits, since for
a universe size of 264, we would need to write 64/4 = 16 different lengths.)

The gap measure is also related to the space needed to represent S in the
prefix omission method (POM) described in [10], which is often used to represent
bitstrings of arbitrary length. Consider the bitstrings sorted lexicographically. In
POM, each bitstring ti is represented with respect to the previous bitstring ti−1
by omitting the common prefix of the two bitstrings. We denote the total length
of this stream of (compressed) bits as trie(S). It is shown in [8] that trie(S) ≥
gap(S), and in the worst case, trie(S) is close to 2gap(S); however, if we pick a
random number k ∈ U and add it (modulo u) to all the numbers in S (which
we call shifting by k), trie(S) is expected to be very close to gap(S). To encode
in this amount of space, we need to find a good k.

We summarize the relationship between these measures in the following fact.

Fact 1. Both log
(

u
n

)
and gap(S) are smaller than n log u. Also, gap(S)≤ trie(S).

When n = o(u), gap(S) ≤ log
(

u
n

)
.

We provide some experimental results on real data sets in Figure 1, which bears
out the theoretical statements of Fact 1. Here, the files tested are described in
Section 4.1, and the space is reported (in bits) along the y-axis. The figure on
the left shows data files with a universe of size u ≤ 232, and the figure on the
right shows data files with u ≤ 264.

Notice that gap(S) is significantly smaller than log
(

u
n

)
for real data. In fact,

nibble4 is a decodeable gap encoding that also outperforms the information-
theoretic minimum. For the IP data files, gap(S) performs relatively poorly,
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Fig. 1. Comparison of log u
n

, trie(S), gap(S), and a gap stream encoded according to
the nibble4 code for the data files in Section 4.1

because although IPs tend to be clustered together by domains, within a domain,
addresses tend to be more uniformly distributed. On the other hand, the titles
file tends to have very tightly-clustered entries, since many books start with the
same (or similar) words. As such, this represents a good case for gap encoding.

Since gap(S) is less than trie(S) for all of the files, we are free to use gap
encoding throughout the remainder of the paper. Also, the impact of gap(S)
(and therefore its prefix encodings) is more dramatic for larger universe sizes: the
figure on the right showcases this observation for the listed files. In Section 4.2,
we show tradeoffs between various prefix codes for both the space required and
their encoding/decoding time. It turns out that nibble4 is the method of choice
(which is why we included it here).

3 The Binary-Searchable Gap Encoding Scheme (BSGAP)

In this section, we describe our BSGAP data structure that compresses a bal-
anced binary search tree T on S and still supports queries in O(log n) time. The
main point of this section is in showing that a binary-searchable representation
requires about the same number of bits as linear encoding schemes [10]. (In
Section 4.2, we show that this observation also holds in practice.)

The basic idea to achieve compression for T is to store each of the n nodes
in the binary search tree for S in less than log u bits. In particular, an item s
corresponding to node v in the binary search tree will be more succinctly stored
if we can store the difference between s and some other item along the path from
v to the root. The best such item s′ would minimize |s− s′|. By the properties
of binary search trees, s′ must either be v’s left parent or v’s right parent.1

Generally, let s′i represent this best ancestor along the path from the root to the
node vi corresponding to item si.

Formally, let the subsets SL = 〈s1, s2, ...s�n/2�−1〉 and SR = 〈s�n/2�+1, ..., sn〉
represent the left and right subtrees of the root of the balanced binary search tree

1 The left (right) parent of v is the first node on the path P from v to root that is to
the left (right) of v. In a binary search tree, it contains the largest (smallest) item
that is smaller (larger) than s among the nodes on P .
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T , which stores the item s�n/2�. For the BSGAP of S, denoted as BSGAP(S), let
|BSGAP(S)| be the number of bits used to encode BSGAP(S), where we δ-encode
each value required. Then, the encoding of BSGAP of S is defined recursively
as a concatenation of encoding of four components:

BSGAP(S) = 〈s�n/2� − s′�n/2�; |BSGAP(SL)|; BSGAP(SL); BSGAP(SR)〉,
where we define s′�n/2� = 0 to handle encoding the root. The value s�n/2� − s′�n/2�
is called the key-value of BSGAP(S). Note the sign of this key-value determines
whether the best ancestor is the left parent or the right parent. This value is
encoded in variable-length encoding, by the use of a prefix code (such as δ or
nibble4) to allow compression. The term |BSGAP(SL)| is needed as a pointer
to jump to the the right half of the set while searching, and thus constitutes
additional overhead. We shall refer to this space overhead as the pointer cost.
In fact, we actually store the encoding of min{|BSGAP(SL)|, |BSGAP(SR)|}, along
with an additional bit to indicate which value we have stored. (This improvement
saves space both in theory and practice, since the only time one spends any extra
bits over the original encoding is when |BSGAP(SL)| = |BSGAP(SR)|.)

The search in BSGAP(S) follows exactly the same steps as a search in the
original (uncompressed) binary search tree, with the exception that we must
decode item values in each node on the fly. In order to maintain an O(log n)
query time, we have to consider the issue of decoding a δ-coded number (or
similar prefix code) in the RAM model in constant time. We assume that in the
RAM model, the word size of the machine is at least log u bits, and that we are
allowed to perform addition, subtraction, multiplication, and bitshift operations
on words in O(1) time. We also assume that we can calculate the position of the
leftmost 1 of a subword x of log log u bits in O(1) time. (This is equivalent to
calculating the value �log(x + 1)� when the word x is seen as an integer.) This
latter assumption allows us to decode a δ-coded number (or similar prefix code)
in O(1) time in our data structure. If this is not the case, we can simulate the
decoding by storing the decoding result of every possible log log u-bit number in
a table with log u entries. Note that this table takes O(log u log log log u) bits,
which is negligible when compared to the other space terms in our data structure.

In summary, we have the following theorem, where the proof is analogous
to Lemma 2 in [8], except that we avoid having to find the best shift k that
minimizes their space usage.

Theorem 1. The BSGAP(S) representation requires gap(S) + O(n log log(u/n))
bits and supports membership, rank and select queries in O(log n) time.

Proof. (sketch) Recall that a key-value in the BSGAP structure is storing the
difference between an item si and its best ancestor s′i in the binary search order.
Though encoding a particular key-value si−s′i can take more space than encoding
the corresponding gap value gi, we can show that the total space for encoding all
the key-values in the BSGAP structure is at most gap(S) + O(n log log(u/n))
bits using a counting technique similar to Lemma 2 of [8]. The remaining space,
including the pointer cost and overhead from using δ encoding, can be bounded
by O(n log log(u/n)) bits using Jensen’s inequality. ��
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Now, we describe our main structure, which uses BSGAP as a black box for suc-
cinct representation and fast decoding of small blocks. We describe our structure
in a bottom-up way. At the bottom level, we group every b items into a block
and encode the items in each block by a BSGAP structure. The ith BSGAP
structure corresponds to those sj ’s in S with j in [ib + 1, ib + b]. We keep an
array P of n/b entries, where P [i] points to the ith BSGAP structure. The ar-
ray P requires O((n/b) log u) bits of space. At the top level, we collect the first
item in each block, and build an instance of Andersson and Thorup’s prede-
cessor structure [1] on these first items, which takes (n/b) log u bits of space.
Setting b = log2 n, we achieve the result in the theorem below, which is a slight
improvement over Theorem 2 in [8], since we avoid finding a random shift k. As
a companion result, we also achieve a worst-case analysis in Corollary 1, since
gap(S) and O(n log log(u/n)) are bounded by O(n log(u/n)).

Theorem 2. Given a set S of n items from [1, u], we implement a dictionary
in gap(S) + O(n log(u/n)/ logn) + O(n log log(u/n)) bits so that rank takes
AT (u, n) time and select takes O(log log n) time.

Proof. (sketch) To answer select, we only need to traverse one BSGAP struc-
ture, thus requiring O(log log n) time. To answer rank, the time is dominated
by the predecessor query at the top level, which takes AT (u, n) time. For our
space bounds, the n/ log2 n BSGAP data structures require a total of gap(S) +
O(n log log(u/n)) bits. The predecessor structure and P take O((n/b) log u) =
O(n log(u/n)/ logn) bits of space, thus achieving the stated space bound. ��
Corollary 1. We implement a dictionary in at most O(n log(u/n)) bits of space
so that rank takes AT (u, n) time and select takes O(log log n) time.

In practice, we replace [1] with a simple binary search tree, and introduce a new
parameter h = O(log log n) that does not affect the theoretical time for BSGAP
but provides a noticeable improvement in practice. Inside each BSGAP-encoded
block, we further tune our structure to resort to a simple sequential encoding
scheme when there are at most h items left to search, where h < b. Theoretically,
the time required to search in the BSGAP structure is still O(log log n). We
employ this technique when sequential decoding is fast enough, to save space on
the BSGAP pointers used to jump to the right half of the set. In our experiments,
we actually let h range up to b, to see the point at which a sequential decoding
of h items becomes impractical. It turns out that these few adjustments to our
theoretical work result in a fast and succinct practical dictionary.

4 Experimental Results
In this section, we present our experimental results. Section 4.1 describes the
experimental setup. In Section 4.2, we discuss various issues with the space
requirements of our BSGAP structure and give some intuition about how to
encode the various parts of the BSGAP structure efficiently. In Section 4.3, we
describe a further tweakable parameter for our BSGAP structure and use it as
a black box to succinctly encode blocks of data.
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Apart from the δ code, the nibble code [4], and the nibble4 code we have
mentioned in Section 2, in this section, we also refer to a number of variations
of prefix codes as follows:

– The delta squared code encodes the value �log(gi + 1)� using δ codes, which
is followed by the binary representation of gi. For instance, the delta squared
code for 170 is 001 00 1000 10101010.

– The nibble4Gamma encodes the “nibble” part of the nibble4 code using γ
code instead of unary.2 For instance, the nibble4Gamma code for 170 is
01 0 10101010.

– In case the universe size of the data set is at most 232, we will also have the
fixed5 code which encodes the value �log(gi + 1)� in binary using five bits.
For instance, 170 here is encoded as 01000 10101010.

– For larger universe sizes (such as our 264-sized ones), we use the nibble4fixed
code, a mix of the nibble4 code and the fixed5 code. Here, we encode the
“nibble” part of the nibble4 code using four bits.

For each of these codes, we create a small table of values so that we can
decode them quickly when appropriate. As described in Section 3, these tables
add negligible space, and we have accounted for this (and other) table space in
the experimental results that we describe throughout the paper.

4.1 Experimental Setup

Our source code is written in C++ in an object-oriented style. The experiments
were run on a Dell PowerEdge 650 with 3 GB of RAM. The machine was running
Centos 4.1, with a gnu g++ 3.4.4 compiler. The data sets used were as follows:

– IP1: List of IP addresses obtained from Duke University’s Computer Science
Department. The list refers to 159,690 IP addresses that hit the Duke CS
pages in the month of January 2005.

– IP2: Similar to IP1, but this list consists of 148,700 IP addresses that hit
the Duke CS pages in February 2005.

– UPC 32: List of 100,000 upc codes obtained from items sold by the Wal-
Mart supermarket that fit in a universe of size 232.

– ISBN: List of 390,000 ISBNs of books at the Purdue Libraries in a 32-bit
format.

– UPC 48: List of 432,223 upc codes in the original 48-bit format obtained
from items sold by the Wal-Mart supermarket.

– Title: List of 256,391 book titles from Purdue Libraries, converted into a
numeric value out of a universe of size 264.

4.2 Code Comparisons for Encodings and Pointers

We performed experiments to compare the space/time tradeoffs of using different
encodings in place of nibble4. We summarize those experiments in Figure 2.
2 The “nibble” part will be an integer from [1, 16]. The γ code for an integer x is a

unary encoding of �log x� followed by the binary encoding of x in �log(x + 1)� bits.
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Fig. 2. Comparison of codes and measures for the data files in Section 4.1

The figures in the top row show the time required to process 10,000 randomly
generated rank queries with a BSGAP structure using the codes listed, averaged
over 10 trials. The figures in the bottom row show the space (in bits) required
to encode the BSGAP data structure using the listed prefix codes. Each of the
bottom two rows also has the information-theoretic minimum and gap(S) listed
for reference.

It is clear that both fixed5 and nibble4 are very good codes in the BSGAP
structure for the 32-bit case; fixed5 is slightly faster than nibble4, and nibble4
is slightly more space-efficient. (For the ISBN file, nibble4 is significantly more
space-efficient.) For 64-bit files, nibble4 is the clear choice. Since our focus is on
space efficiency, the rest of the paper will build BSGAP structures with nibble4.
(For our 64-bit data sets, we will actually use nibble4fixed.)

Next, we investigate the cost of these BSGAP pointers and see if a different
choice of code for just the pointers can improve its cost. We summarize the
space/time tradeoffs in Figure 3. The figure shows the pointer costs (in bits) of
each BSGAP structure. As we can see, nibble4 and nibble are both space-efficient
for the pointer distribution. However, nibble4 is again the logical choice, since
it is both the most space-efficient and very fast to decode. If we remove these
pointer costs from the total space cost for the BSGAP structure, we see that
this space is about the same as encoding the gap stream sequentially; as such,
we can think of the pointer overhead for BSGAP as a cost to support fast
searching.



Compressed Dictionaries: Space Measures, Data Sets, and Experiments 167

Fig. 3. Comparison of prefix codes for BSGAP pointers for the data files in Section 4.1

4.3 BSGAP: The Succinct Binary-Searchable Black Box

In this section, we focus on the practical implementation of our dictionary de-
scribed in Section 3, which is based on a two-level scheme with a binary search
tree at the top and BSGAP structures at the bottom. Recall that there is a
parameter b that governs the number of items contained in each BSGAP struc-
ture and a parameter h that controls the degree of sequential encoding within a
BSGAP data structure. We denote a particular configuration of our dictionary
structure by D(b, h). Let BB refer to the data structure in [4]. In this framework,
BB is a special case of our dictionary D(b, h) when h = b.

In Figure 4, we show a space/time tradeoff for BB and our dictionary. Each
graph plots space vs. time, where the time is that required to process 10,000
randomly generated rank queries, averaged over five trials. Here, we tune BB
to operate on the same number of items in each block to avoid extra costs for
padding and give them the same benefits as BSGAP receives. For each graph in
Figure 4, we let the blocksize b range from [2, 256] and the hybrid value range
from [2, b]. We collect time and space statistics for each D(b, h) data structure.
The BB curve is generated from the 256 points corresponding to D(b, b). For
the BSGAP curve, we partition the x-axis into 300 partitions and choose the
most time-efficient implementation of D(b, h) taking that much space. Notice
that our BSGAP structure converges to BB as we allow more space for the data
structures, but we have some improvement for extremely small space.

Since BB is a subcase of our BSGAP structure, one might think that our space-
time curve should never be higher than BB’s. However, the curve is generated
with actual data structures D(b, h) taking a particular space and time. So, the
existence of a point above the BB curve on our BSGAP curve simply means
that there exists one configuration of our data structure D(b, h) which has those
particular results.

The parameter h is crucial to achieving a good space/time tradeoff. Notice
that as h increases, the space of D(b, h) decreases because we store fewer pointers
in each BSGAP data structure. One may think of transferring this saved space
into entries in the top level binary search tree to speed up the query time.
On the other hand, the time required to search at the bottom of each BSGAP
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Fig. 4. Comparison of BB and BSGAP on 32-bit data files in Section 4.1
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Fig. 5. Comparison of BB and BSGAP on 48-bit and 64-bit data files in Section 4.1

structure increases linearly with h. So, there must be some moderate value of h
that balances these costs and arrives at the best space/time tradeoff. Hence, we
collect all (b, h) pairs and evaluate the best candidates among them.

In Figure 5, we compare BB and our dictionary for 64-bit data. We plot space
vs. time, where the time is that required to process 1,000 randomly generated
rank queries, averaged over five trials. We collect data for D(b, h) as before,
where the range for b and h for upc 48 is [2, 512] and title is [2, 2048]. Notice
that our data structure provides a clear advantage over BB as the universe size
increases.
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5 Conclusion

In this paper, we have shown evidence that data-aware measures (such as gap)
tend to be smaller than combinatorial measures on real-life data. Employing
techniques that exploit the redundancy of the data can lead to more succinct
data structures and a better understanding of the underlying information. As
such, we encourage researchers to develop theoretical results with a data-aware
analysis. In particular, our BSGAP data structure, along with BB (proposed
in [4]) are extremely succinct for sparse data sets. In addition, we provide some
evidence that BSGAP is less sensitive than [4] to an increase in the size of the
universe. Finally, we provide some useful information on the relative performance
of prefix codes with respect to compression space and decompression time.
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Abstract. We consider the following string matching problem. Pat-
tern p0p1p2 . . . pm−1 (δ, α)-matches the text substring ti0 ti1ti2 . . . tim−1 ,
if |pj − tij | ≤ δ for j ∈ {0, . . . , m − 1}, where 0 < ij+1 − ij ≤ α + 1. The
task is then to find all text positions im−1 that (δ, α)-match the pattern.
For a text of length n, the best previously known algorithms for this
string matching problem run in time O(nm) and in time O(n�mα/w�),
where the former is based on dynamic programming, and the latter on
bit-parallelism with w bits in computer word (32 or 64 typically). We im-
prove these to take O(nδ+�n/w�m) and O(n�m log(α)/w�), respectively,
worst case time using bit-parallelism. On average the algorithms run in
O(�n/w��αδ/σ�+n) and O(n) time. Our experimental results show that
the algorithms work extremely well in practice. Our algorithms handle
general gaps as well, having important applications in computational
biology.

Keywords: approximate string matching, music information retrieval,
protein matching, bit-parallelism, nondeterministic finite automata.

1 Introduction

Background and problem setting. Many notions of approximateness have
been proposed in string matching literature, usually motivated by some real
problems. One of seemingly underexplored problems with applications in music
information retrieval and molecular biology is (δ, α)-matching [4] and its varia-
tions. In this problem, the pattern p0p1 . . . pm−1 is allowed to match a substring
of the text t0t1 . . . tn−1 with α-limited gaps, and the respective pairs of matching
characters may be different, only if their numerical values do not differ by more
than δ. Translating this model into a music (melody seeking) application, we
can allow for small distortions of the original melody because the (presumably
unskilled) human user may sing or whistle the melody imprecisely. The gaps, on
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C. lvarez and M. Serna (Eds.): WEA 2006, LNCS 4007, pp. 170–181, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

À
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the other hand, allow to skip over ornamenting notes (e.g., arpeggios), which ap-
pear especially in classical music. Other assumptions here, that is, monophonic
melody and using pitch values only (without note durations), are reasonable in
most practical cases. In biology, somewhat relaxed version of the α-matching
problem is important for protein matching, especially together with allowing for
matching classes of characters. Fortunately, in all the new algorithms we are go-
ing to present in this paper, δ-matching can be straightforwardly changed into
matching classes of characters, without any penalty in the complexities if the
size of the character class is of the order of δ.

Previous work. The first algorithm for the problem [4] is based on dynamic
programming, and runs in O(nm) time. This algorithm was later reformulated
[2] to allow to find all pattern occurrences, instead of only the positions where the
occurrence ends. This needs more time, however. The algorithm in [3] improves
the average case of the one in [2] to O(n), assuming constant α. More general
forms of gaps were considered in [10], retaining the O(nm) time bounds. For
the α-matching with classes of characters there exists an efficient bit-parallel
nondeterministic automaton solution [9]. In this algorithm the gap limits for
each pattern character may be of different length, in particular, it is assumed
that for many characters it is zero. This algorithm can be trivially generalized
to handle (δ, α)-matching [3], but the time complexity becomes O(n�αm/w�)
in the worst case, where w is the length of the machine word. For small α the
algorithm can be made to run in O(n) time on average. Sparse dynamic program-
ming can be used to solve the problem in O(n + |M|min{log(δ + 2), log log m})
time, where M = {(i, j) | |pi − tj | ≤ δ}, and |M| ≤ nm [6]. This can be
extended for the harder problem variant where transposition invariance and
character insertions, substitutions or mismatches are allowed together with
(δ, α)-matching [7].

Our results. We improve the dynamic programming based algorithm to run in
O(�n/w�m + nδ) worst case time, where w is the number of bits in a machine
word. This can be improved to take O(�n/w��αδ/σ�+ n) time time on average,
where σ is the size of the alphabet. We improve the nondeterministic finite
automaton based algorithm to take only O(n�m log(α)/w�) worst case time,
i.e. O(n) worst case time for m = O(w/ log(α)). For small α the algorithm can
be made to run in O(n) time on average regardless of m. The algorithms can
be generalized to handle general gaps and character classes as well, see Sec. 3.3.
This has important applications in computational biology.

2 Preliminaries

Let the pattern P = p0p1p2 . . . pm−1 and the text T = t0t1t2 . . . tn−1 be numer-
ical strings, where pi, tj ∈ Σ for Σ = {0, 1, . . . , σ − 1}. The number of distinct
symbols in the pattern and in the text are denoted by σp and σt, respectively.
Moreover, we use σp∩t to denote the number characters that occur both in P
and T simultaneously. Note that σp∩t ≤ σp, σt, m.
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In δ-approximate string matching the symbols a, b ∈ Σ match, denoted by a =δ

b, iff |a − b| ≤ δ. Pattern P (δ, α)-matches the text substring ti0ti1ti2 . . . tim−1 , if
pj =δ tij for j ∈ {0, . . . , m − 1}, where 0 < ij+1 − ij ≤ α + 1. If string A (δ, α)-
matches string B, we sometimes write A =α

δ B.
In all our analysis we assume uniformly random distribution of characters in

T and P , and constant δ and σ.

3 Bit-Parallel Dynamic Programming

In this section we show how bit-parallelism can be used to bring the worst case
complexity of dynamic programming down to O(nδ + �n/w�m), where w is the
number of bits in computer word (typically 32 or 64).

We number the bits from the least significant bit (0) to the most significant
bit (w − 1). C–like notation is used for the bit-wise operations of words; & is
bit-wise and, | is or, ∼ negates all bits, << is shift to left, and >> shift to
right, both with zero padding.

Let us first define a matrix D. Let Di,j = 1 if p0p1 . . . pi =α
δ thth+1 . . . tj .

Otherwise, Di,j = 0. This can be expressed as:

Di,j =
{

1, pi =δ tj and ∃j′ : 0 < j − j′ ≤ α + 1 and Di−1,j′ = 1
0, otherwise. (1)

At a first glance it seems that this recurrence would lead to O(αnm) time.
However, we show how to compute O(w) columns in each row of the matrix in
O(1) time, independent of α, leading to O(�n/w�m) total time.

To this end, assume that in the preprocessing phase we have computed a
helper bit-matrix (whose efficient computation we will consider later) V :

Vi,j =
{

1, pi =δ tj
0, otherwise. (2)

The computation of D will proceed column-wise, w columns at once. Each
matrix element takes only one bit of storage, so we can store w columns in a
single machine word. Assume that we have computed all rows of the columns
(j − 1)w . . . jw − 1, and columns jw . . . (j + 1)w − 1 up to row i − 1, and we
want to compute the columns jw . . . (j + 1)w − 1 at row i. Assume also that
α < w. We adopt the notation Dw

i,j = Di,jw...(j+1)w−1, and analogously for V .
The goal is then to produce Dw

i,j from V w
i,j , Dw

i−1,j and Dw
i−1,j−1. Dw

i,j does not
depend on any other Dw element, according to the definition of D, and given
our assumption that α < w.

Now, according to Eq. (1), the kth bit in Dw
i,j should be set iff (i) the kth bit

in V w
i,j is set (i.e. pi =δ tjw+k), and (ii) any of the bits k − α − 1 . . . k − 1 in

Dw
i−1,j or any of the bits k + w − α− 1 . . . w − 1 in Dw

i−1,j−1 is set (i.e. the gap
length to the previous match is at most α). To compute item (ii) efficiently we
assume that we have available function M(x):

M(x) = M(x, α) = (x << 1) | (x << 2) | . . . | (x << (α + 1)). (3)
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α + 1

w(j − j′) − w + 1w(j − j′) + w − 1

Dw
i−1,j′

Dw
i,j

Fig. 1. Tiling the dynamic programming matrix with w×1 vectors (w = 8). The black
cell of the current tile depends on the dark gray cells of the two tiles in the previous
row (α = 4). The light gray cells depict a negative gap, together with the dark gray
cells the gap is −3 . . . 4. The arrows illustrate some bit distances for the case α ≥ w.

In other words, M(x) copy-propagates all bits in x to left 1 . . . α + 1 positions.
This means that if the 1 bits in x correspond to the matching positions of a
pattern prefix, then M(x) will have those 1 bits aligned in all positions where
the matching prefix could be extended. Note that the representation of M(x)
needs w +α+1 bits, i.e. at most 2w bits (2 computer words) for α < w. We can
now write the recurrence for Dw:

Dw
i,j = V w

i,j & (M(Dw
i−1,j) | (M(Dw

i−1,j−1) >> w)). (4)

Fig. 1 illustrates the bits affecting the current row.
We are not able to compute M(x) in constant time, hence we use a precom-

puted look-up table instead. Since w can be too large to make this approach
feasible, we can precompute the answers e.g. to only w/2 or w/4 bit numbers,
and correspondingly compute M(x) in 2 or 4 pieces without affecting the time
complexity (in our tests we used w/2 = 16 bit numbers for computing M(x)).

We also need to compute V efficiently. This is easy with table look-ups as we
have an integer alphabet. We first compute a table L, such that for all c ∈ Σ
the list L[c] contains all the distinct characters pi that satisfy pi =δ c. Using
this table we build a table V ′, which we will use as a terse representation of V ,
namely we have that V ′[pi] = Vi. This can be done by scanning through the
text, and setting the jth bit of the bitvector V ′[c] to 1 for each c ∈ L[tj ]. This
process takes O(�n/w�σp +m+σ+δσp +δn) = O(�n/w�σp +δn) worst case time.
The probability that two characters δ-match is at most (2δ + 1)/σ, and hence
the expected number of matching pattern characters for each text character
is O(δσp∩t/σt). Therefore, the average case complexity of the preprocessing is
O(�n/w�σp + n(δσp∩t/σt + 1)). Searching clearly takes only O(�n/w�m) time.

3.1 Fast Algorithm on Average

We make the following observation: if Di...m−1,j−α...j = 0, for some i, j, then
Di+1...m−1,j+1 = 0. This is because there is no way the recurrence can introduce
any other value for those matrix cells. In other words, if p0 . . . pi does not (δ, α)-
match th . . . tj−k for any k = 0 . . . α, then the match at the position j +1 cannot
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Alg. 1. DA-bpdp(T, n, P, m, δ, α)
1 V ← DA-bpdp-preprocess(T,n, P, m, δ, α)
2 w′ ← w/2; msk ← (1 << w′) − 1
3 for i ← 0 to (1 << w′) − 1 do
4 M [i] ← 0
5 for j ← 0 to α do M [i] ← M [i] | (i << (j + 1))
6 top ← m − 1
7 D0 ← V [p0][0]
8 for i ← 1 to top do
9 Di ← V [pi][0] & (M [Di−1 & msk] | (M [Di−1 >> w′] << w′))
10 if Dm−1 �= 0 then report matches
11 for j ← 1 to �n/w� do
12 D′

0 ← V [p0][j]
13 i ← 1
14 while i ≤ top do
15 x ← M [D′

i−1 & msk] | (M [D′
i−1 >> w′] << w′)

16 y ← M [Di−1 >> w′] >> w′

17 D′
i ← V [pi][j] & (x | y)

18 if i = top and top < m − 1 and D′
i & (∼0 >> 1) �= 0 then

19 Di ← 0
20 top ← top + 1
21 i ← i + 1
22 if top = m − 1 and D′

m−1 �= 0 then report matches
23 while top > 0 and D′

top & (∼0 << (w − α − 1)) = 0 do top ← top − 1
24 if top < m − 1 then top ← top + 1
25 Dt ← D; D ← D′; D′ ← Dt;

be extended to p0 . . . pi+1. This can be utilized by keeping track of the highest
row number top of the current column j such that Dtop,j �= 0, and computing
the next column only up to row top + 1. More formally, we define (for Dw) the
maximum row topw

j for the column j as:

topw
j = argmaxi{Dw

i−1,j−1 & a �= 0 or Dw
i−1,j & (∼0 >> 1) �= 0}, (5)

where the bitmask a = ∼0 << (w−α−1). Consider first the part Dw
i−1,j−1 & a �=

0. The rationale is as follows. When we are computing Dw
i,j , only the α+1 highest

non-zero bits of Dw
i−1,j−1 can affect the bits in Dw

i,j . These are selected by the
& a operation. However, since we are computing w columns in parallel, the

w − 1 least significant set bits in Dw
i−1,j (the second part), i.e. in the previous

row of the current set of columns, can affect the bits in Dw
i,j as well. Obviously,

this second part cannot be computed at column j − 1. We solve this simply by
computing the first part of topw

j after the column j − 1 have been computed,
and when processing the column j, we increase topw

j if needed according to the
second part (Dw

i−1,j & (∼0 >> 1) �= 0).
Alg. 1 gives the pseudo code. It uses w′ = w/2 bits for the precomputed table

for the M(·) function. For simplicity, the code also assumes that α < w′ (but w
columns are still processed in parallel). The average case running time of this al-
gorithm depends on what is the average value of topw. For w = 1 it can be shown
that avg(top1) = O( δ

σ(1−δ/σ)α+1 ) [3]. This is O(αδ/σ) for δ/σ < 1−α−1/(α+1), so
the average time is O(n�αδ/σ�). We are not able to analyze avg(topw) exactly,
but we have trivially that avg(top1) ≤ avg(topw) ≤ avg(top1)+w−1, and hence
the amortized average search time of Alg. 1 is at most O(�n/w��αδ/σ�+ n).
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The O(�n/w�σp + δn) (worst case) preprocessing time can be the dominating
factor in some cases. We now present an alternative preprocessing variant. The
idea is to partition the alphabet into �σ/δ� disjoint intervals of width δ. Let us
first redefine V as V δ:

V δ
i,j =

{
1, |�pi/δ� − �tj/δ�| ≤ 1
0, otherwise. (6)

Obviously, if Vi,j = 1, then also V δ
i,j = 1. On the other hand, the converse

is not true, i.e. it is possible that V δ
i,j = 1 but Vi,j = 0. This means that we

can use V δ in place of V , but the search algorithm becomes a filter, and the
candidate occurrences must be verified using some other algorithm, e.g. plain
dynamic programming, which makes the total complexity O(nm) in the worst
case. However, the benefit is that V δ is very simple to compute, taking only
O(n) time. The initialization time drops to O(�n/w�min(σp, σ/δ)), since it takes
O(�n/w�) for each distinct �pi/δ�.

Note that one can use the definition V δ
j [pi/δ] = 1 iff �pi/δ� = �tj/δ� instead

of V δ
i,j , and then use the fact that V δ

i,j = V δ
j [pi/δ − 1] | V δ

j [pi/δ] | V δ
j [pi/δ + 1]

in the search phase. This speeds up the preprocessing by a constant factor, but
slows down the search correspondingly. We use this approach in our experiments.

This can be still improved by interweaving the preprocessing and search
phases, so that we initialize and preprocess V δ only for topw

j length prefixes
of the pattern for each j. At the time of processing the column j, we only know
topw

j−1, so we use an estimate ε×topw
j−1 for topw

j , where ε > 1 is a small constant.
If this turns out to be too small, we just increase the estimate and re-preprocess
for the current column. The total preprocessing cost on average then becomes
only O(�n/w�σtopw + n), where σtopw is the alphabet size of topw length prefix
of the pattern. Hence the initialization time is at most O(�n/w��αδ/σ� + n).
We require that δ < σ/3, as otherwise the probability of a match becomes 1.
The average number of verifications decreases exponentially for m > avg(topw),
making their cost negligible, so the total preprocessing, filtering and verification
time is O(�n/w��αδ/σ�+n). For larger δ or smaller m the filter becomes useless.

3.2 Handling Large α in O(1) Time

Alg. 1 assumes that α < w. For larger α the time increases by O(α/w) factor,
as the gap may span over several machine words. We now show how to remove
this limit while maintaining the O(1) cost for processing w columns.

Let us define Last Prefix Occurrence:

LPOi,j =
{

j′, max j′ ≤ j such that Dw
i,j′ �= 0

−α− 1, otherwise.
(7)

I.e. for LPOi,j = j′, Dw
i,j′ is the vector that corresponds to the last (δ, α)-

match(es) of the prefix p0 . . . pi in the text area t0 . . . twj−1. If such vector does
not exist (e.g. when j = 0) we set LPOi,j = −α− 1.
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Assume that α ≥ w and consider the computation of Dw
i,j . The recurrence

becomes
Dw

i,j = V w
i,j & (M(Dw

i−1,j , w) | ov). (8)

The vector ov is computed according to the last prefix occurrence information.
Let j′ = LPOi−1,j−1. We have the following four cases (see also Fig. 1):

1. j′ < 0: no matching prefixes have been found, hence ov = 0.
2. w(j − j′)−w + 1 > α + 1: no bit of Dw

i−1,j′ can affect any bit in Dw
i,j , hence

we set ov = 0.
3. w(j− j′)+w− 1 ≤ α +1: any set bit in Dw

i−1,j′ is close enough to affect any
bit in Dw

i,j , hence we set ov = ∼0.
4. Otherwise some bits of Dw

i−1,j′ can be close enough to affect some bits of
Dw

i,j , and we set ov = (M(Dw
i−1,j′ , α mod w) >> w).

Note that since α ≥ w, the function M(·, ·) is now much easier to compute.
M(Dw

i−1,j , w) = 2w − 2 × LSB(Dw
i−1,j), where LSB(x) extracts the least sig-

nificant set bit of x. The first subtraction operation then propagates the LSB
to every higher position as well, while the second subtraction then clears the
least significant bit of the result. The solution for LSB(x) is part of the com-
puting folklore, and can be computed as LSB(x) = (x & (x − 1)) ∧ x in O(1)
time. Likewise, it is easy to see that M(Dw

i−1,j′ , α mod w) >> w = 2s − 1 for
s = α mod w − (w − �log2(D

w
i−1,j′ )� − 1) + 1, where �log2(x)� effectively gets

the index of the most significant set bit of x. In other words, s tells the number
of bit positions the most significant bit of Dw

i−1,j′ propagates to to fill the least
significant bits of ov. If s < 0, we just set ov = 0.

Finally, LPOi,j can be easily maintained in constant time for each
i, j. LPO(i,−1) is initialized to −α− 1 for all i, which takes O(m) time. Then,
the computation of Dw proceeds column-wise. After Dw

i,j is computed, we simply
set LPOi,j = j iff Dw

i,j �= 0, otherwise we set LPOi,j = LPOi,j−1. In practice
we can store only the latest value of LPO for each row, so only O(m) space is
needed. Hence we can conclude that the value of α does not affect the running
time of the algorithm.

3.3 Relaxing δ and α

Alg. 1 can be generalized to the case where the gap limit can be of different
length for each pattern character [10], and where the δ-matching is replaced with
character classes, i.e. each pattern character is replaced with a set of characters.
More precisely, pattern p0p1p2 . . . pm−1, where pj ⊂ Σ, matches ti0ti1ti2 . . . tim−1 ,
if tij ∈ pj for j ∈ {0, . . . , m − 1}, where aj ≤ ij+1 − ij ≤ bj + 1, where aj and
bj are the minimum and maximum gap lengths permitted for a pattern position
j. This problem variant has important applications e.g. in protein searching, see
[9]. Yet a stronger model [8] allows gaps of negative lengths, i.e. aj (and bj) can
be negative. In other words, parts of the pattern occurrence can be overlapping
in the text, see Fig. 1. First note that handling character classes is trivial, since
it only requires a small change in the computation of V . As for the gaps, consider
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first the situation where (i) ai ≥ 0; or (ii) bi ≤ 0. In either case we have ai ≤ bi.
Handling the case (i) is just what our algorithm already does. The case (ii) is
just the dual of the case (i), and conceptually it can be handled by just scanning
the current row from right to left, and using the limits −bi − 2,−ai − 2 instead
of ai, bi, and handling the gap −1 as a special case.

The core of Alg. 1 is the use of M(x) (Eq. (3)) to select the positions from
the previous row where a matching pattern prefix ends. To handle gaps of the
form ai ≥ 0 we use

M L
i (x) = (x << (ai + 1)) | (x << (ai + 2)) | . . . | (x << (bi + 1)). (9)

For the negative gaps bi < 0 we just align the bits from right, and hence define:

MR
i (x) = (x >> −bi − 1) | (x >> −bi) | . . . | (x >> −ai − 1). (10)

The general case ai < 0 ≤ bi is handled as a combination of these:

Mi(x) = (x >> −ai − 1) | (x >> −ai) | . . . | (x << (bi + 1)). (11)

The final simple modification that we need is to take Dw
i−1,j+1 into account

while computing Dw
i,j, since the negative gaps may span into it. Hence we modify

Eq. (4) to:

Dw
i,j = V w

i,j & ((M L
i (Dw

i−1,j−1) >> w) | Mi(Dw
i−1,j) | (12)

(MR
i (Dw

i−1,j+1 << w) >> w)). (13)

4 Non-deterministic Finite Automata

In this section we present an algorithm based on non-deterministic finite au-
tomaton. The problem of the algorithm in [9] is that it needs m + (m− 1)α bits
to represent the search search state. Our goal is to reduce this to O(m log α),
and hence the worst case time to O(n�(m log α)/w�).

At a very high level, the algorithm can be seen as a novel combination of Shift-
And and Shift-Add algorithms [1]. The ’automaton’ has two kinds of states: Shift-
And states and Shift-Add states. The Shift-And states keep track of the pattern
characters, while the Shift-Add states keep track of the gap length between
the characters. The result is a systolic array rather than automaton; a high level
description of a building block for character pi is shown in Fig. 2. The final array
is obtained by concatenating one building block for each pattern character. We
call the building blocks counters.

To efficiently implement the systolic array in sequential computer, we need
to represent each counter with as few bits as possible while still being able to
update all the counters bit-parallelly.

We reserve � = �log2(α + 1)� + 1 bits for each counter, and hence we can
store �w/�� counters into a single machine word. We use the value 2�−1− (α+1)
to initialize the counters, i.e. to represent the value 0. (This representation has
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1 if input activated and tj ∈ [pi − δ, pi + δ] then
2 c ← 0

4 c ← c + 1
5 activate output

3 if c < α + 1 then

Fig. 2. A building block for a systolic array detecting δ-matches with α-bounded gaps

been used before, e.g. in [5].) This means that the highest bit (�th bit) of the
counter becomes 1 when the counter has reached a value α + 1, i.e. the gap
cannot be extended anymore. Hence the lines 3—4 of the algorithm in Fig. 2
can be computed bit-parallelly as

C ← C + ((∼C >> (�− 1)) & msk),

where msk selects the lowest bit of each counter. That is, we negate and select
the highest bit of each counter (shifted to the low bit positions), and add the
result the the original counters. If a counter value is less than α + 1, then the
highest bit position is not activated, and hence the counter gets incremented by
one. If the bit was activated, we effectively add 0 to the counter.

To detect the δ-matching characters we need to preprocess a table B, so that
B[c] has i�th bit set to 1, iff |pi − c| ≤ δ. We can then use the plain Shift-And
step:

D′ ← ((D << �) | 1) & B[ti],

where we have reserved � bits per character in D as well. Only the lowest bit of
each field has any significance, the rest are only for aligning D and C appropri-
ately. The reason is that a state in D may be activated also if the corresponding
gap counter has not exceeded α+1. In other words, if the highest bit of a counter
in C is not activated (the gap condition is not violated), then the corresponding
bit in D should be activated:

D ← D′ | ((∼C >> (�− 1)) & msk).

The only remaining difficulty to solve is how to reinitialize (bit-parallelly)
some subset of the counters to zero, i.e. how to implement the lines 1–2 of the
algorithm in Fig. 2. The bit vector D′ has value 1 in every field position that
survived the Shift-And step, i.e. in every field position that needs to be initialized
in C. Then

C ← C & ∼(D′ × ((1 << �)− 1))

C ← C | (D′ × ((1 << (�− 1))− (α + 1)))

first clears the corresponding counter fields, and then copies the initial value
2�−1 − (α + 1) to all the cleared fields.

This completes the algorithm. Alg. 2 gives the pseudo code. Alg. 2 runs in
O(n) worst case time, if m(�log2(α + 1)�+ 1) ≤ w. Otherwise, several machine
words are needed to represent the search state, and the time grows accordingly.
However, by using the well-known folklore idea, it is possible to obtain O(n)
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Alg. 2. DA-mloga-bits(T, n, P, m, δ, α)
1 � ← �log2(α + 1)� + 1
2 for i ← 0 to σ − 1 do B[i] ← 0; B′[i] ← 0
3 for i ← 0 to m − 1 do B′[pi] ← B′[pi] | (1 << (i × �))
4 for i ← 0 to σ − 1 do if B′[i] �= 0 then
5 for j ← max(0, i − δ) to min(i + δ, σ − 1) do B[j] ← B[j] | B′[i]
6 msk ← 0
7 for i ← 0 to m − 1 do msk ← msk | (1 << (i × �))
8 am ← (1 << (� − 1)) − (α + 1)
9 D ← 0; C ← (am + α + 1) × msk
10 msk ← msk >> �
11 mm ← 1 << ((m − 1) × �)
12 for i ← 0 to n − 1 do
13 C ← C + ((∼C >> (� − 1)) & msk)
14 D′ ← ((D << �) | 1) & B[ti]
15 D ← D′ | ((∼C >> (� − 1)) & msk)
16 C ← C & ∼((D′ << �) − D′)
17 C ← C | (D′ × am)
18 if (D & mm) = mm then report match

average time for long patterns not fitting into a single word by updating only
the “active” (i.e. non-zero) computer words. This works in O(n) time on average
as long as δ/(σ(1 − δ/σ)α+1) = O(w/ log α). The preprocessing takes O(m +
(σ + δσp)�m log(α)/w�) time, which is O(m + (σ + δ min{m, σ})�m log(α)/w�)
in the worst case.

5 Experimental Results

We have run experiments to evaluate the performance of our algorithms. The
experiments were run on Pentium4 2GHz with 512Mb of RAM, running GNU/Li-
nux 2.4.18 operating system. We have implemented all the algorithms in C, and
compiled with icc 7.0.

For the text we used a concatenation of 7543 music pieces, obtained by ex-
tracting the pitch values from MIDI files. The total length is 1,828,089 bytes.
The pitch values are in the range [0 . . . 127]. This data is far from random; the
six most frequent pitch values occur 915,082 times, i.e. they cover about 50% of
the whole text, and the total number of different pitch values is just 55. A set
of 100 patterns were randomly extracted from the text. Each pattern was then
searched for separately, and we report the average user times.

We compared the following algorithms: DP: The plain Dynamic Program-
ming algorithm [4], O(nm) time and O(m) space (a column-wise variation); SS:
Sequential Sampling algorithm [2], O(nm) time and O(αm) space; DP Cut-
off: “Cut-off” version of DP (similar as the SS cut-off [3]); BP Cut-off: Bit-
parallel “cut-off” (Alg. 1); BP Cut-off 3-L: Fast preprocessing time variant
of BP Cut-off (Sec. 3.1); NFA alpha: The nondeterministic finite automaton
([9]), slightly optimized version; NFA log alpha: The nondeterministic finite
automaton (Alg. 2).

Fig. 3 shows the timings for different pattern lengths and δ, α values. DP
and SS were slow even for small m, hence we omit the plots from those. For
small α NFA alpha is hard to beat due to its simplicity. Interestingly, the
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Fig. 3. Top: Running times in seconds for different pattern lengths. Bottom: Running
times in seconds for α = 1 . . . 8 and different pattern lengths.
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more complex NFA log alpha beats it only in few cases. However, as δ and α
increase, BP Cut-off eventually becomes the winner. As the effective alphabet
size is small, the variant with faster preprocessing is almost always slower due
to the verifications. However, for random texts over large alphabets with flat
distribution this algorithm is clearly faster especially for large m. We omit the
plots due to lack of space. For large (δ, α) the differences between the algorithms
become smaller. The reason is that a large fraction of the text begins to match
the pattern. However, this means that these large parameter values are not
interesting anymore.

6 Conclusions

We have presented new efficient algorithms for string matching with bounded
gaps and character classes. Our algorithms are based on pre-emptying the com-
putation early where the match cannot be extended, bit-parallelism and nonde-
terministic finite automata. Besides having theoretically good worst and average
case complexities, the algorithms are shown to work well in in practice. We have
concentrated on music retrieval but our algorithms have important applications
in computational biology as well.

References

1. R. A. Baeza-Yates and G. H. Gonnet. A new approach to text searching. Com-
munications of the ACM, 35(10):74–82, 1992.

2. D. Cantone, S. Cristofaro, and S. Faro. An efficient algorithm for δ-approximate
matching with α-bounded gaps in musical sequences. In Proceesings of WEA’05,
volume 3503 of LNCS, pages 428–439. Springer, 2005.

3. D. Cantone, S. Cristofaro, and S. Faro. On tuning the (δ, α)-sequential-sampling
algorithm for δ-approximate matching with α-bounded gaps in musical sequences.
In Proceedings of ISMIR’05, 2005.

4. M. Crochemore, C. Iliopoulos, C. Makris, W. Rytter, A. Tsakalidis, and K. Tsich-
las. Approximate string matching with gaps. Nordic Journal of Computing,
9(1):54–65, 2002.

5. M. Crochemore, C. Iliopoulos, G. Navarro, Y. Pinzon, and A. Salinger. Bit-
parallel (δ, γ)-matching suffix automata. Journal of Discrete Algorithms (JDA),
3(2–4):198–214, 2005.
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Abstract. A sequence of objects which are characterized by their color
has to be processed. Their processing order influences how efficiently they
can be processed: Each color change between two consecutive objects
produces costs. A reordering buffer which is a random access buffer with
storage capacity for k objects can be used to rearrange this sequence
online in such a way that the total costs are reduced. This concept is
useful for many applications in computer science and economics.

The strategy with the best known competitive ratio is MAP. An upper
bound of O(log k) on the competitive ratio of MAP is known and a
non-constant lower bound on the competitive ratio is not known [2].
Based on theoretical considerations and experimental evaluations, we
give strong evidence that the previously used proof techniques are not
suitable to show an o(

√
log k) upper bound on the competitive ratio of

MAP. However, we also give some evidence that in fact MAP achieves a
competitive ratio of O(1).

Further, we evaluate the performance of several strategies on random
input sequences experimentally. MAP and its variants RC and RR clearly
outperform the other strategies FIFO, LRU, and MCF. In particular,
MAP, RC, and RR are the only known strategies whose competitive
ratios do not depend on the buffer size. Furthermore, MAP achieves the
smallest constant competitive ratio.

1 Introduction

Frequently, a number of tasks has to be processed and their processing order
influences how efficiently they can be processed. Hence, a reordering buffer can
be expedient to influence the processing order. This concept is useful for many
applications in computer science and economics. In the following, we give an
example (for further examples see [1, 2, 3, 4, 5, 7]).

In computer graphics, a rendering system displays 3D scenes which are com-
posed of primitives. In current rendering systems, the state changes performed
by the graphics hardware are a significant factor for the performance. A state
change occurs when two consecutively rendered primitives differ in their attribute
� The first and the last author are supported by the DFG grant WE 2842/1. The

second author is supported by the DFG grant VO 889/2.
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values, e. g., in their texture or shader program. These state changes slow down
a rendering system. To reduce the costs of the state changes, a reordering buffer
can be included between application and graphics hardware. Such a reordering
buffer which is a random access buffer with limited memory capacity can be used
to rearrange the incoming sequence of primitives online in such a way that the
costs of the state changes are reduced [6].

1.1 The Model

An input sequence σ = σ1σ2 · · · of objects which are only characterized by a
specific attribute has to be processed. To simplify matters, we suppose that
the objects are characterized by their color, and, for each object σi, let c(σi)
denote the color of σi. A reordering buffer which is a random access buffer with
storage capacity for k objects can be used to rearrange the input sequence in
the following way.

The first object of σ that is not handled yet can be stored in the reordering
buffer, or objects currently stored in the reordering buffer can be removed. These
removed objects result in an output sequence σπ−1 = σπ−1(1)σπ−1(2) · · · which
is a permutation of σ. We suppose that the reordering buffer is initially empty
and, after processing the whole input sequence, the buffer is empty again.

For an input sequence σ, let CA(σ) denote the costs of a strategy A, i. e., the
number of color changes in the output sequence. The goal is to minimize the
costs CA(σ).

The notion of an online strategy is intended to formalize the realistic scenario,
where the strategy does not have knowledge about the whole input sequence
in advance. The online strategy has to serve the input sequence σ one after
the other, i. e., a new object is not issued before there is a free location in
the reordering buffer. Online strategies are typically evaluated in a competitive
analysis. In this kind of analysis the costs of the online strategy are compared
with the costs of an optimal offline strategy. For an input sequence σ, let COPT(σ)
denote the costs produced by an optimal offline strategy. An online strategy is
denoted as α-competitive if it produces costs at most α · COPT(σ) + κ, for each
sequence σ, where κ is a term that does not depend on σ. The value α is also
called the competitive ratio of the online strategy.

1.2 The Strategies

We only consider lazy strategies, i. e., strategies that fulfill the following two
properties.

– An active color is selected, and, as long as objects with the active color are
stored in the buffer, a lazy strategy does not make a color change.

– If an additional object can be stored in the buffer, a lazy strategy does not
remove an object from the buffer.

Hence, a lazy strategy has only to specify how to select a new active color. Note
that every (in particular every optimal offline) strategy can be transformed into
a lazy strategy without increasing the costs.
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First-In-First-Out (FIFO). This strategy assigns time stamps to each color
stored in the buffer. Initially, the time stamps of all colors are undefined. When
an object is stored in the buffer and the color of this object has an undefined
time stamp, the time stamp is set to the current time. Otherwise, it remains
unchanged. FIFO selects as new active color the color with the oldest time
stamp and resets this time stamp to undefined. This is a very simple strategy
that does not analyze the input stream. The buffer acts like a sliding window
over the input stream in which objects with the same color are combined.

Least-Recently-Used (LRU). Similar to FIFO, this strategy assigns time
stamps to each color stored in the buffer. Initially, the time stamps of all colors
are undefined. When an object is stored in the buffer, the time stamp of its color
is set to the current time. LRU selects as new active color the color with the
oldest time stamp and resets this time stamp to undefined. LRU and also FIFO
tend to remove objects from the buffer too early [7].

Most-Common-First (MCF). This fairly natural strategy tries to clear as
many locations as possible in the buffer, i. e., it selects as new active color a color
that is most common among the objects currently stored in the buffer. MCF also
fails to achieve good performance guarantees since it keeps objects with a rare
color in the buffer for a too long period of time [7]. This behavior wastes valuable
storage capacity that could be used for efficient buffering otherwise.

Maximum-Adjusted-Penalty (MAP). This strategy, which is introduced
and analyzed in a non-uniform variant of our model [2], provides a trade-off
between the storage capacity used by objects with the same color and the chance
to benefit from future objects with the same color. We present an adapted version
of MAP for our uniform model which is similar to the Bounded-Waste strategy
[7]. A penalty counter is assigned to each color stored in the buffer. Informally,
the penalty counter for color c is a measure for the storage capacity that has been
used by all objects of color c currently stored in the buffer. Initially, the penalty
counters for all colors are set to 0. MAP selects as new active color a color with
maximal penalty counter and the penalty counters are updated as follows: The
penalty counter for each color c is increased by the number of objects of color c
currently stored in the buffer, and the penalty counter of the new active color is
reset to 0.

Random-Choice (RC). Since the computational overhead of MAP is rela-
tively large, we present more practical variants of MAP. RC which is a ran-
domized version of MAP selects as new active color the color of an uniformly
at random chosen object from all objects currently stored in the buffer. Note
that RC can also be seen as a randomized version of MCF. Even if RC is much
simpler than MAP, random numbers have to be generated.

Round-Robin (RR). This strategy is a very efficient variant of RC. It uses
a selection pointer which points initially to the first location in the buffer. RR
selects as new active color the color of the object the selection pointer points to
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and the selection pointer is shifted in a round robin fashion to the next location
in the buffer. We suppose that RR has the same properties on typical input
sequences as RC.

1.3 Previous Work

Räcke, Sohler, and Westermann [7] show that several standard strategies are
unsuitable for a reordering buffer, i. e., the competitive ratio of FIFO and LRU
is Ω(

√
k) and the competitive ratio of MCF is Ω(k), where k denotes the buffer

size. Further, they present the deterministic Bounded-Waste strategy (BW) and
prove that BW achieves a competitive ratio of O(log2 k).

Englert and Westermann [2] study a non-uniform variant of our model: Each
color change to color c produces non-uniform costs bc. As main result, they
present the deterministic MAP strategy and prove that MAP achieves a com-
petitive ratio of O(log k).

The offline variant of our model is studied in [1, 5]. However, the goal is to
maximize the number of saved color changes. Note that an approximation of the
minimum number of color changes is preferable, if it is possible to save a large
number of color changes. Kohrt and Pruhs [5] present a polynomial-time offline
algorithm that achieves an approximation ratio of 20. Further, they mention that
optimal algorithms with running times O(nk+1) and O(nm+1) can be obtained
by using dynamic programming, where k denotes the buffer size and m denotes
the number of different colors. Bar-Yehuda and Laserson [1] study a more general
non-uniform maximization variant of our model. They present a polynomial-time
offline algorithm that achieves an approximation ratio of 9.

Khandekar and Pandit [4] consider reordering buffers on a line metric. This
metric is motivated by an application to disc scheduling: Requests are categorized
according to their destination track on the disk, and the costs are defined as the
distance between start and destination track. For a disc with n uniformly-spaced
tracks, they present a randomized strategy and show that this strategy achieves
a competitive ratio of O(log2 n) in expectation against an oblivious adversary.

Krokowski et al. [6] examine the previously mentioned rendering application.
They use a small reordering buffer (storing less than hundred references) to re-
arrange the incoming sequence of primitives online in such a way that the number
of state changes is reduced. Due to its simple structure and its low memory re-
quirements, this method can easily be implemented in software or even hardware.
In their experimental evaluation, this method typically reduces the number of
state changes by an order of magnitude and the rendering time by roughly 30%.
Furthermore, this method typically achieves almost the same rendering time as
an optimal, i. e., presorted, sequence without a reordering buffer.

1.4 Our Contributions

In Section 2, we study the worst case performance of MAP. Recall that an
upper bound of O(log k) on the competitive ratio of MAP is known and a non-
constant lower bound on the competitive ratio is not known [2]. Hence, a natural
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question is whether it is possible to improve the upper bound on the competitive
ratio of MAP. The proof of the upper bound consists of two parts. First, it
is shown that the competitive ratio of MAP4k against OPTk is 4, where An

denotes the strategy A with buffer size n and OPT denotes an optimal offline
strategy. Finally, it is proven that the competitive ratio of OPTk against OPT4k

is O(log k). As we see, the logarithmic factor is lost solely in the second part of
the proof.

Based on theoretical considerations and experimental results, we give strong
evidence that the competitive ratio of OPTk against OPT4k is Ω(

√
log k). This

implies that the previously used proof techniques are not suitable to prove an
o(
√

log k) upper bound on the competitive ratio of MAP. However, we also give
some evidence that in fact MAP achieves a competitive ratio of O(1).

In Section 3, we evaluate the performance of several strategies on random
input sequences experimentally. MAP and its variants RC and RR clearly out-
perform the other strategies FIFO, LRU, and MCF. In particular, MAP, RC,
and RR are the only known strategies whose competitive ratios do not depend
on the buffer size.

2 Worst Case Performance of MAP

In Section 2.1, we give an alternative proof that the competitive ratio of OPTk

against OPT4k is O(log k) in our uniform model. This proof is based on a poten-
tial function. In Section 2.2, we exploit properties of this potential function to
generate deterministic input sequences that give strong evidence that this result
cannot be improved much. In more detail, based on our experimental evaluation
in Section 2.3, we conjecture that the competitive ratio of OPTk against OPT4k

is Ω(
√

log k). As a consequence, the proof technique in [2], which is also implic-
itly contained in the proof of [7], is not suitable to show an o(

√
log k) upper

bound on the competitive ratio of MAP.

2.1 Theoretical Foundations

In this section, we give an alternative proof for the following theorem.

Theorem 1. The competitive ratio of OPTk against OPT4k is O(log k).

Proof. Fix an input sequence σ and an optimal offline strategy OPT4k. Let σπ−1

denote the output sequence of OPT4k. Suppose that σπ−1 consists of m color
blocks B1, . . . Bm, i. e., σπ−1 = B1 · · ·Bm and all objects in each color block have
the same color and the objects in each color block Bi have a different color than
the objects in color block Bi+1. Let c(Bi) denote the color of the objects in color
block Bi. W. l. o. g. assume that c(B1) = 1, c(B2) = 2, . . . c(Bm) = m, i. e., the
color of each color block is different from the colors of the other color blocks.
This does not change the costs of OPT4k and can obviously only increase the
costs of OPTk.

Consider the execution of a strategy A. Fix a time step. We denote a color
c as finished if all objects of color c have occurred in the output sequence of
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A. Otherwise, color c is denoted as unfinished. Let f = min{c|c is unfinished}
denote the first unfinished color, and let d(c) = c − f denote the distance of
color c. Then, the potential of color c is defined as Φ(c) = n(c) · d(c), where
n(c) denotes the number of objects of color c currently stored in the buffer of
A. For each color c, we define a counter p(c), initially set to 0. Intuitively, the
counter p(c) indicates how many objects with a color strictly larger than c have
occurred in the output sequence of A. Whenever A moves an object of color c
to the output sequence, for each f ≤ i < c, p(i) is increased by one.

Now, we describe the simple algorithm GREEDYk (f , d(c), n(c), Φ(c), and
p(c) are defined w. r. t. GREEDYk). Note that the accumulated potential Φ which
is initially set to 0 is introduced but not used in the algorithm.

1. Calculate the first unfinished color f . As long as n(f) �= 0, move objects of
color f to the output sequence.

2. Calculate a color q = argmaxc Φ(c) with maximum potential. Move n(q)
objects of color q to the output sequence. Increase the accumulated potential
Φ by Φ(q). Proceed with step 1.

Observe that GREEDYk is an offline algorithm since it has to know the output
sequence of OPT4k. In the following, it is shown that the competitive ratio of
GREEDYk against OPT4k is O(log k).

The following lemma provides an upper bound on the counters. It implies for
the accumulated potential Φ ≤ 8k ·m since the accumulated potential Φ can also
be expressed as Φ =

∑
c p(c).

Lemma 2. For each color c, p(c) ≤ 8k.

Proof. Observe that p(f) ≥ p(f + 1) ≥ · · · ≥ p(m) and that counters for colors
less than f do not change their values anymore. Hence, it suffices to show that
p(f) ≤ 8k. This is done by induction over the iterations of GREEDYk. Fix an
iteration of GREEDYk. We distinguish the following two cases.

– Suppose that p(f) ≤ 7k at the beginning of this iteration.
Then, p(f) ≤ 8k at the end of this iteration since p(f) is increased by at
most k in step 2. Note that the counters are only increased in step 2.

– Suppose that p(f) > 7k at the beginning of this iteration.
Then, GREEDYk has moved more than 7k objects with a color larger than
f to its output sequence. Due to its buffer size, OPT4k has moved more
than 3k of these objects to its output sequence. However, this implies that
OPT4k has moved the last object of color f to its output sequence more
than 3k time steps ago. Hence, the last object of color f has already entered
the buffer of GREEDYk. As a consequence, the unfinished color f becomes
finished in step 1 of this iteration. ��

Due to the following lemma, each iteration of GREEDYk increases the accumu-
lated potential Φ by at least k

1+ln k .

Lemma 3. If n(f) = 0 and the buffer contains k objects, maxc Φ(c) ≥ k
1+ln k .
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Proof. First of all, observe that
∑

c>f n(c) = k, since for each color c ≤ f ,
n(c) = 0 and the buffer contains k objects. Define q = maxc Φ(c). Obviously, for
each i ≥ 1, n(f + i) ≤ �q/i�. In particular, for each i > q, n(f + i) = 0. Hence,

k =
q∑

i=1

n(f + i) ≤
q∑

i=1

q

i
= q ·Hq ,

where Hq =
∑q

i=1
1
i denotes the q-th harmonic number.

Suppose that q < k
1+lnk . Then

k ≤ q ·Hq < q ·Hk ≤ q · (1 + ln k) < k

which is a contradiction. ��
Combining the results of the two lemmata above yields that there are at most
8m · (1 + ln k) iterations of GREEDYk while its buffer contains k objects. Since
each iteration generates two color changes, GREEDYk generates at most 16m ·
(1 + ln k) + k color changes. Recall that OPT4k generates m− 1 color changes.
This concludes the proof of the theorem. ��

2.2 Generating Input Sequences

In this section, we describe our approach to generate deterministic input se-
quences for which MAP�k/4	+1 loses a logarithmic factor compared to OPT2k+1.
To some extend, the buffers sizes are chosen arbitrarily. Our construction can
be generalized canonically to MAPa and OPTb, for each a < b.

The main idea is to use the accumulated potential Φ defined in the proof of
Theorem 1. The generated input sequences consist of objects with m different
colors, and at most 2k objects of each of the m colors. The sequences are intended
to have the property that MAP�k/4	+1 can increase the accumulated potential
Φ by only O(k/ log k) with each color change, and the accumulated potential Φ
is Ω(m · k) after the sequences are processed. As a consequence, MAP�k/4	+1
makes Ω(m · log k) color changes for these input sequences. However, OPT2k+1
is able to rearrange these input sequences in such a way that the objects of
each color form a consecutive block, i. e., the number of color changes made
by OPT2k+1 is m − 1. Hence, MAP�k/4	+1 loses a Ω(log k) factor compared to
OPT2k+1.

The following algorithm for generating deterministic input sequences is based
on the proof of Lemma 3. The first 2k objects are, for each 1 ≤ i ≤ Θ(k/ log k),
�q/i� objects of color i, with q = 2k/ log k. Then, the algorithm proceeds in
phases corresponding to the last unfinished color f . At the beginning of phase f ,
let n(c) denote the number of objects of color c currently stored in the buffer of
MAP�k/4	+1, and let s(c) denote the number of objects of color c included in the
input sequence so far. In phase f , s(f) objects of colors larger than f followed
by the last object of color f are appended to the input sequence.

At the beginning of phase f , the algorithm tries to restore a situation in which
the accumulated potential Φ can only be increased by O(k/ log k) and OPT2k+1
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is still able to rearrange the input sequence properly. At the beginning of phase
f , the length of the input sequence created so far is 2k+s(1)+s(2)+· · ·+s(f−1).
Observe that s(1)+s(2)+ · · ·+s(f−1) of these objects have colors smaller than
f and 2k of these objects have colors larger or equal to f . Hence, the number of
objects having a color larger than f so far is 2k − s(f). Due to the restriction
that OPT2k+1 is able to rearrange the input sequence into an output sequence
with only m−1 color changes, at most 2k objects with a color larger than f can
precede the last object of color f . Hence, at most s(f) objects of colors larger
than f can be appended before the last object of color f is appended to the
input sequence.

According to Lemma 3, the algorithm should achieve n(f + i) ≈ q/i. Hence,
max{0, �q�−n(f +1)} objects of color f +1 are appended to the input sequence,
max{0, �q/2� − n(f + 2)} objects of color f + 2 are appended to the input
sequence, . . . until altogether s(f) objects have been appended in this phase.
Then, the phase is finished by appending the last object of color f to the input
sequence.

We expect that the accumulated potential Φ is Ω(m · k) after the input se-
quence has been processed by MAP�k/4	+1. To see this, define the potential of a
color c slightly differently by Φ(c) = n′(c) · d(c). This potential is not based on
the number n(c) of objects of color c currently stored in the buffer, but on the
number n′(c) of objects of color c which are moved to the output sequence when
changing to color c. Observe that n(c) and n′(c) differ only if during moving
the objects of color c to the output sequence additional objects of this color
arrive. Recall that, for each color f , the last object of color f is preceded by
2k objects of colors larger than f . Hence, GREEDYk has to move at least k
of these objects to the output sequence before moving the last object of color
f to the output sequence, and, as a consequence, p(f) ≥ k. Then, after the
sequence has been processed, the accumulated potential Φ is Ω(m · k). We ex-
pect that for the generated input sequences n(c) and n′(c) usually do not differ
much.

2.3 Experimental Evaluation

Figure 1 depicts the competitive ratios of MAP�k/4	+1 against OPT2k+1 on
the generated input sequences for buffer sizes k1, . . . k92 with k1 = 540 and
ki = �ki−1 ·11/10�+1. A regression analysis with functions of the type a · ln k+b
results in 0.92127 · ln k + 1.30714 where the sum of the squared residuals is
0.0705539. Using functions of the type a · ln k + b · ln ln k + c yields 0.837668 ·
ln k + 0.857676 · ln ln k + 0.19425 where the sum of the squared residuals is only
0.0185538.

Further, Figure 1 depicts the competitive ratios of MAPk against OPT2k+1
on the generated input sequences for buffer sizes k1, . . . k79. Unfortunately, there
are periodic fluctuations in these competitive ratios which makes a small sum
of squared residuals impossible. However, a regression analysis with functions of
the type a · ln k+b · ln ln k+c results in 0.418333 · lnk+1.40659 · ln ln k−0.337541
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Fig. 1. Competitive ratios of MAP�k/4�+1 and MAPk against OPT2k+1 on the gener-
ated input sequences and resulting functions for regression analysis with a · ln k + b ·
ln ln k + c.

where the sum of the squared residuals is 1.63387 and no residual is greater than
0.266742476.

Based on the experimental evaluation, we conjecture the following.

Conjecture 4. The competitive ratio of MAP4k against OPT32k is Ω(log k).

Now, we can conclude the following theorem. If we take the experimental eval-
uation for smaller factors between the buffer sizes into account, we can make
the stronger conjecture that the competitive ratio of MAP4k against OPT8k is
Ω(log k), and then the o( 3

√
log k) term in the theorem improves to o(

√
log k).

Theorem 5. OPTk cannot achieve a competitive ratio of o( 3
√

log k) against
OPT4k if Conjecture 4 holds.

Proof. Suppose for contradiction that the competitive ratio of OPTk against
OPT4k is o( 3

√
log k). Then, the competitive ratio of OPTk against OPT64k is

o(log k). In the first part of the proof of Theorem 4 in [2] it is shown that the
competitive ratio of MAP4k against OPTk is 4. As a consequence, the com-
petitive ratio of MAP4k against OPT64k is o(log k) which is a contradiction to
Conjecture 4. ��
Our actual interest is the competitive ratio of MAP. Is it possible to show a
non-constant lower bound on the competitive ratio of MAP or to improve the
upper bound? Based on our experimental evaluation, the proof technique in [2, 7]
is not suitable to show an o(

√
log k) upper bound on the competitive ratio of

MAP since this would require a competitive ratio of OPTk against OPT4k of
o(
√

log k).
However, we have evidence that MAP achieves in fact a competitive ratio of

O(1) in our uniform model. MAP is always optimal, i. e., it achieves a compet-
itive ratio of 1, for the generated input sequences. In addition to the following
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observations, this indicates a small competitive ratio of MAP. Each Ω(
√

log k)
lower bound on the competitive ratio of MAP implies an Ω(

√
log k) lower bound

on the competitive ratio of OPTk against OPT4k. Hence, the input sequences
used in such a lower bound have to assure that the potential gained in step 2
of GREEDYk is not too large. However, our sequences are constructed to have
exactly this property. As a consequence, any major modification to our gener-
ated input sequences will probably fail to show an Ω(

√
log k) lower bound on

the competitive ratio of MAP.

3 Random Input Sequences

In this section, we evaluate the performance of several strategies on random
input sequences experimentally. Since an efficient optimal offline algorithm is
not known, we cannot simply generate random input sequences and evaluate the
performance of the strategies by comparing their number of color changes with
the optimal number of color changes. Hence, we first introduce a technique to
generate random input sequences with known optimal number of color changes.
Finally, the experimental evaluation is presented in detail.

3.1 Input Sequences with Known Optimum

Fix an input sequence σ and an optimal offline strategy OPTk. Let σπ−1 denote
the output sequence of OPTk. Suppose that σπ−1 consists of m color blocks
B1, . . . Bm, i. e., σπ−1 = B1 · · ·Bm and all objects in each color block have
the same color and the objects in each color block Bi have a different color
than the objects in color block Bi+1. W. l. o. g. assume that the color of each
color block is different from the colors of the other color blocks. This does not
change the costs of OPTk and can obviously only increase the costs of any other
strategy.

The following result is given in [2]: For each input sequence σ, the permutation
σπ−1 of σ is an output sequence of a strategy with buffer size k if and only if
π−1(i) < i+k, for each i. Hence, a random input sequences with known optimal
number of color changes can be generated as follows. First, we determine an
output sequence σopt of OPTk. This output sequence is completely characterized
by the number of color blocks m and the color block lengths l1, . . . lm, i. e., li
denotes the number of objects in the i-th color block. Then, a permutation π with
π−1(i) < i+k, for each i, is chosen uniformly at random among all permutations
with this property. This way, we get a random input sequence σopt

π for which
OPTk makes m− 1 color changes. Observe that usually different permutations
lead to the same input sequence.

3.2 Experimental Evaluation

We evaluate the performance of MCF, LRU, FIFO RC, RR, and MAP on dif-
ferent kinds of random input sequences experimentally.
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Constant color block lengths. We evaluate the competitive ratios of the
strategies for buffer sizes k1, . . . , k139 with k1 = 10 and ki = �ki−1 ·21/20�+1 on
generated input sequences with m = 2ki and color block lengths l1 = · · · = lm =
2ki. For each buffer size, we average over 50 runs. The variances are very small
and decreasing with increasing buffer sizes. For buffer sizes larger than 1000, the
variances are below 0.002.

The competitive ratios of LRU and FIFO increase with the buffer size on
these non-malicious inputs. RC and RR achieve small constant competitive ra-
tios. A regression analysis with functions of the type a− b · exp(−kc) results in
1.14098−0.43676·exp(−k0.486582) for RC where the sum of the squared residuals
is 0.00435474 and in 1.14157−0.350151·exp(−k0.465377) for RR where the sum of
squared residuals is 0.00401949. Hence, RC and RR achieve a competitive ratio
of 1.14. MCF and MAP achieve the best competitive ratios. MCF is optimal for
all buffer sizes, and, for buffer sizes greater than 250, MAP is also optimal.

Uniformly chosen color block lengths. Figure 2 depicts the competitive ra-
tios of the strategies for buffer sizes k1, . . . , k131 on the following generated input
sequences. Let u1, u2, . . . denote a sequence of independent random variables dis-
tributed uniformly between 1 and 2k. Then, m = maxi{u1 + · · ·+ ui < 4k2}+ 1
and, for 1 ≤ i < m, li = ui and lm = 4k2 − (u1 + · · · + um−1). For each buffer
size, we average over 50 runs. The variances, except for MCF, are very small
and decreasing with increasing buffer sizes. For buffer sizes larger than 1000, the
variances, except for MCF, are below 0.004.

The competitive ratios of LRU, FIFO, and, in contrast to the first set of
input sequences, MCF increase with the buffer size on these non-malicious in-
put sequences. RC, RR, and MAP achieve small constant competitive ratios.
A regression analysis with functions of the type a − b · exp(−kc) results in
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2.33508 − 4.78793 · exp(−k0.200913) for RC where the sum of squared residu-
als is 0.0461938, in 2.32287 − 4.90995 · exp(−k0.229328) for RC where the sum
of squared residuals is 0.022163, and in 1.88434 − 3.02955 · exp(−k0.186283) for
MAP where the sum of the squared residuals is 0.0401868. Hence, RC, RR, and
MAP achieve competitive ratios of 2.33, 2.32, and 1.88, respectively.

Different buffer sizes. We evaluate the competitive ratio of MAP�ki/4	 against
OPT2ki+1 for k1, . . . , k132 on generated input sequences with m = 2ki and color
block lengths l1 = · · · = lm = 2ki. For each buffer size, we average over 25 runs.
The variances are very small and decreasing with increasing buffer sizes. For
buffer sizes larger than 1000, the variances are below 0.014.

These experiments justify the sophisticated generation of deterministic input
sequences we used to obtain Conjecture 4, as they show that random input
sequences do not suffice for that purpose. A regression analysis with functions of
the type a− b · exp(−kc) results in 13.8829− 42.4326 · exp(−k0.254565) for MAP
where the sum of the squared residuals is 3.08368. Hence, MAP�k/4	+1 achieves
a constant competitive ratio against OPT2k+1.
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Abstract. Scheduling n independent jobs on m unrelated parallel ma-
chines without preemption belongs to the most difficult scheduling prob-
lems. Here, processing job i on machine j takes time pij , and the total
time used by a machine is the sum of the processing times for the jobs
assigned to it. The objective is to minimize makespan. In this paper we
present an experimental study on the Unsplittable-Truemper algorithm.
This purely combinatorial approach computes 2-approximate solutions
in the best worst-case running time known so far. The goal of our simu-
lations was to prove its efficiency in practice. We compare our technique
with algorithms and heuristics used in practice, especially with those
based on the two-step approach. The experiments show that for large
and difficult instances the Unsplittable-Truemper algorithm has a clear
advantage over methods based on linear programming. Moreover, it re-
quires much less operational memory, and thus is more effective and
easier to handle.

1 Introduction

We consider the scheduling problem where n independent jobs have to be as-
signed to a set of m unrelated parallel machines without preemption. Processing
job i on machine j takes time pij . A schedule (assignment) of jobs to machines is
defined by a function α : [1..n] → [1..m]. The load δj(α) induced by assignment
α on machine j is the sum of processing times pij for the jobs that are assigned
to machine j. The makespan of a schedule is the maximum load computed over
all machines. The objective is to find a schedule that minimizes makespan. The
problem can be formulated as following mixed integer program:

MIP: min T
s.t.

∑
i∈[n] pijxij ≤ T ∀ j ∈ [m]∑
i∈[m] xij = 1 ∀ i ∈ [n]

xij ∈ {0, 1} ∀ i ∈ [n], j ∈ [m]

(1)
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Here, xij is a 0/1 assignment variable which is equal to 1 (respectively to 0)
if job i is assigned (respectively not assigned) to machine j. The objective is
to minimize the non-negative variable T which corresponds to the makespan.
The first type of constraints associated with machine j assures that the load on
machine j is at most T . The second type of constraints associated with job i
means that job i has to be completed.

Following the standard three-field notation introduced by Graham et al. [8],
the problem is equivalent to R| |Cmax. It is known to be NP-complete since
PARTITION polynomially reduces to the special case P2| |Cmax where pij = pi

and m = 2. It can be solved with an approximation factor of 2 − 1
m using the

algorithm from [14] and it is non-approximate in polynomial time within a factor
3
2 − ε of the optimum [10]. The vast majority of the approximation algorithms
for this problem is based on the classical two-step approach. They compute first
an optimal fractional solution by using, e.g., linear programming (LP), and then
apply rounding techniques to get an integral solution.

In the paper we present an experimental study on Unsplittable-Truemper,
which we have recently developed for R| |Cmax [5]. This purely combinatorial
approach computes 2-approximate solutions within the best worst-case running
time known so far. The primary goal of our research was to evaluate its efficiency
in practice. We present two implementations of the algorithm (with and without
heuristical improvements) and compare them with algorithms developed for this
problem over the past decades. We are especially interested in those based on the
two-step approach motivated by their usage in practice. As measures of interest,
the total computation time, the value of makespan and the usage of operational
memory were chosen.

2 Algorithms and Heuristics

In order to evaluate the Unsplittable-Truemper algorithm, several algorithms
and heuristics [3, 7, 11, 12, 19] for R| |Cmax have been implemented and tested.
Here however, because of space limit, we present only four implementations in
details. In the following, we give a short description for each of them. We begin
with two algorithms using the two-step approach and end with two implemen-
tations of Unsplittable-Truemper.

2.1 LP Relaxation&Rounding

The algorithm. A common strategy to solve R| |Cmax is to apply the two-step
approach directly. In the first step, an LP relaxation of problem (1) is solved.
Here, the integrality constrains of assignment variables are replaced by weaker
non-negativity conditions as given in (2), so that the resulting LP can be solved
in polynomial time [17]. The fractional optimal solution to (2) provides also a
lower bound for the original problem. In the second step, the fractional solution
is rounded up, so that an integral solution corresponding to the assignment is
obtained. This method gives an approximation factor of 2 [10]. It is easy to
implement and delivers solutions of good quality.
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Algorithm 1. Cplex(P)
Input: matrix of processing times P
Output: assignment α
1: solve LP relaxation;
2: round the fractional solution;
3: return integral solution;

LP: min T
s.t.

∑
i∈[n] pijxij ≤ T ∀ j ∈ [m]∑
j∈[m] xij = 1 ∀ i ∈ [n]

xij ≥ 0 ∀ i ∈ [n], j ∈ [m]

(2)

Implementation Details. The LP relaxation is solved with the sifting algo-
rithm from the ILOG CPLEX 8.0 package. In the second step, we round the
fractional solution by applying the matching algorithm from [10].

2.2 Scheduling by Column Generation

The algorithm. A big drawback of Algorithm 1 is the large number of assign-
ment variables in large-scale problems. These applications need much more oper-
ational memory to represent R| |Cmax and thus are harder to handle throughout
all computations. In the worst case, it cannot even be possible to state all vari-
ables of the problem. Furthermore, in each iteration of the simplex algorithm, we
look explicitly for a non-basic variable to price out and enter the basis. This op-
eration becomes too costly when the number of variables is large. Consequently,
the overall performance decreases dramatically.

To overcome this unfavorable behavior, we apply a column generation ap-
proach to solve the LP relaxation. Algorithm 2, which we use in our experiments,
is based on the ideas from [19] where a branch&bound approach combined with
column generation is used to solve the P | |∑j∈[m] Cj problem. In our case, the
master problem (MP) of the column generation schema is defined as an LP re-
laxation of R| |Cmax and is given in (3) in standard form. It is easy to prove that
both formulations, (2) and (3), are equivalent.

MIP: min cT x
s.t. Ax = b

x ≥ 0
(3)

where

x =
[
x11 · · · x1m x21 · · · x2m · · · xn1 · · · xnm T s1 · · · sm

]T ∈ IRnm+1+m
≥0

c =
[
0 · · · 0 1 0 · · · 0

] ∈ {0, 1}nm+1+m

b =
[
0 · · · 0 1 · · · 1

]T ∈ {0, 1}m+n
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A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p11 0 p21 0 pn1 0 −1 1 0
. . . . . . . . .

...
. . .

0 p1m 0 p2m 0 pnm −1 0 1
1 · · · 1 0 · · · 0 0 · · · 0 0 0 · · · 0
0 · · · 0 1 · · · 1 0 · · · 0 0 0 · · · 0

. . .
0 · · · 0 0 · · · 0 1 · · · 1 0 0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ ZZ

(m+n)(nm+1+m)
≥−1

The appealing idea of column generation is to work only with a reasonably
small subset of variables, forming the restricted master problem (RMP). More
variables are added only when needed. We define RMP by a subset a of columns
from A, i.e., a = {ak ∈ A|k ∈ I ′ ⊆ I}, where ak is the k-th column from A
corresponding to variable xk ∈ x, and I is a set of indices of all columns from
A, |I| = nm + 1 + m. Note that the number of columns in RMP, |I ′|, induces
the same number of variables in RMP.

PSP: find k
s.t. c̄k = ck − aT

k μ(a) < 0
ak ∈ A ∀ k ∈ I − I ′

(4)

In column generation technique, an iteration consists, first, of optimizing the
RMP in order to determine dual multipliers of the current optimal solution, and
second, of finding, if there still exists, a variable with negative reduced cost. More
specifically, let x(a) and μ(a) be the primal and the dual optimal solution of the
current RMP defined by a, respectively. To determine if x(a) is also the optimal
solution for the MP, we solve the pricing subproblem (PSP) given in (4), where
c̄k denotes the reduced cost of variable xk. If the PSP returns no feasible k, i.e.,
the reduced costs of all variables from I − I ′ are non-negative, then the solution
x(a) to the RMP optimally solves the MP as well (see [2] for details), and we are
done. Otherwise, variable xk, identified by the PSP, is added to the RMP, and
optimization of the RMP is repeated.

In what regards convergence, note that ak ∈ A is generated at most once
since no variable in an optimal RMP has negative reduced cost. When dealing
with a finite set A of columns, the column generation algorithm converges to the
optimal solution.

Implementation Details. In the first step, in order to find an initial set of
columns for the RMP, a hybrid method is used. It needs O(nm log n) running
time. Most of the initial columns are generated with the algorithm by Jaffe and
Davis [3]. Additional columns are computed with two simple heuristics. The RMP
is solved with the primal simplex algorithm from ILOG CPLEX 8.0. Because
of the sparse structure of matrix A, the reduced costs c̄k can be computed very
fast in time O(nm) by enumeration. We add up to 20 new columns to a in
each step provided at least one column with negative reduced cost exists. In the
second step, to solve the MIP, we use the branch&cut algorithm from CPLEX 8.0.
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If the optimal integral solution cannot be found within time limit t, the rounding
procedure from [10] is called for the fractional solution and a 2-approximate
solution is computed.

2.3 Unsplittable-Truemper Algorithm

The algorithm. In contrast to the LP methods, the unrelated scheduling prob-
lem can also be solved with a purely combinatorial approach. Here, the fractional
scheduling problem (equivalent to the LP relaxation) can be formulated as a gen-
eralized flow problem, where the network is defined by the scheduling problem
and the capacity of some edges corresponds to the makespan. The algorithm by
Radzik [13] is so far the fastest combinatorial algorithm for generalized (frac-
tional) flow problem with running time of O(nE(E + n log(n))), where E is the
number of pairs (i, j) with pij �=∞. The minimization of the makespan can then
be done by binary search. It needs at most O(log(nU)) calls to the algorithm
for generalized flow problem. U denotes the maximal pij . Finding an integral
solution for R| |Cmax can also be formulated as an unsplittable generalized flow
problem. Several authors, e.g., [4, 9] have studied the unsplittable flow problem
for usual flow networks.

Algorithm 3 is an implementation of the Unsplittable-Truemper algorithm
from [5]. It is based on generalized and unsplittable network flows, and com-
putes schedules with approximation factor of 2 in O(m2E log(m) log(nU)) run-
ning time. The algorithm solves an unsplittable flow problem in a generalized
bipartite network defined by R| |Cmax. The graph of this bipartite network con-
sists of nodes corresponding to machines and jobs. There is a directed edge from
job node i to machine node j if job i can be processed on machine j, i.e., pij �= ∞.
An edge which starts on machine node j and ends on job node i means, that
job i is assigned to machine j. To guarantee the correctness of the assignment,
there can be only one edge between given job and machine nodes, regardless of
its direction. The generalized flow problem can then be transformed to a min-
imum cost flow problem [16] and solved with the primal-dual approach [1]. To

Algorithm 2. Column(A, b, c, t)
Input: matrix A and vectors b and c

time limit t
Output: assignment α
1: find initial set of columns a;
2: (x, μ) := solve RMP(a, b, c);
3: compute reduced costs c̄k from dual multipliers μ and columns ak, for k ∈ I − I ′;
4: if mink∈I−I′ c̄k < 0 then
5: generate new column(s) from A add them to a;
6: update I ′ and goto 2;
7: end if
8: solve MIP defined by a with time limit t;
9: if time t elapsed then round the fractional solution x end if;

10: return integral solution;
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Algorithm 3. Unsplittable-Truemper(P)
Input: matrix of processing times P
Output: assignment α
1: l := maxi∈[n] minj∈[m] pij , u := i∈[n] minj∈[m] pij ;
2: while l + 1 �= u do
3: T := l+u

2 ;
4: compute initial assignment α;
5: let Gα(T ) be a bipartite graph induced by matrix P, assignment α and para-

meter T ;
6: let M+ and M− be the set of overloaded and underloaded machines in Gα(T ),

resp.;
7: while ∃ path from M+ to M− in Gα(T ) do
8: compute shortest paths from all nodes to the set of sinks M− in Gα(T );
9: compute admissible graph G0

α(T );
10: α := Unsplittable-Blocking-Flow(G0

α(T ), α);
11: update Gα(T );
12: end while
13: if M+ = ∅ then u := T else l := T end if;
14: end while
15: return assignment α;

compute a blocking flow among the edges with zero reduced costs (they con-
stitute an admissible graph), it uses an adapted version of the Unsplittable-
Blocking-Flow algorithm from [4].

Given some candidate value for the makespan, T , and an initial assignment α,
the inner while-loop of Algorithm 3 (lines 7-12) finds an approximate solution
(if there exists) for the generalized flow problem in the bipartite network denoted
by Gα(T ). The bipartite graph Gα(T ) corresponds to the scheduling problem
where all pij ≤ T and all jobs are scheduled according to assignment α. Through-
out the execution, the algorithm always maintains an integral assignment α, i.e,
each job is always assigned to exactly one machine. Each assignment α defines
a partition of the machines into underloaded, M+, and overloaded machines,
M−. The load of overloaded machines is at least twice as large as T , whereas
the load of underloaded machines is not greater than T . Overloaded and un-
derloaded machines are treated as sources and sinks, respectively. To obtain an
assignment with smaller makespan, the algorithm pushes flow (unsplittable jobs)
from a machine in M+ to a machine in M− through the bipartite network (line
10). To push unsplittable jobs, Unsplittable-Blocking-Flow is called. It receives
as input an admissible graph G0

α(T ) ⊆ Gα(T ) and an assignment α. G0
α(T ) con-

sists of edges on shortest paths from M+ to M− in Gα(T ). When Unsplittable-
Blocking-Flow terminates, it returns a new assignment α, having the property
that in updated G0

α(T ) there is no path from M+ to M−, i.e., a blocking flow
in G0

α(T ) has been found.
Unsplittable-Truemper leaves the inner while-loop when it can either de-

rive a lower bound on the optimal makespan, or it found an assignment with
M+ �= ∅ for given candidate T . By doing binary search (the outer while-loop
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of Algorithm 3) on T ∈ [maxi∈[n] minj∈[m] pij ,
∑

i∈[n] minj∈[m] pij ], we identify
the smallest T such that in the returned assignment α, M+ = ∅. Since for
T − 1 the algorithm terminates with M+ �= ∅, we can prove that assignment
α is a 2-approximate solution for the scheduling problem. For more details on
the Unsplittable-Truemper algorithm we refer to [5].

Implementation Details. We have developed two versions of Unsplittable-
Truemper. The first one, UTA-generic, is a generic implementation of the
algorithm. Here, two different data structures are used to represent the bipar-
tite graph. We have a job-machine oriented structure which we use in binary
search and in the Unsplittable-Blocking-Flow algorithm [4]. This data structure
consists of machine and job nodes. The information about edges adjacent to a
given node is saved in this node as a double-linked list. The other, machine ori-
ented structure, is used to speed up the computations of admissible graphs. It
consists only of machine nodes. Information about job nodes and edges is saved
in machine nodes. Here, for each machine node, we use a double-linked list to
save the job nodes connected with this machine. Each job on the list contains
pointer to the machine node on which it is assigned. The second structure is
thus a contracted version of the first one and can be computed in O(E). The
usage of two different data structures was motivated by huge differences in size
between the graphs used globally in the binary search and the admissible graphs
used by Unsplittable-Blocking-Flow.

In the second version of the algorithm, UTA-improved, we use a better
interphase (between two consecutive binary search steps) initialization of the
algorithm. By doing this, not all results computed in the previous phase get lost
with the beginning of the next phase (i.e., computed assignment and node poten-
tials). Since our algorithm uses the primal-dual approach, the initial assignment
must maintain the reduced cost optimality condition, i.e., for each edge (i, j) in
the bipartite graph, the reduced cost cπ

ij ≥ 0 [1]. To initialize a new binary search
step with the previous solution, we need to check if this condition is fulfilled.
There are two cases to consider when a binary search step terminates. In the first
case, Unsplittable-Blocking-Flow terminates with M+ �= ∅, and the next binary
search step is initialized with increased T . When T increases, new edges can be
added to the bipartite graph. For each such edge we check if its reduced cost
is nonnegative. Here we use node potentials from the previous solution. If only
one edge does not fulfill the reduced cost optimality condition, we initialize the
next step like in UTA-generic, i.e., each job is assigned to a machine where its
processing time is minimum. In the second case, Unsplittable-Blocking-Flow ter-
minates with M+ = ∅, and the next binary search step is initialized with T of
smaller value. When T decreases, some edges must be deleted from the bipartite
graph because their processing times are bigger than T . In particular, some jobs
may become unassigned. For each such job node i, we choose machine node j on
which it has the minimal processing time. Afterward, using node potential from
the previous solution, we check for each edge (j, i) if the reduced cost optimality
condition is fulfilled. If this is the case, we use the previous solution as initial-
ization. Otherwise, we initialize the next step as in UTA-generic. As we will
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see in Section 4, the refined initialization significantly improves the convergence
of the computations and thus the overall efficiency of the algorithm, especially
for difficult instances.

3 Test Models and Experimental Setup

To test the algorithms, we used artificially generated test instances. Each in-
stance belongs to one of the three different test models:

Model A: no correlation between the machines and the jobs. pij are generated
from uniform distribution [1..100].
Model B: the jobs are correlated. pij = βi + δij , where βi and δij are two
randomly generated integers from uniform distributions on [1..100] and [1..20],
respectively. Intuitively, βi can be seen as a mean value of processing time and
δij as its deviation.
Model C: the machines are correlated. pij = αj + δij , where αj and δij are two
randomly generated integers from uniform distributions on [1..100] and [1..20].

Similar models were used previously in the literature, e.g, in [6, 12, 15]. Both
versions of Unsplittable-Truemper were implemented in C using standard li-
braries and compiled with GNU compiler. The simplex and branch&cut proce-
dures, both included in the ILOG CPLEX 8.0 Callable Library, have been used
together with the ILOG Concert Technology to implement Cplex and Col-
umn algorithms. All techniques were tested on a Sun Fire 3800 machine equipped
with eight 900MHz ultraSPARC III processors and 8GB RAM working under
Solaris 9 operating system.

4 Computational Results

In the following, we present computational results obtained from the experiments
on the algorithms from in Section 2. All tested algorithms deliver solutions with
approximation factor of 2. Here, we evaluate the quality of makespan computed
by these algorithms for practical test instances. We use two types of diagrams
to present the results. In Section 4.1 we present performance diagrams, both for
the computation time and the makespan. They show, for each tested method,
the percentage of all tested instances, for which this method returned the best
result. In Section 4.2 we present diagrams showing the total computation time
in dependence of the number of machines. In the last subsection, we show the
computation time in function of the number of machines, while the number of
jobs stays fixed. The size of instance is given as a tuple (n, m). The growth of
the size is then defined as an increase in n, or m, or in both.

4.1 Performance Diagrams for Computation Time and Makespan

For each model the following instance sizes were used: m ∈ {10, 50, 100, 200, 500}
and n = 10·m. For each size, 10 different instances were generated and solved. To
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Fig. 1. Performance diagrams for model A
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Fig. 2. Performance diagrams for model B
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Fig. 3. Performance diagrams for model C

our best knowledge, it is the first time when instances of such sizes were consid-
ered in the experimental research on R| |Cmax. The largest instances considered
so far contained up to 200 jobs and 20 machines [11, 12, 18]. Obtained results
were used to construct performance diagrams, both for the total computation
time and the makespan. The value of performance ratio is given always on the
x-axis. It shows, for each result of a given instance, the ratio between this result
and the best result among all methods for this instance. The y-axis shows, for
each method, the percentage of instances which performance ratio is not greater
than a given value of performance ratio. Note that the more upper left is a given
graph located, the better is the result.
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The graphs in Fig. 1, 2 and 3 show the performance diagrams for model A,
B and C, resp. In Model A, UTA-generic performed much better (in about
60% of all instances) than the other methods. Clear to see is also its advantage
over Cplex, which achieved here, and in Model B too, the worst processing
times. UTA-improved was, similarly to UTA-generic, in about 90% of all
instances at most 1.4 times worse than the best solution. The schedules with
the best makespans in Model A, however, were computed with Column. This
method achieved also the best computation times in models B and C. Only for
small instances (n = 500, m = 50), Column was outperformed by other methods.
In model B, UTA-generic performed much better than Cplex. In model C,
however, UTA-improved was better than Cplex, and much better than UTA-
generic. This fact can be explained by the usage of better interphase initialization
(a detailed explanation is given in Section 4.3). In model B and C, Unsplittable-
Truemper based algorithms returned schedules with the best makespans.

4.2 Computation Time (in Dependence of the Number of Machines)

Figure 4 shows for each model the average computation time in function of the
number of machines m. The number of jobs n = 10m. The diagrams show on
x-axis the number of edges, E, in the bipartite graph of the scheduling problem.
Note that the number of edges is equal to nm. Therefore, an increase of E can be
interpreted as a growth of the scheduling problem. In the case when the instances
grew, both versions of the Unsplittable-Truemper performed in model A and B far
better than Cplex. Moreover, in model A, the sizes of instances for Cplex were
drastically limited. Because of the heavy usage of operational memory, Cplex was
not able to solve instanceswithmore than 5000 edges.Also in caseswhere itwas still
possible to deliver solutions, the computation times were very long in comparison
with other methods. It can again be explained by the usage of too many memory
operations. In model C, unfortunately, UTA-generic was the worst technique.
In model B and C, Column was the best method. In model C, the performance
of UTA-improved was due to improved interphase initialization comparablewith
that of Cplex. Moreover, for difficult instances, like those from model B and C,
both Unsplittable-Truemper implementations needed far less memory, and thus
performed more stable and were easier to handle.

4.3 Computation Time (Instances with Constant Number of Jobs)

Figure 5 shows for each model the average computation time in function of the
number of machines while the number of jobs stays constant. This describes a
situation when the scheduling system evolves and the jobs have more possibilities
to be processed. In model A, both versions of Unsplittable-Truemper performed
similar, and were much better than Column when the number of machines grew
(please notice the logarithmic scale of y-axis). In model B all methods performed
quite similar. The results for model C indicate a huge influence of the inter-
phase initialization on the computation time. Here, UTA-generic was much
worse than UTA-improved. The bad performance of UTA-generic can be



Scheduling Unrelated Parallel Machines Computational Results 205

model = A

0

100

200

300

400

500

0 2000 4000 6000 8000 10000 12000 14000 16000

#  o f  edges (x 1000)

a
v
g

 t
im

e
 [

s
]

UTA-imp CPLEX COLUM N
UTA-imp CPLEX COLUM N

model = B

0

100

200

300

400

500

0 1000 2000 3000 4000 5000

#  o f edges (x 1000)

a
v
g

 t
im

e
 [

s
]

UTA-imp CPLEX COLUM N
UTA-imp COLUM N CPLEX

model = C

0

50

100

150

200

250

0 500 1000 1500 2000 2500

#  o f  edges (x 1000)

a
v
g

 t
im

e
 [

s
]

UTA-imp CPLEX COLUM N
UTA-imp CPLEX COLUM N

Fig. 4. Computation time with vari-
able number of edges
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Fig. 5. Computation time with con-
stant number of jobs

explained by the enormous number of inner while-loops caused by unbalanced
initial assignments. This can be explained by the special property which the ini-
tial assignment has to fulfill (the reduced costs must be maintained [5]) and the
character of model C (machines with small αj allow very low processing times),
the jobs can be assigned initially only to a few machines, leaving other machines
empty. This in turn results in a highly unbalanced initial assignment with a large
makespan. Furthermore, the same initialization is used throughout all compu-
tations, at the beginning of each binary search step. Consequently, much larger
workload in comparison with other models is given to UTA-generic.

5 Conclusions

The experiments show that the Unsplittable-Truemper has an advantage over
other methods, especially over Cplex. In particular, for large test instances, it
delivers solutions of the same or better makespans than other approaches, and
in most cases is much faster than the LP-based technique. For large instances
with correlated machines, however, the column generation approach is the fastest
solution method. Moreover, our experiments show that the implementations
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of Unsplittable-Truemper require much less operational memory than Cplex or
branch&bound methods, what makes it more efficient and easier to handle, espe-
cially when the size of the problem grows.

References
1. R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algorithms,

and Applications. Prentice Hall, 1993.
2. G. B. Dantzig and P. Wolfe. Decomposition principle for linear programs. Opera-

tions Research, 8:101–111, 1960.
3. E. Davis and J. M. Jaffe. Algorithms for scheduling tasks on unrelated parallel

processors. Journal of ACM, 28:721–736, 1981.
4. M. Gairing, T. Lücking, M. Mavronicolas, and B. Monien. Computing nash equi-

libria for scheduling on restricted parallel links. In Proceedings of the 36th Annual
ACM Symposium on the Thoery of Computing (STOC’04), pages 613–622, 2004.

5. M. Gairing, B. Monien, and A. Woclaw. A faster combinatorial approximation
algorithm for scheduling unrelated parallel machines. In Proceedings of 32nd In-
ternational Colloquium on Automata, Languages and Programming (ICALP’05),
pages 828–839, 2005.

6. P. Glass, C. Potts, and P. Shade. Unrelated parallel machine scheduling using local
search. Mathematical Computing Modeling, 20(2):41–52, 1994.

7. R. L. Graham. Bounds for certain multiprocessor anomalies. Bell System Technical
Journal, 45:1563–1581, 1966.

8. R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Ken. Opti-
mization and approximation in deterministic sequencing and scheduling: A survey.
Annals of Discrete Mathematics, 5:287–326, 1979.

9. J. Kleinberg. Single-source unsplittable flow. In Proceedings of the 37th Annual
Symposium on Foundations of Computer Science (FOCS’96), pages 68–77, 1996.

10. J. K. Lenstra, D. B. Shmoys, and E. Tardos. Approximation algorithms for schedul-
ing unrelated parallel machines. Mathematical Programming, 46:259–271, 1990.

11. E. Mokotoff and P. Chrétienne. A cutting plane algorithm for the unrelated parallel
machine scheduling problem. European Journal of Operational Research, 141:515–
525, 2002.

12. E. Mokotoff and J. L. Jimeno. Heuristics based on partial enumeration for the
unrelated parallel processor scheduling problem. Annals of Operations Research,
117:133–150, 2002.

13. T. Radzik. Improving time bounds on maximum generalised flow computations by
contracting the network. Theoretical Computer Science, 312(1):75–97, 2004.

14. E. V. Shchepin and N. Vakhania. An optimal rounding gives a better approximation
for scheduling unrelated machines. Operations Research Letters, 33:127–133, 2005.

15. F. Sourd. Scheduling tasks on unrelated machines: Large neighborhood improve-
ment procedures. Journal of Heuristics, 7:519–531, 2001.

16. K. Truemper. On max flows with gains and pure min-cost flows. SIAM Journal
on Applied Mathematics, 32(2):450–456, 1977.

17. P. M. Vaidya. Speeding up linear programming using fast matrix multiplication. In
Proceedings of the 30th Annual Symposium on Foundations of Computer Science
(FOCS’89), pages 332–337, 1989.

18. S. L. van de Velde. Duality-based algorithms for scheduling unrelated parallel
machines. ORSA Journal on Computing, 5(2):182–205, 1993.

19. J. M. van den Akker, J.A. Hoogeveen, and S. L. van de Velde. Parallel machine
scheduling by column generation. Operations Research, 47(6):862–872, 1999.



Implementation of Approximation Algorithms
for the Max-Min Resource Sharing Problem�
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Abstract. We implement the algorithm for themax-min resource sharing
problem described in [7], using a new line search technique for determining
a suitable step length. Our line search technique uses a modified potential
function that is less costly to evaluate, thus heuristically simplifying the
computation. Observations concerning the quality of the dual solution and
oscillating behavior of the algorithm are made. First numerical observa-
tions are briefly discussed. In particular we study a certain class of linear
programs, namely the computational bottleneck of an algorithm from [8]
for solving strip packing with an approach from [10, 13]. For these, we ob-
tain practical running times. Our implementation is able to solve instances
for small accuracy parameters ε for which the methods proposed in theory
are out of practical interest.More precisely, the technique from [8] improves
the known runtime boundof O(M6 ln2(Mn/(at))+M5n/t+ln(Mn/(at)))
to the more favourable bound O(M(ε−3(ε−2 + lnM) + M(ε−2 + lnM))),
wherendenotes thenumberof items,M thenumberofdistinct itemwidths,
a the width of the narrowest item and t is a desired additive tolerance. Key-
words: Algorithm Engineering, Implementation, Testing, Evaluation and
Fine-tuning, Mathematical Programming.

1 Introduction

We consider the max-min resource sharing problem

λ∗ = max{λ | f(x) ≥ λe, x ∈ B} (R)

where f : B → IRM is a vector of M ≥ 2 nonnegative continuous concave func-
tions fm defined on B ⊆ IRM (called block) which is a nonempty convex compact
set; without loss of generality we assume λ∗ > 0. Let λ(x) = min1≤m≤M fm(x)
for any x ∈ B and let P = {p ∈ IRM

+ | eT p = 1} be the set of price vectors, where
e denotes the vector of all ones. For each instance of (R) and p ∈ P the associ-
ated block problem is Λ(p) = max{pT f(x) | x ∈ B}. We suppose that there is an
approximate block solver ABS(p, t) that for any p ∈ P and t ∈ (0, 1) computes
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x̂ = x̂(p) ∈ B such that pT f(x̂) ≥ (1 − t)Λ(p). We study an implementation of
the algorithm described in [7] that, provided the existence of ABS(p, t), finds
for any ε ∈ (0, 1) a solution to the following problem.

compute x ∈ B such that f(x) ≥ (1 − ε)λ∗e (Rε)

The number of calls to the block solver is called the coordination complexity.

Previous Results and Related Problems. Plotkin et al. in [15], Könemann
in [12] and Young in [17] studied the (linear feasibility variant of the) fractional
covering problem, respectively, yielding data dependent runtime bounds. Grigo-
riadis et al. in [7] proposed an algorithm with a runtime bound that is data
independent; see [1] for a more detailed comparison. Closely related problems
are the fractional packing problem [3, 4, 15, 17] and min-max resource sharing
problem [5, 6, 9, 16]; these problems have been studied with approaches similar
to [7]. Experimental results have been obtained in [2] where the choice of the
step length τ is regarded as an essential decision. Similar results can be found
in [14, 9]. We refer the reader to [1] for a more detailed survey of similar studies.

Applications. Many combinatorial optimization problems can be modelled as
a max-min resource sharing problem with an exponential number N of variables
and a polynomial number M of constraints; we refer the reader to [1] for a more
detailed survey. In these applications the block problem is hard to solve or to
approximate but can be approximated by a (general) approximate block solver.
The running time of these algorithms is dominated by the number of iterations
and the running time of the approximate block solver.

New Results. We implement the algorithm for the max-min resource shar-
ing problem described in [7]. Our implementation uses a simplified line search
technique for determining a suitable step length. For solving special cases of
linear programs (namely relaxations of strip packing) the runtime bound of
O(M6 ln2(Mn/(at)) + M5n/t + ln(Mn/(at))) from the approach in [10, 13] is
improved to O(M(ε−3(ε−2 + lnM) + M(ε−2 + lnM))) with an approach from
[8], which has been fine-tuned to yield practical running times. Observations con-
cerning the quality of the dual solution and oscillating behavior of the algorithm
are made. Numerical results for random instances are briefly discussed.

In Sect. 2 we describe the algorithm from [7] that we implemented and in
Sect. 3 we comment on our implementation. In Sect. 5 we present results from
[11] their modification from [8] as well as some computational results. Finally
we present some observations concerning performance in Sect. 4.

2 Algorithm Description

The algorithm solves (R) approximately by iteratively computing a sequence
of vectors x0, . . . , xn ∈ B. In each step a price vector p = p(xi) ∈ P for the
current vector xi ∈ B is computed and the block solver is called to generate
an approximate solution x̂ ∈ B of the block problem. The next vector is set as
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xi+1 = (1− τ)xi + τx̂ with an appropriate step length τ ∈ (0, 1). For computing
the price vector p(x) the standard logarithmic potential function

Φt(θ, x) = ln θ +
t

M

M∑
m=1

ln(fm(x)− θ) (1)

is used, where x ∈ B, θ ∈ (0, λ(x)) are variables and t is a tolerance parameter,
the same as used for ABS(p, t). The potential function has an unique maximizer
θ(x) for each x ∈ B. The reduced potential function φt(x) = Φt(θ(x), x) measures
the quality of the solution. The price vector p = p(x) is defined by

pm(x) =
t

M

θ(x)
fm(x)− θ(x)

, m ∈ {1, . . . , M}, (2)

The parameter ν(x, x̂) = (pT f(x̂) − pT f(x))/(pT f(x̂) + pT f(x)) is used for de-
ciding the stopping rule; the algorithm can be outlined as follows.

(1) compute initial solution x(0), s := 0, ε0 := 1/4;
(2) repeat {scaling phase}

(2.1) s := s + 1; εs := εs−1/2; t = εs/6; x := x(s−1);
(2.2) while true do begin {coordination phase}

(2.2.1) compute θ(x) and p(x);
(2.2.2) x̂ := ABS(p(x), t);
(2.2.2) compute ν(x, x̂);
(2.2.3) if ν(x, x̂) ≤ t then begin x(s) := x; break; end;
(2.2.4) compute step length τ and set x := (1− τ)x + τx̂;

end;
(2.3) until εs ≤ ε;

(3) return(x(s)).

We use x(0) = 1/M
∑M

m=1 ABS(em, 1/2), where em denotes the m-th unit
vector. The step length from [7] is

τ =
tθν

2M(pT f(x̂) + pT f(x))
(3)

and is chosen in order to guarantee a provable increase of the reduced potential.
In [7] computing τ by a line search to maximize φt(x+τ(x̂−x)) is recommended
without suggestion of any particular method, a problem that we address in
Subsect. 3.1. The following theorem from [7] bounds the coordination complexity.

Theorem 1. For any given relative accuracy ε ∈ (0, 1) the algorithm above
computes a solution x of (Rε) in N = O(M(ln M + ε−2)) coordination steps.
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3 Implementation

We have implemented the algorithm from Sect. 2 in C++. Our implementation
uses abstract classes which need to be implemented for each specific application;
the following types of problems have been tested.

1. Linear problems with n = 1 where the block vector is a number from an
interval and the block solver returns a value near to one of the interval
bounds as a block solution x̂.

2. A multidimensional linear case implemented with CPLEX. Vectors and func-
tions are implemented using CPLEX data structures and the block problem
is solved by the CPLEX optimizer. Input is read in a standard MPS-Format
supported by CPLEX. This permits easy verification of results by running
the input through a CPLEX optimizer that solves the max-min problem.

3. The fractional strip packing problem as described in [11, 8]. The block solver
uses an FPTAS for the unbounded knapsack problem; the results are pre-
sented in Sect. 5.

Type 1 is a special case of type 2, but the simpler block solver allowed tests
with more iterations quickly, while running a CPLEX block solver permits about
20 calls per second for small problems.

3.1 Choice of the Step Length

We use a line search to find a step length τ that maximizes the reduced potential
φt instead of using (3). We simplify φt in order to speed up its evaluation as
follows. Let x, x̂, t be as in step (2.2.4) and θ = θ(x); for each τ ∈ (0, 1) and
x′ = (1 − τ)x + τx̂ we define φ̃t as follows.

φ̃t(τ) =

{
t/M

∑M
m=1 ln(fm(x′)− θ) if θ < f(x′)

−∞ otherwise

In the case that θ < f(x′) it is thus simply φ̃t(τ) = Φt(θ, x′)− ln(θ). As φ̃t(τ) is
convex for θ < f(x′), we can use binary search to approximate its maximum. For
evaluation we assume that f is linear and compute f(x′) = (1− τ)f(x) + τf(x̂)
which spares us the actual evaluation of f(x′) which could be expensive, e.g. if
x′ had many non-zero components. In particular we study in the case where f
is linear since this is true in Sect. 5. This search technique yields a dramatic
improvement of the runtime, as shown in Sect. 4 and Sect. 5. The increase
of φt in each step is usually several orders greater than the one theoretically
predicted. See Subsubsect. 4.3 and Subsect. 5.2 for a numerical comparison of
both methods. There are several advantages of using φ̃t over calculating with
φt(τ) = Φt(θ(x′), x′). Usage of the same θ for all evaluations of φ̃t allows us to
spare the expensive calculation of θ(x′) in every step of the search. It also allows
us to leave out the constant summand ln(θ) of the potential function which
improves the numerical quality; ln(θ) often dominates the value of the potential
function with the rest being relatively small. Computing with a smaller function
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makes the algorithm more sensitive to changes in the function. Concerning the
quality of the solution, we observed that there is little difference between τ
computed using φt and φ̃t. We neglect the fact that performing search adds to
numerical overhead, as the coordination complexity is of main interest.

3.2 An Additional Stopping Rule

The stopping rule using ν(x, x̂) is based on a comparison of primal and dual
points. We give an additional criterion that is based on the the quality of the
final iterate of the previous scaling phase (or initial solution in the first scaling
phase), similar to [9]. We introduce the parameter

ωs =

{
2M(1− ε1) for the first scaling phase
(1− εs)/(1− 2εs) for all other phases

and terminate the current scaling phase as soon as λ(x) ≥ ωsλ(y), where x is the
current iterate and y is the final iterate of the previous scaling phase (or initial
solution in the first scaling phase). An analysis similar to [9] shows that the
inequality implies that the last iterate of each phase has the requested quality.

4 Performance

Our tests with CPLEX for small M were carried out with B = [−100, 100]n,
ε = 1/1000 and exact block solvers returning vertices of B. We used linear
functions fm with uniformly random coefficients. The domains of the coefficient
distributions were selected so that the values of the functions lie in [0, 200]. The
tests were made with ε0 = 10 instead of ε0 = 1/4 as in [7]. This was done so
that t1 = 5/6 and the initial scaling phase would not begin with a too small t,
causing slow progess. Observations presented in this subsection refer to both the
algorithm from [7] and our modification where τ is determined by line search.
Our primary goal was to test the dependence of the number of iterations on
n and M under such conditions. We present some observations made during
testing.

4.1 Improvement of the Dual Solution

We noticed that the primal solution computed by the algorithm from Sect. 2
often has a much higher precision than requested; the algorithm does not ter-
minate as soon as the solution x reaches the desired precision but continues to
iterate. Consider the instance

n = 1, M = 2, B = [−100, 100], f(x) = (x + 100,−x + 100) (4)

where the optimum is x∗ = 0 yielding λ∗ = λ(x∗) = 100. Suppose that in some
iteration x = −0.1 and x̂ = 100. The stopping rule gets satisfied if ν − t ≤ 0.
Plotting ν− t against t shows that this is not the case for t ≤ 0.02. However the
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value λ(x) approximates λ∗ = 100 with relative precision of 0.001, which is 20
times smaller. Moreover the ratio of the minimal t for which the stopping rule is
satisfied (in the following we shall call such t critical) to the actual precision of
the current solution differs for different values x of the solution. This is illustrated
by the plot of critical t in Fig. 1.

This behavior can be explained by the fact that ν depends on the quality of
the dual solution in addition to the quality of the primal solution. Furthermore
the dual solution is often improving slower than the primal solution. As a way
to measure the quality of the dual solution let us consider the error l̂ with which
pT f(x̂) approximates λ∗, that is l̂ = 1 − λ∗/pT f(x̂). This expression evaluated
over B (with λ∗ = 100 and x̂ = −100·sign(x)) is shown in Fig. 2, whereas critical
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t was used in calculation of p. Using values of t smaller than the critical t results
in even worse quality of the dual solution. The behavior described above leads to
the fact that primal solutions get calculated to a precision which is several orders
higher than the precision actually requested. This effect has been observed in all
instances we tested with our algorithm. This is a drawback if one is interested
only in the primal solution, which is often the case.

4.2 Oscillations

A typical behavior of the algorithm from Sect. 2 is that the current solution x
oscillates around some value that very slowly converges to the optimum. One
such example with n = 2 and M = 10 is shown in Fig. 3. Points connected by
segments correspond to the sequence of iterations generated by the algorithm.
Points marked with a circle are those in which the tolerance t gets decreased.
A contour plot of λ(x) is added to the diagram. Notice how the amplitude of
the oscillations decreases together with t. Such oscillating behavior occurs when
block solutions produced by the block solver lead the algorithm in a direction
different from the one in which the potential φt mainly grows. Small steps are
made so that φt would not get reduced and thus the algorithm makes a lot of
iterations while trying to follow the growth of φt. The interesting fact is that
following the growth of φt often has very little to do with approaching the actual
solution. Consider the following example.

n = 2, M = 3, B = [−100, 100]× [0, 200]
f1(x, y) = x + 100, f2(x, y) = −x + 100, f3(x, y) = y

The optimal set is N = {x∗ ∈ B | λ(x∗) = λ∗} = {0} × [100, 200]. A graphical
presentation of the algorithmic behaviour is omitted due to lack of space, we
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refer the reader to [1]; the algorithm crosses N in each iteration, but instead of
stopping there the search for maximal φt takes it further resulting in oscillating
behavior. This is caused by the function f3, which plays a significant role in
calculating φt even for y > 100. As f3(x, y) grows with y, so does φt thus
effectively misleading the algorithm, which then tries to increase y more than
necessary in each iteration. It is worth noting that oscillations also occur when
θ is computed exactly in step length search (see Sect. 3.1) or when fixed step
length as in (3) is used. We call functions like f3 above for which f(x) > λ(x) but
which still play a significant role in determining φt shadow functions. Oscillations
described here actually occur in all nontrivial instances with n = 2 that we tested
so far. By nontrivial we mean that the solution does not lie in the vertex of B
(otherwise it is usually reached within about 10 steps). The described behavior
was also observed in cases with n ( M , there however the oscillating pattern
is not so distinct. Still it seems that cases with n ( M are less subject to the
problem described in this section. In our tests 10 random instances with n = 2000
and M = 10 got solved in under 200 iterations, whereas 9 of 10 instances with
n = 4 and M = 10 caused a timeout with more than 900 iterations. The role
that oscillations play in large instances needs further investigation.

4.3 Numerical Results

In this subsection we discuss the different choices of τ and the effect of M on
the running time.

Comparison of Strategies for Step Length Choice. We compared the
runtime of the algorithm with line search for determining τ to the runtime of
the algorithm that uses fixed step length from (3). Using our quick block solver
for the case n = 1 we tested random instances with 4 different values of M ,
setting ε = 1/100. For each M we took the mean of the complexity over 20
instances. The results for line search (rounded to nearest integer) are shown
in Table 1. For fixed step size most of the instances had a timeout with tens
of thousands of iterations. In case of n > 1 the version with fixed step length
timeouts with more than 1000 iterations on almost all instances, whereas the
version with line search often can solve them in less than 10 iterations.

Dependence of Runtime on M . We performed a series of tests with fixed
n = 500 and 18 values of M ranging from 2 to 170. For each value of M we took

Table 1. Coordination complexity for line search, n = 1, ε = 1/100

M Mean Standard deviation

2 9 7
10 16 6
100 34 20
1000 116 127
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Fig. 4. Plot of mean coordination complexities and standard deviations

average coordination complexity over 10 tests. The results did not reveal any
certain dependence of coordination complexity on M – the standard deviation
is too high. This is due to the fact that some tests are solved almost instantly
(within under 10 iterations) which usually happens when the solution lies in
the vertex of the block. However, some single tests need thousands of iterations.
This probably happens when oscillations with small step length occur. For plots
of mean coordination complexities and standard deviations see Fig. 4. We are
currently performing bigger tests with more instances to reveal the dependence
on M .

5 Application for Strip Packing

We used our implementation to solve the computational bottleneck of an approx-
imation algorithm for strip packing described below using an approach from [8]
and [11];we proceed with experimental results.

5.1 Solving Strip Packing Via Fractional Covering

In strip packing we are given a list L of n rectangles with widths wi and heights
hi ∈ (0, 1] and want to generate an axis-aligned arrangement of L into the
strip [0, 1]× [0,∞) such that the interiors of the rectangles are disjoint and the
packing height is minimized. This problem is NP-hard, but permits an AFPTAS
[11]. See [11] and [8] for details; we focus on a corresponding LP model. Suppose
M distinct widhts w′

1, . . . , w
′
M occur. A configuration is a multiset of widths

which sum up to less than 1, i.e. corresponding items can occur at the same
level. Let q be the number of all configurations C1, . . . , Cq and let αij denote
the number of occurences of w′

i in configuration Cj . For each i ∈ {1, . . . , M} let
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βi denote the sum of all heights of items in L of width w′
i. The fractional strip

packing problem is defined as

minimize eT x subject to x ≥ 0 and Ax ≥ b (C)

where x, e ∈ IRq, A ∈ IRM×q with Aij = αij for each i and j and b ∈ IRM

with bi = βi for each i. Note that q may grow exponentially in M , causing
implementational difficulties which are circumvented by solving

compute x ∈ B that satisfies Ax ≥ b and eT x ≤ (1 + ε)h∗ (Cε)

where h∗ denotes the minimal packing height and B = IRq
+. In [8], the algorithm

from [7] is used to solve

compute x ∈ P that satisfies Ax ≥ (1− ε)λ∗b

where P ⊆ IRq
+ is a standard simplex and apply some scaling afterwards to

obtain a solution of (Cε). Using the algorithm from [7] the block solver is im-
plemented with an FPTAS for the unbounded knapsack problem which has a
runtime bound of O(n+ ε−3). The algorithm from [7] is implemented by column
generation. We need O(Mε−2 + M lnM) coordination steps, thus the runtime
complexity is O(M(ε−3(ε−2 + lnM) + M(ε−2 + lnM))). This is more efficient
than O(M6 ln2(Mn/(at)) + M5n/t + ln(Mn/(at))) as obtained in [10, 13].

5.2 Computational Experiments

We used random instances (where random means using a pseudo-random num-
ber generator) of 100, 1000 and 10000 items, discretized them as in [11] according
to ε ∈ (0, 1) and solved the resulting instances of (Cε) with the algorithm from
Section 2 where τ was both statically chosen and determined by line search. We
observed that the latter results in a significant reduction of the coordination
complexity, see for instance Fig. 5, where we present the averaged number of
iterations. In [1] we present more similar results. The termination criterion de-
scribed in Subsection 3.2 was never satisfied – the bound ωsλ(y) is lower if the
quality of y from the previous scaling phase is worse. To put it the other way
round, the bound gets worse if the quality of y is better than required. We have
to deal with opposing effects – on one hand, we want to leave each scaling phase
with a good solution; on the other hand, the better the solution, the less suitable
it is for obtaining a good bound for the next scaling phase. We conclude that the
criterion from Subsection 3.2 here is of limited heuristic value. In Subsection 4.2
the oscillative behavior of the algorithm is discussed. However, for larger values
of M , it is difficult to present oscillation graphically. In the application for frac-
tional strip packing we have therefore considered the proportion of block solver
calls in which a block solution x̂ was returned that had been used before in a
previous iteration; see [1] for a more detailed discussion. We observed that the
selected configurations are by no means evenly distributed; we omit a graph-
ical presentation due to space limitations. This suggests further investigation.
Comparing the results for τ statically chosen to τ determined by line search, the
latter does not seem to have any significant effect on this behaviour.
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6 Conclusion

We have implemented an approximation algorithm from [7]; we tested our mod-
ified line search for approximating an optimal step length, which turned out
to be far superior to using (3). We analyse the improvement rate of the dual
solution and find that its precision is growing slower than that of the primal
solution. We observed that the runtime for a special class of instances is consid-
erably improved. Interestingly, oscillations are shown, which is undesirable and
has not been addressed before; our observation might inspire future research.
The results on random instances suggest that the runtime is greatly dependent
on the instance, sometimes the problem being solved in several steps and some-
times requiring more than thousand of iterations. Finally we kindly thank the
anonymous referees for many helpful comments.
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Abstract. This work presents a column generation based heuristic al-
gorithm for the problem of planning the flights of helicopters to attend
transport requests among airports in the continent and offshore platforms
on the Campos basin for the Brazilian State Oil Company (Petrobras).
We start from a previous MIP based heuristic for this Helicopter Rout-
ing Problem and add column generation procedures that improve the
solution quality. This is done by extending the earlier formulation and
providing an algorithm to find optimal passenger allocation to fixed he-
licopter routes. A post optimization procedure completes the resulting
algorithm, which is more stable and allows consistently finding solutions
that improve the safety and the cost of the one done by the oil company
experts.

1 Introduction

Helicopter routing problems often comprise pickups and deliveries of passengers.
This characteristic brings a packing aspect difficult to capture to a routing prob-
lem. The particular Helicopter Routing problem here addressed generalizes most
similar routing problems in the sense that it considers the activities of a fleet of
aircrafts during a day comprising several subsequent routing problems. Moreno
et al. [7] proposed to find quality solutions to this problem with a heuristic algo-
rithm that uses a mixed integer program with exponentially many columns. This
heuristic consists of constructing, a priori, two large sets of columns obtaining
a good integer solution to the resulting MIP and applying a local search to find
its best solution. No column generation was used, i.e. no information from the
linear programming relaxation was taken into account when constructing the
potential helicopter routes (columns). The purpose of the present work is to fill
this gap, investigating whether or not column generation provides a better and
more stable algorithm.

The resulting algorithm was developed for the Brazilian State Oil Company
(Petrobras) and is now operating at the flight control center in the city of Macaé.
This company concentrates most of its oil exploration and production activities
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in an offshore area - the Campos Basin. The personnel transportation to and
from drilling platforms in this area (42,000 passengers per month) is done by a
mixed fleet of 35 helicopters with an average of 70 flights per day. Planning these
flights is a difficult task since transport requests must be attended on time, there
are usually few helicopters available per day and many safety policies must be
observed.

The Helicopter Routing Problem (HRP) tackled in this work is: given a set
of locations composed by bases (or airports) and offshore platforms, a set of
helicopters, and a set of transport requests which are distributed over departure
times associated to a list of platforms that can be served, construct a flight
schedule satisfying the following constraints: (i) each flight starts and finishes
in a base; (ii) the helicopters capacity can not be exceeded during each flight;
(iii) a helicopter must have a preparation time between flights. The goal is to
minimize the total cost.

In other words, the HRP plans all the flights for each day, which corresponds
to the activities of each helicopter (the sequence of stops, the time they occurred,
and the passengers that boarded and unboarded).

In the case studied, the basin has 2 airports and 65 offshore locations. Platform
crews can demand transportation for one of a few (nine) flight departure times
and their requests are either (partially) attended on time or ignored, since delays
are not allowed. These passengers can go from base to platform, from platform
to base or from one platform to another. There are a few passengers that change
from one platform to another. They are usually grouped into a longer flight with
special rules such as more landings and offshore refueling and, for this reason,
they are treated apart. There is a high cost for leaving passengers unattended,
because oil exploration activities can be compromised.

The helicopters are paid per hour in flight and have distinct sizes and costs,
i.e. the fleet is not homogeneous. The helicopter capacity (number of passengers
that can be transported) depends on the length of the flight because the allowed
take-off weight must include not only passengers weight but also the fuel weight.
A helicopter can fly at most five times per day but it must be checked before
each flight and it must stop for an hour in the middle of the day to give the pilot
a lunch break.

The helicopters do not belong to the oil company. They are operated by other
companies which maintain different contracts regarding flight hour costs for each
helicopter. The two airports do not share helicopters, i.e. each one has its own
fleet. This allows solving one separated problem for each airport. This is possible
as long as intersecting departure times from different airports do not serve a same
platform. Should this happen, we would have to consider a coupling constraint
limiting the number of flights serving this shared platform.

Furthermore, the following rules must be respected: the number of landings
for each passenger and for each flight is limited; at each platform, the aggregate
number of landings for flights with the same departure time is also limited. The
built flight schedule must indicate helicopter, route, passengers and duration of
each flight.
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This Helicopter Routing Problem is NP-hard. It is so since it can be easily
seen as a generalization of the Split Delivery Vehicle Routing Problem (SDVRP)
(Dror and Trudeau [4], Dror, Laporte and Trudeau [3]) which was proved to be
NP-Hard when the vehicle capacities are 3 or more by Archetti, Mansini and
Speranza [1]. In the SDVRP the fleet is homogeneous, there is just one departure
time and, most of all, there are only deliveries.

In the 1980’s, Galvão and Guimarães [5] worked on this problem in Petrobras.
They proposed an algorithm for building routes of the same departure time which
used different strategies to create the routes, and at the end selected the set of
routes with minimum cost. In their algorithm, the fleet used in each departure
time had to be chosen by the user, which is not the case in the present work.
Their paper addresses also the issue of the relationship among users, project
technical staff and the management group inside the oil company. They depict
a situation where users feared loosing their jobs and management feared the
quality of the automated solutions would not match the ones obtained by hand.
Fifteen years later, there has been a clear evolution in the understanding of
optimization tools and their potentiality. Despite that, management considers
the testing to be critical to make sure the solutions obtained by an automated
tool can be implemented and are at least as good as the ones assembled by hand.

Another similar experience can be found in a Dutch gas exploration company,
Tjissen [8] used SDVRP to work on another helicopter routing real case where
helicopter capacity was constant and for each passenger left on an offshore plat-
form there was another to go back to the continent. Good solutions were found
using rounding procedures to linear programming solutions and heuristics.

Hernadvolgyi [6] used as an example another particular case of helicopter rout-
ing problem when all demands can be carried out by just one helicopter. The prob-
lem studied was the Sequential Ordering Problem, which can be seen as a version
of the Asymmetric Traveling Salesman Problem with precedence constraints.

This text is organized as follows. The next section presents a MIP model
with exponentially many variables and discusses column generation along with
a procedure to find new profitable columns. Section 3 describes the new column
generation based heuristic algorithm. The last section presents computational
experiments and draws some insights on this difficult problem.

2 Model and Column Generation

The HRP can be formulated as a mixed integer program (MIP). Sets of con-
straints controlling demand satisfaction and offshore platforms (and airports)
utilization (number of landings) can be labeled as global constraints. On the
other hand, constraints regarding one single helicopter’s day of work can be
thought as local ones. They enforce the helicopters’ sequence of flights to have
flights with a limited duration, to respect weight capacity throughout the flights,
and not to exceed a maximum number of total landings and landings per pas-
senger. Also, they have a given maximum number of flights, maximum number
of hours to fly and a pilot lunch break.
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A multicommodity flow MIP is presented in Moreno et al.[7] providing a
formulation with polynomially many variables and constraints. As should be ex-
pected, this formulation usually has a large integrality gap and is even unlikely to
provide reasonable integer feasible solutions. Nevertheless, it gives a straight for-
ward formulation with exponentially many variables by applying Dantzig-Wolfe
decomposition and treating the local constraints implicitly in the construction of
the helicopters’ sequence of flights. This decomposition is further explored in [7]
by considering the pilot lunch break requirement and the number of daily flights
and hours per helicopter as global constraints and having variables associated
to flights in each departure time. This last formulation was exploited in [7] to
produce a heuristic algorithm. It proceeded by constructing, a priori, two large
sets of variables. The first large set of variables focuses on constructing sequence
of flights for each helicopter, i.e. sets of flights that can be combined to form a
helicopter work day. The second set contains sets of flights that are solutions for
the demands associated to each departure time. The resulting MIP is solved by
an integer programming commercial package to find a good integer solution to
which is subsequently applied a local search procedure.

We proceed by presenting the formulation with exponentially many variables
in [7], showing its drawbacks and how to overcome them to obtain an effective
column generation procedure. Next, we present the column generation subprob-
lem and a procedure to find negative reduced cost columns.

2.1 A MIP Model with Exponentially Many Variables

Let the problem parameters be as follows. Denote by D the set of demands and
by T the set of flight departure times. Let H be the set of helicopters, L be the
set of all locations and P be the subset of L containing all platforms. Denote
by Dt the subset of the demands in D to be attended in departure time t. Time
is discretized in order to control the lifetime of each helicopter. Finally, let I
denote the set of all time instants considered. The cardinality of the sets L, D,
T , P , H and I is represented by nl, nd, nt, np, nh and ni, respectively. The
following values are also part of the input data: qd is the number of passengers of
a demand d to be transported; ch is the cost of each minute of flight for helicopter
h; mch is the maximum capacity of helicopter h; lp is the maximum number of
landings per passenger; lf is the maximum number of landings per flight; mL is
the maximum number of landings in each departure time on the same platform;
mF is the maximum number of flights of each helicopter in a day; mH is the
maximum number of hours of flight of each helicopter in a day; M is the cost of
leaving a passenger unattended; and lc is the cost of each landing.

This model has three sets of variables. The first one is associated with all pos-
sible flights each helicopter can perform in each of the departure times. Remark
that a helicopter flight consists of a sequence of legs, i.e. one flight from the air-
port to the first platform, then to another platform, and so on until reaching back
the airport. The second set contains variables representing unsatisfied demand.
The last set represents the instants in which the pilots begin their lunch breaks.
The flights are specified by their cost and row coefficients. The variables are xhf ,
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the flight f of helicopter h (binary), sd, the number of passengers of demand d not
transported (integer), and zhj , the lunch break of the pilot of helicopter h starting
at instant j (binary). The coefficient adhf represents the number of passengers of
demand d transported by the flight f of helicopter h (integer), while dfhf is the du-
ration (in minutes) of the flight f of helicopter h (integer) and pfhf is the number
of platform landings of flight f of helicopter h (integer).

To ease the understanding of the model, denote by Fih (resp. Jih) the set
composed by the indices of all flights f (resp. lunch breaks j) that uses the
helicopter h at instant i. Also, let Kpt be the set containing all flights of departure
time t with landing on platform p, and let Jh be the set of all lunch breaks of
helicopter h. The MIP model follows:

min
nh∑

h=1

nf∑
f=1

(ch.dfhf + lc.pfhf).xhf +
nd∑

d=1
M.sd (0)

nh∑
h=1

nf∑
f=1

adhf .xhf + sd = qd ∀d ∈ {1..nd} (1)

nh∑
h=1

∑
f∈Kpt

xhf ≤ mL ∀p ∈ {1..np}, ∀t ∈ {1..nt} (2)∑
f∈Fih

xhf +
∑

j∈Jih

zhj ≤ 1 ∀i ∈ {1..ni}, ∀h ∈ {1..nh} (3)∑
j∈Jh

zhj = 1 ∀h ∈ {1..nh} (4)

nf∑
f=1

xhf ≤ mFh ∀h ∈ {1..nh} (5)

nf∑
f=1

dfhf .xhf ≤ mHh ∀h ∈ {1..nh} (6)

xhf ∈ {0, 1} ∀h ∈ {1..nh}, ∀f ∈ {1..nf} (7)

zhj ∈ {0, 1} ∀j ∈ {1..ni}, ∀h ∈ {1..nh} (8)
sd integer (9)

The objective function (0) minimizes the total cost, which is the weighted
sum of numbers of passengers not transported, total of landings and hours flown
by the helicopters. Constraints (1) control the passengers transported from each
demand. Constraints (2) are used to ensure that at most mL flights with de-
parture time t will land on platform p. Constraints (3) state that at most one
flight or one lunch break of each helicopter h can occur at each instant i. The
helicopters’ stop for the pilot’s lunch break are assured by constraints (4). The
number of flights and hours of flight of the helicopters are limited by constraints
(5) and (6), respectively. Finally, (7), (8) and (9) specify the domain of variables
x, z and s, respectively.

The number of possible valid flights is exponential and, in this problem, it is
difficult to foresee which flights are used in good solutions and to decide how
some demands, which may have 2 or 3 times more passengers than the helicopter
capacity, shall be split. This gives an idea of the difficulties in deriving algorithms
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to implicitly consider all the possible flights. These difficulties exist because in
addition to determining the flight routes, the quantities of passengers that are
attended from each demand must also be specified. In fact, it seems that this
partitioning aspect of the problem is much more critical than the routing aspect.

When tailoring a column generation procedure to implicitly generate columns
with smallest reduced costs we can observe the following difficulty. The dual
variables associated with constraints (1) can be positive or not. If they are, they
give the same weight to all passengers in a same demand. This implies that in any
optimal solution of the column generation subproblem the route of a helicopter
will obtain smallest reduced cost by choosing the demands in decreasing order of
their dual variables, picking always the maximum possible number of passengers
of each demand. This suggests that column coefficients would often be either
the total number of passengers of the demand or the remaining capacity in the
helicopter. Therefore, the required columns would have little chance of being
generated.

We overcome this problem by splitting constraints (1), which amounts to have
only individual demands. Therefore, no change in the formulation is required.
Now, each passenger is treated as an independent demand and, consequently,
the coefficient adhf only indicates whether the corresponding passenger is in the
flight or not (1 or 0). Although this enlarges the problem size, it is hard to
notice any increase in the linear programming resolution time when solving the
real problems in the Campos basin. The number of demands is around 150 and
the number of passengers ranges from 700 to 1100.

2.2 Column Generation Subproblem

Let πd, αpt, βhi, γh, σh be the dual variables associated to constraints (1), (2),
(3), (5) and (6) respectively. Let also R(hf), IR(hf) and D(hf) denote the set
of platforms visited, the set of instants during which flight f occurs and set
of demands flight f of helicopter h carried, respectively. The reduced cost of a
variable xhf is then given by the sum of cR, which depends only on the route
of the helicopter, with cD which is determined by the passengers (demands) it
takes. They can be expressed as:

cR = ch.dfhf +
∑

p∈R(hf)

(lc− αpt)−
∑

i∈IR(hf)

βhi − γh − dfhf .σh

and
cD =

∑
d∈D(hf)

−πd.

The column generation subproblem is to find the route and the demands it
attends that minimize chf = cR + cD and satisfies the local constraints, which
are: (i) number of landings per passenger shall not exceed lp; (ii) the landings
per flight cannot be more than lf ; and (iii) given the duration of the flight, the
maximum number of passengers at any moment in the flight cannot exceed mch.
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This problem is clearly NP-hard, since the Prize Collecting TSP (Balas [2])
corresponds to the special case where the constraints are disregarded and all
dual variables, except for the πd ones, are zero. Since the focus in this work is on
finding good primal feasible solution to the HRP, we next describe a heuristic
procedure.

2.3 Column Generation Procedure

Our procedure is designed to take full advantage of the particular HRP we are
addressing. Most of the departure times have a small number of platforms to
serve, usually around 10, although there is one departure time which often has
30 or more platforms to serve. In this sense, we observe that once the route is
defined, the optimal passenger assignment can be found, in polynomial time,
by solving a Minimum Cost Flow (MCF) problem which has a small network.
We add to that the fact that the maximum number of landings allowed in any
flight (mL) is set to 6 for safety reasons at the oil company. These constraints do
not change the problem complexity. Nevertheless, the small number of landings
allowed and of platforms may turn acceptable to enumerate all possible routes.
For time limit reasons, we used a heuristic approach.

The resulting procedure tackles the problem by separately searching for flights
serving a fixed number of platforms which, in the present case, is at most 5. It
proceeds by generating all possible routes with 1 and 2 offshore landings. For 3,
4, and 5 offshore landings it starts from an initial random route and performs a
local search by exploring a neighborhood consisting of exchanging the platform
at each position in the route with all other platforms to be served in the same
departure time. The procedure stops at the local search when it finds a column
with negative reduced cost. When this is not the case, a Tabu Search procedure
with this same neighborhood is started. Note that a MCF problem is solved
for each neighbor route that is explored, which is sometimes time consuming.
Figure 1 depicts this procedure.

The procedure presented above is invoked for each helicopter at each departure
time. The MCF model completes its description. The network has two distinct
sets of nodes: stop nodes and demand nodes. The stop nodes are created for
each point of the flight route (base, platforms and back to the base). Each flight
segment between consecutive landing points is represented by an arc from its
origin to destination. These arcs control the flow of passengers in the route
and, for this reason, arc capacities are exactly the capacity of the helicopter in
this route (which depends on the flight duration). Note that this is a single-
commodity network flow problem.

Demand nodes are created for each passenger that can travel in this flight. Two
arcs leave each demand node. One goes to the node corresponding to the origin of
the demand on the route with cost equal to the demand reduced cost. The other
arc goes to demand destination with infinite capacity and zero cost. Then, in this
model, each passenger can achieve its destination either going from its demand
node to his origin node traversing route segments of the flight, when served by the
helicopter, or going directly from the demand node to the destination point when
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01 Procedure Fixed Size Route Procedure (initial flight){
02 best flight ← initial flight
03 while best flight cost is improved {
04 for each iteration {
05 best neighbor ← null
06 for each neighbor {
07 Update route
08 Select passengers solving a MCF problem
09 Compute neighbor cost
10 if cost is better than best neighbor and
11 move is not tabu
12 best neighbor ← current neighbor
13 }
14 if the current flight is better than best neighbor {
15 if cost is negative
16 return current flight
17 else
18 set last move as tabu
19 }
20 current flight ← best neighbor
21 if current flight is better than best flight
22 best flight ← current flight
23 }
24 }
25 return best flight
26 }

Fig. 1. Fixed Size Route Procedure
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Fig. 2. Minimum Cost Flow problem network example

not. Only passengers with positive associated dual variables in (1) (negative cost)
need to be considered. To obtain flights with as many passengers as possible, we
consider the zero valued dual variables of (1) as slightly positive.

Figure 2 illustrates the MCF model. Each demand node (D1 to D5) has an
incoming flow of one passenger. The outgoing flow of one unit is at its destination
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node. Helicopter capacities are controlled by route segment arcs linking two stop
nodes. The optimum flow gives the smallest cD for a given route. The flight
reduced cost is then computed by adding the previously known value cR.

3 Column Generation Based Heuristic Algorithm

The approach used to solve this HRP problem is to decompose the problem into
the generation of single flights for each helicopter available and the assembly
of these flights. This assembly is done by an integer programming model that
constructs each helicopter’s sequence of flights assuring that it meets all time
related constraints while covering the transportation requests.

The algorithm starts by generating two reasonable size sets of columns as in
[7]. One set is composed by sets of flights that compose helicopters’ days of work
and the other contains sets of flights that completely serve departure times. The
restricted integer program (RIP) is initialized with these two sets of columns.
At this point, the column generation phase is initiated. The linear programming
relaxation of the RIP is repeatedly solved to optimality. At each iteration the
dual values are obtained and used in the column generation procedure above de-
scribed. One column is generated for each departure time - helicopter pair. Since
these columns tend to be similar to different helicopters and also be extremal,
a tailing off effect is likely to appear. Moreover, this algorithm aims at finding
good integer solutions not optimal ones.

With this in mind, we add a random column generation procedure. It pro-
ceeds by randomly creating flights for randomly selected helicopters following
the guidelines of the second set of columns created at the initialization, i.e. in
sets that serve completely each of the departure times. A fixed number of flights
is generated and the 20% with smallest reduce cost is added to the RIP. Also, to
allow complementing flights to be added to the RIP, we add columns from both
column generation procedures even when the reduced cost is positive.

The column generation phase is interrupted after 15 minutes. In our experi-
ments, our heuristic column generation procedure may continue to find negative
cost columns for as long as one hour or two. This would exceed the allowed
computation time. We proceed by attempting to find good, or even optimal,
solutions to the current RIP is made for 5 minutes. Even when we provide an
initial solution to the problem, it converges very slowly and integer solutions
are hard to find. To ease the solution of the MIP, we relax constraints (1) from
equality (partitioning) to greater or equal inequalities (covering). In other words,
we allow over satisfying the demand. However, with this change in the model, it
is necessary to check if there are extra passengers in the solution.

The generation of a valid flight schedule is done by heuristic algorithms.
Some post processing is necessary in order to remove exceeded demand. Finally,
heuristic algorithms are also used to check if further local improvements are
possible.

The post optimization removes extra passengers by efficiently solving a mixed
integer program. Since helicopters and their routes are already defined, the model
is used to remove each exceeded demand of the flights for each departure time.
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Let Dt, and Ft be the set of passengers and the set of flights of departure time
t. For each flight in Ft, consider Sf and Lf the sets of route segments and set of
landing points, respectively. Let Df

t be the subset of demands that can be trans-
ported by the flight f , Dfs

t be the subset of demands that traverses the segment
s in flight f and Dfl

t be the subset of demands whose origin or destination oc-
curs in the landing point l of flight f . This model has the following variables:
kdf indicates how many passengers of demand d travels in flight f (integer); wf

indicates whether the flight f occurs (binary); and yfl indicates if the flight f
lands on platform l of its route (binary). Additional parameters are capf and
cf , the capacity and cost of flight f , respectively. The model can be written:

min
∑

d∈Dt

∑
f∈Ft

−M.kdf +
∑

f∈Ft

cf .wf +
∑

f∈Ft

∑
l∈Lf

lc.yfl (10)

s. t.
kdf − capf .yfl ≤ 0 ∀d ∈ Dfl

t (11)
kdf − capf .wf ≤ 0 ∀d ∈ Df

t (12)∑
f∈Ft

kdf ≤ qd ∀d ∈ Dt (13)∑
d∈Dfs

t

kdf ≤ capf ∀s ∈ Sf , ∀f ∈ Ft (14)

wf ∈ {0, 1} ∀f ∈ Ft (15)
yfl ∈ {0, 1} ∀l ∈ Lf , ∀f ∈ Ft (16)
kdf integer (17)

01 Procedure CG-HRP {
02 Generates random flights
03 while the time limit is not reached {
04 while the 15 minutes bound is not achieved {
05 Solve LP relaxation
06 Execute Column Generation Procedure
07 Execute Random Column Generation
08 }
09 Execute MIP solver algorithm
10 }
11 Execute post optimization
12 return
13 }

Fig. 3. Column Generation Heuristic for the HRP

The objective function maximizes the number of passengers attended and
minimizes the number of flights and landings. Constraints (11) guarantee that
the landing point l of the flight f will be visited if and only if there are passengers
leaving or going to this point. In the same manner, constraints (12) keep or
eliminate flight f . Constraints (13) assure the removal of extra passengers since
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it controls the number of passengers of each demand in all flights. Constraints
(14) force the number of passengers in each route segment to be lesser than
helicopter capacity.

Observe that flights and landings of the solution are kept in schedule only if
they are necessary. There can be lots of changes in the solution since passengers
can travel in any flight that visits their origin and destination. The algorithm
obtains the best possible distribution of passengers given the solution flights.
Although this problem is NP-hard, it can be efficiently solved to optimality in
a few seconds due to its low dimension. Figure 3 presents a pseudo-code of the
complete heuristic algorithm.

4 Experiments

The algorithm was tested on 8 real instances taken from the year of 2005. The
tests were executed on a Pentium IV 3.0 GHz with 1 GB of RAM. Mixed in-
teger programs were solved using ILOG CPLEX 9.0. All data used on testing
was obtained during the algorithm tests phase at the oil company. Particu-
larly, during the period in which these instances were extracted, there were not
enough helicopters available to satisfy the company demand. For this reason,
some instances were very difficult to solve and there were too many unattended
passengers. There are 4 instances for each of the two bases. Each base has a
distinct demand and fleet profile and the respective problems are quite differ-
ent. The operation in base 1 (Macaé), instances 1-4, has many demands with
few passengers. Therefore, several platforms are visited in each flight departure
time. Base 2 (São Tomé), instances 5-8, only has passengers’ exchanges, i.e. for
each person going from base to platform there is another person from platform
to the base. These exchange demands usually consist of large groups of pas-
sengers. Consequently, the helicopters typically have shorter routes and higher
occupancy, and fewer helicopters are necessary in base 2. The instances of base
1 have an average of 780 passengers, 16 helicopters and requires more than 70
landings, while these numbers for base 2 are 600, 6 and 25.

The objective function cost assigns 1 million units per passenger unattended,
10 thousand per landing, and roughly 10 units per minute of flight (it depends on
the helicopter used and range from 4 to 20). The tests reported below compare
the previous algorithm (from Moreno et al. [7]) running with a CPU time limit
of 40 minutes, with the proposed algorithm CG-HRP with CPU time limits of
40 and 60 minutes. We remark that the previous algorithm calls the MIP solver
only once, just after constructing all the initial columns. The CG-HRP calls to
the MIP solver limits its CPU time to 5 minutes. In all tests the number of
columns generated either in the initialization or in the random column gener-
ation procedure was proportional to the sum of the products of the number of
helicopters, number of departure times and the number of platforms to be at-
tended in each departure time. Table 1 presents the optimal LP value, the best
integer solution found after the post processing Best Int and the total number
of columns # Cols of the final RIP for each instance and each of three runs of
the algorithms, respectively.
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Table 1. Previous algorithm (40’), CG-HRP (40’) and CG-HRP (60’)

Inst. LP value Best Int #Cols LP value Best Int #Cols LP value Best Int #Cols

1 11,936,902 45,976,604 83148 9,684,181 59,016,398 22686 9,089,961 35,056,338 28101
2 885,537 35,863,655 49987 864,796 41,945,838 25089 856,076 12,904,707 33476
3 866,562 14,886,517 70848 862,918 1,908,200 26427 861,631 908,082 32063
4 763,848 27,681,760 61794 760,726 8,814,358 28183 759,217 8,814,358 39955
5 28,037,579 381,355 13012 322,319 17,401,650 8728 322,175 381,303 15641
6 16,837,377 19,431,951 12702 13,028,145 39,391,543 10781 12,704,151 22,401,593 19305
7 46,637,814 40,339,832 12894 39,290,050 50,340,030 12062 39,289,194 42,329,967 23612
8 100,261,168 102,277,756 12959 92,657,672 102,257,841 18703 92,657,655 100,247,778 24726

It can be observed that the previous approach is quite unstable relying on the
post processing to find solutions that are even better than its LP relaxation. As
expected the column generation approach always improved the LP relaxation
value although in 2 out of the 8 instances it failed to obtain the best integer
solutions. Nevertheless the CG-HRP best integer values either beat badly the
previous approach or loose by little. This suggests that investing in column
generation and perhaps in branching is the way to go.
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Abstract. We examine the behavior of two kernelization techniques for
the vertex cover problem viewed as preprocessing algorithms. Specifically,
we deal with the kernelization algorithms of Buss and of Nemhauser &
Trotter. Our evaluation is applied to random graphs generated under the
preferred attachment model, which is usually met in real word applica-
tions such as web graphs and others. Our experiments indicate that, in
this model, both kernelization algorithms (and, specially, the Nemhauser
& Trotter algorithm) reduce considerably the input size of the problem
and can serve as very good preprocessing algorithms for vertex cover, on
the preferential attachment graphs.

1 Introduction

Given a graph G and a non-negative integer k, the Vertex Cover problem asks
whether k of the vertices of G are endpoints of all of its edges. The minimum k
for which a graph G has a vertex cover of size k or less is called the vertex cover
of G and is denoted as vc(G).

Vertex Cover was one of the first problems proven to be NP-complete [14]
and, since then, a lot of efforts have been done in theory and in practice towards
coping with its computational intractability. In this direction, there were sev-
eral advances on the existence of approximation algorithms [15, 13], while lower
bounds to its constant factor aproximability have been proposed in [12].

More recently, Vertex Cover has been extensively studied under the view-
point of fixed parameter complexity. According to the parameterization ap-
proach, some part of the problem is declared as the parameter and reflects the
part of the problem that is expected to be small in most of the “real word”
instances. Parameterized complexity asks whether an algorithm of complexity
O(f(k) · nO(1)) exists, where k is the parameter and n is the problem size. Such
a parameterized algorithm classifies the parameterized problem in the class FPT
and claims that the problem is tractable at least for small values of the para-
meter. For more details on the recent advances and challenges of parameterized
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complexity we refer to [9, 8]. In the case of vertex cover, the parameter is k and
Vertex Cover is known to be in FPT. There is a long time race towards ob-
taining the fastest parameterized algorithm for it; the current champion is [6]
that runs in O(kn + 1.2738k) steps.

One of the main tools for the design of fast parameterized algorithms is ker-
nelization. This technique consists in finding a polynomial-time reduction of a
parameterized problem to itself in a way that the sizes of the instances of the
new problem —we call it kernel— only depend on the parameter k. The function
that bounds the size of the main part of the reduced problem determines the
size of the kernel and is usually of polynomial (on k) size. If a kernel exists,
then we can apply the fastest available exact algorithm for the problem to the
(reduced size) kernel instead of the initial instance. Several kernelizations have
been proposed for Vertex Cover. A simple kernel of size O(k2) was proposed
by Buss [5]. So far, the smallest kernel has size ≤ 2k and its follows from the
results of Nemhauser & Trotter in [16]. More recently a kernel of size ≤ 3k ap-
peared, based on the “crown decomposition” technique in [10]. An experimental
evaluation of these three kernelization techniques was done in [1]. The graphs
used for the study in [1] were taken from open-source repositories of biological
data. We stress that no random graph model was considered in [1].

Notice that kernelization can also be seen as a preprocessing algorithm. It
essentially provides a way to preprocess the input of a problem and transform it
to an equivalent one of size of provably bounded size. From a practical point of
view, this approach may be useful not only when the parameter k is small, as it
is presumed by the parameterized complexity. Moreover, in many cases of para-
meterized or exact algorithms, actual running times are much better than their
theoretically proven bounds. This brings up the challenge of evaluating their
performance on specific models of inputs. In this paper, we start such an eval-
uation with the Vertex Cover problem. A basic concern for our experiments
was the model of graphs on which they should be applied.

At the end of the decade of 90’s, several empirical studies showed that the
degree distribution of large dynamic graphs seem to follow a power-law tail.
Among those graphs studied were the WWW, Internet, metabolic networks and
others (see, for example, [3] or the surveys [17, 2]). Those results gave a push
to the theoretical study of new random graph models with power law tail, as
the classical Erdős-Rényi-Gilbert model have a bell-shaped degree distribution,
and an exponetially decreasing tail, which did not fit the experimental evidence
of power law degree distribution. Recently, it has been showed that the same
experimental techniques used on the WWW, namely Traceroute sampling, when
applied to the classical Gn,p model also follow a power law with exponent 1 [7]. In
any case, the experimental work on power-law distribution graphs, gave a fruitfull
research on dynamic random graph models to fit the experimental evidence,
observed for power-law graphs, like the clustering coefficient and small diameter.
The more basic model of heavy tailed degree distribution random graphs is the
preferential attachement model (PAM) given implicitly in [3] and made rigorous
in [4].
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For the above reasons, we adopt here a model of random graphs generated
using the preferred attachment criterion. In this model, a random graph is gen-
erated by adding vertices one by one, and the selection of their neighbors is done
in a way that favorites vertices that have already big degree. In this sense, the
vertices of the graph are organized around “clusters” of high degree vertices.
Apart from the WWW, such models resemble graphs emerging by distinct ap-
plications such as collaboration networks (i.e. in biology, in science, or in film
actors), word co-occurrences, or neural networks; see [17].

We base our experiment on the kernelizations of Buss and of Nemhauser
& Trotter and we call them Buss- and NT-kernelization respectively. In both
preprocessing algorithms the input is a pair (G, k) and the output is either a
definite answer (YES or NO) or a new equivalent instance (G∗, k∗) of the problem.
In case no definite answer is given by the kernelization, the returned equivalent
instance (G∗, k∗) is the input for an exact algorithm for the vertex cover problem.

Let n denote the number of the vertices of the input graph. Currently, the
fastest exact algorithm for Vertex Cover has running time O∗(1.19n) [18];
A much simpler (and easier to implement) algorithm for the same problem was
given in [11] and has running time O∗(1.221n).

Clearly, a preprocessing algorithm is good if it achieves a good reduction of
the input size. A measure of this reduction could be the ratio |V (G∗)|/|V (G)|.
Instead, we suggest a more realistic measure based on the fact that vc(G) =∑

H∈G(G) vc(H), where G(G) is the set of the connected components of a graph
G. This implies that the size of the biggest component of G will dominate the
running time of the (exponential time) search for a vertex cover of minimum size.
Thus, it reasonable to choose as measure of the input size reduction the ratio
maxH∈G(G∗) |V (H)|/maxH∈G(G) |V (H)| where G∗ is the output graph when we
apply kernelization K to an input graph G. As the graphs generated by our
model will always connected, we redefine the reduction measure as

ρ(K, G) =
maxH∈G(G∗) |V (H)|

|V (G)|
and we refer to it as the component reduction ratio for kernelization K applied
to the graph G (in this paper K∈ {Buss, NT}).

In the following, we evaluate the algorithms for several values of k, with the
following criteria:

1. The percentage of cases where the kernelization gives a definite answer.
2. The component reduction ratio (given that the kernelization does not give

a definite answer).
3. The comparative performance of the two algorithms according to criteria 1

and 2.
4. The comparative performance of the two algorithms according to their run-

ning times.

The most remarkable result of our experiments is that both kernelization algo-
rithms achieve a very good reduction on graphs generated under the preferential
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attachment model. In particular, we observe reductions approaching the 9% in
the case of Buss-kernelization and the .35% in the case of NT-kernelization (for
any value of k ≤ 100 and for graphs with 2000 vertices). This indicates that
the NT-kernelization does not only provide the smallest (so far) kernel for pa-
rameterized Vertex Cover but can also serve as a very good preprocessing
algorithm for the same problem when applied to graphs emerging from the pre-
ferred attachment model.

The paper is organized as follows. In Section 2 we present the two kernelization
algorithms and the way we implemented them. In Section 3 we detail the model
of random graphs that we use. In Section 4 we present and comment the results
of our experiments. Finally, in Section 5, we give some remarks and research
directions.

2 Kernelizations for Vertex Cover

We consider undirected graphs without loops nor multiple edges. Given a graph
G, its vertex and edge set are denoted as V (G) and E(G) respectively. A con-
nected component of a graph is called non-trivial if it contains at least 2 vertices.
Given a vertex v ∈ V (G) we denote by degG(v) the degree of v in G, i.e. the
number of vertices adjacent to v in G. We also denote by G − v the graph ob-
tained by G after we remove vertex v and all its incident edges. If S ⊆ V (G)
we define the subgraph of G induced by S as G[S] = (S, {e ∈ E(G) | e ⊆ S}).
Finally, we use the notation I(G) for the set of isolated vertices in G.

2.1 The Kernelization of Buss

The first kernelization we study in this paper follows from the results in [5] and
is sketched below:

def Buss(G, k) :
1. if k = 0 and I(G) = V (G): return YES
2. if k = 0 and I(G) �= V (G): return NO1
3. if ∃v ∈ V (G) : degG(v) > k: return Buss(G− v, k − 1)
4. if |V (G)| > k(k + 1): return NO2
5. if G has more than k non-trivial connected components: return NO3
6. return (G[V (G)− I(G)], k)

The correctness of the algorithm is based on the three following facts: a) any
vertex of degree more than k should be in any vertex cover of size ≤ k, b) a graph
with max degree ≤ k and a vertex cover of size ≤ k cannot have more than k+k2

non-isolated vertices, and c) any graph with more than k non-trivial connected
components has no vertex cover of size less than k. The time complexity of
Buss(G, k) is O(k · |V (G)|).

In order to refine the analysis of our experiments, we distinguish between the
three ways that the algorithm may return a negative answer. The first negative
answer (NO1) appears is the case when, after the deletion of k high degree vertices,
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there still remain edges in the graph. The second (NO2) appears when no high
degree vertices exist and the graph has big size (more than k + k2 vertices). The
last one (NO3) is when the current graph has more than k non-trivial connected
components.

We would like to stress that Step 6 (corresponding to NO3) is not a part of the
classic kernelization of Buss. However, we added it because in our experiments
it behaves rather well as a filter of NO-instances.

2.2 The Kernelization of Nemhauser & Trotter

The kernelization of Nemhauser & Trotter follows from the results in [16] and is
sketched bellow:

def NT(G, k) :
1. let U1 = V (G) and let U2 be a new set of vertices where |U1| = |U2|
2. let σ : U1 → U2 be a bijection from U2 to U1
3. let H = (U1 ∪ U2, {{x, y} | x ∈ U1, y ∈ U2, and {x, σ(y)} ∈ E(G)})
4. let S be a vertex cover of H
5. let V1 = {x | x ∈ S ∩ U1 and σ−1(x) ∈ S}
6. let V0 = {x | x ∈ U1 − S and σ−1(x) �∈ S}
7. let V 1

2
= U1 − V1 − V0

8. if |V1| > k: return NO1
9. if |V1| = k and E(G[V 1

2
]) �= ∅: return NO2

10. if |V1| = k and E(G[V 1
2
]) = ∅: return YES

11. if |V 1
2
| > 2(k − |V1|): return NO3

12. return (G[V 1
2
], k − |V1|)

NT(G, k) first constructs a bipartite graph H where one of its parts has the
vertices of G and the other copies of the vertices of G. An edge from one part to
the other is placed if the corresponding vertices are adjacent to the original graph
G. This construction takes place in steps 1–3. In step 4, the algorithm finds a
minimal vertex cover S of H . Such a vertex cover can be computed in polynomial
time because H is bipartite. Specifically, we have done so adding a source and
sink vertex to H and computing a max-flow min-cut using the Edmonds-Karp
algorithm (its running time is O(|V ||E|). In steps 5–7 the algorithm partitions
the vertices of G into three sets V1, V0, and V 1

2
: those that both themselves

and their copies belong in S, those than neither themselves nor their copies
belong into S, and those that either themselves or their copies belong to S
(but not both). From [16], it follows that a) vc(G) = vc(G[V 1

2
]) + |V1| and b)

|V 1
2
| ≤ 2 ·vc(G[V 1

2
]). These relations justify the answers provided in steps 8–12.

There are three possible ways for the algorithm to return NO: the first appears
when the size of V1 is bigger than k (NO1), the second appears when |V1| = k
and there are edges between vertices in V 1

2
(NO2), and the third appears when

|V 1
2
| > 2(k − |V1|) (NO3).

We did not add the filter of Step 6 of the Buss(G, k) algorithm as our ex-
periments showed that, for our graph generation model, it does not offer any
additional filtering for the case of NT-kernelization.
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3 The Model

The graph generation algorithm is depicted bellow; we assume that m is a small
constant (m ' n):

def PrefAttach(n, m) :
1. let G be a cycle of m vertices
2. for i = m + 1 to n:

add a new vertex u to G
add m edges from u to v1, . . . , vm,

where each vi is selected with probability degG(vi)2

v∈V (G−u) degG(v)2

3 return G

Function Pref-Attach(n, m) generates graphs incrementally adding one ver-
tex at each step. Each new vertex gets m neighbors that are picked among the
vertices of the already constructed graph. The selection of a neighbor is biased
in a way that vertices of high degree in G are prefered against those with low
degree. This makes the generated graphs look like clusters of vertices positioned
in a way that resembles the adjacency of web graphs. If G is a graph generated
by Pref-Attach(n, m), then |V (G)| = n and |E(G)| = m(n−m + 1).

Our implementation of the above procedure confirms the intuition that the
vast majority of the vertices in G are of low degree while a small minority has
big degree. In Figure 1 one can see the degree distribution of a graph generated
by Pref-Attach(2000, 4).
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Fig. 1. Degree distribution on a Pref-Attach(2000, 4) graph

4 Experimental Results

In this section we present some experimental results to evaluate the Buss and
NT kernelization algorithms for the Vertex Cover problem on the preferred
attachment model. To do so, we have implemented both algorithms as well as the
generation of the random graphs. All our code has been written in C++ using
the STL and compiled with GCC 3.4.1 with the -O3 option. The experiments
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have been performed on a machine with a Intel Pentium 4 CPU at 3.20GHz and
with 3GB of memory running a Linux operating system.

We split the presentation of our results in three subsections. First, we present
the distribution of the possible results of the two kernelization algorithms. Af-
terwards, we show the component reduction ratio for each one of them. Finally,
we present some time measurements.

4.1 Distribution of the Possible Answers

In Figure 4.1, we present the percentages for the appearance of the possi-
ble outputs (NO1, NO2, NO3, and DON’T KNOW) of Buss(G, k) and NT(G, k)
for k ∈ {1, . . . , 100}. Our sample contained 500 graphs, generated by Pref-
Attach(n, m) taking n = 2000 and m = 4. experiments. The curves for other
values of n and m behave similary. We do not include the count of YES answers
in the figures because they never appeared in our experiments.

With regard to the Buss kernelization, we can see that answers NO1, NO2 and
NO3 play a complementary role as k increases: The NO1 criterium is usefull when
k is rather small and vanishes as it increases. At this point, the NO2 criterium
turns to be usefull to report negative answers but, again, vanishes as k keeps
increasing. It is then the turn of the NO3 criterium to report negative answers
until a point where DON’T KNOW answers begin to appear, which happens in more
than a half of the cases for k > 33 on our Pref-Attach(2000, 4) graphs.

The NT kernelization exhibits a similar behaviour with respect to the com-
plementary role of the different negative criteria as k increases. However, an
immediate comparison of the two diagrams implies that the NT kernelization
gives much more information than the Buss kernelization. For instance, we can
report a negative answer on more than one half of the instances for values of k
up to 65 (rather than 33 with Buss).

To have a clearear view of when certain percentages of NO answers can be
expected, see Figure 4.1. The horizontal axis represents distinct values of n (the
number of vertices of the generated graphs) and each of the lines represents
the biggest k for which the percentage of the DON’T KNOW answer was grater
than 0%, 20% or 50% for the Buss and the NT kernelizations. In this case, the
experiment shows the averages computed over 200 graphs for each size.

Again it is clear that the NT-kernelization is more powerfull and scales bet-
ter with the graph size than its Buss counterpart. No only that, Figure 4.1
also induces us to conjecture that if G is a random graph generated by Pref-
Attach(m, n) then, with high probability, vc(G) ≥ cm logO(1) n where ck is a
constant depending on m.

4.2 Component Reduction Ratio

We consider now the reduction that is achieved in the cases where the answer is
unknown and a kernel is computed. We are interested in the component reduction.

Figure 4.1 presents the percentual values of ρ(Buss, k) and ρ(NT, k). Again,
our sample contained 500 graphs, generated by Pref-Attach(n, m) for n = 2000
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Fig. 2. Behaviour of Buss and NT kernalizations on Pref-Attach graphs with n = 2000
and m = 4 for k ∈ {1, . . . , 100}
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Fig. 3. Maximal value of k for which Buss and NT kernelizations can give a neg-
ative answer in p% of the cases for p ∈ {0, 20, 50} on Pref-Attach graphs with
n ∈ {100, . . . , 2000} and m = 4
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Fig. 4. Component reduction ratio

and m = 4. The horizontal axis represent the values of k up to 100, and the vertical
axis represents the percentage of the component reduction. The curve is not shown
for values of k where a definite answer was found.

The results are quite positive for the capacity of the Buss kernelization as a
preprocesing algorithm: even when k = 100, the Buss kernelization achieves a
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reduction to equivalent instances where the maximum component has size that is
no bigger than the 9% of the size of the original input.

News are even better in the case of the NT kernelization, because it achieves a
maximum component size reduction arround a 0.35% for any k ≤ 100. This means
that the brute force algorithm shall only have to solve vertex covers for compo-
nents with an average of 7 vertices. Such a performance clearly indicates that the
NT kernelization is indeed an excellent preprocessing algorithm for graphs gener-
ated by the preferred attachment model.

4.3 Running Times

So far NT kernelization beats the Buss kernelization by any means. However,
we should mention that on the preferred attachment model, the opposite holds
as far as the running time is concerned. Time measures for the previous experi-
ments show that our implementation for NT is about 10 times slower than our
implementation for Buss. However, the actual running times are so small (tenths
of seconds for NT and hundredths of seconds for Buss) that these do not seem
to matter. Moreover, we should stress that these are just preprocessing times:
the main running times would still be dominated by the time required by the
exact (exponential) algorithm. We thus conclude that the relative speed of both
algorithms is not that big.

5 Discussion

This paper attempts a first study of the performance of kernelization algorithms
when treated as preprocessing algorithms to hard problems, on the family of ran-
dom graphs that we have used. Especially for the Vertex cover, it remains an
open project to see whether the optimistic results of this paper can be extended
for other models of random graphs generated by several proposed variations on
the preferred attachment mechanism. Aa the PAM is a model for the web graph,
it would be useful to confirm that the same results come up when the experi-
ments are applied to a sufficiently large part of the main component of the web
(or the internet graph). This could have a potential for a new way to identify
big hubs in those graphs. Finally, we believe that the potential of the kerneliza-
tion idea can offer experimental results that are really better than the formally
proven bounds. It is an open project to examine this for kernelization algorithms
provided by the parameterized complexity context for other problems as well.
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Abstract. Partitioning is one of the basic ideas for designing efficient
algorithms, but on NP-hard problems like the Steiner problem, straight-
forward application of the classical partitioning-based paradigms rarely
leads to empirically successful algorithms. In this paper, we present two
approaches to the Steiner problem based on partitioning. The first uses
the fixed-parameter tractability of the problem with respect to a certain
width parameter closely related to path-width. The second approach is
based on vertex separators and is new in the sense that it uses parti-
tioning to design reduction methods. Integrating these methods into our
program package for the Steiner problem accelerates the solution process
on many groups of instances and leads to a fast solution of some previ-
ously unsolved benchmark instances.

1 Introduction

The Steiner problem is the problem of connecting a set of terminals (vertices in
a weighted graph or points in some metric space) at minimum cost. This is a
classical NP-hard problem with many important applications in network design
in general and VLSI design in particular [3, 6].

For such (NP-hard) problems, straightforward application of the classical
partitioning paradigms rarely leads to empirically successful algorithms. Divide-
and-conquer techniques are not generally applicable, because one usually cannot
find independent subproblems. Dynamic programming techniques can indeed be
applied, but they are usually practical only for a very limited range of instances.

In this paper, we present two practically helpful methods which are based on
partitioning. In Sect. 2, we present an algorithm that uses the fixed-parameter
tractability of the problem with respect to a certain width parameter closely re-
lated to path-width. The running time of the algorithm is linear in the number
of vertices when the path-width is constant, and it is practical when the con-
sidered graph has a small width. In Sect. 3, we introduce the approach of using
partitioning for reducing the size of the instance (i.e., developing partitioning-
based reduction methods). We present two new reduction methods based on
this approach. Methods like those described in this paper are not conceived as
stand-alone solution routines for a wide range of instances; but as subroutines of
more complex optimization programs, they are much more broadly applicable.
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An additional feature is that by the cooperation of the methods presented here
we can already profit from small width in subgraphs of a given instance; these
interactions will be elaborated in Sects. 3 and 4. Finally, some experimental
results are presented in Sect. 4.

1.1 Preliminaries

The Steiner (tree) problem in networks can be stated as follows: Given
a (connected) network G = (V, E, c) (with vertices V = {v1, . . . , vn}, edges E
and edge weights ce > 0 for all e ∈ E) and a set R, ∅ �= R ⊆ V , of required
vertices (or terminals), find a minimum weight tree in G that spans R (a
Steiner minimal tree). For more information on this problem, see [6].

We define r := |R|. If we want to stress that vi is a terminal, we will write zi

instead of vi. A bottleneck of a path P is a longest edge in P . The bottleneck
distance b(vi, vj) or bij between two vertices vi and vj in G is the minimum
bottleneck length taken over all paths between vi and vj in G. An elementary
path is a path in which only the endpoints may be terminals. Any path between
two vertices can be broken at inner terminals into one or more elementary paths.
The Steiner distance along a path P between vi and vj is the length of a
longest elementary path in P . The bottleneck Steiner distance (sometimes
also called “special distance”) s(vi, vj) or sij between vi and vj in G is the
minimum Steiner distance taken over all paths between vi and vj in G. A major
relevance of bottleneck Steiner distances is that the cost of an optimum Steiner
tree in G does not change by deleting edges (vi, vj) with cij > sij (or, conversely,
by inserting edges (vi, vj) of length sij) [4]. For any subset S ⊆ R, all bij , sij

with vi, vj ∈ S can be computed in time O(|E|+ |V | log |V |+ |S|2) [4, 9].

2 Using (Sub-) Graphs of Small Width

In this section, we present a practical algorithm for solving the Steiner prob-
lem in graphs with a small width parameter. The width concept used here is
closely related to path-width, as we will show in Sect. 2.3. For an overview of
subjects concerning path-width and the more general notion of tree-width see
[1]. The running time of the algorithm is linear in the number of vertices when
the width is constant, thus it belongs to the category of algorithms exploiting
the fixed-parameter (FP) tractability of NP-hard problems. There are already
FP-polynomial algorithms for the Steiner problem in graphs. Specifically, in [8]
a linear-time algorithm for graphs with bounded tree-width is described. But
this algorithm is more complicated than the one we present here, and its run-
ning time grows faster with the (tree-) width (it is given in [8] as O(nf(d)) with
f(d) = Ω(d4d), where d is the tree-width of the graph). Therefore, it seems to be
not as practical as our algorithm, and no experimental results are reported in [8].
In a different context (network reliability), a similar approach using path-width
is described in [11], which is practical for a range of path-widths similar to the
one considered here. We also adapted that approach to the Steiner problem, but
the experimental results were not as good as with the one presented here.
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2.1 The Basic Algorithm

We maintain a set of already visited vertices and a subset of them (the border)
that are adjacent to some non-visited vertex. In each step, the set of visited
vertices is extended by one non-visited vertex adjacent to the border. For all
possible partitions in each border, we calculate (the cost of ) a forest of minimum
cost that contains all visited terminals with the property that each tree in the
forest spans just one of the partition sets. We are finished when all vertices
have been visited. The observation behind this approach is as follows: For any
optimal Steiner tree T , the subgraph of T when restricted to the visited vertices
is a forest, which also defines a partition in the border. The plan is to calculate
these forests in a bottom-up manner, in each step using the values calculated in
the previous step. If the size of all borders can be bounded by a constant, the
total time can be bounded by the number of steps times another constant.

For an arbitrary ordering v1, . . . , vn of the vertices and any s ∈ {1, . . . , n},
we define Vs := {v1, . . . , vs} and denote with Gs the subgraph of G with vertex
set Vs. In the following, we assume an ordering of the vertices with the property
that all Gs are connected. (For example, a depth-first-search traversal of G
delivers such an ordering.) We denote with Bs the border of Vs, i.e., Bs := {vi ∈
Vs | ∃(vi, vj) ∈ E : vj ∈ V \Vs}. With Ls we denote the set of vertices that leave
the border after step s, i.e., Ls := (Bs−1 ∪ {vs}) \Bs. The inclusion of vs in this
definition should cover the case that vs has no adjacent vertices in V \ Vs; this
simplifies some other definitions. Consider a set Q, Bs ∩ R ⊆ Q ⊆ Bs, and a
partitioning P = {P1, . . . , Pt} of Q into non-empty subsets, i.e.,

⋃̇
1≤i≤tPi = Q

and ∅ �∈ P . The number of ways of partitioning a set of b := |Q| elements into
t non-empty subsets is

{
b
t

}
, a Stirling number of the second kind, and the total

number of partitions is B(b), the b-th Bell number. For a partition P and a set
L ⊆ V we define P−L := {P ′

i | Pi ∈ P , P ′
i = Pi \ L}. Let F (s,P) be a forest of

minimum cost in Gs containing all terminals in Vs and consisting of t (vertex-
disjoint) trees T1, . . . , Tt such that Ti spans Pi for all i ∈ {1, . . . , t}. With c(s,P)
we denote the cost of F (s,P).

Let V0 = B0 = ∅ and set c(0, ∅) = 0. The value c(s,P) can be calculated
recursively using a case distinction:

– vs ∈ Q: c(s,P) = min{c(s− 1,P ′) + C |
P ′ = {P1, . . . , Py}, j ∈ {0, . . . , y}, ∀ 1 ≤ l ≤ j : vl ∈ Pl,
P = ({{vs} ∪

⋃
1≤l≤j Pl} ∪ {Pj+1, . . . , Py})− Ls,

C =
∑

1≤l≤j c(vl, vs) },
– vs �∈ Q: c(s,P) = min {c(s− 1,P ′) | P = P ′ − Ls}.

The cost of an optimal Steiner tree in G is: min {c(s,P) | R ⊆ Vs, |P| = 1}.
Obviously the forests F (s,P) (and an optimal Steiner tree) can be calculated
following the same pattern.

By using the recursive formula above, the necessary values can be calculated
in a bottom-up manner by memorizing, for each step s, the values c(s,P). We
assume c(s,P) = ∞ if no partition P is calculated at step s. This leads to the
following algorithm BORDER-DP (DP stands for Dynamic Programming):
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BORDER-DP(G, R) (assuming an ordering of the vertices)
1 s := 0; q := 0; opt := ∞; (q : number of visited terminals)
2 c(s, ∅) := 0;
3 while s < n :
4 s := s + 1; determine vs, Bs and Ls;
5 if vs ∈ R : q := q + 1;
6 forall P with c(s − 1, P) �= ∞ :
7 oldCost := c(s − 1, P);
8 if vs �∈ R and ∅ �∈ P − Ls :
9 c(s, P − Ls) := oldCost;
10 Pcandidates := {Pi ∈ P | ∃vi ∈ Pi : (vi, vs) ∈ E};
11 forall Pconnect ⊆ Pcandidates :
12 connectionCost := Pi∈Pconnect minvi∈Pi,(vi,vs)∈E c(vi, vs);
13 Pstay := P\Pconnect ; Pnew := ({{vs} ∪ Pi∈Pconnect Pi}∪Pstay) − Ls;
14 if ∅ �∈ Pnew and c(s,Pnew) > oldCost + connectionCost :
15 c(s,Pnew) := oldCost + connectionCost;
16 if q = |R| and |Pnew| = 1 : (feasible Steiner tree)
17 opt := min(opt, c(s,Pnew));
18 return opt;

Let ps denote the number of partitions at step s. We have ps =
∑

R∩Bs⊆Q⊆Bs

B(|Q|), where B(b) is the b-th Bell number; so ps = O(2bsB(bs)) with bs := |Bs|.
We only maintain one global list of partitions, which is updated after each step,
keeping for each valid partition a solution of minimum cost. Because of the loop
in Line 11, this list can grow to at most ls := 2bsps = O(22bsB(bs)) partitions.
Eliminating the duplicates can be done by sorting the list: Each partition can be
represented as a (lexicographically) sorted string (of length at most 2bs) of sorted
substrings (of length at most bs) separated by some extra symbol. Using radix
sort, all the individual sortings of ls strings can be done in total time O(n+lsbs).
Sorting the resulting list of ls strings takes again time O(n + lsbs). We set aside
for now a total extra time of O(|E|) for the operations on edges; and assume
that an ordering of vertices is given (these points are explained below). The (rest
of the) operations in Lines 12− 17 can be carried out in time O(bs). This gives
the total running time O(

∑n
s=1 bs22bsB(bs)). Note that this bound implicitly

contains the extra amortized time O(|E|) by the following observation: After
a vertex is visited for the first time, it remains in the border as long as it has
some non-visited adjacent vertex; so each edge is accounted for by its first-visited
endpoint. Now if we can guarantee an upper bound b for the size of all borders, we
have an upper bound of O(nb22bB(b)) for the running time. By upper-bounding
B(b) roughly with (2b)b we get the running time O(n2b log b+3b+log b). This means
that the algorithm runs in linear time for constant b and, for example, in time
O(n2) for b = log n/ log log n.

For the actual implementation, some modifications are used. For example,
avoiding duplicate partitions is done using hashing techniques, which reduces
the amount of necessary memory. Also, some heuristics are used to recognize
partitions that cannot lead to an optimal Steiner tree.
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2.2 Ordering the Vertices

In Sect. 2.3, we will show that finding an ordering of vertices such that the maxi-
mum border size equals b is (up to some easy transformations) equivalent to find-
ing a path-decomposition of path-width b. The problem of deciding whether the
path-width of a given graph is at most b, and if so, finding a path-decomposition
of width at most b is NP-hard for general b, but for constant b, this problem
can be solved in linear time [2]. However, already for b > 4 the corresponding
algorithm is no longer practical [12], and it seems that no practical exact algo-
rithm is known for more general cases. Furthermore, we have a more specific
scenario (for example we differentiate between terminals and non-terminals). So
for the actual implementation we use a heuristic, which has produced quite sat-
isfactory results for our applications. The heuristic chooses in each step a vertex
vs adjacent to the border using a (ad hoc) priority function of the following pa-
rameters: size of resulting set Ls, number of visited vertices in the adjacency list
of vs, membership of vs in R, and number of edges connecting Vs and V \Vs. We
select the starting vertex by trying a small number of terminals and performing
a sweep through the graph without actually computing the partitions. In each
sweep, we estimate the overall number of resulting partitions by summing up
the (ad hoc) values |Bs|2|Bs \ R| in each step. Finally, we select the terminal
that yields the smallest estimated number.

A straightforward implementation of this heuristic needs time O(n2) for all
choices. This bound could be improved using advanced data structures for pri-
ority queues and additional tricks, but the ordering has not been the bottleneck
in our applications; and theoretically a better (linear for constant b as in our
applications) time bound for path-decomposition is available anyway.

2.3 Relation to Path-Width

In this section, we show that every path-decomposition with path-width k de-
livers a sequence of borders B = (B1, . . . , Bs, . . . , Bn) such that max{|Bs| | 1 ≤
s < n} ≤ k and vice versa.

A path-decomposition of a graph G = (V, E) is a sequence of subsets of
vertices (U1, U2, . . . , Up), such that

1.
⋃

1≤i≤p Ui = V ,
2. ∀(v, w) ∈ E ∃i ∈ {1, . . . , p} : v ∈ Ui ∧ w ∈ Ui,
3. ∀i, j, k ∈ {1, . . . , p} : i ≤ j ≤ k ⇒ Ui ∩ Uk ⊆ Uj .

The path-width of a path-decomposition (U1, U2, . . . , Up) is max{|Ui| | 1 ≤
i ≤ p} − 1. The path-width of a graph G is the minimum path-width over all
possible path-decompositions of G. Note that the 3rd condition in the definition
of path-decomposition can be rewritten as follows: There are functions start ,
end : |V | → {1, . . . , p} with v ∈ Uj ⇔ start(v) ≤ j ≤ end(v). We call a path-
decomposition with functions start , end bijective if the mapping start is a
bijection; and minimal if it holds: end(v) ≥ i ⇒ start(v) = i ∨ ∃(v, w) ∈ E :
start(w) ≥ i. We state the following two lemmas (for the proofs, see [15]).
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Lemma 1. Every path-decomposition can be transformed to a minimal and bi-
jective path-decomposition of no larger path-width.

Lemma 2. Let (U1, . . . , Un) be a minimal, bijective path-decomposition of G
with the functions start and end. Assume that the vertices are ordered according
to their start values, i.e., start(v) = s ⇔ v ∈ Vs \ Vs−1. For each s ∈ {1, . . . , n}
it holds: Us = {vs} ∪Bs−1.

It follows that every path-decomposition of G can be transformed to a path-
decomposition U = (U1, . . . , Un) of no larger path-width such that for an order-
ing of vertices according to the start function of U it holds: Us = {vs} ∪ Bs−1.
On the other hand, it is easy to verify that each ordering of vertices and the
corresponding sequence of borders (B1, . . . , Bn) deliver a (minimal, bijective)
path-decomposition U by setting Us = {vs} ∪ Bs−1. In each case, we have:
max{|Us| | 1 ≤ s ≤ n} − 1 = max{|Bs−1| | 1 ≤ s ≤ n}.

3 Partitioning as a Reduction Technique

In this section, we present our approach of using partitioning to design reduction
methods, i.e., methods to reduce the size of a given instance without destroying
an optimal solution. This approach turns out to be quite effective in the context
of the Steiner problem, and it can also be useful for other problems. Furthermore,
it offers a straightforward path for a distributed implementation.

The method chosen here for partitioning is based on certain separating sets
(vertex separators), these are sets of vertices whose removal makes the (by as-
sumption connected) graph disconnected. We consider here (small) separating
sets that contain only terminals (terminal separators), although the basic
ideas can be extended to general vertex separators. This choice allows us to keep
the dependence between the resulting subinstances manageable.

Although one cannot assume that a typical instance of the Steiner problem has
small terminal separators, the situation often changes in the process of solving
an instance. This is particularly the case for geometric instances after a geomet-
ric preprocessing (FST generation phase, see [16]), but also for general instances
after applying powerful reduction techniques (see [10]). In both cases, the re-
sulting intermediate instances frequently have many small terminal separators.
For geometric instances, the existence of small vertex separators was already ob-
served in [13]; however, in that work a standard dynamic programming approach
was suggested for exploiting this observation, which is not nearly as practical
as the approach chosen here. The difference between the two approaches will be
elaborated in Sect. 3.2.

3.1 Finding Terminal Separators

It is well known that the problem of finding vertex separators (or the vertex
connectivity problem) can be solved by network flow techniques in the so-called
split graph [5]. This graph is generated by splitting each vertex into two vertices
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and connecting them by edges of low capacity; original edges have high (infinite)
capacity. In this way, k-connectedness (finding a vertex separator of size less
than k or verifying that no such separator exists) can be decided for a graph
with n vertices and m edges in time O(min{kmn, (k3 + n)m}) [5] (this bound
comes from a combination of augmenting path and preflow-push methods).

However, the application here is less general: we search for vertex separators
consisting of terminals only, so only terminals need to be split. Besides, we are
interested in only small separators, where k is a very small constant (usually
less than 5), so we can concentrate on the augmenting flow methods. More
importantly, we are not searching for a single separator of minimum size, but
for many separators of small (not necessarily minimum) size. These observations
have lead to the following implementation: we build the (modified) split graph (as
described above), fix a random terminal as source, and try different terminals as
sinks, each time solving a minimum cut problem using augmenting path methods.
In this way, up to Θ(r) (r = |R|) terminal separators can be found in time O(rm).
We accelerate the process by using some heuristics. A simple observation is that
vertices that are reachable from the source by paths of non-terminals need not
be considered as sinks. Similar arguments can be used to discard vertices that
are reachable from already considered sinks by paths of non-terminals.

Empirically, this method is quite effective (it finds enough terminal separators
if they do exist) and reasonably fast, so a more stringent method (e.g., trying
to find all separators of at most a given size) would not pay off. Note that the
running time is within the bound given above for the k-connectedness problem,
which is mainly the time for finding a single vertex separator.

3.2 Reduction by Case Differentiation

In this section, we describe a reduction method that exploits small terminal
separators S ⊂ R to reduce a given instance.

The case |S| = 1 corresponds to articulation points (and biconnected compo-
nents). It is known [6] that the subinstances corresponding to the biconnected
components can be solved independently.

The case |S| = 2 corresponds to separation pairs (and triconnected compo-
nents). Note that the two subinstances (corresponding to two subgraphs G1 and
G2) are no longer independent. Now, for any Steiner minimal tree T , two cases
are possible:

1. The terminals in S are connected by T inside G2. A corresponding Steiner
tree can be found by solving the subinstance corresponding to G2.

2. The terminals in S are connected by T inside G1. Now there are two subtrees
of T inside G2, and we do not know in advance how the terminals of G2 are
divided between them. But one can observe that the problem can be solved
by merging the terminals in S and solving the resulting subinstance.

Since we do not know T in advance, for a direct solution we must also consider
both cases for the complement G1. But if G2 is relatively small, the solution of
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the complementary subinstance can be almost as time-consuming as the solution
of the original instance, meaning that not much is gained (or time may even be
lost, because now we have to solve it twice). A classical approach would search
for components of almost equal size, but we choose a different approach. The
main idea is to solve only the small component twice, and then take edges that
are common to both solutions and discard edges that are included in neither.
After these modifications, we have a smaller instance with the same optimum
solution value, and we can proceed with this reduced instance.

For the general case (|S| = k), the basic approach is the same as for the case
|S| = 2; but a larger number of cases must be considered now. Remember from
Sect. 2.1 that the number of cases is B(k), the k-th Bell number. So this method
can be used profitably only for small k (usually for k ≤ 4).

Actually, not all these cases must always be considered explicitly, because
many of them can be ruled out at little extra cost using some heuristics. A basic
idea for such heuristics is the following:

Lemma 3. Let zi and zj be two terminals in the separator S and let b1
ij and s2

ij

be the bottleneck distance in G1 and bottleneck Steiner distance in G2 between zi

and zj, respectively. Then the cases in which zi and zj are connected in G1 can
be discarded if b1

ij ≥ s2
ij.

Proof. Consider a Steiner tree T connecting zi and zj in G1. A bottleneck on
the fundamental path between zi and zj has at least cost b1

ij . Removing such a
bottleneck and reconnecting the two resulting subtrees of T with the subpath
corresponding to s2

ij , we get again a feasible solution of no larger cost in which
zi and zj are connected in G2. ��
For the cases in which we assume that zi and zj are connected in G1, we do not
merge zi and zj while solving the subinstance corresponding to G2, but connect
them with an edge of weight b1

ij . In case this edge is not used in the solution of
the subinstance, this can lead to more reductions.

Such observations can be used to rule out many cases in advance. Nevertheless,
a question arises: Can we find an alternative method that does not need explicit
case differentiation? We introduce such an alternative in the following.

3.3 Reduction by Local Bounds

The general principle of bound-based reduction methods is to compute an upper
bound upper and a lower bound under some constraint lower constrained . The
constraint cannot be satisfied by any optimal solution if lower constrained > upper .
The constraint is usually that the solution must contain some pattern (e.g., an
edge or more complex patterns like trees, see [10]). Once it is established that
the test condition (the inequality above) is valid, the corresponding pattern (e.g.,
the edge) can be excluded, yielding a smaller (reduced) instance with the same
optimal solution. But it is usually too costly to recompute a (strong) lower bound
from scratch for each constraint. Here one can use an approach based on linear
programming. Any linear relaxation can provide a dual feasible solution of value
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lower and reduced costs c̃. We can use a fast method to compute a constrained
lower bound with respect to c̃. The sum of the two bounds is a lower bound for
the value of any solution satisfying the constraint. For details, see [4, 10].

In the following, we show how to develop a reduction test condition based
on local bounds, the application is analog to the usage of globally computed
bounds for reductions, see [10]. This approach has two main advantages: The
bounds can be computed faster; and there is less chance that the deviations
between the original instance and its linear relaxation can accumulate (and thus
deteriorate the computed bounds and methods using them). The main difficulty
is that the bounds must somehow take the dependence on the rest of the graph
into account.

Let S be a terminal separator in G and G1 and G2 the corresponding sub-
graphs. The bounds will be computed locally in supplemented versions of G2.
Let C be a clique over S. We denote with (C, b) the weighted version of C with
weights equal to bottleneck distances in G1; similarly for (C, s) with weights
equal to bottleneck Steiner distances in G. Let G′

2 and G′′
2 be the instances of

the Steiner problem created by supplementing G2 with (C, s) and (C, b), re-
spectively. We compute a lower bound lower constrained(G′′

2 ) for any Steiner tree
satisfying a given constraint in G′′

2 and an upper bound upper(G′
2) correspond-

ing to an (unrestricted) Steiner tree in G′
2. The test condition is: upper (G′

2) <
lower constrained(G′′

2 ).

Lemma 4. The test condition is valid, i.e., no Steiner minimal tree in G sat-
isfies the constraint if upper(G′

2) < lower constrained(G′′
2 ).

Proof. Consider T opt
con(G), an optimum Steiner tree of cost optcon(G) satisfying

the constraint. The subtrees of this tree restricted to subgraphs G1 and G2 build
two forests F1 (with connected components Ti) and F2 (Fig. 1, left). Removing
F2 and reconnecting F1 with T upper(G′

2) we get a feasible solution again, which
is not necessarily a tree (Fig. 1, middle). Let Si be the subset of S in Ti. Consider
two terminals of Si: Removing a bottleneck on the corresponding fundamental
path disconnects Ti into two connected components. Repeating this step until
all terminals in Si are disconnected in Ti, we have removed |Si| − 1 bottlenecks,
which together build a spanning tree spanT i for Si (Fig. 1, right). Repeating
this for all Ti, we get again a feasible Steiner tree T upper(G′) for the graph G′,
which is created by adding the edges of (C, s) to G.

Remember from Sect. 1.1 that the optimum solution value does not change
by inserting any edges (vi, vj) of length sij into G, so the optimum solution
values in G′ and G are the same. Let upper(G′) be the weight of T upper(G′). By
construction of T upper(G′), we have: upper(G′) = optcon(G)+upper (G′

2)−c(F2)−∑
i c(spanT i). The edge weights of the trees spanT i correspond to bottlenecks

in F1, so by definition they cannot be smaller than the corresponding bottleneck
distances in G1. By construction of G′′

2 , all these edges (with the latter weights)
are available in G′′

2 . Since the trees spanT i reconnect the forest F2, together
with F2 they build a feasible solution for G′′

2 , which even satisfies the constraint
(because F2 did), so it has at least the cost optcon(G′′

2 ). This means:
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F1

Ti

F1

1

T 2
upper(G’)

1

T (G’)21
F i

upper-spanTF1 F2

Ti

Fig. 1. Construction of T upper (G′) from T opt
con(G)

upper(G′) ≤ optcon(G) + upper(G′
2)− optcon(G′′

2 )
< optcon(G) + lower constrained(G′′

2 )− optcon(G′′
2 ) (test condition)

≤ optcon(G).

Thus optcon(G) > upper(G′) ≥ opt(G′) = opt(G), meaning that the constraint
cannot be satisfied without deteriorating the optimum solution value. ��

4 Experimental Results

In this section, we study the empirical impact of the presented methods. Meth-
ods like those in this paper cannot be expected to be usable as stand-alone
solution methods for a wide range of instances; however, they are very help-
ful as subroutines in many cases. By integrating these methods in our program
package for the Steiner problem [15], we could already solve several previously
unsolved benchmark instances from SteinLib [7], which otherwise could not be
tackled in reasonable times. For the experiments in this paper, we concentrate
on instances from a current real-world application (the LOFAR radio telescope
project, which is described below). An additional advantage of these instances
(beside their interesting practical background) is that we are already able to solve
all of them without the techniques described in this paper, so we can present
concrete running times for different solution methods, which also demonstrate
the improvements gained by the techniques presented here.

The LOFAR (LOw Frequency ARray) project is concerned with the construc-
tion of the largest radio telescope of the world, which is currently being built
by ASTRON in the Netherlands. It consists of many sensor stations that have
to be located along five spiral arms, with each arm stretching over hundreds
of kilometers. The distance between adjacent sensor stations along each arm
should increase in a logarithmic progression. The LOFAR sensor stations must
be placed while avoiding obstacles where stations cannot be placed geographi-
cally (e.g., the North Sea and population centers). The sensor stations should be
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connected by (expensive) optical fibers in order to send the data collected by the
sensors to a central computer for processing and analysis. Since cheaper existing
optical fibers with unused capacity can be purchased from cable providers, they
should be utilized to set up the optical network in the most economical way.
Note that the cost function is quite general, so these instances are not (pure)
geometric instances. A research branch in the LOFAR project is working on a
simulation-optimization framework [14], where different topological designs and
cost functions are developed. The Steiner problem is used to model the routing
part of the problem, in order to find a low-cost cabling for each of the scenarios
considered. The large amounts of money involved justify the wish for optimal
(or at least provably near-optimal) solutions. On the other hand, changes in the
scenario give rise to a large number (hundreds) of new candidate instances, so
excessively long runs for single instances are not tolerable.

The latest collection of instances we received from the LOFAR project [14]
consists of more than one hundred instances, divided in 13 groups (with different
settings of parameters). All these instances have 887 vertices, thereof 101 ter-
minals, and 163205 edges; but with various cost functions. For the experiments
here, we (randomly) chose one instance from each group (the results inside each
group were similar). We compare three (exact) solution methods:

(I) As a basis for comparisons, we use a somehow standard branch-and-cut
approach based on the classical (directed) cut formulation of the Steiner
problem, using a cut generating routine as described in [9]. However, in
contrast to [9], here we use no reductions at all. Since the program in
[9] heavily exploits the reduction-based methods (e.g. for computing sharp
upper bounds), here as a substitute we utilize the MIP optimizer of CPLEX
8.0 after solving the LP-relaxation to get a provably optimal integer solution
(the additional times for the MIP optimizer were relatively marginal for the
considered instances).

(II) In the second set of experiments, we use exactly the same cut-based al-
gorithm as under (I), but this time after performing our strong reduction
techniques from [10] as preprocessing.

(III) Finally, in the third set of experiments we use exactly the same reduction
techniques as under (II), but additionally we use the partitioning-based
techniques described in this paper. The cut-based routine is dropped, so no
LP-solver is used at all.

The results are summarized in Table 1 (all computations were performed on a
machine with an INTEL Pentium-4 3.4 GHz processor). We observe:

– The reduction techniques can heavily accelerate the solution process, a fact
that is meanwhile well established. For the considered set of instances, our
previous reduction techniques already improve the solution times of the
branch-and-cut algorithm by more than one order of magnitude.

– The partitioning-based techniques presented in this paper improve the (ex-
act) solution times by one additional order of magnitude, thereby eliminating
the need for an LP-solver like CPLEX altogether for all considered instances.
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Table 1. Summarized solution times for the LOFAR instances using different methods

Solution Method (I) (II) (III)
(B&C) (Preprocessing + B&C) (Preprocessing + Partitioning)

Average Solution Time
(seconds) 396 11 1.2
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Abstract. A useful approach to the mathematical analysis of large-scale
biological networks is based upon their decompositions into monotone
dynamical systems. This paper deals with two computational problems
associated to finding decompositions which are optimal in an appropriate
sense. In graph-theoretic language, the problems can be recast in terms
of maximal sign-consistent subgraphs. The theoretical results include
polynomial-time approximation algorithms as well as constant-ratio in-
approximability results. One of the algorithms, which has a worst-case
guarantee of 87.9% from optimality, is based on the semidefinite program-
ming relaxation approach of Goemans-Williamson [14]. The algorithm
was implemented and tested on a Drosophila segmentation network [7]
and an Epidermal Growth Factor Receptor pathway model [25], and it
was found to perform close to optimally.

1 Introduction

In living cells, networks of proteins, RNA, DNA, metabolites, and other species
process environmental signals, control internal events such as gene expression,
and produce appropriate cellular responses. The field of systems (molecular) bi-
ology is largely concerned with the study of such networks, viewed as dynamical
systems. One approach to their mathematical analysis relies upon viewing them
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as made up of subsystems whose behavior is simpler and easier to understand.
Coupled with appropriate interconnection rules, the hope is that emergent prop-
erties of the complete system can be deduced from the understanding of these
subsystems.

A particularly appealing class of candidates for “simpler behaved” subsys-
tems are monotone systems, as in [16, 15, 29]. Monotone systems are a class of
dynamical systems for which pathological behavior (“chaos”) is ruled out. Even
though they may have arbitrarily large dimensionality, monotone systems behave
in many ways like one-dimensional systems. For instance, in monotone systems,
bounded trajectories generically converge to steady states, and there are no sta-
ble oscillatory behaviors. Monotonicity is closely related to positive and feedback
loops in systems. The topic of analyzing the behaviors of such feedback loops
is a long-standing one in biology in the context of regulation, metabolism, and
development; a classical reference in that regard is the work [23] of Monod and
Jacob in 1961. See also, for example, [20, 22, 34, 26, 31, 6, 4, 1, 27].

An interconnection of monotone subsystems, that is to say, an entire system
made up of monotone components, may or may not be monotone: “positive feed-
back” (in a sense that can be made precise) preserves monotonicity, while “nega-
tive feedback” destroys it. Thus, oscillators such as circadian rhythm generators
require negative feedback loops in order for periodic orbits to arise, and hence
are not themselves monotone systems, although they can be decomposed into
monotone subsystems (cf. [5]). A rich theory is beginning to arise, characterizing
the behavior of non-monotone interconnections. For example, [3] shows how to
preserve convergence to equilibria; see also the follow-up papers [2, 18, 12, 9, 13].
Even for monotone interconnections, the decomposition approach is very use-
ful, as it permits locating and characterizing the stability of steady states based
upon input/output behaviors of components, as described in [4]; see also the
follow-up papers [1, 11, 19]. Moreover, a key point brought up in [32] is that new
techniques for monotone systems in many situations allow one to characterize
the behavior of an entire system, based upon the “qualitative” knowledge rep-
resented by general network topology and the inhibitory or activating character
of interconnections, combined with only a relatively small amount of quantita-
tive data. The latter data may consist of steady-state responses of components
(dose-response curves and so forth), and there is no need to know the precise
form of dynamics or parameters such as kinetic constants in order to obtain
global stability conclusions.

Generally, a graph, whose edges are labeled by “+” or “−” signs (sometimes
one writes +1,−1 instead of +,−, or uses respectively activating “→” or in-
hibiting “*” arrows), is said to be sign-consistent if all paths between any two
nodes have the same net sign, or equivalently, all closed loops have positive par-
ity, i.e. an even number, possibly zero, of negative edges. (For technical reasons,
one ignores the direction of arrows, looking only at undirected graphs; see more
details in Section 2.)

When applying decomposition theorems such as those described in
[3, 4, 1, 32, 2, 18, 11, 19, 12, 9, 13], it tends to be the case that the fewer the number
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of interconnections among components, the easier it is to obtain useful
conclusions. One may view a decomposition into interconnections of monotone
subsystems as the “pulling out” of “inconsistent” connections among monotone
components, the original system being a “negative feedback” loop around an
otherwise consistent system. In this interpretation, the number of interconnec-
tions among monotone components corresponds to the number of variables be-
ing fed-back. In addition, and independently from the theory developed in the
above references, one might speculate that nature tends to favor systems that
are decomposable into small monotone interconnections, since “negative” feed-
back loops, although required for homeostasis and for periodic behavior, have
potentially destabilizing effects, especially if there are signal propagation delays.
Some evidence is provided by work in progress such as [21], where the authors
compare certain biological networks and appropriately randomized versions of
them and show that the original networks are closer to being consistent, and by
[28], where the authors show that, in a Boolean setting, and using a mean-field
calculation of sensitivity, networks of Boolean functions behave in a more and
more “orderly” fashion the closer that the components are to being monotone.

Thus, we are led to the subject of this paper, namely computing the smallest
number of edges that have to be removed so that there remains a consistent
graph. In this paper, we study the computational complexity of the question of
how many edges must be removed in order to obtain consistency, and we provide
a polynomial-time approximation algorithm guaranteed to solve the problem
to about 87.9% of the optimum solution, which is based on the semidefinite
programming relaxation approach of Goemans-Williamson [14] (A variant of
the problem is discussed as well). We also observe that it is not possible to
have a polynomial-time algorithm with performance too close to the optimal.
While our emphasis is on theory, one of the algorithms was implemented, and
we show results of its application to a Drosophila segmentation network and to
an Epidermal Growth Factor Receptor pathway model. It turns out that, when
applying the algorithm, often the solution is much closer to optimal than the
worst-case guarantee of 87.9%, and indeed often gives an optimal solution.

2 Monotone Systems and Consistency

We will illustrate the motivation for the problem studied here using systems of
ordinary differential equations

ẋ = F (x) (1)

(the dot indicates time derivative, and x = x(t) is a vector), although the discus-
sion applies as well to more general types of dynamical systems such as delay-
differential systems or certain systems of reaction-diffusion partial differential
equations. In applications to biological networks, the component xi(t) of the
vector x = x(t) indicates the concentration of the ith species in the model at
time t. We will restrict attention to models in which the direct effect that one
given variable in the model has over another is either consistently inhibitory
or consistently promoting. Thus, if protein A binds to the promoter region of
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gene B, we assume that it does so either to consistently prevent the transcription
of the gene or to consistently facilitate it. (Of course, this condition does not
prevent protein A from having an indirect influence, through other molecules,
perhaps dimmers of A itself, that can ultimately lead to the opposite effect on
gene B.) Mathematically, we require that for every i, j = 1 . . . n, i �= j, the partial
derivative ∂Fi/∂xj be either ≥ 0 at all states or ≤ 0 at all states.

Given any partial order ≤ defined on Rn, a system (1) is said to be monotone
with respect to ≤ if x0 ≤ y0 implies x(t) ≤ y(t) for every t ≥ 0. Here x(t), y(t) are
the solutions of (1) with initial conditions x0, y0, respectively. Of course, whether
a system is monotone or not depends on the partial order being considered,
but we one says simply that a system is monotone if the order is clear from
the context. Monotonicity with respect to nontrivial orders rules out chaotic
attractors and even stable periodic orbits; see [16, 15, 29], and is, as discussed
in the introduction, a useful property for components when analyzing larger
systems in terms of subsystems.

A useful way to define partial orders in Rn, and the only one to be further
considered in this paper, is as follows. Given a tuple s = (s1, . . . sn), where
si ∈ {1,−1} for every i, we say that x ≤s y if sixi ≤ siyi for every i. For instance,
the “cooperative order” is the orthant order ≤s generated by s = (1, . . . 1). This
is the order ≤ defined by x ≤ y if and only if xi ≤ yi for all i = 1, . . . , n. It is not
difficult to verify if a system is cooperative with respect to an orthant order; the
following lemma, known as “Kamke’s condition,” is not hard to prove, see [29]
for details (also [3] in the more general context of monotone systems with input
and output channels).

Lemma 1. Consider an orthant order ≤s generated by s = (s1, . . . , sn). A sys-
tem (1) is monotone with respect to ≤s if and only if

sisj
∂Fj

∂xi
≥ 0, i, j = 1 . . . n, i �= j. (2)

An equivalent way to phrase this condition is to ask that ∂Fi/∂xj ≥ 0 at all
states for every i, j, i �= j, which is the Kamke condition for the special case
of the cooperative order. The name of the order arises because in a monotone
system with respect to that order each species promotes or “cooperates” with
each other.

A rephrasing of this characterization of monotonicity with respect to orthant
orders can be given by looking at the signed digraph associated to (1) and defined
as follows. Let V (G) = {1, . . . , n}. Given vertices i, j, let (i, j) ∈ E(G) and
fE(i, j) = 1 if both ∂Fj/∂xi ≥ 0 and the strict inequality holds at least at
one state. Similarly let (i, j) ∈ E(G) and fE(i, j) = −1 if both ∂Fj/∂xi ≤ 0
and the strict inequality holds at least at one state. Finally, let (i, j) �∈ E(G) if
∂Fj/∂xi ≡ 0. Recall that we are assuming that one of the three cases must hold.
Now we can define an orthant cone using any function fV : V (G) → {−1, 1}, by
letting x ≤fV y if and only if fV (i)xi ≤ fV (i)yi for all i. Given fV , we define the
consistency function g : E(G) → {true, false} by g(i, j) = fV (i)fV (j)fE(i, j).
Then, the following analog of Lemma 1 holds.
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Lemma 2. Consider a system (1) and an orthant cone≤fV . Then (1) is monotone
with respect to ≤fV if and only if g(i, j) ≡ 1 on E(G).

For the next lemma, let the parity of a chain in G be the product of the signs
(+1,−1) of its individual edges. We will consider in the next result closed undi-
rected chains, that is, sequences xi1 . . . xir such that xi1 = xir , and such that for
every λ = 1, . . . , r − 1 either (xiλ

, xiλ+1) ∈ E(G) or (xiλ+1 , xiλ
) ∈ E(G).

Lemma 3. Consider a dynamical system (1) with associated directed graph G.
Then (1) is monotone with respect to some orthant order if and only if all closed
undirected chains of G have parity 1.

2.1 Systems with Inputs and Outputs

As we discussed in the introduction, a useful approach to the analysis of bio-
logical networks consists of decomposing a given system into an interconnection
of monotone subsystems. The formulation of the notion of interconnection re-
quires subsystems to be endowed with “input and output channels” through
which information is to be exchanged. In order to address this we consider con-
trolled dynamical systems ([33], which are systems with an additional parameter
u ∈ Rm, and which have the form

ẋ = g(x, u). (3)

The values of u over time are specified by means of a function t → u(t) ∈ Rm,
t ≥ 0, called an input or control. Thus each input defines a time-dependent
dynamical system in the usual sense. To system (3) there is associated a feedback
function h : Rn → Rm, which is usually used to create the closed loop system ẋ =
g(x, h(x)). Finally, if Rn, Rm are ordered by orthant orders≤fV , ≤q respectively,
we say that the system is monotone if it satisfies (2) for every u, and also

qkfV (j)
∂gj

∂uk
≥ 0, for every k, j (4)

(see also [3].) As an example, let us consider the following biological model of
testosterone dynamics [10, 24]:

ẋ1 = A
K + x3

− b1x1

ẋ2 = c1x1 − b2x2
ẋ3 = c2x2 − b3x3.

(5)

Drawing the digraph of this system, it is easy to see that it is not monotone
with respect to any orthant order, as follows by application of Lemma 3. On
the other hand, replacing x3 in the first equation by u, we obtain a system
that is monotone with respect to the orders ≤(1,1,1), ≤(−1) for state and input
respectively. Defining h(x) = x3, the closed loop system of this controlled system
is none other than (5). The paper [10] shows how, using this decomposition
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together with the “small gain theorem” from monotone input/output theory
([3]) leads one to a proof that the system does not have oscillatory behavior,
even under arbitrary delays in the feedback loop, contrary to the assertion made
in [24]. We can carry out this procedure on an arbitrary system (1) with a
directed graph G as follows: given a set E of edges in G, enumerate the edges
in EC as (i1, j1), . . . (im, jm). For every 1 ≤ k ≤ m, replace all appearances of
xik

in the function Fjk
by the variable uk to form the function g(x, u). Define

h(x) = (xi1 , . . . xim). It is easy to see that this controlled system (3) has closed
loop (1).

Let the set E be called consistent if the undirected subgraph of G generated
by E has no closed chains with parity −1. Note that this is equivalent to the
existence of fV such that g ≡ 1 on E, by Lemma 4 applied to the open loop
system (3). If E is consistent, then the associated system (3) itself can also be
shown to be monotone: to verify condition (4), simply define each qk so that
(4) is satisfied for k, jk. Since ∂gjk

/∂uk = ∂Fjk
/∂xik

�≡ 0, this choice is in fact
unambiguous. Conversely, if (3) is monotone with respect to the orthant orders
≤fV , ≤q, then in particular it is monotone for every fixed constant u, so that E
is consistent by Lemma 3. We thus have the following result.

Lemma 4. The set of edges E of the digraph G is consistent iff the correspond-
ing controlled system (3) is monotone with respect to some orthant orders.

3 Statement of Problem

A natural problem is therefore the following. Given a dynamical system (1) that
admits a digraph G, use the procedure above to decompose it as the closed loop of
a monotone controlled system (3), while minimizing the number ‖EC‖ of inputs.
Equivalently, find fV such that P (E+) =‖E+ ‖ is maximized and P (E−) =‖
E−‖=‖EC

+‖ minimized. This produces the following problem formulation.

Problem 1 (Undirected Labeling Problem(ULP ))
An instance of this problem is (G, h), where G = (V, E) is an undirected graph
and h: E �→ {0, 1}. A valid solution is a vertex labeling function f : V → {0, 1}.
Define an edge {u, v} ∈ E to be consistent iff h(u, v) ≡ (f(u) + f(v)) (mod 2).
The objective is then to find a valid solution maximizing |F | where F is the set
of consistent edges.

There is a second, slightly more sophisticated way of writing a system (1) as the
feedback loop of a system (3) using an arbitrary set of edges E. Given any such
E, define S(Ec) = {i | there is some j such that (i, j) ∈ Ec}. Now enumerate
S(Ec) as {i1, . . . im}, and for each k label the set {j | (ik, j) ∈ Ec} as jk1, jk2, . . ..
Then for each k, l, one can replace each appearance of xik

in Fjkl
by uk, to form

the function g(x, u). Then one lets h(x) = (xi1 , . . . , xim) as above. The closed
loop of this system (3) is also (1) as before but with the advantage that there
are |S(Ec)| inputs, and of course |S(Ec)| ≤ |Ec|.
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If E is a consistent and maximal set, then one can make (3) into a monotone
system as follows. By letting fV be such that g ≡ 1 on E, we define the or-
der ≤fV on Rn. For every ik, jkl such that (ik, jkl) ∈ EC , it must hold that
fV (ik)fV (jkl)fE(ik, jkl) = −1. Otherwise E ∪ {(ik, jkl)} would be consistent,
thus violating maximality. By choosing qk = −fV (ik), equation (4) is therefore
satisfied. Conversely, if the system generated by E using this second algorithm
is monotone with respect to orthant orders, and if h is a negative function, then
it is easy to verify that E must be both consistent and maximal.

Thus the problem of finding E consistent and such that P (E−) =‖S(E−)‖=‖
S(EC)‖ is smallest, when restricted to those sets that are maximal and consistent
(this does not change the minimum ‖S(EC)‖), is equivalent to the following
problem: decompose (1) into the negative feedback loop of an orthant monotone
control system, using the second algorithm above, and using as few inputs as
possible. This produces the following problem formulation.

Problem 2 (Directed Labeling Problem(DLP ))
An instance of this problem is (G, h) where G = (V, E) is a directed graph and
h: E → {0, 1}. A valid solution is a vertex labeling function f : V → {0, 1}. Define
an edge (u, v) ∈ E to be consistent iff h(u, v) ≡ (f(u) + f(v)) (mod 2). The
objective is then to find a valid solution minimizing |g(E − F )| where g(C) =
{u ∈ V | ∃y ∈ V, (u, y) ∈ C} for any C ⊆ E and F is the set of consistent edges.

4 Theoretical Results

Theorem 5

(a) For some constant ε > 0, it is not possible to approximate in polynomial
time the ULP and the DLP problems to within an approximation ratio of
1− ε and 1 + ε, respectively, unless P=NP.

(b) For ULP , we provide a polynomial time α-approximation algorithm where
α ≈ 0.87856 is the approximation factor for the MAX-CUT problem obtained
in [14] via semidefinite programming.

(c) For DLP , if dmax
in denotes the maximum in-degree of any vertex in the graph,

then we give a polynomial-time approximation algorithm with an approxima-
tion ratio of at most dmax

in ·O(log |V |).

5 Two Examples of Applications of the ULP Algorithm

5.1 Drosophila Segment Polarity

An important part of the development of the early Drosophila (fruit fly) embryo
is the differentiation of cells into several stripes (or segments), each of which
eventually gives rise to an identifiable part of the body such as the head, the
wings, the abdomen, etc. Each segment then differentiates into a posterior and
an anterior part, in which case the segment is said to be polarized. (This differen-
tiation process continues up to the point when all identifiable tissues of the fruit
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fly have developed.) Differentiation at this level starts with differing concentra-
tions of certain key proteins in the cells; these proteins form striped patterns by
reacting with each other and by diffusion through the cell membranes.

Fig. 1. A digram of the
Drosophila embryo during
early development. A part
of the segment polariza-
tion process is displayed.
Courtesy of N. Ingolia and
PLoS [17].

Fig. 2. The network associated to the
Drosophila segment polarity, as proposed in
[7], Courtesy of N. Ingolia and PLoS. The
three edges that have been crossed have been
chosen in order to let the remaining edges
form an orthant monotone system.

A model for the network that is responsible for segment polarity [7] is illus-
trated in Figure 2. As explained above, this model is best studied when multiple
cells are present interacting with each other. But it is interesting at the one-
cell level in its own right — and difficult enough to study that analytic tools
seem mostly unavailable. The arrows with a blunt end are interpreted as having a
negative sign in our notation. Furthermore, the concentrations of the membrane-
bound and inter-cell traveling compounds PTC, PH, HH and WG(membrane)
on all cells have been identified in the one-cell model (so that, say, HH→ PH is
now in the digraph). Finally, PTC acts on the reaction CI→ CN itself by pro-
moting it without being itself affected, which in our notation means PTC +→ CN
and PTC −→CI.

The Implementation. The Matlab implementation of the algorithm on this di-
graph with 13 nodes and 20 edges produced several partitions with as many as
17 consistent edges. One of these possible partitions simply consists of placing
the three nodes ci, CI and CN in one set and all other nodes in the other set,
whereby the only inconsistent edges are CL +→ wg, CL +→ ptc, and PTC +→ CN.
But note that it is desirable for the resulting open loop system to have as simple
remaining loops as possible after eliminating all inconsistent edges. In this case,
the remaining directed loops EN

−→ ci
+→ CI

+→ CN
−→ en

+→ EN and
EN

−→ ci
+→ CI

+→ CN
−→ wg

+→ WG
+→ WG(membrane) +→ en

+→
EN can still cause difficulties.
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A second partition which generated 17 consistent edges is that in which EN,
hh, CN, and the membrane compounds PTC, PH, HH are on one set, and the
remaining compounds on the other. The edges cut are ptc +→ PTC, CI +→ CN and
en +→ EN, each of which eliminates one or several positive loops. By writing the
remaining consistent digraph in the form of a cascade, it is easy to see that the
only loop whatsoever remaining is wg ↔ WG; this makes the analysis proposed
in [12] easier. In this relatively low dimensional case we can prove that in fact
OPT = 17 as stated below.

Lemma 6. Any partition of the nodes in the digraph in Figure 2 generates at
most 17 consistent edges.

It is surprising that a realistic biological system with as many as 13 variables
and 20 edges can be transformed into a monotone system after the deletion of
only three nodes. It is conceivable that this restricts the possible dynamics of the
system. This is especially the case given that the open loop digraph has almost
no closed oriented paths (except for WG ↔ wg), which is evidence that the
dynamics of the control system under constant inputs may be especially simple,
e.g. such that all solutions converge towards a unique equilibrium.

Multiple Copies. It was mentioned above that the purpose of this network is
to create striped patterns of protein concentrations along multiple cells. In this
sense, it is most meaningful to consider a coupled collection of networks as it
is given originally in Figures 1 and 2. Consider a row of k cells, each of which
has independent concentration variables for each of the compounds, and let the
cell-to-cell interactions be as in Figure 2 with cyclic boundary conditions (that
is, the k-th cell is coupled with the first in the natural way). We show that the
results can be extended in a very similar manner as before.

Lemma 7. Forthek-cell linearlycouplednetworkdescribedinFigure2,OPT=17k.

5.2 EGFR Signaling

In their May 2005 paper [25], Oda et al. integrate the information that has be-
come available about the epidermal growth factor receptor (EGFR) signalling
process from multiple sources, and they define a network with 330 known mole-
cules under 211 chemical reactions. The network itself is available from the
supplementary material in SBML format (Systems Biology Markup Language,
www.sbml.org), and will most likely be subject to continuous updates.

The Implementation. Each reaction in the network classifies the molecules as
reactants, products, and/or modifiers (enzymes). This information was imported
into Matlab using the Systems Biology Toolbox. The digraph G that is used for
this analysis has many more edges than the digraph considered in the digraph
displayed in [25]. The reason for this is as follows: if molecules A and B are
both reactants in the same reaction, then the presence of A will have an indirect
inhibiting effect on the concentration of B, since it will accelerate the reaction



262 B. DasGupta et al.

which consumes B (assuming B is not also a product). Therefore a negative
edge must also appear from A to B, and vice versa. Similarly, modifiers have an
inhibiting effect on reactants. We thus define G by letting sign(i, j) = 1 if there
exists a reaction in which j is a product and i is either a reactant or a modifier.
We let sign(i, j) = −1 if there exists a reaction in which j is a reactant, and i
is also either a reactant or a modifier. Similarly sign(i, j) = 0 if the nodes i, j
are not simultaneously involved in any given reaction, and sign(i, j) is undefined
(NaN) if the first two conditions above are both satisfied. An undefined edge
can be thought of as an edge that is both positive and negative, and it can be
dealt with, given an arbitrary partition, by deleting exactly one of the two signed
edges so that the remaining edge is consistent. Thus, in practice, one can consider
undefined edges as edges with sign 0, and simply add the number of undefined
edges to the number of inconsistent edges in the end of each procedure, in order
to form the total number of inputs. This is the approach followed here; there are
exactly 7 such entries in the digraph G.

The Results. After running the algorithm 100 times for this problem, and choos-
ing that partition which produced the highest number of consistent edges, the
induced consistent set contained 633 out of 852 edges (ignoring the edges on
the diagonal and the 7 undefined edges). See the supplementary material for the
relevant Matlab functions that carry out this algorithm. A procedure analogous
to that carried out for system ( 5) allows to decompose the system as the feed-
back loop of a controlled monotone system using 852− 633 = 219 inputs. Since
the induced consistent set is maximal by definition, we are guaranteed that the
function h is a negative feedback. Contrary to the previous application, many
of the reactions involve several reactants and products in a single reaction. This
induces a denser amount of negative and positive edges: even though there are
211 reactions, there are 852 (directed) edges in the 330× 330 graph G. It is very
likely that this substantially decreases OPT for this system. The approximation
ratio of the SDP algorithm is guaranteed to be at least 0.87 for some r, which
gives the estimate OPT≤≈ 633/0.87 ≈ 728 (valid to the extent that r has sam-
pled the right areas of the 330-dimensional sphere, but reasonably accurate in
practice).

One procedure that can be carried out to lower the number of inputs is a
hybrid algorithm involving out-hubs, that is, nodes with an abnormally high
out-degree. Recall from the description of the DLP algorithm that all the out-
edges of a node xi can be potentially cut at the expense of only one input u, by
replacing all the appearances of xi in fj(x), j �= i, by u. We considered the k
nodes with the highest out-degrees, and eliminated all the out-edges associated
to these hubs from the reaction digraph to form the graph G1. Then we run the
ULP algorithm on G1 to find a partition fV of the nodes and a set of m edges
that can be cut to eliminate all remaining negative closed chains. Finally, we put
back on the digraph those edges that were taken in the first step, and which are
consistent with respect to the partition fV . The result is a decomposition of the
system as the negative feedback loop of a controlled monotone system, using at
most k + m edges.
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An implementation of this algorithm with k = 60 yielded a total maximum
number of inputs k + m = 137. This is a significant improvement over the 226
inputs in the original algorithm. Clearly, it would be worthwhile to investigate
further the problem of designing efficient algorithms for the DLP problem to
generate improved hybrid algorithmic approaches. The approximation ratios in
Theorem 5(c) are not very satisfactory since dmax

in and log |V | could be large
factors; hence future research work may be carried out in designing better ap-
proximation algorithms.

5.3 Supplementary Material: MATLAB Implementation Files

A set of MATLAB programs have been written to implement the algorithms
described in this paper. They can be accessed from the URL
http://www.math.rutgers.edu/~sontag/desz_README.html.
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Abstract. In this paper we present the cluster identification of
molecules (CIM), which is a clustering problem in a finite metric space.
We model the problem as a parameter estimation via likelihood
maximization and as a novel clustering problem, the maximum profit
coverage problem (MPCP). We present a numerical study in which
we compare a greedy heuristic and a random heuristic for MPCP, to
the known Expectation Minimization approach for the likelihood max-
imization model. We present a polynomial time approximation scheme
for MPCP in Euclidean space.

1 Introduction

1.1 Problem Definition

In this article we model, and analyze the cluster identification of
molecules (CIM), which is a clustering problem in a finite metric space. CIM1

has the following characteristics which separate it from other clustering models:
1. In most models outliers are a small portion of the data set, whereas in CIM
they may be the vast majority of the objects. 2. The clusters identified by CIM
are compact and their diameter is bounded. 3. There is a lower bound on the
number of objects in a cluster. 4. Clusters may be very close to one another, as
a result of the bound on the diameter. What may be considered as one cluster in
other clustering models is considered as several clusters in CIM. 5. The number
of clusters is not known a-priori to the clustering procedure.

In this paper we present CIM and model it as a maximum profit coverage
problem (MPCP). The model is a measure to be optimized, rather then a
heuristic.

Consider a finite set S in a metric space M with a distance function d. A ball
with center t and radius r is the subset B(t, r) = {x ∈ M |d(t, x) ≤ r}. We say
that the ball covers the points of S that it contains. Given a set of balls B of
radius r, a coverage P = {S′

1, . . . , S
′
l} is a set of clusters such that each of them

consists of points covered by a single ball of B. Let S′
P = ∪l

i=1S
′
i, and define

1 The problem originated in COMPUGEN LTD. in the field of “in silico” drug design.
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the profit of P as
∑

q∈S′
P

wq − c|P |, where c is the cost of a ball used by P , and
wq is a revenue obtained by covering q ∈ S. The maximum profit coverage
problem (MPCP) is the problem of finding a coverage with maximum profit.

1.2 Related Work

The MPCP is related to the budgeted maximum coverage problem, which
has a

(
1− 1

e

)
-approximation using a greedy algorithm [13]. This approximation

bound cannot be used to approximate MPCP .

Clustering. There is a large variety of clustering models, as reflected for exam-
ple in the survey by Du and Paradalos [4], and they have numerous applications
in many different areas. Even simple variants are known to be NP-hard and
therefore research has been focused on approximation algorithms and heuris-
tics. The heuristics used in practice are often based on empirical experience (e.g
[14]). Most measures (i.e. objective functions to be optimized) are based on a
given number of clusters and the relation of the between-clusters weight and the
in-cluster weights.

Most heuristics are based on two main methods. One is the hierarchical
method, which re-partitions the set until a stopping condition is met, or an
aggregation presses which begins by considering each point as a cluster and then
merging close clusters until a stopping condition is met [10, 16, 21, 22]. The sec-
ond is the k-means heuristic, where a mean of a cluster is the average of the clus-
ters points. This non hierarchical method initially takes k point of the set which
are mutually farthest apart, at this point each cluster has one point. Next, it ex-
amines each point in the set and assigns it to the nearest cluster. This continues
until all the points are grouped into k clusters [10]. Both heuristics take the num-
ber of clusters as input, and do not return compact clusters of bounded diameter.

An important class of clustering problems is probabilistic clustering. It arises
when the data consists of a set of points generated by an unknown mixture
of distributions, and the problem is to estimate the parameters of each of the
distributions creating the mixture, and its weight in the mixture. This task
is commonly done by likelihood maximization (for example [17]). The mixture
models solved by likelihood maximization can also be applied to cases where
the number of distributions is unknown. There are methods for estimating the
number of distributions [20].

Clustering with outliers. In statistics, outliers are defined as data objects
which originated from a different probabilistic mechanism [1]. When clustering
of data is considered, the intuitive definition of outliers becomes “points which
do not belong to any of the clusters”. A more specific definition is derived from
the clustering target or the clustering process [3, 5, 6, 9, 14, 25, 26]. In the case of
the CIM, the outliers are objects in a neighborhood not dense enough, according
to the given definition of density.

The natural problem of clustering a data set containing outliers, when the
number of clusters is not predetermined, is usually solved by heuristics. Mod-
els for k-median and k-center with outliers are introduced in [2]. For k-median
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outliers were considered by demanding payment on unclustered points and for
k-center the number of points which are considered as outliers was added to the
model. Heuristics for clustering data containing outliers were introduced, among
others, in [3, 5, 6, 9, 14, 25, 26]. In hierarchical methods clusters that “grow”
slowly are considered as outliers, whereas in the k-means method points that
are far from all means are considered as outliers.

All algorithms presented in these articles are not suitable for CIM. The clus-
ters found by the algorithms are not bounded in diameter, and/or have no lower
bound on their density. Since the nature of clusters found is different from the
one defined in CIM, the outliers definition is also different.

1.3 Our Contribution

We present two models for CIM, one as a parameter estimation via likeli-
hood maximization and the other as MPCP. We introduce a polynomial time
approximation scheme (PTAS) to MPCP in Euclidean space using the shifting
strategy [11, 8]. We present two practical heuristics for MPCP, one greedy and
the other random, which introduce good results in numerical studies of CIM.

This paper is organized as follows: In Section 2 we introduce CIM and model
it as parameter estimation via likelihood maximization. In Section 3 we
model the problem as MPCP. In Section 4 we introduce a random heuristic and
a greedy heuristic for MPCP, and in Section 5 we introduce numerical results. In
Section 6 we give some theoretical results, We also analyze a greedy algorithm.

2 Cluster Identification of Molecules

Finding a drug to an illness is a problem of a lock and a key. The lock is a
protein (or, more precise, its active site), that should be inhibited or exhibited
in the body. The key is a small molecule that binds to the protein and inhibits
or exhibits its action in the body. There is no doubt that the key should have a
structure that fits the lock, but the biochemical system in which this lock and
key function is dynamic, and hence the Structure Activity Relation (SAR), of
the small molecule and the given protein, was not yet unfolded.

One of the approaches to this problem is to investigate the relation between
a secondary structure of the small molecule to the biochemical activity, rather
than the regular structure model of atoms and bonds. The secondary structure
views the small molecule as a set of chemical attributes such as base, acid,
hydrophobic, hydrophilic, hydrogen bonds etc. Given a set of small molecules
that bind to the same protein, we wish to check whether there is a similarity in
their secondary structure. Since the protein binding site is big, different small
molecules may bind in different parts of it, and several secondary structures may
explain the binding. Still it is natural to assume that a secondary structure that
appeared in many of the small molecules that bind to the protein, characterizes
the protein, and hence explains the binding. The cluster identification of
molecules is the problem of identifying recurring secondary structures (clusters
of secondary structures) in a set of small molecules that bind to the same protein.
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Formally, we consider the secondary structure as a set of colored points, called
nodes, in IR3. The coordinates represent the location of a chemical functional-
ity and the color represents the nature of the functionality. We will use this
representation throughout this section and refer to it as a molecule structure.

Denote by Vt the set of nodes of a molecule structure t, and let n = |Vt|. The
3−D structure of t can be expressed as a vector of (n

2 ) distances dt(i, j) between
the pairs vi, vj ∈ Vt. The distance measuring process has a normally distributed
error with a constant variance.

Thus, t can be viewed as a (n
2 )-dimensional multi-normal random variable. The

variance of the distances is constant, and caused due to measurement errors.
The distance between two molecule structures with the same number of nodes

and the same multi-set of colors of the nodes, is defined as follows. Let P denote
the set of mappings p : Vt → Vs such that the color of the source and the
objective is the same. The distance between the molecule structures t and s is

D(s, t) = minp∈P

√ ∑
i,j∈Vt

[dt(i, j)− ds(p(i), p(j))]2.

If the number of nodes is different or the multi-set of node colors is different,
then the distance is infinity.

The set of all molecule structures with a given number of nodes, a given multi-
set of node colors and a distance function D is a metric space. In the remaining
of this paper we denote such a metric space by M .

Given a set of molecule structures, the cluster identification of
molecules can be viewed as the problem of estimating the parameters of a
mixture of distributions, since each molecule is represented by the vector of
its distances, which is a multi-normal random variable. We will now build the
likelihood function L of this probabilistic clustering.

Let t denote a molecule structure in M . t has a positive probability to be
generated by any of k multi-normal distributions considered by the mixture
model. Consider the possibility that molecule structure t has originated from
the j-th distribution. Let Vj denote the set of nodes of the molecule structure
which is the mean of the j-th distribution. Let L(j,p)(t) denote the likelihood
that t has originated from the j-th distribution under the mapping p of their
nodes.

L(j,p)(t) =
1√

2π|Σj |
exp− 1

2 ([x(p)−mj ])T Σ−1
j [x(p)−mj ],

where (mj , Σj) are the mean vector and covariance matrix of the j-th distribu-
tion, and x(p) is x when adapted to mj under the permutation p. The normality
is a result of the error in the measure of the distance, as mentioned above. De-
note by β(j,t)(p) the probability that p was the mapping by which t originated
from the j-th distribution. Clearly,

∑
p∈P β(j,t)(p) = 1. The likelihood of the

molecule structure t given that it is obtained from the j-th distribution is:

Lj(t) =
∑
p∈P

β(j,t)(p)L(j,p)(t).
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No information exists on the distribution β(j,t), but it could be estimated by solv-
ing maxp∈P L(j,p)(t). Even if we assume β(j,t)(p) is known, since |P | = O(|Vt|!)
this step is exponential in the dimension of M , this likelihood function is expen-
sive to calculate for one point, let alone to maximize.

3 Cluster Identification of Molecules as a MPCP

Solving the likelihood maximization associated with the cluster identification of
molecules in a general metric space is computationally difficult even for small
sized instances, as demonstrated in Section 2. We now show how the problem
can be approximated via the maximum profit coverage problem.

A general finite metric space can be described by a graph G = (V, E), and a
distance function D on its edges. In such a case a ball can be defined only as
centered at a vertex. In the CIM the balls are defined by the subset of molecule
structures which they cover, i.e for each subset that can be covered by a ball of
radius r we define one ball in the input set of balls B. We compute the set of
balls exhaustively, by checking for each subset whether it is coverable by a ball
of radius r. This step is theoretically exponential i the size of S, but in practice
the number of balls is very small due to the distribution of points as presented in
Section 2. In simulations the number of balls defined was O(n2), and the process
of defining them was efficient.

Consider a set S of molecule structures. The cluster identification of
molecules can be viewed as the search for such dense balls, using the average of
the points covered by each ball as estimate for the mean value of the distribution
that generated the points of S in the ball2. We use a ball since the variance is
constant and equal in all dimensions, i.e. for all the distances in the molecule
structure. The intuition behind this approach relies on the fact that a point
close to t is likely to be generated by t, in terms of the value of the likelihood
function.3

A ball B(t, r), covers the molecule structures which are contained in it. There
is a revenue of 1 from covering a molecule structure t ∈ S, and every ball used
by the solution costs c. The cost c represents a lower bound on the number of
molecule structures in the cluster, whereas 2r represents an upper bound on
the diameter of the cluster. Let SF denote the molecule structures covered by
a coverage F . The profit of a coverage F is |SF | − c|F |. The maximum profit

2 This point is a molecule structure which is not in S, and can be reconstructed to
a set of nodes in IR3 from the vector of its distances, with an error negligible in
relation to the variance of the measuring process.

3 This view of density ignores some aspects of the normal behavior, such as greater
density in proximity to the expected value. A change in the objective function may
better integrate this characteristic of the problem into the model. If a value of a
ball will include not only the number of points it contains but also an indication on
their variance in the ball, another aspect of the normality of the data origin will be
integrated into the solution, but other difficulties will airs. We will show that even
the simple definition of density used in MPCP gives very good results.
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coverage of S can be used to estimate the large clusters of S. Since many covers
may have the same profit, the center of the cluster will be defined by the average
of the molecule structures it covers.

4 Heuristics

4.1 Heuristics for MPCP

In this section we describe two heuristics for computing a coverage with high
profit in a general metric space. The first is a greedy heuristics, and the second
is based on a random selection of subsets. We denote the set of possible balls
defined in Section 3 by B. The number of such balls is O(|S|d), where d =

(
n
2

)
,

where n is the number of nodes in a molecule structure of S.
Consider the following “greedy” algorithm denoted as GR:

Let Bj ⊂ B be the set of balls already chosen before the j-th iteration, S′
j ⊆ S

the set of points that are not covered by Bj , and nj
B the number of points of

S′
j covered by B ∈ B. Recall that c denotes the cost of a ball. Let Rj

B = nj
B − c

denote the profit from a ball B. A profitable ball is a ball that covers at least c+1
points of S′

j , i.e. Rj
B > 0. Let B∗

j = arg maxB∈B{Rj
B} (break ties arbitrarily).

GR is performed as follow:
Let B1 = ∅. As long as there is a profitable ball, let Bj+1 = Bj ∪ {B∗

j }.
The greedy algorithm is performed in O(|S|d+1) time. The number of iter-

ations is bounded by |S|
c+1 , since at least c + 1 new points are covered at each

iteration since, and the number of operations at each iteration is |B| =O(|S|d).
The randomized heuristic RA repeatedly generates random solutions to the

problem, and eventually chooses the one with the maximal profit. A solution
is generated by randomly choosing a profitable ball from the list of profitable
balls, then updating the list and choosing again, until there is no profitable ball
and the list is empty. The generated solution is compared with the previous
best solution and saved if it gives a higher profit. The randomized algorithm is
performed in O(|S|d) iterations, since the number of balls dominates the number
of iterations4.

4.2 A Heuristic for CIM in the Euclidean Space

If each molecule in S has nodes of distinct colors, then the metric space M is
Euclidean. The distribution β(k,t) becomes deterministic and the problem be-
comes the known parameter estimation for Gaussian mixture (PEGM)
[15]. It requires to estimate the parameters of a set of multi-normal distribu-
tions {(mk,

∑
k)}k=1,...,K , and their mixture proportions αj ≥ 0,

∑K
k=1 αk = 1,

when a set of points generated from these distributions is given. Note that the

4 In practice the execution time of both the greedy and the random heuristics is much
lower since B is smaller.
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number of distributions is assumed to be predetermined. There are methods
for estimating the number of distributions. The parameter estimation is usu-
ally done by likelihood maximization. In this case the likelihood function can
be maximized numerically. We will elaborate on this case since we will use this
model for comparison to the results obtained by modeling CIM as MPCP and
using GR and RA. We use algorithm MEM. MEM is based on the common
method of likelihood maximization via Expectation Maximization, i.e. the EM
algorithm [15, 19, 23]. The input to the EM algorithm includes the number of
distributions k and will return a maximum likelihood estimator of the parame-
ters of k distributions that best explain S. In order to find the optimal k we use
the rule given by [20] to estimate the number of generating distributions, i.e k
that maximizes max log like(k) + k log(N), where N is the number of samples,
and max log like(k) is the maximal value of the likelihood function for k distrib-
utions. Since we are only interested in the distributions which generated a large
number of points, i.e. the dense sets of S, we define a dense subset of S as one
generated from a distribution with a mixture parameter α greater then c

|S| .

5 Numerical Comparison of the Heuristics

We described algorithms GR and RA for MPCP in a general metric space.
However, in the Euclidean space CIM becomes the well-known PEGM where the
number of distributions is unknown. Since PEGM has a well-known method of
solution, presented in MEM, we conduct our numerical analysis in the Euclidean
space, where we can compare GR and RA to MEM. Our numerical analysis is
hence a comparison of the three algorithms on simulated input for the problem
in the Euclidean space.

The algorithms were applied with the following parameters:

1. MEM was applied with num iterations = 10000 and c = 3, 5, . . . , 23.
2. GR was applied with c = 3, 5, . . . , 23. The algorithm returns the mean of

the molecule structures covered by each ball in the solution as the estimate
of the expectation, and the number of molecule structures covered by the
ball. We choose the mean since it is a natural estimate of the expectation.

3. RA was applied with c = 3, 5, 7, . . . , 23. For each value of c RA was run
10000 times and the best solution was chosen. The algorithm returns the
mean of the molecule structures covered by each ball in the solution as the
estimate of the expectation, and the number of molecule structures covered
by the ball.

Remark 1

1. Although c is part of the input, we ran the algorithms on all possible values
of c in order to check the sensitivity of the algorithms to the value of c.

2. The running time of all algorithms was a couple of minutes.
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The data was simulated in the following way:

1. Randomly choose |V | = 4 points in the cube [0, 10]3 ⊂ IR3. The points
represent the nodes of a molecule structure.5

2. Compute the vector m = (m1, . . . , m6) of
(|V |

2

)
=

(4
2

)
= 6 distances between

the |V | = 4 points.
3. For every i = 1, . . . , 6, choose a distance from a normal distribution with

mean mi and a known constant variance.

Steps 1−2 create a molecule structure and represent it as a vector of the distances
between its nodes. Step 3 generates a sample from a distribution with mean value
created by Steps 1− 2.

We present the results of the following cases:

– In a simulation of type a we simulate a CIM instance by generating 20
samples from each of 5 mean molecule structures. A total of 100 molecule
structures. The set A of simulations includes 100 CIM instances of type a.
In simulations of type a there is no noise, there are 5 clusters that we wish
to identify.

– In a simulation of type b we simulate a CIM instance by generating 20 sam-
ples from each of 5 mean molecule structures. In addition we generated noise
by generating 27 molecule structures from which we generated one sample,
20 molecule structures from which we generated two samples, and 6 mole-
cule structures from which we generated three samples. Type b simulations
include 5 clusters that we wish to identify and another 85 points that are
considered as noise. The set B of simulations includes 100 cases of type b.

For each of the three algorithms, in each set A, B we calculated the following
measures:

ABN := the average number of balls (distributions) used in the solution.
MSE := the average distance between a center of a cluster defined by the
algorithm and the closest mean value. The closest mean value, is the closest
vector m used in Step 2 of the data simulation process.
GMSE := the average distance between a mean value (only of the 5 clusters
we wish to identify, i.e. with number of samples > c) and the closest center of a
cluster defined by the algorithm.

MSE associates for each cluster representative, the nearest mean value, so
some mean values may not be associated with any cluster, while GMSE as-
sociates each mean value with the nearest cluster representative, so if a repre-
sentative is not the closest representative to any mean value, it would not be
considered.

The results are presented in Table (1). In general RA and MEM give accurate
estimations of the mean values, while GR has slightly less accurate results.
5 We applied this simulation to molecule structures of all sizes between |V | = 4 and

|V | = 10 nodes, and the results were similar. We therefore present the results of
molecule structures of size 4 as representative results.
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Table 1. results for the set A and B

Set A Set B

c ABN MSE GMSE ABN MSE GMSE
MEM MEM

3 5.313 0.981 1.193 10.029 3.534 1.736
5 5.059 0.983 1.195 8.926 3.400 1.736
7 4.876 0.950 1.164 7.925 3.192 1.721
9 4.692 0.964 1.189 7.000 2.837 1.704
11 4.673 0.966 1.227 6.000 2.461 1.708
13 4.681 0.960 1.216 5.442 2.086 1.729
15 4.562 0.986 1.365 5.271 1.987 1.746
17 4.428 1.011 1.507 5.087 1.823 1.717
19 3.000 1.534 1.598 4.938 1.725 1.708
21 1.114 6.322 30.736 3.454 2.492 12.724
23 1.107 6.514 34.363 2.614 2.722 19.243

GR GR
3 5.360 1.453 1.405 5.680 1.441 1.382
5 5.223 1.448 1.426 5.286 1.416 1.398
7 5.1322 1.446 1.428 5.202 1.411 1.402
9 5.031 1.442 1.478 5.052 1.400 1.486
11 4.950 1.434 2.088 4.940 1.392 2.349
13 4.859 1.431 2.502 4.829 1.388 3.117
15 4.708 1.425 3.775 4.748 1.376 3.790
17 4.507 1.407 5.577 4.627 1.370 5.068
19 3.755 1.411 10.918 4.938 1.725 1.708
21 2.251 1.176 37.567 1.622 1.523 48.630
23 1.750 1.097 46.450 2.622 2.255 106.512

RA RA
3 6.070 0.857 0.813 6.540 0.852 0.794
5 5.340 0.855 0.844 5.465 0.836 0.818
7 5.153 0.850 0.846 5.224 0.832 0.822
9 5.041 0.847 0.879 5.072 0.817 0.896
11 4.950 0.831 1.483 4.950 0.810 1.775
13 4.864 0.833 1.958 4.837 0.798 2.527
15 4.708 0.822 3.187 4.748 0.791 3.195
17 4.507 0.801 4.956 4.627 0.785 4.474
19 3.755 0.788 10.332 3.736 0.752 10.959
21 2.251 1.064 38.414 1.622 0.872 46.169
23 1.750 1.132 47.785 2.622 1.259 101.040

The types of errors in estimation presented by the algorithms are the following:

1. Joining close clusters, i.e. returning only one expectation instead of two close
expectations. This error is common with MEM [19] and is expected from
GR. It was less common with RA. Such an error is reflected by the number
of clusters estimated, and by the value of GMSE in Table 1 set A.
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2. Cutting a cluster in two. This error is mainly characteristic to RA. If c is
small enough then one cluster may be split into several profitable balls, so
that one cluster is estimated by several close expectations.

3. Omitting a cluster. If c is large then it may happen that there is no ball
of radius r containing c + 1 points, although there is a mean value which
generated more then c + 1 points. For example for c > 15 in GR and RA,
the GMSE is much greater than the MSE because the clusters found are
fairly accurate, but there are clusters omitted from the solution. This is less
common with MEM.

4. MEM is sensitive to outliers, since the likelihood maximization includes the
explaining of all data points, and the size of the model is not known. This
explains the large MSE in Table 1 set B, that diminishes as c grows since
less small clusters are included.

5. Since MEM is sensitive to outliers it clusters many of these points for small
values of c, while GR and RA hardly cluster outliers.

6 Theoretical Analysis of MPCP

In this section we present a PTAS for MPCP in the Euclidean space. We adapt
the shifting method of Hochbaum and Maass [11] for MPCP. We introduce the
method in the plane, which could be generalized to a fixed dimension d as in [11].

Let the set S of n given points in the plane be enclosed in a region I.
The goal is to cover a subset of S with disks of diameter D such that the

profit is maximized. Let the shifting parameter be l. In the first phase the area
I is subdivided into vertical strips of width D, where each strip is left closed
and right open. Groups of l consecutive strips, resulting in strips of width lD
each, are considered. For any fixed subdivision of I into strips of width D, there
are l different ways of partitioning I into strips of width lD. These partitions
can be ordered such that each can be derived from the previous one by shifting
it to the right over distance D. Repeating the shift l times we return to the
initial partition. We denote the l distinct shift partitions by P1, P2, . . . , Pl. Let
A be any algorithm that delivers a solution of width lD in any strip of width
lD (or less). For a given partition Pi let A(Pi) be the algorithm that applies
algorithm A to each strip in the partition Pi and outputs the union of all disks
used. This process is repeated for each partition Pi, i = 1, 2, . . . , l. The shifting
algorithm AP , defined for a given local algorithm A, delivers the set of disks
of maximum profit among the l sets delivered by A(P1), A(P2), . . . , A(Pl). We
begin by introducing two properties of the problem.

Property 1: Denote by opt(S) the value of the optimal solution for the set S. If
S′ ⊂ S, opt(S′) ≤ opt(S).

Property 2: Let OPT be the set of unit balls in the optimal solution for the set
S, and OPT ′ = OPT \ {B} where B ∈ OPT . Let S \ S′ be the subset of points
which B covers uniquely then OPT ′ is optimal for S′.

Let the performance ratio of an algorithm A be denoted by rA.
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Lemma 1. rSA ≤ rA(1 − 1
l ), where A is a local algorithm and l is the shifting

parameter.

Given a coverage of S, an equivalent coverage using unit balls could be defined
by shifting the unit balls such that a maximum number of the points they cover
will be on their sphere, and the set of points covered by each unit ball will not
change. Denote the set of balls with a maximum number of the points they
cover will be on their sphere by BS . In the following we consider BS as the set
of possible unit balls in any coverage of S.

Remark 2. If the set of balls B is a given set, as in the general definition of
MPCP , then it can be shown using the bound on the volume of the cube, that
the following local algorithm still holds.

the maximum profit coverage problem could be solved in a small cube in
Rd. Let A denote a cube of volume (2l)d and S′ ⊆ S denote the set of points in
it. The set of unit balls BS′ that could be defined by S′ is bounded by 2(|S′|d)
as demonstrated in Section 3. Since A could be covered by

√
2ld balls, checking

all subsets of at most
√

2ld balls yields the optimal solution. The complexity is
O(|S′|d

√
2l

d

) time.
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Abstract. We present the main algorithmic challenges that large Web
search engines face today. These challenges are present in all the modules
of a Web retrieval system, ranging from the gathering of the data to be
indexed (crawling) to the selection and ordering of the answers to a query
(searching and ranking). Most of the challenges are ultimately related to
the quality of the answer or the efficiency in obtaining it, although some
are relevant even to the existence of current search engines: context based
advertising.

As the Web grows and changes at a fast pace, the algorithms behind
these challenges must rely in large scale experimentation, both in data
volume and computation time, to understand the main issues that affect
them. We show examples of our own research and of the state of the art.
The full version of this paper appears in [1].
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{karina, elchavez}@fismat.umich.mx

2 Center for Web Research, Dept. of Computer Science, Universidad de Chile
{gnavarro, raparede}@dcc.uchile.cl

Abstract. Proximity searching consists in retrieving from a database
those elements that are similar to a query. As the distance is usually
expensive to compute, the goal is to use as few distance computations
as possible to satisfy queries. Indexes use precomputed distances among
database elements to speed up queries. As such, a baseline is AESA,
which stores all the distances among database objects, but has been
unbeaten in query performance for 20 years. In this paper we show that
it is possible to improve upon AESA by using a radically different method
to select promising database elements to compare against the query. Our
experiments show improvements of up to 75% in document databases.
We also explore the usage of our method as a probabilistic algorithm
that may lose relevant answers. On a database of faces where any exact
algorithm must examine virtually all elements, our probabilistic version
obtains 85% of the correct answers by scanning only 10% of the database.

1 Introduction

Proximity or similarity searching is nowadays an essential tool in a number of
practical tasks such as vector quantization of signals, pattern recognition, re-
trieval of multimedia information, etc. In these applications there is a database
(for example, a set of documents) and a similarity measure among its objects
(for example, the cosine distance). The similarity is modeled by a distance func-
tion defined by experts in each application domain, which tells how similar two
objects are. The distance function is normally considered quite expensive to
compute, so that even I/O operations or the CPU cost of side computations are
not considered. That is, the search complexity is taken as just the number of
distance evaluations needed to answer a query, and thus the goal is to answer
the queries by performing the minimum number of distance evaluations.

To reduce the query cost, an index is built on the database before searching it.
The index is a data structure that stores information on some distances among
database elements. This information is used later to discard some elements with-
out comparing them directly with the query.
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À



280 K. Figueroa et al.

Different indexes store different information on the database distances [7].
Some store a subset of the distances, e.g. all the distances between k chosen
pivots and all the rest, or all the distances between an element and its subtree,
in a tree-structured index. Some store just a range of distance values, and so on.
In general, the more information an index stores, the lower query cost it achieves
(although some use memory better than others). In this view, in a database of
n objects the most information an index could store is the n(n− 1)/2 distances
among all element pairs. This is usually avoided because it requires O(n2) space,
but it is applicable in some areas such as pattern recognition, as well as to index
database subsets. In particular, using all the available information establishes a
baseline on how good an index could be. Actually, all the development on metric
space indexing can be regarded as the quest for maintaining good efficiency while
reducing the amount of information stored [7].

The canonical algorithm that uses all the data is AESA [17]. For 20 years
AESA has been the indexing technique requiring, by far, the least number of
distance computations among all other indexes (which require much less space).

In this paper we show, for the first time, that it is possible to establish a
new baseline on the number of distance evaluations for proximity searching.
More specifically, AESA works by choosing a “pivot” from the remaining set
of candidates and using it to prune more candidates. The closer the pivot to
the query, the more effective the pruning is. We introduce a new technique
called iAESA to choose the next pivot, which guesses better a close candidate
and yields reductions in the number of distance evaluations of up to 75% in
document databases.

In very high dimensions, even AESA and iAESA boil down to a sequential
database scan. We explore the usage of iAESA as a probabilistic scheme that
may lose some relevant answers, but could quickly find most of them. We show
that, for example, on a database of face images where no exact algorithm can
obtain any significant savings over a sequential scan, iAESA retrieves 85% of
the correct answers by scanning just 10% of the database. This is 80% less than
what would be needed to obtain the same result with probabilistic AESA.

2 Related Work

2.1 Notation and Basic Concepts

Let (X, d) be a metric space, where X is the universe of objects and d the distance
function among the objects in X. The distance function d : X×X→ R+ is defined
by experts in the application domain and expresses the dissimilarity between
objects in X. The distance function must satisfy the following properties: strict
positiveness (d(x, y) > 0 ⇐⇒ x �= y), symmetry (d(x, y) = d(y, x)) and triangle
inequality (d(x, z) ≤ d(x, y) + d(y, z)).

Let U ⊆ X be our database of size n, q ∈ X the query, and r ≥ 0. The simi-
larity queries can be classified into two basic types:
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– Range query, (q, r)d = {u ∈ U | d(u, q) ≤ r}
– k-nearest neighbor query, kNN(q)d = A such that ∀u ∈ A, v ∈ U − A,

d(u, q) ≤ d(v, q), and |A| = k.

The naive approach to these kind of queries is to compare the whole database
against the query. This solution, however, requires n distance computations. An
index is a data structure on U that solves queries of either type trying to use less
than n distance evaluations. As the objects are black-boxes, the search always
proceeds by comparing q against some element of U, discarding candidates using
that distance and the help of the index, and so on until every element is either
discarded or reported.

The performance of the algorithms in metric spaces is affected by the intrin-
sic dimension of data [7]. When the dimension grows, the mean of a random
distance increases and the variance diminishes. In high dimensions, there are no
algorithms that can avoid sequential scan. AESA is also affected by dimension
in spite of being the best proximity search algorithm in metric spaces.

2.2 AESA

The Approximating and Eliminating Search Algorithm (AESA) was introduced
by E. Vidal in 1986 [17]. AESA needs to compute and store a matrix as an index,
recording every distance d(u, v), ∀u, v ∈ U, that is O(n2) distances. During the
search process, an element from the remaining candidates, called a “pivot”, is
chosen and compared against the query. AESA uses the matrix of distances
to discard remaining candidates using the triangle inequality. The algorithm is
described in Section 2.3.

Although O(n2) space can be a large amount of memory, there are applications
with small enough databases (up to few thousand objects) where managing all
the O(n2) distances is possible. For this kind of applications, AESA is still a
practical solution and the one performing least distance computations.

In the case of larger databases, where O(n2) distances cannot be stored, it is
still possible to partition the database with another technique and apply AESA
on each partition [11].

AESA has been for 20 years the algorithm that computes the least num-
ber of distance evaluations to answer proximity queries. There have been some
algorithms aimed at reducing its preprocessing time or space used. LAESA
[13] chooses k elements of U as potential pivots, then reducing the space to
O(kn). An improved version of LAESA is Tree LAESA (TLAESA) [12] which
achieves sublinear side computations at query time at the expense of doubling
the number of distance computations on average. Reduced Overhead AESA
(ROAESA) [18] strictly calculates the same distances as AESA but reduces
the query processing time. Recently, graph t-spanner indexes [15] were used to
simulate AESA, obtaining almost the same number of distance calculations and
using much less memory. In fact, all the development on indexes for metric
spaces can be seen as attempts to simulate the performance of AESA using less
memory [7].
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2.3 Searching Using AESA

Like most indexing algorithms, AESA solves nearest neighbor queries by choos-
ing a pivot u ∈ U to compare against q, then filtering out as many candidates
of U as possible, and repeating until all candidates are compared or discarded.
AESA proposes a specific method to select the pivots: The next pivot to compare
against q is chosen as the candidate u minimizing

D(u) =
∑
p∈|P|

|d(u, p)− d(p, q)|, (1)

where P are those pivots already compared against q (thus the d(p, q) dis-
tances are known, whereas the d(u, p) distances are stored in the matrix). The
goal of minimizing D(u) is to find a pivot as close as possible to q. The al-
gorithm to answer a closest neighbor query 1-NN(q)d is summarized in five
steps.

AESA

1. Let P ← ∅ set of pivots
2. Let F ← ∅ set of filtered elements
3. r ← ∞
4. For u ∈ U, D(u) ← 0, Dmaxu

← 0
5. while U �= P ∪ F do

6. p ← argmin
u∈U−P−F

D(u)
7. P ← P ∪ {p}
8. if d(q, p) < r then

9. r ← d(p, q)
10. p∗ ← p

11. for u ∈ U − P − F do

12. Dmaxu
← max (Dmaxu

, |d(q, p) − d(u, p)|)

13. if Dmaxu
> r then

14. F ← F ∪ {u}
15. else

16. D(u) ← D(u) + |d(q, p) − d(u, p)|

17. return p∗

iAESA

1. Let P ← ∅ set of pivots
2. Let F ← ∅ set of filtered elements
3. r ← ∞, Πq ←<>

4. For u ∈ U, F (u) ← 0, Πu ←<>

5. For u ∈ U, Dmaxu
← 0

6. while U �= P ∪ F do

7. p ← argmin
u∈U−P−F

F (u)
8. P ← P ∪ {p}
9. insert p in Πq

10. if d(q, p) < r then

11. r ← d(p, q)
12. p∗ ← p

13. for u ∈ U − P − F do

14. Dmaxu
← max (Dmaxu

, |d(q, p) − d(u, p)|)

15. if Dmaxu
> r then

16. F ← F ∪ {u}
17. else

18. insert p in Πu

19. F (u) ← F (Πq, Πu)
20. return p∗

Fig. 1. AESA and iAESA algorithms to retrieve the nearest neighbor (iAESA is de-
scribed in Section 3)

1. Initialization. The sets of pivots P and filtered elements F are empty. Let
D(u) ← 0 for u, Dmaxu ← 0 and r ← ∞. Steps 2-5 are repeated until
U = P ∪ F.

2. Approximating. In this step a new pivot p is selected according to Equation
(1). That is p ← argminu∈U−F−P D(u).
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3. Distance computation. Element p is compared against the query q by
computing d(p, q). The new p will be added to the set of used pivots P.

4. Updating the NN. If d(q, p) < r, the current nearest neighbor and r are
updated. Every object in U − F − P updates its approximation criterion
according to Equation (1), that is D(u) ← D(u) + |d(u, p) − d(p, q)| and
Dmaxu ← max(Dmaxu , |d(u, p)− d(p, q)|).

5. Eliminating. Those u ∈ U−F−P such that Dmaxu > r are discarded using
the triangle inequality. The elements filtered in this step are added to F. The
process continues at step 2.

The nearest neighbor query process of AESA is presented in Fig. 1 (left).
Range query process (q, r)d can be implemented similarly by keeping r fixed and
reporting every p that d(p, q) ≤ r.

These algorithms generalize to k-NN queries, where k > 1, by maintaining a
pool with the k closest elements p∗ found until now, so that r is the distance to
the current k-th nearest neighbor.

2.4 Proximity Preserving Order

We introduce some terminology needed to explain our technique [5].
Let P ⊆ U. Every element u ∈ U defines a preorder ≤u in P given by the

distance to u. It is defined for y, z ∈ P, as y ≤u z ⇔ d(u, y) ≤ d(u, z). The
relation ≤u is a preorder and not an order because some elements can be at the
same distance of u, and then ∃y �= z such that y ≤u z ∧ z ≤u y.

Every object u can compute its preorder of P and associate it to a permutation,
because the preorder induces a total order in the quotient set. Let us define
Πu = p1, p2, . . . , p|P| where pi ≤u pi+1 the permutation of u. The elements at
the same distance take an arbitrary but consistent order. We use Π−1

u (pi) to
identify the position of element pi in the permutation Πu.

It is important to notice that two equal elements must have the same permu-
tation, while two similar objects will hopefully have a similar permutation. So if
Πu is similar to Πq we expect u to be close to q.

Similarity between the permutations of q and u can be measured by Kendall
Tau, Spearman Rho, or Spearman Footrule metric [10], among others. As all
of these have a comparable predictive power [5], we choose Spearman Footrule
because it is not expensive to compute. This measure is defined as follows:

F (u) = F (Πu, Πq) =
|P|∑
i=1

|Π−1
u (pi)−Π−1

q (pi)|, (2)

where P is the current set of pivots. For example, let Πq = p1, p2, p3, p4, p5 be
the permutation of the query, and Πu = p3, p2, p1, p5, p4 the permutation of an
element u ∈ U. According to Equation (2), we have F (Πq, Πu) = |1 − 3|+ |2−
2|+ |3− 1|+ |4− 5|+ |5− 4| = 6.
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3 Our Proposal: iAESA

From Section 2.2, we notice that the only way to improve the performance of
AESA seems to be by modifying the approximation criterion, that is, by propos-
ing a different method to select the next pivot.

We propose to select as the new pivot the element whose permutation is the
most similar to the permutation of the query. We describe this process next.

3.1 Searching Using iAESA

The algorithm consists basically in modifying the approximation criterion, which
will be replaced by the similarity between permutations. The permutations will
be formed by the pivots already used.

Instead of D(u), we will use F (u), which is initialized at 0 and updated upon
choosing a new pivot p according to Equation (2). The new pivot will be the one
with smallest F (u). Fig. 1 (right) gives the algorithm.

3.2 Comparing AESA with iAESA

In Fig. 2 we compare iAESA with AESA, using the same example shown in [17].
The example retrieves the nearest neighbor. In the figure (left side) the objects
are p1, . . . , p7 and q is the query; the solid lines are the terms of Equation (1);
the dashed lines indicate the process to select the next pivot (labeled step-1,
step-2 and step-3); the circle and the semicircles are the distances from a pivot
to the query, and the semicircles are labeled by the order of execution, step-1,
step-2 and step-3. They help viewing which elements are to be chosen given the
approximation criterion.
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Fig. 2. On the left, the example shown in [17] to explain AESA. On the right, iAESA
process for the same set of elements. The order of selection is step-1, step-2 and step-3.
Note that iAESA uses one pivot less than AESA in this example.
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AESA initially selected p1. The next pivot was p2 because it minimizes Equa-
tion (1) (step-1). The next pivot is p3 (step-2) and finally p4 (step-4) according
to the approximation criterion.

On the other hand, in the process of iAESA, p1 and p2 are selected in the
same way as AESA. We have drawn the permutation of the elements at this
point. Note that p4 has the same permutation as Πq = {p2, p1}, therefore p4 is
the next (and last) pivot. In this example iAESA uses the pivots (p1, p2, p4), one
less than AESA.

The CPU time complexity of AESA is O(|P| · n), as |P| is the number of
iterations over the elements not yet discarded and D(u) is updated in constant
time. iAESA complexity is higher because we need O(|P|) time to update Πu

and F (u). This yields a total complexity of O(|P|2 · n).

3.3 Combining AESA and iAESA

AESA and iAESA criteria can be combined into an algorithm that we call
iAESA2. The idea is to modify the approximation criterion of iAESA (i.e., the
similarity between permutations) using AESA approximation criterion D(u) to
break ties in F (u). These ties are common when there are few pivots. The CPU
time complexity of iAESA2 is also O(|P|2 · n).

In other words, iAESA2 uses two approximation criteria: a primary one given
by the least value of Spearman Footrule metric (i.e. the most similar permuta-
tion) and a secondary one given by the smallest D(u).

4 Probabilistic iAESA

A serious problem of all algorithms in metric spaces, even for AESA, is that when
the dimension of the space grows [7], the whole database needs to be reviewed.
In this case a probabilistic algorithm (which can miss some relevant answers) is
a practical tool. Any exact algorithm can be turned into probabilistic, by letting
it work until some predefined work threshold and measuring how many relevant
answers did it find.

Probabilistic algorithms have been proposed both for vector spaces [1, 19] and
for general metric spaces [9, 8, 6, 4]. In [4] they use a technique to obtain proba-
bilistic algorithms that is relevant to this work. They use different techniques to
sort the database according to some promise value. As they traverse the database
in such order, they obtain more and more relevant answers to the query. A good
database ordering is one that obtains most of the relevant answers by traversing
a small fraction of the database. In other words, given a limited amount of work,
the algorithm finds each correct answer with some probability, and it can refine
the answer incrementally if more work is allowed. Thus, the problem of finding
good probabilistic search algorithms translates into finding a good ordering of
the database given a query q.

Under this model, a probabilistic version of k-NN AESA, iAESA and iAESA2
consists in reviewing objects up to some fraction of the database and reporting
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the k closest object found until then. In Fig. 1, we should replace the while
condition (line 5) by while |P| < percentage of database. For range queries we
would simply report any relevant element found until the scanning is stopped.

5 Experimental Results

We conducted experiments on different synthetic and real-life metric databases.
The real-life metric spaces are TREC-3 documents under cosine distance [2], and
a database of feature vectors of face images under Euclidean distance [14]. The
synthetic metric spaces are random vectors in the unitary cube.

5.1 Exact iAESA: Unitary Cube

The performance of the existing algorithms, to answer both range and k-nearest
neighbor queries, worsens as the dimension of the space grows [3]. Therefore, it
is interesting to experiment with spaces with different dimensions.

A way to control the dimension of the space is to generate synthetic sets
uniformly distributed in the unitary cube, and use this set as an abstract metric
space. We experimented with 4 to 14 dimensions, for databases of size from 5,000
to 20,000 elements. The performance of our technique can be seen in Fig. 3.
Notice that, as we increase the dimension of the data, the problem becomes
more difficult. Nevertheless, iAESA retains its (slight) advantage over AESA
when the dimension grows. In the best case, iAESA requires 17% less distance
evaluations than AESA. iAESA2 had the same performance as iAESA, so we
omitted it in this experiment. On the other hand, we note that iAESA loses its
advantage over AESA as the number k of nearest neighbors sought grows. For
example, in dimension 14 AESA takes over for k > 5.
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Fig. 3. Performance of our technique against AESA for different dimensions and k =
2 (left side). On the right, we retrieve different numbers k of nearest neighbors, on
dimensions 12 and 14 and n = 5, 000. Note the logscale.

5.2 Exact iAESA: Documents

A set of 1265 English documents obtained from the Wall Street Journal 87-89
collection from TREC-3 was indexed. We compare the documents under the
vector space, using the cosine distance [2].
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Fig. 4. Comparing the performance of our technique against AESA on a document
database (1265 documents)

Fig. 4 shows the results on this space. This time iAESA improves upon AESA
as the number k of nearest neighbors retrieved grows over 8. On the left we show
distance computations. It can be seen that iAESA2 is clearly better than both
AESA and iAESA in all cases, improving upon AESA by up to 75%, when k = 1.
Fig. 4 (right) displays overall CPU time. It can be seen that, even though iAESA
and iAESA2 suffer from a higher number of side CPU computations, they are
still preferable over AESA.

As a sanity check, we compared these results against choosing the next pivot
at random. This turned out to make four times more evaluations than iAESA.

5.3 Probabilistic iAESA: Unitary Cube

We experimented with 3,000 synthetic random vectors in the unitary cube of
128 dimensions. Any exact algorithm is forced to compare every element in such
a high-dimensional space. Fig. 5 (left) shows the percentage of successful queries
when the number of objects compared against the query is limited. That is, we
plot the percentage of queries that retrieved all their correct k nearest neighbors
after scanning a fraction of the database. We can see that iAESA finds the k
nearest neighbors faster than AESA, and that iAESA2 is the fastest for large
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k. AESA, on the other hand, needs to compare almost 80% of the database in
order to retrieve 95% of the answer.

On the right we show the ratio among the distance to the k-th NN found by
the algorithm versus the distance to the true k-th NN. In this computation we
exclude the queries where the algorithm finds all the k correct neighbors, that
is, on queries considered unsuccessful on the left plot.

Note that we have defined a query as unsuccessful even if it finds k− 1 out of
the k correct elements. Fig. 6 plots the fraction of the correct nearest neighbors
found as we scan the database. For example, for with iAESA2 we need to scan
about 7% of the database to find 90% of the answers.

5.4 Probabilistic iAESA: Face Images

Many real databases are composed of few objects, each of very high intrinsic
dimension. This is the case the FERET database of face images [16]. We use a
target set with 762 images of 254 different classes (3 similar images per class),
and a query set of 254 images (1 image per class). The intrinsic dimension of the
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database is around 40, which is considered intractable: exact AESA and iAESA
must scan 90% of the database in order to answer k-NN queries on this space.

The performance of the probabilistic algorithms is compared in Fig. 7. It
can be seen that larger fractions of the database must be scanned in order to
satisfactorily solve queries with larger k. Again, iAESA2 is faster than the others.

6 Conclusions and Future Work

Proximity searching in metric spaces consists in retrieving the elements from the
database that are relevant to a given query. The similarity between objects is
measured by a distance function that is usually expensive to compute. AESA [17]
has been without question, for 20 years, the most successful algorithm to solve
similarity queries, because it computes the least number of distance evaluations
to answer them. We present a new technique, called iAESA, able to improve
upon AESA by up to 75% over different metric databases.

In very high dimensions there are no exact algorithms able to avoid sequential
scan. We propose a new probabilistic algorithm based on iAESA, which is able
to solve a large fraction of queries by scanning a small fraction of the database.
For example, on a faces image database, iAESA solves 85% of the queries by
checking just 10% of the database.

The only weak point of our approach is the extra CPU time required to reduce
the distance computations. This can be significant if the distances are not very
expensive to compute. We plan to address this issue in two ways. One is to avoid,
upon the insertion of a new pivot, the full recomputation of the permutation of
each element as well as its distance to the query permutation. We are exploring
a scheme that reduces this work by about 50%, and further reductions could
be possible by using smarter data structures. Another idea is based on the fact
that the distances to the query permutation can only grow as more pivots are
inserted. Thus we can delay the updating of the permutation of every element
until it would become the next pivot. At this point the pivot insertions delayed
are carried out on the candidate’s permutation and its distance to the query
permutation is updated. This may push the candidate behind on the priority
queue and forces us to choose the next best candidate, until we get an up-to-
date next candidate. Thus many elements could be removed from the candidate
set without ever having updated their permutations, thus saving CPU time.
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Abstract. We consider the problem of updating a directed minimum
cost spanning tree (DMST), when edges are deleted from or inserted to
a weighted directed graph. This problem apart from being a classic for
directed graphs, is to the best of our knowledge a wide open aspect for
the field of dynamic graph algorithms. Our contributions include results
on the hardness of updates, a dynamic algorithm for updating a DMST,
and detailed experimental analysis of the proposed algorithm exhibiting
a speedup factor of at least 2 in comparison with the static practice.
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1 Introduction

We study the problem of updating a directed minimum spanning tree (DMST)
efficiently when a directed edge is inserted to or deleted from a weighted digraph.
On a digraph G(V, E), of |V | = n vertices and |E| = m edges, each associated
with a non-negative cost c(e), a DMST is defined as a maximal acyclic subset
of edges, such that no vertex of the digraph has more than one incoming edge
in this set, and the total edge cost is minimum. If G is strongly connected this
definition implies indeed a directed tree (also called arborescence) blossoming out
of its root, otherwise it may be a collection of trees (also called a branching [1]).
Since G can always be made strongly connected by the addition of at most O(n)
edges, we can assume a directed tree. Applications of DMST updates range from
wireless networks [2, 3] to hardware design [4, 5].

An identical polynomial time algorithm was described for this problem in
[1, 6, 7]. For the rest of the discussion we refer to this algorithm as Edmonds’
algorithm [1]. Tarjan [8] gave an implementation of O(min{m log n, n2}) time.
Gabow et al. [9] improved the running time to O(m+n log n) by using a special
implementation of Fibonacci heaps. Improved heaps in [10] yielded deterministic
O(m log log n) and randomized O(m

√
log log n) time.
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To the best of our knowledge, the dynamic DMST problem is a wide open
aspect for the area of dynamic graph algorithms [11], in contrast to the near opti-
mal achievements seen for the minimum spanning tree in undirected graphs [12].
A fully dynamic graph algorithm maintains efficiently a solution to a graph prob-
lem when edges are deleted from or inserted to the underlying graph in time less
than the time required for re-evaluating a solution from scratch.

Our contributions include a hardness result regarding the complexity of dy-
namic DMST updates (section 3), the design of a fully dynamic algorithm and
its analysis in the output complexity model (sections 4-5), and extended experi-
mental investigation of the proposed algorithm (section 6), revealing a speedup
factor of at least 2 in comparison with the static re-evaluation practice. In the
output complexity model the complexity of a dynamic algorithm is measured
with respect to a minimal subset of the previous output that needs to be up-
dated [13, 14, 15, 16].

2 Preliminaries

From now on we assume as input a strongly connected digraph G(V, E), with
edge costs c(e) ≥ 0. If the input digraph is not strongly connected, we add a
vertex v∞ and 2n edges of infinite (very large) weight, (v∞, vi) and (vi, v∞) for
each vi ∈ V , so as to make it strongly connected. These edges will never be af-
fected by dynamic edge operations, so that strong connectivity of the underlying
digraph is always assured. For each directed edge e = (u, v) ∈ E, we refer to
t(e) = u as the tail vertex of e, and h(e) = v as its head vertex. For S ⊂ V , let
δE(S) = {e ∈ E|h(e) ∈ S, t(e) ∈ V − S} be the “in” cut-set of S w.r.t. E. The
algorithm of Edmonds greedily produces an edge set H ⊆ E and prunes it to
obtain the DMST T :

1. set H = ∅
2. set ĉ(e) = c(e) for every edge e
3. while there are more than one vertices, pick a vertex v

(a) let e
 be the incoming edge of v with the minimum ĉ(e)
(b) set ĉ(e) = ĉ(e)− ĉ(e
) for every incoming edge of v
(c) insert edge e
 in H
(d) if a directed cycle occurred, contract the cycle into a single vertex.

4. create T from H by removing redundant edges.

The loop (lines (a)-(d)) creates an edge set H ⊆ E, and the final DMST T is
produced from H , by removal of redundant edges. This removal can be performed
in O(n) time [8], thus making the loop a complexity bottleneck for the algorithm.
In a strongly connected digraph the algorithm will eventually contract the vertex
set into a single vertex. At most n − 1 contractions will take place, since each
contraction absorbs at least one of the original digraph’s vertices. In the sequel
we refer to vertices emerged by contraction as c-vertices and to vertices of the
original digraph as simple vertices.
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... ...
1 + ε1 + ε1 + ε1 + ε

11 1

v0v0 vn−1 vn−1

Fig. 1. Edges of cost 1 form the DMST for the left digraph. Deletion of (vn−2, vn−1)
causes the DMST to change entirely (right) into a new one consisting of edges of cost
1+ ε because inclusion of any of the 1-weighted edges cannot yield a maximal edge set
with DMST properties.

3 On the Hardness of Updates

We consider the hardness of DMST updates when the only information retained
and used is the DMST itself. We use the framework presented in [17] which
assumes that the unit operation of an algorithm is evaluation and positivity
testing of an analytic function over the edge weights of the underlying digraph.
Such an algorithm is called an analytic tree program. A lower bound on the
verification complexity of a DMST is obtained:

Lemma 1. Given a directed acyclic graph G of m edges with positive edge costs
and a subset T of edges, an analytic tree program verifying that T is a DMST
of G incurs Ω(m) complexity.

Proof. A feasible tree (or a collection of trees - a branching) in a DAG, is any
assignment of a unique incoming edge to each vertex. This can be checked in
O(n) time. The cost of T is minimum if and only if for every e �∈ T there is e′ ∈ T
with h(e) = h(e′) and c(e′) ≤ c(e), which translates to testing that each vertex
is assigned its minimum cost incoming edge. This implies testing a set of Θ(m)
inequalities for analytic functions of edge weights. A classic result of Rabin [18]
states that all these inequalities must be evaluated in the worst case. ��
The Ω(m) lower bound for verification holds for general digraphs in the worst
case. This leads to the following result:

Theorem 1. Dynamic maintenance of a DMST under edge deletions and/or
insertions is as hard as recomputing a DMST from scratch if only the DMST
information is retained and used between updates.

Proof. Consider a digraph G of n vertices v0, . . . , vn−1. Let edges (vi, vi+1), for
i = 0, . . . , n− 2 have cost 1 and edges (vi, vi−1), i = 1, . . . , n− 1 have cost 1 + ε
for some ε > 0. Set all other edges to some cost M > 1 + ε. Then a DMST
of this digraph is the directed line {(vi, vi+1)|i = 0 . . . n − 2}. Removal of edge
(vn−2, vn−1) from this set, causes the DMST to change completely to another
optimal set of edges {(vi, vi−1)|i = 1, . . . , n − 1}. Re-insertion of the removed
edge causes the DMST to change entirely to its former state (see fig. 1 for an
example). Every algorithm using only DMST information to update the DMST
per edge operation requires at least the time given by lemma 1, which is Ω(n2)
for dense digraphs. ��
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A similar result was derived in [17] for shortest paths tree updates. In the next
section we take the approach of maintaining intermediate information related to
construction of a solution (also suggested in [17] and investigated later in [14] for
shortest paths tree updates). Note that when the underlying digraph is restricted
to remain a DAG in between edge operations, a simple application of Fibonacci
heaps yields an O(log n) update time dynamic algorithm.

4 Dynamic Algorithm

The algorithm maintains as many contractions as possible per edge operation,
along with the selected edges (edges of H). The purpose of this practice is to effi-
ciently initialize and execute the implementation of Edmonds’ algorithm known
from [9] on a maintained partially contracted digraph, so as to process less ver-
tices and edges per edge operation. We show that such a partially contracted
digraph can be recognized in O(n) time by using simple operations over an
appropriate data structure, and a modified version of the implementation of [9].

4.1 An Augmented Structure

We present a data structure, namely the Augmented Tree (ATree), which appro-
priately encodes the redundant edge set H along with all vertices (c-vertices and
simple ones) processed during execution of Edmonds’ algorithm. Simple vertices
are represented in the ATree by simple nodes while c-vertices are represented by
c-nodes. For the rest we denote simple nodes with Ns

i , where vi ∈ V and c-nodes
with N c

j . We use unsuperscripted N to refer to ATree nodes regardless of their
type. Six records are maintained at each node N of the ATree:

1. e(N) is the edge selected by the algorithm for the represented vertex. If no
edge was selected we set e(N) = null and call N a root node. The root node
will be unique as discussed below.

2. yN = ĉ(e) is the cost of edge e(N) at the time it was selected for the vertex
represented by N .

3. children(N) is a list holding the children of N in the ATree.
4. parent(N) is the parent node of N in the ATree (which equals to null if N

is the root node).
5. contracted-edges(N c) is a list holding all edges contracted during creation of

the corresponding c-vertex represented by N c (that is, edges having both
their end-vertices on the contracted cycle).

6. kind(N) is the kind of node N (simple node or c-node).

Since the digraph is strongly connected, all vertices will be eventually contracted
to a single c-vertex by the end of the algorithm’s execution. This c-vertex is
represented by the root node of the ATree. The parent of each other node N is
the intermediate c-node N c to which it was contracted. Since the parent of each
node is unique, the described structure is indeed a tree.
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Fig. 2. Execution of Edmonds’ algorithm on the digraph on the left performs con-
tractions marked with dashed lines. The representative ATree appears in the middle.
The decomposed ATree after deletion of edge (v2, v3) represents a partially contracted
digraph of three vertices (on the right).

The ATree has at most O(n) nodes because the algorithm handles O(n) con-
tractions. Construction of an ATree can be embedded into the implementation
of [9], without affecting its complexity. However, maintenance of contracted-edges
lists requires special manipulation with respect to the implementation of [9], and
we defer this discussion to paragraph 4.5. Fig. 2 depicts an ATree example (mid-
dle) with respect to execution of Edmonds’ algorithm on a digraph (left).

4.2 Deleting Edges

We discuss how to handle edge deletions using the ATree structure. Let eout ∈ E
be an edge we want to remove from the digraph. Two cases must be considered:

1. eout �∈ H : we only need to remove eout from the digraph and from the
contracted-edges list to which eout belongs. This can be achieved in O(1) time,
if we use an endogenous list implementation [9]: each edge has associated
pointers in the digraph representation, pointing to the next and previous
elements in the list.

2. eout ∈ H , in which case we proceed by decomposing the ATree, initializing
Edmonds’ algorithm w.r.t. the remainders of the ATree and execute it.

Decomposition. The decomposition of the ATree begins from node N such that
e(N) = eout and proceeds by following a path from N towards the ATree root and
removing all c-nodes on this path except N . Each of the children of a removed
c-node is made the root of its own subtree. By the end of this procedure, the
initial structure has been decomposed into smaller ATrees, each corresponding
to a contracted subset of the original digraph’s vertices. Observe that all these
ATrees remain intact after decomposition, because eout was not part of their
formation. An example of ATree decomposition is shown on the right of fig. 2.

4.3 Recognizing a Partially Contracted Digraph

Having performed the decomposition of the ATree, we proceed by recognizing the
partially contracted digraph G(V ′, E′) represented by the remainders (namely
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smaller ATrees). Let V ′ = {N1 . . .Nk} be the roots of ATrees after decompo-
sition. These will constitute the vertex set of the digraph. A BFS on each tree
suffices to assign each original digraph vertex vi to some ATree root in V ′ in
O(n) time. Now we need to identify E′ without scanning all edges of the origi-
nal digraph. E′ consists of edges having their end-vertices in different remaining
ATrees. Let R = {N c

1 . . . N c
r} be the set of removed c-nodes during decomposi-

tion of the ATree. Note that the union of contracted-edges(N c
i ) lists, N c

i ∈ R, is
precisely the correct edge set E′ and it can be found in O(n) time.

Given the partially contracted digraph G(V ′, E′), each N ∈ V ′ associated
with a set of incoming edges δE′(N), a second aspect concerns consideration of
the proper reduced costs ĉ for these edges. Let vi ∈ V be a vertex of the original
digraph represented as a leaf Ns

i of an ATree with root N ∈ V ′ (it may occur
that Ns

i is the root N itself). Let e = (u, vi) with e ∈ δE(vi) ∩ δE′(N). Let
P = [Ni, N

c
1 , . . .N c

l , N ] denote the path from Ni to N in the ATree. Then by
definition of the ATree and by functionality of Edmonds’ algorithm described in
section 2, we can determine the reduced cost of e:

ĉ(e) = c(e)−
∑

N∈[Ni,Nc
1 ,...Nc

l ]

yN

As an example in the decomposed ATree of fig 2 we obtain ĉ(e) = c(e)− yN0 for
all edges e ∈ δE′(N c

1 ) ∩ δE(v0). Our practice is to compute a reduction quantity
ri (i.e. the subtracted sum) for each simple node Ns

i of the remaining ATrees
with a single BFS on each remaining ATree in a total of O(n) time. Then, we
can scan once the edges e = (u, vi) ∈ E′ and assign them the proper reduced
cost ĉ(e) = c(e)− ri.

4.4 Inserting Edges

Edge insertion is handled by reduction to edge deletion. Let ein be the edge
we want to insert, at cost c(ein). We have to check whether ein should replace
some edge encoded in the ATree. This check involves only c-nodes of the ATree
that are ancestors of Ns

h(ein) and is performed as follows: starting from the node
Ns

h(ein) we follow the path towards the ATree root. For each visited node N , we
check whether c(e(N)) > c(ein). If this is not the case, we proceed to the parent
node. Otherwise, we have found a candidate node N which should have ein as
its selected edge, because it is of lower cost. It may be the case that the root
node of the ATree is reached: then ein cannot replace any edge of H . In this case
we insert it in the digraph and in the contracted-edges list associated with the
least common ancestor of Ns

t(ein) and Ns
h(ein).

Given that we have found a candidate node N which should replace its e(N)
with ein, we have to determine whether ein should or should not belong in the
”in” cut-set of N . To do so we examine whether the Ns

t(ein) is hanged in the
subtree rooted at N , by engaging a BFS on this subtree. If Ns

t(ein) is found, it is
implied that ein should not belong in the ”in” cut-set of N , so we simply insert
the edge in the digraph and in the contracted-edges list of the least common
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ancestor of Ns
t(ein) and Ns

h(ein). Otherwise, we insert ein in the digraph and
engage a virtual deletion of e(N), i.e. without actually removing e(N) from the
digraph. After this virtual edge deletion recognition of G(V ′, E′) takes place as
described in the previous paragraph, and the algorithm of Edmonds is executed
over G(V ′, E′ ∪ {ein}).

4.5 Maintaining Contracted Edges

We describe here how to maintain a contracted-edges(N c) list for each c-node N c

of the ATree structure, by introducing a simple modification on the O(m+n log n)
time implementation of Gabow et al. [9], without burdening the complexity. A
brief description of the implementation follows.

The loop of Edmonds’ algorithm is executed by growing a path, referred to
as the growth path in [9]. The growth path is constructed as follows: initially,
an arbitrary vertex s, called current root vertex, is considered and an incoming
edge e = (u, s) of minimum cost ĉ(e) is selected. Vertex u gets marked, edge e is
added in the growth path and the process is repeated by considering vertex u as
the current root vertex. If the insertion of e causes a directed cycle (i.e. its tail
t(e) is already marked), a contraction of the cycle happens and a new c-vertex
replaces all cycle vertices in the growth path. This c-vertex becomes the current
root vertex of the growth path.

Each vertex u ∈ V is associated with an exit list, which holds outgoing edges
of u, incoming to some vertex on the current growth path. If we let v0, . . . , vl

be the current growth path, with v0 its current root vertex, such a list has the
following contents:

1. If u is not on the growth path: its associated exit list contains only the edges
e with t(e) = u and h(e) = vj such that vj is on the growth path.

2. If u = vi is on the growth path: only edges e with t(e) = u and h(e) = vj

such that vj is on the growth path and j < i, are contained.

Furthermore, in both cases, the edges are sorted in increasing order of j. When
a vertex is either added to the growth path, or takes place in a contraction, its
exit list is scanned once (for purposes related to details of [9]) and cleared. The
following modified manipulation of exit lists is adopted:

1. When a vertex u is added to the growth path, its exit list is scanned once
and cleared as in [9], but each edge (u, vi) (vi belonging on the growth path)
is added in a list deprecated(vi).

2. When a contraction of vertices v0, . . . , vk happens, the new c-vertex is given
an explicit name, say c. The exit lists of the contracted vertices are scanned
once and cleared as required in [9], but their contents are merged into a
contracted-edges(c) list initialized for the new c-vertex c. All deprecated(vi),
i = 0 . . . k, are merged into contracted-edges(c).

By these modifications all edges contracted due to the emergence of a new c-
vertex c (having both their end-vertices in the cycle) are stored in its associated
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deprecated(v1):{(v0, v1)}
deprecated(v2):{(v1, v2)}

u

u

v0

v0

v1

v1

v2

v2

exit(u):{(u, v0), (u, v1), (u, v2)}
exit(v0):{ }
exit(v1):{ }
exit(v2):{(v2, v0)}

exit(u):{ }
exit(v0):{ }
exit(v1):{ }
exit(v2):{(v2, v0), (v2, u)}

deprecated(v0):{(u, v0)}
deprecated(v1):{(v0, v1), (u, v1)}
deprecated(v2):{(v1, v2), (u, v2)}

c
contracted-edges(c):{(v2 , v0), (v2, u), (u, v0), (v0, v1),

(u, v1), (v1, v2), (u, v2)}

Fig. 3. In the upper part, exit lists and deprecated lists are shown for the current
growth path v0, v1, v2. When edge (u, v0) is added on the growth path the updated
exit lists and the deprecated lists are as shown in the center part. Augmentation of the
growth path with edge (v2, u) causes contraction of all vertices. The list of contracted
edges for the new c-vertex c is the union of exit and deprecated lists, shown in the
lower part.

list contracted-edges(c). Merging of the lists can be done in k steps and since the
algorithm performs k steps anyway for identifying the cycle, its complexity is
not burdened. An example of the described manipulation appears in fig. 3.

5 Complexity

In order to study the output complexity of the proposed dynamic scheme, we
have to identify the minimal portion of the maintained output that is affected
by each edge operation. As mentioned previously, the output consists of all
processed vertices (simple and c-vertices). A vertex v (whether a simple or c-
vertex) is affected if it takes part in a different contraction in the new output
after an edge operation. A contraction is defined exactly by the vertices and
edges that comprise the directed cycle which caused it. A different contrac-
tion is one which was not present in the previous output. We denote the set
of affected vertices with ρ, |ρ| being its size. The extended set of affected ele-
ments (namely vertices and edges incoming to affected vertices) is denoted as
||ρ||: this definition was introduced in [13] also used in [14, 16]. First we show
that:

Lemma 2. Root nodes of ATrees which emerged after decomposition of the ini-
tial ATree represent affected vertices.

Proof. Let eout be the removed edge, and N be the corresponding ATree node
with e(N) = eout. Clearly N is affected by definition, since it will change its
selected incoming edge. Hence any contraction to which it takes part differs
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from previous contractions at least by the new edge. For the rest roots of ATrees
one of the following happens: either they take part in at least one contraction not
present in the previous output, or they take part in a contraction also present
in the previous output. In the latter case however, this contraction also included
N , hence in the new output it differs at least by e(N). ��
Notice that |ρ| ≤ n. During edge insertion/deletion all supplementary operations
incur O(n) complexity, while re-execution of Edmonds’ algorithm processes only
affected vertices, given by lemma 2. Hence:

Theorem 2. Fully dynamic maintenance of a directed minimum cost spanning
tree can be done in O(n+ ||ρ||+ |ρ| log |ρ|) output complexity per edge operation.

By the previous discussion and the results of [10]:

Corollary 1. Fully dynamic maintenance of a directed minimum cost spanning
tree can be done in deterministic O(n+||ρ|| log log |ρ|) and O(n+||ρ||√log log |ρ|)
randomized output complexity per edge operation in sparse digraphs.

6 Experimental Evaluation

We evaluated the proposed method on sequences of edge operations on digraphs
of varying order and density. Implementation was grown in C++ under version
3.1 of the gcc compiler with optimization level 3. Experiments were carried out
on an Intel P4 3.2 GHz PC with 1 GB of memory, running Linux Kernel 2.6.
CPU time was measured using the getrusage() system call. We implemented
the description of [9] for dense digraphs of O(n2) edges and the deterministic
heaps of [10] for sparse digraphs of O(n) edges. Both implementations discourage
usage of pre-existing data structure libraries due to the heaps used and due to
the endogenous nature of other supplementary structures.

6.1 Experimental Setup

A large set of random digraphs divided into three categories was used:

Dense Digraphs: n = 500i, i = 1 . . . 10, densities p = 0.2i, i = 1 . . . 5.
Sparse Digraphs: n = 500i, i = 1 . . . 10, densities p = c

n−1 , with c taking
values in {10, 20, 30, 40, 50}.
Embedded Cliques: We generated 10 digraphs of order n = 5000 and density
10

n−1 , and embedded on each of them a clique of increasing order 500i, i = 1 . . . 10.

Edge costs were chosen uniformly at random from the range 1 . . . 1000. The
dynamic algorithm was compared against re-executing Edmonds’ algorithm on
the whole digraph instance per edge operation (static practice). An edge oper-
ation was chosen to be insertion or deletion with probability 0.5. Average CPU
time and number of iterations performed by each algorithm were derived over
104 operations per digraph instance. % Gain for both measures, defined as the
relative savings of the dynamic over the static practice, is discussed.
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6.2 Discussion

The proposed practice achieves substantial CPU time savings over the static
DMST re-evaluation, as shown in fig. 4, for both complete and very sparse di-
graphs. Fig. 5 shows that for general dense digraphs, the savings are stable
across orders and densities over 60% on average. For sparse digraphs the gain in
CPU time increases from about 65% to near 95% when c = 10 (very sparse di-
graphs) as n increases, while the increase becomes more modest when c becomes
larger.
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Fig. 4. Performance comparison per edge operation in complete and very sparse di-
graphs
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Fig. 5. Almost stable over 60% CPU Time gain of dynamic over static per edge oper-
ation in dense digraphs and increasing gain in sparse digraphs
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A stability of the dynamic practice is observed in fig. 6 in terms of iterations
savings to a 80% gain across all dense and sparse graphs. This result combined
with the 60% time gain for dense digraphs and the increasing gain observed
for large sparse instances, implies a dependance of the overall performance on
the density of edges. This dependance was further examined on very sparse
instances (c = 10) having an embedded clique of increasing size, i.e. on digraphs
of increasing non-uniformly distributed density.

The results we obtained confirm this dependance. Initially, when the em-
bedded clique is very small and thus the instance is sparse, the overall gain is
approximately 95% as shown in Fig. 7. As the embedded clique grows and the
density of the considered digraphs increases, the gain decreases, resulting in a
still significant 60% when the whole digraph has become complete.

Conclusively, the proposed dynamic algorithm achieves an update time re-
duced by a factor of more than 2 as opposed to solving the problem statically on
dense digraphs. We believe that the case of sparse digraphs merits theoretical
investigation from an average case complexity perspective, since there appears
to be an asymptotic improvement on average.

7 Conclusions

We have studied the problem of updating the DMST of a weighted digraph
changing by edge insertions and deletions. We provided an Ω(n2) complexity
lower bound when the only information retained is the DMST itself, and de-
signed a dynamic algorithm of O(n + ||ρ||+ |ρ| log |ρ|) output complexity, where
ρ is a minimal subset of the output that needs to be updated per edge opera-
tion. Experimental evaluation of the proposed technique establishes its practical
value, and raises an open question regarding average case analysis for sparse
digraphs.

Acknowledgements. We thank three anonymous reviewers for comments that
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Abstract. The crossing number of a graph G is the smallest number
of edge crossings in any drawing of G into the plane. Recently, the first
branch-and-cut approach for solving the crossing number problem has
been presented in [3]. Its major drawback was the huge number of vari-
ables out of which only very few were actually used in the optimal so-
lution. This restricted the algorithm to rather small graphs with low
crossing number.

In this paper we discuss two column generation schemes; the first is
based on traditional algebraic pricing, and the second uses combinatorial
arguments to decide whether and which variables need to be added. The
main focus of this paper is the experimental comparison between the
original approach, and these two schemes. We also compare these new
results to the solutions of the best known crossing number heuristic.

1 Introduction

Crossing minimization is among the oldest and most fundamental problems aris-
ing in the area of automatic graph drawing and VLSI design and has been studied
in graph theory for many decades.

A drawing of a graph G = (V, E) is a mapping of each node v ∈ V to a distinct
point and each edge e = (v, w) ∈ E to a curve connecting the incident nodes v
and w without passing through any other node. Common points of two edges
that are not incident nodes are called crossings. The crossing number, denoted
by cr(G), is the minimum number of crossings among all drawings of G.

The crossing minimization problem is a central problem in the area of auto-
matic graph drawing, since a low crossing number is among the most important
design criteria for drawings [12]. Yet its roots are much older: P. Turán described
in his “Note of Welcome” in the first issue of Journal of Graph Theory [13] that
he started to examine this topic during the second world war. Even though much
research has been conducted – see, e.g., [14] for an overview – even the crossing
numbers for complete and complete bipartite graphs can only be conjectured.

In 2005, Buchheim et al. [3] introduced the first algorithm to compute the
exact crossing number, based on a branch-and-cut approach, which we outline
in Section 2. The problem with this approach was the huge amount of vari-
ables required. This restricted the algorithm to relatively small graphs with few
crossings, since its running time heavily depends on the latter parameter.

C. lvarez and M. Serna (Eds.): WEA 2006, LNCS 4007, pp. 303–315, 2006.
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To overcome this drawback, we devised two different column generation
schemes, i.e., methods starting with a small subset of variables and dynami-
cally adding variables during the computation; see Section 3. The first approach,
called algebraic pricing, is based on the standard pricing technique first intro-
duced by Dantzig and Wolfe [4]. Starting from a small subset of the variables,
we can compute reduced costs for the variables not yet in the ILP and decide on
their addition based on these values. The second scheme is called combinatorial
column generation. Its main idea is to interpret the absence of certain variables
in a combinatorial way, such that we can quite intuitively decide, whether these
variables have to be added or not.

Section 4.1 presents the results of our experimental study, comparing the orig-
inal method to the two column generation schemes. Note that even the original
method is already an improved version of the one presented in [3], due to the
use of primal heuristics during the cutting phase, as well as the recently de-
veloped preprocessing method called non-planar core [7]. The dataset used for
the study is the well known Rome library [5], which has, e.g., also been used
for a comparison between crossing minimization heuristics [8]. Section 4.2 gives
an experimental analysis of the quality achieved by the currently best known
heuristics compared to these values.

2 The Branch-and-Cut Approach

ILP and Cutting Planes. In order to solve the crossing minimization prob-
lem for a graph G = (V, E), it is necessary to determine which edges cross in
an optimal solution. However, it is even NP-complete to decide if there exists
a drawing realizing a given set of edge crossings [10]. Therefore, the ILP solu-
tion needs to contain information on the order of these crossings along an edge.
This is achieved by restraining the solution to crossing restricted drawings (or
CR-drawings), i.e., drawings in which each edge is involved in at most one cross-
ing. To compute an optimal solution for G, we represent each edge of G by a
sufficiently long chain of segments. An optimal crossing restricted solution for
this modified graph clearly induces a crossing minimal solution for G. Obviously,
|E|−deg(v)−deg(w)−1 segments are sufficient for an edge (v, w), but also any
upper bound for cr(G) bounds the number of required segments. This expansion
leads to the problematically high number of variables.

If D is a set of crossings and we place a new node on every crossing (e, f) ∈ D,
i.e., we split both e and f and identify the created dummy nodes, we obtain a
(partial) planarization GD of G with respect to D. Then, D is realizable if and
only if GD is planar.

The ILP-formulation for finding a crossing minimal CR-drawing has a 0/1
variable x[e, f ] for each unordered pair (e, f) of segments, which is 1 if e and f
cross and 0 otherwise. The optimization goal is to minimize the sum of all the
x[e, f ] according to the following constraints – please refer to [3, 2] for details:
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– CR-constraints assuring that each segment crosses at most one other edge.
– Kuratowski constraints that guarantee the realizability of the set of segment

crossings given by the variables that are set to 1.

Our formulation contains a Kuratowski constraint for each subdivision of K5 or
K3,3 in every planarization with respect to a crossing restricted set of crossings.
It is clearly impractical to generate all these constraints in advance, hence they
are incorporated into a branch-and-cut framework, and Kuratowski constraints
are only generated when necessary. For integer solutions, the separation problem
for Kuratowski constraints can be solved in linear time by finding a Kuratowski
subdivision in the partial planarization of G [15], for fractional solutions the
separation problem is solved heuristically using rounding techniques.

Primal Heuristic. The state-of-the-art crossing minimization heuristic is the
planarization approach which has been proposed by Batini et al. [1]. It first com-
putes a planar subgraph of G, and then inserts the remaining edges one after
the other. During the edge insertion step, crossings are replaced by dummy ver-
tices, such that the final result is a planarization of G. Gutwenger and Mutzel
compared various variants of the planarization approach in an experimental
study [8], including further permutation and postprocessing strategies. In our
implementation, we use the heuristic which achieved the best quality in this
study.

Preprocessing. The traditional method of preprocessing for crossing mini-
mization is to run the algorithm on each block, i.e., 2-connected component, of
G separately, and to merge chains of edges, i.e., edges connected by nodes with
degree two, into single edges.

In [7], Gutwenger and Chimani presented a linear-time reduction scheme based
on SPQR-trees [6], which can further simplify these blocks. The resulting non-
planar core may contain edges with integer weights. It is easy to see, that we can
extend the ILP given above to support these weights by simply modifying the
edges’ coefficients in the objective function. This reduction method is known to
roughly halve the graphs’ size on average for the Rome library which we use in
our experimental study. This is an improvement of about 2/3 over the traditional
preprocessing and was therefore used in all experiments given below.

3 Column Generation Schemes

The main idea of column generation is to start solving a problem only with a
relatively small subset of the ILP’s variables. During the branch-and-cut com-
putation we can decide which variables might have to be added in order to im-
prove the solution. This idea is based on the observation, that in many problems
there are a lot of “unused” variables which are 0 during the whole computation.
Identifying and excluding superfluous variables leads to smaller ILPs and LP
relaxations, thus improving the overall running time. Furthermore, the branch
tree will be smaller, since there are less variables to branch on.
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When analyzing the ILP presented above, we can clearly see that the full
expansion of the graph, in order to guarantee the existence of a crossing restricted
drawing that realizes the crossing number, will be unnecessary in most cases.
Hence we can try to start with variables only for the first segment of each chain,
adding additional segment-variables later when necessary.

3.1 Algebraic Pricing

The standard idea of column generation is called pricing. Thereby we test all
variables not yet in the ILP by computing their reduced costs. Let c be the vector
of coefficients the variable v would have in the ILP’s constraints (i.e., rows), and
let d be the vector of the dual variables of the current solution. The reduced
cost of v is simply defined as the scalar product of c and d. Based on the sign
of this value we can decide whether it could be necessary to add this variable to
the ILP or if the addition of this variable cannot lead to better solutions. This
operation may give false positives, hence we try to add the variables with the
smallest reduced costs first. Their addition can lead to rejecting other variables
which had a negative reduced cost before.

Due to the structure of our specific problem, we actually do not have to test
all variables not introduced yet. It suffices to test variables which “extend” the
currently introduced edge segments. More technically, this means that we start
with a quadratic number of variables: for all pairwise disjoint and non-adjacent
edges e and f , we label one of their expanded segments with e0 and f0, and add
a variable representing a crossing x[e0, f0] between these segments. In the pricing
step we have only to consider variables that are a convex extension of the existing
variables. We can add variables for a segment left or right to the segment for
which a variable already exists, leading to positive and negative indices. In the
first iteration we will have to test the variables x[e±1, f0] and x[e0, f±1]. Figure 1
shows the situation at some later iteration step: The indices of segments of e are
plotted on the horizontal axis, the indices of the segments of f on the vertical.
The gray rectangles mark included variables; the circles denote potential new
variables, whereby the crosses mark variables which, although adjacent to the
current set of realized variables, are not tested, since they would extend the

0 1 2 3 4−1−2

0

−1

1

2

−2

3

Fig. 1. Algebraic Pricing. Convex extension of the variable set included in the ILP
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variable set in a way that is not orthogonally convex. Note that the orthogonally
convex extensions are sufficient, and crossed out variables can be realized by first
extending via the variables “in between”.

3.2 Combinatorial Column Generation

Our second column generation approach, which turns out to be much more
effective, works as follows: As for algebraic pricing, we start with a variable
set of quadratic size, representing possible crossings between the first segments
of the edges. Based on the fact that the graph extension was necessary only
for efficient realizability testing, we will drop the CR-constraints for all these
variables. For all additional segments associated to variables added throughout
the calculation, the CR-constraints will be included into the ILP.

Now we will modify the standard framework of calculation in a node in the
branch-and-bound tree: the traditional order is to first solve the LP relaxation
of the current (sub)problem, apply cutting planes afterwards, and finally per-
form the pricing step. In our scheme, we flip the cutting-plane and the column
generation steps for reasons explained in the following – see [2] for details.

When solving the initial ILP, we may find solutions that would violate the
CR-constraints which we did not add. Such solutions cannot be interpreted as a
(partial) planarization, hence our cutting plane approach would fail. Our column
generation scheme simply checks all these CR-constraints not in the ILP. Let e0

be a segment whose CR-constraint would be violated by the variables x[e0, f
(1)
i1

],
x[e0, f

(2)
i2

], . . . , x[e0, f
(k)
ik

]. Intuitively this means that the segment e0 is crossed

by k different segments, namely f
(1)
i1

, . . . , f
(k)
ik

, but the order of these crossings
in unknown. For all y = 1, . . . , k, let jy be the largest index for which the
variable x[ejy , f

(y)
iy

] is already in the ILP. We will then simply add the variables

x[ejy+1, f
(y)
iy

], for all y.
The trick is to reduce the objective function coefficient by some small ε for

each variable which does not represent a crossing between two segments with
index 0. Thereby we ensure that instead of putting all these edges on the first
segment, at least one of these segments will be routed via the newly added
segment since it is cheaper. If necessary, the LP relaxation is then also able to
shift the already existing crossings on the other segment of e0’s edge to higher
indices. If, at some point, jy + 1 ≥ s – with s being the maximum number of
segments of the corresponding edge – we will not introduce a new variable but
add the CR-constraint corresponding to e0 to the ILP instead. Note that this
situation can happen, due to the fact that the ILP only tries to find a solution
strictly better then the one given by the upper bound, and hence the maximum
expansion of an edge might be one segment less than actually necessary for the
realization of a crossing minimal drawing.

See Figure 2 for an example of the presented column generation scheme:
consider an integer solution by the LP relaxation to be interpreted as shown
on the left: There are two segments crossing the first segment of the horizontal
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Fig. 2. Combinatorial Column Generation. Left: implicit CR-constraint is violated;
Right: by adding additional variables and reducing the cost on the additional segment,
the situation is resolved.

edge e. Since this violates the CR-constraint of that segment, we add the vari-
ables x[e0, f

(1)
0 ] and x[e0, f

(2)
1 ], such that a solution as given on the right can be

computed. While the first solution had an objective value of 1 + 1 = 2, the new
solution is 1 + 1− ε = 2− ε, and will therefore be preferred by the LP solver.

Whenever the column generation terminates without adding new variables –
and therefore not forcing us to resolve the LP relaxation – we can interpret
the solution for our traditional cutting scheme. Note that whenever no implicit
CR-constraint is violated by the LP-relaxation, it is obvious that the variables
currently not in the ILP are not necessary for the optimal solution. Hence the
optimal objective value on the restricted variable set is at least as small as on
the fully expanded ILP, which suffices to proof the optimality of the induced
solutions.

4 Experimental Comparison

We implemented the described algorithms as part of the open-source C++ li-
brary Open Graph Drawing Framework OGDF [11]. We use the free branch-
and-cut-and-price framework ABACUS [9], in conjunction with the commercial
optimization library CPLEX (version 9). The tests were performed on a single
AMD Opteron CPU with 2.4 GHz and 32 GB RAM shared between 4 CPUs.
As it turned out, the memory consumption seldomly exceeded 1 GB.

For the following experiments, we used the Rome library, introduced in [5],
as a benchmark set of graphs. It has already been used for various experimental
studies, including [8] where different crossing heuristics have been compared.
The set contains 11, 389 graphs that consist of 10 to 100 nodes and 9 to 158
edges. These graphs were generated from a core set of 112 “real life” graphs
used in database design and software engineering applications.

Due to the complexity of the crossing minimization problem, we restricted
ourselves to the graphs with up to 75 nodes for the column generation com-
parison; combinatorial column generation (CCG) was then used to compute the
graphs with up to 90 nodes. For each computation scheme, we applied a 30
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minute time limit per instance. In the following diagrams, we will use AP as a
shorthand for algebraic pricing, and F as a shorthand for the full ILP, without
any column generation scheme.

4.1 Comparison Between Column Generation Schemes

Figure 3 shows the percentage of graphs for which the exact crossing number
was computed. The size of the circles denotes the number of graphs per node
count. While the full ILP could only solve a third of the large graphs, CCG could
still solve about 50%. Note that even after only 5 minutes, CCG could already
solve more graphs than F and AP after 30. Furthermore, there was no instance
which could be solved by either F or AP, but remained unsolved by CCG.

As it turns out, the number of edges in the non-planar core is much more
influential than the number of nodes in the original graph. Figure 4 shows the
relationship between those two properties: while we can clearly see a correla-
tion, the variance is quite high. When we look at Figure 5 we can see the clear
dependence of a successful computation on the number of core edges.

Based on the primal heuristic, we know that the Rome library consists of many
graphs with a crossing number of at most 1; we call these graphs trivial ; in fact,
nearly all graphs with up to 35 nodes are trivial. Since they are of no interest
for our branch-and-cut algorithm, we restrict ourselves to the non-trivial graphs.
Also note that for the following observations on the number of required variables,
we only consider the graphs which were solved to provable optimality. Since CCG
was able solve many more instances than AP, we will also consider the common
set, which is the set of instances solved by AP and therefore also by CCG.

Figure 6 shows the number of variables used by AP and CCG, relative to
the full (potential) variable set. While CCG needed more variables on average
for all the graphs it could solve, it used less variables than AP, when compared

Fig. 3. Percentage of graphs solved
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Fig. 4. Correlation between number of nodes and number of core edges

Fig. 5. Percentage of graphs solved

on the common set. This shows that CCG was able to solve graphs which re-
quired a larger variable set, whereby AP was too slow to tackle such graphs
successfully.

Figure 7 shows the actual numbers of generated variables (compared on the
common set). Note that the number of variables generated by CCG stays very
close to the number of the initially generated variables. While AP could only
solve graphs with roughly 10.000 potential variables on average, a similar statistic
for all the graphs solved by CCG would show an average of between 30.000 and
40.000 potential variables.

According to the above statistics, it is obvious that the running time of CCG
is superior to AP’s, and that both are more efficient than no column generation
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Fig. 6. Number of variables generated, relative to the full variable set

Fig. 7. Number of variables generated

at all. Yet, it is impressive that – over the set of instances solved by F – even the
maximum running time of CCG is always far below F’s average. When comparing
AP to CCG on the common set, we see that AP’s average is about equal to CCG’s
maximum time. The average running time of CCG over all successfully solved
graphs is under 5 minutes.

4.2 Comparison with Heuristics

In order to evaluate the quality of crossing minimization heuristics, we compared
the heuristic to the final upper bound of CCG after the 30 minutes time limit
for each graph in the benchmark set. Figure 8 evaluates the quality of this upper
bound by comparing it to the corresponding lower bound. The size of the circles
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Fig. 8. Final lower bound compared to final upper bound

Fig. 9. Average number of crossings achieved by heuristic and CCG

reflects the number of graphs at the data point. The main diagonal shows the
graphs solved to proven optimality; virtually all graphs with crossing number up
to 7 are solved optimally, and even 5 graphs with crossing number 12 could be
solved. In the following, we compare the heuristic solution to this upper bound,
which we denote by BUP.

Figure 9 shows the average number of crossings with respect to the number of
nodes for both the heuristic and BUP. It turns out that the heuristic solution is
very close to BUP. For graphs with up to 45 nodes, we know that CCG could solve
almost all instances to optimality, so we can conclude that the heuristic performs
very well on these instances. The dashed line shows the relative improvement



Experiments on Exact Crossing Minimization Using Column Generation 313

Fig. 10. Absolute improvement of CCG by number of nodes

Fig. 11. Absolute improvement of CCG by number of crossings

achieved by CCG; for graphs with up to 45 nodes, this is about 2%. The small
circles in the lower part of the diagram give the maximal absolute improvement
over the heuristic; the largest improvement was 8 crossings achieved for a graph
with 79 nodes. We further observed that the heuristic solution is optimal for
virtually all instances with up to 3 crossings, and that the absolute deviation
from the upper bound of CCG grows linear for graphs with up to 12 crossings
by about 1/12 per crossings.

We consider the absolute improvement achieved by CCG in more detail. Fig-
ure 10 shows the percentage of graphs that deviate by 1,2,. . . crossings from the
heuristic solution with respect to the number of nodes. It is interesting to consider
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the same statistic with respect to the value of the heuristic solution (see Figure 11).
For graphs with up to 3 crossings, the heuristic solves nearly all instances to
optimality. Between 10 and 16 crossings, the heuristic solution can be improved
for about half of the graphs. For larger crossing numbers, the statistic is not useful,
since CCG timed out early.

5 Conclusion

As our experiments show, the algebraic pricing approach is clearly inferior to
the combinatorial column generation. The former suffers from the high degree of
redundancy in the full ILP and needs to add much too many variables in order
to proof optimality. Combinatorial column generation on the other hand, gains
a vast improvement compared to solving the ILP over the full variable set.

The second main finding is that the currently best known heuristics are very
good in practice and solve many instances to their optimal value. Yet we can see
that there is still room for improvement when the crossing numbers get higher.
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Abstract. We demonstrate how Dijkstra’s algorithm for shortest path
queries can be accelerated by using precomputed shortest path distances.
Our approach allows a completely flexible tradeoff between query time
and space consumption for precomputed distances. In particular, sublin-
ear space is sufficient to give the search a strong “sense of direction”.
We evaluate our approach experimentally using large, real-world road
networks.

1 Introduction

Computing shortest paths in graphs (networks) with nonnegative edge weights
is a classical problem of computer science. From a worst case perspective, the
problem has largely been solved by Dijkstra in 1959 [1] who gave an algorithm
that finds all shortest paths from a starting node s using at most m + n priority
queue operations for a graph G = (V, E) with n nodes and m edges.

However, motivated by important applications (e.g., in transportation net-
works), there has recently been considerable interest in the problem of acceler-
ating shortest path queries, i.e., the problem to find a shortest path between a
source node s and a target node t. In this case, Dijkstra’s algorithm can stop
as soon as the shortest path to t is found. Furthermore, if the underlying graph
does not change too often, it is possible to store some precomputed information
that helps to accelerate the queries.

An extreme way to accelerate queries is to precompute all shortest path dis-
tances d(s, t). However, this is impractical for large graphs since it requires
quadratic space and preprocessing time. We explore the question whether it
is possible to speed up queries by precomputing and storing only some shortest
path distances.

Our approach, Precomputing Cluster Distances (PCD), is very simple. We
partition the graph into k disjoint clusters V = V1

.∪ · · · .∪ Vk and store the
pair of starting and end point as well as the length of the shortest connection
between each pair of clusters. This information needs space O(k2) and can easily
be computed using k executions of Dijkstra’s algorithm. Refer to Section 3 for
� Partially supported by DFG grant SA 933/1-2.
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details. In Section 4 we explain how this information can be used to compute
upper and lower bounds for d(s, t) at query time. These bounds can be used
to prune the search. Section 5 completes the description of our algorithmic ap-
proach by presenting some fast partitioning heuristics. Most of them require no
geometric information.

We then evaluate PCD in Section 6 using large, real-world road networks
as they are used in car navigation systems. It is both geometrically plausi-
ble, and supported by our experiments that the speedup compared to Dijk-
stra’s basic algorithm scales with

√
k, i.e., we get a flexible tradeoff between

space consumption and query time that already yields useful acceleration for
very small space consumption. To the best of our knowledge this is the first
sublinear space acceleration technique that yields speedups ( 2. Perhaps the
most interesting application of PCD would be a combination with previous
techniques that use linear space and deliver very high speedups but have no
sense of goal direction [2, 3, 4]. Section 7 explores further future perspectives on
PCD.

2 Related Work

Like most approaches to shortest paths with nonnegative edge weights, our
method is based on Dijkstra’s algorithm [1]. This algorithm maintains tenta-
tive distances d[v] that are initially ∞ for unreached nodes and 0 for the source
node s. A priority queue stores reached nodes (d[v] < ∞) using d[v] as the
priority. In each iteration, the algorithm removes the closest node u, settles it
because d[u] now is the shortest path distance d(s, u), and relaxes the edges
leaving u — if d[u] + c((u, v)) < d[v], then d[v] is decreased to d[u] + c((u, v)).
When Dijkstra’s algorithm is used for s–t shortest path queries, it can stop
as soon as t is settled. When we talk about speedup, we mean the ratio be-
tween the complexity of this algorithm and the complexity of the accelerated
algorithm.

A classical technique that gives a speedup of around two for road networks is
bidirectional search which simultaneously searches forward from s and backwards
from t until the search frontiers meet. Our implementation optionally combines
PCD with bidirectional search.

Another classical approach is goal direction via A* search: a lower bound
d(v, t) is used to direct the search towards the goal. This method can be inter-
preted as defining vertex potentials p(v):= d(v, t) and corresponding reduced edge
weights c∗((u, v)):= c((u, v))+p(v)−p(u). Originally, lower bounds were based on
the Euclidean distance from u to t and the “fastest street” in the network. Besides
requiring geometric information, this very conservative bound is not very effec-
tive when searching fastest routes in road networks. In this respect, a landmark
result was recently obtained by Goldberg and Harrelson [5, 6]. Landmark A* uses
precomputed distances to k landmarks to obtain lower bounds. Already around
k = 16 carefully selected landmarks are reported to yield speedups around 70.
Combined with a sophisticated implementation of reach based routing [2] this
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Table 1. Tradeoff between space, preprocessing time and query time depending on the
choice of the parameter k for different speedup techniques, k is the number of clusters
except for the landmark method. We assume road networks with n nodes and Θ(n)
edges. D(n) is the execution time of Dijkstra’s algorithm, B is the number of border
nodes. Preprocessing time does not include the time for partitioning the graph. (For
the landmark method this is currently dominating the preprocessing time.)

Method space preprocessing query
Edge Flags [10, 9] Θ(n · k) Bits Θ(B · D(n)) ? (≈ D(n)/2000@k = 128)
Separator Hierarchy [11] Ω B2/k Θ(B · D(n/k)) Ω D(n/k) + B2/k
Landmarks [5] Θ(n · k) Θ(k · D(n)) ? (≈ D(n)/70@k = 16)

PCD Θ k2 + B Θ(k · D(n)) Ω D(n/
√

k)

method currently yields the fastest query times for large road networks [4].
The main drawback of landmarks is the space consumption for storing Θ(kn)
distances. This is where PCD comes into play, which already yields a very
strong sense of direction using much less space than landmarks. Still, the story
is a bit more complicated than it sounds. We first considered PCD in March
2004 during a workshop on shortest paths in Karlsruhe. However, it turned
out the lower bounds obtainable from PCD are not usable for A* search be-
cause they can lead to negative reduced edge weights.1 Apparently, Goldberg
et al. independently made similar observations [7]. The present paper describes
a solution: use PCD to obtain both upper and lower bounds to prune search.
The basic idea for PCD was presented in a Dagstuhl Workshop [8] (slides
only).

There are several other speedup techniques that are based on partitioning
the network into k clusters [9, 10, 11]. However, the preprocessing time required
by these methods not only depends on k and the network size but also on the
number B of border nodes, i.e., the number of nodes that have nodes from other
clusters as neighbors. Furthermore, all of these methods need more space than
PCD. Table 1 summarizes the tradeoff between space, preprocessing time and
query time of these methods. Note that usually there is no worst case bound on
the query time known. The given functions make additional assumptions that
seem to be true for road network.

An interesting way to classify speedup techniques is to look at two major
ways to prune the search space of Dijkstra’s algorithm. A* search and PCD
direct the search towards the goal. Other algorithms skip nodes or edges that
are only relevant for short distance paths. In particular, reach based routing
[2, 4] and highway hierarchies [3] achieve very high speedups without any sense
of goal direction. Other techniques like edge flags [10, 9], geometric contain-
ers [12], and to some extent the landmark method show both effects. There-
fore, we expect a major future application of PCD to augment highway hi-
erarchies and reach based routing with a space efficient way to achieve goal
direction.

1 This was pointed out by Rolf Möhring.
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3 Preprocessing

Suppose, the input graph has been partitioned into clusters V = V1
.∪ · · · .∪ Vk.

We want to compute a complete distance table that allows to look up

d(Vi, Vj):= min
s∈Vi,t∈Vj

d(s, t) (1)

in constant time. We can compute d(S, Vi) for a fixed cluster S and i = 1, . . . , k
using just one single source shortest path computation: add a new node s′ con-
nected to all border nodes of S using zero weight edges. Perform a single source
shortest path search starting from s′. Fig. 1 illustrates this approach.

0s’

0

0
Viv

S

Fig. 1. Preprocessing connections from cluster S

The following simple lemma shows that this suffices to find all connections
from S to other clusters.

Lemma 1. d(S, Vi) = min
v∈Vi

d(s′, v).

The proof is almost obvious. We include it nevertheless since several other
speedup techniques require shortest path computations from all border nodes
of all partitions.

Proof. We have d(S, Vi) ≤ minv∈Vi d(s′, v) as any shortest path (s′, s, . . . , v ∈ Vi)
found during the search from s′ contains a path (s, . . . , v) connecting the clusters
S and Vi.

On the other hand, there cannot be a shorter connection from S to Vi. As-
sume the contrary, i.e., there is a path (s ∈ S, . . . , u ∈ S, u′ /∈ S, . . . , v′ ∈ Vi)
with d(s, v′) < minv∈Vi d(s′, v). Then (s′, u, . . . , v′) would constitute a shorter
connection from s′ to v′, which is a contradiction. ��
Repeating this procedure for every cluster yields the complete distance table. In
addition, for each pair Vi, Vj we store a start point vi ∈ Vi and an end point
vj ∈ Vj such that d(vi, vj) = d(Vi, Vj).

4 Queries

We describe the query algorithm for bidirectional search between a source s and
a target t. To allow sublinear execution time, the algorithm assumes that the
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distance values and predecessor information used by Dijkstra’s algorithm have
been initialized properly during preprocessing. Let S and T denote the clusters
containing s and t respectively. The search works in two phases.

In the first phase, we perform ordinary bidirectional search from s and t until
the search frontiers meet, or until d(s, s′) and d(t′, t) are known, where s′ is the
first border node of S settled in the forward search, and t′ the first border node
of T settled in the backward search.

For the second phase we only describe forward search—backward search works
completely analogously. The forward search grows a shortest path tree using
Dijkstra’s algorithm, additionally maintaining an upper bound d̂(s, t) for d(s, t),
and computing lower bounds d(s, w, t) for the length of any path from s via w
to t. The search is pruned using the observation that the edges out of w need
not be considered if d(s, w, t) > d̂(s, t). Phase two ends when the search frontiers
of forward and backward search meet. In a cleanup phase, the distance values
and predecessor values changed during the search are reset to allow the proper
initialization for the next query. This can be done efficiently by maintaining a
stack of all nodes ever reached during the search. It remains to explain how
d̂(s, t) and d(s, w, t) are computed.

The upper bound is updated whenever a shortest path to a node u ∈ U
is found such that u is the starting point of the shortest connection between
clusters U and T . Let tUT denote the stored end point of the precomputed
shortest connection from U to T . Then we have

d(s, t) ≤ d(s, u) + d(u, tUT )︸ ︷︷ ︸
=d(U,T )

+d(tUT , t) . (2)

The value of d(s, u) has just been found by the forward search, and d(U, T )
and tUT have been precomputed; thus, the sum in Equation (2) is defined if
d(tUT , t) is known, i.e. if tUT has already been found by the backward search.
Otherwise, we use an upper bound of the diameter of T instead of d(tUT , t) (see
Section 5). d̂(s, t) is the smallest of the bounds from Equation (2) encountered
during forward or backward search. The following lemma establishes the lower
bound.

UTt

d( s,w)

d( s,u ) d( U,T )
d( t’,t )

t’

w

s

S
u

W

U

T
upper bound

UTd(    )
t

d( )W,T

t
t     ,t

lower bound
phase 1
search

phase 1
search

Fig. 2. Constituents of upper and lower bounds for d(s, t)
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Lemma 2. Consider any node w �∈ T . Let W denote the cluster containing w,
and let Border(T ):= {t′ ∈ T : ∃t̄ �∈ T : (t̄, t′) ∈ E} denote the border of T , then
any shortest path from s via w to t has a length of at least

d(s, w, t):= d(s, w) + d(W, T ) + min
t′∈Border(T )

d(t′, t) . (3)

Proof. We show that d(s, w, t) ≤ d(s, w) + d(w, t) or, equivalently, d(W, T ) +
mint′∈Border(T ) d(t′, t) ≤ d(w, t). Consider a shortest path P = (w, . . . , t′′, . . . t)
from w to t where t′′ denotes the first node on this path that is in cluster T .
We have d(w, t) = d(w, t′′) + d(t′′, t). Since (w, . . . , t′′) is a connection from W
to T we have d(w, t′′) ≥ d(W, T ). Furthermore, since t′′ is a border node of T ,
we have d(t′′, t) ≥ mint′∈Border(T ) d(t′, t). ��
d(s, w, t) can be computed efficiently as d(s, w) has been found by forward search,
W can be found by storing a cluster identifier with each node, d(W, T ) has been
precomputed, and mint′∈T d(t′, t) has been determined by the end of the first
phase. Fig. 2 depicts the situation for computing upper and lower bounds.

Space Efficient Implementation
The algorithm described above is straight forward to implement using space
O(k2 + n). This can be reduced to O(k2 + B) where B is the number of border
nodes that have neighbors in other cluster. The problem is that when settling a
node u, we need to know its cluster id. The key observation is that clusters only
change at border nodes so that it suffices to store the cluster ids of all B border
nodes in a hash table.

5 Partitioning

For any set C = {c1, . . . , ck} ⊂ V of k distinct centers, assigning each node v ∈ V
to the center closest to it results in a k-center clustering. Here, the radius r(Ci)
of a cluster Ci denotes the distance from its center ci to the furthest member.2 A
k-center clustering can be obtained using k′-oversampling: a sample set C′ of k′

centers is chosen randomly from V for some k′ ≥ k, and a k′-center clustering is
computed for it by running one single source shortest path search from a dummy
node connected with each center by a zero-weight edge. Then, clusters are deleted
successively until k clusters are left. A cluster Ci is deleted by removing the
corresponding center ci from C′ and reassigning each member of Ci to the center
now closest to it. This amounts to a shortest path search from the neighboring
clusters which now grow into the deleted cluster. This process terminates with
a (k′−1)-clustering. There are several ways to choose a cluster for deletion: in
Section 6 results are shown for the MinSize and the MinRad heuristics, which
2 Note that for undirected graphs, 2 r(Ci) is an upper bound of the diameter of Ci since

d(u, v) ≤ d(u, ci)+d(ci, v) ≤ 2 r(Ci) for any u, v ∈ Ci. This bound can be used in the
query as shown in Section 4. For directed graphs we can use r(Ci)+maxc∈Ci d(c, ci)
for the same purpose.
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choose the cluster of minimum size and minimum radius respectively, and the
MinSizeRad heuristic, which alternates between the former two. It can be shown
that partitioning using the MinSize heuristic searches O(n log k′

k ) nodes using
Dijkstra’s algorithm and hence has negligible cost compared to computing cluster
distances which requires searching O(nk) nodes.3 The radius of a cluster affects
the lower bounds of its members, and it seems that a good partitioning for PCD
has clusters of similar size and a low average radius. Oversampling indeed keeps
a low average radius since deleted clusters tend to be distributed to neighbors
of lower radius. However, a higher radius is acceptable for smaller clusters since
the lower bound is not worsened for too many nodes then, whereas a low radius
allows a bigger size. Both values can be combined into the weighted average
radius, in which the single radii are weighted with their clusters’ sizes.

Our k-center heuristics are compared with a simple partitioning based on a
rectangular grid and with Metis [13]. Metis was originally intended for parallel
processing where partitions should have close to equal size and small boundaries
in order to reduce communication volume.

6 Experiments

The PCD algorithms were implemented in C++ using the static graph data
structure from the C++ library LEDA 5.1 [14] and compiled with the GNU
C++ compiler 3.4 using optimization level -O3. All tests were performed on a
2.4 GHz AMD opteron with 8 GB of main memory running Linux (kernel 2.6.11).
We use the same input instances as in [3]—industrial data for the road network
of Western Europe and freely available data for the US [15]. Table 2 gives more
details. In order to make experiments with a wide range of parameter choices, we
used subgraphs of these inputs. Unless otherwise noted, the experiments make
the following common assumptions: we use undirected graphs in order to be able
to use simple implementations of the partitioning heuristics. (Our PCD imple-
mentation works for general directed graphs.) Edge weights are estimated travel

Table 2. The graph instances used for experiments

Instance n m Description
DEU 4 375 849 5 483 579 Germany
SCA 2 453 610 2 731 129 Sweden & Norway
IBE 872 083 1 177 734 Spain & Portugal
SUI 630 962 771 694 Switzerland
MID 5 246 822 6 494 670 Midwest (IL,IN,IA,KS,MI,MN,NE,ND,OH,SD,WI)
WES 4 429 488 5 296 150 West (CA, CO, ID, MT, NV, OR, UT, WA, WY)
MAT 2 226 138 2 771 948 Middle Atlantic (DC, DE, MD, NJ, NY, PA)
NEN 896 115 1 058 481 New England (CT, ME, MA, NH, RI, VT)

3 Throughout this paper log x stands for log2 x.
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Fig. 3. The search space for a sample query from Frankfurt to Berlin
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Fig. 4. Scaled speedups for bidirectional PCD depending on the method of clustering

times. The default instance is the road network of Germany (DEU). Partitioning
is done using k log k-oversampling with the MinSize heuristic. The speedup is the
ratio between the number of nodes settled by Dijkstra’s unidirectional algorithm
and by the accelerated algorithm. The given values for queries are averages over
1000 random query pairs.
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Fig. 6. Relative number of border nodes B for DEU depending on the clustering method
The k-center heuristics all use k log k-oversampling.

Fig. 3 gives an example for the shape of the search space explored by PCD.
As to be expected, the search space is a kind of halo around the shortest path
that gets narrower when k is increased. A somewhat optimistic approxima-
tion of the observed behavior is that the clusters near the shortest path are
explored. The shortest path will intersect O(

√
k) clusters of size O(n/k) on

the average, i.e., the intersected clusters contain O(n/
√

k) nodes. Since Dijk-
stra’s algorithm visits Θ(n) nodes on the average, we expect a speedup of
O(
√

k).
This hypothesis is verified in Fig. 4, which compares the different partitioning

methods from Section 5. Scaled by
√

k, the speedups describe fairly flat lines
as our hypothesis suggests. The MinSize heuristic yields the highest speedups,
while the other heuristics perform worse though they also yield fairly small
average radii as mentioned before. Since MinRad keeps deleting clusters in ur-
ban areas, it ends up with clusters of similar radii but differing sizes, wheras
MinSize deletes clusters regardless of their size yielding a good ratio of radius
and size. Interestingly, for the minimum size rule the speedups appear to scale
even better than Θ(

√
k). This observation is confirmed in Fig. 5 for further

instances.
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Fig. 7. Speedups for bidirectional PCD with k′-oversampling using different values for
k′, tested on DEU. Δ = k log k − k denotes the difference between k log k and k.

Table 3. Performance of PCD for several graph instances and selected values of k.
prep.= preprocessing time. B = total number of border nodes. spd = speedup. settled
= number of settled nodes. t = query time.

prep. PCD unidirectional PCD bidirectionalgraph k B+k2

n [min] t[ms] spd settled spd t[ms] spd settled spd
DEU 24 < 0.01 2.6 2491 2.2 1 171 110 2.2 2114 2.5 1 028 720 2.4

26 0.01 11.1 1410 3.6 749 870 3.3 971 5.2 553 863 4.3
28 0.03 35.0 677 7.7 443 832 5.9 422 12.3 295 525 8.5
210 0.26 123.0 256 21.2 199 663 13.2 157 35.0 127 604 20.2
212 3.88 558.2 110 70.5 86 401 37.1 62 114.9 50 417 57.4

SCA 210 0.44 60.7 173 21.3 136 365 14.2 81 36.5 70 766 22.9
IBE 210 1.25 11.7 43 16.5 51 716 13.7 20 24.7 26 591 20.4
SUI 210 1.71 11.1 20 20.8 25 070 19.1 9 31.1 12 848 31.4
MID 210 0.22 89.2 287 15.4 326 112 10.3 223 18.5 242 153 12.8
WES 210 0.25 80.8 238 15.2 227 768 11.3 169 19.0 159 409 14.4
MAT 210 0.50 35.5 101 17.1 114 702 12.0 76 21.1 83 577 15.2
NEN 210 1.21 11.0 39 15.1 49 259 11.6 28 19.3 34 625 15.0

As expected, Metis finds clusters with smaller borders as can be seen in Fig. 6.
However, since the percentage of border nodes is very small even for oversam-
pling, this appears to be less relevant.

Oversampling using the MinSize deletion heuristic is tested for several values
of k′ in Fig. 7. Starting from k′ = k, which means just choosing k centers
randomly, increasing k′ up to k log k increases the speedup significantly. However,
no considerable further improvement is visible for k′ > k log k.

Table 3 summarizes our results for several instances and different numbers of
clusters k calculated by k log k-oversampling.The highest speedup in our tests
is 114.9, while speedups of more than 30 are still achieved while the number of
cluster pairs k2 remains significantly below n and the total number of border
nodes B is negligible. The speedups for the US instances are smaller proba-
bly because the available data provides less information on speed differences
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of roads, while using travel distances rather than travel times seems to yield
even smaller speedups. The reason is that edges off the fastest path often have
high travel time values compared to edges on the path, so that pruning happens
earlier.

The speedups in terms of query time are higher than those in terms of settled
nodes. The main reason for this lies in the size of the priority queue in PCD,
which affects the average time for queue operations: after a small ball around the
source is searched, most of the nodes on its boundary are pruned, and the search
frontier turns into a small corridor around the shortest path. Then, the queue
holds a number of nodes which remains roughly constant until finishing. The
queue size corresponds to the width of the corridor, so the average queue size
is in O(

√
n
k ), while in Dijkstra’s algorithm the queue keeps growing and holds

O(n) nodes on the average. Since the average time of an operation is logarithmic
in the size and the number of operations is linear in the number of settled nodes,
the relation between the speedup in terms of query time and that in terms of
settled nodes is roughly log n

log n
k
.

7 Conclusion

We have demonstrated that PCD can give route planning in road networks
a strong sense of goal direction leading to significant speedups compared to
Dijkstra’s algorithm using only sublinear space. The most obvious task for future
work is to combine this with speedup techniques that have no sense of goal
direction [2, 3, 4]. There are good reasons to believe that one would get a better
tradeoff between speedup and space consumption than any previous method.

As a standalone method, PCD is interesting because its unidirectional variant
also works for networks with time dependent edge weights such as public trans-
portation networks or road networks with information when roads are likely to
be congested: simply use an optimistic estimate for lower bounds and a pes-
simistic estimate for the upper bounds. Most other speedup techniques do not
have such an obvious generalization.

PCD itself could be improved by giving better upper and lower bounds. Up-
per bounds are already very good and can be made even better by splitting
edges crossing a cluster border such that the new node has equal distance from
both cluster centers. For example, this avoids cluster connections that use a
small road just because the next entrance from a motorway is far away from the
cluster border. While this is good if we want to approximate distances, initial
experiments indicate that it does not give additional speedup for exact queries.
The reason is that lower bounds have a quite big error related to the cluster di-
ameters. Hence, better lower bounds could lead to significant improvements. For
example, can one effectively use all the information available from precomputed
distances between clusters explored during bidirectional search?

It seems that a good partitioning algorithm should look for clusters of about
equal size and low diameter; perhaps, these might be two of the main parameters
for an easily computable objective function. In the literature there is a lot of
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work on approximation algorithms for various k-center problems. It might be
interesting to adapt some of the proposed algorithms to our situation.
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