Ontology Engineering Revisited:
An Iterative Case Study*

Christoph Tempich?, H.Sofia Pinto!, and Steffen Staab?

! Dep. de Engenharia Informatica, Instituto Superior Técnico, Lisboa, Portugal
sofia.pinto@dei.ist.utl.pt
2 Institute AIFB, University of Karlsruhe (TH), 76128 Karlsruhe, Germany
tempich@aifb.uni-karlsruhe.de
3 ISWeb, University of Koblenz Landau, 56016 Koblenz, Germany
staab@uni-koblenz.de

Abstract. Existing mature ontology engineering approaches are based on some
basic assumptions that are often violated in practice, in particular in the Semantic
Web. Ontologies often need to be built in a decentralized way, ontologies must
be given to a community in a way such that individuals have partial autonomy
over them and ontologies have a life cycle that involves an iferation back and
forth between construction/modification and use. While recently there have been
some initial proposals to consider these issues, they lack the appropriate rigor
of mature approaches. i.e. these recent proposals lack the appropriate depth of
methodological description, which makes the methodology usable, and they lack
a proof of concept by a long-lived case study. In this paper, we revisit mature and
new ontology engineering methodologies. We provide an elaborate methodology
that takes decentralization, partial autonomy and iteration into account and we
demonstrate its proof-of-concept in a real-world cross-organizational case study.

1 Introduction and Motivation

Ontologies are used in order to improve the quality of communication between com-
puters, between humans and computers as well as between humans. An ontology is an
agreement supporting such communication and this agreement must be constructed in a
comprehensive ontology engineering process. There are several mature methodologies
that have been proposed to structure this process and thus to facilitate it (cf. [1,12,13])
and their success has been demonstrated in a number of applications.

Nevertheless, these methodologies make some basic assumptions about the ontology
engineering process and about the way the resulting ontologies are used. In practice, we
observe that these methodologies neglect some important issues:

Decentralization: The methodologies do not take into account that even a medium
sized group of stakeholders of an ontology is often quite distributed and does not nec-
essarily meet often or easily.

* Research reported in this paper has been financed by EU in the IST projects SEKT (IST-2003-
506826) and aceMedia (IST-FP6-001765).

Y. Sure and J. Domingue (Eds.): ESWC 2006, LNCS 4011, pp. 1101241 2006.
(© Springer-Verlag Berlin Heidelberg 2006

Ontology Engineering Revisited 111

Partial Autonomy: Users of an ontology are typically forced to use an ontology as is
or to forget about it. A typical situation that we have encountered was that people want
to retain a part of the shared ontology and modify it locally, i.e. personalize it.
Iteration: The methodologies mention the problem of evolving the ontology, but the
cases that support the methodologies are typically cases where the construction phase
of the ontology strictly precedes the usage phase of the ontology while we often see the
need for interleaving ontology construction and use. Moreover, there is a lack of case
studies that support hypothesis about how to iterate in the ontology evolution process.

These issues arise naturally for many ontologies and one might claim for all ontolo-
gies in the Semantic Web! Recently a number of approaches that touch these issues
have been proposed [4}/5,|6] — among them our own, DILIGENT. However, none of
these approaches elaborated their methodological description or tested their proposals
in a case study with regard to Decentralization, Partial Autonomy and Iteration between
the definition and the use of an ontology.

In this paper, we present our approach, DILIGENT. It is based on the process model
described in [4]. We add substance to existing proposals by, (i), specifying the internal
structure of methodology stagesﬂ (i.e. their input, output, decision points, actions to be
taken in each stage, and available tool support) and, (ii), by providing a comprehensive
case study that takes Decentralization, Partial Autonomy as well as Iteration between
ontology construction/modification and usage seriously in a real-world case study of
3 months duration, where the ontology was the driving factor of a cross-organizations
peer-to-peer knowledge management platform.

In the following, we first revisit ontology engineering methodologies to describe our
starting point (Section [2)). In Section Bl we survey our way of arriving at the method-
ology described here. Then we describe the refinements, adaptations and extensions
we made to related methodologies in Section 4l Because of space restrictions, this de-
scription can only highlight some of our methodological improvements. For the full
description we refer the reader to a technical report [7]. We evaluate DILIGENT by
comparing it in detail to other methodologies (Section[3)) and by validating it through a
case study (Section[6]) that shows a concrete instantiation of our methodology including
two full iterations of the ontology life cycle.

2 Related Work

In the past, there have been OE case studies involving dispersed teams, such as (KA)?2
ontology [6] or [8]. However, they usually involved tight control of the ontology, of its
development process, and of a small team of ontology engineering experts that could
cope with the lack of precise guidelines.

Established methodologies for ontology engineering summarized in [1,2,13], focus
on the centralized development of static ontologies, i.e. they do not consider iteration
between construction/modification and use. METHONTOLOGY [1]] and the OTK

! To facilitate reading, we introduce here a convention to refer to parts of processes. We call a
larger part a ‘process stage’ or ‘stage’ and a smaller part, which is also a part of a stage, a
‘process action’ or ‘action’.

112 C. Tempich, H.S. Pinto, and S. Staab

methodology [2] are good examples for this approach. They offer guidance for building
ontologies either from scratch, reusing other ontologies as they are, or re-engineering
them. They divide OE processes into several stages which produce an evaluated ontol-
ogy for a specific domain. Holsapple et al. [9]] focus their methodology on the collab-
orative aspects of ontology engineering but still aim at a static ontology. A knowledge
engineer defines an initial ontology which is extended and modified based on the feed-
back from a panel of domain experts. HCOME is a methodology which integrates
argumentation and ontology engineering in a distributed setting []]. It supports the de-
velopment of ontologies in a decentralized setting and allows for ontology evolution.
It introduces three different spaces in which ontologies can be stored: In the Personal
Space users can create and merge ontologies, control ontology versions, map terms
and word senses to concepts and consult the top ontology. The evolving personal on-
tologies can be shared in the Shared Space. The Shared Space can be accessed by all
participants. In the shared space users can discuss ontological decisions. After some
discussion and agreement, the ontology is moved into the Agreed space. However, they
have neither reported that their methodology had been applied in a case study nor do
they provide any detailed description of the defined process stages.

3 Developing the New DILIGENT OE Methodology

In order to arrive at a sound OE methodology we have proceeded in five steps to de-
velop DILIGENT. First, we built on [[8] to conceive our initial DILIGENT framework.
Second, this framework contained a step for initially constructing a core ontology. With
regard to this step, we decided not to develop a new methodology but to adopt the
OTK methodology. Third, in order to validate the combined methodology, we analyzed
its potential for the past (and ongoing) development process that has led to the bio-
logical taxonomy of living species and we conducted a lab experiment case study (cf.
[LO). Fourth, we started a real-life case study and reported about its initial state and
supporting means in [4]. Fifth, by the sum of these initial methodologies, cases and ex-
periments, we arrived at the new and refined DILIGENT methodology that we present
here. The focus of the refinement has been on decentralization, iteration and partial
autonomy as well as on guiding users who were not ontology engineering experts. The
methodology has been validated by the iterative case study presented in Section[6l Thus,
we could repeatedly switch between hypothesis formulation and validation in order to
present the result of step five and its validation in the remainder of this paper.

4 The DILIGENT Methodology

In order to give the necessary context for the detailed process description as depicted in
Fig.[Ilwe start by summarizing the overall DILIGENT process model.

4.1 General Process

The DILIGENT process [4] supports its participants, in collaboratively building one
shared ontology. The process comprises five main activities: (I) build, (I) local adap-
tation, (IIT) analysis, (IV) revision, (V) local update. The process starts by having

Ontology Engineering Revisited 113

domain experts, users, knowledge engineers and ontology engineers building an initial
ontology. It proposes that the team involved in building the initial ontology should be
relatively small, in order to more easily find a small and consensual first version of
the shared ontology. At this point, it is not required to arrive at an initial ontology that
would cover the complete domain. Once the initial ontology is made available, users
can start using it and locally adapting it for their own purposes. Typically, due to new
business requirements, or user and organization changes, their local ontologies evolve.
In their local environment they are free to change the reused shared ontology. However,
they are not allowed to directly change the ontology shared by all users.

A board of ontology stakeholders analyzes the local ontologies and the users’ re-
quests and tries to identify similarities in their ontologies. At this point it is not intended
to merge all local ontologies. Rather changes to local ontologies will be analysed by the
board in order to decide which changes introduced or requested by the users will be in-
troduced. Therefore, a crucial activity of the board is deciding which changes are going
to be introduced in the next version of the shared ontology. A balanced decision that
takes into account the different needs of user’s evolving requirements has to be found.
The board should regularly revise the shared ontology, so that the parts of the local
ontologies overlapping the domain of the shared ontology do not diverge too far from
it. Therefore, the board should have a well-balanced and representative participation
of the different kinds of participants involved in the process, which includes ontology
engineers, domain experts and usersP Once a new version of the shared ontology is
released, users can update their own local ontologies to better use the knowledge rep-
resented in the new version. The last four stages of the process are performed in a cyclic
manner: when a new common ontology is available a new round starts again.

4.2 DILIGENT Process Stages

In order to facilitate the application of ontology engineering processes in real settings,
DILIGENT had to be detailed to provide guidance to its participants. For this purpose,
we have analyzed the different process stages in detail. For each stage we have identified
(i) major roles, (ii) input, (iii) decisions, (iv) actions, (v) available tools, and (vi) output
information. One should stress that this elaboration is rather a recipe or check list than
an algorithm or integrated tool set. In different contexts it may have to be adapted or
further refined to fit particular needs and settings. Tools may need to be integrated or
customized to match requirements of the application context. In Fig. [Il we sketch our
results, which are presented in the following. For lack of space we refer the reader to a
technical report that includes a more detailed description of all items depicted in Fig.[I]
[7]. In this paper we consider ’Local Adaptation’, 'Revision’, and *Local Update’ at an
abstract level, zoom only into the *Analysis’ stage in an exemplary fashion and we omit
the *Build’ stage, which is well-covered by existing methodologies [[1}2]].

Local Adaptation

Roles: The actors involved in the local adaptation step are users of the ontology. They
use the ontology e.g. to retrieve documents which are related to certain topics modelled
in the ontology or more structured data like the projects an employee was involved in.

2 These are roles that may overlap.

114 C. Tempich, H.S. Pinto, and S. Staab

OSSO

Dosurmanted
new shared
antology

List of
conceptual
changes

Local
ontalagy
margad with
new shared
one,

inifial
shared
Oiotelogy

- Locally
changed
Ontoiogiss
- Arguments

. Local . - Local
Build K Analysis))Revision
‘Adaptatio Update
I
S
1.8mall group | 2. Understand 8. Gather 11. Formalization, 14. Distribution of
builds initial shared updated of relevant the new
shared ontology ontologies changes ontelogy
antology 3, Identify 9. Analyze 12, Aggregation | 15, Tagging of the
according communalities changes of arguments old ontology
esta}bllshledl 4. Map equivalent, conceptually 43, Documen- 16. Local inclusion
methodologies 5. Identify missing, 10- Decide an tation of the update
&. Change locally r:h;;gns to be 17. Alignment of old
7. Qrganize local and _new
knowledge versions

Fig. 1. Process stages (1-5), actions (1-17) and structures

Input: Besides the common shared ontology, in the local adaptation step the informa-
tion available in the local information space is used. This can be existing databases,
ontologies or folder structures and documents.

Decisions: The actors must decide which changes they want to make to their local
ontology. Hence, they must decide if and where new concepts are needed and which
relations a concept should have. They should provide reasons for their decisions.

Actions: To achieve the desired output the user performs different actions namely (2)
Understand shared ontology, (3) Identify communalities between own and shared con-
ceptualization, (4) Map equivalent conceptualizations of different actors, (5) Identify
missing conceptualizations, (6) Change conceptualization and finally (7) Organize lo-
cal knowledge according to the conceptualization.

The last three actions of the process step are performed in a cyclic manner until a new
common ontology is available and the entire process step starts again. The single actions
performed manually would require a grounded understanding of ontologies and their
underlying formal representation. We cannot expect such knowledge from all actors
participating in the process. The process should rather be integrated seamlessly in the
environment the user works in. Hence we now indicate for each of the actions some
available technology to support the actors.

Tool support: Building is supported by existing ontology editors like [11]. In [4] we de-
scribe how existing structure on local machines can be utilized to facilitate the creation
of ontologies. The tool supports thus actions (3) and (5). We have further integrated
ontology mapping to support step (4). (6) is a manual step. (7) is currently a manual
step, too, but it could be supported by semi automatic classification.

Ontology Engineering Revisited 115

Output: The output of the process step is a locally changed ontology which better
reflects the user’s needs. Each change is supported by arguments explaining the reasons
for a change. At this point changes are not propagated to the shared ontology. Only in
the analysis step the board gathers all ontology change requests and their corresponding
arguments to be able to evolve the common shared ontology in the revision step.

Analysis

In this stage, in the middle of the overall ontology engineering process, the board (cf.
the description of DILIGENT in Sec. 2) analyzes incoming requests and observations
of changes. The frequency of this analysis is determined based on the frequency and
volume of changes to the local ontologies.

Roles: In the analysis stage we can distinguish three roles played by board members:
(i) The domain expert decides which changes to the common ontology are relevant for
the domain and which are relevant for smaller communities only. (ii) Representatives
of the users explain different requirements from the usability perspective. At this stage,
work is conducted at a conceptual level. (iii) The ontology engineers analyze the pro-
posed changes from a knowledge representation point of view foreseeing whether the
requested changes could later be formalized and implementedﬁ

Input: The analysis stage takes as input the ontology changes proposed and/or made
by the participating actors. To be able to understand the change requests, users should
provide their reasons for each request. Both manual and automated methods can be
used in the previous stages. Besides of arguments by ontology stakeholders, one may
here consider rationales generated by automated methods, e.g. ontology learning. The
arguments underlying the proposed changes constitute important input for the board to
achieve a well balanced decision about which changes to adopt.

Decisions: The board must decide which changes to introduce into the new shared
ontology at the conceptual level. Metrics to support this decision are (i) the number of
users who introduced a change in proportion to all users who made changes. (ii) The
number of queries including certain concepts. (iii) The number of concepts adapted by
the users from previous rounds.

Actions: To achieve the desired output the board takes different actions namely (8)
Gather locally updated ontologies and corresponding arguments, (9) Analyze the intro-
duced changes and (10) Identify changes presumably relevant for a significant share of
all actors.

Tool support: In [4] we present an extension to an ontology editor, which supports
actions (8) and (9) and (10). (8) Ontologies can be collected from the users in a peer-to-
peer system. Different sorting and grouping mechanisms help the board to analyze the
introduced changes systematically. The identification of relevant changes is in the end
a community process. Here we support decision making by structured argumentation
support as described in [[12].

Output: The result is a list of major changes to be introduced that were agreed by the
board. All changes which should not be introduced into the shared ontology are filtered.
At this stage it is not required to decide on the final modelling of the shared ontology.

3 In the revision stage.

116 C. Tempich, H.S. Pinto, and S. Staab

We now detail each one of the proposed actionsfl

(8) Gather locally updated ontologies and corresponding arguments: Depending on
the deployed application the gathering of the locally updated ontologies can be more or
less difficult. It is important that the board has access to the local changes from users to
be able to analyze them. It might also be interesting not only to analyze the final user
ontology, but also its evolution. However, with an increasing number of participants this
in-depth analysis might be unfeasible. Since analysis takes place at the conceptual level,
reverse engineering is usually an important technique to get the conceptual model from
the formalized model [1]. To support users providing their reasons, an argumentation
framework that focuses the user on the relevant arguments was developed cf. [[12].

(9) Analyze introduced changes: The number of change requests may be large and
also contradictory. First the board must identify the different areas in which changes
took place. Within analysis the board should bear in mind that changes of concepts
should be analyzed before changes of relations and these before changes of axioms.
Good indicators for changes relevant to the users are (i) overlapping changes and (ii)
their frequency. Furthermore, the board should analyze (iii) the queries made to the
ontology. This should help to find out which parts of the ontology are more often
used. Since actors instantiate the ontology locally, (iv) the number of instances for
the different proposed changes can also be used to determine the relevance of certain
adaptations.

(10) Identify changes presumably relevant for a significant share of all actors: Hav-
ing analyzed the changes and having grouped them according to the different parts of
the ontology they belong to, the board has to identify the most relevant changes. Based
on the provided arguments the board must decide which changes should be introduced.
Depending on the quality of the arguments the board itself might argue about differ-
ent changes. For instance, the board may decide to introduce a new concept that better
abstracts several specific concepts introduced by users, and connect it to the several spe-
cific ones. Therefore, the final decisions entail some form of evaluation from a domain
and a usage point of view. The outcome of this action must be a reduced and structured
list of changes that are to be accomplished in the shared ontology.

Revision

Roles: The ontology engineers from the board judge the changes from an ontological
perspective more exactly at a formalization level. Some changes may be relevant for
the common ontology, but may not be correctly formulated by the users. The domain
experts from the board should judge and decide wether new concepts/relations should
be introduced into the common ontology even so they were not requested by the users
(who may be domain experts or not).

Input: The input for the revision phase is a list of changes at a conceptual level which
should be included into the ontology.

Decisions: The main decisions in the revision phase are formal ones. All intended
changes identified during the analysis phase should be included into the common ontol-
ogy. In the revision phase the ontology engineer decides how the requested changes

* Such a detailed description is available for all actions, but mostly omitted for sake of brevity.

Ontology Engineering Revisited 117

should be formalized. Evaluation of the decisions is performed by comparing the
changes on the conceptual level with the final formal decisions. The differences be-
tween the original formalization by the users and the final formalization in the shared
ontology should be minimal.

Actions: To achieve the desired output the members of the board, mainly its ontology
engineers, perform different actions namely (11) Formalization of the decided changes,
(12) Aggregation of arguments and (13) Documentation. Judging entails Evaluation of
proposed changes from a knowledge representation/ontological point of view.

Tool support: For the revision phase we do not envision any special tool support be-
yond the one provided by classical ontology engineering environments.

Output: The revision phase ends when all changes are formalized and well documented
in the common ontology.

Local Update

Roles: The local update phase involves only the users. They perform different actions
to include the new common ontology into their local system before they start a new
round of local adaptation.

Input: The formalized ontology including the most relevant change request is the input
for this step. We also require as an input the documentation of the changes. For a better
understanding the user can request a delta to the original version.

Decisions: The user must decide which changes he will introduce locally. This depends
on the differences between the own and the new shared conceptualization. The user
does not need to update his entire ontology. This stage interferes a lot with the next
local adaptation stage. We do not exclude the possibility of conflicts and/or ambiguity
between local and shared ontologies, which may entail reduced precision if the ontology
is being used in IR applicationsé

Actions: To achieve the desired output the user takes different actions namely (14)
Distribution of the new ontology to all actors, (15) Tagging of the old ontology to allow
for a roll back, (16) Local inclusion of the updated version and (17) Alignment of old
and new versions.

Tool support: The Local update stage is very critical from a usability point of view.
Changes cannot be introduced without the user’s agreement. Further he should not be
bothered too often. In case of equivalent but local conceptualizations it must be possible
to change to the common conceptualization. From a technical point of view this stage
is supported by tools like KAON cf. [[13]].

Output: The output of the local update phase is an updated local ontology which
includes all changes made to the common ontology. However, we do not require the
users to perform all changes proposed by the board. The output is not mandatory,
since the actors could change the new ontology back to the old one in the local adap-
tation stage.

3 Ideally one should be able to blacken out the ambiguous parts like in multilevel databases.
This has not been transferred to OE yet.

118 C. Tempich, H.S. Pinto, and S. Staab

5 Comparison with Related Methodologies

In table[[lwe compare DILIGENT to other well known methodologies. We have adapted
the categorization of [[1]] separating Management of the OE process activitiesﬁ Ontol-
ogy development oriented activities and Ontology support activities. To the original
classification we have added the aspects of Evolution, different Knowledge acquisi-
tion modes and stages during Documentation.

Table 1. Summary of ontology engineering methodologies adapted from [1]]

Feature METHON- On-To- HCOME DILIGENT
TOLOGY Knowledge
(OTK)

. Scheduling Proposed Described NP from OTK
Manageme'nt'o'f OF Control ¢ Progosed Described NP from OTK
process activities Quality assurance NP Described NP from OTK

Pre development Environment study NP Proposed NP from OTK
processes Feasibility study NP Described NP from OTK
Specification Descr. in detail Descr. in detail Proposed — Described
Development Conceptualization Descr. in detail Proposed Proposed Descr. in detail
Ontology processes Formalization Described Described Proposed Descr. in detail
development Implementation ~ Descr. in detail Described Proposed Described
oriented activities Post development Maintenance Proposed Proposed Described Descr. in detail
o P Use NP Proposed Described Described
processes Evolution NP NP Proposed Descr. in detail
Knowledge acquisition Descr. in detail Described NP Proposed
Distributed know. acquisition NP NP Proposed Described
Partial autonomy NP NP NP Described
Ontology support Evaluaqon Descr. in detail Proposed NP Proposed
activitios Integration Proposed Proposed NP Proposed
Configuration management Described Described NP from OTK
Documentation Descr. in detail Proposed Described from OTK
Results Descr. in detail Proposed Described from OTK
Decision process NP NP Proposed Descr. in detail
Merging and Alignment NP NP Proposed Proposed

The comparison reveals that DILIGENT is well suited for ontology engineering tasks
where distributiveness and change/evolution are of major concern. Further it is the first
methodology which formalizes the argumentation taking place in an ontology engineer-
ing discussion. Hence, DILIGENT should be used in cases where tracing the engineer-
ing decisions is important. This allows future users to understand the different reasons
which lead to the conceptualization. We think that these aspects are very important in
the context of the semantic web. DILIGENT does not itself support management of OE
process activities and Pre development activities, since these are already well supported
by other mature methodologies.

6 Case Study Evaluation

The case study described in the following helped us to validate the previously defined
methodology and to refine it in a few specific places. To this end, case study evaluation
has incorporated the clients and practitioners to help us understand the diversity of the
process. Before we describe how the DILIGENT ontology engineering process took
place in our case study, we describe its organizational setting.

® Formerly named Ontology Management activities.

Ontology Engineering Revisited 119

6.1 Organizational Setting

A DILIGENT process has been performed in a case study within the domain of tourism
service providers of the Balearic Islands. To collaborate on regional issues some or-
ganizations set out to collect and share information about indicators (SDI) reflecting
the impact of growing population and tourist fluxes in the islands, their environment
and their infrastructures. For instance, organizations that require Quality & Hospitality
management (QHM) use the information to better plan, e.g., their marketing campaigns.

Due to the different working areas and goals of the collaborating organizations, it
proved impossible to build a centralized ontology satisfying all user requirements. The
users emphasized the need for local control over their ontologies. They asked explicitly
for a system without a central server, where knowledge sharing was integrated into the
normal work, but where different kinds of information, like files, emails, bookmarks
and addresses could be shared with others. To this end a generic platform was built that
would allow for satisfying the information sharing needs just elaborated using local
ontologies, which were linked to a shared ontology. A case study was set up involving
both hierarchical and loose organizations. The case study lasted for 3 months.

In this case study most of the tools were being developed at the same time as the
process was taking place. Therefore, the administrator had a major role in bridging the
gap between our real users and the weaknesses of the tools, for instance by doing the
local adaptations for the users since the tools were not error-proof.

6.2 Instantiated DILIGENT Process

We now describe the initial building phase, and the two rounds following the DILI-
GENT process focusing on the analysis phase.

Build

(lﬂ To build the first version of the shared ontology two domain experts with the help
of two knowledge/ontology engineers were involved. In this case, domain experts were
also knowledge providers and users.

The OE process started by identifying the main concepts of the ontology through
the analysis of competency questions and their answers. The most frequent queries
and answers exchanged by users were analyzed. The main objective of the ontology
was to categorize documents. The concepts identified were divided into three main
modules: “Sustainable Development Indicators (SDI)”, “New Technologies (NT)”
and “Quality&Hospitality Management (QHM)”. From the competency questions the
board quickly derived a first ontology with 20 concepts and 7 relations for the “SDI”
ontology. For “NT” the board identified 15 concepts and 8 relations and for “QHM”
8 concepts and 5 relations. Between the modules 8 cross module relations were intro-
duced. A part of the result of the initial building stage is visualized in Fig.[2(a)}

The first round of our OE process started with the distribution of the three modules
of the common ontology to all users. In both rounds, users - during the local adaptation
stage - and the board - in the revision stage - could perform ontology change operations.
They could introduce concepts/relations/instances, delete concepts/relations/instances,

7 The numbering here and in the following corresponds to the number of the actions in Fig. [l

120 C. Tempich, H.S. Pinto, and S. Staab

(@ Business Administration
(@ Hurman Resources

@) Hurnan Resources (@ Mananement
@) Indicatar (G Marketing
(@ Hurman Resources € Leaming @ Leaming
@ Indicator (@) Marketing (@ Lenislation
@ Marweting @ Quality (@ Tourism Legislation
@ ousliy (@) Environrmental Quality @ Quality
@ Quality Plans (@ ASHOME Quality Systems
@ Tourist Quality (@ Environmentalguality
G Tourism Legislation Q) Guality Plans

© Tourism inspection
(@ Tourist Quality

(a) First version of the com- (b) Second version of the (c) Third version of the com-
mon ontology common ontology mon ontology

Fig. 2. Excerpts from the common ontology evolution

or combine these operations arbitrarily, thus extend or restructure the ontology. Most
frequently the concept hierarchy was changed.

6.3 First Round

The first month of the case study, corresponded to the first round of the DILIGENT
process. One organization with seven peers participated. This organization can be clas-
sified as a rather loose one.

Local Adaptation

The users in our case study had no OE background. Therefore, they initially regarded
the ontology mainly as a classification hierarchy for documents. Consequently they
compared their existing folder structures with the common ontology to (3) identify com-
munalities between their own and the shared conceptualization. (5) Identification of
missing conceptualizations was thus based on mismatches between the common ontol-
ogy and their local folder structures. Users (6) changed the common conceptualization
accordingly. This entailed that the /ocal documents stored in the folders were (7) orga-
nized according to that conceptualization. In this organization most of the users were
very active and did local adaptations to best serve their own needs.

Analysis
Roles: The board consisted of two ontology engineers and two domain experts/users.

Input: The local adaptations from seven users were collected. Additionally the board
had access to the folder structures of those users.

Decisions: All changes introduced were motivated by the users, since they all made
sense and were not contradictory on the conceptual level.

Actions:

(8) Gather locally updated ontologies and corresponding arguments: In the first
round the board, through the administrator (i) directly accessed the formal local changes
on the different peers and (ii) some change requests on the conceptual level. At this
stage the board also used (iii) the folder structures as indication for the requirements on
the ontology, and it used (iv) the number of documents related to the concepts of the
ontology as an indicator for its usage. Additionally, the board received new background
knowledge which led to many additions in the “NT”” module. The “SDI” module was

Ontology Engineering Revisited 121

@ Circulars
(@ Learning and Human Resources
(@ Legislation
(@ Management

(€ Huran Resources
(€ Human Resources @ Learning

Q@) Indicatar)
X Marketing
@) Leaming %Qualiw

(@) Marketing (@ ASHOME Quality Systern

@ Quality @ Emi :
. Enviranmental Guality
@ Ermironmental Guality @ auality Plans

(@) Tourist Quality
(@) Taurism inspection
(@) Taurism Legislation

(a) Example of a user extension to the first (b) Example of a user extension to the sec-
version of the common ontology ond version of the common ontology

Fig. 3. Examples of user extensions to the common ontology

changed based on the formal changes collected electronically. Although the number
of changes varied between the different modules the kinds of changes were the same.
Therefore, we subsequently focus on the changes introduced to the “QHM” module
which are partly visualized in Fig.

(9) Analyze introduced changes: The board analyzed the changes introduced by the
users at a conceptual level. They can be categorized as follows:

Elaboration. The elaboration of the ontology was the most often observed action. The
board could identify elaborations in three different ways. (i) The users correctly re-
quested either formally or informally to add sub concepts to existing concepts to special-
ize them. (ii) The users incorrectly added new top level concepts, which were special-
izations of existing concepts. (iii) Finally they incorrectly refined the wrong concepts.
In this way users elaborated the “NT” module with 15 concepts, the “SDI” module with
3 concepts and the “QHM” module also with 3 concepts.

Extension. The board regarded a change as an extension whenever users requested new
concepts on the top level. Again, users could not distinguish wether a required concept
was an elaboration or an extension. Users extended the “NT”” module with 2 concepts
and the “QHM” module also with 2 concepts. The “SDI” module was not extended.

Renaming. In two cases the users liked the way the board had conceptualized the do-
main, but did not agree with the names of the concepts.

Usage. Usage behavior of single concepts in the common ontology was analyzed. This
included (i) the number of queries posed to the system containing a specific concept,
(i) the number of documents related to that concept and (iii) the elaboration of a
concept. Most of the users did not delete any concepts or ask explicitly to remove
concepts. Nevertheless the board concluded, that a concept which was never used
should be removed.

(10) Decide on changes to be made: The board decided to introduce all change re-
quests into the common ontology since all were supported by at least two users either
through usage or extension/elaborations. Moreover, the domain expert could provide
reasonable arguments for the introduction of all changes. Thus, the division of the on-
tology into 3 modules generated a consensual group of users, already.

Output: The analysis of the local adaptations resulted in 27 changes for the “NT”
module, 10 changes for the “QHM” module, and 5 for the “SDI” module.

122 C. Tempich, H.S. Pinto, and S. Staab

Revision

After modelling the conceptual changes, the second version of the common ontology
contained 54 concepts and 13 relations (figure 2(D)).

Local update

(14) The extensions to the core ontology were distributed to the users. (17) The users
were able to align their local ontologies with the new version of the shared and thus the
feedback of the users was in general positive.

6.4 Second Round

In the second round the case study was extended to 4 organizations with 21 peers. The
users participating in the first round had more experience. One of these organizations
was very hierarchical.

Local Adaptation

As in the first round participants (6) changed and (7) used the common ontology accord-
ing to their needs. Due to the larger number of participants more modifications were
introduced. In particular the module “QHM” evolved (cf. Fig.[3(b)). In the hierarchical
organization not all actors changed the ontology. They delegated the responsability to
adapt the ontology to their hierarchical superior according to their organizational needs.

Analysis

Roles: In the second round the board consisted of one domain expert and two ontol-
ogy engineers. Additionally two users were invited to answer questions to clarify the
changes they introduced.

Input: The 21 local ontologies of the users were the input to the second round. Some
of the users did not change the common ontology at all. Instead their supervisor was
responsible to make all needed modifications for them. In very hierarchical and well
defined organizations one single ontology could be adopted by all peers (Fig. 3(b)).
Decisions: In this round the board had to perform reverse engineering on the formal
local ontologies from users in order to get conceptual models from them.
Actions:
(8) Gather locally updated ontologies and corresponding arguments: As in the first
round the updated ontologies were retrieved electronically. Some of the modification
requests were collected interviewing the participants.
(9) Analyze introduced changes: Similar to the first round the modifications did not
follow good ontology building practices. With respect to the conceptual modelling de-
cisions the board observed that this time the users modified the ontology on a deeper
level than in the first round. Renaming was a bigger issue in this round due to political
changes, which required the adoption of new naming conventions. Moreover, general-
ization took place in two cases. Users introduced concepts which were more abstract
than existing ones. The board moved one concept “Indicator” to another module of the
ontology, since there the users elaborated it extensively.

In Fig.[B(b) we observe that a user has extended the local version of the common on-
tology with concepts for Circulars. With help by the domain expert, and taking also into

Ontology Engineering Revisited 123

account other local updates, the knowledge engineers inferred on the conceptual level
that the module lacked concepts for Business Administration. Hence, the board did
not only introduce new concepts, but also generalize existing ones To exemplify
an argumentation thread in favor or against a modelling decision, one may consider the
local extension of Circulars performed by one user: Legislation was introduced as a
subclass of Circulars. The argumentation for a different way of modelling was straight-
forward, because the board found a Counter Example in the form of a document dealing
with Legislation, which was not a Circular. Here, users were requesting an elaboration
of Circulars for which the board found a countradicting example. The most convinc-
ing arguments were selected and emphasized for documentation purposes. In [12]] we
present the argumentation framework that allows such argument formalization.

(10) Decide on changes to be made: As in the first round the board included all change
requests from users. Again, as in the first round, only few of the concepts in the common
ontology were never used.

Output: The board identified 3 changes in the “NT” module, 28 modifications for the
“QHM” module and 15 for the “SDI” module.

Revision
The third version of the common ontology contained 95 concepts and 15 relations (Fig.

Local update

(14) As in the first round the new version was distributed to the participants. (16) Up-
dating to the new version is still a problem, since some instances of the ontology might
have to be newly annotated to the new concepts of the shared ontology. In our case
documents needed a new classification. (17) Partly this problem can be overcome with
the help of technology cf. [13]].

7 Discussion and Conclusions

Decentralization can take different forms. One can have more loose or more hierarchi-
cal organizations. We observed and supported both kinds of organizations in this case
study. Therefore, the first finding is the fact that this process can be adapted both to
hierarchical and to more loose organizations. DILIGENT processes cover both tradi-
tional OE processes and more Semantic Web-oriented OE processes, that is with strong
decentralization and partial autonomy requirements.

The process helped non OE-expert users to conceptualize, specialize and refine their
domain. The agreement met with the formalized ontology was high, as shown by people
willing to change their folder structures to better use the improved domain conceptual-
ization. In spite of the technical challenges, user feedback was very positive.

The DILIGENT process proved to be a natural way to have different people from dif-
ferent organizations collaborate and change the shared ontology. The set-up phase for
DILIGENT was rather fast, and users could profit from their own proposals (local adap-
tations) immediately. The result was much closer to the user’s own requirements. More-
over, other users profited from them in a longer term. Finally, this case study clearly has
shown the need for evolution. Users performed changes and adaptations.

124 C. Tempich, H.S. Pinto, and S. Staab

The development of ontologies in centralized settings is well studied and there are
established methodologies. However, current experiences from projects suggest that on-
tology engineering should be subject to continuous improvement rather than a one-time
effort and that ontologies promise the most benefits in decentralized rather than central-
ized systems. To this end we have conceived the DILIGENT methodology. DILIGENT
supports domain experts, users, knowledge engineers and ontology engineers in collab-
oratively building a shared ontology in a distributed setting. Moreover, the methodology
guides the participants in a fine grained way through the ontology evolution process,
allowing for personalization. We have demonstrated the applicability of our process
model in a cross-organizational case study in the realm of tourism industry. Real users
were using the ontology to satisfy their information needs for an extended period of
time. Two rounds following our methodology were observed and have been described
here. To our knowledge, this is the first case study combining all the above mentioned
features described in the literature.

References

1. Gémez-Pérez, A., Ferndndez-Lépez, M., Corcho, O.: Ontological Engineering. Springer
(2003)

2. Staab, S., Schnurr, H.P., Studer, R., Sure, Y.: Knowledge processes and ontologies. IEEE
Intelligent Systems 16 (2001)

3. Uschold, M., King, M.: Towards a methodology for building ontologies. In: Proc. of IICAI95
WS, Montreal, Canada (1995)

4. Pinto, H.S., Staab, S., Sure, Y., Tempich, C.: OntoEdit empowering SWAP: a case study in
supporting DIstributed, Loosely-controlled and evolvIinG Engineering of oNTologies (DILI-
GENT). In: 1. Euro. Semantic Web Symposium, ESWS 2004, Springer (2004)

5. Kotis, K., Vouros, G.A., Alonso, J.P.. HCOME: tool-supported methodology for collabo-
ratively devising living ontologies. In: SWDB’04: 2. Int. Workshop on Semantic Web and
Databases. (2004)

6. Benjamins, V.R., Fensel, D., Decker, S., Gébmez-Pérez, A.: (KA)Q: Building ontologies for
the internet. International Journal of Human-Computer Studies (IJHCS) 51 (1999) 687-712

7. Sure, Y., Tempich, C., Vrandeci¢, Z.: D7.1.1. SEKT methodolgoy: Survey and initial frame-
work. SEKT deliverable 7.1.1, Institute AIFB, University of Karlsruhe (2004)

8. Pinto, H.S., Martins, J.: Evolving Ontologies in Distributed and Dynamic Settings. In: Proc.
of the 8th Int. Conf. on Princ. of Knowledge Representation & Reasoning (KR2002). (2002)

9. Holsapple, C.W., Joshi, K.D.: A collaborative approach to ontology design. Commun. ACM
45 (2002) 4247

10. Pinto, H.S., Staab, S., Tempich, C.: DILIGENT: Towards a fine-grained methodology for
DlIstributed, Loosely-controlled and evolvIinG Engineering of oNTologies. In: Proceedings
of the 16th European Conference on Artificial Intelligence (ECAI 2004). (2004)

11. Noy, N., Fergerson, R., Musen, M.: The knowledge model of Protégé-2000: Combining
interoperability and flexibility. In: Proc. of the 12th Int. Conf. on Knowledge Engineering
and Knowledge Management: Methods, Models, and Tools (EKAW 2000), Springer (2000)

12. Tempich, C., Pinto, H.S., Sure, Y., Staab, S.: An argumentation ontology for DIstributed,
Loosely-controlled and evolvInG Engineering processes of oNTologies (DILIGENT). In:
Second European Semantic Web Conference, ESWC 2005, Springer (2005)

13. Maedche, A., Motik, B., Stojanovic, L.: Managing multiple and distributed ontologies on the
semantic web. The VLDB Journal 12 (2003) 286-302

	Introduction and Motivation
	Related Work
	Developing the New DILIGENT OE Methodology
	The DILIGENT Methodology
	General Process
	DILIGENT Process Stages

	Comparison with Related Methodologies
	Case Study Evaluation
	Organizational Setting
	Instantiated DILIGENT Process
	First Round
	Second Round

	Discussion and Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

